WO2021234294A1 - Membrane composite à conduction sélective d'ions - Google Patents

Membrane composite à conduction sélective d'ions Download PDF

Info

Publication number
WO2021234294A1
WO2021234294A1 PCT/FR2021/050892 FR2021050892W WO2021234294A1 WO 2021234294 A1 WO2021234294 A1 WO 2021234294A1 FR 2021050892 W FR2021050892 W FR 2021050892W WO 2021234294 A1 WO2021234294 A1 WO 2021234294A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
microfibers
group
water
membrane
Prior art date
Application number
PCT/FR2021/050892
Other languages
English (en)
Inventor
Bruno Mottet
Benoit LABORIE
Mohammed KECHADI
Original Assignee
Sweetch Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sweetch Energy filed Critical Sweetch Energy
Priority to US17/998,952 priority Critical patent/US20230226499A1/en
Priority to CA3184153A priority patent/CA3184153A1/fr
Priority to BR112022023364A priority patent/BR112022023364A2/pt
Priority to EP21734394.6A priority patent/EP4153345A1/fr
Priority to JP2022570699A priority patent/JP2023526099A/ja
Priority to CN202180036605.4A priority patent/CN115697538A/zh
Publication of WO2021234294A1 publication Critical patent/WO2021234294A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00042Organic membrane manufacture by agglomeration of particles by deposition of fibres, nanofibres or nanofibrils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00046Organic membrane manufacture by agglomeration of particles by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00413Inorganic membrane manufacture by agglomeration of particles in the dry state by agglomeration of nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/227Dialytic cells or batteries; Reverse electrodialysis cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Ion selective conduction membranes play an essential role in many industrial processes.
  • a large number of these processes is in fact based on a selective conduction of ions according to the sign of their charge between two volumes separated by a membrane, under the effect of a stress on either side of this interface, for example. a pressure gradient, an electric potential gradient or a concentration gradient.
  • MEIs ion exchange membranes
  • MECs cation exchange membranes
  • MEAs anion exchange membranes
  • MEIs are prepared from grains of ion exchange resins dispersed in an inert polymeric binder (homogeneous MEIs) or else by introducing functional groups directly into the structure of a polymer constituting the membrane (heterogeneous MEIs).
  • MEIs are for example used in the fields of water treatment for the extraction of undesirable substances from a fluid to be treated, for example to desalinate brackish or sea water.
  • desalination processes the extraction of Na ions + and Cl occurs by migration of ions through an alternation of membranes allowing the anions (MEAs) or cations (MECs) to pass selectively under the action of an electric field.
  • MEAs anions
  • MECs cations
  • Membranes with selective conduction of ions according to the sign of their charge are also used in processes for storing electrical energy in the form of electrolytic hydrogen or conversely using this hydrogen as a source of electrical energy (hydrogen fuel cells) .
  • These processes involve an electrochemical reaction, the electrolysis of water.
  • the electrolysis of water is carried out in an electrolyser, a device which comprises a set of electrolysis cells contiguous and connected to a source of electrical energy via electrodes.
  • Each electrolysis cell is typically formed by bringing two metal plates called electrodes into contact with a solid or liquid electrolytic medium.
  • the electrolytic cell comprises electrodes immersed in an aqueous solution containing both the water necessary for the reaction and electrolytes, soluble chemical compounds and conductors of current such as potash KOH ( alkaline electrolysis) or sulfuric acid H 2 SO 4 (acid electrolysis).
  • the two electrodes are connected to an electricity generator which makes it possible to increase their difference in electric potential.
  • an electricity generator which makes it possible to increase their difference in electric potential.
  • molecular oxygen (O2) is formed on the anode (electrode connected to the positive pole of the generator) and molecular hydrogen (H2) forms on the cathode (electrode connected to the negative pole of the generator).
  • porous metal electrodes In these cells, porous metal electrodes (Ep) are directly in contact with an ECM (M), the Ep-M-Ep assembly being on either side brought into contact with an aqueous solution.
  • ECM ECM
  • the membrane material acts both as a separating membrane and as a solid electrolyte.
  • MEIs can also be used for the production of electricity from an electrolyte gradient, in particular from a salinity gradient.
  • the reverse electrodialysis pathway is based on the use of membranes whose basic property is the selective transport of ions according to the sign of their charge.
  • a RED device typically consists of an alternation of MEAs and MECs separated by spacer membranes to form passages allowing fluids to flow. The circulation of an alternation of salt water and fresh water in these cells makes it possible to establish an ionic flow at each of the MEI of the device. At the ends of this stack of membranes, electrodes collect the electric current generated by the overall ionic flow.
  • nanoporous membranes have been proposed, the internal surface of the pores of which is covered with boron nitride or more generally with mixtures of the elements boron, carbon and nitrogen. These nanoporous membranes exploit diffusion-osmosis phenomena within the pores and develop membrane powers of the order of kW / m 2 . More recently, it has also been proposed, in the international application published on March 9, 2017 under number WO 2017/037213, nanoporous membranes whose internal pore surface is covered with titanium oxide, making it possible to achieve membrane powers of order 5 kW / m 2 .
  • an aim of the invention is to provide a membrane with selective conduction of ions according to the sign of their charge which is economical and easy to produce, while being capable of developing a high membrane power when it is integrated into cells.
  • devices for producing electricity from an electrolyte gradient in particular a salinity gradient, or in reverse devices for purification or desalination of water.
  • Another object of the invention is to provide a membrane with selective conduction of ions according to the sign of their charge, prepared from materials which present little or no risk to the environment.
  • the first object of the invention is a composite membrane with selective conduction of ions having a thickness of between 4 ⁇ m and 100 ⁇ m comprising at least one internal layer (2), arranged between two external layers (1), (3) in which :
  • the outer layers (1, 3) are each formed from a first material comprising a network of nanofibers and / or crosslinked microfibers and pores with a diameter of between 10 nm and 10 ⁇ m,
  • the internal layer (2) is formed from a second material comprising nanoparticles functionalized at the surface by charged groups and / or which become charged in the presence of water and having pores with a diameter of between 1 and 100 nm.
  • the composite membrane of the invention develops a very high membrane power, of the order of several hundred W / m 2 of membrane, preferably at least 300 W / m 2. , more preferably at least 500 W / m 2 , under the effect of a salinity gradient.
  • this very high membrane power is determined by the surface charge of the materials used in the layers of the membrane of the invention in association with the porosity of the outer layers (1,3 ) and the inner layer (2) and the composite membrane.
  • this association of porosity and load surface gives the composite membrane nanofluidic properties, and would influence the selective passage of ions through the membrane, according to a specific and unexpected mechanism, which would not be observed in the case where the materials constituting the membrane present greater porosities.
  • the thickness of the composite membrane is advantageously between 4 ⁇ m and
  • each of the outer layers (1,3) is advantageously between 2 ⁇ m and 45 ⁇ m, preferably between 2 ⁇ m and 30 ⁇ m, more preferably between 2 ⁇ m and 25 ⁇ m.
  • the outer layers advantageously have the same thickness.
  • the thickness of the internal layer (2) is for its part preferably between 10 nm and 10 ⁇ m, and more advantageously between 10 nm and 2 ⁇ m, preferably between 10 nm and 1 ⁇ m, preferably between 10 nm and 800 nm, preferably between 10 nm and 400 nm, and more preferably between 200 nm and 500 nm.
  • the thickness of each of the outer layers (1,3) is advantageously between 2 ⁇ m and 45 ⁇ m, and the thickness of the internal layer (2) is between 10 nm and 10 ⁇ m.
  • the very small thickness of the internal layer makes it possible to obtain excellent permeability while obtaining high selective conduction of ions.
  • the thickness of the composite membrane and of the various layers is measured by scanning electron microscopy of sections of dry membrane.
  • the composite membrane preferably comprises less than 10% by weight of second material relative to the weight of first material, preferably between 2% and 8% by weight of second material relative to the weight of first material, more preferably between 3% and 5% by weight of second material based on the weight of first material.
  • the surface charge density of the internal wall of the pores of the composite membrane is advantageously between 0.001 and 3 C / m 2 , preferably between 0.1 and 1 C / m 2 .
  • the surface charge density of the composite membrane is measured by dosimetry.
  • nanoparticle denotes a 3-dimensional object, in which at least one external dimension is on the nanometric scale (i.e. at least one dimension is in a range between 1 to 100 nm).
  • the second material advantageously comprises the nanoparticles in the form of individual nanoparticles, that is to say of nanoparticles which are not aggregated or in other words linked covalently to one another.
  • the second material advantageously comprises at least 50% by mass of nanoparticles, at least 95% by mass of nanoparticles, more preferably at least 99% of nanoparticles, relative to the mass of second material.
  • the nanoparticles are not in the form of nanotubes.
  • the nanoparticles are preferably lamellar nanoparticles.
  • Lamellar nanoparticle denotes a nanoparticle comprising atoms in the form of monolayers of atoms linked together by covalent bonds.
  • Lamellar nanoparticles can consist of a single monolayer of atoms (2D materials) or of a stack of 2 to 5 monolayers of atoms linked together by weak bonds, such as Van der Waals forces.
  • a lamellar nanoparticle is a 3-dimensional object in which a first external dimension is located on the nanometric scale and the other two dimensions are significantly greater than the first dimension, and vary in particular between the nanometric scale and the scale. micrometric.
  • the lamellar nanoparticles preferably have a median size (also designated by the acronym “D50”) of between 5 and 50 ⁇ m, preferably between 10 and 20 ⁇ m, more preferably of 15 ⁇ m.
  • D50 median size
  • D50 means that 50% by weight of the particles have a smaller size.
  • Lamellar bilayer and oligolayer nanoparticles are typically stabilized by weak interactions between monolayers of atoms, such as Van der Waals interactions.
  • the lamellar nanoparticles are preferably lamellar nanoparticles of a metal oxide, in particular of SnO2 or of T1O2, lamellar nanoparticles of a dichalcogenide of a transition metal such as molybdenum disulphide M0S2 , lamellar carbon nanoparticles, or a mixture of these.
  • the lamellar carbon nanoparticles are advantageously lamellar nanoparticles of monolayer graphene, bilayer graphene, trace graphene or a mixture thereof.
  • single-layer graphene denotes a crystalline two-dimensional material consisting of carbon in a particular allotropic form, which can be represented as a planar honeycomb. More particularly, monolayer graphene is a sheet formed by a single atomic plane of sp 2 hybridized carbon. It can therefore be qualified as a monolayer.
  • bilayer graphene (or BLG; “Bi-Layer Graphene” in English) denotes a material consisting of a stack of 2 monolayers of graphene stabilized by interactions of van der Waals type between the 2 monolayers. of graphene.
  • BLG can be obtained by exfoliation of graphite or by chemical vapor deposition (CVD).
  • trace-layer graphene (or FLG: “Few-Layer Graphene” in English) denotes a material consisting of a stack of 3 to 5 graphene sheets, stabilized by interactions of the van der type. Waals between the different graphene planes.
  • the second material advantageously comprises at least 50% by mass of single-layer graphene, more preferably at least 95% by mass of single-layer graphene.
  • the single-layered graphene lamellar nanoparticles preferably have a median size (also designated by the acronym “D50”) of between 5 and 50 ⁇ m, preferably between 10 and 20 ⁇ m, more preferably of 15 ⁇ m.
  • the lamellar molybdenum disulfide nanoparticles are advantageously lamellar nanoparticles of monolayer molybdenum disulfide, bilayer molybdenum disulfide, oligo-layered molybdenum disulfide or a mixture thereof.
  • the groups which are charged or which become charged in the presence of water confer a negative or positive surface charge on the internal layer (2) of the composite membrane when it is placed in the presence of water.
  • the nanoparticles are surface functionalized by negatively charged groups and / or which become negatively charged in the presence of water.
  • the nanoparticles functionalized at the surface with negatively charged groups or which become negatively charged in the presence of water are lamellar graphene oxide nanoparticles (or GO, in English “graphene oxide”).
  • the lamellar graphene oxide nanoparticles carry groups which are negatively charged or which become negatively charged in the presence of water, advantageously chosen from the epoxy group, the hydroxyl group, the carbonyl group, the carboxyl group, and mixtures thereof.
  • the nanoparticles are surface functionalized by positively charged groups and / or which become positively charged in the presence of water.
  • the positively charged groups and / or which become positively charged in the presence of water are chosen from the quaternary ammonium group -N (R) 3 + with R a C1-C4 alkyl, the tertiary ammonium group -N (H) R) 2 + with R a C1-C4 alkyl, preferably a C1 alkyl, the dimethylhydroxyethylammonium group -N (C2H 4 OH) CHB) 2 + , and their mixtures.
  • nanofiber designates a 3-dimensional cellulose-based object in which 2 of the 3 external dimensions are located at the nanometric scale (ie 2 of the 3 dimensions range from 1 to 100 nm), the 3rd external dimension being significantly greater than that of the other two dimensions, and are not necessarily at the nanoscale.
  • the nanofibers thus have a diameter ranging from 1 to 100 nm, preferably ranging from 1 to 70 nm, and more preferably ranging from 4 to 30 nm, in particular from 4 to 20 nm.
  • their length is advantageously between 0.5 and 100 ⁇ m, in particular between 0.5 and 50 ⁇ m, for example between 0.5 and 10 ⁇ m, for example also between 0.5 and 2 ⁇ m.
  • microfiber designates a 3-dimensional object in which 2 of the 3 external dimensions are located on the micrometric scale (ie 2 of the 3 dimensions go in a range going from 0.1 to 10 ⁇ m). , the 3 rd external dimension being significantly greater than that of the other two dimensions.
  • the microfibers thus have a diameter ranging from 0.1 ⁇ m to 10 ⁇ m, advantageously ranging from 0.1 ⁇ m to 5 ⁇ m, more advantageously ranging from 0.1 ⁇ m to 2 ⁇ m, in particular ranging from 0.1 ⁇ m to 1 ⁇ m, 0.1 pm to 7 pm, or 0.1 pm to 0.2 pm
  • their length is advantageously between 0.5 ⁇ m and 100 ⁇ m, in particular between 1 ⁇ m and 50 ⁇ m, for example between 1 ⁇ m and 10 ⁇ m, for example also between 1 ⁇ m and 5 ⁇ m.
  • the nanofibers and / or the microfibers advantageously have a form factor advantageously greater than 10, preferably greater than 100.
  • the expression “form factor”, relating to nanofibers and / or to microfibers, denotes the ratio of their length L to their diameter d (L / d).
  • the diameter of nanofibers and / or microfibers can be measured by TEM or SEM.
  • crosslinked relating to nanofibers and / or microfibers, means that said fibers are connected to each other by covalent chemical bonds (sometimes called “bridges”) so as to form a three-dimensional network. In other words, they are not simply agglomerated by or self-assembled through weak bonds.
  • the first material plays a structuring role in the composite membrane, in particular in that it makes it possible to maintain the functionalized nanoparticles described above in the form of a second layer (2) arranged between the outer layers (1,3).
  • the first material of the outer layers (1, 3) ensures the integrity of the inner layer (2), in particular when, during its use, the latter is subjected to a stress such as a pressure gradient from side to side. on the other side of the membrane.
  • the nanofibers and / or the microfibers advantageously carry charged groups or which become charged in the presence of water.
  • the charged groups and / or which become charged in the presence of water from the outer layer (1) are of opposite sign to the charged groups and / or which become charged in the presence of water from the outer layer.
  • the composite membrane is a bipolar composite membrane.
  • the charged groups and / or which become charged in the presence of water of the two outer layers (1, 3) have the same sign, advantageously the same sign as that of the charged groups or which become charged in the presence of water. water of the functionalized nanoparticles described above.
  • the presence of these charged groups or which become charged in the presence of water of the same sign within the internal layer (2) and the external layers (1,3) of the composite membrane makes it possible to obtain an effect synergistic, i.e. an unexpected improvement in selective ion conduction across the composite membrane.
  • the first material therefore plays a role in the structure of the composite membrane and in its capacity to ensure selective conduction of ions.
  • the covalent chemical bonds involved in the crosslinking of nanofibers and / or microfibers can also carry charged groups and / or which become charged in the presence of water, as is the case, for example, when the crosslinking agent used is citrate.
  • the chemical crosslinking bonds play a role both in the structure and in the electrical surface charge of the nanoporous material.
  • the nanofibers and / or the microfibers consist of an electrically conductive material, such as for example activated carbon as described below.
  • the outer layers (1,3) can conduct electrons, and therefore play the role of capacitive electrode when the composite membrane is used in a membrane process for electrolysis or reverse electrolysis, preferably. an electrodialysis or reverse electrodialysis process.
  • the outer layers conduct the electric current necessary for the electrolytic reaction or for the implementation of the electrodialysis, or else collect the current generated by the reaction of electrolysis or reverse electrodialysis.
  • the fluid when the composite membrane is used in a reverse electrodialysis process, the fluid can circulate in the porosity of the outer layers (1,3), and the electrical energy produced by reverse electrodialysis is directly harvested. by nanofibers and / or microfibers of the outer layers (1,3).
  • composite membranes according to this embodiment make it possible to manufacture devices for reverse electrodialysis, in which it is not necessary to use spacers (in English "spacer") to form passages allowing fluids to flow. circulate between the membranes, as is the case in the RED type devices presented above.
  • the first material of the outer layers (1,3) advantageously comprises nanofibers and / or microfibers of an organic material.
  • an organic material is a material essentially comprising carbon, oxygen and hydrogen.
  • the organic material consists essentially of carbon, oxygen and hydrogen, i.e. it consists of at least 90 mole% of carbon, oxygen and hydrogen, preferably at least 95 mole% of carbon, oxygen and hydrogen, more preferably at least 97 mole% of carbon, oxygen and hydrogen.
  • the organic material comprises from 70 to 100% by mole of carbon, from 0 to 30% by mole of hydrogen and from 0 to 15% by mole of oxygen.
  • the organic material is advantageously devoid of fluorine, an element that is commonly found in ion exchange membranes (MEIs).
  • the organic material is advantageously chosen from cellulose, activated carbon, or a mixture of these.
  • Cellulosic matrix is advantageously chosen from cellulose, activated carbon, or a mixture of these.
  • the first material is a cellulosic matrix comprising nanofibers and / or crosslinked cellulose microfibers.
  • crosslinked relating to nanofibers and / or cellulose microfibers, means that said fibers are connected to each other by covalent chemical bonds (sometimes called “bridges”) so as to form a three-dimensional network under cellulose matrix form. In other words, they are not simply agglomerated by or self-assembled through weak bonds.
  • the network of cellulose nanofibers and / or microfibers advantageously has pores with a diameter of between 10 and 1000 nm.
  • the cellulose nanofibers advantageously have a diameter ranging from 1 to 100 nm, preferably ranging from 1 to 70 nm, and more preferably ranging from 4 to 30 nm, in particular from 4 to 20 nm.
  • their length is advantageously between 0.5 and 100 ⁇ m, in particular between 0.5 and 50 ⁇ m, for example between 0.5 and 10 ⁇ m, for example also between 0.5 and 2 ⁇ m.
  • Cellulose microfibers advantageously have a diameter ranging from 100 nm to 1000 nm, preferably ranging from 100 nm to 700 nm, and more preferably ranging from 100 to 200 nm.
  • their length is advantageously between 0.5 ⁇ m and 100 ⁇ m, in particular between 1 ⁇ m and 50 ⁇ m, for example between 1 ⁇ m and 10 ⁇ m, for example also between 1 ⁇ m and 5 ⁇ m.
  • the nanofibers and / or the cellulose microfibers advantageously have a form factor advantageously greater than 30, preferably greater than 100.
  • the cellulose matrix comprises at least 90% by mass of cellulose nanofibers and / or microfibers, at least 95% by mass of cellulose nanofibers and / or microfibers, more preferably at least 99% of nanofibers and / or cellulose microfibers, relative to the mass of cellulose matrix.
  • the nanofibers and / or the cellulose microfibers can be obtained by techniques known to those skilled in the art, in particular by mechanical, enzymatic or chemical treatment of a lignocellulosic material of natural origin such as wood.
  • these treatments have the particular effect of separating the cellulose from the other constituents of the wood such as lignin and hemicellulose.
  • the natural cellulose fibers are pre-or post-treated chemically, in particular with enzymes, and / or mechanically to initiate the destructuring before mechanical treatment in a homogenizer. It is known that the size and in particular the diameter of the cellulose fibers of said material depending on the treatment that is subjected to the natural cellulose source.
  • the nanofibers and / or the cellulose microfibers can be obtained by mechanical treatment of wood fibers, the mechanical treatment being carried out so as to provide sufficient mechanical energy to burst the fibers of the natural cellulose by destroying at least in part hydrogen bonds that hold the microfibrils together.
  • Mechanical treatment is often preceded by a chemical or enzymatic treatment step.
  • this treatment step can be an oxidation treatment, in particular using an oxidant such as TEMPO (2,2,6,6-tetramethylpiperidin-1-yl) oxy).
  • NFC NanoFibrillated Cellulose
  • CNF cellulose nanofibers
  • MFC MicroFibrillated Cellulose
  • MFC materials are prepared from a less thorough mechanical and / or chemical treatment than that used to obtain NFCs, so MFCs generally have fibers of larger diameters than those observed in NFCs.
  • MFC and NFC / CNF are often used interchangeably in the literature.
  • the nanofibers and / or the cellulose microfibers are preferably nanofibers and / or the nanocellulose microfibers.
  • the nanofibers and / or the cellulose microfibers can include impurities originating from its preparation process. These impurities can in particular hemicellulose or lignin.
  • the cellulose matrix can in particular comprise at most 5% by mass of hemicellulose, more preferably at most 3% by mass of hemicellulose, or alternatively at most 1% by mass of hemicellulose.
  • the cellulose matrix can in particular comprise at most 5% by mass of lignin, more preferably at most 3% by mass of lignin, or alternatively at most 1% by mass of lignin.
  • the cellulose nanofibers and / or microfibers of the invention inherently carry a negative surface charge because the cellulose monomers naturally carry alcohol groups at their C2, C3 or C6 carbon atoms.
  • the intrinsic negative surface charge of the cellulose nanofibers and / or microfibers of the invention can be increased by functionalizing them with groups which are negatively charged and / or which become negatively charged in the presence of water.
  • This embodiment is particularly advantageous when the charged groups and / or which become charged in the presence of water of the functionalized nanoparticles of the second layer (2) have a negative sign. Indeed, this has the advantage of increasing the surface charge of the whole of the composite membrane of the invention.
  • the charged groups and / or which become charged in the presence of water carried by the microfibers and / or the nanofibers are advantageously chemically bonded covalently to the surface of said cellulose microfibers and / or nanofibers.
  • any charged group and / or which becomes charged in the presence of water in the latter known to those skilled in the art and making it possible to increase the charge density of the microfibers and / or of the cellulose nanofibers of the invention can be used in the within the scope of the present invention.
  • the carboxylate group -C0 2 and the carboxyalkyl group R-C0 2 with R a C 1 -C 4 and preferably C 1 alkyl are preferred.
  • cellulose nanofibers and / or microfibers carrying carboxylate -CO 2 groups can for example be obtained by oxidation, for example by TEMPO oxidation, of nanofibers and / cellulose microfibers.
  • the oxidation preferably occurs on the primary alcohol group carried by the C6 carbon atom of the monomers of the nanofibers and / or of the cellulose microfibers.
  • Cellulose nanofibers and / or microfibers carrying R-C0 2 carboxyalkylate groups can for example be obtained by etherification of cellulose nanofibers and / or microfibers. Etherification preferably occurs on the alcohol groups carried by the C2, C3 or C6 carbon atoms of monomers of cellulose nanofibers and / or microfibers.
  • the intrinsic negative surface charge of the nanofibers and / or cellulose microfibers of the invention can be reversed by functionalizing them with charged groups and / or which become charged in the presence of water exhibiting an electric charge. positive.
  • This embodiment is preferred when the charged groups and / or which become charged in the presence of water of the functionalized nanoparticles of the second layer (2) have a positive sign. Any charged group and / or which becomes charged in the presence of water known to those skilled in the art and making it possible to confer a positive surface charge on cellulose nanofibers and / or microfibers can be used in the context of the present invention.
  • the positively charged groups and / or which become positively charged in the presence of water of negative charge are chosen from the quaternary ammonium group -N (R) 3 + with R a C1-C4 alkyl, the tertiary ammonium group -N (H) R) 2 + with R a C1-C4 alkyl, preferably a C1 alkyl, the dimethylhydroxyethylammonium group -N (C2H 4 OH) CH B ) 2 + , and mixtures thereof.
  • Quaternary ammonium groups are preferred.
  • the nanofibers and / or the microfibers of the outer layers (1, 3) advantageously carry charged groups or which become charged in the presence of water, and the charged groups and / or which become charged in the presence of The water of the outer layer (1) are of opposite sign to the charged groups and / or which become charged in the presence of water of the other outer layer (3).
  • the composite membrane is a bipolar composite membrane. Activated carbon based material.
  • the first material is an activated carbon felt comprising nanofibers and / or crosslinked activated carbon microfibers.
  • crosslinked relating to nanofibers and / or activated carbon microfibers, means that said fibers are connected to each other by covalent chemical bonds (sometimes called “bridges”) so as to form a three-dimensional network. in the form of activated carbon felt. In other words, they are not simply agglomerated by or self-assembled through weak bonds.
  • the activated carbon felt advantageously has a thickness of between 5 and 60 ⁇ m, preferably between 5 and 50 ⁇ m, more preferably between 5 and 45 ⁇ m.
  • the pores of the activated carbon felt advantageously have a diameter of between 1 and 10 ⁇ m.
  • the activated carbon microfibers advantageously have a diameter ranging from 0.1 to 10 ⁇ m, preferably ranging from 1 to 10 ⁇ m, and more preferably ranging from 2 to 10 ⁇ m.
  • their length is advantageously between 10 and 500 ⁇ m, in particular between 20 and 400 ⁇ m, for example between 20 and 300 ⁇ m, for example also between 1 and 200 ⁇ m.
  • the activated carbon felt preferably comprises activated carbon microfibers.
  • the nanofibers and / or the activated carbon microfibers advantageously have a form factor advantageously greater than 10, preferably greater than 50.
  • the activated carbon felt comprises at least 90% by mass of nanofibers and / or activated carbon microfibers, at least 95% by mass of nanofibers and / or of activated carbon microfibers, more preferably at least 99% of activated carbon nanofibers and / or microfibers, relative to the mass of activated carbon felt.
  • nanofibers and / or the activated carbon microfibers can be obtained by techniques known to those skilled in the art, in particular by partial combustion and thermal decomposition of a fibrous carbonaceous precursor.
  • They can typically be obtained by a process consisting in carbonizing fibers of a resin of an organic carbon precursor (wood, fruit stones, walnut shells) or mineral (peat, coal, lignite), then in activating them by lignite. using an activating agent.
  • the carbon atoms are then in the form of planes of aromatic rings assembled randomly in a geometry comparable to that of crumpled paper.
  • Nanofibers and / or activated carbon microfibers consist essentially of carbon, i.e. they consist of at least 60 mole% of carbon, preferably at least 70 mole% of carbon. carbon, more preferably at least 80 mole% carbon, the remainder being elements such as oxygen and hydrogen.
  • the nanofibers and / or the activated carbon microfibers comprise from 60 to 100% by mole of carbon, from 0 to 30% by mole of hydrogen and from 0 to 15% by mole of oxygen.
  • nanofibers and / or microfibers of activated carbon intrinsically carry a negative surface charge, due to the fact that the ends of the polyaromatic units constituting the activated carbon carry oxygen and hydrogen atoms in the form of hydoxyl, carboxylic acid, lactone, phenol, chromene and pyrone.
  • Nanofibers and / or activated carbon microfibers conduct electricity.
  • the second object of the invention is a process for manufacturing a composite membrane in accordance with the first object of the invention, characterized in that it comprises the steps consisting in: i) filtering a solution comprising nanofibers and / or microfibers on a filtration medium so as to form a first internal layer (1) comprising nanofibers and / or microfibers; ii) filtering a solution of particles of nanoparticles functionalized at the surface with charged groups and / or which become charged in the presence of water on the first layer (1) obtained at the end of stage i) so as to form a inner layer (2) on said first outer layer (1); iii) filtering a solution of nanofibers and / or microfibers so as to form a second outer layer (3) comprising nanofibers and / or microfibers on the inner layer (2) obtained at the end of step ii); iv) filtering a crosslinking solution capable of crosslinking the nanofibers and / or the microfibers of the outer layers (1,3); v) drying the
  • nanofibers and / or the microfibers and the functionalized nanoparticles are as defined in the first subject of the invention.
  • the process is simple, easy to implement, economical and makes it possible to control the thickness of each of the layers of the composite membrane.
  • stage i), ii), iii) and iv) is advantageously carried out with a vacuum pump, preferably at 1 bar of vacuum.
  • step i) The filtration of step i) can optionally be followed by a step ii) consisting in filtering a crosslinking solution on the outer layer (1) obtained at the end of step i).
  • step ii) can optionally be followed by a step iii) consisting in filtering a crosslinking solution on the second layer obtained at the end of step ii).
  • the solution of nanofibers and / or microfibers used in steps i) and iii) comprises from 0.1% to 1% by weight of cellulose nanofibers and / or microfibers, preferably from 0.3% to 0, 6% by weight of cellulose nanofibers and / or microfibers.
  • nanofibers and / or the microfibers of the solution of steps i) and iv) can be functionalized, as detailed in the first subject of the invention.
  • the solution of particles of functionalized nanoparticles used in step ii) comprises from 0.001% to 0.01% by weight of functionalized nanoparticles, preferably from 0.003% to 0.006% by weight of functionalized nanoparticles.
  • the crosslinking solution used in step v) advantageously comprises from 0.005 M to 0.02 M of one or more crosslinking agents, preferably from 0.008 M to 0.012 M of one or more crosslinking agents.
  • step v) is advantageously carried out at a temperature allowing the crosslinking reaction to take place and below a temperature damaging the fibers and / or the nanofibers.
  • the drying is carried out at a temperature between 80 ° C and 150 ° C, in particular between 80 ° C and 120 ° C, more preferably between 80 ° C and 100 ° C.
  • the crosslinking agent preferably carries charged groups and / or which become charged in the presence of water. Citrate is preferred.
  • the composite membrane is in the form of a dry material.
  • the method may further comprise a step vii) consisting in applying to the composite membrane obtained at the end of step vi) a pressure of between 3 bar and 4 bar at a temperature ranging from 60 ° C to 95 ° C. , preferably ranging from 80 ° C to 90 ° C, for a period of at least 5 minutes, so as to mechanically reinforce said ion-selective conduction membrane.
  • step vii) can be carried out using a press, in particular a heat press.
  • a third subject of the invention is the use of the composite membrane according to the first subject of the invention or prepared according to the process defined in the second subject of the invention as a membrane with selective ion conduction.
  • This conduction is advantageously carried out under the effect of a stress exerted on either side of the composite membrane, preferably an electric potential gradient or a concentration gradient.
  • a fourth subject of the invention is also the use of the composite membrane according to the first subject of the invention or prepared according to the process defined in the second subject of the invention for the extraction of ionic or ionizable substances from water to treating, for the extraction of organic compounds from a water to be treated, for carrying out an electrolysis reaction or for carrying out a reverse electrodialysis reaction, in particular for the production of electricity , in particular for the production of electricity from a salinity gradient.
  • the composite membrane can be used for the extraction of ionic or ionizable substances from a water to be treated.
  • the composite membrane can in particular be used in processes for extracting ionic or ionizable substances from a water to be treated, such as desalination and deionization. It may for example be the treatment of water polluted by elements chosen from manganese in ionized form and iron in ionized form, and / or by substances such as nitrate ions, ammonium ions, carbonate ions. , or organic compounds in ionic form. This treatment can in particular be carried out under the action of a concentration (filtration) or an electric potential (electrodialysis) gradient on either side of the composite membrane.
  • the composite membrane can be used in any type of ionic separation process in an aqueous medium under the action of an electric potential on either side of the composite membrane.
  • Electro-desalination is an electrodialysis technique aimed at extracting the ions contained in seawater, in particular sodium and chloride ions. Electrodialysis aims to remove all types of ions from relatively concentrated ion solutions, in particular from industrial effluents. Electrodeionization is an electrodialysis technique used to extract solutions of low ion concentration, typically solutions that have already been treated by reverse osmosis, and which is in particular useful for obtaining ultrapure water. Electrodeionization is particularly used in the pharmaceutical field.
  • the composite membrane When the composite membrane is bipolar, it can be used in a bipolar electrolysis process, advantageously bipolar electrodialysis.
  • the composite membrane can also be used to extract one or more organic compound (s) from a water to be treated, preferably an alcohol or an alkane, advantageously C 1 -C 12 , for example methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, glycerol, methane, ethane, propane, butane and mixtures thereof.
  • organic compound (s) preferably an alcohol or an alkane, advantageously C 1 -C 12 , for example methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, glycerol, methane, ethane, propane, butane and mixtures thereof.
  • the composite membrane can also be used for carrying out an electrolysis reaction.
  • an electrolysis reaction to the migration of ions through the composite membrane under the effect of an electric potential gradient, oxidation and reduction reactions are added at the electrodes. It may for example be a reaction of electrolysis of water for the production of hydrogen under the action of electric potential on either side of the composite membrane.
  • the composite membrane can also be used for carrying out a reverse electrolysis reaction, in particular for the production of electricity.
  • the composite membrane is preferably used for the manufacture of a device intended to generate an electric current by reverse electrodialysis, under the effect of an electrolyte concentration gradient, preferably a salinity gradient, exerted on both sides. other side of the composite membrane.
  • Figure 1 is a schematic sectional view of a membrane according to the invention, in which the outer layers (1,3) are formed of a cellulosic matrix comprising nanofibers and / or crosslinked cellulose microfibers and the inner layer (2) is formed from a material comprising nanoparticles functionalized at the surface by charged groups and / or which become charged in the presence of water.
  • Example 1 Preparation of a composite membrane in accordance with the invention
  • ⁇ 1.75 ml of nanocellulose solution are filtered on the Buchner filter with a PVD filter.
  • the vacuum pump is set to 1 bar of vacuum;
  • the filter / filtrate paper assembly is then placed in a study oven at 85 ° C. for 15 minutes (drying and crosslinking reaction).
  • the membrane is finally peeled off from its filtration medium, to make things easier, it may possibly be soaked beforehand in an isopropanol solution.
  • the membranes thus obtained are composed of 17.5 g / m 2 of nanocellulose.
  • Nanocellulose contents were varied by mass contents of graphene oxide. Nanocellulose contents of less than 10 mg / m 2 do not make it possible to obtain membranes having sufficient mechanical strength.
  • These membranes have an inner layer of graphene oxide having a thickness of about 100 nm, and outer layers of cellulose each having a thickness of about 10 ⁇ m.
  • the tests were carried out with a device consisting of two independent reservoirs each containing a solution of sodium chloride (NaCl) dissolved at 1 M for the concentrated solution, then 0.1 M, 0.01 M and 0.001 M in dilute solution making it possible to define the gradient of Rc of 10, 100 and 1000 between the two reservoirs.
  • NaCl sodium chloride
  • the two reservoirs are separated by a composite membrane in accordance with the invention obtained as detailed in Example 1.
  • P Osmo Max (U x l) / 4
  • the membrane powers are expressed in W / m 2 by multiplying by 10,000 the values obtained on 1 cm 2 of composite membrane.
  • the preparation process used in this comparative example is as follows:
  • the buchner device is opened and the filter paper is removed with its filtrate.
  • the filtrate filter paper assembly is then placed in a study oven at 85 ° C. for 15 minutes (drying and crosslinking reaction).
  • the membrane is finally peeled off from its filtration medium, to make things easier, it may possibly be soaked beforehand in an isopropanol solution.
  • the membranes thus obtained are composed of 17.5 g / m 2 of nanocellulose and 0.34 g / m 2 of graphene oxide (2% by mass).
  • the device used is in all respects similar to that detailed in Example 1 except for the membrane which in this comparative example does not include graphene oxide.
  • the results of these measurements are shown in Table 2.
  • the membrane powers are expressed in W / m 2 by multiplying by 10,000 the values obtained on 1 cm 2 of membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

La présente invention concerne une membrane composite à conduction sélective d'ions ayant une épaisseur comprise entre 4 µm et 100 µm comportant au moins une couche interne (2) disposée entre deux couches externes (1,3), dans laquelle : - les couches externes (1, 3) sont chacune formées d'un premier matériau comprenant un réseau de nanofibres et/ou de microfibres réticulées et des pores de diamètre compris entre 10 nm et µm, - la couche interne (2) est formée d'un second matériau comprenant des nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence 10 d'eau et présentant des pores de diamètre compris entre 1 et 100 nm.

Description

MEMBRANE COMPOSITE À CONDUCTION SÉLECTIVE D'IONS
ETAT DE LA TECHNIQUE
Les membranes à conduction sélective d'ions jouent un rôle essentiel dans de nombreux procédés industriels.
Un grand nombre de ces procédés repose en effet sur une conduction sélective d'ions selon le signe de leur charge entre deux volumes séparés par une membrane, sous l'effet d'une contrainte de part et d'autre de cette interface, par exemple un gradient de pression, un gradient de potentiel électrique ou un gradient de concentration.
Les membranes à conduction sélective d'ions selon le signe de leur charge les plus couramment utilisées actuellement sont connues sous l'appellation membranes échangeuses d'ions (MEIs). On distingue les membranes échangeuses de cations (MECs), qui permettent la circulation des cations, et les membranes échangeuses d'anions (MEAs) dans lesquelles peuvent circuler des anions. Ces MEIs sont préparées à partir de grains de résines échangeuses d'ions dispersés dans un liant polymériques inerte (MEIs homogènes) ou bien par introduction des groupements fonctionnels directement dans la structure d'un polymère constituant la membrane (MEIs hétérogènes).
Les MEIs sont par exemple utilisées dans les domaines du traitement des eaux pour l'extraction de substances indésirables d'un fluide à traiter, par exemple pour dessaler des eaux saumâtres ou de mer. Dans les procédés de dessalement, l’extraction des ions Na+ et Cl se fait par migration des ions à travers une alternance de membranes laissant passer sélectivement les anions (MEAs) ou les cations (MECs) sous l’action d’un champ électrique. En fin de traitement, on récupère d'une part de l’eau douce et de l'autre de la saumure.
Des membranes à conduction sélective d'ions selon le signe de leur charge sont également utilisées dans des procédés pour stocker une énergie électrique sous forme d'hydrogène électrolytique ou inversement utiliser de cet hydrogène comme source d'énergie électrique (piles à combustible à hydrogène). Ces procédés mettent en une réaction électrochimique, l'électrolyse de l'eau. L'électrolyse de l'eau est réalisée dans un électrolyseur, dispositif qui comporte un ensemble de cellules d'électrolyse accolées et reliées à une source d'énergie électrique via des électrodes. Chaque cellule d'électrolyse est typiquement constituée par la mise en contact de deux plaques métalliques appelées électrodes avec un milieu électrolytique solide ou liquide. Dans le cas d'un milieu électrolytique liquide, la cellule d'électrolyse comprend des électrodes immergées dans une solution aqueuse contenant à la fois l'eau nécessaire à la réaction et des électrolytes, composés chimiques solubles et conducteurs du courant comme la potasse KOH (électrolyse alcaline) ou l'acide sulfurique H2SO4 (électrolyse acide). Les deux électrodes sont reliées à un générateur d'électricité qui permet d'augmenter leur différence de potentiel électrique. Lorsque cette dernière passe un certain seuil, on observe le passage d'un courant dans le circuit, et de l'oxygène moléculaire (O2) se forme sur l'anode (électrode reliée au pôle positif du générateur) et de l'hydrogène moléculaire (H2) se forme sur la cathode (électrode reliée au pôle négatif du générateur). Par exemple, dans le cas l'hydrolyse acide, à l'anode, les molécules d'eau se décomposent selon l'équation H2O — > 2 H++ 2e + ½ O2 et à la cathode, les protons se réduisent selon l'équation H++ le — > ½ H2, un flux d'ions hydronium se mettant entre l'anode et la cathode. Pour éviter la recombinaison spontanée de H2 et O2 en gaz explosifs, il est nécessaire de disposer entre les électrodes une membrane séparatrice laissant passer les protons mais pas H2 et O2. Plus récemment, l'électrolyse par membrane à échange de protons (PEM) utilise des cellules dans lequel le milieu électrolytique est un électrolyte polymère solide sous la forme d'une membrane à échange de cations. Dans ces cellules, des électrodes métalliques poreuses (Ep) sont directement au contact d'une MEC (M), l'assemblage Ep-M-Ep étant de part et d'autre mis en contact avec une solution aqueuse. Dans ces cellules, le matériau membranaire joue à la fois le rôle de membrane séparatrice et d'électrolyte solide.
Cependant, de manière générale, les MEIs conduisent faiblement les courants ioniques et constituent une contribution ohmique importante aux systèmes d'électrodialyse et d'électrodialyse inverse. Ceci limite dans la plupart des cas la densité de courant qu'on peut appliquer aux électrodes à quelque centaines de mA.cm-2, et donc la plage de fonctionnement des technologies ayant recours aux MEIs. En outre, la préparation de ces membranes s'avère très coûteuse, c'est pourquoi la majeure partie des investissements de maintenance des procédés membranaires est consacrée au remplacement de ces membranes.
Les MEIs peuvent également être utilisées pour la production d'électricité à partir d'un gradient d'électrolyte, en particulier à partir d'un gradient de salinité.
Ainsi, la voie de l'électrodialyse inverse (RED de l'anglais « reverse electrodialysis ») repose sur l'utilisation de membranes dont la propriété de base est le transport sélectif d'ions selon le signe de leur charge. Un dispositif RED est typiquement constitué d’une alternance de MEAs et des MECs séparées par des membranes d'espacements pour former des passages permettant aux fluides de circuler. La circulation d'une alternance d'eau salée et d'eau douce dans ces cellules permet d'établir au niveau de chacune des MEI du dispositif un flux ionique. Aux extrémités de cet empilement de membranes, des électrodes viennent récolter le courant électrique généré par le flux ionique global.
L'un des problèmes rencontrés par les dispositifs de production d'électricité à partir d'un gradient de salinité, tels que les dispositifs RED actuels, est que ceux-ci présentent une capacité de production d'électricité très faible, en raison du fait que les MEIs actuelles développent des puissances électriques par unité de surface de membrane (i.e. des puissances membranaires) de seulement quelques W/m2 de membrane.
Une approche par rapport à ce problème est exposée dans la demande internationale publiée le 24 avril 2014 sous le numéro WO 2014/060690. Dans cette approche, il a été proposé des membranes nanoporeuses dont la surface interne des pores est recouverte de nitrure de bore ou plus généralement de mélanges des éléments bore, carbone et azote. Ces membranes nanoporeuses exploitent des phénomènes de diffusio-osmose au sein des pores et développent des puissances membranaires de l'ordre du kW/m2. Plus récemment, il a également été proposé, dans la demande internationale publiée le 9 mars 2017 sous le numéro WO 2017/037213 des membranes nanoporeuses dont la surface interne des pores est recouverte d'oxyde de titane, permettant d'atteindre des puissances membranaires de l'ordre 5 kW/m2. Cependant, cette approche implique l'utilisation de membranes à base de nitrure de bore ou d'oxyde de titane, dont la préparation à plus grande échelle que celle du laboratoire est complexe et extrêmement coûteuse compte-tenu des matériaux nécessaires. Par ailleurs, les matériaux utilisés dans ces membranes sont nocifs pour l'environnement, et présentent un risque s'ils sont relargués dans l'environnement.
Il n'existe pas, à ce jour, de membrane à conduction sélective d'ions selon le signe de leur charge développant des puissances membranaires élevées sous l'effet d'un gradient de salinité, qui soit simple et économique à préparer, tout en présentant un risque limité pour l'environnement.
EXPOSE DE L'INVENTION
Ainsi, un but de l'invention est de fournir une membrane à conduction sélective d'ions selon le signe de leur charge qui soit économique et facile à produire, tout en étant capable de développer une puissance membranaire élevée lorsqu'elle est intégrée dans des dispositifs de production d'électricité à partir d'un gradient d'électrolytes, en particulier d'un gradient de salinité, ou dans des dispositifs inverses de purification ou dessalement de l'eau.
Un autre but de l'invention est de fournir une membrane à conduction sélective d'ions selon le signe de leur charge préparée à partir de matériaux qui présentent peu ou pas de risque pour l'environnement.
Ces buts sont atteints par l'invention décrite ci-après. Membrane composite
L'invention a pour premier objet une membrane composite à conduction sélective d'ions ayant une épaisseur comprise entre 4 pm et 100 pm comportant au moins une couche interne (2), disposée entre deux couches externes (1), (3) dans laquelle :
- les couches externes (1, 3) sont chacune formées d'un premier matériau comprenant un réseau de nanofibres et/ou de microfibres réticulées et des pores de diamètre compris entre 10 nm et 10 pm,
- la couche interne (2) est formée d'un second matériau comprenant des nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence d'eau et présentant des pores de diamètre compris entre 1 et 100 nm.
Les inventeurs ont découvert que, de manière inattendue, la membrane composite de l'invention développe une puissance membranaire très élevée, de l'ordre de plusieurs centaines de W/m2 de membrane, de préférence d'au moins 300 W/m2, de préférence encore d'au moins 500 W/m2, sous l'effet d'un gradient de salinité.
Sans vouloir être liés par une théorie particulière, les inventeurs pensent que cette puissance membranaire très élevée est déterminée par la charge de surface des matériaux utilisés dans les couches de la membrane de l'invention en association avec la porosité des couches externes (1,3) et de la couche interne (2) et de la membrane composite.
En particulier, toujours selon les inventeurs, cette association de porosité et de surface de charge confère à la membrane composite des propriétés nanofluidiques, et influerait sur le passage sélectif des ions à travers la membrane, selon un mécanisme spécifique et inattendu, qui ne serait pas observé dans le cas où les matériaux constituant la membrane présenteraient des porosités plus importantes.
Structure de la membrane composite
L'épaisseur de la membrane composite est avantageusement comprise entre 4 pm et
75 pm.
L'épaisseur de chacune des couches externes (1,3) est avantageusement comprise entre 2 pm et 45 pm, de préférence entre 2 pm et 30 pm, de préférence encore entre 2 pm et 25 pm. Les couches externes présentent avantageusement la même épaisseur.
L'épaisseur de la couche interne (2) est quant à elle de préférence comprise entre 10 nm et 10 pm, et plus avantageusement comprise entre 10 nm et 2 pm, de préférence entre 10 nm et 1 pm, de préférence entre 10 nm et 800 nm, de préférence entre 10 nm et 400 nm, et de préférence encore entre 200 nm et 500 nm. De préférence, l'épaisseur de chacune des couches externes (1,3) est avantageusement comprise entre 2 prn et 45 miti, et l'épaisseur de la couche interne (2) est comprise entre 10 nm et 10 pm.
Selon les inventeurs, la très faible épaisseur de la couche interne permet d'obtenir une excellente perméabilité tout en obtenant une conduction sélective d'ions élevée.
Dans l'invention, l'épaisseur de la membrane composite et des différentes couches est mesurée par microscopie électronique à balayage de sections de membrane sèche.
La membrane composite comprend de préférence moins de 10% en poids de second matériau par rapport au poids de premier matériau, de préférence entre 2% et 8% en poids de second matériau par rapport au poids en premier matériau, de préférence encore entre 3% et 5% en poids de second matériau par rapport au poids de premier matériau.
La densité de charge de surface de la paroi interne des pores de la membrane composite est avantageusement comprise entre 0,001 et 3 C/m2, de préférence est comprise entre 0,1 et 1 C/m2.
La densité de charge de surface de la membrane composite est mesurée par dosimétrie.
Couche interne (2)
Second matériau
Selon l’invention, le terme « nanoparticule » désigne un objet à 3 dimensions, dans lequel au moins une dimension externe se situe à l’échelle nanométrique (i.e. au moins une dimension est dans une gamme comprise entre 1 à 100 nm).
Le second matériau comprend avantageusement les nanoparticules sous la forme de nanoparticules individuelles, c'est-à-dire de nanoparticules qui ne sont pas agrégées ou autrement dit liées de manière covalentes entre elles.
Le second matériau comprend avantageusement au moins 50 % en masse de nanoparticules, au moins 95 % en masse de nanoparticules, de préférence encore au moins 99 % de nanoparticules, par rapport à la masse de second matériau.
Avantageusement, les nanoparticules ne sont pas sous forme de nanotubes.
Les nanoparticules sont préférentiellement des nanoparticules lamellaires.
Selon l’invention, le terme « nanoparticule lamellaire » désigne une nanoparticule comprenant des atomes sous la forme de monocouches d'atomes liées entres eux par des liaisons covalentes. Les nanoparticules lamellaires peuvent être constitué d'une unique monocouche d'atomes (matériaux 2D) ou d'un empilement de 2 à 5 monocouches d'atomes liées entre elles par des liaisons faibles, telles que des forces de Van der Waals. Autrement dit, une nanoparticule lamellaire est un objet à 3 dimensions dans lequel une première dimension externe se situe à l'échelle nanométrique et les deux autres dimensions sont significativement supérieures à la première dimension, et varient notamment entre l'échelle nanométrique et l'échelle micrométrique.
Les nanoparticules lamellaires présentent de préférence une taille médiane (également désigné sous l'acronyme « D50 ») compris entre 5 et 50 pm, de préférence compris entre 10 et 20 pm, de préférence encore de 15 pm.
D50 signifie que 50 % en poids des particules présentent une taille inférieure.
Selon l'invention, les termes « monocouche », « bicouche », « oligo-couches », relatifs aux nanoparticules lamellaires, désignent respectivement une nanoparticule lamellaire constituée d'une monocouche d'atomes, de deux monocouches d'atomes, et de 3 à 5 monocouches d'atomes. Les nanoparticules lamellaires bicouches et oligocouches sont typiquement stabilisées par des interactions faibles entre les monocouches d'atomes, telles que des interactions de Van der Waals.
Les nanoparticules lamellaires sont préférentiellement des nanoparticules lamellaires d'un oxyde métallique, notamment de SnÜ2 ou de T1O2, des nanoparticules lamellaires d'un dichalcogénure d'un métal de transition tel que le disulfure de molybdène M0S2, des nanoparticules lamellaires de carbone, ou un mélange de ceux-ci.
Les nanoparticules lamellaires de carbone sont avantageusement des nanoparticules lamellaires de graphène monocouche, de graphène bicouche, de graphène oligo-couches ou un mélange de ceux-ci.
Selon l'invention, le terme « graphène monocouche » désigne un matériau bidimensionnel cristallin constitué de carbone sous une forme allotropique particulière, qui peut être représentée comme un nid d'abeille planaire. Plus particulièrement, le graphène monocouche est un feuillet constitué par un unique plan atomique de carbone hybridé sp2. Il peut donc être qualifié de monocouche.
Selon l'invention, le terme « graphène bicouche » (ou BLG ; « Bi-Layer Graphene » en anglais) désigne un matériau constitué d'un empilement de 2 monocouches de graphène stabilisé par des interactions de type van der Waals entre les 2 monocouches de graphène. Le BLG peut être obtenu par exfoliation du graphite ou par dépôt chimique en phase vapeur (CVD).
Selon l'invention, le terme « graphène oligo-couches » (ou FLG : « Few-Layer Graphene » en anglais) désigne un matériau constitué d'un empilement de 3 à 5 feuillets de graphène, stabilisé par des interactions de type van der Waals entre les différents plans de graphène.
Les nanoparticules lamellaires de graphène monocouche sont préférées. Selon un mode préféré, le second matériau comprend avantageusement au moins 50 % en masse de graphène monocouche, de préférence encore au moins 95 % en masse de graphène monocouche. Les nanoparticules lamellaires de graphène monocouches présentent de préférence une taille médiane (également désigné sous l'acronyme « D50 ») compris entre 5 et 50 pm, de préférence compris entre 10 et 20 pm, de préférence encore de 15 pm.
Les nanoparticules lamellaires de disulfure de molybdène sont avantageusement des nanoparticules lamellaires de disulfure de molybdène monocouche, de disulfure de molybdène bicouche, de disulfure de molybdène oligo-couches ou un mélange de ceux-ci.
Selon le signe de leur charge, les groupes chargés ou qui deviennent chargés en présence d'eau confèrent une charge de surface négative ou positive à la couche interne (2) de la membrane composite lorsqu'elle est mise en présence d'eau.
Tout groupe chargé ou qui devient chargé en présence d'eau connu de l'homme du métier et permettant d'augmenter la charge de surface de particules de graphène est utilisable dans le cadre de la présente invention.
Dans un mode de réalisation, les nanoparticules sont fonctionnalisées en surface par des groupes chargés négativement et/ou qui deviennent chargés négativement en présence d'eau.
Les groupes chargés négativement et/ou qui deviennent chargés négativement en présence d'eau sont avantageusement choisis parmi le groupe époxyde, le groupe hydroxyle, le groupe carbonyle, le groupe carboxyle, le groupe sulfonate -SO3 , le groupe carboxyalkylate R-CO2 avec R un alkyle en C1-C4 et de préférence en Cl, le groupe aminodiacétate -N(CH2C02-)2, le groupe phosphonate PO32 ; le groupe amidoxine -C(=NH2)(NOH), le groupe aminophosphonate -CH2-NH-CH2-PC>32, le groupe thiol -SH, et leurs mélanges.
De manière préférée, les nanoparticules fonctionnalisées en surface par des groupes chargés négativement ou qui deviennent chargés négativement en présence d'eau sont des nanoparticules lamellaires d'oxyde de graphène (ou GO, en anglais « graphene oxyde »).
Les nanoparticules lamellaires d'oxyde de graphène portent des groupes chargés négativement ou qui deviennent chargés négativement en présence d'eau, avantageusement choisis parmi le groupe époxyde, le groupe hydroxyle, le groupe carbonyle, le groupe carboxyle, et leurs mélanges.
Dans un mode de réalisation, les nanoparticules sont fonctionnalisées en surface par des groupes chargés positivement et/ou qui deviennent chargés positivement en présence d'eau.
Avantageusement, les groupes chargés positivement et/ou qui deviennent chargés positivement en présence d'eau sont choisis parmi le groupe ammonium quaternaire -N(R)3+ avec R un alkyl en C1-C4, le groupe ammonium tertiaire -N(H)R)2+ avec R un alkyl en C1-C4, de préférence un alkyl en Cl, le groupe diméthylhydroxyéthylammonium -N(C2H4OH)CHB)2+, et leurs mélanges.
Couches externes (1,3)
Premier matériau
Selon l'invention, l'expression « nanofibre » désigne un objet à 3 dimensions et à base de cellulose dans lequel 2 des 3 dimensions externes se situent à l'échelle nanométrique (i.e. 2 des 3 dimensions vont dans une gamme allant de 1 à 100 nm), la 3eme dimension externe étant significativement supérieure à celle des deux autres dimensions, et n'étant pas nécessairement à l'échelle nanométrique.
Les nanofibres présentent ainsi un diamètre allant de 1 à 100 nm, de préférence allant de 1 à 70 nm, et de préférence encore allant de 4 à 30 nm, notamment de 4 à 20 nm. En outre, leur longueur est avantageusement comprise entre 0,5 et 100 pm, en particulier entre 0,5 et 50 pm, par exemple entre 0,5 et 10 pm, par exemple encore entre 0,5 et 2 pm.
Selon l'invention, l'expression « microfibre » désigne un objet à 3 dimensions dans lequel 2 des 3 dimensions externes se situent à l'échelle micrométrique (i.e. 2 des 3 dimensions vont dans une gamme allant de 0,1 à 10 pm), la 3eme dimension externe étant significativement supérieure à celle des deux autres dimensions.
Les microfibres présentent ainsi un diamètre allant de 0,1 pm à 10 pm, avantageusement allant de 0,1 pm à 5 pm, de avantageusement encore allant de 0,1 pm à 2 pm, notamment allant de 0,1 pm 1 pm, de 0,1 pm à 7 pm, ou encore de 0,1 pm à 0,2 pm
En outre, leur longueur est avantageusement comprise entre 0,5 pm et 100 pm, en particulier entre 1 pm et 50 pm, par exemple entre 1 pm et 10 pm, par exemple encore entre 1 pm et 5 pm.
Les nanofibres et/ou les microfibres présentent avantageusement un facteur de forme avantageusement supérieur à 10, de préférence supérieur à 100.
Selon l'invention, l'expression « facteur de forme », relative aux nanofibres et/ou aux microfibres, désigne le ratio de leur longueur L sur leur diamètre d (L/d).
Le diamètre des nanofibres et/ou des microfibres peut être mesuré par MET ou MEB.
Selon l'invention, le terme « réticulées », relatif aux nanofibres et/ou aux microfibres, signifie que lesdites fibres sont connectées entre elles par des liaisons chimiques covalentes (parfois appelées « ponts ») de sorte à former un réseau tridimensionnel. En d'autres termes, elles ne sont pas simplement agglomérées par ou auto-assemblées par l'intermédiaire de liaisons faibles.
Le premier matériau joue un rôle structurant dans la membrane composite, notamment en ce qu'il permet de maintenir les nanoparticules fonctionnalisées décrites ci- dessus sous la forme d'une deuxième couche (2) disposée entre les couches externes (1,3).
Par ailleurs, le premier matériau des couches externes (1,3) assure l'intégrité de la couche interne (2), notamment lorsque lors de son utilisation, celle-ci est soumise à une contrainte tel qu'un gradient de pression de part et d'autre de la membrane.
Les nanofibres et/ou les microfibres portent avantageusement des groupes chargés ou qui deviennent chargés en présence d'eau.
Dans un premier mode de réalisation, les groupes chargés et/ou qui deviennent chargés en présence d'eau de la couche externe (1) sont de signe opposé aux groupes chargés et/ou qui deviennent chargés en présence d'eau de la couche externe (3). Dans ce mode de réalisation, la membrane composite est une membrane composite bipolaire.
Dans un second mode de réalisation, les groupes chargés et/ou qui deviennent chargés en présence d'eau des deux couches externes (1, 3) sont de même signe, avantageusement du même signe que celui des groupes chargés ou qui deviennent chargés en présence d'eau des nanoparticules fonctionnalisées décrites ci-dessus.
Ceci présente l'avantage d'augmenter la charge de surface de l'ensemble de la membrane composite de l'invention.
Selon les inventeurs, la présence de ces groupes chargés ou qui deviennent chargés en présence d'eau de même signe au sein de la couche interne (2) et des couches externes (1,3) de la membrane composite permet d'obtenir un effet synergique, à savoir une amélioration inattendue de la conduction sélective d'ions à travers la membrane composite.
Dans ce mode de réalisation, le premier matériau joue donc un rôle dans la structure de la membrane composite et dans sa capacité à assurer une conduction sélective d'ions.
Par ailleurs, les liaisons chimiques covalentes impliquées dans la réticulation des nanofibres et/ou des microfibres peuvent également porter des groupes chargés et/ou qui deviennent chargés en présence d'eau, comme c'est par exemple le cas lorsque l'agent de réticulation utilisé est le citrate. Dans ce cas, les liaisons chimiques de réticulation jouent à la fois un rôle dans la structure et dans la charge de surface électrique du matériau nanoporeux.
Dans un mode de réalisation, les nanofibres et/ou les microfibres sont constituées d'un matériau conducteur d'électricité, comme par exemple le charbon actif comme décrit ci- dessous. Dans ce mode de réalisation, les couches externes (1,3) peuvent conduire les électrons, et donc jouer le rôle d'électrode capacitive lorsque la membrane composite est mise en oeuvre dans un procédé membranaire d'électrolyse ou d'électrolyse inverse, préférablement un procédé d'électrodialyse ou d'électrodialyse inverse. Autrement dit, les couches externes conduisent le courant électrique nécessaire à la réaction électrolytique ou à la mise en oeuvre de l'électrodialyse, ou bien récoltent le courant généré par la réaction d'électrolyse ou d'électrodialyse inverse.
Selon ce mode de réalisation, lorsque la membrane composite est mise en oeuvre dans un procédé d'électrodialyse inverse, le fluide peut circuler dans la porosité des couches externes (1,3), et l'énergie électrique produite par électrodialyse inverse est directement récoltée par les nanofibres et/ou microfibres des couches externes (1,3).
Ainsi, des membranes composites selon ce mode de réalisation permettent de fabriquer des dispositifs pour électrodialyse inverse, dans lesquels il n'est pas nécessaire d'utiliser des dispositifs d'espacement (en anglais « spacer ») pour former des passages permettant aux fluides de circuler entre les membranes, comme c'est le cas dans les dispositifs de type RED présentés ci-dessus.
Ceci a pour avantage de réduire drastiquement la résistance associée à l'espacement entre les membranes (en anglais « bulk »), couramment désignée sous le terme résistance de bulk, et donc d'obtenir des systèmes développant des puissances membranaires plus élevées.
Matériau organique
Le premier matériau des couches externes (1,3) comprend avantageusement des nanofibres et/ou des microfibres d'un matériau organique.
Selon l'invention, un matériau organique est un matériau comprenant essentiellement du carbone, de l'oxygène et de l'hydrogène.
Le matériau organique est essentiellement constitué de carbone, d'oxygène et d'hydrogène, c'est-à-dire qu'il est constitué d'au moins 90 % en mole de carbone, d'oxygène et d'hydrogène, de préférence d'au moins 95 % en mole de carbone, d'oxygène et d'hydrogène, de préférence encore d'au moins 97 % en mole de carbone, d'oxygène et d'hydrogène.
Selon une forme de réalisation préférée, le matériau organique comprend de 70 à 100 % en mole de carbone, de 0 à 30 % en mole d'hydrogène et de 0 à 15 % en mole d'oxygène.
Aussi, le matériau organique est avantageusement dépourvu de Fluor, un élément que l'on retrouve couramment dans les membranes échangeuses d'ions (MEIs).
Le matériau organique est avantageusement choisi parmi la cellulose, le charbon actif, ou un mélange de ceux-ci. Matrice cellulosique
Dans un mode de réalisation, le premier matériau est une matrice cellulosique comprenant des nanofibres et/ou des microfibres de cellulose réticulées.
Selon l'invention, le terme « réticulées », relatif aux nanofibres et/ou aux microfibres de cellulose, signifie que lesdites fibres sont connectées entre elles par des liaisons chimiques covalentes (parfois appelées « ponts ») de sorte à former un réseau tridimensionnel sous forme de matrice cellulosique. En d'autres termes, elles ne sont pas simplement agglomérées par ou auto-assemblées par l'intermédiaire de liaisons faibles.
Le réseau de nanofibres et/ou de microfibres de cellulose présente avantageusement des pores de diamètre compris entre 10 et 1000 nm.
Les nanofibres de cellulose présentent avantageusement un diamètre allant de 1 à 100 nm, de préférence allant de 1 à 70 nm, et de préférence encore allant de 4 à 30 nm, notamment de 4 à 20 nm. En outre, leur longueur est avantageusement comprise entre 0,5 et 100 pm, en particulier entre 0,5 et 50 pm, par exemple entre 0,5 et 10 pm, par exemple encore entre 0,5 et 2 pm.
Les microfibres de cellulose présentent avantageusement un diamètre allant de 100 nm à 1000 nm, de préférence allant de 100 nm à 700 nm, et de préférence encore allant de 100 à 200 nm. En outre, leur longueur est avantageusement comprise entre 0,5 pm et 100 pm, en particulier entre 1 pm et 50 pm, par exemple entre 1 pm et 10 pm, par exemple encore entre 1 pm et 5 pm.
Les nanofibres et/ou les microfibres de cellulose présentent avantageusement un facteur de forme avantageusement supérieur à 30, de préférence supérieur à 100.
Avantageusement, la matrice cellulosique comprend au moins 90 % en masse de nanofibres et/ou de microfibres de cellulose, au moins 95 % en masse de nanofibres et/ou de microfibres de cellulose, de préférence encore au moins 99 % de nanofibres et/ou de microfibres de cellulose, par rapport à la masse de matrice cellulosique.
Les nanofibres et/ou les microfibres de cellulose peuvent être obtenues par des techniques connues de l'homme du métier, notamment par traitement mécanique, enzymatique ou chimique d'un matériau lignocellulosique d'origine naturelle tel que le bois.
Dans le cas du bois, ces traitements ont notamment pour effet de séparer la cellulose des autres constituants du bois tels que la lignine et l'hémicellulose. Pour cela, les fibres de cellulose naturelles sont pré-ou post- traitées chimiquement, notamment avec des enzymes, et/ou mécaniquement pour initier la déstructuration avant traitement mécanique dans un homogénéiseur. Il est connu que l'on peut moduler la taille et en particulier le diamètre des fibres de cellulose dudit matériau en fonction du traitement que l'on fait subir à la source de cellulose naturelle.
Ainsi, les nanofibres et/ou les microfibres de cellulose peuvent être obtenues par traitement mécanique de fibres de bois, le traitement mécanique étant mené de sorte à fournir une énergie mécanique suffisante pour faire éclater les fibres de la cellulose naturelle en détruisant au moins en partie liaisons hydrogènes qui maintiennent les microfibrilles entre elles. Le traitement mécanique est souvent précédé d'une étape de traitement chimique ou enzymatique. Par exemple, cette étape de traitement peut être un traitement d'oxydation, notamment à l'aide d'un oxydant tel que le TEMPO (2,2,6,6-tétraméthylpipéridin-l-yl)oxy). Le produit ainsi obtenu est souvent désigné sous l'appellation « NanoFibrillated Cellulose » (abrégé « NFC ») ou « cellulose nanofibers » (abrégé « CNF ») ou « MicroFibrillated Cellulose » (abrégé « MFC ») dans la littérature.
En général, les matériaux MFC sont préparés à partir d'un traitement mécanique et/ou chimique moins poussé que celui utilisé pour obtenir des NFC, si bien que les MFC présentent généralement des fibres de diamètres supérieur à ceux observés dans les NFC. Cependant, il n'existe pas de définition univoque de MFC et NFC/CNF, si bien que ces termes sont souvent utilisés de manière interchangeable dans la littérature.
Les nanofibres et/ou les microfibres de cellulose sont préférablement des nanofibres et/ ou des microfibres de nanocellulose.
Les nanofibres et/ou les microfibres de cellulose peuvent comprendre des impuretés provenant de son procédé de préparation. Ces impuretés peuvent notamment l'hémicellulose ou la lignine.
Ainsi, la matrice cellulosique peut notamment comprendre au plus 5 % en masse d'hémicellulose, de préférence encore au plus 3 % en masse d'hémicellulose, ou encore au plus 1 % en masse d'hémicellulose.
La matrice cellulosique peut notamment comprendre au plus 5 % en masse de lignine, de préférence encore au plus 3 % en masse de lignine, ou encore au plus 1 % en masse de lignine.
Les nanofibres et/ou microfibres de cellulose de l'invention portent intrinsèquement une charge de surface négative du fait que les monomères de cellulose portent naturellement des groupes alcools au niveau de leurs atomes carbone C2, C3 ou C6.
Dans un mode de réalisation, la charge de surface négative intrinsèque des nanofibres et/ou microfibres de cellulose de l'invention peut être augmentée en les fonctionnalisant avec des groupes chargés négativement et/ou qui deviennent chargés négativement en présence d'eau. Ce mode de réalisation est particulièrement avantageux lorsque les groupes chargés et/ou qui deviennent chargés en présence d'eau des nanoparticules fonctionnalisées de la deuxième couche (2) sont de signe négatif. En effet, ceci présente l'avantage d'augmenter la charge de surface de l'ensemble de la membrane composite de l'invention.
Les groupes chargés et/ou qui deviennent chargés en présence d'eau portés par les microfibres et/ou les nanofibres sont avantageusement liés chimiquement de façon covalente à la surface desdites microfibres et/ou nanofibres de cellulose.
Tout groupe chargé et/ou qui devient chargé en présence d'eau en ce dernier connu de l'homme du métier et permettant d'augmenter la densité de charge des microfibres et/ou des nanofibres de cellulose de l'invention est utilisable dans le cadre de la présente invention.
Avantageusement, les groupes négativement chargés et/ou qui deviennent négativement chargés en présence d'eau portés par les nanofibres et/ou les microfibres de cellulose sont choisis parmi le groupe sulfonate -SO3 , le groupe carboxylate -CO2 , le groupe carboxyalkyl R-CO2 avec R un alkyle en C1-C4 et de préférence en Cl, le groupe aminodiacétate -N(CH2C02-)2, le groupe phosphonate PO32 ; le groupe amidoxine -C(=NH2)(NOH), le groupe aminophosphonate -CH2-NH-CH2-PC>32 , le groupe thiol -SH, et leurs mélanges.
Le groupe carboxylate -C02 et le groupe carboxyalkyl R-C02 avec R un alkyle en Cl- C4 et de préférence en Cl sont préférés.
Ainsi, des nanofibres et/ou des microfibres de cellulose portant des groupes carboxylates -CO 2 (/.e. des nanofibres et/ou des microfibres de cellulose oxydée) peuvent par exemple être obtenues par oxydation, par exemple par oxydation TEMPO, de nanofibres et/microfibres de cellulose. L'oxydation se produit de préférence sur le groupe alcool primaire porté par l'atome de carbone C6 des monomères des nanofibres et/ou des microfibres de cellulose.
Des nanofibres et/ou des microfibres de cellulose portant des groupes carboxyalkylates R-C02 (i.e. des nanofibres et/ou microfibres de cellulose carboxylalkylée) peuvent par exemple être obtenues par éthérification de nanofibres et/microfibres de cellulose. L'éthérification se produit de préférence sur les groupes alcools porté par les atomes de carbone C2, C3 ou C6 de monomères des nanofibres et/microfibres de cellulose.
Dans un autre mode réalisation, la charge de surface négative intrinsèque des nanofibres et/ou des microfibres de cellulose de l'invention peut être inversée en les fonctionnalisant avec des groupes chargés et/ou qui deviennent chargés en présence d'eau présentant une charge électrique positive.
Ce mode de réalisation est préféré lorsque les groupes chargés et/ou qui deviennent chargés en présence d'eau des nanoparticules fonctionnalisées de la deuxième couche (2) sont de signe positif. Tout groupe chargé et/ou qui devient chargé en présence d'eau connu de l'homme du métier et permettant de conférer une charge de surface positive à des nanofibres et/ou microfibres de cellulose est utilisable dans le cadre de la présente invention.
Avantageusement, les groupes chargés positivement et/ou qui deviennent positivement chargés en présence d'eau de charge négative sont choisis parmi le groupe ammonium quaternaire -N(R)3+ avec R un alkyl en C1-C4, le groupe ammonium tertiaire -N(H)R)2+ avec R un alkyl en C1-C4, de préférence un alkyl en Cl, le groupe diméthylhydroxyéthylammonium -N(C2H4OH)CHB)2+, et leurs mélanges.
Les groupes ammonium quaternaire sont préférés.
Dans un mode de réalisation particulier, les nanofibres et/ou les microfibres des couches externes (1,3) portent avantageusement des groupes chargés ou qui deviennent chargés en présence d'eau, et les groupes chargés et/ou qui deviennent chargés en présence d'eau de la couche externe (1) sont de signe opposé aux groupes chargés et/ou qui deviennent chargés en présence d'eau de l'autre couche externe (3). Dans ce mode de réalisation, la membrane composite est une membrane composite bipolaire. Matériau à base de charbon actif.
Dans un mode de réalisation, le premier matériau est un feutre de charbon actif comprenant des nanofibres et/ou des microfibres de charbon actif réticulées.
Selon l'invention, le terme « réticulées », relatif aux nanofibres et/ou aux microfibres de charbon actif, signifie que lesdites fibres sont connectées entre elles par des liaisons chimiques covalentes (parfois appelées « ponts ») de sorte à former un réseau tridimensionnel sous forme de feutre de charbon actif. En d'autres termes, elles ne sont pas simplement agglomérées par ou auto-assemblées par l'intermédiaire de liaisons faibles.
Le feutre de charbon actif présente avantageusement une épaisseur comprise entre 5 et 60 pm, de préférence entre 5 et 50 pm, de préférence encore entre 5 et 45 pm.
Les pores du feutre de charbon actif ont avantageusement un diamètre compris entre 1 et 10 pm
Les microfibres de charbon actif présentent avantageusement un diamètre allant de 0,1 à 10 pm, de préférence allant de 1 à 10 pm, et de préférence encore allant de 2 à 10 pm. En outre, leur longueur est avantageusement comprise entre 10 et 500 pm, en particulier entre 20 et 400 pm, par exemple entre 20 et 300 pm, par exemple encore entre 1 et 200 pm.
Le feutre de charbon actif comprend de préférence des microfibres de charbon actif.
Les nanofibres et/ou les microfibres de charbon actif présentent avantageusement un facteur de forme avantageusement supérieur à 10, de préférence supérieur à 50.
Avantageusement, le feutre de charbon actif comprend au moins 90 % en masse de nanofibres et/ou de microfibres de charbon actif, au moins 95 % en masse de nanofibres et/ou de microfibres de charbon actif, de préférence encore au moins 99 % de nanofibres et/ou de microfibres de charbon actif, par rapport à la masse de feutre de charbon actif.
Les nanofibres et/ou les microfibres de charbon actif peuvent être obtenus par des techniques connues de l'homme du métier, notamment par combustion partielle et décomposition thermique d'un précurseur carboné fibreux.
Elles peuvent typiquement être obtenues par un procédé consistant à carboniser des fibres d'une résine d'un précurseur carboné organique (bois, noyaux de fruits, coquilles de noix) ou minéral (tourbe, houille, lignite), puis à les activer à l’aide d’un agent activant. Les atomes de carbone se présentent alors sous forme de plans de cycles aromatiques assemblés de manière aléatoire dans une géométrie comparable à celle du papier chiffonné.
Les nanofibres et/ou les microfibres de charbon actif sont essentiellement constituées de carbone, c'est-à-dire qu'elles sont constituées d'au moins 60 % en mole de carbone, de préférence d'au moins 70 % en mole de carbone, de préférence encore d'au moins 80 % en mole de carbone, le reste étant des éléments tels que l'oxygène et l'hydrogène.
Selon une forme de réalisation préférée, les nanofibres et/ou les microfibres de charbon actif comprennent de 60 à 100 % en mole de carbone, de 0 à 30 % en mole d'hydrogène et de 0 à 15 % en mole d'oxygène.
En outre, les nanofibres et/ou microfibres de charbon actif portent intrinsèquement une charge de surface négative, du fait que les extrémités des unités poly aromatiques constituant le charbon actif portent des atomes d'oxygène et d'hydrogène sous forme de d'hydoxyl, d'acide carboxylique, de lactone, de phénol, de chromène et de pyrone.
Les nanofibres et/ou microfibres de charbon actif conduisent l'électricité.
Procédé
L'invention a pour deuxième objet un procédé de fabrication d'une membrane composite conforme au premier objet de l'invention, caractérisé en ce qu'il comprend les étapes consistant à : i) filtrer une solution comprenant des nanofibres et/ou des microfibres sur un support de filtration de manière à former une première couche interne (1) comprenant des nanofibres et/ou des microfibres ; ii) filtrer une solution de particules de nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence d'eau sur la première couche (1) obtenue à l'issue de l'étape i) de sorte à former une couche interne (2) sur ladite première couche externe (1) ; iii) filtrer une solution de nanofibres et/ou de microfibres de manière à former une deuxième couche externe (3) comprenant des nanofibres et/ou des microfibres sur la couche interne (2) obtenue à l'issue de l'étape ii) ; iv) filtrer une solution de réticulation apte à réticuler les nanofibres et/ou les microfibres des couches externes (1,3) ; v) sécher le produit de l'étape iv), de préférence dans un four ; vi) retirer le support de filtration, de sorte à obtenir une membrane composite.
Les nanofibres et/ou les microfibres et les nanoparticules fonctionnalisées sont telles que définies dans le premier objet de l'invention.
Le procédé est simple, facile à mettre en oeuvre, économique et permet de contrôler l'épaisseur de chacune des couches de la membrane composite.
La filtration des étapes i), ii), iii) et iv) est avantageusement conduite avec une pompe à vide, de préférence sous 1 bar de dépression.
La filtration de l'étape i) peut optionnellement être suivie d'une étape ii) consistant à filtrer une solution de réticulation sur la couche externe (1) obtenue à l'issue de l'étape i).
La filtration de l'étape ii) peut optionnellement être suivie d'une étape iii) consistant à filtrer une solution de réticulation sur la deuxième couche obtenue à l'issue de l'étape ii).
La solution de nanofibres et/ou de microfibres mise en oeuvre aux étapes i) et iii) comprend de 0,1% à 1% en poids de nanofibres et/ou de microfibres de cellulose, de préférence de 0,3% à 0,6% en poids de nanofibres et/ou de microfibres de cellulose.
Les nanofibres et/ou les microfibres de la solution des étapes i) et iv) peuvent être fonctionnalisées, tel que détaillé au premier objet de l'invention.
La solution de particules de nanoparticules fonctionnalisées mise en oeuvre à l'étape ii) comprend de 0,001 % à 0,01 % en poids de nanoparticules fonctionnalisées, de préférence de 0,003 % à 0,006 % en poids de nanoparticules fonctionnalisées.
La solution de réticulation mise en oeuvre dans l'étape v) comprend avantageusement de 0,005 M à 0,02 M d'un ou plusieurs agents de réticulation, de préférence de 0,008 M à 0,012 M d'un ou plusieurs agents de réticulation.
Le séchage de l'étape v) est avantageusement réalisé à une température permettant à la réaction de réticulation de se produire et inférieure à une température endommageant les fibres et/ou les nanofibres. De préférence, le séchage est réalisé à une température comprise entre 80°C et 150°C, notamment entre 80°C et 120°C, de préférence encore comprise entre 80°C et 100°C.
Comme détaillé ci-dessus, l'agent de réticulation porte préférentiellement des groupes chargés et/ou qui deviennent chargés en présence d'eau. Le citrate est préféré.
À l'issue de l'étape vi), la membrane composite est sous la forme d'un matériau sec.
Le procédé peut comprendre en outre une étape vii) consistant à appliquer à la membrane composite obtenue à l'issue de l'étape à vi) une pression comprise entre 3 bar et 4 bar à une température allant de 60°C à 95°C, de préférence allant de 80°C à 90°C, pendant une durée d'au moins 5 minutes, de sorte à renforcer mécaniquement ladite membrane à conduction sélective d'ions.
L'application de pression de l'étape vii) peut être effectuée à l'aide d'une presse, en particulier d'une presse à chaud.
Toute autre technique connue de l'homme du métier est envisageable, que ce soit en discontinu (i.e. par batch) ou en continu par exemple par la technique dite de « rouleau à rouleau » (« roll-to-roll Processing » en anglais) dans laquelle la membrane est produite en continu puis stockée sous forme de rouleau.
Utilisation
L'invention a pour troisième objet l'utilisation de la membrane composite selon le premier objet de l'invention ou préparé selon le procédé défini au second objet de l'invention comme membrane à conduction sélective d'ions.
Cette conduction s'effectue avantageusement sous l'effet d'une contrainte s'exerçant de part et d'autre de la membrane composite, de préférence un gradient de potentiel électrique ou un gradient de concentration.
L'invention a également pour quatrième objet l'utilisation de la membrane composite selon le premier objet de l'invention ou préparé selon le procédé défini au second objet de l'invention pour l'extraction de substances ioniques ou ionisables d'une eau à traiter, pour l'extraction de composés organiques d'une eau à traiter, pour la mise en oeuvre d'une réaction d'électrolyse ou pour la mise en oeuvre d'une réaction d'électrodialyse inverse, notamment pour la production d'électricité, en particulier de production d'électricité à partir d'un gradient de salinité.
La membrane composite peut être utilisée pour l'extraction de substances ioniques ou ionisables d'une eau à traiter. La membrane composite peut notamment être utilisée dans des procédés d'extraction de substances ioniques ou ionisables d'une eau à traiter tels que le dessalement et la déionisation. Il peut par exemple s'agir du traitement d'une eau polluée par des éléments choisis parmi le manganèse sous forme ionisée et le fer sous forme ionisée, et/ou par des substances tels que les ions nitrates, les ions ammonium, les ions carbonates, ou des composés organiques sous forme ionique. Ce traitement peut notamment être réalisé sous l'action d'un gradient de concentration (filtration) ou de potentiel électrique (électrodialyse) de part et d'autre de la membrane composite.
Autrement dit, la membrane composite peut être utilisée dans tout type de procédé de séparation ionique en milieu aqueux sous l'action d'un potentiel électrique de part et d'autre de la membrane composite.
L'électro-dessalement (couramment désigné sous le terme de « dessalement ») est une technique d'électrodialyse visant à extraire les ions contenus dans l'eau de mer, en particulier les ions sodium et chlorure. L'électrodialyse vise à enlever tout type d'ions de solutions relativement concentrées en ions, en particulier d'effluents industriels. L'électrodéionisation est une technique d'électrodialyse utilisée pour extraire des solutions de faible concentration en ions, typiquement des solutions ayant déjà été traitées par osmose inverse, et qui est notamment utile pour obtenir de l'eau ultrapure. L'électrodéionisation est particulièrement utilisée dans le domaine pharmaceutique.
Lorsque la membrane composite est bipolaire, elle peut être utilisée dans un procédé d'électrolyse bipolaire, avantageusement d'électrodialyse bipolaire. La membrane composite peut également être utilisée pour extraire un ou plusieurs composé(s) organique(s) d'une eau à traiter, de préférence un alcool ou un alcane, avantageusement en C1-C12, par exemple le méthanol, l'éthanol, le propanol, le butanol, l'éthylène glycol, le propylène glycol, le glycérol, le méthane, l'éthane, le propane, le butane et leurs mélanges.
La membrane composite peut également être utilisée pour la mise en oeuvre d'une réaction d'électrolyse. Dans ce cas, à la migration des ions à travers la membrane composite sous l’effet d’un gradient de potentiel électrique, s'ajoutent des réactions d'oxydation et de réduction aux électrodes. Il peut par exemple s'agir d'une réaction d'électrolyse de l'eau pour la production d'hydrogène sous l'action de potentiel électrique de part et d'autre de la membrane composite.
La membrane composite peut également être utilisée pour la mise en oeuvre d'une réaction d'électrolyse inverse, notamment pour la production d'électricité.
La membrane composite est de préférence utilisée pour la fabrication d'un dispositif destiné à générer un courant électrique par électrodialyse inverse, sous l'effet d'un gradient de concentration en électrolytes, de préférence un gradient de salinité, s'exerçant de part et d'autre de la membrane composite. DESCRIPTION DES FIGURES
La Figure 1 est une vue schématique en coupe d'une membrane selon l'invention, dans laquelle les couches externes (1,3) sont formées d'une matrice cellulosique comprenant des nanofibres et/ou des microfibres de cellulose réticulées et la couche interne (2) est formée d'un matériau comprenant des nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence d'eau.
EXEMPLES
La présente invention se comprendra mieux à la lecture des exemples suivants qui illustrent non-limitativement l’invention.
Exemple 1 : Préparation d'une membrane composite conforme à l'invention
Matériel et matières premières
Le matériel utilisé dans cet exemple est listé ci-après : - Un filtre Buchner
- Une pompe à vide à lbar
- Papier filtre en PVDF 0,1 pm
- Un four étuve Les matières premières utilisées dans cet exemple sont listées ci-après :
- Nanofibres de cellulose chargée négativement par carboxyméthylation ou oxydation TEMPO ;
- Acide citrique, 99% en volume ;
- Oxyde de graphène commercialisé par la société Sigma Aldrich sous la référence n°777676.
Préparation de la membrane composite
Le procédé de préparation mis en oeuvre dans cet exemple est détaillé ci-après :
On filtre sur le filtre buchner avec un filtre PVD 1,75 ml de solution de nanocellulose. La pompe à vide est réglée sur 1 bar de dépression ;
Une fois toute la solution filtrée on refiltre dessus 5 ml de solution d'acide citrique (qui jouera le rôle d'agent de réticulation entre les nanofibres) ;
Une fois l'acide citrique filtré, on filtre 7 ml de solution d'oxyde de graphène ;
Une fois la solution d'oxyde de graphène filtrée, on refiltre 1,75 ml de solution de nanocellulose ;
Une fois toute la solution filtrée on refiltre dessus 5 ml de solution d'acide citrique (qui jouera le rôle d'agent de réticulation entre les nanofibres) ; Une fois toute la solution d'acide citrique filtrée stoppe la pompe, on ouvre le dispositif Buchner et on prélève le papier filtre avec son filtrat.
L'ensemble papier filtre/filtrat est ensuite mis au four étude à 85°C pendant 15 minutes (séchage et réaction de réticulation).
On décolle finalement la membrane de son support de filtration, pour faciliter les choses on pourra éventuellement préalablement la tremper dans une solution isopropanol.
Les membranes ainsi obtenues sont composées de 17,5 g/m2 de nanocellulose.
On a fait varier les teneurs en nanocellulose les teneurs en en masse d'oxyde de graphène. Des teneurs en nanocellulose inférieures à 10 mg/m2 ne permettent pas d'obtenir des membranes ayant une tenue mécanique suffisante.
Pour des raisons de tenue mécanique et de résistance ionique ces valeurs de 17 g/m2 de cellulose et 4 % en poids d'oxyde de graphène semblent optimales.
Ces membranes présentent une couche interne d'oxyde de graphène ayant une épaisseur d'environ 100 nm, et des couches externes de cellulose ayant chacune une épaisseur d'environ 10 pm.
Mesure de la puissance membranaire
Les essais ont été réalisés avec un dispositif constitué de deux réservoirs indépendants contenant chacun une solution de chlorure de sodium (NaCI) dissoutes à IM pour la solution concentrée, puis 0,1 M, 0,01 M et 0,001 M en solution diluée permettant de définir le gradient de Rc de 10, 100 et 1000 entre les deux réservoirs.
Les deux réservoirs sont séparés par une membrane composite conforme à l'invention obtenue comme détaillé dans l'Exemple 1.
Des électrodes Ag/AgCI en grille d'argent sont immergées dans chacun des réservoirs de part et d'autre de la membrane pour mesurer le courant électrique produit à travers les membranes. Les résultats de ces mesures sont présentés dans le Tableau 1.
Figure imgf000023_0001
Tableau 1
Avec :
U Osmo le potentiel lié à la membrane duquel est déduit le potentiel de Nernst des électrodes (U Nernst)
I Osmo le courant lié à la membrane, calculé grâce à la mesure de résistance électrique de la membrane suivant la loi de Ohm I = U/R
P Osmo Max est calculé par la formule Pmax= (U x l)/4
Les puissances membranaires sont exprimées en W/m2 en multipliant par 10 000 les valeurs obtenues sur 1 cm2 de membrane composite.
II a par ailleurs été constaté qu'en appliquant à la membrane une pression de 3 à 4 bars entre deux plaques métalliques lors du chauffage à 85°C, on améliorait la stabilité mécanique de la membrane de 10 à 20%. Exemple comparatif 2 : Membrane non conforme à l'invention ne comprenant pas d'oxyde de graphène
Préparation de membranes non conformes à l'invention ne comprenant pas d'oxyde de graphène Les matériaux utilisés sont ceux détaillés en Exemple 1.
Le procédé de préparation mis en oeuvre dans cet exemple comparatif est comme suit :
On filtre sur le filtre buchner avec un filtre en PVDF 3,5 ml de solution de nanocellulose. La pompe à vide est réglée sur 1 bar de dépression. Une fois toute la solution filtrée on refiltre dessus 10 ml de solution d'acide citrique (qui joue le rôle d'agent de réticulation entre les nanofibres).
Une fois toute la solution d'acide citrique filtrée stoppe la pompe, on ouvre le dispositif buchner et on prélève le papier filtre avec son filtrat. L'ensemble papier filtre filtrat est ensuite mis au four étude à 85°C pendant 15 minutes (séchage et réaction de réticulation).
On décolle finalement la membrane de son support de filtration, pour faciliter les choses on pourra éventuellement préalablement la tremper dans une solution isopropanol.
Les membranes ainsi obtenues sont composées de 17,5 g/m2 de nanocellulose et 0,34 g/m2 de d'oxyde de graphène (2% en masse).
Puissance membranaire de membranes non conformes à l'invention
Le dispositif utilisé est en tout point semblable à celui détaillé en Exemple 1 à l'exception de la membrane qui dans cet exemple comparatif ne comprend pas d'oxyde de graphène. Les résultats de ces mesures sont présentés dans le Tableau 2.
Figure imgf000024_0001
Tableau 2
Avec :
U Osmo le potentiel lié à la membrane duquel est déduit le potentiel de Nernst des électrodes (U Nernst) I Osmo le courant lié à la membrane, calculé grâce à la mesure de résistance électrique de la membrane suivant la loi d'Ohm I = U/R P Osmo Max est calculé par la formule Pmax= (U x I) /4
Les puissances membranaires sont exprimées en W/m2 en multipliant par 10 000 les valeurs obtenues sur 1 cm2 de membrane.

Claims

REVENDICATIONS
1. Membrane composite à conduction sélective d'ions ayant une épaisseur comprise entre 4 pm et 100 pm comportant au moins une couche interne (2) disposée entre deux couches externes (1,3), dans laquelle :
- les couches externes (1, 3) sont chacune formées d'un premier matériau comprenant un réseau de nanofibres et/ou de microfibres réticulées et des pores de diamètre compris entre 10 nm et 10 pm,
- la couche interne (2) est formée d'un second matériau comprenant des nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence d'eau et présentant des pores de diamètre compris entre 1 et 100 nm.
2. Membrane selon la revendication 1, dans laquelle l'épaisseur de chacune des couches externes (1,3) est avantageusement comprise entre 2 pm et 45 pm, et l'épaisseur de la couche interne (2) est comprise entre 10 nm et 10 pm.
3. Membrane selon l'une quelconque des revendications 1 ou 2, dans laquelle les nanoparticules sont des nanoparticules lamellaires, de préférence des nanoparticules lamellaires d'un oxyde métallique, d'un dichalcogénure d'un métal de transition tel que le disulfure de molybdène, de carbone, ou un mélange de ceux-ci, de préférence encore des nanoparticules lamellaires d'oxyde de graphène.
4. Membrane selon l'une quelconque des revendications précédentes, dans laquelle les groupes ionisés les groupes chargés et/ou qui deviennent chargés en présence d'eau présentent une charge électrique négative, de préférence choisis parmi le groupe époxyde, le groupe hydroxyle, le groupe carbonyle, le groupe carboxyle, le groupe sulfonate -SO3 , le groupe carboxyalkylate R-CO2 avec R un alkyle en C1-C4 et de préférence en Cl, le groupe aminodiacétate -N(CH2CC>2 )2, le groupe phosphonate PO3 2 ; le groupe amidoxine -C(=NH2)(NOH), le groupe aminophosphonate -CH2-NH-CH2-PO3 2 , le groupe thiol -SH, et leurs mélanges.
5. Membrane selon l'une quelconque des revendications 1 à 3, dans laquelle les groupes chargés et/ou qui deviennent chargés en présence d'eau présentent une charge électrique positive, de préférence choisis parmi le groupe ammonium quaternaire -N(R)3+ avec R un alkyl en C1-C4, le groupe ammonium tertiaire -N(H)R)2+ avec R un alkyl en C1-C4, de préférence un alkyl en Cl, le groupe diméthylhydroxyéthylammonium -N(C2H4OH)CHB)2+, et leurs mélanges.
6. Membrane selon l'une quelconque des revendications précédentes, dans laquelle les nanofibres et/ou les microfibres réticulées sont des nanofibres et/ou des microfibres d'un matériau organique, de préférence de cellulose ou de charbon actif.
7. Membrane selon l'une quelconque des revendications précédentes, dans laquelle les nanofibres et/ou les microfibres réticulées portent à leur surface des groupes chargés et/ou qui deviennent chargés en présence d'eau, lesdits groupes présentant avantageusement une charge de même signe que celui des groupes chargés et/ou qui deviennent chargés en présence d'eau des nanoparticules fonctionnalisées de la couche interne (2).
8. Procédé de fabrication d'une membrane composite selon l'une quelconque des revendications 1 à 7 comprenant les étapes consistant à : i) filtrer une solution comprenant des nanofibres et/ou des microfibres sur un support de filtration de manière à former une première couche interne (1) comprenant des nanofibres et/ou des microfibres ; ii) filtrer une solution de particules de nanoparticules fonctionnalisées en surface par des groupes chargés et/ou qui deviennent chargés en présence d'eau sur la première couche (1) obtenue à l'issue de l'étape i) de sorte à former une couche interne (2) sur ladite première couche externe (1) ; iii) filtrer une solution de nanofibres et/ou de microfibres de manière à former une deuxième couche externe (3) comprenant des nanofibres et/ou des microfibres sur la couche interne (2) obtenue à l'issue de l'étape ii) ; iv) filtrer une solution de réticulation apte à réticuler les nanofibres et/ou les microfibres des couches externes (1,3) ; v) sécher le produit de l'étape iv), de préférence dans un four ; vi) retirer le support de filtration, de sorte à obtenir une membrane composite.
9. Utilisation de la membrane composite telle que définie dans l'une quelconque des revendications 1 à 7 ou préparée selon le procédé tel que défini dans la revendication 8 comme membrane à conduction sélective d'ions.
10. Utilisation de la membrane composite telle que définie dans l'une quelconque des revendications 1 à 7 ou préparée selon le procédé tel que défini dans la revendication 8 pour l'extraction de substances ioniques ou ionisables d'une eau à traiter, pour l'extraction de composés organiques d'une eau à traiter, pour la mise en oeuvre d'une réaction d'électrolyse, ou pour la mise en oeuvre d'une réaction d'électrodialyse inverse, notamment pour la production d'électricité, en particulier de production d'électricité à partir d'un gradient de salinité.
PCT/FR2021/050892 2020-05-20 2021-05-19 Membrane composite à conduction sélective d'ions WO2021234294A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/998,952 US20230226499A1 (en) 2020-05-20 2021-05-19 Ion-Selective Composite Membrane
CA3184153A CA3184153A1 (fr) 2020-05-20 2021-05-19 Membrane composite a conduction selective d'ions
BR112022023364A BR112022023364A2 (pt) 2020-05-20 2021-05-19 Membrana composta seletiva de íons
EP21734394.6A EP4153345A1 (fr) 2020-05-20 2021-05-19 Membrane composite à conduction sélective d'ions
JP2022570699A JP2023526099A (ja) 2020-05-20 2021-05-19 イオン選択性複合膜
CN202180036605.4A CN115697538A (zh) 2020-05-20 2021-05-19 离子选择性复合膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2005208 2020-05-20
FR2005208A FR3110460B1 (fr) 2020-05-20 2020-05-20 Membrane composite à conduction sélective d’ions

Publications (1)

Publication Number Publication Date
WO2021234294A1 true WO2021234294A1 (fr) 2021-11-25

Family

ID=72088303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050892 WO2021234294A1 (fr) 2020-05-20 2021-05-19 Membrane composite à conduction sélective d'ions

Country Status (8)

Country Link
US (1) US20230226499A1 (fr)
EP (1) EP4153345A1 (fr)
JP (1) JP2023526099A (fr)
CN (1) CN115697538A (fr)
BR (1) BR112022023364A2 (fr)
CA (1) CA3184153A1 (fr)
FR (1) FR3110460B1 (fr)
WO (1) WO2021234294A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060690A1 (fr) 2012-10-16 2014-04-24 Universite Claude Bernard Lyon I Procede et dispositif de production d'energie
US20150141711A1 (en) * 2013-11-19 2015-05-21 The Research Foundation Of State University Of New York Graphene oxide-based composite membranes
JP2016137455A (ja) * 2015-01-28 2016-08-04 富士フイルム株式会社 複合イオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置
WO2017037213A1 (fr) 2015-09-02 2017-03-09 Sweetch Energy Dispositif de production d'energie par gradient de salinite a travers des membranes nano-fluidiques a base d'oxyde de titane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060690A1 (fr) 2012-10-16 2014-04-24 Universite Claude Bernard Lyon I Procede et dispositif de production d'energie
US20150141711A1 (en) * 2013-11-19 2015-05-21 The Research Foundation Of State University Of New York Graphene oxide-based composite membranes
JP2016137455A (ja) * 2015-01-28 2016-08-04 富士フイルム株式会社 複合イオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置
WO2017037213A1 (fr) 2015-09-02 2017-03-09 Sweetch Energy Dispositif de production d'energie par gradient de salinite a travers des membranes nano-fluidiques a base d'oxyde de titane

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI SHA WANG ET AL: "Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells", JOURNAL OF MEMBRANE SCIENCE, vol. 492, 4 June 2015 (2015-06-04), NL, pages 58 - 66, XP055546554, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2015.05.049 *
LIM MIN-YOUNG ET AL: "Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 521, 31 August 2016 (2016-08-31), pages 1 - 9, XP029741145, ISSN: 0376-7388, DOI: 10.1016/J.MEMSCI.2016.08.067 *
LIU YANXIANG ET AL: "Hybrid anion exchange membrane of hydroxyl-modified polysulfone incorporating guanidinium-functionalized graphene oxide", IONICS, KIEL, DE, vol. 23, no. 11, 22 April 2017 (2017-04-22), pages 3085 - 3096, XP036347596, ISSN: 0947-7047, [retrieved on 20170422], DOI: 10.1007/S11581-017-2100-3 *

Also Published As

Publication number Publication date
BR112022023364A2 (pt) 2023-01-24
FR3110460B1 (fr) 2022-05-13
FR3110460A1 (fr) 2021-11-26
US20230226499A1 (en) 2023-07-20
JP2023526099A (ja) 2023-06-20
CA3184153A1 (fr) 2021-11-25
EP4153345A1 (fr) 2023-03-29
CN115697538A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
Yang et al. Tailoring pores in graphene-based materials: from generation to applications
CA2688428C (fr) Procede d'activation de nitrure de bore
Li et al. Pseudocapacitive coating for effective capacitive deionization
CA2717295A1 (fr) Materiau pour un dispositif electrochimique
EP2611527B1 (fr) Utilisation d'une charge minérale fonctionnalisée pour stabiliser chimiquement un polymère, membrane ainsi stabilisée, son procédé de préparation et ses utilisations
Chen et al. Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance
Zhu et al. Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell
Yi et al. Selective molecular separation with conductive MXene/CNT nanofiltration membranes under electrochemical assistance
US20160281245A1 (en) Carbon dioxide reduction over single wall nanotubes
EP3887573A1 (fr) Procede de preparation d'une couche active d'electrode pour des reactions de reduction electrochimique
Chen et al. Review of 2D graphitic carbon nitride-based membranes: principles, syntheses, and applications
WO1986004932A1 (fr) Compositions solides a base de superoxydes, leur fabrication et leurs applications electrochimiques
Rajput et al. Functionalized carbon dots composite cation exchange membranes: Improved electrochemical performance and salt removal efficiency
Jang et al. Concrete-structured Nafion@ MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis
WO2020109062A1 (fr) Procede de preparation d'un materiau catalytique d'electrode pour des reactions de reduction electrochimique prepare par electroreduction
Tauk et al. Recent advances in capacitive deionization: a comprehensive review on electrode materials
Li et al. Tuning composite nanofiltration membranes with γ-cyclodextrin for improved Mg2+/Li+ selectivity
WO2021234294A1 (fr) Membrane composite à conduction sélective d'ions
Sha’rani et al. A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery
Wang et al. Advancing osmotic power generation using bioinspired MXene-based membrane via maze breaking
Wang et al. Enhancing the total salt adsorption capacity and monovalent ion selectivity in capacitive deionization using a dual-layer membrane coating electrode
EP4154341A2 (fr) Dispositif de production d'energie par gradient de salinite à travers une membrane à base de fibres de cellulose reticulées
FR3089355A1 (fr) Electrolyte polymere conducteur pour batteries
FR3117888A1 (fr) Dispositif de production d’energie par gradient de salinite comprenant des electrodes d’un textile de charbon actif
EP2774946A1 (fr) Utilisation d'un réseau polysiloxane fonctionnalisé pour stabiliser chimiquement un polymère, membrane ainsi stabilisée, son procédé de préparation et ses utilisations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21734394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570699

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3184153

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023364

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021734394

Country of ref document: EP

Effective date: 20221220

ENP Entry into the national phase

Ref document number: 112022023364

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221117