WO2021234806A1 - Sample pretreatment method, analysis method, sample pretreatment device, and analysis system - Google Patents

Sample pretreatment method, analysis method, sample pretreatment device, and analysis system Download PDF

Info

Publication number
WO2021234806A1
WO2021234806A1 PCT/JP2020/019732 JP2020019732W WO2021234806A1 WO 2021234806 A1 WO2021234806 A1 WO 2021234806A1 JP 2020019732 W JP2020019732 W JP 2020019732W WO 2021234806 A1 WO2021234806 A1 WO 2021234806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
liquid sample
liquid
standing wave
pretreatment
Prior art date
Application number
PCT/JP2020/019732
Other languages
French (fr)
Japanese (ja)
Inventor
友祐 中谷
幸夫 老川
重吉 堀池
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2020/019732 priority Critical patent/WO2021234806A1/en
Publication of WO2021234806A1 publication Critical patent/WO2021234806A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a sample pretreatment method, an analysis method, a sample pretreatment device, and an analysis system.
  • Patent Document 1 discloses a sample plate used for mass spectrometry of a sample using the MALDI method (matrix-assisted laser desorption / ionization method).
  • the sample plate described in Patent Document 1 has a substrate and a hydrophobic coating layer formed on the surface of the substrate.
  • the coating layer is arranged so as to cover the sample area on the surface of the substrate on which the sample is placed.
  • the coating layer is formed with an opening for exposing the surface of the substrate located in the central portion of the sample region.
  • Patent Document 1 a mixed solution of the sample solution and the matrix is dropped into the opening of the sample plate. Since the circumference of the opening is surrounded by a coating layer having hydrophobicity, the droplets of the mixed solution are fixed to the opening. By drying the droplets and evaporating the solvent, the sample solution is concentrated and a mixed crystal of the sample and the matrix can be obtained.
  • the above-mentioned sample pretreatment method using a sample plate has a problem that it is difficult to increase the concentration ratio of the sample solution. This is because the sample solution in contact with the surface of the substrate at the opening of the sample plate remains without evaporating. Further, there is a problem that droplets cannot be formed on the sample plate depending on the type of sample. This is because when the oil content of the sample is large, the sample solution cannot be applied to the hydrophobic coating layer, which makes it difficult to form droplets.
  • the present invention has been made to solve such a problem, and an object of the present invention is a sample pretreatment method and pretreatment that enable high-sensitivity analysis of a sample regardless of the type of the sample. It is to provide a processing device.
  • the sample pretreatment method includes a step of generating an acoustic standing wave, a step of introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a step of concentrating the liquid sample by holding the above.
  • the sample pretreatment apparatus includes a means for generating an acoustic standing wave, a means for introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a means for concentrating a liquid sample by holding the above.
  • the present invention it is possible to provide a sample pretreatment method and a pretreatment apparatus capable of analyzing a sample with high sensitivity regardless of the type of the sample.
  • FIG. It is a block diagram which shows the whole structure of the analysis system which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the analysis method which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the processing procedure of the pretreatment process which concerns on Embodiment 2.
  • FIG. It is a figure which shows an example of the mass spectrum created in the analysis process. It is a figure which shows the other configuration example of the pretreatment apparatus schematically.
  • FIG. 1 is a block diagram showing an overall configuration of the analysis system according to the first embodiment.
  • the analysis system 100 according to the first embodiment includes a pretreatment device 10 and an analysis device 20.
  • the pretreatment device 10 is a device for pretreating a compound as a sample.
  • the pretreatment of the sample includes a treatment of purifying (mainly desalting) the sample and a treatment of concentrating the sample solution obtained by dissolving the sample in a solvent.
  • the pretreatment device 10 can be used for the treatment of concentrating the sample solution.
  • the sample may be a solid phase or a liquid phase.
  • the sample solution corresponds to one embodiment of the "liquid sample".
  • the analyzer 20 is an apparatus for analyzing the pretreated sample.
  • the analyzer 20 is, for example, a mass analyzer for measuring the mass (mass: m) of an atom or molecule contained in a sample, or a spectrum for measuring a spectrum emitted or absorbed by an atom or molecule contained in a sample. It is a spectroscopic analyzer. These analyzers can be suitably used for identification and qualitative use of biopolymers such as proteins.
  • the mass spectrometer includes a liquid chromatograph (High Performance Liquid Chromatography: HPLC), a liquid chromatography-Mass Spectrometry (LC-MS), a gas chromatograph (Gas Chromatography: GC), and a gas chromatograph mass spectrometer.
  • HPLC High Performance Liquid Chromatography
  • LC-MS liquid chromatography-Mass Spectrometry
  • GC gas chromatograph
  • GC-MS Gas chromatograph mass spectrometer.
  • MALDI-TOF-MS Matrix Assisted Laser Deposition / Ionization Time-of-Flight Mass Spectrometer
  • ICP mass An analyzer Inductively Coupled Plasma Mass Spectrometer
  • the spectrophotometer includes a Fourier transform infrared spectrophotometer (FT-IR; Fourier Transform Infrared Spectroscopy), a Raman spectrophotometer, and an ultraviolet-visible spectrophotometer.
  • FT-IR Fourier transform infrared spectrophotometer
  • Raman spectrophotometer Raman spectrophotometer
  • ultraviolet-visible spectrophotometer ultraviolet-visible spectrophotometer
  • the analyzer 20 includes a sample introduction unit 22 for introducing a pretreated sample, a measurement unit 24 for measuring the mass or spectrum of an atom or molecule contained in the sample, and a measurement acquired by the measurement unit 24. It has a processing unit 26 for processing data.
  • the analyzer 20 is a mass spectrometer. More specifically, the analyzer 20 is a MALDI-TOF-MS.
  • the MALDI method matrix-assisted laser desorption / ionization method
  • the MALDI method is a method in which the surface of a condensed phase such as a crystal or liquid as a sample is irradiated with pulsed laser light to separate the sample molecule from the surface, and at the same time, the sample molecule is ionized.
  • TOF-MS Time-of-Flight Mass Spectrometry
  • the pretreatment device 10 is configured to crystallize a mixed solution of the sample solution and the matrix as a pretreatment of the sample.
  • FIG. 2 is a flowchart for explaining the analysis method according to the first embodiment.
  • the analysis method according to the first embodiment includes a pretreatment step S10 and an analysis step S20.
  • the processing procedure of each step will be described in detail.
  • FIG. 3 is a flowchart for explaining the processing procedure of the preprocessing step (S10).
  • the pretreatment steps include a step of preparing the sample solution (S11), a step of concentrating the sample solution (S12), a step of placing the sample solution on the sample plate (S13), and a sample solution and a matrix.
  • a step of mixing with (S14), a step of crystallizing the mixed solution (S15), and a step of introducing the sample into the analyzer 20 (S16) are provided.
  • the sample is dissolved in a solvent to generate a sample solution.
  • the sample is, for example, a polymer, protein or peptide.
  • the sample is pre-purified to remove non-volatile components.
  • the solvent is an aqueous or organic solvent.
  • the solvent for example, water, acetonitrile / water, chloroform, tetrahydrofuran and the like can be used.
  • FIG. 4 is a diagram schematically showing a configuration example of the pretreatment device 10.
  • the pretreatment device 10 has an ultrasonic levitation device 12 and two cameras 13 and 14.
  • the pretreatment device 10 is configured to hold the droplets in the space in a non-contact manner by suspending the droplets of the sample solution using ultrasonic waves.
  • the vertical direction of the paper surface is the Z direction
  • the two directions perpendicular to the Z direction are the X direction and the Y direction.
  • the ultrasonic floating device 12 has an ultrasonic vibrator 120, a horn 122, a reflector 124, and an oscillator 126.
  • the oscillator 126 receives power from the commercial power supply 128 to drive the ultrasonic oscillator 120.
  • the oscillator 126 converts the power of the commercial power supply 128 into ultrasonic power.
  • the ultrasonic vibrator 120 generates ultrasonic vibration.
  • the horn 122 is connected to the ultrasonic vibrator 120, and emits ultrasonic waves from the ultrasonic vibrator 120 toward the air.
  • the amplitude of the ultrasonic wave is amplified by the horn 122 and transmitted.
  • the reflector 124 is arranged so as to face the horn 122 along the Z direction (the direction perpendicular to the paper surface).
  • the reflector 124 reflects the ultrasonic waves transmitted from the horn 122.
  • An acoustic standing wave W is formed between the horn 122 and the reflector 124 by ultrasonic waves and reflected waves.
  • the wavelength of the acoustic standing wave W can be adjusted by the oscillation frequency of the ultrasonic vibrator 120.
  • the wavelength of the acoustic standing wave W determines the number and position of the nodes of the acoustic standing wave W.
  • the two cameras 13 and 14 are provided to indicate the position P1 of the node of the acoustic standing wave W.
  • the first camera 13 is arranged so as to take an image of the ultrasonic levitation device 12 from the Y direction.
  • the position P1 of the node of the acoustic standing wave W in the XZ plane is indicated by the coordinates (X, Z).
  • the second camera 14 is arranged so as to take an image of the ultrasonic floating device 12 from the X direction.
  • the position P1 of the node of the acoustic standing wave W in the YZ plane is indicated by the coordinates (Y, Z). These two coordinates can be obtained by calculation using the oscillation frequency of ultrasonic vibration.
  • the position P1 of the node in the three-dimensional space can be specified based on the images captured by the first camera 13 and the second camera 14.
  • FIG. 5 is a diagram for explaining the procedure of the step of concentrating the sample solution (S12) and the step of placing the sample solution on the sample plate (S13).
  • the acoustic standing wave W is formed by activating the ultrasonic floating device 12 to generate ultrasonic vibration.
  • a droplet Dp of the sample solution is injected into the position P1 of the node of the acoustic standing wave W.
  • the user for example, the measurer
  • the user can refer to the captured images and refer to the micropipette 30.
  • the droplet Dp has a liquid volume of about 10 ⁇ L.
  • the maximum amount of droplet Dp that can be injected into the node position P1 depends on the specific gravity and surface tension of the solvent of the sample solution.
  • the injection of the droplet Dp can be automatically performed by using a mechanism having a robot arm to which the micropipette 30 is attached, instead of the manual operation by the user.
  • the droplet Dp can be stably held in a suspended state in the air.
  • the droplet Dp is concentrated by gradually evaporating the solvent from the suspended droplet Dp.
  • the concentrated droplet Dp is taken out from the ultrasonic levitation device 12.
  • the user visually recognizes the droplet Dp and determines that the concentration ratio has reached a desired value
  • the user takes out the droplet Dp from the position P1 of the node of the acoustic standing wave W using the micropipette 30.
  • the process proceeds to step (S13), and the removed droplet Dp is placed on the sample plate 40 (see FIG. 5 (D)).
  • the droplet Dp can be taken out automatically by using the above mechanism instead of the manual operation by the user.
  • the means for specifying the position P1 of the node of the acoustic standing wave W in the three-dimensional space is not limited to the means using the images captured by the two cameras 13 and 14.
  • the mechanism is taught in advance about the position P1 of the node of the acoustic standing wave W. Therefore, the droplet Dp can be injected and taken out without using the cameras 13 and 14.
  • the matrix is mixed with the droplet Dp of the sample solution placed on the sample plate.
  • the matrix has the property of absorbing the laser beam used in the MALDI method.
  • Typical matrices used for protein and peptide ionization are sinapinic acid (SA), 2,5-dihydroxynbenzoic acid (2,5-DHB), and ⁇ -cyano-4-hydroxyn cinnamic acid (CHCA). ) And so on.
  • the mixed solution of the sample solution and the matrix placed on the sample plate 40 is dried to volatilize the solvent in the mixed solution and crystallize it.
  • FIG. 6 is a schematic diagram showing a configuration example of the analyzer 20.
  • the analyzer 20, MALDI-TOF-MS has a sample introduction unit 22, an ionization unit 240 (ion source), a mass separation unit 250, a detector 260, and a processing unit 26.
  • the ionization unit 240, the mass separation unit 250, and the detector 260 constitute the measurement unit 24 (see FIG. 1).
  • FIG. 7 is a flowchart for explaining the processing procedure of the analysis step (S20).
  • the step of introducing the sample plate 40 into the ionization unit 240 of the analyzer 20 S21
  • the step of ionizing the sample S22
  • the mass separation of the ionized sample are performed.
  • a step (S23), a step of detecting (S24), and a step of creating a mass spectrum (S25) are provided.
  • the sample plate 40 on which the crystal as the sample S is placed is introduced from the sample introduction unit 22 into the ionization unit 240.
  • the sample S is in a state of being uniformly mixed with the matrix.
  • the ionization unit 240 ion source ionizes the sample molecule.
  • the ionization unit 240 has a laser light source 242.
  • the laser light emitted from the laser light source 242 irradiates the surface of the sample S on the sample plate 40.
  • the laser light nitrogen laser light, which is ultraviolet light, is generally used.
  • the matrix absorbs the laser beam and becomes an excited state. At this time, the temperature at the spot of the laser beam rises, and an evaporation phenomenon occurs.
  • the sample S evaporates due to the thermal energy obtained from the matrix in a highly excited state.
  • the sample molecules desorbed from the surface of the sample S are ionized by the transfer of protons while floating in the gas phase on the gas of the matrix desorbed and vaporized in large quantities.
  • the sample molecule ionized by the ionization unit 240 is introduced into the mass separation unit 250.
  • the mass separation unit 250 separates individual sample molecules according to their mass.
  • the mass separation unit 250 has a flight tube 252, and separates ions due to the difference in flight time when the introduced sample molecule flies inside the flight tube 252.
  • the linear type flight tube 252 is shown in FIG. 6, it may be a reflector type or a multi-turn type.
  • the method of mass spectrometry is not particularly limited as long as the ions can be separated and detected.
  • the detector 260 has an ion detector such as a multi-channel plate.
  • the detector 260 detects the ions separated by the mass separation unit 250, and outputs a detection signal having an intensity corresponding to the number of ions incident on the detector 260.
  • the detection signal output from the detector 260 is input to the processing unit 26.
  • the processing unit 26 is configured to include a processor such as a CPU and a memory, and controls the operation of the analyzer 20.
  • the processing unit 26 executes various processes by executing the program stored in the memory.
  • the processing unit 26 also controls the operation of the measurement unit 24 based on the data regarding the measurement conditions input from the input unit (not shown).
  • the processing unit 26 further analyzes the measurement data based on the detection signal output from the detector 260.
  • the processing unit 26 appropriately uses a calibration curve or the like obtained by measuring the standard substance to set the flight time corresponding to each detected ion to the mass-to-charge number ratio. : M / z) to create a mass spectrum.
  • the processing unit 26 calculates the amount of ions detected corresponding to each peak from each peak in the mass spectrum.
  • the amount of ion detected is quantified by the peak area, which is the area corresponding to the peak, or the peak intensity, which is the maximum value of the peak.
  • the peak area and peak intensity can be calculated by removing noise by an appropriately known method or by smoothing the detected intensity value.
  • FIG. 8 is a diagram for explaining a processing procedure of a general sample pretreatment method.
  • a sample and a matrix are mixed using a solvent to prepare a sample solution.
  • the droplet Dp of this sample solution is placed on the sample plate 40.
  • the amount of the sample solution placed on the sample plate 40 is about 0.5 to 1 ⁇ L.
  • the surface of the sample plate 40 is covered with a hydrophobic film 42.
  • a hydrophilic region 44 is formed on a part of the surface of the film 42. In the plan view of the film 42, the region 44 has a circular shape. The diameter of the region 44 is about 600 to 900 ⁇ m.
  • the droplet Dp As the solvent in the droplet Dp evaporates over time, the droplet Dp is concentrated in the central portion of the region 44, as shown in FIG. 8B. Further volatilization of the solvent eventually results in crystals of the sample solution, as shown in FIG. 8 (C).
  • the high concentration of crystals makes it possible to analyze trace amounts of sample solutions. In particular, a small amount of sample is targeted in the analysis of biopolymers, and a method for obtaining high-concentration crystals is indispensable for MALDI-TOF-MS.
  • the above-mentioned general pretreatment method has the following problems.
  • Droplets Dp are formed in the region 44 of the film 42 due to the surface tension of the solvent with respect to the region 44.
  • the liquid volume of the droplet Dp is determined by the area of the region 44. The larger the area of the region 44, the more the liquid amount of the droplet Dp can be increased.
  • the solvent in the contact portion with the region 44 remains without evaporating, so that the concentration ratio of the sample solution is limited contrary to the area of the region 44.
  • the contact portion of the sample solution is also reduced, so that the amount of the solvent remaining in the region 44 can be reduced.
  • the amount of the droplet Dp that can be formed on the region 44 itself decreases, so that it becomes difficult to obtain a sample in an amount sufficient for analysis.
  • the droplet Dp can be held in the air by suspending the droplet Dp of the sample solution using ultrasonic waves. According to this, since it is not necessary to form the droplet Dp on the film 42 of the sample plate 40 as in the comparative example, the solvent does not remain in the region 44. As a result, the concentration ratio of the sample solution can be increased. Further, since the sample solution is not applied to the membrane 42, the type of the sample is not selected and the sample solution is not lost.
  • the amount of the sample solution that can be held as a droplet Dp at the position P1 of the node of the acoustic standing wave is about 10 ⁇ L, although it varies depending on the specific gravity of the solvent and the surface tension. Can be done. According to this, since the amount of the sample solution (0.5 to 1 ⁇ L) that can be applied to the membrane 42 can be increased to about 10 times by a general pretreatment method, it is possible to obtain crystals having a higher concentration. Become. By obtaining high-concentration crystals, the S / N ratio is improved in the mass spectrum, so that the reliability of each peak can be improved. As a result, the sensitivity of the trace analysis can be increased and the reproducibility of the analysis result can be improved.
  • FIG. 9 is a diagram for explaining a processing procedure of the pretreatment step according to the second embodiment.
  • FIG. 9 shows a step of concentrating the sample solution (S12) and a step of placing the sample solution on the sample plate (S13).
  • the sample solution is introduced into the microsyringe 50, and a droplet Dp of the sample solution is formed at the tip thereof.
  • the droplet Dp has a liquid volume of about 10 ⁇ L. It should be noted that the formation of the droplet Dp can be automatically performed by using a mechanism having a robot arm to which the microsyringe 50 is attached, instead of the manual operation by the user.
  • the droplet Dp is held at the tip of the microsyringe 50 by its own weight.
  • the droplet Dp is concentrated by gradually evaporating the solvent from the droplet Dp held in the air.
  • the concentrated droplet Dp is taken out from the tip portion of the microsyringe 50.
  • the user proceeds to the next step (S13) and places the taken out droplet Dp on the sample plate 40 (FIG. 9 (D)). reference).
  • the droplet Dp can be taken out automatically by using the above mechanism instead of the manual operation by the user.
  • the matrix is mixed with the droplet Dp of the sample solution placed on the sample plate.
  • the mixed solution of the sample solution and the matrix placed on the sample plate 40 is dried to volatilize the solvent in the mixed solution and crystallize it.
  • FIG. 10 is a diagram showing an example of a mass spectrum created in the analysis step (S20).
  • FIG. 10A is an example of a mass spectrum created by mass spectrometry of a sample by a general pretreatment method (see FIG. 8).
  • FIG. 10B is an example of a mass spectrum created by mass spectrometry of a sample by the pretreatment method (see FIG. 9) according to the second embodiment.
  • FIGS. 10 (A) and 10 (B) three mass spectra having different concentrations of the samples contained in the sample solution are shown superimposed.
  • the sample solution is a peptide (ACTH18-39).
  • concentrations of the sample solutions of the three mass spectra are 2.5 fmol / ⁇ L, 250amol / ⁇ L, and 25amol / ⁇ L in order from the top.
  • the detection limit of the analyzer 20 using a general pretreatment method is 250 amol / ⁇ L.
  • the detection limit is the minimum amount of a substance that can distinguish between the system noise (blank value) in the absence of the substance and the signal of the substance.
  • a general pretreatment method it is impossible to detect a peak in the mass spectrum at 25 amol / ⁇ L, which is 1/10 of the detection limit.
  • a peak can be detected in the mass spectrum at 25 amol / ⁇ L.
  • the concentration ratio of the sample solution is increased to about 10 times as compared with the general pretreatment method.
  • the S / N ratio in the mass spectrum is improved, so that the sensitivity of the trace analysis can be increased. Furthermore, the reproducibility of the analysis result can be improved.
  • the process of mixing the matrix with the concentrated sample solution and the process of crystallizing the mixed solution may be omitted. can.
  • the pretreatment method can be configured such that the concentrated sample solution is placed on a sample plate and crystallized and introduced into the analyzer 20.
  • the analyzer 20 when it is FT-IR, it may be configured to irradiate infrared light with the droplet Dp of the concentrated sample solution suspended and measure the amount of transmitted or reflected light. can.
  • the configuration shown in FIG. 11 is used to determine the concentration of the droplet Dp.
  • the enrichment rate may be controlled.
  • the ultrasonic floating device 12A is a step of concentrating the sample solution instead of the cameras 13 and 14 (see FIG. 4) that indicate the position of the node P1 of the acoustic standing wave W (see FIG. 4).
  • a camera 113 for photographing the droplet Dp over time (continuously or intermittently) in S12) is provided.
  • the camera 113 of FIG. 11 may have a purpose of indicating the position of the node P1 as in the cameras 13 and 14 of FIG.
  • the pretreatment device 10 is provided with an input unit that receives an input of a desired concentration rate for the sample from the user.
  • the camera 113 is connected to a control device 114 having a calculation unit and a storage unit.
  • the arithmetic unit of the control device 114 can execute a program for recognizing the droplet Dp from the image taken by the camera 113 and acquiring the dimension (and the corresponding volume) thereof.
  • the shape of the droplet Dp may be regarded as a spherical shape.
  • the calculation unit can execute a program for calculating the ratio (concentration rate) of the initial droplet Dp to the volume after the lapse of time.
  • the camera 113 captures the droplet Dp after the droplet Dp is held in the node P1 (preferably immediately after), and acquires the droplet image.
  • the control device 114 acquires the volume of the droplet Dp from the droplet image in the calculation unit and stores it in the storage unit. After that, the camera 113 continuously (for example, as a moving image) or intermittently captures the droplet Dp. The volume of the droplet Dp is continuously (or intermittently) calculated and stored in the control device 114. Then, the control device 114 may notify the user when the enrichment rate calculated at the same time as the volume reaches the user's desired value. As a method of notification, a display unit may be provided on the pretreatment device 10 to indicate that the enrichment rate has reached a desired value by the user.
  • the time change of the enrichment rate may be obtained, the expected time until the enrichment rate reaches the user's desired value, and displayed on the display unit.
  • a straight line or a curve indicating the time change of the concentration rate may be displayed on the display unit.
  • the sample pretreatment method includes a step of generating an acoustic standing wave, a step of introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a step of concentrating the liquid sample by holding the above.
  • the liquid sample can be concentrated in a state where the droplets are held in the air in a non-contact manner, a general pretreatment method for forming the droplets on the sample plate can be performed.
  • the solvent does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample.
  • any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
  • the sample pretreatment method according to paragraph 1 further comprises a step of placing the concentrated liquid sample on the sample plate.
  • a sample concentrated to a higher concentration than a general pretreatment method for concentrating a liquid sample on a sample plate can be placed on the sample plate.
  • the sample pretreatment method according to paragraph 2 is a step of mixing a matrix with a liquid sample placed on a sample plate and a step of drying and crystallizing a mixed solution of the liquid sample and the matrix. And further prepare.
  • the sample pretreatment method according to paragraph 1 relates to a step of acquiring an image of a liquid sample over time and a degree of concentration of the liquid sample based on the acquired images of a plurality of liquid samples. Further provided with steps to obtain information.
  • the degree of concentration of the liquid sample can be controlled to a value desired by the user by using the acquired information.
  • the analysis method includes the sample pretreatment method according to paragraph 1 and the step of introducing the sample into the analyzer.
  • the S / N ratio of the signal acquired by the analyzer can be improved, so that the sensitivity of the analysis can be increased.
  • the analysis method includes a step of holding a liquid sample at the tip of an elongated holding member to concentrate the liquid sample, a step of placing the concentrated liquid sample on a sample plate, and a liquid. It includes a step of introducing the sample into the analyzer.
  • the liquid sample can be concentrated while the droplets are held in the air, so that the solvent can be used as in a general pretreatment method for forming droplets on a sample plate. Does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample. Moreover, since the liquid sample is not applied to the sample plate, any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
  • the sample pretreatment device includes a device for generating an acoustic standing wave, a means for introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a means for concentrating a liquid sample by holding the above.
  • the liquid sample can be concentrated while the droplets are held in the air in a non-contact manner, so that the concentration ratio of the liquid sample can be increased regardless of the type of sample. Can be done. As a result, high-concentration crystals can be obtained regardless of the type of sample, so that a small amount of sample can be analyzed with high sensitivity.
  • the sample pretreatment apparatus further includes means for placing the concentrated liquid sample on the sample plate.
  • a sample concentrated to a higher concentration than a general pretreatment method for concentrating a liquid sample on a sample plate can be placed on the sample plate.
  • the sample pretreatment device is further equipped with a camera for indicating the position of the node of the acoustic standing wave.
  • the liquid sample can be introduced exactly at the position of the node of the acoustic standing wave.
  • the sample pretreatment apparatus according to item 7 concentrates a liquid sample based on a camera that acquires images of the liquid sample over time and images of a plurality of liquid samples acquired by the cameras. It is further equipped with a control device for acquiring information on the degree.
  • the degree of concentration of the liquid sample can be controlled to a value desired by the user by using the acquired information.
  • the sample pretreatment apparatus is a means for mixing a matrix with a liquid sample placed on a sample plate and a means for drying and crystallizing a mixed solution of the liquid sample and the matrix. And further prepare.
  • the analysis system includes the sample pretreatment device according to the seventh paragraph and the analysis device for analyzing the sample introduced from the pretreatment device.
  • the S / N ratio of the signal acquired by the analyzer can be improved, so that the sensitivity of the analysis can be increased.
  • a means for holding a liquid sample at the tip of an elongated holding member to concentrate the liquid sample a means for placing the concentrated liquid sample on a sample plate, and a liquid. It is provided with a means for introducing the sample into the analyzer.
  • the liquid sample can be concentrated while the droplets are held in the air, so that the solvent can be used as in a general pretreatment method for forming droplets on a sample plate. Does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample. Moreover, since the liquid sample is not applied to the sample plate, any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
  • microsyringe 100 analysis system, 114 control device, 120 ultrasonic oscillator, 122 horn, 124 reflector, 126 oscillator, 128 commercial power supply, 240 ionization unit, 242 laser light source, 250 mass separator, 252 flight tube, 260 detection Vessel, S sample, Dp droplet, W acoustic standing wave.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 A sample pretreatment method according to one aspect comprises: a step for generating an acoustic standing wave; a step for introducing a liquid sample into the acoustic standing wave; and a step for concentrating the liquid sample by holding the liquid sample at the position of the node of the acoustic standing wave. A sample analysis method according to one aspect comprises: a step for holding a liquid sample at the tip of an elongated holding member and concentrating the liquid sample; a step for placing the concentrated liquid sample on a sample plate; and a step for introducing the liquid sample into an analysis device.

Description

試料の前処理方法、分析方法、試料の前処理装置および分析システムSample pretreatment method, analysis method, sample pretreatment device and analysis system
 本発明は、試料の前処理方法、分析方法、試料の前処理装置および分析システムに関する。 The present invention relates to a sample pretreatment method, an analysis method, a sample pretreatment device, and an analysis system.
 米国特許出願公開第2007/0075241号明細書(特許文献1)には、MALDI法(マトリクス支援レーザ脱離/イオン化法)を用いた試料の質量分析に用いられる試料プレートが開示されている。特許文献1に記載される試料プレートは、基板と、基板表面上に形成された疎水性の被膜層とを有している。被膜層は、基板表面の試料を載置するためのサンプル領域を覆うように配置されている。被膜層には、サンプル領域の中心部分に位置する基板の表面を露出させるための開口部が形成されている。 US Patent Application Publication No. 2007/0075241 (Patent Document 1) discloses a sample plate used for mass spectrometry of a sample using the MALDI method (matrix-assisted laser desorption / ionization method). The sample plate described in Patent Document 1 has a substrate and a hydrophobic coating layer formed on the surface of the substrate. The coating layer is arranged so as to cover the sample area on the surface of the substrate on which the sample is placed. The coating layer is formed with an opening for exposing the surface of the substrate located in the central portion of the sample region.
 特許文献1では、試料溶液とマトリクスとの混合液を、試料プレートの開口部に滴下する。開口部の周囲は疎水性を有する被膜層で囲まれているため、混合液の液滴は開口部に固定される。液滴を乾燥させて溶媒を蒸発させることによって試料溶液が濃縮され、試料とマトリクスとの混合結晶を得ることができる。 In Patent Document 1, a mixed solution of the sample solution and the matrix is dropped into the opening of the sample plate. Since the circumference of the opening is surrounded by a coating layer having hydrophobicity, the droplets of the mixed solution are fixed to the opening. By drying the droplets and evaporating the solvent, the sample solution is concentrated and a mixed crystal of the sample and the matrix can be obtained.
米国特許出願公開第2007/0075241号明細書U.S. Patent Application Publication No. 2007/0075241
 試料の前処理において高濃度の結晶が得られることにより、微量な試料に対しても高い感度の分析を行なうことが可能となる。しかしながら、上述した試料プレートを用いた試料の前処理方法では、試料溶液の濃縮倍率を高めることが難しいという課題がある。これは、試料プレートの開口部において基板表面と接触している試料溶液が蒸発せずに残留するためである。また、試料の種類によっては試料プレート上に液滴を形成できないという課題がある。これは、試料の油分が多い場合には、疎水性を有する被覆層に試料溶液を塗布することができないため、液滴を形成することが困難となるためである。 By obtaining high-concentration crystals in the sample pretreatment, it is possible to perform high-sensitivity analysis even for a small amount of sample. However, the above-mentioned sample pretreatment method using a sample plate has a problem that it is difficult to increase the concentration ratio of the sample solution. This is because the sample solution in contact with the surface of the substrate at the opening of the sample plate remains without evaporating. Further, there is a problem that droplets cannot be formed on the sample plate depending on the type of sample. This is because when the oil content of the sample is large, the sample solution cannot be applied to the hydrophobic coating layer, which makes it difficult to form droplets.
 本発明はこのような課題を解決するためになされたものであり、本発明の目的は、試料の種類によらず、試料を高感度で分析することを可能とする試料の前処理方法および前処理装置を提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is a sample pretreatment method and pretreatment that enable high-sensitivity analysis of a sample regardless of the type of the sample. It is to provide a processing device.
 本発明の第1の態様に係る試料の前処理方法は、音響定在波を発生させるステップと、音響定在波に液体試料を導入するステップと、音響定在波の節の位置で液体試料を保持することにより、液体試料の濃縮を行なうステップとを備える。 The sample pretreatment method according to the first aspect of the present invention includes a step of generating an acoustic standing wave, a step of introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a step of concentrating the liquid sample by holding the above.
 本発明の第2の態様に係る試料の前処理装置は、音響定在波を発生させる手段と、音響定在波に液体試料を導入する手段と、音響定在波の節の位置で液体試料を保持することにより、液体試料の濃縮を行なう手段とを備える。 The sample pretreatment apparatus according to the second aspect of the present invention includes a means for generating an acoustic standing wave, a means for introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a means for concentrating a liquid sample by holding the above.
 本発明によれば、試料の種類によらず、試料を高感度で分析することを可能とする試料の前処理方法および前処理装置を提供することができる。 According to the present invention, it is possible to provide a sample pretreatment method and a pretreatment apparatus capable of analyzing a sample with high sensitivity regardless of the type of the sample.
実施の形態1に係る分析システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the analysis system which concerns on Embodiment 1. FIG. 実施の形態1に係る分析方法を説明するためのフローチャートである。It is a flowchart for demonstrating the analysis method which concerns on Embodiment 1. 前処理工程の処理の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the process procedure of a pre-processing process. 前処理装置の構成例を模式的に示す図である。It is a figure which shows the structural example of the pretreatment apparatus schematically. 試料溶液を濃縮する工程および試料溶液を試料プレートに載置する工程の手順を説明するための図である。It is a figure for demonstrating the procedure of the process of concentrating a sample solution, and the process of placing a sample solution on a sample plate. 分析装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the analyzer. 分析工程の処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the processing procedure of an analysis process. 一般的な試料の前処理方法の処理手順を説明するための図である。It is a figure for demonstrating the processing procedure of the general sample pretreatment method. 実施の形態2に係る前処理工程の処理手順を説明するための図である。It is a figure for demonstrating the processing procedure of the pretreatment process which concerns on Embodiment 2. FIG. 分析工程にて作成されるマススペクトルの一例を示す図である。It is a figure which shows an example of the mass spectrum created in the analysis process. 前処理装置の他の構成例を模式的に示す図である。It is a figure which shows the other configuration example of the pretreatment apparatus schematically.
 以下に、本開示の実施の形態について図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分には同一符号を付してその説明は原則的に繰り返さないものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the figure are designated by the same reference numerals, and the description thereof will not be repeated in principle.
 [実施の形態1]
 <分析システムの構成>
 図1は、実施の形態1に係る分析システムの全体構成を示すブロック図である。実施の形態1に係る分析システム100は、前処理装置10および分析装置20を備える。
[Embodiment 1]
<Analysis system configuration>
FIG. 1 is a block diagram showing an overall configuration of the analysis system according to the first embodiment. The analysis system 100 according to the first embodiment includes a pretreatment device 10 and an analysis device 20.
 前処理装置10は、試料となる化合物の前処理を行なうための装置である。試料の前処理には、試料を精製(主として脱塩)する処理および、試料を溶媒に溶解してなる試料溶液を濃縮する処理が含まれる。前処理装置10は、試料溶液を濃縮する処理に用いることができる。試料は固相であっても液相であってもよい。試料溶液は「液体試料」の一実施例に対応する。 The pretreatment device 10 is a device for pretreating a compound as a sample. The pretreatment of the sample includes a treatment of purifying (mainly desalting) the sample and a treatment of concentrating the sample solution obtained by dissolving the sample in a solvent. The pretreatment device 10 can be used for the treatment of concentrating the sample solution. The sample may be a solid phase or a liquid phase. The sample solution corresponds to one embodiment of the "liquid sample".
 分析装置20は、前処理された試料を分析するための装置である。分析装置20は、例えば、試料に含まれる原子または分子の質量(mass:m)を計測するための質量分析装置、または、試料に含まれる原子または分子が放射または吸収するスペクトルを計測するための分光分析装置である。これらの分析装置は、タンパク質などの生体高分子の同定および定性に好適に利用することができる。 The analyzer 20 is an apparatus for analyzing the pretreated sample. The analyzer 20 is, for example, a mass analyzer for measuring the mass (mass: m) of an atom or molecule contained in a sample, or a spectrum for measuring a spectrum emitted or absorbed by an atom or molecule contained in a sample. It is a spectroscopic analyzer. These analyzers can be suitably used for identification and qualitative use of biopolymers such as proteins.
 質量分析装置には、液体クロマトグラフ(High Performance Liquid Chromatography:HPLC)、液体クロマトグラフ質量分析計(Liquid Chromatography-Mass Spectrometry:LC-MS)、ガスクロマトグラフ(Gas Chromatography:GC)、ガスクロマトグラフ質量分析計(Gas Chromatography-Mass Chromatography:GC-MS)、マトリクス支援レーザ脱離/イオン化飛行時間型質量分析計(Matrix Assisted Laser Deposition/Ionization Time-of-Flight Mass Spectrometer:MALDI-TOF-MS)および、ICP質量分析計(Inductively Coupled Plasma Mass Spectrometer)が含まれる。 The mass spectrometer includes a liquid chromatograph (High Performance Liquid Chromatography: HPLC), a liquid chromatography-Mass Spectrometry (LC-MS), a gas chromatograph (Gas Chromatography: GC), and a gas chromatograph mass spectrometer. (Gas Chromatography-Mass Chromatography: GC-MS), Matrix Assisted Laser Deposition / Ionization Time-of-Flight Mass Spectrometer: MALDI-TOF-MS, and ICP mass An analyzer (Inductively Coupled Plasma Mass Spectrometer) is included.
 分光分析装置には、フーリエ変換赤外分光光度計(FT-IR;Fourier Transform Infrared Spectroscopy)、ラマン分光光度計および、紫外可視分光光度計が含まれる。 The spectrophotometer includes a Fourier transform infrared spectrophotometer (FT-IR; Fourier Transform Infrared Spectroscopy), a Raman spectrophotometer, and an ultraviolet-visible spectrophotometer.
 分析装置20は、前処理された試料を導入するための試料導入部22と、試料に含まれる原子または分子の質量またはスペクトルを測定するための測定部24と、測定部24により取得された測定データを処理するための処理部26とを有する。 The analyzer 20 includes a sample introduction unit 22 for introducing a pretreated sample, a measurement unit 24 for measuring the mass or spectrum of an atom or molecule contained in the sample, and a measurement acquired by the measurement unit 24. It has a processing unit 26 for processing data.
 実施の形態1では、分析装置20を質量分析装置とする。より具体的には、分析装置20は、MALDI-TOF-MSである。MALDI法(マトリクス支援レーザ脱離/イオン化法)は、試料である結晶や液体などの凝縮相表面にパルスレーザー光を照射し、表面から試料分子を分離させ、同時に試料分子をイオン化する方法である。TOF-MS(飛行時間型質量分析)は、イオン化された試料分子を電場により加速し、ある一定の距離を飛行させ、その飛行時間を測定することによって分子量を求める方法である。分析装置20にMALDI-TOF-MSを用いる場合、前処理装置10は、試料の前処理として、試料溶液とマトリクスとの混合溶液を結晶化するように構成される。 In the first embodiment, the analyzer 20 is a mass spectrometer. More specifically, the analyzer 20 is a MALDI-TOF-MS. The MALDI method (matrix-assisted laser desorption / ionization method) is a method in which the surface of a condensed phase such as a crystal or liquid as a sample is irradiated with pulsed laser light to separate the sample molecule from the surface, and at the same time, the sample molecule is ionized. .. TOF-MS (Time-of-Flight Mass Spectrometry) is a method of accelerating ionized sample molecules by an electric field, flying them over a certain distance, and measuring the flight time to determine the molecular weight. When MALDI-TOF-MS is used for the analyzer 20, the pretreatment device 10 is configured to crystallize a mixed solution of the sample solution and the matrix as a pretreatment of the sample.
 <分析方法>
 図2は、実施の形態1に係る分析方法を説明するためのフローチャートである。図2に示すように、実施の形態1に係る分析方法は、前処理工程S10と、分析工程S20とを備える。以下、各工程の処理手順について詳細に説明する。
<Analysis method>
FIG. 2 is a flowchart for explaining the analysis method according to the first embodiment. As shown in FIG. 2, the analysis method according to the first embodiment includes a pretreatment step S10 and an analysis step S20. Hereinafter, the processing procedure of each step will be described in detail.
 (1)前処理工程(S10)
 図3は、前処理工程(S10)の処理の手順を説明するためのフローチャートである。
(1) Pretreatment step (S10)
FIG. 3 is a flowchart for explaining the processing procedure of the preprocessing step (S10).
 図3を参照して、前処理工程は、試料溶液を調製する工程(S11)、試料溶液を濃縮する工程(S12)、試料溶液を試料プレートに載置する工程(S13)、試料溶液とマトリクスとを混合する工程(S14)、混合溶液を結晶化する工程(S15)および、試料を分析装置20に導入する工程(S16)を備える。 With reference to FIG. 3, the pretreatment steps include a step of preparing the sample solution (S11), a step of concentrating the sample solution (S12), a step of placing the sample solution on the sample plate (S13), and a sample solution and a matrix. A step of mixing with (S14), a step of crystallizing the mixed solution (S15), and a step of introducing the sample into the analyzer 20 (S16) are provided.
 試料溶液を調製する工程(S11)では、試料を溶媒に溶解させて試料溶液を生成する。試料は、例えば、ポリマー、タンパク質または、ペプチドである。試料は、予め精製されることによって不揮発性成分が除去されている。溶媒は、水系または有機溶媒である。溶媒には、例えば、水、アセトニトリル/水、クロロホルム、テトラヒドロフランなどを用いることができる。 In the step of preparing the sample solution (S11), the sample is dissolved in a solvent to generate a sample solution. The sample is, for example, a polymer, protein or peptide. The sample is pre-purified to remove non-volatile components. The solvent is an aqueous or organic solvent. As the solvent, for example, water, acetonitrile / water, chloroform, tetrahydrofuran and the like can be used.
 試料溶液を濃縮する工程(S12)では、試料溶液の溶媒を蒸発させることにより、試料溶液を濃縮する。本工程は、前処理装置10(図1参照)を用いて実施される。図4は、前処理装置10の構成例を模式的に示す図である。 In the step of concentrating the sample solution (S12), the sample solution is concentrated by evaporating the solvent of the sample solution. This step is carried out using the pretreatment apparatus 10 (see FIG. 1). FIG. 4 is a diagram schematically showing a configuration example of the pretreatment device 10.
 図4を参照して、前処理装置10は、超音波浮遊装置12と、2台のカメラ13,14とを有する。前処理装置10は、超音波を用いて試料溶液の液滴を浮遊させることにより、液滴を空間に非接触で保持するように構成される。図4では、紙面垂直方向をZ方向とし、Z方向に垂直な2方向をX方向およびY方向とする。 With reference to FIG. 4, the pretreatment device 10 has an ultrasonic levitation device 12 and two cameras 13 and 14. The pretreatment device 10 is configured to hold the droplets in the space in a non-contact manner by suspending the droplets of the sample solution using ultrasonic waves. In FIG. 4, the vertical direction of the paper surface is the Z direction, and the two directions perpendicular to the Z direction are the X direction and the Y direction.
 超音波浮遊装置12は、超音波振動子120、ホーン122、反射板124および発振器126を有する。発振器126は、商用電源128から電力供給を受けて超音波振動子120を駆動する。発振器126は、商用電源128の電力を超音波電力に変換する。 The ultrasonic floating device 12 has an ultrasonic vibrator 120, a horn 122, a reflector 124, and an oscillator 126. The oscillator 126 receives power from the commercial power supply 128 to drive the ultrasonic oscillator 120. The oscillator 126 converts the power of the commercial power supply 128 into ultrasonic power.
 超音波振動子120は、超音波振動を発生させる。ホーン122は、超音波振動子120に接続されており、超音波振動子120から空中に向けて超音波を放射させる。超音波は、ホーン122により振幅が増幅されて伝送される。 The ultrasonic vibrator 120 generates ultrasonic vibration. The horn 122 is connected to the ultrasonic vibrator 120, and emits ultrasonic waves from the ultrasonic vibrator 120 toward the air. The amplitude of the ultrasonic wave is amplified by the horn 122 and transmitted.
 反射板124は、Z方向(紙面垂直方向)に沿ってホーン122と対向して配置されている。反射板124は、ホーン122から伝送される超音波を反射させる。ホーン122と反射板124との間には、超音波と反射波とによって音響定在波Wが形成される。この音響定在波W中に液滴を注入すると、液滴は、音場により形成される音響定在波Wの圧力のポテンシャル場中の音圧の節の位置P1に保持される。 The reflector 124 is arranged so as to face the horn 122 along the Z direction (the direction perpendicular to the paper surface). The reflector 124 reflects the ultrasonic waves transmitted from the horn 122. An acoustic standing wave W is formed between the horn 122 and the reflector 124 by ultrasonic waves and reflected waves. When a droplet is injected into the acoustic standing wave W, the droplet is held at the position P1 of the sound pressure node in the potential field of the pressure of the acoustic standing wave W formed by the sound field.
 音響定在波Wの波長は、超音波振動子120の発振周波数によって調整することができる。音響波定在波Wの波長によって、音響定在波Wの節の個数および位置が決まる。 The wavelength of the acoustic standing wave W can be adjusted by the oscillation frequency of the ultrasonic vibrator 120. The wavelength of the acoustic standing wave W determines the number and position of the nodes of the acoustic standing wave W.
 2台のカメラ13,14は、音響定在波Wの節の位置P1を指示するために設けられている。具体的には、第1カメラ13は、超音波浮遊装置12をY方向から撮像するように配置されている。第1カメラ13による撮像画像には、X-Z平面内における音響定在波Wの節の位置P1が座標(X,Z)によって指示される。第2カメラ14は、超音波浮遊装置12をX方向から撮像するように配置されている。第2カメラ14による撮像画像には、Y-Z平面内における音響定在波Wの節の位置P1が座標(Y,Z)によって指示される。これら2つの座標は、超音波振動の発振周波数を用いた計算によって求めることができる。第1カメラ13および第2カメラ14による撮像画像に基づいて、3次元空間における節の位置P1を特定することができる。 The two cameras 13 and 14 are provided to indicate the position P1 of the node of the acoustic standing wave W. Specifically, the first camera 13 is arranged so as to take an image of the ultrasonic levitation device 12 from the Y direction. In the image captured by the first camera 13, the position P1 of the node of the acoustic standing wave W in the XZ plane is indicated by the coordinates (X, Z). The second camera 14 is arranged so as to take an image of the ultrasonic floating device 12 from the X direction. In the image captured by the second camera 14, the position P1 of the node of the acoustic standing wave W in the YZ plane is indicated by the coordinates (Y, Z). These two coordinates can be obtained by calculation using the oscillation frequency of ultrasonic vibration. The position P1 of the node in the three-dimensional space can be specified based on the images captured by the first camera 13 and the second camera 14.
 図5は、試料溶液を濃縮する工程(S12)および試料溶液を試料プレートに載置する工程(S13)の手順を説明するための図である。工程(S12)では、最初に、図5(A)に示すように、超音波浮遊装置12を起動させて超音波振動を発生させることにより、音響定在波Wが形成される。この音響定在波Wの節の位置P1に対して、試料溶液の液滴Dpが注入される。 FIG. 5 is a diagram for explaining the procedure of the step of concentrating the sample solution (S12) and the step of placing the sample solution on the sample plate (S13). In the step (S12), first, as shown in FIG. 5 (A), the acoustic standing wave W is formed by activating the ultrasonic floating device 12 to generate ultrasonic vibration. A droplet Dp of the sample solution is injected into the position P1 of the node of the acoustic standing wave W.
 具体的には、カメラ13,14による撮像画像上で音響定在波Wの節の位置P1が指示されているため、ユーザ(例えば、測定者)は、撮像画像を参照しながら、マイクロピペット30を用いて試料溶液の液滴Dpを位置P1に注入する。液滴Dpは10μL程度の液量を有している。節の位置P1に注入することができる液滴Dpの最大液量は、試料溶液の溶媒の比重および表面張力などに依存する。 Specifically, since the position P1 of the node of the acoustic standing wave W is indicated on the images captured by the cameras 13 and 14, the user (for example, the measurer) can refer to the captured images and refer to the micropipette 30. Is used to inject a droplet Dp of the sample solution into position P1. The droplet Dp has a liquid volume of about 10 μL. The maximum amount of droplet Dp that can be injected into the node position P1 depends on the specific gravity and surface tension of the solvent of the sample solution.
 なお、液滴Dpの注入は、ユーザによる手動操作に代えて、マイクロピペット30が装着されたロボットアームを有する機構を用いて自動的に行なう構成とすることも可能である。 It should be noted that the injection of the droplet Dp can be automatically performed by using a mechanism having a robot arm to which the micropipette 30 is attached, instead of the manual operation by the user.
 次に、図5(B)に示すように、音響定在波Wを継続的に形成することにより、液滴Dpを空中に浮遊した状態で安定に保持することができる。浮遊された液滴Dpから溶媒が徐々に蒸発することにより、液滴Dpが濃縮される。 Next, as shown in FIG. 5B, by continuously forming the acoustic standing wave W, the droplet Dp can be stably held in a suspended state in the air. The droplet Dp is concentrated by gradually evaporating the solvent from the suspended droplet Dp.
 次に、図5(C)に示すように、超音波浮遊装置12から濃縮された液滴Dpが取り出される。ユーザは、液滴Dpを視認してその濃縮率が所望の値になったと判断した時点で、マイクロピペット30を用いて音響定在波Wの節の位置P1から液滴Dpを取り出すと、次工程(S13)に進み、取り出した液滴Dpを試料プレート40に載置する(図5(D)参照)。液滴Dpの取り出しは、ユーザによる手動操作に代えて、上記機構を用いて自動的に行なう構成とすることができる。 Next, as shown in FIG. 5C, the concentrated droplet Dp is taken out from the ultrasonic levitation device 12. When the user visually recognizes the droplet Dp and determines that the concentration ratio has reached a desired value, the user takes out the droplet Dp from the position P1 of the node of the acoustic standing wave W using the micropipette 30. The process proceeds to step (S13), and the removed droplet Dp is placed on the sample plate 40 (see FIG. 5 (D)). The droplet Dp can be taken out automatically by using the above mechanism instead of the manual operation by the user.
 なお、3次元空間における音響定在波Wの節の位置P1を特定する手段は、2台のカメラ13,14による撮像画像を用いる手段に限定されない。例えば、音響定在波Wに対する液滴Dpの注入/取り出しを、機構を用いて自動的に行なう構成においては、当該機構に対して予め音響定在波Wの節の位置P1についてティーチングを行なうことにより、カメラ13,14を用いずに液滴Dpの注入および取り出しを行なうことができる。 Note that the means for specifying the position P1 of the node of the acoustic standing wave W in the three-dimensional space is not limited to the means using the images captured by the two cameras 13 and 14. For example, in a configuration in which the injection / extraction of the droplet Dp to the acoustic standing wave W is automatically performed using a mechanism, the mechanism is taught in advance about the position P1 of the node of the acoustic standing wave W. Therefore, the droplet Dp can be injected and taken out without using the cameras 13 and 14.
 図3に戻って、試料溶液とマトリクスとを混合する工程(S14)では、試料プレートに載置された試料溶液の液滴Dpにマトリクスを混合させる。マトリクスは、MALDI法にて使用するレーザ光を吸収する性質を有している。タンパク質およびペプチドのイオン化に使用される代表的なマトリクスは、シナピン酸(SA)、2,5-ジヒドロキシン安息香酸(2,5-DHB)、およびα-シアノ-4-ヒドロキシン桂皮酸(CHCA)などである。 Returning to FIG. 3, in the step (S14) of mixing the sample solution and the matrix, the matrix is mixed with the droplet Dp of the sample solution placed on the sample plate. The matrix has the property of absorbing the laser beam used in the MALDI method. Typical matrices used for protein and peptide ionization are sinapinic acid (SA), 2,5-dihydroxynbenzoic acid (2,5-DHB), and α-cyano-4-hydroxyn cinnamic acid (CHCA). ) And so on.
 工程(S14)では、試料プレート40に載置された試料溶液およびマトリクスの混合液を乾燥させることにより、混合液中の溶媒を揮発させて結晶にする。 In the step (S14), the mixed solution of the sample solution and the matrix placed on the sample plate 40 is dried to volatilize the solvent in the mixed solution and crystallize it.
 (2)分析工程(S20)
 分析工程(S20)では、分析装置20(図1参照)を用いて、前処理された試料の質量分析が行なわれる。図6は、分析装置20の構成例を示す模式図である。
(2) Analysis step (S20)
In the analysis step (S20), mass spectrometry of the pretreated sample is performed using the analyzer 20 (see FIG. 1). FIG. 6 is a schematic diagram showing a configuration example of the analyzer 20.
 図6を参照して、分析装置20であるMALDI-TOF-MSは、試料導入部22お、イオン化部240(イオン源)、質量分離部250、検出器260および処理部26を有する。このうちイオン化部240、質量分離部250および検出器260は、測定部24(図1参照)を構成する。 With reference to FIG. 6, the analyzer 20, MALDI-TOF-MS, has a sample introduction unit 22, an ionization unit 240 (ion source), a mass separation unit 250, a detector 260, and a processing unit 26. Of these, the ionization unit 240, the mass separation unit 250, and the detector 260 constitute the measurement unit 24 (see FIG. 1).
 図7は、分析工程(S20)の処理手順を説明するためのフローチャートである。図7に示すように、分析工程(S20)は、試料プレート40を分析装置20のイオン化部240に導入する工程(S21)、試料をイオン化する工程(S22)、イオン化された試料を質量分離する工程(S23)、検出する工程(S24)、およびマススペクトルを作成する工程(S25)を備える。 FIG. 7 is a flowchart for explaining the processing procedure of the analysis step (S20). As shown in FIG. 7, in the analysis step (S20), the step of introducing the sample plate 40 into the ionization unit 240 of the analyzer 20 (S21), the step of ionizing the sample (S22), and the mass separation of the ionized sample are performed. A step (S23), a step of detecting (S24), and a step of creating a mass spectrum (S25) are provided.
 次に、図6および図7を用いて、分析工程(S20)の処理手順を説明する。
 工程(S21)では、試料導入部22から、試料Sである結晶が載置された試料プレート40がイオン化部240に導入される。試料Sは、マトリクスと均一に混合された状態にある。
Next, the processing procedure of the analysis step (S20) will be described with reference to FIGS. 6 and 7.
In the step (S21), the sample plate 40 on which the crystal as the sample S is placed is introduced from the sample introduction unit 22 into the ionization unit 240. The sample S is in a state of being uniformly mixed with the matrix.
 工程(S22)では、イオン化部240(イオン源)は、試料分子をイオン化する。具体的には、イオン化部240は、レーザ光源242を有する。レーザ光源242から出射されたレーザ光は、試料プレート40上の試料Sの表面に照射される。レーザ光には、一般的に、紫外光である窒素レーザ光が用いられる。 In the step (S22), the ionization unit 240 (ion source) ionizes the sample molecule. Specifically, the ionization unit 240 has a laser light source 242. The laser light emitted from the laser light source 242 irradiates the surface of the sample S on the sample plate 40. As the laser light, nitrogen laser light, which is ultraviolet light, is generally used.
 試料Sの表面にレーザ光が照射されると、マトリクスがレーザ光を吸収して励起状態となる。このとき、レーザ光のスポットでの温度が上昇し、蒸発現象が起こる。高い励起状態にあるマトリクスから得られる熱エネルギーによって試料Sが蒸発する。試料Sの表面から脱離した試料分子は、多量に脱離気化するマトリクスの気体に乗って気相中に浮上しながら、プロトンの授受によってイオン化される。イオン化部240でイオン化された試料分子は、質量分離部250に導入される。 When the surface of the sample S is irradiated with the laser beam, the matrix absorbs the laser beam and becomes an excited state. At this time, the temperature at the spot of the laser beam rises, and an evaporation phenomenon occurs. The sample S evaporates due to the thermal energy obtained from the matrix in a highly excited state. The sample molecules desorbed from the surface of the sample S are ionized by the transfer of protons while floating in the gas phase on the gas of the matrix desorbed and vaporized in large quantities. The sample molecule ionized by the ionization unit 240 is introduced into the mass separation unit 250.
 工程(S23)では、質量分離部250は、個々の試料分子をその質量に応じて分離する。図6の例では、質量分離部250は、フライトチューブ252を有しており、導入された試料分子がフライトチューブ252の内部を飛行する際の飛行時間の違いにより、イオンを分離する。なお、図6では、リニア型のフライトチューブ252が示されているが、リフレクトロン型またはマルチターン型などでもよい。また、イオンを分離して検出することができれば、質量分析の方法は特に限定されない。 In the step (S23), the mass separation unit 250 separates individual sample molecules according to their mass. In the example of FIG. 6, the mass separation unit 250 has a flight tube 252, and separates ions due to the difference in flight time when the introduced sample molecule flies inside the flight tube 252. Although the linear type flight tube 252 is shown in FIG. 6, it may be a reflector type or a multi-turn type. Further, the method of mass spectrometry is not particularly limited as long as the ions can be separated and detected.
 工程(S24)では、検出器260は、マルチチャンネルプレートなどのイオン検出器を有する。検出器260は、質量分離部250で分離されたイオンを検出し、検出器260に入射したイオンの数に応じた強度の検出信号を出力する。検出器260から出力された検出信号は、処理部26に入力される。 In the step (S24), the detector 260 has an ion detector such as a multi-channel plate. The detector 260 detects the ions separated by the mass separation unit 250, and outputs a detection signal having an intensity corresponding to the number of ions incident on the detector 260. The detection signal output from the detector 260 is input to the processing unit 26.
 処理部26は、CPUなどのプロセッサおよびメモリを含んで構成され、分析装置20の動作を制御する。処理部26は、メモリに記憶されたプログラムを実行することにより各種処理を実行する。処理部26はまた、図示しない入力部から入力される測定条件に関するデータに基づいて、測定部24の動作を制御する。 The processing unit 26 is configured to include a processor such as a CPU and a memory, and controls the operation of the analyzer 20. The processing unit 26 executes various processes by executing the program stored in the memory. The processing unit 26 also controls the operation of the measurement unit 24 based on the data regarding the measurement conditions input from the input unit (not shown).
 処理部26はさらに、検出器260から出力された検出信号に基づく測定データを解析する。工程(S25)では、処理部26は、標準物質を測定して得られた較正曲線などを適宜用いて、検出された各イオンに対応する飛行時間を質量電荷比(mass-to-charge number ratio:m/z)に換算し、マススペクトルを作成する。処理部26は、マススペクトルの各ピークから、各ピークに対応するイオンの検出量を算出する。イオンの検出量は、ピークに対応する面積であるピーク面積または、ピークの最大値であるピーク強度などにより定量される。ピーク面積およびピーク強度は、適宜公知の方法によりノイズを除去する、または検出された強度値をスムージングすることにより算出することができる。 The processing unit 26 further analyzes the measurement data based on the detection signal output from the detector 260. In the step (S25), the processing unit 26 appropriately uses a calibration curve or the like obtained by measuring the standard substance to set the flight time corresponding to each detected ion to the mass-to-charge number ratio. : M / z) to create a mass spectrum. The processing unit 26 calculates the amount of ions detected corresponding to each peak from each peak in the mass spectrum. The amount of ion detected is quantified by the peak area, which is the area corresponding to the peak, or the peak intensity, which is the maximum value of the peak. The peak area and peak intensity can be calculated by removing noise by an appropriately known method or by smoothing the detected intensity value.
 <作用効果>
 次に、実施の形態1に係る前処理方法が奏する作用効果について説明する。
<Action effect>
Next, the action and effect of the pretreatment method according to the first embodiment will be described.
 最初に、比較例として、MALDI法における一般的な試料の前処理方法を説明する。図8は、一般的な試料の前処理方法の処理手順を説明するための図である。 First, as a comparative example, a general sample pretreatment method in the MALDI method will be described. FIG. 8 is a diagram for explaining a processing procedure of a general sample pretreatment method.
 一般的な試料の前処理方法では、試料とマトリクスとを溶媒を用いて混合し、試料溶液として調整する。図8(A)に示すように、この試料溶液の液滴Dpを試料プレート40に載せる。試料プレート40に載置される試料溶液の量は0.5~1μL程度である。 In a general sample pretreatment method, a sample and a matrix are mixed using a solvent to prepare a sample solution. As shown in FIG. 8A, the droplet Dp of this sample solution is placed on the sample plate 40. The amount of the sample solution placed on the sample plate 40 is about 0.5 to 1 μL.
 試料プレート40の表面は、疎水性を有する膜42で覆われている。膜42の表面の一部分には、親水性を有する領域44が形成されている。膜42の平面視において、領域44は円形形状を有している。領域44の直径は600~900μm程度である。膜42の領域44上に試料溶液を塗布することにより、試料プレート40上に液滴Dpを形成することができる。 The surface of the sample plate 40 is covered with a hydrophobic film 42. A hydrophilic region 44 is formed on a part of the surface of the film 42. In the plan view of the film 42, the region 44 has a circular shape. The diameter of the region 44 is about 600 to 900 μm. By applying the sample solution on the region 44 of the film 42, the droplet Dp can be formed on the sample plate 40.
 時間の経過に従って液滴Dp中の溶媒が蒸発することにより、図8(B)に示すように、液滴Dpは、領域44の中央部分に濃縮される。さらに溶媒が揮発されることによって、図8(C)に示すように、最終的に試料溶液は結晶になる。高い濃度の結晶が得られることによって、微量な試料溶液の分析が可能となる。特に、生体高分子の分析では微量な試料がターゲットとなっており、MALDI-TOF-MSでは高濃度の結晶を得る方法が必須である。 As the solvent in the droplet Dp evaporates over time, the droplet Dp is concentrated in the central portion of the region 44, as shown in FIG. 8B. Further volatilization of the solvent eventually results in crystals of the sample solution, as shown in FIG. 8 (C). The high concentration of crystals makes it possible to analyze trace amounts of sample solutions. In particular, a small amount of sample is targeted in the analysis of biopolymers, and a method for obtaining high-concentration crystals is indispensable for MALDI-TOF-MS.
 しかしながら、上述した一般的な前処理方法には、以下のような課題が存在する。
 第1に、試料溶液の濃縮倍率を高めることが難しいという課題がある。膜42の領域44には、領域44に対する溶媒の表面張力によって液滴Dpが形成されている。液滴Dpの液量は領域44の面積によって決まる。領域44の面積を大きくするほど液滴Dpの液量を増やすことができる。しかしながら、試料溶液中の溶媒が蒸発する過程において、領域44との接触部分の溶媒が蒸発せずに残留するため、領域44の面積に反して試料溶液の濃縮倍率に限界が生じてしまう。なお、領域44の面積を小さくすれば試料溶液の接触部分も小さくなるため、領域44に残留する溶媒の量を低減することができる。ただし、領域44の面積を小さくすると、領域44上に形成できる液滴Dpの液量自体が少なくなるため、分析に足り得る量の試料を得ることが難しくなる。
However, the above-mentioned general pretreatment method has the following problems.
First, there is a problem that it is difficult to increase the concentration ratio of the sample solution. Droplets Dp are formed in the region 44 of the film 42 due to the surface tension of the solvent with respect to the region 44. The liquid volume of the droplet Dp is determined by the area of the region 44. The larger the area of the region 44, the more the liquid amount of the droplet Dp can be increased. However, in the process of evaporating the solvent in the sample solution, the solvent in the contact portion with the region 44 remains without evaporating, so that the concentration ratio of the sample solution is limited contrary to the area of the region 44. If the area of the region 44 is reduced, the contact portion of the sample solution is also reduced, so that the amount of the solvent remaining in the region 44 can be reduced. However, if the area of the region 44 is reduced, the amount of the droplet Dp that can be formed on the region 44 itself decreases, so that it becomes difficult to obtain a sample in an amount sufficient for analysis.
 第2に、試料の種類によっては試料プレート40上に液滴Dpを形成できないという課題がある。特に試料の油分が多い場合には、膜42に対して試料溶液を塗布することができず、液滴Dpを形成することが困難となる。 Second, there is a problem that the droplet Dp cannot be formed on the sample plate 40 depending on the type of sample. In particular, when the oil content of the sample is large, the sample solution cannot be applied to the film 42, which makes it difficult to form droplets Dp.
 第3に、試料溶液のロスが生じるという課題がある。領域44に試料溶液を塗布したとき、試料溶液によっては、その一部が領域44の外周を囲む疎水性の領域に付着する場合がある。この場合、試料溶液のロスが生じてしまうため、適切な濃縮効果を得ることが難しくなる。 Thirdly, there is a problem that the sample solution is lost. When the sample solution is applied to the region 44, a part of the sample solution may adhere to the hydrophobic region surrounding the outer periphery of the region 44. In this case, loss of the sample solution occurs, and it becomes difficult to obtain an appropriate concentration effect.
 これに対して、実施の形態1に係る前処理方法では、超音波を用いて試料溶液の液滴Dpを浮遊させることにより、液滴Dpを空中に保持することができる。これによると、比較例のように試料プレート40の膜42上に液滴Dpを形成する必要がないため、溶媒が領域44に残留することがない。その結果、試料溶液の濃縮倍率を高めることができる。また、膜42に試料溶液を塗布しないため、試料の種類を選ばず、かつ、試料溶液のロスが生じることがない。 On the other hand, in the pretreatment method according to the first embodiment, the droplet Dp can be held in the air by suspending the droplet Dp of the sample solution using ultrasonic waves. According to this, since it is not necessary to form the droplet Dp on the film 42 of the sample plate 40 as in the comparative example, the solvent does not remain in the region 44. As a result, the concentration ratio of the sample solution can be increased. Further, since the sample solution is not applied to the membrane 42, the type of the sample is not selected and the sample solution is not lost.
 実施の形態1に係る前処理方法において、音響定在波の節の位置P1に液滴Dpとして保持できる試料溶液の液量は、溶媒の比重および表面張力によって異なるものの、約10μL程度とすることができる。これによると、一般的な前処理方法において膜42に塗布できる試料溶液の液量(0.5~1μL)の約10倍に増やすことができるため、より高い濃度の結晶を得ることが可能となる。高濃度の結晶が得られることにより、マススペクトルにおいてS/N比が向上するため、各ピークの信頼性を高めることができる。その結果、微量分析の感度を高めることができるとともに、分析結果の再現性を向上させることができる。 In the pretreatment method according to the first embodiment, the amount of the sample solution that can be held as a droplet Dp at the position P1 of the node of the acoustic standing wave is about 10 μL, although it varies depending on the specific gravity of the solvent and the surface tension. Can be done. According to this, since the amount of the sample solution (0.5 to 1 μL) that can be applied to the membrane 42 can be increased to about 10 times by a general pretreatment method, it is possible to obtain crystals having a higher concentration. Become. By obtaining high-concentration crystals, the S / N ratio is improved in the mass spectrum, so that the reliability of each peak can be improved. As a result, the sensitivity of the trace analysis can be increased and the reproducibility of the analysis result can be improved.
 [実施の形態2]
 図9は、実施の形態2に係る前処理工程の処理手順を説明するための図である。図9には、試料溶液を濃縮する工程(S12)および試料溶液を試料プレートに載置する工程(S13)が示される。
[Embodiment 2]
FIG. 9 is a diagram for explaining a processing procedure of the pretreatment step according to the second embodiment. FIG. 9 shows a step of concentrating the sample solution (S12) and a step of placing the sample solution on the sample plate (S13).
 最初に、図9(A)に示すように、マイクロシリンジ50内部に試料溶液を導入し、その先端部分に試料溶液の液滴Dpを形成する。液滴Dpは10μL程度の液量を有している。なお、液滴Dpの形成は、ユーザによる手動操作に代えて、マイクロシリンジ50が装着されたロボットアームを有する機構を用いて自動的に行なう構成とすることも可能である。 First, as shown in FIG. 9A, the sample solution is introduced into the microsyringe 50, and a droplet Dp of the sample solution is formed at the tip thereof. The droplet Dp has a liquid volume of about 10 μL. It should be noted that the formation of the droplet Dp can be automatically performed by using a mechanism having a robot arm to which the microsyringe 50 is attached, instead of the manual operation by the user.
 次に、図9(B)に示すように、マイクロシリンジ50の先端部分を鉛直方向下方に向けた状態で保持する。液滴Dpは自重によりマイクロシリンジ50の先端部分に保持される。空中に保持された液滴Dpから溶媒が徐々に蒸発することにより、液滴Dpが濃縮される。 Next, as shown in FIG. 9B, hold the tip of the microsyringe 50 in a state of facing downward in the vertical direction. The droplet Dp is held at the tip of the microsyringe 50 by its own weight. The droplet Dp is concentrated by gradually evaporating the solvent from the droplet Dp held in the air.
 次に、図9(C)に示すように、マイクロシリンジ50の先端部分から濃縮された液滴Dpが取り出される。ユーザは、マイクロピペット30を用いてマイクロシリンジ50の先端部分から液滴Dpを取り出すと、次工程(S13)に進み、取り出した液滴Dpを試料プレート40に載置する(図9(D)参照)。液滴Dpの取り出しは、ユーザによる手動操作に代えて、上記機構を用いて自動的に行なう構成とすることができる。 Next, as shown in FIG. 9C, the concentrated droplet Dp is taken out from the tip portion of the microsyringe 50. When the user takes out the droplet Dp from the tip of the microsyringe 50 using the micropipette 30, the user proceeds to the next step (S13) and places the taken out droplet Dp on the sample plate 40 (FIG. 9 (D)). reference). The droplet Dp can be taken out automatically by using the above mechanism instead of the manual operation by the user.
 図3に戻って、試料溶液とマトリクスとを混合する工程(S14)では、試料プレートに載置された試料溶液の液滴Dpにマトリクスを混合させる。工程(S14)では、試料プレート40に載置された試料溶液およびマトリクスの混合液を乾燥させることにより、混合液中の溶媒を揮発させて結晶にする。 Returning to FIG. 3, in the step (S14) of mixing the sample solution and the matrix, the matrix is mixed with the droplet Dp of the sample solution placed on the sample plate. In the step (S14), the mixed solution of the sample solution and the matrix placed on the sample plate 40 is dried to volatilize the solvent in the mixed solution and crystallize it.
 図10は、分析工程(S20)にて作成されるマススペクトルの一例を示す図である。図10(A)は、一般的な前処理方法(図8参照)による試料の質量分析により作成されるマススペクトルの一例である。図10(B)は、実施の形態2に係る前処理方法(図9参照)による試料の質量分析により作成されるマススペクトルの一例である。 FIG. 10 is a diagram showing an example of a mass spectrum created in the analysis step (S20). FIG. 10A is an example of a mass spectrum created by mass spectrometry of a sample by a general pretreatment method (see FIG. 8). FIG. 10B is an example of a mass spectrum created by mass spectrometry of a sample by the pretreatment method (see FIG. 9) according to the second embodiment.
 図10(A)および図10(B)の各々には、試料溶液に含まれる試料の濃度が互いに異なる3つのマススペクトルが重ねて示されている。試料溶液は、ペプチド(ACTH18-39)である。各図において、3つのマススペクトルは上から順に、試料溶液の濃度が2.5fmol/μL,250amol/μL,25amol/μLである。 In each of FIGS. 10 (A) and 10 (B), three mass spectra having different concentrations of the samples contained in the sample solution are shown superimposed. The sample solution is a peptide (ACTH18-39). In each figure, the concentrations of the sample solutions of the three mass spectra are 2.5 fmol / μL, 250amol / μL, and 25amol / μL in order from the top.
 図10(A)に示すように、一般的な前処理方法を用いた分析装置20の検出限界は、250amol/μLである。検出限界とは、物質が無い状態のシステムノイズ(ブランク値)と物質のシグナルとが区別できる物質の最低量である。一般的な前処理方法では、検出限界の1/10である25amol/μLにおけるマススペクトルにピークを検出することが不可能である。 As shown in FIG. 10A, the detection limit of the analyzer 20 using a general pretreatment method is 250 amol / μL. The detection limit is the minimum amount of a substance that can distinguish between the system noise (blank value) in the absence of the substance and the signal of the substance. With a general pretreatment method, it is impossible to detect a peak in the mass spectrum at 25 amol / μL, which is 1/10 of the detection limit.
 これに対して、図10(B)に示すように、実施の形態2に係る前処理方法では、25amol/μLにおけるマススペクトルにおいてピークを検出することができている。これは、実施の形態2に係る前処理方法では、一般的な前処理方法と比較して、試料溶液の濃縮倍率が約10倍に高められていることを表している。実施の形態2に係る前処理方法では、マススペクトルにおけるS/N比が向上するため、微量分析の感度を高めることができる。さらに、分析結果の再現性を向上させることができる。 On the other hand, as shown in FIG. 10B, in the pretreatment method according to the second embodiment, a peak can be detected in the mass spectrum at 25 amol / μL. This indicates that in the pretreatment method according to the second embodiment, the concentration ratio of the sample solution is increased to about 10 times as compared with the general pretreatment method. In the pretreatment method according to the second embodiment, the S / N ratio in the mass spectrum is improved, so that the sensitivity of the trace analysis can be increased. Furthermore, the reproducibility of the analysis result can be improved.
 [その他の構成例]
 上述した実施の形態1および2では、分析装置20がMALDI-TOF-MSである場合の試料の前処理方法について説明したが、分析装置20の種類に応じて試料の前処理方法を変更することができる。
[Other configuration examples]
In the above-described first and second embodiments, the sample pretreatment method when the analyzer 20 is MALDI-TOF-MS has been described, but the sample pretreatment method may be changed according to the type of the analyzer 20. Can be done.
 例えば、質量分析において試料のイオン化にMALDI法を用いない場合には、濃縮された試料溶液にマトリクスを混合する処理および混合液を結晶化する処理(図3のS14,S15)を省略することができる。 For example, when the MALDI method is not used for ionizing the sample in mass spectrometry, the process of mixing the matrix with the concentrated sample solution and the process of crystallizing the mixed solution (S14, S15 in FIG. 3) may be omitted. can.
 または、分析装置20がラマン分光光度計である場合、前処理方法は、濃縮された試料溶液を試料プレートに載置して結晶化したものを分析装置20に導入する構成とすることができる。 Alternatively, when the analyzer 20 is a Raman spectrophotometer, the pretreatment method can be configured such that the concentrated sample solution is placed on a sample plate and crystallized and introduced into the analyzer 20.
 あるいは、分析装置20がFT-IRである場合には、濃縮された試料溶液の液滴Dpを浮遊させた状態で赤外光を照射し、透過または反射した光量を測定する構成とすることができる。 Alternatively, when the analyzer 20 is FT-IR, it may be configured to irradiate infrared light with the droplet Dp of the concentrated sample solution suspended and measure the amount of transmitted or reflected light. can.
 また、上述した実施の形態1および2では、液滴Dpの濃縮率をユーザが視認して判断する例について説明したが、他の構成例として、図11に示す構成を用いて液滴Dpの濃縮率を制御してもよい。 Further, in the above-described first and second embodiments, an example in which the user visually determines the concentration rate of the droplet Dp has been described, but as another configuration example, the configuration shown in FIG. 11 is used to determine the concentration of the droplet Dp. The enrichment rate may be controlled.
 図11に示す他の構成例に係る超音波浮遊装置12Aは、音響定在波Wの節P1の位置を指示するカメラ13,14(図4参照)に代えて、試料溶液を濃縮する工程(S12)において液滴Dpを経時的に(連続的または断続的に)撮影するカメラ113を備える。当然であるが、図11のカメラ113は、図4のカメラ13,14と同様に節P1の位置を指示する用途を備えていてもよい。また、図示していないが、この構成例では、ユーザから試料について所望の濃縮率の入力を受ける入力部が前処理装置10に設けられている。 The ultrasonic floating device 12A according to another configuration example shown in FIG. 11 is a step of concentrating the sample solution instead of the cameras 13 and 14 (see FIG. 4) that indicate the position of the node P1 of the acoustic standing wave W (see FIG. 4). A camera 113 for photographing the droplet Dp over time (continuously or intermittently) in S12) is provided. As a matter of course, the camera 113 of FIG. 11 may have a purpose of indicating the position of the node P1 as in the cameras 13 and 14 of FIG. Further, although not shown, in this configuration example, the pretreatment device 10 is provided with an input unit that receives an input of a desired concentration rate for the sample from the user.
 カメラ113は、演算部と記憶部とを有する制御装置114に接続されている。制御装置114の演算部は、カメラ113が撮影した画像から液滴Dpを認識し、その寸法(およびこれに対応する体積)を取得するためのプログラムを実行可能である。液滴Dpの寸法から体積を算出する際には、液滴Dpの形状を球状とみなしてよい。また、当該演算部は、初期の液滴Dpの体積に対する時間経過後の体積との比(濃縮率)を算出するプログラムを実行可能である。 The camera 113 is connected to a control device 114 having a calculation unit and a storage unit. The arithmetic unit of the control device 114 can execute a program for recognizing the droplet Dp from the image taken by the camera 113 and acquiring the dimension (and the corresponding volume) thereof. When calculating the volume from the dimensions of the droplet Dp, the shape of the droplet Dp may be regarded as a spherical shape. Further, the calculation unit can execute a program for calculating the ratio (concentration rate) of the initial droplet Dp to the volume after the lapse of time.
 カメラ113は、液滴Dpが節P1に保持された後(好ましくは直後)の液滴Dpを撮影し、液滴画像を取得する。制御装置114は、演算部において液滴画像から液滴Dpの体積を取得し、記憶部に記憶する。その後、カメラ113は連続的に(例えば動画像として)または断続的に液滴Dpを撮影する。制御装置114において液滴Dpの体積を連続的に(または断続的に)算出し、記憶する。そして、制御装置114は、体積と同時に算出される濃縮率がユーザの所望の値になった時点で、それをユーザに通知すればよい。通知の方法としては、前処理装置10に表示部を設け、濃縮率がユーザの所望の値になったことを表示することにより知らせてもよい。 The camera 113 captures the droplet Dp after the droplet Dp is held in the node P1 (preferably immediately after), and acquires the droplet image. The control device 114 acquires the volume of the droplet Dp from the droplet image in the calculation unit and stores it in the storage unit. After that, the camera 113 continuously (for example, as a moving image) or intermittently captures the droplet Dp. The volume of the droplet Dp is continuously (or intermittently) calculated and stored in the control device 114. Then, the control device 114 may notify the user when the enrichment rate calculated at the same time as the volume reaches the user's desired value. As a method of notification, a display unit may be provided on the pretreatment device 10 to indicate that the enrichment rate has reached a desired value by the user.
 図11の構成例の更なる変形例として、濃縮率の時間変化を求め、濃縮率がユーザの所望の値になるまでの予想時間を算出し、前記表示部に表示してもよい。あるいは、濃縮率の時間変化を示す直線または曲線を前記表示部に表示してもよい。 As a further modification of the configuration example of FIG. 11, the time change of the enrichment rate may be obtained, the expected time until the enrichment rate reaches the user's desired value, and displayed on the display unit. Alternatively, a straight line or a curve indicating the time change of the concentration rate may be displayed on the display unit.
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the plurality of exemplary embodiments described above are specific examples of the following embodiments.
 (第1項)一態様に係る試料の前処理方法は、音響定在波を発生させるステップと、音響定在波に液体試料を導入するステップと、音響定在波の節の位置で液体試料を保持することにより、液体試料の濃縮を行なうステップとを備える。 (Clause 1) The sample pretreatment method according to one embodiment includes a step of generating an acoustic standing wave, a step of introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a step of concentrating the liquid sample by holding the above.
 一態様に係る試料の前処理方法によれば、液滴を空中に非接触で保持した状態で液体試料を濃縮することができるため、試料プレート上に液滴を形成する一般的な前処理方法のように、溶媒が試料プレートの表面に残留することがない。これにより、液体試料の濃縮倍率を高めることができる。また、試料プレートに液体試料を塗布しないため、試料の種類を選ばない。したがって、試料の種類によらず、高濃度の結晶が得ることができるため、微量の試料を高感度で分析することが可能となる。 According to the sample pretreatment method according to one embodiment, since the liquid sample can be concentrated in a state where the droplets are held in the air in a non-contact manner, a general pretreatment method for forming the droplets on the sample plate can be performed. As such, the solvent does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample. Moreover, since the liquid sample is not applied to the sample plate, any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
 (第2項)第1項に記載の試料の前処理方法は、濃縮された液体試料を試料プレートに載置するステップをさらに備える。 (2) The sample pretreatment method according to paragraph 1 further comprises a step of placing the concentrated liquid sample on the sample plate.
 これによれば、試料プレート上で液体試料を濃縮させる一般的な前処理方法に比べてより高い濃度に濃縮された試料を試料プレートに載置することができる。 According to this, a sample concentrated to a higher concentration than a general pretreatment method for concentrating a liquid sample on a sample plate can be placed on the sample plate.
 (第3項)第2項に記載の試料の前処理方法は、試料プレートに載置された液体試料にマトリクスを混合するステップと、液体試料およびマトリクスの混合液を乾燥させて結晶化するステップとをさらに備える。 (Clause 3) The sample pretreatment method according to paragraph 2 is a step of mixing a matrix with a liquid sample placed on a sample plate and a step of drying and crystallizing a mixed solution of the liquid sample and the matrix. And further prepare.
 これによれば、高濃度の結晶をMALDI法によってイオン化することができるため、イオン化した試料の分析感度を向上させることができる。 According to this, since high-concentration crystals can be ionized by the MALDI method, the analysis sensitivity of the ionized sample can be improved.
 (第4項)第1項に記載の試料の前処理方法は、液体試料の画像を経時的に取得するステップと、取得した複数の液体試料の画像に基づいて、液体試料の濃縮の度合いに関する情報を取得するステップとをさらに備える。 (Clause 4) The sample pretreatment method according to paragraph 1 relates to a step of acquiring an image of a liquid sample over time and a degree of concentration of the liquid sample based on the acquired images of a plurality of liquid samples. Further provided with steps to obtain information.
 これによれば、取得された情報を用いて、液体試料の濃縮の度合いをユーザの所望の値に制御することができる。 According to this, the degree of concentration of the liquid sample can be controlled to a value desired by the user by using the acquired information.
 (第5項)一態様に係る分析方法は、第1項に記載の試料の前処理方法と、試料を分析装置に導入するステップとを備える。 (Section 5) The analysis method according to one aspect includes the sample pretreatment method according to paragraph 1 and the step of introducing the sample into the analyzer.
 一態様に係る分析方法によれば、分析装置により取得される信号のS/N比を向上させることができるため、分析の感度を高めることができる。 According to the analysis method according to one aspect, the S / N ratio of the signal acquired by the analyzer can be improved, so that the sensitivity of the analysis can be increased.
 (第6項)一態様に係る分析方法は、細長い保持部材の先端に液体試料を保持し、液体試料の濃縮を行なうステップと、濃縮された液体試料を試料プレートに載置するステップと、液体試料を分析装置に導入するステップとを備える。 (Section 6) The analysis method according to one embodiment includes a step of holding a liquid sample at the tip of an elongated holding member to concentrate the liquid sample, a step of placing the concentrated liquid sample on a sample plate, and a liquid. It includes a step of introducing the sample into the analyzer.
 一態様に係る分析方法によれば、液滴を空中に保持した状態で液体試料を濃縮することができるため、試料プレート上に液滴を形成する一般的な前処理方法のように、溶媒が試料プレートの表面に残留することがない。これにより、液体試料の濃縮倍率を高めることができる。また、試料プレートに液体試料を塗布しないため、試料の種類を選ばない。したがって、試料の種類によらず、高濃度の結晶が得ることができるため、微量の試料を高感度で分析することが可能となる。 According to the analysis method according to one embodiment, the liquid sample can be concentrated while the droplets are held in the air, so that the solvent can be used as in a general pretreatment method for forming droplets on a sample plate. Does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample. Moreover, since the liquid sample is not applied to the sample plate, any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
 (第7項)一態様に係る試料の前処理装置は、音響定在波を発生させる装置と、音響定在波に液体試料を導入する手段と、音響定在波の節の位置で液体試料を保持することにより、液体試料の濃縮を行なう手段とを備える。 (Section 7) The sample pretreatment device according to one embodiment includes a device for generating an acoustic standing wave, a means for introducing a liquid sample into the acoustic standing wave, and a liquid sample at the position of a node of the acoustic standing wave. It is provided with a means for concentrating a liquid sample by holding the above.
 一態様に係る試料の前処理装置によれば、液滴を空中に非接触で保持した状態で液体試料を濃縮することができるため、試料の種類によらず、液体試料の濃縮倍率を高めることができる。これにより、試料の種類によらず、高濃度の結晶が得ることができるため、微量の試料を高感度で分析することが可能となる。 According to the sample pretreatment apparatus according to one embodiment, the liquid sample can be concentrated while the droplets are held in the air in a non-contact manner, so that the concentration ratio of the liquid sample can be increased regardless of the type of sample. Can be done. As a result, high-concentration crystals can be obtained regardless of the type of sample, so that a small amount of sample can be analyzed with high sensitivity.
 (第8項)第7項に記載の試料の前処理装置は、濃縮された液体試料を試料プレートに載置する手段をさらに備える。 (Section 8) The sample pretreatment apparatus according to paragraph 7 further includes means for placing the concentrated liquid sample on the sample plate.
 これによれば、試料プレート上で液体試料を濃縮させる一般的な前処理方法に比べてより高い濃度に濃縮された試料を試料プレートに載置することができる。 According to this, a sample concentrated to a higher concentration than a general pretreatment method for concentrating a liquid sample on a sample plate can be placed on the sample plate.
 (第9項)第7項に記載の試料の前処理装置は、音響定在波の節の位置を指示するためのカメラをさらに備える。 (Section 9) The sample pretreatment device according to paragraph 7 is further equipped with a camera for indicating the position of the node of the acoustic standing wave.
 これによれば、液体試料を正確に音響定在波の節の位置に導入することができる。
 (第10項)第7項に記載の試料の前処理装置は、液体試料の画像を経時的に取得するカメラと、カメラにより取得した複数の液体試料の画像を基に、液体試料の濃縮の度合いに関する情報を取得する制御装置とをさらに備える。
According to this, the liquid sample can be introduced exactly at the position of the node of the acoustic standing wave.
(Item 10) The sample pretreatment apparatus according to item 7 concentrates a liquid sample based on a camera that acquires images of the liquid sample over time and images of a plurality of liquid samples acquired by the cameras. It is further equipped with a control device for acquiring information on the degree.
 これによれば、取得された情報を用いて、液体試料の濃縮の度合いをユーザの所望の値に制御することができる。 According to this, the degree of concentration of the liquid sample can be controlled to a value desired by the user by using the acquired information.
 (第11項)第7項に記載の試料の前処理装置は、試料プレートに載置された液体試料にマトリクスを混合する手段と、液体試料およびマトリクスの混合液を乾燥させて結晶化する手段とをさらに備える。 (Item 11) The sample pretreatment apparatus according to item 7 is a means for mixing a matrix with a liquid sample placed on a sample plate and a means for drying and crystallizing a mixed solution of the liquid sample and the matrix. And further prepare.
 これによれば、高濃度の結晶をMALDI法によってイオン化することができるため、イオン化した試料の分析感度を向上させることができる。 According to this, since high-concentration crystals can be ionized by the MALDI method, the analysis sensitivity of the ionized sample can be improved.
 (第12項)一態様に係る分析システムは、第7項に記載の試料の前処理装置と、前処理装置から導入される試料を分析する分析装置とを備える。 (Section 12) The analysis system according to one aspect includes the sample pretreatment device according to the seventh paragraph and the analysis device for analyzing the sample introduced from the pretreatment device.
 一態様に係る分析システムによれば、分析装置により取得される信号のS/N比を向上させることができるため、分析の感度を高めることができる。 According to the analysis system according to one aspect, the S / N ratio of the signal acquired by the analyzer can be improved, so that the sensitivity of the analysis can be increased.
 (第13項)一態様に係る分析システムは、細長い保持部材の先端に液体試料を保持し、液体試料の濃縮を行なう手段と、濃縮された液体試料を試料プレートに載置する手段と、液体試料を分析装置に導入する手段とを備える。 (Item 13) In the analysis system according to one embodiment, a means for holding a liquid sample at the tip of an elongated holding member to concentrate the liquid sample, a means for placing the concentrated liquid sample on a sample plate, and a liquid. It is provided with a means for introducing the sample into the analyzer.
 一態様に係る分析システムによれば、液滴を空中に保持した状態で液体試料を濃縮することができるため、試料プレート上に液滴を形成する一般的な前処理方法のように、溶媒が試料プレートの表面に残留することがない。これにより、液体試料の濃縮倍率を高めることができる。また、試料プレートに液体試料を塗布しないため、試料の種類を選ばない。したがって、試料の種類によらず、高濃度の結晶が得ることができるため、微量の試料を高感度で分析することが可能となる。 According to the analysis system according to one embodiment, the liquid sample can be concentrated while the droplets are held in the air, so that the solvent can be used as in a general pretreatment method for forming droplets on a sample plate. Does not remain on the surface of the sample plate. This makes it possible to increase the concentration ratio of the liquid sample. Moreover, since the liquid sample is not applied to the sample plate, any type of sample can be used. Therefore, since crystals having a high concentration can be obtained regardless of the type of sample, it is possible to analyze a small amount of sample with high sensitivity.
 なお、上述した実施の形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。 It should be noted that, with respect to the above-described embodiments and modifications, it is initially filing that the configurations described in the embodiments are appropriately combined within a range that does not cause any inconvenience or contradiction, including combinations not mentioned in the specification. Scheduled from.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 10 前処理装置、12 超音波浮遊装置、13,14,113 カメラ、20 分析装置、22 試料導入部、24 測定部、26 処理部、30 マイクロピペット、40 試料プレート、42 膜、44 領域、50 マイクロシリンジ、100 分析システム、114 制御装置、120 超音波振動子、122 ホーン、124 反射板、126 発振器、128 商用電源、240 イオン化部、242 レーザ光源、250 質量分離部、252 フライトチューブ、260 検出器、S 試料、Dp 液滴、W 音響定在波。 10 pretreatment device, 12 ultrasonic floating device, 13, 14, 113 camera, 20 analyzer, 22 sample introduction section, 24 measurement section, 26 processing section, 30 micropipette, 40 sample plate, 42 membrane, 44 region, 50. Microsyringe, 100 analysis system, 114 control device, 120 ultrasonic oscillator, 122 horn, 124 reflector, 126 oscillator, 128 commercial power supply, 240 ionization unit, 242 laser light source, 250 mass separator, 252 flight tube, 260 detection Vessel, S sample, Dp droplet, W acoustic standing wave.

Claims (13)

  1.  音響定在波を発生させるステップと、
     前記音響定在波に液体試料を導入するステップと、
     前記音響定在波の節の位置で前記液体試料を保持することにより、前記液体試料の濃縮を行なうステップとを備える、試料の前処理方法。
    Steps to generate acoustic standing waves and
    The step of introducing a liquid sample into the acoustic standing wave and
    A sample pretreatment method comprising a step of concentrating the liquid sample by holding the liquid sample at a node of the acoustic standing wave.
  2.  濃縮された前記液体試料を試料プレートに載置するステップをさらに備える、請求項1に記載の試料の前処理方法。 The sample pretreatment method according to claim 1, further comprising a step of placing the concentrated liquid sample on a sample plate.
  3.  前記試料プレートに載置された前記液体試料にマトリクスを混合するステップと、
     前記液体試料および前記マトリクスの混合液を乾燥させて結晶化するステップとをさらに備える、請求項2に記載の試料の前処理方法。
    The step of mixing the matrix with the liquid sample placed on the sample plate,
    The sample pretreatment method according to claim 2, further comprising a step of drying and crystallizing the liquid sample and the mixed solution of the matrix.
  4.  前記液体試料の画像を経時的に取得するステップと、
     取得した複数の前記液体試料の画像に基づいて、前記液体試料の濃縮の度合いに関する情報を取得するステップとをさらに備える、請求項1に記載の試料の前処理方法。
    The step of acquiring an image of the liquid sample over time and
    The sample pretreatment method according to claim 1, further comprising a step of acquiring information regarding the degree of concentration of the liquid sample based on the acquired images of the liquid sample.
  5.  請求項1に記載の試料の前処理方法と、
     前記試料を分析装置に導入するステップとを備える、分析方法。
    The sample pretreatment method according to claim 1 and
    An analytical method comprising the step of introducing the sample into an analyzer.
  6.  細長い保持部材の先端に液体試料を保持し、前記液体試料の濃縮を行なうステップと、
     濃縮された前記液体試料を試料プレートに載置するステップと、
     前記液体試料を分析装置に導入するステップとを備える、分析方法。
    A step of holding a liquid sample at the tip of an elongated holding member and concentrating the liquid sample,
    The step of placing the concentrated liquid sample on the sample plate and
    An analytical method comprising the step of introducing the liquid sample into an analyzer.
  7.  音響定在波を発生させる装置と、
     前記音響定在波に液体試料を導入する手段と、
     前記音響定在波の節の位置で前記液体試料を保持することにより、前記液体試料の濃縮を行なう手段とを備える、試料の前処理装置。
    A device that generates an acoustic standing wave,
    A means for introducing a liquid sample into the acoustic standing wave,
    A sample pretreatment apparatus comprising a means for concentrating the liquid sample by holding the liquid sample at the position of the node of the acoustic standing wave.
  8.  濃縮された前記液体試料を試料プレートに載置する手段をさらに備える、請求項7に記載の試料の前処理装置。 The sample pretreatment apparatus according to claim 7, further comprising means for placing the concentrated liquid sample on a sample plate.
  9.  前記音響定在波の節の位置を指示するためのカメラをさらに備える、請求項7に記載の試料の前処理装置。 The sample pretreatment apparatus according to claim 7, further comprising a camera for indicating the position of the node of the acoustic standing wave.
  10.  前記液体試料の画像を経時的に取得するカメラと、
     前記カメラにより取得した複数の前記液体試料の画像を基に、前記液体試料の濃縮の度合いに関する情報を取得する制御装置とをさらに備える、請求項7に記載の試料の前処理装置。
    A camera that acquires images of the liquid sample over time,
    The sample pretreatment apparatus according to claim 7, further comprising a control device for acquiring information regarding the degree of concentration of the liquid sample based on the images of the plurality of liquid samples acquired by the camera.
  11.  前記試料プレートに載置された前記液体試料にマトリクスを混合する手段と、
     前記液体試料および前記マトリクスの混合液を乾燥させて結晶化する手段とをさらに備える、請求項8に記載の試料の前処理装置。
    A means for mixing a matrix with the liquid sample placed on the sample plate, and
    The sample pretreatment apparatus according to claim 8, further comprising a means for drying and crystallizing the liquid sample and the mixed solution of the matrix.
  12.  請求項7に記載の試料の前処理装置と、
     前記前処理装置から導入される前記試料を分析する分析装置とを備える、分析システム。
    The sample pretreatment apparatus according to claim 7,
    An analysis system including an analysis device for analyzing the sample introduced from the pretreatment device.
  13.  細長い保持部材の先端に液体試料を保持し、前記液体試料の濃縮を行なう手段と、
     濃縮された前記液体試料を試料プレートに載置する手段と、
     前記液体試料を分析装置に導入する手段とを備える、分析システム。
    A means for holding a liquid sample at the tip of an elongated holding member and concentrating the liquid sample,
    A means for placing the concentrated liquid sample on a sample plate, and
    An analytical system comprising means for introducing the liquid sample into an analyzer.
PCT/JP2020/019732 2020-05-19 2020-05-19 Sample pretreatment method, analysis method, sample pretreatment device, and analysis system WO2021234806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019732 WO2021234806A1 (en) 2020-05-19 2020-05-19 Sample pretreatment method, analysis method, sample pretreatment device, and analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019732 WO2021234806A1 (en) 2020-05-19 2020-05-19 Sample pretreatment method, analysis method, sample pretreatment device, and analysis system

Publications (1)

Publication Number Publication Date
WO2021234806A1 true WO2021234806A1 (en) 2021-11-25

Family

ID=78708423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019732 WO2021234806A1 (en) 2020-05-19 2020-05-19 Sample pretreatment method, analysis method, sample pretreatment device, and analysis system

Country Status (1)

Country Link
WO (1) WO2021234806A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532974A (en) * 2001-01-19 2004-10-28 ケミカル ホロボイス アクティエボラーグ System and method for screening molecular nucleation propensity with levitated droplets
JP2008203020A (en) * 2007-02-19 2008-09-04 Toppan Printing Co Ltd Microspectroscopic method
JP2008304369A (en) * 2007-06-08 2008-12-18 Biologica:Kk Device and method for preparing sample for mass spectrometry
US20090001263A1 (en) * 2006-05-26 2009-01-01 Science & Engineering Services, Inc. On-probe sample cleanup system and method for maldi analysis
JP2014533872A (en) * 2011-11-22 2014-12-15 マイクロマス ユーケー リミテッド Droplet manipulation using gas phase standing wave ultrasonic field in MS source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532974A (en) * 2001-01-19 2004-10-28 ケミカル ホロボイス アクティエボラーグ System and method for screening molecular nucleation propensity with levitated droplets
US20090001263A1 (en) * 2006-05-26 2009-01-01 Science & Engineering Services, Inc. On-probe sample cleanup system and method for maldi analysis
JP2008203020A (en) * 2007-02-19 2008-09-04 Toppan Printing Co Ltd Microspectroscopic method
JP2008304369A (en) * 2007-06-08 2008-12-18 Biologica:Kk Device and method for preparing sample for mass spectrometry
JP2014533872A (en) * 2011-11-22 2014-12-15 マイクロマス ユーケー リミテッド Droplet manipulation using gas phase standing wave ultrasonic field in MS source

Similar Documents

Publication Publication Date Title
Breitenlechner et al. PTR3: an instrument for studying the lifecycle of reactive organic carbon in the atmosphere
Van Berkel et al. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry
Venter et al. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry
Andrade et al. Atmospheric pressure chemical ionization source. 2. Desorption− ionization for the direct analysis of solid compounds
US9146180B2 (en) Systems and methods for laser assisted sample transfer to solution for chemical analysis
Liu et al. Development, characterization, and application of paper spray ionization
US7910881B2 (en) Mass spectrometry with laser ablation
US7180058B1 (en) LDI/MALDI source for enhanced spatial resolution
US9620344B2 (en) Mass spectrometry analysis of microorganisms in samples
US20050230615A1 (en) MALDI-IM-ortho-TOF mass spectrometry with simultaneous positive and negative mode detection
Laskin et al. New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes
JP2004184137A (en) Chip for mass spectrometric analysis, laser desorption ionization time-of-flight type mass spectroscope using the same, and mass spectrometric system
EP2352022A1 (en) Ionization method and apparatus with probe, and analytical method and apparatus
US20190326108A1 (en) Axial atmospheric pressure photo-ionization imaging source and inlet device
US20050098722A1 (en) Target support and method for ion production enhancement
JP4052094B2 (en) Sample preparation method and sample plate used in laser desorption ionization mass spectrometry
Zhang et al. Surface desorption dielectric-barrier discharge ionization mass spectrometry
US11798796B2 (en) Preconcentrating of environmental contaminant analytes for ambient ionization mass spectrometry
JP2009231066A (en) Mass spectroscope
WO2021234806A1 (en) Sample pretreatment method, analysis method, sample pretreatment device, and analysis system
US11094518B2 (en) Devices and methods for deep UV laser ablation
US20040217277A1 (en) Apparatus and method for surface activation and selective ion generation for MALDI mass spectrometry
EP3382740B1 (en) Ionization mass spectrometry method and mass spectrometry device using same
JP4241006B2 (en) Laser desorption ionization mass spectrometry method and sample plate used therefor
Wang et al. Nebulization Swab Assisted Photoionization Tandem Miniaturized Ion Trap Mass Spectrometry for On-Site Analysis of Nonvolatile Compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP