WO2021234826A1 - サーバ、無線装置及び無線通信方法 - Google Patents

サーバ、無線装置及び無線通信方法 Download PDF

Info

Publication number
WO2021234826A1
WO2021234826A1 PCT/JP2020/019825 JP2020019825W WO2021234826A1 WO 2021234826 A1 WO2021234826 A1 WO 2021234826A1 JP 2020019825 W JP2020019825 W JP 2020019825W WO 2021234826 A1 WO2021234826 A1 WO 2021234826A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
small cell
cell base
measurement information
information
Prior art date
Application number
PCT/JP2020/019825
Other languages
English (en)
French (fr)
Inventor
基貴 飯田
真規 野町
敦久 小野
充弘 近藤
和人 野口
志郎 福元
達朗 阿部
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2020/019825 priority Critical patent/WO2021234826A1/ja
Priority to JP2021552567A priority patent/JP7466559B2/ja
Publication of WO2021234826A1 publication Critical patent/WO2021234826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a server, a wireless device, and a wireless communication method.
  • LTE-Advanced has been established as the 4th generation (Fourth Generation: 4G) radio access technology (RAT) (for example, Non-Patent Document 1). .. In recent years, the operation of LTE-Advanced compliant wireless communication networks has also been promoted.
  • 4G Fullth Generation: 4G
  • RAT radio access technology
  • a cell having a coverage of several hundred meters to several tens of kilometers (hereinafter, also referred to as a macro cell) and one or more cells having a coverage smaller than that of the macro cell (hereinafter, small).
  • a configuration using also called a cell.
  • HetNet heterogeneous network
  • Wireless devices that form cells have become smaller in recent years, making them easier to install, remove, and carry.
  • the position information indicating the position of such a wireless device is measured by a person (for example, a telecommunications carrier, a construction company, etc.) at the installation location of the wireless device, and is registered in the server. Therefore, the location information may be erroneously registered.
  • the wireless device may be moved by a user or the like to a position different from the position indicated by the position information.
  • the present invention has been made in view of such circumstances, and one of the objects of the present invention is to provide a server, a wireless device, and a wireless communication method that can appropriately manage the position of the wireless device.
  • the server is a server that estimates the position of the wireless device, and information on the distance between the terminal under the wireless device and the wireless device and the downlink received by the wireless device.
  • a communication unit that receives the first measurement information measured using the reference signal or the second measurement information measured using the uplink reference signal transmitted from the radio device, information about the distance, and information about the distance. It includes an estimation unit that estimates the position of the radio device based on the first measurement information or the second measurement information.
  • the wireless device is a wireless device that is a target of position estimation by a server, and includes an acquisition unit that acquires information on a distance between a terminal under the wireless device and the wireless device.
  • the first communication unit that transmits information about the distance to the server receives the downlink reference signal used for measuring the first measurement information, or transmits the uplink reference signal used for measuring the second measurement information.
  • the position of the radio device is estimated based on the information regarding the distance and the first measurement information or the second measurement information.
  • the wireless communication method is a wireless communication method for estimating the position of a wireless device, and in the wireless device, information regarding a distance between a terminal under the wireless device and the wireless device is obtained.
  • the server has a step of acquiring and a step of receiving a downlink reference signal used for measuring the first measurement information or transmitting an uplink reference signal used for measuring the second measurement information. It has a step of estimating the position of the radio device based on the information regarding the distance and the first measurement information or the second measurement information.
  • the position of the wireless device can be appropriately managed.
  • FIG. 1 is a diagram showing an outline of a wireless communication system according to the present embodiment.
  • the wireless communication system 1 may include small cell base stations 10A and 10B, macrocell base stations 20A to 20C, a core network 30, a location server 40, and terminals 50A and 50B. ..
  • the small cell base stations 10A and 10B are wireless devices that form a cell (for example, a small cell). Small cells are cells that have smaller coverage than macro cells.
  • the small cell may be referred to as, for example, a pico cell, a femto cell, a relay cell, or the like. Further, since the small cell base stations 10A and 10B have lower power than the macro cell base stations 20A to 20C, they may be referred to as low power nodes.
  • the small cell base station 10A is a relay device between the macro cell base station 20A and the terminal 50A.
  • the relay device is also called a relay node (RN), UE-Relay, or the like.
  • the small cell base station 10A communicates with the terminal 50A via the access link L1 and communicates with the macrocell base station 20A via the backhaul link L2.
  • the small cell base station 10A is connected to the core network 30 via the macro cell base station 20A.
  • the access link L1 and the backhaul link L2 may be wireless links.
  • the small cell base station 10A is an RN (Layer 2RN) that performs processing of layer 2 or lower (for example, processing of RadioLinkControl (RLC) layer, MediumAccessControl (MAC) layer, Physical (PHY) layer, etc.). It may be an RN (Layer 3RN) that performs processing of layer 3 or lower (for example, processing of RadioResourceControl (RRC) layer, RLC layer, MAC layer, PHY layer, etc.), or it may be a mere repeater. There may be.
  • RN Layer 2RN
  • RLC RadioLinkControl
  • MAC MediumAccessControl
  • PHY Physical
  • the layer 2RN and the layer 3RN may perform demodulation, decoding, error correction, etc. on the downlink signal (downlink signal) received from the macrocell base station 20A or the uplink signal (uplink signal) received from the terminal 50A, respectively.
  • the layer 2RN and the layer 3RN may recode and modulate the downlink or uplink signal and transmit it to the terminal 50A or to the macrocell base station 20A.
  • the small cell base station 10B is a kind of base station, for example, eNodeB (eNB), pico eNB, Home eNB (HeNB), gNodeB (gNB), DistributedUnit (DU), gNB-DU, Remote Radio Head. It is also called (RRH), Integrated Access and Backhaul / Backhauling (IAB) node and the like.
  • the small cell base station 10B communicates with the terminal 50B via the access link L1.
  • the small cell base station 10B may be connected to the macro cell base station 20B via the backhaul link L2.
  • the backhaul link L2 may be, for example, a wired backhaul such as an optical line or a wireless backhaul such as an IAB backhaul.
  • the small cell base station 10B may communicate with the terminal 50B by carrier aggregation (CA) or dual connectivity (DC) with the macro cell base station 20B. Although not shown, the small cell base station 10B may be connected to the core network 30 without going through the macro cell base station 20B.
  • CA carrier aggregation
  • DC dual connectivity
  • Macrocell base stations 20A to 20C are base stations that form macrocells.
  • a macro cell is a cell having a coverage of several hundred meters to several tens of kilometers in radius.
  • the macrocell base stations 20A and / or 20B are also referred to as, for example, eNB, gNB, Donor eNodeB (DeNB), Donor eNodeB (DeNB), MasterNode, Donornode, and the like.
  • the core network 30 includes a device that manages the mobility of the location server 40 and the terminal 50 (for example, a mobility management device (Mobility Management Entity: MME), an access mobility management device (Access and Mobility Management Function: AMF), etc.). Is provided.
  • a mobility management device Mobility Management Entity: MME
  • MMF Access and Mobility Management Function
  • the location server 40 is a server that estimates the positions of the small cell base stations 10A and 10B.
  • the position is a point in a two-dimensional or three-dimensional coordinate system, and may be specified by a value of a coordinate axis.
  • the location server 40 may be referred to as, for example, an Evolved Serving Mobile Location Center (E-SMLC) or the like. Further, the location server 40 may estimate the position of at least one of the macrocell base stations 20 to 20C and the terminals 50A and 50B.
  • E-SMLC Evolved Serving Mobile Location Center
  • the terminals 50A and 50B are predetermined terminals or devices such as smartphones, personal computers, in-vehicle terminals, in-vehicle devices, and stationary devices.
  • the terminals 50A and 50B may be referred to as User Equipment (UE) or the like.
  • the terminals 50A and 50B may be mobile or fixed.
  • the terminals 50A and 50B may support at least one communication method such as LTE, LTE-Advanced and New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • the small cell base stations 10A and 10B, the macrocell base stations 20A to 20C, and the terminals 50A and 50B are not distinguished, they are collectively referred to as the small cell base station 10, the macrocell base station 20, and the terminal 50.
  • FIG. 1 is merely an example, and the number, configuration, and the like of the small cell base station 10, the macro cell base station 20, and the terminal 50 included in the wireless communication system 1 are not limited to those shown in the illustration.
  • the RS may be a downlink RS (for example, a positioning reference signal (PRS)) or an uplink RS (for example, a sounding reference signal (SRS)). .. It should be noted that the position estimation may be paraphrased as positioning.
  • the position of the small cell base station 10 is estimated based on the measurement information measured using the downlink RS received by the small cell base station 10.
  • the measurement information is, for example, information (Reference) indicating a time difference between a downlink RS from a reference base station and a downlink RS from another base station (macrocell base station 20 or another small cell base station 10). It may also be (also called Signal Time Difference (RSTD)).
  • RSTD Signal Time Difference
  • Downlink-based position estimation is also called Observed Time Difference Of Arrival (OTDOA), position estimation based on measurement time difference, downlink-based positioning, and the like.
  • FIG. 2 is a diagram showing an example of downlink-based position estimation according to the present embodiment.
  • the position of the small cell base station 10 is estimated based on the measurement information measured based on the downlink RS from the macrocell base stations 20A to 20C.
  • the macrocell base station 20A is selected as the reference base station.
  • RSTD will be described as an example of the measurement information measured by using the downlink RS, but the measurement information is not limited to this.
  • the small cell base station 10 has a time difference between the time T C related to the reception of the downlink RS from the macro cell base station 20C and the time T A related to the reception of the downlink RS from the macro cell base station 20A. and some RSTD CA, and RSTD BA is the time difference between the time T a for the received downlink RS from time T B and the macrocell base station 20A regarding the reception of the downlink RS from the macrocell base station 20B measures.
  • the small cell base station 10 transmits the measured RSTD CA and RSTD BA to the location server 40.
  • the location server 40 estimates the location of the small cell base station 10 based on the RSTD CA and RSTD BA. As shown in FIG. 2, the location server 40 obtains a hyperbolic D CA , which is a set of points in which the RSTD CAs have a matching relationship, from the positions of the known macrocell base stations 20A and 20C. Similarly, the location server 40 obtains the hyperbolic D BA is a set of points from the position of the known macrocell base stations 20A and 20B in a relationship RSTD BA match. When RSTD CA and RSTD BA of measurement error (error) is not be uniquely determined intersection of the hyperbolas D CA and D BA as the position of the small cell base station 10.
  • error measurement error
  • hyperbola D CA may deviate by the sum of the positive and negative errors N CA + + N CA- at the maximum.
  • hyperbola D BA is at most, there is a sum N BA + + N BA- only deviate potential positive and negative error.
  • the known positions of the macrocell base stations 20A to 20C are, for example, points in a two-dimensional or three-dimensional coordinate system, and may be indicated by coordinates.
  • the position estimated by hyperbolic D CA and hyperbolic D BA is a arbitrary point of maximum error N CA + + N CA- or N BA + + N BA- range R generated by.
  • the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
  • uplink based location estimation the position of the small cell base station 10 is estimated based on the measurement information measured using the uplink RS transmitted from the small cell base station 10.
  • the measurement information is, for example, information (Uplink-Relative Time of) indicating the time difference between the reference timing in another base station (macrocell base station 20 or another small cell base station 10) and the uplink RS from the small cell base station 10. It may also be called Arrival (UL-RTOA)).
  • Uplink-based position estimation is also called Uplink Time Difference Of Arrival (UTDOA), Uplink based positioning, and the like.
  • FIG. 3 is a diagram showing an example of upstream-based position estimation according to the present embodiment.
  • the position of the small cell base station 10 is estimated based on the measurement information measured by using the uplink RS from the small cell base station 10.
  • UL-RTOA will be described as an example of the measurement information measured by using the uplink RS, but the measurement information is not limited to this.
  • the macrocell base station 20A, 20B and 20C are the time difference between the time T A for the received uplink RS, T B and T C and the reference time T REF from the small cell base station 10 UL-RTOA A , UL-RTOA B and UL-RTOA C are measured.
  • the macrocell base stations 20A, 20B and 20C transmit the measured UL-RTOA A , UL-RTOA B and UL-RTOA C to the location server 40, respectively.
  • the location server 40 estimates the location of the small cell base station 10 based on UL-RTOA A , UL-RTOA B and UL-RTOA C. As shown in FIG. 3, the location server 40 obtains a circle RA , which is a set of points in which UL-RTOA A matches, from the position of a known macrocell base station 20A. Similarly, the location server 40 obtains a circle R B and R C is a set of points from the position of the known macrocell base station 20B and 20C in relation to UL-RTOA B and UL-RTOA C matches.
  • circle R A when there is no error in the measurement of the UL-RTOA B and UL-RTOA C, circle R A, can be uniquely determined intersection of R B and R C as the position of the small cell base station 10.
  • the location server 40 may base the range R at an intermediate point within the range R or based on weighting and / or selection according to the state of the propagation path between the macrocell base stations 20A-20C and the small cell base station 10. The position of the small cell base station 10 in the inside is determined.
  • the downlink RS transmitted from the macrocell base station 20 in FIG. 2 may be transmitted from the other small cell base station 10. Further, the uplink RS received by the macrocell base station 20 in FIG. 3 may be received and measured by another small cell base station 10.
  • the small cell base station 10 is based on the measurement information measured using the downlink RS (for example, RSTD) or the measurement information measured using the uplink RS (for example, UL-RTOA).
  • the position is estimated.
  • the method of estimating the position of the small cell base station 10 using the downlink RS or the uplink RS the method of estimating the position of the terminal 50 can be diverted, so that the registration of the position of the small cell base station 10 can be easily automated.
  • the small cell base station 10 to be positioned is the downlink RS from three or more base stations (for example, the macro cell base station 20 and / or another small cell base station 10). If the above cannot be measured, the position of the small cell base station 10 may not be properly estimated. Further, in the position estimation using the uplink RS, the uplink RS from the small cell base station 10 to be estimated is set to three or more base stations (for example, the macro cell base station 20 and / or another small cell base station 10). If it cannot be measured, the position of the small cell base station 10 may not be estimated properly.
  • the small cell base station 10 whose position is to be estimated cannot always measure the downlink RS from three or more base stations.
  • the location server 40 is measured using the downlink RS received by the small cell base station 10 based on the information regarding the distance between the terminal 50 and the small cell base station 10.
  • the position of the small cell base station 10 estimated based on the measurement information (for example, RSTD) or the measurement information measured using the uplink RS transmitted from the small cell base station 10 (for example, UL-RTOA). Complement.
  • the information regarding the distance is, for example, UL-RTOA measured by the small cell base station 10 using the uplink RS from the terminal 50, but is not limited to this, and the terminal 50 and the small cell base station 10 are used. It may be any information that can estimate the distance between.
  • the information regarding the distance can be obtained from the reception strength of the uplink RS from the terminal 50 in the small cell base station 10 (for example, Received Signal Strength Indicator (RSSI)), the received power (for example, Reference Signal Received Power (RSRP)), or.
  • RSSI Received Signal Strength Indicator
  • RSRP Reference Signal Received Power
  • It may be the measurement information by various sensors provided in the small cell base station 10 or the terminal 50, or it may be the RSTD measured by the terminal 50 using the downlink RS from the small cell base station 10. .
  • the information regarding the distance is referred to as distance information.
  • FIG. 4 is a diagram showing an example of the functional relationship of the small cell base station 10 according to the present embodiment.
  • the small cell base station 10 may operate as a terminal under the control of the macro cell base station 20 (hereinafter, also referred to as a user equipment (UE)), or the base station (Base) containing the terminal 50 under the control. It may operate as a station (BS).
  • UE user equipment
  • Base base station
  • the small cell base station 10 when the small cell base station 10 operates as a BS having terminals 50 (for example, terminals 50A and 50B) under its control, it transmits downlink RS received by the terminal 50 or transmits from the terminal 50. Receives the upstream RS.
  • terminals 50 for example, terminals 50A and 50B
  • the small cell base station 10 when the small cell base station 10 operates as a UE under the macro cell base station 20 (for example, the macro cell base stations 20A and 20C), the reception of the downlink RS transmitted from the macro cell base station 20 or the macro cell base station 20 And / or transmit the uplink RS received by another small cell base station 10.
  • the macro cell base station 20 for example, the macro cell base stations 20A and 20C
  • the small cell base station 10 receives a downlink RS or transmits an uplink RS only between the two macro cell base stations 20A and 20C (that is, a state in which the macro cell base station 20B cannot be detected). It shall be in.
  • the measurement information for example, RSTD
  • the measurement information measured by the small cell base station 10 using the downlink RS from the two macrocell base stations 20A and 20C, or the uplink RS from the small cell base station 10 is used.
  • the position of the small cell base station 10 cannot be appropriately specified only by the measurement information (for example, UL-RTOA) measured by the two macro cell base stations 20A and 20C. This is because specifying the position of the small cell base station 10 requires a relationship with three or more base stations (macrocell base station 20 or another small cell base station 10).
  • the location server 40 uses the small cell base station 10 based on the distance information between the small cell base station 10 and the terminal 50 in addition to the above measurement information (for example, RSTD or UL-RTOA).
  • the position of may be estimated.
  • the small cell base station 10 whose position is to be estimated can detect only a number of base stations smaller than 3, the estimated position of the small cell base station 10 can be appropriately complemented.
  • An example of complementation in downlink-based or uplink-based position estimation will be described with reference to FIGS. 5 and 6. Note that FIGS. 5 and 6 are merely examples, and the method of complementing the position estimation of the downlink base or the uplink base is not limited to the one shown in the illustration.
  • FIG. 5 is a diagram showing an example of complementing the downlink-based position estimation according to the present embodiment.
  • the small cell base station 10 cannot detect the macro cell base stations 20B and 20D, but detects the macro cell base stations 20A and 20C, and the RSTD CA10 which is the time difference of the downlink RS from the macro cell base stations 20A and 20C. Is measured, and the measurement result is reported to the location server 40.
  • the terminal 50 can not detect the macrocell base station 20A and 20C, detects the macrocell base station 20B and 20D, measured RSTD BD50 is a time difference between the downlink RS from the macrocell base station 20B and 20D, the measurement results It is assumed that the report is made to the location server 40. Further, it is assumed that the small cell base station 10 measures UL-RTOA 10 , which is the time difference between the uplink RS from the terminal 50 and the reference time, and reports the measurement result to the location server 40.
  • the location server 40 obtains a hyperbola D CA10 , which is a set of points in which the RSTD CA10 measured by the small cell base station 10 has a matching relationship from the positions of the known macrocell base stations 20A and 20C.
  • the hyperbola D CA10 can be said to be a point set of position candidates of the small cell base station 10.
  • the location server 40 obtains the hyperbolic D BD50 is a set of points in a relationship RSTD BD50 measured by the terminal 50 from the position of the known macrocell base station 20B and 20D coincide.
  • the hyperbola DBD50 can be said to be a point set of position candidates of the terminal 50.
  • the small cell base station 10 can not receive the downlink RS from the macrocell base station 20B, the location server 40 can not determine the intersection of the hyperbolas D CA and D BA as in Fig.
  • the location server 40 can estimate the distance R1 between the terminal 50 and the small cell base station 10 based on the UL-RTOA measured by the small cell base station 10 using the uplink RS from the terminal 50. Therefore, the location server 40 can be estimated as the distance the position of the small cell base station 10 to the point L1 on the hyperbola D CA10 equal to the above distance R1 between the hyperbolas D CA10 and D BD50.
  • FIG. 6 is a diagram showing an example of complementing the upstream-based position estimation according to the present embodiment.
  • the macrocell base stations 20A and 20C measure UL-RTOA A and UL-RTOA C , which are the time difference between the uplink RS from the small cell base station 10 and the reference time, respectively, and the measurement results are located. It is assumed that the report is made to the server 40. Further, the macrocell base stations 20B and 20D measure UL-RTOA B and UL-RTOA D , which are the time differences between the uplink RS from the terminal 50 and the reference time, respectively, and report the measurement results to the location server 40. It shall be.
  • the small cell base station 10 measures UL-RTOA 10 , which is the time difference between the uplink RS from the terminal 50 and the reference time, and reports the measurement result to the location server 40.
  • the location server 40 draws circles R B50 and R D 50, which are point sets in which UL-RTOA B and UL-RTOA D are in a matching relationship from the positions of known macrocell base stations 20B and 20D, respectively. Ask. The two intersections of the circles R B50 and R B 50 are position candidates # 1 and # 2 of the terminal 50.
  • the location server 40 obtains a circle R A10 and R C10 UL-RTOA A and UL-RTOA C from the position of the known macrocell base stations 20A and 20C are set of points in a relationship that matches respectively.
  • the two intersections of the circles RA10 and RC10 are the position candidates # 1 and # 2 of the small cell base station 10.
  • the location server 40 determines either the position candidate # 1 or # 2 of the small cell base station 10 as the estimated position. Can not do it.
  • the location server 40 can estimate the distance R1 between the terminal 50 and the small cell base station 10 based on the UL-RTOA measured by the small cell base station 10 using the uplink RS from the terminal 50. Therefore, the location server 40 determines whether or not the position candidate # 1 or # 2 of the terminal 50 exists within the range of the distance R1 from each of the position candidates # 1 and # 2 of the small cell base station 10.
  • the estimated position of the station 10 can be determined. For example, in FIG. 6, since the distance between the position candidate # 1 of the small cell base station 10 and the position candidate # 2 of the terminal 50 is the above distance R1, the location server 40 is the position candidate of the small cell base station 10. # 1 can be determined as the estimated position L2.
  • the small cell base station 10 to be positioned cannot detect three or more base stations (macrocell base station 20 and / or other small cell base stations 10). Even in this case, the small cell base station 10 and the terminal 50 are derived based on the measurement information, and the distance R1 between the small cell base station 10 and the terminal 50 is R1. The estimated position of 10 can be determined.
  • FIG. 7 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the present embodiment.
  • Each device in the wireless communication system 1 for example, a small cell base station 10, a macro cell base station 20, or a location server 40
  • the processor 10a is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1.
  • the processor 10a may constitute a control unit that controls each device.
  • the memory 10b is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the storage device 10c is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMedia Card), for example.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • eMMC embedded MultiMedia Card
  • the communication device 10d is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 10d may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal transmitted from the antenna A by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna A and transmits it to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 10e is, for example, a keyboard, a touch panel, a mouse and / or a microphone.
  • the output device 10f is, for example, a display and / or a speaker.
  • FIG. 8 is a diagram showing an example of a functional block configuration of a small cell base station according to the present embodiment.
  • the small cell base station 10 includes a communication unit 11, a measurement unit 12, an acquisition unit 13, and a control unit 14.
  • the communication unit 11 communicates with at least one of the macrocell base station 20, the location server 40, and the terminal 50.
  • the communication unit 11 may communicate with a device (for example, MME or AMF, etc.) (for example, MME or AMF) on the core network 30 (not shown).
  • the communication unit 11 is an access link communication unit (third communication unit) 111 that communicates with the terminal 50, and a backhaul link communication unit (second communication unit) that communicates with the macrocell base station 20. ) 112 and an inter-server communication unit (first communication unit) 113 that communicates with the location server 40 may be provided.
  • the access link communication unit 111 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Specifically, the access link communication unit 111 may receive the uplink RS (for example, SRS) transmitted from the terminal 50. Further, the access link communication unit 111 may transmit a downlink RS (for example, PRS) received by the terminal 50.
  • the uplink RS for example, SRS
  • PRS downlink RS
  • the backhaul link communication unit 112 receives a downlink signal and / or transmits an uplink signal to and from the macrocell base station 20 via the backhaul link L2. Specifically, the backhaul link communication unit 112 may receive a downlink RS (for example, PRS) transmitted from a base station (macrocell base station 20 or another small cell base station 10).
  • the first measurement information (for example, RSTD) measured by using the downlink RS may be transmitted from the server-to-server communication unit 113 to the location server 40.
  • the backhaul link communication unit 112 may transmit an uplink RS (for example, SRS) received by a base station (macro cell base station 20 or another small cell base station 10).
  • the second measurement information (for example, UL-RTOA) measured using the uplink RS may be transmitted from the base station to the location server 40.
  • the server-to-server communication unit 113 may communicate with the location server 40 via a protocol for communication with the location server 40.
  • the protocol may be, for example, a protocol related to position estimation such as LTE positioning Protocol (LPP), LPP Annex (LPPa), or LPP Extensions (LPPe).
  • LPP LTE positioning Protocol
  • LPPa LPP Annex
  • LPPe LPP Extensions
  • the server-to-server communication unit 113 obtains the first measurement information (for example, RSTD) and the distance information regarding the distance between the small cell base station 10 and the terminal 50 acquired by the acquisition unit 13 described later. It may be transmitted to the location server 40.
  • RSTD first measurement information
  • the inter-server communication unit 113 may receive information (assist information) that assists the measurement by the measurement unit 12 from the location server 40.
  • the support information may include, for example, information about a cell that transmits the downlink RS to be measured (for example, cell ID, etc.), configuration information of the downlink RS (for example, timing, cycle, radio resource, etc.), and the like. Further, the support information may include, for example, configuration information (for example, timing, cycle, radio resource, etc.) of the uplink RS from the terminal 50 to be measured.
  • the measurement unit 12 measures measurement information (for example, UL-RTOA) based on the uplink RS from the terminal 50 received by the access link communication unit 111. Specifically, the measuring unit 12 may measure the time difference between the upstream RS and the reference time as the measurement information. The measuring unit 12 may function as a Locaction Measurement Unit (LMU).
  • LMU Locaction Measurement Unit
  • the measuring unit 12 measures measurement information (for example, based on downlink RS from a plurality of base stations (macro cell base station 20 and / or other small cell base station 10) received by the backhaul link communication unit 112). RSTD) is measured. Specifically, the measuring unit 12 may measure the time difference of the downlink RS from the plurality of base stations as the measurement information.
  • the acquisition unit 13 acquires distance information regarding the distance between the small cell base station 10 and the terminal 50.
  • the acquisition unit 13 may acquire measurement information (for example, UL-RTOA) measured by the measurement unit 12 using the uplink RS from the terminal 50 as the distance information.
  • the distance information is not limited to the measurement information.
  • the control unit 14 may control at least one of the communication by the communication unit 11, the measurement by the measurement unit 12, and the distance information acquisition unit by the acquisition unit 13. Specifically, the control unit 14 may switch between the communication by the access link communication unit 111 and the communication by the backhaul link communication unit 112 at predetermined intervals.
  • the information indicating the period of communication by the access link communication unit 111 and / or the information indicating the period of communication by the backhaul link communication unit 112 may be received from the location server 40 by the inter-server communication unit 113.
  • the control unit 14 may control switching between communication by the access link communication unit 111 and communication by the backhaul link communication unit 112 based on the information.
  • the communication by the access link communication unit 111 and the communication by the backhaul link communication unit 112 may be performed by using different radio resources (for example, frequency, code, space, etc.) in the same period.
  • the communication unit 11, the measurement unit 12, and the acquisition unit 13 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing a program stored in the storage device 10c in addition to the communication device 10d. May be done.
  • the control unit 14 may be realized by the processor 10a executing a program stored in the storage device 10c.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-transitory computer readable medium that can be read by a computer.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 9 is a diagram showing an example of a functional block configuration of a macrocell base station according to the present embodiment.
  • the macrocell base station 20 includes a communication unit 21, a measurement unit 22, and a control unit 23.
  • the communication unit 21 communicates with at least one of the small cell base station 10, the location server 40, and the terminal 50.
  • the communication unit 21 may communicate with a device (for example, MME or AMF, etc.) (for example, MME or AMF) on the core network 30 (not shown).
  • the communication unit 21 communicates with the access link communication unit 211 that communicates with the terminal 50, the backhaul link communication unit 212 that communicates with the small cell base station 10, and the location server 40.
  • the server-to-server communication unit 213 may be provided.
  • the access link communication unit 211 transmits a downlink signal and / or receives an uplink signal with the terminal 50 via the access link L1. Specifically, the access link communication unit 211 may receive the uplink RS (for example, SRS) transmitted from the terminal 50.
  • the third measurement information (for example, UL-RTOA) measured by using the uplink RS may be transmitted from the server-to-server communication unit 213 to the location server 40.
  • the access link communication unit 211 may transmit a downlink RS (for example, PRS) received by the terminal 50.
  • the fourth measurement information (for example, RSTD) measured by using the downlink RS may be transmitted from the terminal 50 to the location server 40.
  • the backhaul link communication unit 212 transmits a downlink signal and / or receives an uplink signal with the small cell base station 10 via the backhaul link L2. Specifically, the backhaul link communication unit 212 may receive an uplink RS (for example, SRS) transmitted from the small cell base station 10.
  • the second measurement information (for example, UL-RTOA) measured by using the uplink RS may be transmitted from the server-to-server communication unit 213 to the location server 40.
  • the backhaul link communication unit 212 may transmit a downlink RS (for example, PRS) received by the small cell base station 10.
  • the first measurement information (for example, RSTD) measured using the downlink RS may be transmitted from the small cell base station 10 to the location server 40.
  • the server-to-server communication unit 213 may communicate with the location server 40 via a protocol for communication with the location server 40.
  • the protocol may be, for example, a protocol related to position estimation such as LPPa or LPPe.
  • the server-to-server communication unit 213 may transmit the second measurement information (for example, UL-RTOA) and / or the third measurement information (for example, UL-RTOA) to the location server 40. good.
  • the inter-server communication unit 213 may transmit the fourth measurement information (for example, UL-RTOA) to the location server 40.
  • the inter-server communication unit 213 may receive support information for supporting the measurement by the measurement unit 22 from the location server 40.
  • the support information may include, for example, configuration information of the uplink RS (for example, timing, cycle, radio resource, etc.) from the terminal 50 to be measured and / or from the small cell base station 10.
  • the measurement unit 22 measures measurement information (for example, UL-RTOA) based on the uplink RS from the terminal 50 received by the access link communication unit 211. Specifically, the measuring unit 22 may measure the time difference between the upstream RS and the reference time as the measurement information.
  • measurement information for example, UL-RTOA
  • the measuring unit 22 measures the measurement information (for example, UL-RTOA) based on the uplink RS from the small cell base station 10 received by the backhaul link communication unit 212. Specifically, the measuring unit 22 may measure the time difference between the upstream RS and the reference time as the measurement information. The measuring unit 22 may function as an LMU.
  • the measurement information for example, UL-RTOA
  • the control unit 23 controls at least one of communication by the communication unit 21 and measurement by the measurement unit 22. Specifically, the control unit 23 may switch between the communication by the access link communication unit 211 and the communication by the backhaul link communication unit 212 at predetermined intervals.
  • the information indicating the period of communication by the access link communication unit 211 and / or the information indicating the period of communication by the backhaul link communication unit 212 may be received from the location server 40 by the inter-server communication unit 213.
  • the control unit 23 may control switching between communication by the access link communication unit 211 and communication by the backhaul link communication unit 212 based on the information.
  • the communication unit 21 and the measurement unit 22 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing a program stored in the storage device 10c in addition to the communication device 10d. ..
  • the control unit 23 may be realized by the processor 10a executing a program stored in the storage device 10c. When executing a program, the program may be stored in the storage medium.
  • FIG. 10 is a diagram showing an example of the functional block configuration of the location server according to the present embodiment.
  • the location server 40 includes a storage unit 41, a communication unit 42, and an estimation unit 43.
  • the storage unit 41 stores information used for position estimation of the small cell base station 10 and / or the terminal 50.
  • the information may include, for example, information indicating at least one of the following.
  • First measurement information eg RSTD
  • Second measurement information eg, UL-RTOA measured at a base station (macrocell base station 20 or another small cell base station 10) using the uplink RS from the small cell base station 10.
  • a third measurement information (eg, UL-RTOA) measured at a base station (macrocell base station 20 or another small cell base station 10) using the uplink RS from the terminal 50.
  • a fourth measurement information (eg, RSTD) measured at the terminal 50 using downlink RS from a base station (macrocell base station 20 or another small cell base station 10).
  • -Position of base stations other than the small cell base station 10 to be estimated for example, macrocell base stations 20A to 20C, other small cell base stations 10.
  • the communication unit 42 communicates with at least one of the small cell base station 10, the macro cell base station 20, and the terminal 50 by using a predetermined protocol (for example, LPP, LPPa, LPPe, etc.). For example, the communication unit 42 receives the distance information and the first measurement information from the small cell base station 10. The communication unit 42 may receive the second measurement information and / or the third measurement information from the macrocell base station 20. Further, the communication unit 42 may receive the fourth measurement information from the terminal 50.
  • a predetermined protocol for example, LPP, LPPa, LPPe, etc.
  • the estimation unit 43 estimates the positions of the small cell base station 10 and / or the terminal 50. Specifically, the estimation unit 43 estimates the position of the small cell base station 10 based on the distance information and the first measurement information or the second measurement information. For example, the estimation unit 43 is a small cell derived from the distance between the small cell base station 10 and the terminal 50 specified based on the distance information, and the first measurement information or the second measurement information. The position of the small cell base station 10 may be estimated based on the position candidate of the base station 10.
  • the estimation unit 43 is a small cell base station based on the third measurement information or the fourth measurement information in addition to the distance information and the first measurement information or the second measurement information. You may estimate the position of 10. For example, the estimation unit 43 is based on the distance, the position candidate of the small cell base station 10, and the position candidate of the terminal 50 derived from the third measurement information or the fourth measurement information. The position of the small cell base station 10 may be estimated (see FIGS. 5 and 6).
  • the communication unit 42 may be realized by, for example, the communication device 10d, or may be realized by the processor 10a executing the program stored in the storage device 10c in addition to the communication device 10d.
  • the storage unit 41 may be realized by the storage device 10c.
  • the estimation unit 43 may be realized by the processor 10a executing a program stored in the storage device 10c. When executing a program, the program may be stored in the storage medium.
  • FIGS. 11 and 12 are merely examples and are not limited to those shown in the illustration.
  • the order of acquisition and transmission of distance information used for position estimation of the small cell base station 10 in steps S109 and S209 of FIGS. 11 and 12, measurement and transmission of measurement information in the terminal 50 and the small cell base station 10 is as follows. They may be interchanged as appropriate, or at least two steps may be performed simultaneously.
  • FIG. 11 is a diagram showing an example of a complementary operation of downlink-based position estimation according to the present embodiment.
  • the small cell base stations 10 and 20C detect two macrocell base stations 20A and 20C
  • the terminal 50 detects two macrocell base stations 20B and 20D
  • the small cell base station 20B and 20D are detected.
  • the operation of complementing the estimated position of the downlink-based small cell base station 10 based on the distance between the cell base station 10 and the terminal 50 will be described.
  • this operation may be started according to the request information from the location server 40.
  • the required information may be, for example, information requesting measurement in the small cell base station 10.
  • it may be started when the small cell base station 10 satisfies a predetermined condition.
  • the predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected. Further, it is assumed that the small cell base station 10 has acquired the support information from the location server 40 for the measurement of the downlink RS before the start of this operation.
  • step S101 the small cell base station 10 acquires distance information regarding the distance between itself and the terminal 50.
  • the distance information is, for example, measurement information (for example, UL-RTOA) measured by the small cell base station 10 using the uplink RS transmitted from the terminal 50, but is limited to this as described above. I can't.
  • step S102 the small cell base station 10 transmits the acquired distance information to the location server 40.
  • step S103 the small cell base station 10 receives downlink RS from the macro cell base stations 20A and 20C.
  • step S104 the small cell base station 10 uses the downlink RS from the macrocell base stations 20A and 20C to obtain the first measurement information (for example, RSTD which is the time difference of the downlink RS from the macrocell base stations 20A and 20C). To measure.
  • step S105 the small cell base station 10 transmits the first measurement information to the location server 40.
  • step S106 the terminal 50 receives the downlink RS from the macrocell base stations 20B and 20D.
  • step S107 the terminal 50 measures the fourth measurement information (for example, RSTD which is the time difference of the downlink RS from the macrocell base stations 20B and 20D) using the downlink RS from the macrocell base stations 20B and 20D. ..
  • step S108 the terminal 50 transmits the fourth measurement information to the location server 40.
  • step S109 the location server 40 estimates the position of the small cell base station 10 based on the distance information received in step S102 and the first measurement information received in step S105. Further, the location server 40 may estimate the position of the small cell base station 10 based on the fourth measurement information received in step S108 in addition to the distance information and the first measurement information.
  • the location server 40 derives the position candidate D CA10 of the small cell base station 10 based on the first measurement information received in step 105. Further, the location server 40 derives the position candidate DBD 50 of the terminal 50 based on the fourth measurement information received in step S108. Location server 40 includes a distance estimated based on the distance information received in step S102, on the basis of the position candidate D CA10 position candidate D BD50 and small cell base station 10 of the terminal 50, the small cell base station 10 The estimated position L1 may be determined.
  • the position of the small cell base station 10 is estimated based on the above, when the downlink RS from the base station (macrocell base station 20 or another small cell base station 10) having a predetermined value (for example, 3) or more cannot be detected. Also, the position of the small cell base station 10 can be appropriately estimated.
  • FIG. 12 is a diagram showing an example of a complementary operation of downlink-based position estimation according to the present embodiment.
  • the small cell base station 10 detects two macrocell base stations 20A and 20C and the terminal 50 detects two macrocell base stations 20B and 20D, the small cell concerned.
  • the operation of complementing the estimated position of the uplink-based small cell base station 10 based on the distance between the base station 10 and the terminal 50 will be described. Note that steps S201 and S202 are the same as steps S101 and S102 in FIG.
  • this operation may be started according to the request information from the location server 40.
  • the request information may be, for example, information requesting measurement in the macrocell base stations 20A to 20D (LMU) selected by the location server 40.
  • LMU macrocell base stations 20A to 20D
  • it may be started when the small cell base station 10 satisfies a predetermined condition.
  • the predetermined condition may be, for example, a case where the movement of the small cell base station 10 is detected.
  • step S203 the small cell base station 10 transmits an uplink RS.
  • step S204 the macrocell base stations 20A and 20C each use the uplink RS transmitted from the small cell base station 10 to obtain the second measurement information (for example, the time difference between the time related to the reception of the uplink RS and the reference time). A certain UL-RTOA) is measured.
  • step S205 the macrocell base stations 20A and 20C each transmit the second measurement information to the location server 40.
  • step S206 the terminal 50 transmits an uplink RS.
  • step S207 the macrocell base stations 20B and 20D each use the uplink RS transmitted from the terminal 50 to obtain a third measurement information (for example, the time difference between the time related to the reception of the uplink RS and the reference time UL-. RTOA) is measured.
  • step S208 the macrocell base stations 20A and 20C each transmit the third measurement information to the location server 40.
  • step S209 the location server 40 estimates the position of the small cell base station 10 based on the distance information received in step S202 and the second measurement information received in step S205. Further, the location server 40 may estimate the position of the small cell base station 10 based on the third measurement information received in step S208 in addition to the distance information and the second measurement information.
  • the location server 40 has a circle R A10 centered on the macrocell base station 20A and a circle R C10 centered on the macrocell base station 20C based on the second measurement information received in step 205. Is derived, and the two intersections of the circles RA10 and RC10 are derived as position candidates # 1 and # 2 of the small cell base station 10.
  • the location server 40 has a circle R B50 centered on the macrocell base station 20B and a circle R D50 centered on the macrocell base station 20D based on the third measurement information received in step 208. Is derived, and the two intersections of the circles R B50 and R D 50 are derived as position candidates # 1 and # 2 of the terminal 50.
  • the location server 40 may determine the position candidate # 1 of the small cell base station 10 as the estimated position L2 of the small cell base station 10.
  • the upstream RS is performed at a base station (macrocell base station 20 or another small cell base station 10) having a predetermined value (for example, 3) or more. Even when it is not measured, the position of the small cell base station 10 can be appropriately estimated.
  • FIGS. 11 and 12 have described an example in which the positions of both the small cell base station 10 and the terminal 50 are estimated on a downlink basis or an uplink basis, but the present invention is not limited to this.
  • one position of the small cell base station 10 and the terminal 50 may be estimated on a downlink basis, and the other position may be estimated on an uplink basis.
  • the downlink RS received by the terminal 50 in step S106 of FIG. 11 is not limited to the macro cell base station 20, and may be transmitted from the small cell base station 10.
  • the uplink RS transmitted from the terminal 50 in step S207 of FIG. 12 is not limited to the macrocell base station 20, and may be received and measured by the small cell base station 10.
  • the distance information between the small cell base station 10 to be located and the single terminal 50 is used, but the distance information is not limited to this.
  • the position of the small cell base station 10 may be estimated based on the distance information between the small cell base station 10 and each of the plurality of terminals 50. As the number of terminals 50 under the small cell base station 10 increases, the distance information between the small cell base station and each terminal 50 increases, so that the estimation accuracy of the position of the small cell base station 10 is improved. be able to.
  • At least one of the plurality of macrocell base stations 20 and the terminal 50 in FIGS. 5, 6, 11 and 12 may be replaced with the small cell base station 10, or the small cell base station 10 (not shown) may be additionally replaced. It may be provided.
  • a small cell base station 10 other than the small cell base station 10 whose position is to be estimated may operate as a UE.
  • the position-designated small cell base station 10 regards the other small cell base station 10 as a terminal 50, and distance information (for example, UL) between the other small cell base station 10 and its own station. -ROTA) may be estimated.
  • the terminal under the wireless device is not limited to the terminal 50 under the small cell base station 10 to be positioned, and may include other small cell base stations 10 operating as the terminal 50. good.
  • the above embodiment may be combined with the correctness confirmation of the position of the small cell base station 10.
  • a base station other than the small cell base station 10 to be estimated at the above position, or a server on the core network 30 (for example, a location server 40) is a position obtained based on at least one of the following. Based on the comparison result with the position of the small cell base station 10 whose position is estimated in the above embodiment, the correctness of the position estimated in the above embodiment may be determined.
  • -Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (eg WiFi® or Bluetooth®) (eg Wi-Fi CERTIFIED Location) ), And information on the location and surrounding cells of the small cell base station 10 (for example, the result of network screening). -Variation of cells registered in the Ncell table-Internet protocol (IP) information (for example, IP address) assigned to the small cell base station 10.
  • IP Internet protocol
  • the above embodiment may be combined with the movement detection of the position of the small cell base station 10.
  • the small cell base station 10 itself to be estimated at the above position, a base station other than the small cell base station 10, or a server on the core network 30 (for example, a location server 40) may be at least one of the following.
  • the movement of the small cell base station 10 whose position is estimated in the above embodiment may be detected.
  • -Position of small cell base station 10 determined based on GPS signals-Positioning function of access points of other communication methods (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)) (for example, Wi-Fi) Information on the location and surrounding cells of the small cell base station 10 obtained by CERTIFIED Location) (for example, the result of network screening) -Variation of cells registered in the Ncell table-Internet protocol (IP) information (for example, IP address) assigned to the small cell base station 10.
  • IP Ncell table-Internet protocol
  • the sensor that detects the sensor information may be, for example, a gyro sensor, a light sensor, or a switch sensor.
  • a gyro sensor or the like provided inside the small cell base station 10 may detect acceleration or a change in posture of the small cell base station 10 as sensor information.
  • a light sensor provided on a contact surface such as the bottom of the small cell base station 10 may detect a change in brightness of the contact surface as sensor information.
  • the fluctuation of the switch may be detected as the sensor information by the switch sensor provided on the contact surface such as the bottom of the small cell base station 10.

Abstract

無線装置の位置を適切に管理可能とする。無線装置の位置を推定するサーバは、前記無線装置配下の端末と前記無線装置との間の距離に関する情報と、前記無線装置で受信される下り参照信号を用いて測定された第1の測定情報又は前記無線装置から送信された上り参照信号を用いて測定された第2の測定情報と、を受信する通信部と、前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて、前記無線装置の位置を推定する推定部と、を備える。

Description

サーバ、無線装置及び無線通信方法
 本発明は、サーバ、無線装置及び無線通信方法に関する。
 国際標準化団体である3GPP(Third Generation Partnership Project)では、第4世代(Fourth Generation:4G)無線アクセス技術(Radio Access Technology:RAT)としてLTE-Advancedが策定されている(例えば、非特許文献1)。近年では、LTE-Advancedに準拠した無線通信ネットワークの運用も進められている。
 このような無線通信ネットワークの一つとして、例えば、半径数百メートルから数十キロメートルのカバレッジを有するセル(以下、マクロセルともいう)と、マクロセルよりも小さいカバレッジを有する一以上のセル(以下、スモールセルともいう)とを用いた構成がある。このように、カバレッジが異なる複数のセルを連携させた構成は、ヘテロジニアスネットワーク(Heterogeneous Network:HetNet)とも呼ばれる。
3GPP TS 36.300 V10.12.0 (2015-01)
 セル(例えば、スモールセル)を形成する無線装置は、近年小型化されており、設置、取り外し、持ち運び等が容易となっている。このような無線装置の位置を示す位置情報は、現状、当該無線装置の設置場所において人(例えば、通信事業者や工事事業者等)によって測定され、サーバに登録される。このため、当該位置情報が誤って登録される恐れがある。また、位置情報が示す位置とは異なる位置に、ユーザ等によって無線装置が移動される恐れもある。
 本発明はこのような事情に鑑みてなされたものであり、無線装置の位置を適切に管理可能とするサーバ、無線装置及び無線通信方法を提供することを目的の一つとする。
 本発明の一の側面に係るサーバは、無線装置の位置を推定するサーバであって、前記無線装置配下の端末と前記無線装置との間の距離に関する情報と、前記無線装置で受信される下り参照信号を用いて測定された第1の測定情報又は前記無線装置から送信された上り参照信号を用いて測定された第2の測定情報と、を受信する通信部と、前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて、前記無線装置の位置を推定する推定部と、を備える。
 本発明の他の側面に係る無線装置は、サーバによる位置推定の対象となる無線装置であって、前記無線装置配下の端末と前記無線装置との間の距離に関する情報を取得する取得部と、前記距離に関する情報をサーバに送信する第1の通信部と、第1の測定情報の測定に用いられる下り参照信号を受信する、又は、第2の測定情報の測定に用いられる上り参照信号を送信する第2の通信部と、を備え、
 前記無線装置の位置は、前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて推定される。
 本発明の他の側面に係る無線通信方法は、無線装置の位置を推定する無線通信方法であって、前記無線装置において、前記無線装置配下の端末と前記無線装置との間の距離に関する情報を取得するステップと、第1の測定情報の測定に用いられる下り参照信号を受信する、又は、第2の測定情報の測定に用いられる上り参照信号を送信するステップと、を有し、サーバにおいて、前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて、前記無線装置の位置を推定するステップと、を有する。
 本発明によれば、無線装置の位置を適切に管理できる。
本実施形態に係る無線通信システムの概要を示す図である。 本実施形態に係る下りベースの位置推定の一例を示す図である。 本実施形態に係る上りベースの位置推定の一例を示す図である。 本実施形態に係るスモールセル基地局の機能関係の一例を示す図である。 本実施形態に係る下りベースの位置推定の補完の一例を示す図である。 本実施形態に係る上りベースの位置推定の補完の一例を示す図である。 本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。 本実施形態に係るスモールセル基地局の機能ブロック構成の一例を示す図である。 本実施形態に係るマクロセル基地局の機能ブロック構成の一例を示す図である。 本実施形態に係るロケーションサーバの機能ブロック構成の一例を示す図である。 本実施形態に係る下りベースの位置推定の補完動作の一例を示す図である。 本実施形態に係る上りベースの位置推定の補完動作の一例を示す図である。
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。
 (無線通信システムの概要)
 図1は、本実施形態に係る無線通信システムの概要を示す図である。図1に示すように、無線通信システム1は、スモールセル基地局10A及び10Bと、マクロセル基地局20A~20Cと、コアネットワーク30と、ロケーションサーバ40と、端末50A及び50Bと、を含んでもよい。
 スモールセル基地局10A及び10Bは、セル(例えば、スモールセル)を形成する無線装置である。スモールセルは、マクロセルよりも小さいカバレッジを有するセルである。スモールセルは、例えば、ピコセル、フェムトセル、リレーセル等と呼ばれてもよい。また、スモールセル基地局10A及び10Bは、マクロセル基地局20A~20Cと比べて低電力であるため、低電力ノード(low-power node)と呼ばれてもよい。
 例えば、スモールセル基地局10Aは、マクロセル基地局20Aと端末50Aとの間の中継装置である。当該中継装置は、relay node(RN)、UE-Relay等とも呼ばれる。スモールセル基地局10Aは、アクセスリンクL1を介して端末50Aと通信し、バックホールリンクL2を介してマクロセル基地局20Aと通信する。スモールセル基地局10Aは、マクロセル基地局20Aを介してコアネットワーク30に接続される。図1に示すように、アクセスリンクL1及びバックホールリンクL2は、無線リンクであってもよい。
 当該スモールセル基地局10Aは、レイヤ2以下の処理(例えば、Radio Link Control(RLC)レイヤ、Medium Access Control(MAC)レイヤ、Physical(PHY)レイヤ等の処理)を行うRN(レイヤ2RN)であってもよいし、レイヤ3以下の処理(例えば、Radio Resource Control(RRC)レイヤ、RLCレイヤ、MACレイヤ、PHYレイヤ等の処理)を行うRN(レイヤ3RN)であってもよいし、単なるリピータであってもよい。
 レイヤ2RN及びレイヤ3RNは、マクロセル基地局20Aから受信した下り信号(downlink signal)又は端末50Aから受信した上り信号(uplink signal)に対してそれぞれ復調、復号及び誤り訂正等を行ってもよい。レイヤ2RN及びレイヤ3RNは、当該下り信号又は上り信号を再度符号化(coding)及び変調して、端末50Aに送信又はマクロセル基地局20Aに送信してもよい。
 一方、スモールセル基地局10Bは、基地局の一種であり、例えば、eNodeB(eNB)、pico eNB、Home eNB(HeNB)、gNodeB(gNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード等とも呼ばれる。スモールセル基地局10Bは、アクセスリンクL1を介して端末50Bと通信する。スモールセル基地局10Bは、バックホールリンクL2を介してマクロセル基地局20Bに接続されてもよい。バックホールリンクL2は、例えば、光回線等の有線バックホールであってもよいし、IABバックホール等の無線バックホールであってもよい。
 当該スモールセル基地局10Bは、マクロセル基地局20Bとのキャリアアグリゲーション(Carrier Aggregation:CA)又はデュアルコネクティビティ(Dual Connectivity:DC)により、端末50Bと通信を行ってもよい。なお、図示しないが、スモールセル基地局10Bは、マクロセル基地局20Bを介さずに、コアネットワーク30に接続されてもよい。
 マクロセル基地局20A~20Cは、マクロセルを形成する基地局である。マクロセルは、半径数百メートルから数十キロメートルのカバレッジを有するセルである。マクロセル基地局20A及び/又は20Bは、例えば、eNB、gNB、Donor eNodeB(DeNB)、Donor eNodeB(DeNB)、Master Node、Donor node等とも呼ばれる。
 コアネットワーク30には、ロケーションサーバ40、端末50の移動(mobility)管理を行う装置(例えば、移動管理装置(Mobility Management Entity:MME)、アクセス移動管理装置(Access and Mobility Management Function:AMF)等)が設けられる。
 ロケーションサーバ40は、スモールセル基地局10A及び10Bの位置を推定するサーバである。ここで、当該位置は、2次元又は3次元の座標系の点であり、座標軸の値によって特定されてもよい。ロケーションサーバ40は、例えば、Evolved Serving Mobile Location Center(E-SMLC)等と呼ばれてもよい。また、ロケーションサーバ40は、マクロセル基地局20~20C、端末50A及び50Bの少なくとも一つの位置を推定してもよい。
 端末50A及び50Bは、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置等、所定の端末又は装置である。端末50A及び50Bは、User Equipment(UE)等と呼ばれてもよい。端末50A及び50Bは、移動型であってもよいし、固定型であってもよい。端末50A及び50Bは、例えば、LTE、LTE-Advanced及びNew Radio(NR)等の少なくとも一つの通信方式をサポートしてもよい。
 以下、スモールセル基地局10A及び10B、マクロセル基地局20A~20C、端末50A及び50Bをそれぞれ区別しない場合は、スモールセル基地局10、マクロセル基地局20、端末50と総称する。なお、図1は、例示にすぎず、無線通信システム1に含まれるスモールセル基地局10、マクロセル基地局20、端末50の数、構成等は図示するものに限られない。
 次に、以上のような無線通信システム1におけるスモールセル基地局10の位置推定について説明する。スモールセル基地局10の位置推定は、スモールセル基地局10によって受信又は送信される参照信号(Reference signal:RS)を用いて測定される情報(以下、測定情報という)に基づいて行われてもよい。当該RSは、下りRS(例えば、ポジショニング参照信号(Positioning reference signal:PRS))であってもよいし、又は、上りRS(例えば、サウンディング参照信号(Sounding Reference Signal:SRS))であってもよい。なお、位置推定は、ポジショニング(positioning)と言い換えられてもよい。
 <下りベースの位置推定>
 下りベースの位置推定(downlink based location estimation)では、スモールセル基地局10で受信される下りRSを用いて測定される測定情報に基づいて、当該スモールセル基地局10の位置が推定される。当該測定情報は、例えば、基準基地局(reference base station)からの下りRSと他の基地局(マクロセル基地局20又は他のスモールセル基地局10)からの下りRSとの時間差を示す情報(Reference Signal Time Difference(RSTD)とも呼ばれる)であってもよい。下りベースの位置推定は、Observed Time Difference Of Arrival(OTDOA)、測定時間差に基づく位置推定、下りベースのポジショニング(Downlink based positioning)等とも呼ばれる。
 図2は、本実施形態に係る下りベースの位置推定の一例を示す図である。例えば、図2では、マクロセル基地局20A~20Cからの下りRSに基づいて測定される測定情報に基づいて、スモールセル基地局10の位置が推定される。なお、図2では、マクロセル基地局20Aが、基準基地局として選択されるものとする。また、以下では、下りRSを用いて測定された測定情報の一例としてRSTDを説明するが、上記測定情報はこれに限られない。
 図2に示すように、スモールセル基地局10は、マクロセル基地局20Cからの下りRSの受信に関する時間(time)TCとマクロセル基地局20Aからの下りRSの受信に関する時間TAとの時間差であるRSTDCAと、マクロセル基地局20Bからの下りRSの受信に関する時間TBとマクロセル基地局20Aからの下りRSの受信に関する時間TAとの時間差であるRSTDBAとを測定する。スモールセル基地局10は、測定されたRSTDCA及びRSTDBAをロケーションサーバ40に送信する。
 ロケーションサーバ40は、RSTDCA及びRSTDBAに基づいて、スモールセル基地局10の位置を推定する。ロケーションサーバ40は、図2に示すように、既知のマクロセル基地局20A及び20Cの位置からRSTDCAが一致する関係にある点集合である双曲線DCAを求める。同様に、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Bの位置からRSTDBAが一致する関係にある点集合である双曲線DBAを求める。RSTDCA及びRSTDBAの測定の誤差(error)がないとすると、双曲線DCA及びDBAの交点をスモールセル基地局10の位置として一意に決定できる。ただし、実際には、測定の誤差があるので、双曲線DCAは、最大で、正及び負の誤差の和NCA++NCA-だけずれる可能性がある。同様に、双曲線DBAは、最大で、正及び負の誤差の和NBA++NBA-だけずれる可能性がある。なお、マクロセル基地局20A~20Cの既知の位置とは、例えば、2次元又は3次元の座標系における点であり、座標によって示されてもよい。
 したがって、双曲線DCA及び双曲線DBAによって推定される位置は、最大誤差NCA++NCA-又はNBA++NBA-によって発生する範囲Rの任意の点となる。例えば、ロケーションサーバ40は、範囲R内の中間点、又は、マクロセル基地局20A~20Cとスモールセル基地局10との間の伝播路の状態に応じた重み付け及び/又は選択に基づいて、範囲R内のスモールセル基地局10の位置を決定する。
 <上りベースの位置推定>
 上りベースの位置推定(uplink based location estimation)では、スモールセル基地局10から送信される上りRSを用いて測定される測定情報に基づいて、当該スモールセル基地局10の位置が推定される。当該測定情報は、例えば、他の基地局(マクロセル基地局20又は他のスモールセル基地局10)における基準タイミングとスモールセル基地局10からの上りRSとの時間差を示す情報(Uplink-Relative Time of Arrival(UL-RTOA))とも呼ばれる)であってもよい。上りベースの位置推定は、Uplink Time Difference Of Arrival(UTDOA)、上りベースのポジショニング(Uplink based positioning)等とも呼ばれる。
 図3は、本実施形態に係る上りベースの位置推定の一例を示す図である。例えば、図3では、スモールセル基地局10からの上りRSを用いて測定される測定情報に基づいてスモールセル基地局10の位置が推定される。なお、以下では、上りRSを用いて測定された測定情報の一例としてUL-RTOAを説明するが、当該測定情報は、これに限られない。
 図3に示すように、マクロセル基地局20A、20B及び20Cは、それぞれ、スモールセル基地局10からの上りRSの受信に関する時間TA、TB及びTCと基準時間TREFとの時間差であるUL-RTOAA、UL-RTOAB及びUL-RTOACを測定する。マクロセル基地局20A、20B及び20Cは、それぞれ、測定されたUL-RTOAA、UL-RTOAB及びUL-RTOACをロケーションサーバ40に送信する。
 ロケーションサーバ40は、UL-RTOAA、UL-RTOAB及びUL-RTOACに基づいて、スモールセル基地局10の位置を推定する。図3に示すように、ロケーションサーバ40は、既知のマクロセル基地局20Aの位置からUL-RTOAAが一致する関係にある点集合である円RAを求める。同様に、ロケーションサーバ40は、既知のマクロセル基地局20B及び20Cの位置からUL-RTOAB及びUL-RTOACが一致する関係にある点集合である円RB及びRCを求める。UL-RTOAA、UL-RTOAB及びUL-RTOACの測定の誤差がないとすると、円RA、RB及びRCの交点をスモールセル基地局10の位置として一意に決定できる。ただし、実際には、測定の誤差があるので、円RA、RB及びRCは、それぞれ、最大で、正及び負の誤差の和NA++NA-、NB++NB-及びNC++NC-だけずれる可能性がある。
 したがって、円RA、RB及びRCによって推定される位置は、最大誤差NA++NA-、NB++NB-又はNC++NC-によって発生する範囲Rの任意の点となる。例えば、ロケーションサーバ40は、範囲R内の中間点、又は、マクロセル基地局20A~20Cとスモールセル基地局10との間の伝播路の状態に応じた重み付け及び/又は選択に基づいて、範囲R内のスモールセル基地局10の位置を決定する。
 なお、図2及び図3では、位置推定の対象となるスモールセル基地局10以外の他のスモールセル基地局10は示されないが、これに限られない。図2においてマクロセル基地局20から送信される下りRSは、当該他のスモールセル基地局10から送信されてもよい。また、図3においてマクロセル基地局20で受信される上りRSは、他のスモールセル基地局10で受信されて測定されてもよい。
 以上のように、下りRSを用いて測定された測定情報(例えば、RSTD)、又は、上りRSを用いて測定された測定情報(例えば、UL-RTOA)に基づいて、スモールセル基地局10の位置が推定される。このような下りRS又は上りRSを用いたスモールセル基地局10の位置推定の手法では、端末50の位置推定の手法を流用できるので、スモールセル基地局10の位置の登録を簡便に自動化できる。
 しかしながら、上記下りRSを用いた位置推定では、位置推定対象のスモールセル基地局10が、3以上の基地局(例えば、マクロセル基地局20及び/又は他のスモールセル基地局10)からの下りRSを測定できなければ、当該スモールセル基地局10の位置を適切に推定できない恐れがある。また、上記上りRSを用いた位置推定では、位置推定対象のスモールセル基地局10からの上りRSを、3以上の基地局(例えば、マクロセル基地局20及び/又は他のスモールセル基地局10)が測定できなければ、当該スモールセル基地局10の位置を適切に推定できない恐れがある。
 一方、実環境においては、位置推定対象のスモールセル基地局10が3以上の基地局からの下りRSを測定できるとは限らない。同様に、位置推定対象のスモールセル基地局10からの上りRSを、3以上の基地局が測定できるとは限らない。障害物(例えば、ビル等)の影響により、位置推定対象のスモールセル基地局10と通信可能な基地局の数は限りがあり、また、当該基地局の数を容易には増やすことができないためである。
 そこで、本実施形態では、ロケーションサーバ40は、端末50と当該スモールセル基地局10との間の距離に関する情報とに基づいて、スモールセル基地局10で受信される下りRSを用いて測定される測定情報(例えば、RSTD)、又は、スモールセル基地局10から送信される上りRSを用いて測定される測定情報(例えば、UL-RTOA)に基づいて推定されるスモールセル基地局10の位置を補完する。
 ここで、距離に関する情報とは、例えば、端末50からの上りRSを用いてスモールセル基地局10で測定されたUL-RTOAであるが、これに限られず、端末50とスモールセル基地局10との間の距離を推定可能などのような情報であってもよい。例えば、距離に関する情報は、スモールセル基地局10における、端末50からの上りRSの受信強度(例えば、Received Signal Strength Indicator(RSSI))、受信電力(例えば、Reference Signal Received Power(RSRP))、又は、スモールセル基地局10又は端末50に設けられた各種センサによる測定情報であってもよいし、スモールセル基地局10からの下りRSを用いて端末50で測定されたRSTD等であってもよい。以下、当該距離に関する情報を距離情報という。
 <位置推定の補完>
 図4は、本実施形態に係るスモールセル基地局10の機能関係の一例を示す図である。図4に示すように、スモールセル基地局10は、マクロセル基地局20配下の端末(以下、User Equipment(UE)ともいう)として動作してもよいし、端末50を配下に収める基地局(Base Station(BS)ともいう)として動作してもよい。
 例えば、図4において、スモールセル基地局10は、端末50(例えば、端末50A及び50B)を配下に持つBSとして動作する場合、端末50で受信される下りRSの送信、又は、端末50から送信される上りRSの受信を行う。
 一方、スモールセル基地局10は、マクロセル基地局20(例えば、マクロセル基地局20A及び20C)配下のUEとして動作する場合、マクロセル基地局20から送信される下りRSの受信、又は、マクロセル基地局20及び/又は他のスモールセル基地局10で受信される上りRSの送信を行う。
 例えば、図4では、スモールセル基地局10は、2つのマクロセル基地局20A及び20Cとの間でのみ下りRSの受信又は上りRSの送信を行う状態(すなわち、マクロセル基地局20Bを検出できない状態)にあるものとする。この場合、2つのマクロセル基地局20A及び20Cからの下りRSを用いてスモールセル基地局10で測定された測定情報(例えば、RSTD)、又は、スモールセル基地局10からの上りRSを用いて2つのマクロセル基地局20A及び20Cで測定された測定情報(例えば、UL-RTOA)だけでは、スモールセル基地局10の位置を適切に特定できない。当該スモールセル基地局10の位置の特定には、3以上の基地局(マクロセル基地局20又は他のスモールセル基地局10)との関係が必要であるためである。
 図4に示す場合、ロケーションサーバ40は、上記測定情報(例えば、RSTD又はUL-RTOA)に加えて、スモールセル基地局10と端末50との間の距離情報に基づいて、スモールセル基地局10の位置を推定してもよい。これにより、位置推定対象のスモールセル基地局10が3より小さい数の基地局しか検出できない場合に、スモールセル基地局10の推定位置を適切に補完することができる。図5及び6を参照し、下りベース又は上りベースの位置推定における補完の一例について説明する。なお、図5、6は、一例にすぎず、下りベース又は上りベースの位置推定の補完の方法は図示するものに限られない。
 ≪下りベースの位置推定≫
 図5は、本実施形態に係る下りベースの位置推定の補完の一例を示す図である。なお、図5では、スモールセル基地局10は、マクロセル基地局20B及び20Dを検出できず、マクロセル基地局20A及び20Cを検出し、マクロセル基地局20A及び20Cからの下りRSの時間差であるRSTDCA10を測定し、測定結果をロケーションサーバ40に報告しているものとする。また、端末50は、マクロセル基地局20A及び20Cを検出できず、マクロセル基地局20B及び20Dを検出し、マクロセル基地局20B及び20Dからの下りRSの時間差であるRSTDBD50を測定し、測定結果をロケーションサーバ40に報告しているものとする。また、スモールセル基地局10は、端末50からの上りRSと基準時間との時間差であるUL-RTOA10を測定し、測定結果をロケーションサーバ40に報告しているものとする。
 図5に示すように、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Cの位置からスモールセル基地局10で測定されたRSTDCA10が一致する関係にある点集合である双曲線DCA10を求める。当該双曲線DCA10は、スモールセル基地局10の位置候補の点集合ともいえる。また、ロケーションサーバ40は、既知のマクロセル基地局20B及び20Dの位置から端末50で測定されたRSTDBD50が一致する関係にある点集合である双曲線DBD50を求める。当該双曲線DBD50は、端末50の位置候補の点集合ともいえる。
 図5では、スモールセル基地局10は、マクロセル基地局20Bからの下りRSを受信できないので、ロケーションサーバ40は、図2のように双曲線DCA及びDBAの交点を求めることができない。一方、ロケーションサーバ40は、端末50からの上りRSを用いてスモールセル基地局10で測定されたUL-RTOAに基づいて、端末50とスモールセル基地局10との間の距離R1を推定できる。よって、ロケーションサーバ40は、双曲線DCA10及びDBD50の間の距離が上記距離R1と等しくなる双曲線DCA10上の点L1をスモールセル基地局10の位置として推定できる。
 ≪上りベースの位置推定≫
 図6は、本実施形態に係る上りベースの位置推定の補完の一例を示す図である。なお、図6では、マクロセル基地局20A及び20Cは、それぞれ、スモールセル基地局10からの上りRSと基準時間との時間差であるUL-RTOAA及びUL-RTOACを測定し、測定結果をロケーションサーバ40に報告しているものとする。また、マクロセル基地局20B及び20Dは、それぞれ、端末50からの上りRSと基準時間との時間差であるUL-RTOAB及びUL-RTOADを測定し、測定結果をロケーションサーバ40に報告しているものとする。
 また、スモールセル基地局10は、端末50からの上りRSと基準時間との時間差であるUL-RTOA10を測定し、測定結果をロケーションサーバ40に報告しているものとする。
 図6に示すように、ロケーションサーバ40は、既知のマクロセル基地局20B及び20Dの位置からUL-RTOAB及びUL-RTOADがそれぞれ一致する関係にある点集合である円RB50及びRD50を求める。当該円RB50及びRB50の二つの交点は、端末50の位置候補#1及び#2となる。
 また、ロケーションサーバ40は、既知のマクロセル基地局20A及び20Cの位置からUL-RTOAA及びUL-RTOACがそれぞれ一致する関係にある点集合である円RA10及びRC10を求める。当該円RA10及びRC10の二つの交点は、スモールセル基地局10の位置候補#1及び#2となる。図6では、マクロセル基地局20Bは、スモールセル基地局10からの上りRSを受信できないので、ロケーションサーバ40は、スモールセル基地局10の位置候補#1及び#2のどちらかを推定位置として決定することができない。
 一方、ロケーションサーバ40は、端末50からの上りRSを用いてスモールセル基地局10で測定されたUL-RTOAに基づいて、端末50とスモールセル基地局10との間の距離R1を推定できる。よって、ロケーションサーバ40は、スモールセル基地局10の位置候補#1及び#2それぞれから上記距離R1の範囲内に端末50の位置候補#1又は#2が存在するか否かによって、スモールセル基地局10の推定位置を決定できる。例えば、図6では、スモールセル基地局10の位置候補#1と端末50の位置候補#2との間の距離が上記距離R1であるので、ロケーションサーバ40は、スモールセル基地局10の位置候補#1を推定位置L2として決定できる。
 以上のように、下りベース又は上りベースの位置推定では、位置推定対象のスモールセル基地局10が、3以上の基地局(マクロセル基地局20及び/又は他のスモールセル基地局10)を検出できない場合であっても、測定情報に基づいて導出されるスモールセル基地局10及び端末50の位置候補と、スモールセル基地局10及び端末50との間の距離R1とに基づいて、スモールセル基地局10の推定位置を決定できる。
 (無線通信システムの詳細構成)
 次に、以上のような無線通信システム1の各装置の詳細構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
 <ハードウェア構成>
 図7は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、スモールセル基地局10、マクロセル基地局20又はロケーションサーバ40)は、プロセッサ10a、メモリ10b、記憶装置10c、有線又は無線通信を行う通信装置10d、入力操作を受け付ける入力装置10e、情報の出力を行う出力装置10f及び一以上のアンテナAを少なくとも有する。
 プロセッサ10aは、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ10aは、各装置を制御する制御部を構成してもよい。
 メモリ10bは、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。
 記憶装置10cは、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。
 通信装置10dは、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュールなどである。また、通信装置10dには、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナAから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。
 入力装置10eは、例えば、キーボード、タッチパネル、マウス及び/又はマイク等である。出力装置10fは、例えば、ディスプレイ及び/又はスピーカ等である。
 <機能ブロック構成>
 ≪スモールセル基地局≫
 図8は、本実施形態に係るスモールセル基地局の機能ブロック構成の一例を示す図である。図8に示すように、スモールセル基地局10は、通信部11と、測定部12と、取得部13と、制御部14と、を備える。
 通信部11は、マクロセル基地局20、ロケーションサーバ40及び端末50の少なくとも一つの間で通信を行う。通信部11は、コアネットワーク30上の不図示の装置(例えば、MME又はAMF等)との通信を行ってもよい。具体的には、通信部11は、端末50との通信を行うアクセスリンク通信部(第3の通信部)111、マクロセル基地局20との通信を行うバックホールリンク通信部(第2の通信部)112、及び、ロケーションサーバ40との通信を行うサーバ間通信部(第1の通信部)113を備えてもよい。
 アクセスリンク通信部111は、アクセスリンクL1を介して端末50との間で、下り信号の送信及び/又は上り信号の受信を行う。具体的には、アクセスリンク通信部111は、端末50から送信される上りRS(例えば、SRS)を受信してもよい。また、アクセスリンク通信部111は、端末50で受信される下りRS(例えば、PRS)を送信してもよい。
 バックホールリンク通信部112は、バックホールリンクL2を介してマクロセル基地局20との間で、下り信号の受信及び/又は上り信号の送信を行う。具体的には、バックホールリンク通信部112は、基地局(マクロセル基地局20又は他のスモールセル基地局10)から送信される下りRS(例えば、PRS)を受信してもよい。当該下りRSを用いて測定される第1の測定情報(例えば、RSTD)は、サーバ間通信部113からロケーションサーバ40に送信されてもよい。
 また、バックホールリンク通信部112は、基地局(マクロセル基地局20又は他のスモールセル基地局10)で受信される上りRS(例えば、SRS)を送信してもよい。当該上りRSを用いて測定される第2の測定情報(例えば、UL-RTOA)は当該基地局からロケーションサーバ40に送信されてもよい。
 サーバ間通信部113は、ロケーションサーバ40との通信用のプロトコルを介して、ロケーションサーバ40と通信を行ってもよい。当該プロトコルは、例えば、LTE positioning Protocol(LPP)、LPP Annex(LPPa)、又は、LPP Extensions(LPPe)等の位置推定に関するプロトコルであってもよい。具体的には、サーバ間通信部113は、上記第1の測定情報(例えば、RSTD)、及び、後述する取得部13によって取得されるスモールセル基地局10と端末50との距離に関する距離情報をロケーションサーバ40に送信してもよい。
 また、サーバ間通信部113は、測定部12による測定を支援(assist)する情報(支援情報)をロケーションサーバ40から受信してもよい。支援情報は、例えば、測定対象の下りRSを送信するセルに関する情報(例えば、セルID等)、下りRSの構成(configuration)情報(例えば、タイミング、周期、無線リソース等)等を含んでもよい。また、支援情報は、例えば、測定対象の端末50からの上りRSの構成情報(例えば、タイミング、周期、無線リソース等)等を含んでもよい。
 測定部12は、アクセスリンク通信部111で受信された端末50からの上りRSに基づいて、測定情報(例えば、UL-RTOA)を測定する。具体的には、測定部12は、当該上りRSと基準時間との時間差を当該測定情報として測定してもよい。測定部12は、Locaction Measurement Unit(LMU)として機能してもよい。
 また、測定部12は、バックホールリンク通信部112で受信された複数の基地局(マクロセル基地局20及び/又は他のスモールセル基地局10)からの下りRSに基づいて、測定情報(例えば、RSTD)を測定する。具体的には、測定部12は、当該複数の基地局からの下りRSの時間差を当該測定情報として測定してもよい。
 取得部13は、上記スモールセル基地局10と端末50との距離に関する距離情報を取得する。例えば、取得部13は、測定部12によって端末50からの上りRSを用いて測定された測定情報(例えば、UL-RTOA)を当該距離情報として取得してもよい。なお、距離情報は、上記の通り、当該測定情報に限られない。
 制御部14は、通信部11による通信、測定部12による測定、取得部13による距離情報の取得部の少なくとも一つを制御しても良い。具体的には、制御部14は、アクセスリンク通信部111による通信とバックホールリンク通信部112による通信とを所定期間毎に切り替えてもよい。アクセスリンク通信部111による通信を行う期間を示す情報、及び/又は、バックホールリンク通信部112による通信を行う期間を示す情報は、サーバ間通信部113によりロケーションサーバ40から受信されてもよい。制御部14は、当該情報に基づいて、アクセスリンク通信部111による通信とバックホールリンク通信部112による通信との切り替えを制御してもよい。なお、アクセスリンク通信部111による通信とバックホールリンク通信部112による通信とを同一期間において異なる無線リソース(例えば、周波数、符号、空間等)を用いて行われてもよい。
 なお、通信部11、測定部12及び取得部13は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。制御部14は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。
 ≪マクロセル基地局≫
 図9は、本実施形態に係るマクロセル基地局の機能ブロック構成の一例を示す図である。図9に示すように、マクロセル基地局20は、通信部21と、測定部22と、制御部23と、を備える。
 通信部21は、スモールセル基地局10、ロケーションサーバ40及び端末50の少なくとも一つの間で通信を行う。通信部21は、コアネットワーク30上の不図示の装置(例えば、MME又はAMF等)との通信を行ってもよい。具体的には、通信部21は、端末50との通信を行うアクセスリンク通信部211、スモールセル基地局10との通信を行うバックホールリンク通信部212、及び、ロケーションサーバ40との通信を行うサーバ間通信部213を備えてもよい。
 アクセスリンク通信部211は、アクセスリンクL1を介して端末50との間で、下り信号の送信及び/又は上り信号の受信を行う。具体的には、アクセスリンク通信部211は、端末50から送信される上りRS(例えば、SRS)を受信してもよい。当該上りRSを用いて測定される第3の測定情報(例えば、UL-RTOA)は、サーバ間通信部213からロケーションサーバ40に送信されてもよい。
 また、アクセスリンク通信部211は、端末50で受信される下りRS(例えば、PRS)を送信してもよい。当該下りRSを用いて測定される第4の測定情報(例えば、RSTD)が端末50からロケーションサーバ40に送信されてもよい。
 バックホールリンク通信部212は、バックホールリンクL2を介してスモールセル基地局10との間で、下り信号の送信及び/又は上り信号の受信を行う。具体的には、バックホールリンク通信部212は、スモールセル基地局10から送信される上りRS(例えば、SRS)を受信してもよい。当該上りRSを用いて測定される第2の測定情報(例えば、UL-RTOA)は、サーバ間通信部213からロケーションサーバ40に送信されてもよい。
 また、バックホールリンク通信部212は、当該スモールセル基地局10で受信される下りRS(例えば、PRS)を送信してもよい。当該下りRSを用いて測定される第1の測定情報(例えば、RSTD)は、スモールセル基地局10からロケーションサーバ40に送信されてもよい。
 サーバ間通信部213は、ロケーションサーバ40との通信用のプロトコルを介して、ロケーションサーバ40と通信を行ってもよい。当該プロトコルは、例えば、LPPa、又は、LPPe等の位置推定に関するプロトコルであってもよい。具体的には、サーバ間通信部213は、上記第2の測定情報(例えば、UL-RTOA)及び/又は上記第3の測定情報(例えば、UL-RTOA)をロケーションサーバ40に送信してもよい。また、サーバ間通信部213は、上記第4の測定情報(例えば、UL-RTOA)をロケーションサーバ40に送信してもよい。
 また、サーバ間通信部213は、測定部22による測定を支援する支援情報をロケーションサーバ40から受信してもよい。支援情報は、例えば、測定対象の端末50から及び/又はスモールセル基地局10からの上りRSの構成情報(例えば、タイミング、周期、無線リソース等)等を含んでもよい。
 測定部22は、アクセスリンク通信部211で受信された端末50からの上りRSに基づいて、測定情報(例えば、UL-RTOA)を測定する。具体的には、測定部22は、当該上りRSと基準時間との時間差を当該測定情報として測定してもよい。
 また、測定部22は、バックホールリンク通信部212で受信されたスモールセル基地局10からの上りRSに基づいて、測定情報(例えば、UL-RTOA)を測定する。具体的には、測定部22は、当該上りRSと基準時間との時間差を当該測定情報として測定してもよい。測定部22は、LMUとして機能してもよい。
 制御部23は、通信部21による通信と、測定部22による測定と、の少なくとも一つを制御する。具体的には、制御部23は、アクセスリンク通信部211による通信とバックホールリンク通信部212による通信とを所定期間毎に切り替えてもよい。アクセスリンク通信部211による通信を行う期間を示す情報、及び/又は、バックホールリンク通信部212による通信を行う期間を示す情報は、サーバ間通信部213によりロケーションサーバ40から受信されてもよい。制御部23は、当該情報に基づいて、アクセスリンク通信部211による通信とバックホールリンク通信部212による通信との切り替えを制御してもよい。
 なお、通信部21及び測定部22は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。制御部23は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、上記記憶媒体に格納されていてもよい。
 ≪ロケーションサーバ≫
 図10は、本実施形態に係るロケーションサーバの機能ブロック構成の一例を示す図である。図10に示すように、ロケーションサーバ40は、記憶部41と、通信部42と、推定部43とを備える。
 記憶部41は、スモールセル基地局10及び/又は端末50の位置推定に用いられる情報を記憶する。当該情報は、例えば、以下の少なくとも一つを示す情報を含んでもよい。
・スモールセル基地局10と端末50との間の距離に関する距離情報
・基地局(マクロセル基地局20又は他のスモールセル基地局10)からの下りRSを用いてスモールセル基地局10で測定された第1の測定情報(例えば、RSTD)
・スモールセル基地局10からの上りRSを用いて基地局(マクロセル基地局20又は他のスモールセル基地局10)で測定された第2の測定情報(例えば、UL-RTOA)
・端末50からの上りRSを用いて基地局(マクロセル基地局20又は他のスモールセル基地局10)で測定された第3の測定情報(例えば、UL-RTOA)
・基地局(マクロセル基地局20又は他のスモールセル基地局10)からの下りRSを用いて端末50で測定された第4の測定情報(例えば、RSTD)
・位置推定対象のスモールセル基地局10以外の他の基地局(例えば、マクロセル基地局20A~20C、他のスモールセル基地局10)の位置
 通信部42は、所定のプロトコル(例えば、LPP、LPPa又はLPPe等)を用いて、スモールセル基地局10、マクロセル基地局20及び端末50の少なくとも一つとの通信を行う。例えば、通信部42は、上記距離情報、及び、第1の測定情報をスモールセル基地局10から受信する。通信部42は、上記第2の測定情報及び/又は上記第3の測定情報をマクロセル基地局20から受信してもよい。また、通信部42は、上記第4の測定情報を端末50から受信してもよい。
 推定部43は、スモールセル基地局10及び/又は端末50の位置を推定する。具体的には、推定部43は、上記距離情報に基づいてと、上記第1の測定情報又は第2の測定情報とに基づいて、スモールセル基地局10の位置を推定する。例えば、推定部43は、上記距離情報に基づいて特定されるスモールセル基地局10と端末50との間の距離と、上記第1の測定情報又は第2の測定情報とにより導出されるスモールセル基地局10の位置候補に基づいて、当該スモールセル基地局10の位置を推定してもよい。
 また、推定部43は、上記距離情報と上記第1の測定情報又は前記第2の測定情報とに加えて、前記第3の測定情報又は前記第4の測定情報に基づいて、スモールセル基地局10の位置を推定してもよい。例えば、推定部43は、上記距離と、上記スモールセル基地局10の位置候補と、第3の測定情報又は第4の測定情報とにより導出される端末50の位置候補と、に基づいて、当該スモールセル基地局10の位置を推定してもよい(図5、6参照)。
 なお、通信部42は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。記憶部41は、記憶装置10cにより実現されてもよい。推定部43は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、上記記憶媒体に格納されていてもよい。
 (無線通信システムの動作)
 次に、以上のように構成される無線通信システム1の動作について説明する。なお、図11及び12は、例示にすぎず、図示するものに限られない。例えば、図11及び12のステップS109及びS209におけるスモールセル基地局10の位置推定に用いられる距離情報の取得及び送信、端末50及びスモールセル基地局10における測定及び測定情報の送信等の順番は、適宜入れ替えられてもよいし、又は、少なくとも二つのステップが同時に行われてもよい。
 <下りベースの位置推定の補完動作>
 図11は、本実施形態に係る下りベースの位置推定の補完動作の一例を示す図である。図11では、図5で説明したように、スモールセル基地局10及が2つのマクロセル基地局20A及び20Cを検出し、端末50が2つのマクロセル基地局20B及び20Dを検出する場合に、当該スモールセル基地局10と端末50との間の距離に基づいて、下りベースのスモールセル基地局10の推定位置を補完する動作について説明する。
 また、本動作は、ロケーションサーバ40からの要求情報に応じて開始されてもよい。当該要求情報は、例えば、スモールセル基地局10における測定を要求する情報であってもよい。又は、スモールセル基地局10が所定の条件を満たす場合に開始されてもよい。当該所定の条件は、例えば、スモールセル基地局10の移動が検出される場合等であってもよい。また、本動作の開始前においてスモールセル基地局10は、下りRSの測定用に上記支援情報をロケーションサーバ40から取得しているものとする。
 ステップS101において、スモールセル基地局10は、自身と端末50との間の距離に関する距離情報を取得する。当該距離情報は、例えば、端末50から送信される上りRSを用いてスモールセル基地局10で測定される測定情報(例えば、UL-RTOA)であるものとするが、上記の通り、これに限られない。ステップS102において、スモールセル基地局10は、取得された距離情報をロケーションサーバ40に送信する。
 ステップS103において、スモールセル基地局10は、マクロセル基地局20A及び20Cからの下りRSを受信する。ステップS104において、スモールセル基地局10は、当該マクロセル基地局20A及び20Cからの下りRSを用いて第1の測定情報(例えば、当該マクロセル基地局20A及び20Cからの下りRSの時間差であるRSTD)を測定する。ステップS105において、スモールセル基地局10は、当該第1の測定情報をロケーションサーバ40に送信する。
 ステップS106において、端末50は、マクロセル基地局20B及び20Dからの下りRSを受信する。ステップS107において、端末50は、当該マクロセル基地局20B及び20Dからの下りRSを用いて第4の測定情報(例えば、当該マクロセル基地局20B及び20Dからの下りRSの時間差であるRSTD)を測定する。ステップS108において、端末50は、当該第4の測定情報をロケーションサーバ40に送信する。
 ステップS109において、ロケーションサーバ40は、ステップS102で受信した距離情報とステップS105で受信した第1の測定情報とに基づいて、スモールセル基地局10の位置を推定する。また、ロケーションサーバ40は、当該距離情報及び第1の測定情報に加えて、ステップS108で受信した第4の測定情報に基づいて、スモールセル基地局10の位置を推定してもよい。
 例えば、図5に示す場合、ロケーションサーバ40は、ステップ105で受信した第1の測定情報に基づいて、スモールセル基地局10の位置候補DCA10を導出する。また、ロケーションサーバ40は、ステップS108で受信した第4の測定情報に基づいて、端末50の位置候補DBD50を導出する。ロケーションサーバ40は、ステップS102で受信した距離情報に基づいて推定された距離と、端末50の位置候補DBD50及びスモールセル基地局10の位置候補DCA10とに基づいて、スモールセル基地局10の推定位置L1を決定してもよい。
 以上のように、位置推定対象のスモールセル基地局10で受信される下りRSを用いて測定された第1の測定情報だけでなく、当該スモールセル基地局10と端末50との間の距離に基づいて、当該スモールセル基地局10の位置が推定されるので、所定値(例えば、3)以上の基地局(マクロセル基地局20又は他のスモールセル基地局10)からの下りRSを検出できない場合にも、当該スモールセル基地局10の位置を適切に推定できる。
 <上りベースの位置推定の補完動作>
 図12は、本実施形態に係る下りベースの位置推定の補完動作の一例を示す図である。図12では、図6で説明したように、スモールセル基地局10が2つのマクロセル基地局20A及び20Cを検出し、端末50が2つのマクロセル基地局20B及び20Dを検出する場合に、当該スモールセル基地局10と端末50との間の距離に基づいて、上りベースのスモールセル基地局10の推定位置を補完する動作について説明する。なお、ステップS201及びS202は、図11のステップS101及びS102と同様である。
 また、本動作は、ロケーションサーバ40からの要求情報に応じて開始されてもよい。当該要求情報は、例えば、ロケーションサーバ40によって選択されたマクロセル基地局20A~20D(のLMU)における測定を要求する情報であってもよい。又は、スモールセル基地局10が所定の条件を満たす場合に開始されてもよい。当該所定の条件は、例えば、スモールセル基地局10の移動が検出される場合等であってもよい。
 ステップS203において、スモールセル基地局10は、上りRSを送信する。ステップS204において、マクロセル基地局20A及び20Cは、それぞれ、スモールセル基地局10から送信された上りRSを用いて第2の測定情報(例えば、当該上りRSの受信に関する時間と基準時間との時間差であるUL-RTOA)を測定する。ステップS205において、マクロセル基地局20A及び20Cは、それぞれ、当該第2の測定情報をロケーションサーバ40に送信する。
 ステップS206において、端末50は、上りRSを送信する。ステップS207において、マクロセル基地局20B及び20Dは、それぞれ、端末50から送信された上りRSを用いて第3の測定情報(例えば、当該上りRSの受信に関する時間と基準時間との時間差であるUL-RTOA)を測定する。ステップS208において、マクロセル基地局20A及び20Cは、それぞれ、当該第3の測定情報をロケーションサーバ40に送信する。
 ステップS209において、ロケーションサーバ40は、ステップS202で受信した距離情報とステップS205で受信した第2の測定情報とに基づいて、スモールセル基地局10の位置を推定する。また、ロケーションサーバ40は、当該距離情報及び第2の測定情報に加えて、ステップS208で受信した第3の測定情報に基づいて、スモールセル基地局10の位置を推定してもよい。
 例えば、図6に示す場合、ロケーションサーバ40は、ステップ205で受信した第2の測定情報に基づいて、マクロセル基地局20Aを中心とする円RA10及びマクロセル基地局20Cを中心とする円RC10を導出し、当該円RA10及びRC10の二つの交点をスモールセル基地局10の位置候補#1及び#2として導出する。
 また、図6に示す場合、ロケーションサーバ40は、ステップ208で受信した第3の測定情報に基づいて、マクロセル基地局20Bを中心とする円RB50及びマクロセル基地局20Dを中心とする円RD50を導出し、当該円RB50及びRD50の二つの交点を端末50の位置候補#1及び#2として導出する。
 図6に示す場合、ロケーションサーバ40は、スモールセル基地局10の位置候補#1を中心として、上記距離情報によって特定される距離R1を半径とする円上に端末50の位置候補#2が存在する。このため、ロケーションサーバ40は、スモールセル基地局10の位置候補#1をスモールセル基地局10の推定位置L2として決定してもよい。
 以上のように、位置推定対象のスモールセル基地局10から送信される上りRSを用いて測定された第2の測定情報だけでなく、当該スモールセル基地局10と端末50との間の距離に関する距離情報に基づいて、当該スモールセル基地局10の位置が推定されるので、所定値(例えば、3)以上の基地局(マクロセル基地局20又は他のスモールセル基地局10)で上記上りRSが測定されない場合にも、当該スモールセル基地局10の位置を適切に推定できる。
 なお、図11及び12では、スモールセル基地局10及び端末50の双方の位置が下りベース又は上りベースで推定される例を説明したが、これに限られない。例えば、スモールセル基地局10及び端末50の一方の位置が下りベースで推定され、他方の位置が上りベースで推定されてもよい。
 また、図示しないが、図11のステップS106において端末50によって受信される下りRSは、マクロセル基地局20に限られず、スモールセル基地局10から送信されてもよい。また、図12のステップS207において端末50から送信される上りRSは、マクロセル基地局20に限られず、スモールセル基地局10で受信及び測定されてもよい。
 また、図5、6、11及び12では、位置推定対象のスモールセル基地局10と単一の端末50との距離情報が用いられるが、これに限られない。当該スモールセル基地局10と複数の端末50の各々との間の距離情報に基づいて、当該スモールセル基地局10の位置が推定されてもよい。当該スモールセル基地局10配下の端末50の数が増えるほど、当該スモールセル基地局と各端末50との間の距離情報が増加するので、当該スモールセル基地局10の位置の推定精度を向上させることができる。
 また、図5、6、11及び12における複数のマクロセル基地局20及び端末50の少なくとも一つは、スモールセル基地局10に置き換えられてもよいし、不図示のスモールセル基地局10が追加で設けられてもよい。位置推定対象のスモールセル基地局10以外の他のスモールセル基地局10はUEとして動作してもよい。この場合、位置指定対象のスモールセル基地局10は、当該他のスモールセル基地局10を端末50とみなして、当該他のスモールセル基地局10と自局との間の距離情報(例えば、UL-ROTA)を推定してもよい。これにより、位置推定対象のスモールセル基地局10と他の端末(端末50及び/又は端末50とみなされる他のスモールセル基地局10)との間の距離情報が増加するので、スモールセル基地局10の位置の推定精度を向上させることができる。このように、本実施形態において、無線装置配下の端末とは、位置推定対象のスモールセル基地局10配下の端末50に限られず、当該端末50として動作する他のスモールセル基地局10を含んでもよい。
 (その他の実施形態)
 なお、上記実施形態は、スモールセル基地局10の位置の正誤確認と組み合わせられてもよい。例えば、上記位置の推定対象となるスモールセル基地局10以外の他の基地局、又は、コアネットワーク30上のサーバ(例えば、ロケーションサーバ40)は、以下の少なくとも一つに基づいて求められる位置と、上記実施形態で位置推定されたスモールセル基地局10の位置と、の比較結果に基づいて、上記実施形態で推定された位置の正誤を判定してもよい。
・GPS信号に基づいて決定されたスモールセル基地局10の位置
・他の通信方式(例えば、WiFi(登録商標)又はBluetooth(登録商標))のアクセスポイントの測位機能(例えば、Wi-Fi CERTIFIED Location)によって求められたスモールセル基地局10の位置
・周辺セルの情報(例えば、ネットワークスクリーニングの結果)
・Ncellテーブルに登録されたセルの変動
・スモールセル基地局10に割り当てられたインターネットプロトコル(IP)情報(例えば、IPアドレス)
 また、上記実施形態は、スモールセル基地局10の位置の移動検出と組み合わせられてもよい。例えば、上記位置の推定対象となるスモールセル基地局10自身、当該スモールセル基地局10以外の他の基地局、又は、コアネットワーク30上のサーバ(例えば、ロケーションサーバ40)は、以下の少なくとも一つに基づいて、上記実施形態で位置推定されたスモールセル基地局10の移動を検出してもよい。
・GPS信号に基づいて決定されたスモールセル基地局10の位置
・他の通信方式(例えば、Wi-Fi(登録商標)又はBluetooth(登録商標))のアクセスポイントの測位機能(例えば、Wi-Fi CERTIFIED Location)によって求められたスモールセル基地局10の位置
・周辺セルの情報(例えば、ネットワークスクリーニングの結果)
・Ncellテーブルに登録されたセルの変動
・スモールセル基地局10に割り当てられたインターネットプロトコル(IP)情報(例えば、IPアドレス)
・スモールセル基地局10が備えるセンサで検出される情報(センサ情報)
・スモールセル基地局10の電源の状態又は稼働状況を示す情報(稼働情報)
 上記センサ情報を検出するセンサは、例えば、ジャイロセンサ、明かりセンサ又はスイッチセンサであってもよい。例えば、スモールセル基地局10内部に設けられたジャイロセンサ等)により、スモールセル基地局10の加速度又は姿勢の変化等がセンサ情報として検出されてもよい。また、スモールセル基地局10の底部等の接触面に設けられた明かりセンサにより、接触面の明暗の変化等がセンサ情報として検出されてもよい。また、スモールセル基地局10の底部等の接触面に設けられたスイッチセンサにより、スイッチの変動が上記センサ情報として検出されてもよい。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
1…無線通信システム、10…スモールセル基地局、20…マクロセル基地局、30…コアネットワーク、40…ロケーションサーバ、50…端末、11…通信部、12…測定部、13…取得部、14…制御部、21…通信部、22…測定部、23…制御部、41…記憶部、42…通信部、43…推定部、111…アクセスリンク通信部、112…バックホールリンク通信部、113…サーバ間通信部、211…アクセスリンク通信部、212…バックホールリンク通信部、213…サーバ間通信部、A…アンテナ、10a…プロセッサ、10A…スモールセル基地局、10b…メモリ、10c…記憶装置、10d…通信装置、10e…入力装置、10f…出力装置

Claims (7)

  1.  無線装置の位置を推定するサーバであって、
     前記無線装置配下の端末と前記無線装置との間の距離に関する情報と、前記無線装置で受信される下り参照信号を用いて測定された第1の測定情報又は前記無線装置から送信された上り参照信号を用いて測定された第2の測定情報と、を受信する通信部と、
     前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて、前記無線装置の位置を推定する推定部と、
     を備えるサーバ。
  2.  前記距離に関する情報は、前記端末から送信される上り参照信号又は下り参照信号を用いて前記無線装置で測定される、
     請求項1に記載のサーバ。
  3.  前記通信部は、前記端末から送信される上り参照信号を用いて測定された第3の測定情報、又は、前記端末で受信される下り参照信号を用いて測定された第4の測定情報を受信し、
     前記推定部は、前記第3の測定情報又は前記第4の測定情報に基づいて、前記無線装置の位置を推定する、
     請求項1又は請求項2に記載のサーバ。
  4.  サーバによる位置推定の対象となる無線装置であって、
     前記無線装置配下の端末と前記無線装置との間の距離に関する情報を取得する取得部と、
     前記距離に関する情報をサーバに送信する第1の通信部と、
     第1の測定情報の測定に用いられる下り参照信号を受信する、又は、第2の測定情報の測定に用いられる上り参照信号を送信する第2の通信部と、を備え、
     前記無線装置の位置は、前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて推定される
     無線装置。
  5.  前記取得部は、前記端末から送信される上り参照信号を用いて前記距離に関する情報を取得する、
     請求項4に記載の無線装置。
  6.  前記端末から送信される上り参照信号を用いて測定された第3の測定情報、又は、前記端末で受信される下り参照信号を用いて測定された第4の測定情報が前記サーバに送信される、
     を備える請求項4又は請求項5に記載の無線装置。
  7.  無線装置の位置を推定する無線通信方法であって、
     前記無線装置において、
     前記無線装置配下の端末と前記無線装置との間の距離に関する情報を取得するステップと、
     第1の測定情報の測定に用いられる下り参照信号を受信する、又は、第2の測定情報の測定に用いられる上り参照信号を送信するステップと、を有し、
     サーバにおいて、
     前記距離に関する情報と、前記第1の測定情報又は前記第2の測定情報とに基づいて、前記無線装置の位置を推定するステップと、
     を有する無線通信方法。
PCT/JP2020/019825 2020-05-19 2020-05-19 サーバ、無線装置及び無線通信方法 WO2021234826A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/019825 WO2021234826A1 (ja) 2020-05-19 2020-05-19 サーバ、無線装置及び無線通信方法
JP2021552567A JP7466559B2 (ja) 2020-05-19 2020-05-19 サーバ、無線装置及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019825 WO2021234826A1 (ja) 2020-05-19 2020-05-19 サーバ、無線装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021234826A1 true WO2021234826A1 (ja) 2021-11-25

Family

ID=78708566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019825 WO2021234826A1 (ja) 2020-05-19 2020-05-19 サーバ、無線装置及び無線通信方法

Country Status (2)

Country Link
JP (1) JP7466559B2 (ja)
WO (1) WO2021234826A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529750A (ja) * 2007-06-01 2010-08-26 クゥアルコム・インコーポレイテッド フェムト基地局ロケーションを決定するための方法および装置
JP2013500678A (ja) * 2009-07-28 2013-01-07 クゥアルコム・インコーポレイテッド フェムトセル自己タイミング及び自己位置特定のための方法及びシステム
JP2019536024A (ja) * 2016-11-11 2019-12-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 遅延およびパス強度に基づく移動通信ネットワークにおけるユーザ機器の位置特定

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529750A (ja) * 2007-06-01 2010-08-26 クゥアルコム・インコーポレイテッド フェムト基地局ロケーションを決定するための方法および装置
JP2013500678A (ja) * 2009-07-28 2013-01-07 クゥアルコム・インコーポレイテッド フェムトセル自己タイミング及び自己位置特定のための方法及びシステム
JP2019536024A (ja) * 2016-11-11 2019-12-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 遅延およびパス強度に基づく移動通信ネットワークにおけるユーザ機器の位置特定

Also Published As

Publication number Publication date
JP7466559B2 (ja) 2024-04-12
JPWO2021234826A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
RU2708229C1 (ru) Информация поддержки позиционирования для оценки времени прибытия (toa) в условиях возможного многолучевого распространения
US11671863B2 (en) Handling of radio frequency front-end group delays for round trip time estimation
JP6189912B2 (ja) セルラネットワークにおける測位支援方法及び装置
KR102085001B1 (ko) 포지셔닝 레퍼런스 시그널의 전송
JP6652138B2 (ja) 無線通信システムにおける電子機器及び無線通信方法
US9877299B2 (en) Method and system for performing trilateration for fixed infrastructure nodes (FIN) based on enhanced location based information
US11546103B2 (en) Physical layer aspects of round-trip time and observed time difference of arrival based positioning
EP3878222A1 (en) Using mirrors as a positioning solution
US9549386B2 (en) Techniques for reducing scans for indoor position determination
US20170164315A1 (en) Method and System for Performing Trilateration for Fixed Infrastructure Nodes (FIN) Based On Enhanced Location Based Information
KR20190092548A (ko) 포지셔닝 방법 및 시스템, 및 관련 디바이스
US9883341B2 (en) Wireless device, a radio network node, a network node and methods therein
CN109478919B (zh) 基站和用户设备
US8364152B2 (en) Macrocell to Femtocell and Femtocell to Femtocell handoff
MX2012012639A (es) Disposicion espacial de una multiplicidad de dispositivos de comunicacion y metodo para determinar la posicion espacial de un dispositivo.
US11234206B2 (en) Wireless device, a core network node and methods therein
US20160095051A1 (en) Assisted discovery scans for indoor position determination
WO2021234826A1 (ja) サーバ、無線装置及び無線通信方法
WO2021192199A1 (ja) 無線装置、サーバ及び無線通信方法
WO2017143023A1 (en) Method and system for performing trilateration for fixed infrastructure nodes (fin) based on enhanced location based information
EP2928244B1 (en) A user terminal, a base station, and a method of determining received signal power and location of a user terminal
JP7228709B2 (ja) 環境推定装置
US20230232365A1 (en) Methods, apparatuses, system and product for positioning determination
US20230003908A1 (en) Methods for indication of reference station gnss rtk integer ambiguity level
TW202412542A (zh) 偵測非視距無線信號路徑

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021552567

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936235

Country of ref document: EP

Kind code of ref document: A1