WO2021233431A1 - 涡轮增压装置、方法以及增压系统 - Google Patents

涡轮增压装置、方法以及增压系统 Download PDF

Info

Publication number
WO2021233431A1
WO2021233431A1 PCT/CN2021/095216 CN2021095216W WO2021233431A1 WO 2021233431 A1 WO2021233431 A1 WO 2021233431A1 CN 2021095216 W CN2021095216 W CN 2021095216W WO 2021233431 A1 WO2021233431 A1 WO 2021233431A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
stage turbine
engine exhaust
stage
engine
Prior art date
Application number
PCT/CN2021/095216
Other languages
English (en)
French (fr)
Inventor
姜诗中
傅伟
奚勇
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Publication of WO2021233431A1 publication Critical patent/WO2021233431A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the technical field of turbines, and in particular to a turbocharging device, a method and a supercharging system.
  • turbochargers In the prior art, more than 35% of the fuel energy of a naturally aspirated diesel engine is discharged to the atmosphere in the form of heat energy.
  • Most of the current engines are equipped with turbochargers to recover and use exhaust heat.
  • the turbocharger uses the exhaust heat to drive the turbine to rotate, thereby driving the compressor (or compressor) impeller on the same shaft to rotate, sucking in and compressing the fresh air in the atmosphere.
  • a large amount of compressed air is pressed into the cylinder to make the fuel burn more fully in the cylinder.
  • the recovery rate of exhaust heat energy can only reach 20-30%, and more than 70% of the exhaust energy is still unused. Take a 13L heavy-duty turbocharged diesel engine as an example.
  • the maximum exhaust temperature of the engine reaches 675 degrees at the rated power, and the remaining exhaust temperature after the exhaust passes through the turbocharger to perform work is 525 degrees.
  • many on-vehicle turbochargers use small-flow turbines, and excess exhaust gas is discharged through a bypass, resulting in a waste of exhaust energy.
  • turbocharger In traditional turbocharging technology, due to insufficient engine exhaust at low engine speeds, the turbocharger not only fails to increase the power, but also causes a power response lag effect due to hindering engine exhaust. Under high engine speed conditions, the engine exhaust is excessive. In order to avoid overcharging, a bypass valve is installed on the turbocharger to directly drain the engine exhaust containing high heat, which causes a lot of energy waste. .
  • the supercharged compound greatly increases the exhaust back pressure of the engine, degrades the combustion performance of the engine itself, and the cost is too high, the investment return period is long, and the return on investment is low. It is not commonly used even in developed countries. .
  • Honeywell's e-TURBO and BorgWarner's e-booster technology are compact and have no exhaust back pressure.
  • An ultra-high-speed generator is installed between the turbocharger and the compressor, so that part of the work done by the turbine is used for the generator to generate electricity.
  • the turbine cannot be made too large, so the power generation is limited, only several kilowatts.
  • the purpose of the present invention is to provide a turbocharging device, a method and a supercharging system to solve the above-mentioned problems in the prior art.
  • a turbocharging device which is characterized in that it comprises a generator, a pressure wheel, a primary turbine, and at least one secondary turbine arranged in sequence.
  • the first-stage turbine flows to the second-stage turbine, and engine exhaust pushes the first-stage turbine and the second-stage turbine to rotate.
  • the axis of the motor shaft of the generator, the axis of the pressure wheel, the axis of the primary turbine, and the axis of the secondary turbine are all located on the same straight line.
  • the turbocharging device further includes an engine.
  • the engine includes an engine air intake passage and an engine exhaust passage.
  • the exhaust passage is discharged to propel the first-stage turbine.
  • the generator when the rotation speed of the engine is in a low-speed state, the generator is used as a motor to increase the rotation speed of the pressure roller, and when the rotation speed of the engine is in a high-speed state, the generator is used as a generator
  • the first-stage turbine and the second-stage turbine drive the generator to rotate and generate electricity.
  • the one-stage turbine is a radial turbine
  • the two-stage turbine is an axial turbine
  • the two-stage turbine includes a plurality of axial turbines connected in series.
  • the turbocharging device further includes an ECU controller and a battery, and the ECU controller is respectively connected to the generator and the battery.
  • a vehicle including the above-mentioned turbocharger device, and the vehicle includes automobiles, ships, and the like.
  • a turbocharging method which is characterized in that it includes the following steps: starting a generator to drive the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate, and the engine exhaust enters the engine from the engine exhaust passage.
  • the first-stage turbine air inlet pushes the first-stage turbine to rotate, and engine exhaust flows from the first-stage turbine to the second-stage turbine. Intake channel.
  • a turbocharging method which is characterized in that it includes the following steps: engine exhaust enters the first-stage turbine inlet from the engine exhaust passage to push the first-stage turbine to rotate, and the first-stage turbine The rotation of the turbine drives the rotation of the pressure wheel and the secondary turbine, and the exhaust from the engine flows from the primary turbine to the secondary turbine.
  • the engine exhaust enters the first-stage turbine inlet from the engine exhaust passage, and drives the first-stage turbine to rotate.
  • the first-stage turbine rotation drives the generator, the pressure wheel, and the second-stage turbine to rotate.
  • the stage turbine flows to the second stage turbine, and the air enters the air inlet of the pressure wheel, and enters the engine air inlet channel after being pressurized by the pressure wheel.
  • the entry of the engine exhaust gas from the engine exhaust passage into the first-stage turbine inlet includes: the engine exhaust gas enters the first stage turbine from the engine exhaust passage through the radial direction of the first-stage turbine Stage turbine inlet, the engine exhaust flows out of the axial direction of the first stage turbine, and flows into the second stage turbine through the axial direction of the second stage turbine.
  • the second stage turbine includes one or more series-connected turbines. Axial turbine.
  • a turbocharging system including a turbocharging device and a low-pressure aftertreatment device.
  • the turbocharging device is the aforementioned turbocharging device, and the low-pressure aftertreatment device is located in the turbocharger. After the pressure device, it is used to treat the engine exhaust to reach the emission standard.
  • the back pressure of the low-pressure aftertreatment system is lower than 30KPa, 20KPa, 15KPa, 10KPa, 5KPa, 3KPa.
  • the low-voltage post-processing system is an electric field processing system.
  • the turbine power generation system supplies power to the low-voltage aftertreatment system.
  • the present invention also provides a turbocharging method, including at least one of the following steps:
  • the generator drives the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate.
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage to drive the first-stage turbine to rotate.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine. Enter the pressure wheel, pressurized by the impeller, and enter the engine intake channel;
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage, pushing the first-stage turbine to rotate, and the first-stage turbine rotation drives the rotation of the pressure wheel and the second-stage turbine.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine, and the air enters the pressure wheel. , After being pressurized by the pressure wheel, it enters the engine intake channel;
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage, pushing the first-stage turbine to rotate, and the first-stage turbine rotation drives the rotation of the generator, the pressure wheel, and the second-stage turbine.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine.
  • the air enters the pressure roller, pressurized by the pressure roller, and then enters the engine intake passage.
  • the engine exhaust entering the first-stage turbine from the engine exhaust passage includes: the engine exhaust passes through the first-stage turbine from the engine exhaust passage The radial enters the first-stage turbine.
  • the flow of the engine exhaust gas from the first-stage turbine to the second-stage turbine includes: the engine exhaust gas flows out of the axial direction of the first-stage turbine and passes through the The axial direction of the two-stage turbine flows into the two-stage turbine.
  • the air enters the pressure wheel, pressurized by the pressure wheel, and then enters the engine intake channel includes: air enters the pressure wheel from the axial direction of the pressure wheel After being pressurized by the pressure wheel, it enters the engine intake passage from the radial direction of the pressure wheel.
  • the flow of the engine exhaust gas from the primary turbine to the secondary turbine includes: a plurality of secondary turbine units are connected in series to form the secondary turbine, and the engine exhaust Flow from the first-stage turbine to a plurality of the second-stage turbine units.
  • the generator driving the pressure roller, the first-stage turbine, and the second-stage turbine to rotate includes: the ECU controller controls the battery to supply power to the generator so that the generator Drive the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate.
  • the rotation of the first-stage turbine drives the rotation of the generator, the pressure wheel, and the second-stage turbine
  • the flow of engine exhaust from the first-stage turbine to the second-stage turbine includes: ECU controller controls to start power generation
  • the mechanical energy generated by the rotation of the machine is converted into electric energy of the battery.
  • a turbine power generation device including a turbocharger, at least one two-stage turbine unit, and a supercharger exhaust passage, the supercharger exhaust passage having an inlet and at least one outlet,
  • the turbocharger includes a turbocharger turbine exhaust port, the inlet of the turbocharger exhaust passage communicates with the turbocharger turbine exhaust port, and the outlet of the turbocharger exhaust passage communicates with the two Stage turbine unit.
  • the two-stage turbine unit includes at least one two-stage turbine.
  • the two-stage turbine unit includes a plurality of two-stage turbines, and the plurality of the two-stage turbines are all radial turbines, or all are axial turbines, or are a combination of radial turbines and axial turbines .
  • the two-stage turbine unit includes a turbine shaft, a first turbine, and a second turbine, and the first turbine and the second turbine are located on the turbine shaft and arranged opposite to each other.
  • the first turbine and the second turbine are both radial turbines.
  • a turbine power generation system which is characterized by including a turbine power generation device, and the turbine power generation device is the above-mentioned turbine power generation device.
  • a turbine power generation method which is characterized in that engine exhaust enters the turbocharger from the engine exhaust passage, flows out of the turbocharger, and is divided into two branches and enters the two-stage turbine unit.
  • the branch drives the first turbine in the two-stage turbine unit to rotate and flows out from one end of the first turbine, and the other branch drives the second turbine in the two-stage turbine unit to rotate and flow from one end of the second turbine. Outflow.
  • one branch enters from the radial direction of the first turbine and flows out axially, and the other branch enters from the radial direction of the first turbine and flows out axially from the second turbine.
  • the directions of the turbines are the same, and the outflow direction from the first turbine is opposite to the outflow direction from the second turbine.
  • a turbocharger treatment system which is characterized by comprising a turbine power generation device and a low-pressure after-treatment system, the low-pressure after-treatment device is located after the turbine power generation device and is used to perform exhaust gas processing on the engine exhaust. After the treatment, the emission standard is reached, and the turbocharging device is the aforementioned turbocharging device.
  • a turbocharging treatment method which is characterized in that engine exhaust enters a turbine power generation device, passes through the turbine power generation device, enters a low pressure aftertreatment system, and then flows out from the low pressure aftertreatment system.
  • a turbine power generation device including a turbocharger, a first-stage turbine, and a second-stage turbine, and the turbocharger is in communication with the first-stage turbine and the second-stage turbine.
  • the first-stage turbine includes a first-stage turbine inlet located in the radial direction of the first-stage turbine, and a first-stage turbine exhaust port located in the axial direction of the first-stage turbine
  • the second-stage turbine includes A two-stage turbine inlet in the radial direction of the turbine, a two-stage turbine exhaust port located in the axial direction of the second-stage turbine, the first-stage turbine inlet and the second-stage turbine inlet have the same intake direction, the The exhaust direction of the first-stage turbine exhaust port is opposite to and opposite to the exhaust direction of the second-stage turbine exhaust port.
  • the rotation speeds of the first-stage turbine and the second-stage turbine are the same.
  • the turbocharger includes a turbocharger turbine and a supercharger impeller
  • the turbocharger includes a turbocharger turbine inlet and a turbocharger exhaust port
  • the booster The compressor turbine exhaust port is in communication with the primary turbine and the secondary turbine.
  • the turbocharger turbine exhaust port is in communication with the primary turbine intake port and the secondary turbine intake port.
  • the turbocharging device further includes a generator located on the side of the first-stage turbine away from the second-stage turbine and connected to the first-stage turbine and the second-stage turbine. In a straight line.
  • the generator includes a motor shaft, and the motor shaft is connected to the turbine shaft.
  • the turbocharging device further includes an engine, the engine includes an engine exhaust passage, and the engine exhaust passage is connected to the turbocharger turbine.
  • the engine is a six-cylinder engine.
  • a turbine power generation system including a turbine power generation device and a low-pressure aftertreatment system.
  • the low-voltage post-processing system is an electric field processing system.
  • the turbine power generation system supplies power to the low-voltage aftertreatment system.
  • a turbine power generation method which includes engine exhaust gas enters a turbocharger from an engine exhaust passage, flows out of the turbocharger, and is divided into two branches, one enters the first-stage turbine to drive The first-stage turbine rotates and flows out from one end of the first-stage turbine, and the other enters the second-stage turbine, which drives the second-stage turbine to rotate and flows out from one end of the second-stage turbine.
  • the engine exhaust after flowing out of the turbocharger is divided into two branches. Axial outflow.
  • the direction in which the engine exhaust enters the primary turbine is the same as the direction in which it enters the secondary turbine, and the direction out of the primary turbine is opposite to the outflow direction from the secondary turbine.
  • engine exhaust enters the turbocharger turbine of the turbocharger from the engine exhaust passage, drives the turbocharger turbine to rotate, and flows out from the axial exhaust port of the turbocharger turbine.
  • the rotation of the turbine drives the rotation of the pressure wheel of the supercharger coaxial with the turbine of the supercharger.
  • a turbocharging method which includes: engine exhaust enters a turbine power generation device, passes through the turbine power generation device, enters a low-pressure after-treatment system, and then flows out from the low-pressure after-treatment system.
  • engine exhaust after engine exhaust enters the turbine power generation device, it drives the turbine to rotate, so that part of the energy in the engine exhaust is converted into electrical energy.
  • the engine exhaust after passing through the turbine generator enters the low-pressure aftertreatment system to process the engine exhaust.
  • the electricity generated by the turbine power generation device is used to supply power to the low-voltage post-processing system.
  • a turbine power generation device which is characterized by comprising a turbocharger, a turbocharger exhaust passage, at least one one-stage turbine unit, at least one two-pole turbine unit, and at least one intermediate
  • the air inlet, the turbocharger includes a turbocharger turbine inlet and a turbocharger turbine exhaust port
  • the one-stage turbine unit includes a first-stage turbine, a first-stage turbine inlet, and a first-stage turbine outlet
  • the two-stage turbine unit includes a two-stage turbine, a two-stage turbine air inlet, and a two-stage turbine air outlet, the first-stage turbine air outlet is in communication with the second-stage turbine air inlet, and the intermediate air inlet is connected to
  • the two-stage turbine intake port is in communication
  • the inlet of the turbocharger exhaust passage is in communication with the turbocharger turbine exhaust port
  • the outlet of the turbocharger exhaust passage is in communication with the intermediate intake port .
  • an engine exhaust passage is further included, and the engine exhaust passage includes at least one engine exhaust passage outlet.
  • the engine exhaust passage outlet includes a first outlet and a second outlet, the first outlet communicates with the stage turbine inlet, and the second outlet communicates with the turbocharger turbine inlet.
  • a one-way valve is provided on the passage connecting the first outlet and the inlet of the first-stage turbine.
  • it further includes a turbine shaft.
  • the first-stage turbine and the second-stage turbine are located on the turbine shaft and have the same speed.
  • the first-stage turbine is a radial flow turbine
  • the second-stage turbine is an axial flow turbine
  • a generator is further included, and the generator includes a generator shaft, and the generator shaft is connected to the turbine shaft and has the same rotational speed.
  • a vehicle which is characterized by including the above-mentioned turbine power generation device.
  • a turbine power generation system which is characterized by comprising a turbine power generation device and a low-pressure after-treatment device, and the turbine power generation device includes any one of the above-mentioned turbine power generation devices.
  • a turbine power generation method including a part of engine exhaust gas enters a turbocharger, drives the turbocharger to work, and flows out of the turbocharger; another part of engine exhaust gas Enter the first-stage turbine, drive the first-stage turbine to rotate, and flow out from the first-stage turbine; the engine exhaust from the turbocharger and the engine exhaust from the first-stage turbine flow into the second-stage together
  • the turbine drives the two-stage turbine to rotate.
  • a one-way valve is provided on the passage through which the engine exhaust gas flows to the first-stage turbine.
  • a turbine power generation device which includes a primary turbine and a secondary turbine.
  • the turbine power generation device further includes an intermediate air inlet
  • the first-stage turbine includes a first-stage turbine inlet and a first-stage turbine outlet
  • the second-stage turbine includes a second-stage turbine inlet and two A stage turbine air outlet
  • the first stage turbine air outlet is in communication with the second stage turbine air inlet
  • the intermediate air inlet is in communication with the second stage turbine air inlet.
  • the turbocharger includes a turbocharger air inlet and a turbocharger air outlet, and the turbocharger air outlet is in communication with the intermediate air inlet.
  • the generator is located on the side of the air inlet of the first stage turbine.
  • the turbine power generation device further includes an engine.
  • the engine includes an engine exhaust passage, and the engine exhaust passage connects the turbocharger intake port and the first-stage turbine intake port.
  • the passage connecting the exhaust passage of the engine to the inlet of the first-stage turbine includes a one-way valve.
  • a turbine power generation system including a turbine power generation device and a low-pressure aftertreatment system.
  • the back pressure of the low-pressure aftertreatment system is lower than 30KPa, 20KPa, 15KPa, 10KPa, 5KPa, 3KPa.
  • the low-voltage post-processing system is an electric field processing system.
  • the turbine power generation device supplies power to the low-voltage aftertreatment system.
  • a turbine power generation method including a part of engine exhaust gas enters a turbocharger, drives the turbocharger to work, and flows out of the turbocharger; Part of it enters the first-stage turbine, drives the first-stage turbine to rotate, and flows out from the first-stage turbine; the engine exhaust from the turbocharger and the engine exhaust from the first-stage turbine flow into the second The two-stage turbine drives the two-stage turbine to rotate.
  • another part of the engine exhaust gas enters from the radial direction of the first-stage turbine and flows out from the axial direction of the first-stage turbine.
  • another part of the engine exhaust enters the primary turbine through a one-way valve.
  • the engine exhaust gas flowing out of the turbocharger and the engine exhaust gas flowing out of the first-stage turbine enters from the axial direction of the second-stage turbine and enters from the second-stage turbine. Axial outflow.
  • the first-stage turbine and the second-stage turbine are coaxial and have the same rotational speed.
  • the rotation of the first-stage turbine and the second-stage turbine drives a generator to generate electricity.
  • engine exhaust flows out of the two-stage turbine and enters a low-pressure aftertreatment system.
  • the electricity generated by the turbine power generation device is used to supply power to the low-voltage post-processing system.
  • Fig. 1 is a schematic diagram of the structure of a turbocharging device in embodiment 1 of the present invention
  • Figure 2 is a schematic structural diagram of a turbocharging system in Embodiment 2 of the present invention.
  • Figure 3 is a schematic structural diagram of a turbine power generation device in Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a turbine power generation system in Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a turbine power generation device in Embodiment 6 of the present invention.
  • Fig. 6 is a schematic structural diagram of a turbine power generation system in Embodiment 7 of the present invention.
  • the turbocharger generally referred to in the industry refers to the exhaust gas turbocharger.
  • the turbocharger is not only unable to Bringing power increase, but also due to hindering the engine exhaust to produce a power response lag effect.
  • the engine exhaust is excessive.
  • a bypass valve is installed on the turbocharger to directly drain the engine exhaust containing high heat. The engine exhaust is not Full use has caused a lot of energy waste.
  • the ECU controls the battery to energize the generator to increase the speed of the turbocharger to reach the rated value; when the engine speed and exhaust temperature reach the rated value, the supply and demand balances, and the battery stops supplying power.
  • the motor is powered, and the motor is in a no-load state; when the engine speed and exhaust temperature continue to rise, the traditional bleed valve is cancelled, and the turbine speed is unchanged by increasing the motor load, and the motor is also in a power generation state; in the whole process
  • the one-stage or multi-stage axial turbine is coaxially connected with the turbocharger, and the high-temperature exhaust gas after the radial turbine of the turbocharger is used to continue to expand and perform work to drive the generator to generate electricity, and at the same time reduce the exhaust gas temperature.
  • a turbocharging device in one embodiment, includes a generator, a turbocharging unit, and a two-stage turbine unit arranged in sequence, and the turbocharging unit includes a first-stage turbine, a first-stage turbine inlet, and a first-stage turbine.
  • the secondary turbine unit includes a secondary turbine air inlet, a secondary turbine air outlet and at least one secondary turbine, wherein the primary turbine air outlet is connected to The inlet of the secondary turbine is connected.
  • a turbocharging device in one embodiment, includes a generator, a pressure wheel, a first-stage turbine, and at least one second-stage turbine arranged in sequence.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine, and the engine exhaust flows from the first-stage turbine to the second-stage turbine.
  • the first-stage turbine flows to the second-stage turbine, the engine exhaust pushes the first-stage turbine and the second-stage turbine to rotate, and the rotation of the first-stage turbine drives the rotation of the pressure wheel.
  • the axis of the motor shaft of the generator, the axis of the pressure wheel, the axis of the primary turbine, and the axis of the secondary turbine are all located on the same straight line. In other embodiments , The axis of the second-stage turbine may not be on the same straight line with the axis of the first-stage turbine.
  • this embodiment provides a turbocharging device 10, which includes a generator 1, a pressure wheel 2, a primary turbine 3, and at least one secondary turbine 4, wherein the axis of the motor shaft of the generator 1 , The axis of the pressure wheel 2, the axis of the primary turbine 3, and the axis of the secondary turbine 4 are all located on the same straight line and distributed in sequence.
  • the generator 1 functions as a motor or a generator, and can selectively switch functions according to actual working conditions. For example, when the engine exhaust is insufficient, the generator 1 acts as a motor to drive the pressure wheel 2, the primary turbine 3, and the secondary turbine 4 to rotate at the same speed. At the same time, the pressure wheel 2 rotates to increase the pressure of the engine's intake air.
  • the engine exhaust drives the first-stage turbine 3 and the second-stage turbine 4 to rotate, and the first-stage turbine 3 and the second-stage turbine 4 rotate to drive the impeller 2 and the generator 1 to rotate ,
  • the pressure wheel 2 rotates to increase the pressure of the engine's intake air, and the generator 1 rotates to generate electricity.
  • the arrangement of the generator 1 solves the problem of the hysteresis effect of the turbine in the prior art.
  • the primary turbine 3 can be a radial turbine or an axial turbine
  • the secondary turbine 4 can also be a radial turbine or an axial turbine.
  • the engine exhaust passes through the primary turbine 3 before entering the secondary turbine. 4, and then flow out from the secondary turbine 4.
  • the first-stage turbine 3 is a radial turbine
  • the second-stage turbine 4 is an axial turbine.
  • the engine exhaust flows from the radial direction of the first-stage turbine 3 into the first-stage turbine 3, and flows out through the axial direction of the first-stage turbine 3. It flows into the secondary turbine 4 from the axial direction of the secondary turbine 4, and then flows out from the axial direction of the secondary turbine 4.
  • This arrangement firstly uses the advantages of the large radial impact force of the engine exhaust to drive the radial turbine and the high efficiency of work.
  • the first-stage turbine 3 rotates to perform work
  • the engine exhaust gas from the first-stage turbine 3 containing high heat is used to drive the axial turbine, that is, the second-stage turbine 4 rotates for work, so that the engine exhaust with high heat is fully used
  • This part takes advantage of the high efficiency of thermal expansion
  • the first-stage turbine 3 and the second-stage turbine 4 perform work rotation and drive the generator 1 to generate electricity.
  • the combination of the radial turbine and the axial turbine in this embodiment gives full play to their respective advantages, and not only achieves the effects of power generation and exhaust gas cooling at the same time, but also achieves the optimization of the system requirements.
  • the pressure wheel 2 and the first-stage turbine 3 form a turbocharged combination, and both the engine intake and the engine exhaust pass through the turbocharged combination to achieve engine turbocharging.
  • the two-stage turbine 4 may include at least one two-stage turbine or a plurality of two-stage turbines, and the connection manner of each two-stage turbine unit may be any suitable connection manner.
  • the secondary turbine 4 is a radial turbine
  • the engine exhaust gas flows in radially from one or more secondary turbines in the secondary turbine 4 and flows out axially.
  • the secondary turbine 4 is an axial turbine
  • engine exhaust gas flows in axially from one or more secondary turbines in the secondary turbine 4 and flows out axially.
  • one or more secondary turbines in the secondary turbine 4 are all axial turbines, and multiple secondary turbines are connected in series.
  • Fig. 1 exemplarily shows a two-stage turbine 4 composed of two axial turbines in series.
  • the arrangement of the first-stage turbine 3 and the second-stage turbine 4 increases the efficiency of engine exhaust work and improves the utilization rate of engine exhaust.
  • the generator 1, the pressure wheel 2, the first-stage turbine 3, and the second-stage turbine 4 form a combined device, and both the engine intake and the engine exhaust pass through the combined device to improve the turbo lag effect and the utilization efficiency of the engine exhaust.
  • the combined device may not be limited to be used in engines, but may also be used in other suitable scenarios.
  • the turbocharger 10 also includes a primary turbine shaft and a secondary turbine shaft.
  • the pressure wheel 2 and the primary turbine 3 are located on the primary turbine shaft, and the secondary turbine 4 is located on the secondary turbine shaft.
  • the generator 1 includes a motor shaft. The motor shaft and the primary turbine shaft, the primary turbine shaft and the secondary turbine shaft are all connected by a coupling.
  • the rotation speed of the generator 1, the pressure wheel 2, the first-stage turbine 3, and the second-stage turbine 4 at the same speed can be 0.7-50,000 revolutions/min, and the power of the generator 1 can be 10-20KW.
  • the turbocharger 10 further includes an ECU controller 6 and a battery 7, and the ECU controller 6 connects the generator 1 and the battery 7.
  • the ECU controller 6 controls the function conversion of the generator 1. Specifically, when the engine exhaust is insufficient, the ECU controller 6 controls the battery 7 to supply power to the generator 1.
  • the generator 1 acts as a motor to drive the pressure roller 2.
  • the first-stage turbine 3 and the second-stage turbine 4 rotate at the same speed.
  • the engine exhaust drives the first-stage turbine 3 and the second-stage turbine 4 to rotate.
  • the first-stage turbine 3 and the second-stage turbine 4 rotate to drive the pressure roller 2 and the generator 1 to rotate, and the ECU controller 6 controls the power generation
  • the machine 1 acts as a generator to charge the battery 7.
  • the turbocharger device 10 also includes an engine 5, which includes an engine intake passage 51 and an engine exhaust passage 52.
  • the engine intake passage 51 is connected to the air outlet of the pressure roller 2, and the engine exhaust passage 52 is connected to the intake of the first-stage turbine 3. mouth.
  • the direction of the solid arrow in Figure 1 is the direction of engine air intake, and the direction of the hollow arrow is the direction of engine exhaust.
  • the engine exhaust enters the first-stage turbine 3 through the engine exhaust passage 52 to provide driving force for the rotation of the first-stage turbine 3.
  • the gas is pressurized by the pressure roller 2 and enters the engine intake passage 51, and then enters the engine 5 from the engine intake passage 51 to provide the engine 5 with high-pressure intake air.
  • This embodiment provides a vehicle including the above-mentioned turbocharger device.
  • the vehicles include automobiles, ships, and the like.
  • This embodiment provides a turbocharging method, including the following steps:
  • the engine exhaust enters the first-stage turbine inlet from the engine exhaust passage and pushes the first-stage turbine to rotate.
  • the rotation of the first-stage turbine drives the rotation of the pressure wheel and the second-stage turbine.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine. Enter the air inlet of the pressure wheel, and enter the engine air intake channel after being pressurized by the pressure wheel; or
  • the engine exhaust enters the first-stage turbine inlet from the engine exhaust passage, and drives the first-stage turbine to rotate.
  • the first-stage turbine rotation drives the generator, the impeller, and the second-stage turbine to rotate, and the engine exhaust flows from the first-stage turbine.
  • the turbine flows to the two-stage turbine, and the air enters the air inlet of the pressure wheel, and enters the engine air inlet channel after being pressurized by the pressure wheel.
  • the entry of the engine exhaust gas from the engine exhaust passage into the first-stage turbine inlet includes: the engine exhaust gas enters the first stage turbine from the engine exhaust passage through the radial direction of the first-stage turbine Stage turbine inlet, the engine exhaust flows out of the axial direction of the first stage turbine, and flows into the second stage turbine through the axial direction of the second stage turbine.
  • the second stage turbine includes one or more series-connected turbines. Axial turbine.
  • a turbocharging method including at least one of the following steps:
  • the generator drives the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate.
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage to drive the first-stage turbine to rotate.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine. Enter the pressure wheel, pressurized by the pressure wheel, enter the engine intake channel;
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage, pushing the first-stage turbine to rotate, and the first-stage turbine rotation drives the impeller and the second-stage turbine to rotate.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine, and the air enters the pressure wheel. After being pressurized by the pressure wheel, it enters the engine intake channel;
  • the engine exhaust enters the first-stage turbine from the engine exhaust passage, pushing the first-stage turbine to rotate, and the first-stage turbine rotation drives the rotation of the generator, the pressure wheel, and the second-stage turbine.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine.
  • the air enters the pressure roller, pressurized by the pressure roller, and then enters the engine intake passage.
  • the engine exhaust entering the first-stage turbine from the engine exhaust passage may specifically be: the engine exhaust enters the first-stage turbine from the engine exhaust passage through the radial direction of the first-stage turbine.
  • the flow of engine exhaust gas from the first-stage turbine to the second-stage turbine may specifically be as follows: the engine exhaust flows out of the axial direction of the first-stage turbine and flows into the second-stage turbine through the axial direction of the second-stage turbine.
  • the gas enters the pressure wheel, and enters the engine intake channel after being pressurized by the pressure wheel. Specifically, the gas enters the impeller from the axial direction of the pressure wheel, and enters from the radial direction of the pressure wheel after being pressurized by the pressure wheel. Engine intake passage.
  • the flow of engine exhaust from the primary turbine to the secondary turbine may specifically be as follows: multiple secondary turbine units are connected in series to form a secondary turbine, and the engine exhaust flows from the primary turbine to multiple secondary turbine units.
  • the generator drives the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate.
  • the ECU controller controls the battery to supply power to the generator, so that the generator drives the pressure wheel, the first-stage turbine, and the second-stage turbine to rotate.
  • the rotation of the first-stage turbine drives the rotation of the generator, the pressure wheel, and the second-stage turbine.
  • the engine exhaust flows from the first-stage turbine to the second-stage turbine.
  • the mechanical energy generated by the ECU controller controlling the rotation of the generator is converted into the battery. Electrical energy.
  • This embodiment uses the combination of the generator, the impeller and the first-stage turbine, so that when the engine is exhausted, the generator can drive the impeller and the first-stage turbine to rotate, which can reduce the engine exhaust resistance and increase The engine intake pressure improves the turbo lag effect in the prior art. At the same time, when the engine exhaust is excessive, the excess engine exhaust can be used, avoiding a large amount of waste of energy.
  • This embodiment uses the combination of the first-stage turbine and the second-stage turbine to increase the efficiency of the engine exhaust work, so that the engine exhaust can be more fully utilized.
  • This embodiment provides a turbocharging system, which includes a turbocharging device 10 and a low-pressure aftertreatment device 20 as shown in FIG. 2.
  • the turbocharger 10 may include a single axial or single radial turbine, or a combination of multiple axial turbines, or a combination of multiple radial turbines, or an axial turbine and a radial turbine. The combination and so on.
  • the turbocharger device 10 may be the turbocharger device 10 in the first embodiment.
  • the electricity generated by the turbocharger 10 can be used for the low-voltage aftertreatment system 20.
  • the low-pressure aftertreatment device 20 is located after the turbocharger device 10, and is used to process the engine exhaust so that the engine exhaust reaches the emission standard when it is discharged into the atmosphere.
  • the back pressure of the low-pressure post-processing device 20 is lower than the equivalent level of the National VI post-processing system.
  • the back pressure of the low-pressure post-processing device 20 is lower than 30KPa, 20KPa, 15KPa, 10KPa, 5KPa, 3KPa.
  • the low-voltage post-processing device 20 may be an electric field processing system.
  • An embodiment provides a turbine power generation device, including a turbocharger, at least one two-stage turbine unit, and a supercharger exhaust passage, the supercharger exhaust passage having an inlet and at least one outlet, the turbocharger
  • the turbocharger includes a turbocharger turbine exhaust port, an inlet of the turbocharger exhaust passage communicates with the turbocharger turbine exhaust port, and an outlet of the turbocharger exhaust passage communicates with the secondary turbine unit.
  • the two-stage turbine unit includes at least one two-stage turbine, that is, the two-stage turbine unit includes one or more two-stage turbines.
  • the two-stage turbines in the two-stage turbine unit may be all radial turbines, or all may be axial turbines, or may be part of radial turbines and part of axial turbines.
  • the two-stage turbine unit includes a turbine shaft and two two-stage turbines, namely a first turbine and a second turbine, the first turbine and the second turbine are located on the turbine shaft, and Mirror relative settings.
  • the first turbine and the second turbine are both radial turbines.
  • this embodiment provides a turbine power generation device, including a turbocharger 21, a two-stage turbine unit, and a turbocharger exhaust passage 29.
  • the two-stage turbine unit includes a first turbine 22 and a first turbine inlet.
  • the first turbine 22 and the second turbine 23 are located on the turbine shaft 24 and opposite to each other. set up.
  • the supercharger exhaust passage has an inlet and at least one outlet.
  • the turbocharger includes a supercharger turbine 211, a supercharger turbine inlet, a supercharger turbine exhaust port, and a supercharger pressure wheel 212.
  • the turbocharger exhaust passage 29 has an inlet and two outlets, namely a first outlet 292 and a second outlet 293.
  • the turbocharger 21 is connected to the first turbine inlet and the second turbine inlet through the exhaust passage 29, respectively.
  • the turbine inlet is connected.
  • the inlet of the supercharger exhaust passage 29 is connected to the turbocharger exhaust port
  • the first outlet 292 of the supercharger exhaust passage 29 is connected to the first turbo intake port
  • the second of the supercharger exhaust passage is The outlet 293 communicates with the second turbine inlet.
  • the high-temperature supercharger exhaust gas passes through the supercharger exhaust passage 29 and is equally divided into two paths, and respectively enters the coaxial twin-turbo device (two-stage turbine unit).
  • the coaxial twin-turbo device has a pair of mirror images of each other's exhaust turbine and volute.
  • the two turbines are connected back to back by a shaft. Since the intake pressure, temperature and rotor speed are basically similar, the axial forces of the two turbines are mutually exclusive. The offset or is small, and the self-balanced state can be achieved, so that the selection range of the bearing becomes very wide, thereby reducing the manufacturing cost.
  • the turbine is supported by a pair of sliding bearings for the rotor.
  • the first turbine 22 and the second turbine 23 may both be axial turbines, both radial turbines, or a combination of radial and axial directions.
  • the first turbine 12 and the second turbine 23 are both radial turbines.
  • the first turbine intake port is located in the radial direction of the first turbine 22
  • the first turbine exhaust port is located in the axial direction of the first turbine 22
  • the second turbine intake port is located in the radial direction of the second turbine 23
  • the second turbine intake port is located in the radial direction of the second turbine 23.
  • the turbine exhaust port is located in the axial direction of the second turbine 23, the intake direction of the first turbine intake port is the same as that of the second turbine intake port, and the exhaust direction of the first turbine exhaust port is opposite to that of the second turbine exhaust port. , And opposite.
  • first turbine 22 and the second turbine 23 are both radial turbines, a pair of bearings can provide support for the turbine shaft, without the need for a thrust pin to suppress the axial drift of the turbine, and the structure is simple.
  • the first turbine 22 and the second turbine 23 are mirror images of each other and have the same rotational speed.
  • the intake pressure and temperature of the engine exhaust from the turbocharger 21 at the first turbine intake and the second turbine intake are basically the same, and the high-temperature exhaust is evenly distributed and utilized.
  • two turbines of the same size and shape are connected in series on the same shaft.
  • the exhaust gas of the engine can drive the first turbine 22 and the second turbine 23 to rotate at the same speed, thereby avoiding the mutual influence between the two turbines to the greatest extent.
  • the turbocharger 21 includes a supercharger turbine 211, a supercharger pressure wheel 212, a supercharger turbine intake port, and a supercharger turbine exhaust port.
  • the turbocharger turbine inlet is located in the radial direction of the turbocharger turbine
  • the turbocharger turbine exhaust port is located in the axial direction of the turbocharger turbine and far away from the supercharger pressure wheel 212.
  • Engine exhaust enters the cavity of the turbocharger turbine 211 from the turbocharger turbine inlet in the radial direction of the turbocharger turbine 211, drives the turbocharger turbine 211 to rotate, and then moves from the turbocharger turbine 211 in the axial direction.
  • the rotation of the supercharger turbine 211 drives the supercharger impeller 212 coaxial with the supercharger turbine 211 to rotate at the same speed to supercharge the intake air of the engine.
  • the turbocharger turbine exhaust port communicates with the intake ports of the first turbine 22 and the second turbine 23.
  • the turbocharger turbine exhaust port is in communication with the first turbo intake port and the second turbo intake port, and the engine exhaust gas flowing out of the turbocharger turbo exhaust port is divided into two branches, one of which enters from the first turbine.
  • the inflow of the air port drives the first turbine 22 to rotate and flow out from the first turbine exhaust port, and the other one flows in from the second turbine intake port to drive the second turbine 23 to rotate and flow out from the second turbine exhaust port.
  • the turbine power generation device also includes a generator 25.
  • the generator 25 is located on the side of the first turbine 22 away from the second turbine 23. In a straight line. The rotation of the first turbine 22 and the second turbine 23 can drive the generator 25 to generate electricity.
  • the generator 25 includes a motor shaft, and the motor shaft is connected to the turbine shaft 24.
  • the connection method may be any suitable method, such as a coupling.
  • the rotation of the first turbine 22 and the second turbine 23 drives the motor shaft to rotate, so that the generator 25 generates electricity.
  • the turbocharging device further includes an engine 26.
  • the engine 26 includes an engine exhaust passage.
  • the engine exhaust passage is connected to the turbocharger turbine inlet, so that the exhaust gas from the engine drives the turbocharger turbine 211 to rotate.
  • the engine 26 may be a six-cylinder engine.
  • the exhaust gas bypassed in front of the exhaust gas turbocharger in the embodiment is introduced into a small flow turbine to drive the generator to generate electricity. It does not affect the back pressure of the engine and can use the bypassed exhaust energy to generate electricity.
  • the potential benefit of this solution is to allow the turbocharger to use a smaller flow turbine to increase the engine's low-speed torque and improve transient response.
  • the use of two turbines with a smaller flow rate can increase the exhaust gas flow rate and overcome the shortcomings of the large flow turbine.
  • the circulation speed can overcome the shortcomings of the large-flow turbine.
  • the efficiency of the turbine is higher, which can greatly increase the energy conversion rate of the engine exhaust.
  • the high-temperature exhaust gas is evenly distributed and utilized.
  • the two turbines are of the same size and mirrored so that their axial forces cancel each other out and can achieve a self-balanced state, so that the selection range of bearings becomes very wide, thereby reducing manufacturing costs. .
  • This embodiment uses the high-temperature exhaust gas behind the radial turbine of the turbocharger to drive the two-stage turbine to rotate and drive the generator to generate electricity.
  • This embodiment provides a vehicle including the above-mentioned turbine power generation device.
  • the vehicles include automobiles, ships, and the like.
  • This embodiment provides a turbine power generation method, including:
  • the engine exhaust enters the turbocharger from the engine exhaust passage, and then enters the two-stage turbine unit after flowing out of the turbocharger.
  • the engine exhaust after flowing out of the turbocharger is divided into two into the two-stage turbine unit, one enters the first turbine, drives the first turbine to rotate, and flows out from one end of the first turbine, and the other enters The second turbine drives the second turbine to rotate and flow out from one end of the second turbine.
  • the engine exhaust gas flowing out of the turbocharger is divided into two branches, one branch enters in the radial direction of the first turbine and flows out axially, and the other branch flows in and out of the second turbine in the radial direction.
  • the direction in which engine exhaust enters the first turbine is the same as the direction in which it enters the second turbine, and the direction in which the exhaust gas flows out of the first turbine is opposite to the direction in which it flows out from the second turbine.
  • the engine exhaust enters the first-stage turbine from the first-stage turbine inlet in the radial direction of the first turbine, and flows out from the first turbine exhaust port on the side of the first turbine axially away from the second turbine.
  • the engine exhaust enters the second turbine from the second turbine inlet in the radial direction of the second turbine, and flows out from the second turbine exhaust port on the side away from the first turbine in the axial direction of the second turbine.
  • the first turbine and the second turbine are coaxial and rotate at the same speed.
  • the intake pressure and temperature are basically the same, and the engine intake and exhaust can drive the first turbine and the second turbine to rotate at the same speed.
  • Engine exhaust enters the turbocharger turbine of the turbocharger from the engine exhaust passage, drives the turbocharger to rotate, and flows out from the axial exhaust port of the turbocharger.
  • the rotation of the turbocharger drives the turbocharger.
  • the coaxial turbocharger pressure wheel rotates.
  • the rotation of the first turbine and the second turbine drives the generator to generate electricity.
  • the turbine power generation method of this embodiment divides the engine exhaust gas flowing out of the turbocharger into two branches, which not only improves the exhaust gas flow rate but also overcomes the shortcomings of the large-flow turbine. At the same time, the efficiency of the turbine is high and can be greatly improved. The energy conversion rate of the engine exhaust.
  • this embodiment provides a turbocharger processing system, which includes a turbine power generation device 210 and a low-pressure aftertreatment device 220.
  • the turbine power generation device 210 may include at least one two-stage turbine unit, for example, in a two-stage turbine unit.
  • the turbine can be an axial or radial turbine, a combination of multiple axial turbines, a combination of multiple radial turbines, or a combination of axial turbines and radial turbines.
  • the turbine power generation device is the turbine power generation device in the first embodiment.
  • the low-pressure after-treatment device 220 is located behind the turbocharger 210, and the back pressure of the low-pressure after-treatment device 220 is lower than the equivalent level of the National VI after-treatment system. Specifically, the back pressure of the low-pressure after-treatment system 220 is lower than 30KPa, 20KPa, 15KPa, 10KPa, 5KPa, 3KPa.
  • the low-voltage post-processing device 220 may be an electric field processing system.
  • This embodiment is applied to a 13-liter diesel engine equipped with a pressure-drop exhaust aftertreatment device.
  • the experimental results show that the exhaust back pressure is lower than 30KPa (the same level as the National VI aftertreatment system), the structure is compact, and the power generation is several times that of the Rankine cycle. And e-TURBO.
  • the electricity generated by the turbine power generation device 210 can be used for the low-voltage post-processing device 220.
  • This embodiment provides a turbocharging processing method, including:
  • Engine exhaust enters the turbine power plant, passes through the turbine power plant, enters the low-pressure after-treatment system, and then flows out from the low-pressure after-treatment system.
  • the engine exhaust after the engine exhaust enters the turbine power generation device, it drives the turbine to rotate, so that part of the energy in the engine exhaust is converted into electrical energy.
  • the engine exhaust after passing through the turbine generator enters the low-pressure aftertreatment system to process the engine exhaust.
  • the electricity generated by the turbine generator can be used to power the low-voltage aftertreatment system.
  • a turbine power generation device includes a turbocharger, a turbocharger exhaust passage, at least one one-stage turbine unit, at least one two-pole turbine unit, and at least one intermediate air inlet.
  • the compressor includes a turbocharger turbine inlet and a turbocharger turbine exhaust port.
  • the first-stage turbine unit includes a first-stage turbine, a first-stage turbine inlet and a first-stage turbine outlet
  • the second-stage turbine unit includes A two-stage turbine, a two-stage turbine air inlet, and a two-stage turbine air outlet
  • the first-stage turbine air outlet communicates with the second-stage turbine air inlet
  • the intermediate air inlet is connected to the second-stage turbine air inlet
  • the inlet of the turbocharger exhaust passage communicates with the turbocharger turbine exhaust port
  • the outlet of the turbocharger exhaust passage communicates with the intermediate intake port.
  • the turbine power generation device further includes an engine exhaust passage, and the engine exhaust passage includes at least one engine exhaust passage outlet.
  • the engine exhaust passage outlet includes a first outlet and a second outlet, the first outlet communicates with the first-stage turbine inlet, and the second outlet communicates with the turbocharger turbine inlet.
  • a one-way valve is provided on the passage connecting the first outlet and the inlet of the first-stage turbine for controlling the engine exhaust gas volume to the first-stage turbine.
  • the turbine power generation device further includes a turbine shaft, and the first-stage turbine and the second-stage turbine are both located on the turbine shaft and have the same speed.
  • the first-stage turbine is a radial flow turbine
  • the second-stage turbine is an axial flow turbine.
  • the first-stage turbine is an axial flow turbine
  • the second-stage turbine is a radial flow turbine, or both the first-stage turbine and the second-stage turbine are radial flow turbines, or the first-stage turbine Both the two-stage turbine and the two-stage turbine are axial flow turbines.
  • the turbine power generation device further includes a generator, the generator includes a generator shaft, the generator shaft is connected to the turbine shaft, and the rotation speed is the same, and the generator is located at the output of the first-stage turbine. The opposite side of the air port.
  • a turbine power generation device includes a turbocharger, a turbocharger exhaust passage, at least one one-stage turbine unit, at least one two-pole turbine unit, and at least one intermediate air inlet.
  • the compressor includes a turbocharger turbine inlet and a turbocharger turbine exhaust port.
  • the first-stage turbine unit includes a first-stage turbine, a first-stage turbine inlet and a first-stage turbine outlet
  • the second-stage turbine unit includes A two-stage turbine, a two-stage turbine air inlet, and a two-stage turbine air outlet
  • the first-stage turbine air outlet communicates with the second-stage turbine air inlet
  • the intermediate air inlet is connected to the second-stage turbine air inlet
  • the inlet of the turbocharger exhaust passage communicates with the turbocharger turbine exhaust port
  • the outlet of the turbocharger exhaust passage communicates with the intermediate intake port.
  • this embodiment provides a turbine power generation device 310, which includes a turbocharger 35, a turbocharger exhaust passage 353, at least one primary turbine unit, at least one secondary turbine unit, and at least one intermediate turbine unit.
  • the intake port 33 specifically, the turbocharger 35 includes a turbocharger turbine 351, a turbocharger turbine inlet, a turbocharger turbine outlet, and a supercharger pressure wheel 352, and a supercharger pressure wheel inlet , The air outlet of the pressure wheel of the turbocharger.
  • the supercharger turbine 351 and the supercharger roller 352 are coaxial and rotate at the same speed.
  • the turbocharger turbine inlet is located in the radial direction of the turbocharger turbine 351, and the turbocharger turbine outlet is located in the axial direction of the turbocharger turbine 351 and far away from the supercharger pressure wheel 352.
  • the turbocharger air inlet is the turbocharger turbine air inlet
  • the turbocharger air outlet is the turbocharger turbine air outlet.
  • the air inlet of the pressure wheel of the supercharger is located in the axial direction of the pressure wheel of the supercharger 352 and is far away from the turbine 351 of the supercharger, and the air outlet of the pressure wheel of the supercharger is located in the radial direction of the pressure wheel 352 of the supercharger.
  • the first-stage turbine unit includes a first-stage turbine 31, a first-stage turbine inlet and a first-stage turbine outlet.
  • the second-stage turbine unit includes a second-stage turbine 32, a second-stage turbine inlet and a second-stage turbine outlet.
  • the turbine air outlet is in communication with the secondary turbine air inlet
  • the intermediate air inlet is in communication with the secondary turbine air inlet
  • the inlet of the turbocharger exhaust passage 353 is in communication with the turbocharger turbine
  • An exhaust port, the outlet of the turbocharger exhaust passage 353 communicates with the intermediate intake port 33.
  • the intermediate air inlet 33 is located between the primary turbine 31 and the secondary turbine 32, the intermediate air inlet 33 communicates with the secondary turbine air inlet, and the turbocharger air outlet communicates with the intermediate air inlet 33.
  • the direction indicated by the arrow in Figure 1 is the direction of the engine exhaust gas flow.
  • the first-stage turbine 31 and the second-stage turbine 32 may both be axial flow turbines, may be both radial flow turbines, or a combination of radial and axial directions.
  • the first-stage turbine 31 is a radial flow turbine
  • the second-stage turbine 32 is an axial flow turbine.
  • the first-stage turbine inlet is located in the radial direction of the first-stage turbine 31
  • the first-stage turbine outlet is located in the axial direction of the first-stage turbine 31
  • the second-stage turbine inlet The air port is located in the axial direction of the secondary turbine 32, and the air outlet of the secondary turbine is located in the axial direction of the secondary turbine 32.
  • the turbine power generation device further includes a turbine shaft 34.
  • the first-stage turbine 31 and the second-stage turbine 32 are located on the turbine shaft 34 and have the same rotational speed.
  • the first-stage turbine 31 is located on the side of the inlet of the second-stage turbine 32, that is, the outlet of the first-stage turbine is directly opposite to the inlet of the second-stage turbine.
  • the turbine power generation device also includes a generator 36.
  • the generator 36 includes a generator shaft, which is connected to the turbine shaft 34 and has the same speed.
  • the generator 36 is located on the side of the non-primary turbine outlet, that is, the first-stage turbine outlet is far away from the generator 36, and the first-stage turbine 31 is located between the generator 36 and the second-stage turbine 2.
  • the turbine power generation device further includes an engine 37.
  • the engine 37 includes an engine intake passage and an engine exhaust passage, and the engine exhaust passage includes at least one engine exhaust passage outlet.
  • the engine air intake passage is connected to the air outlet of the pressure wheel of the supercharger.
  • the engine exhaust passage outlet includes a first outlet and a second outlet.
  • the first outlet communicates with the first-stage turbine inlet
  • the second outlet communicates with the turbocharger turbine inlet. That is, one end of the engine exhaust passage is connected to the engine exhaust outlet, and the other end has two outlets.
  • One outlet, the second outlet of the engine exhaust passage is connected to the turbocharger intake port (that is, the booster located in the radial direction of the turbocharger turbine 351).
  • the compressor turbine inlet), and the other outlet, the first outlet of the engine exhaust passage communicates with the first-stage turbine inlet located in the radial direction of the first-stage turbine 31.
  • a one-way valve 38 is provided on the passage connecting the exhaust passage of the engine to the inlet of the first-stage turbine, that is, the passage connecting the first outlet and the inlet of the first-stage turbine.
  • the one-way valve 38 can be closed when the exhaust of the engine 37 is insufficient, and opened when the exhaust of the engine 37 is excessive, bypassing the excess exhaust into a radial turbine, where the high-temperature and high-pressure exhaust drives the first-stage turbine 31 to rotate.
  • the use of the engine exhaust from the first-stage turbine 31 that also contains high heat plus the engine exhaust from the first-stage turbine 31 The engine exhaust from the turbocharger turbine 351 that enters through the turbocharger exhaust passage 353 and enters through the middle intake port 33 together drives the secondary turbine 32 to rotate and perform work, so that the engine exhaust, which also contains high heat, can be fully used This part takes advantage of the high efficiency of thermal expansion, and finally the first-stage turbine 31 and the second-stage turbine 32 perform work rotation and drive the generator 36 to generate electricity.
  • the segmented utilization of this embodiment makes full use of the respective advantages of the two gases, improves the utilization rate of exhaust energy, and achieves the optimization of the system requirements.
  • the exhaust gas bypassed in front of the exhaust gas turbocharger in the embodiment is introduced into a small flow turbine to drive the generator 36 to generate electricity.
  • the engine back pressure is not affected, and the bypassed exhaust energy can be used to generate electricity.
  • Another potential benefit of this solution is to allow the turbocharger to use a smaller flow of turbine to increase the engine's low-speed torque and improve transient response. Therefore, only using the exhaust gas bypassed by the turbocharger to generate electricity will not affect the exhaust back pressure after the turbocharger, and reduce the influence of the first-stage turbine 31 and the second-stage turbine 32 on the exhaust back pressure. In addition, the utilization rate of exhaust energy is improved.
  • This embodiment provides a vehicle including the above-mentioned turbine power generation device.
  • the vehicles include automobiles, ships, and the like.
  • this embodiment provides a turbine power generation system, which includes a turbine power generation device 310 and a low-pressure aftertreatment device 320.
  • the turbine power generation device 310 may include at least one turbine, for example, an axial or radial turbine. It may also be a combination of multiple axial turbines, a combination of multiple radial turbines, or a combination of axial turbines and radial turbines.
  • the back pressure of the low-pressure post-processing device 320 is lower than the equivalent level of the National VI post-processing system. Specifically, the back pressure of the low-pressure post-processing system 20 is lower than 30KPa, 20KPa, 15KPa, 10KPa, 5KPa, 3KPa.
  • the turbine power generation device is the turbine power generation device in Embodiment 1, and the low-pressure post-processing device 320 may be an electric field processing system.
  • the electricity generated by the turbine power generation device 310 can be used for the low-voltage post-processing device 320.
  • This embodiment provides a turbocharging method, including:
  • Another part of the engine exhaust enters the first-stage turbine, drives the first-stage turbine to rotate, and flows out of the first-stage turbine;
  • the engine exhaust from the turbocharger and the engine exhaust from the first-stage turbine flow into the second-stage turbine together to drive the second-stage turbine to rotate.
  • a part of the engine exhaust gas enters the turbocharger turbine from the radial direction of the turbocharger turbine, drives the turbocharger turbine to rotate, and then flows out from the turbocharger turbine axially.
  • the rotation of the supercharger turbine drives the coaxial pressure wheel of the supercharger to rotate at the same speed.
  • Air flows in from the axial direction of the pressure wheel of the supercharger. After being pressurized by the pressure wheel of the supercharger, the air flows out of the radial direction of the pressure wheel of the supercharger and enters the engine to supercharge the intake air of the engine.
  • Another part of the engine exhaust enters the first-stage turbine from the radial direction of the first-stage turbine, drives the first-stage turbine to rotate, and flows out from the axial direction of the first-stage turbine.
  • the rotation of the first-stage turbine drives the coaxial second-stage turbine to rotate at the same speed, and generates electricity through a generator.
  • the other part of the engine exhaust enters the first-stage turbine through the one-way valve. When the engine exhaust is insufficient, the one-way valve is closed, and when the engine exhaust is excessive, the one-way valve is opened, so that the impact of the first-stage turbine and the second-stage turbine on the exhaust back pressure is minimized.
  • the engine exhaust gas flowing from the turbocharger and the engine exhaust gas flowing from the primary turbine enter the axial direction of the secondary turbine, drive the secondary turbine to rotate, and flow out from the axial direction of the secondary turbine.
  • the engine exhaust from the secondary turbine enters the low-pressure aftertreatment system, which purifies the engine exhaust, so that the engine exhaust reaches the emission standard.
  • the electricity generated by the turbine power generation device can be used to supply power to the low-voltage post-processing system.
  • the present invention effectively overcomes various shortcomings in the prior art and has a high industrial value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

一种涡轮增压装置(10),包括依次设置的起发电机(1)、压轮(2)、一级涡轮(3)、至少一个二级涡轮(4),发动机排气从一级涡轮(3)流向二级涡轮(4),发动机排气推动一级涡轮(3)和二级涡轮(4)转动。该涡轮增压装置(10)采用了起发电机(1),改善了现有技术中涡轮的迟滞效应问题,同时,一级涡轮(3)和二级涡轮(4)的设置,提高了发动机排气的利用率。还提供了该涡轮增压装置(10)的使用方法以及包括该涡轮增压装置(10)的涡轮增压系统。

Description

涡轮增压装置、方法以及增压系统 技术领域
本发明涉及涡轮技术领域,尤其涉及一种涡轮增压装置、方法以及增压系统。
背景技术
现有技术中,自然吸气式柴油机有35%以上的燃油能量以热能形式被排放到大气。当前大多数发动机都安装了涡轮增压器以回收利用排气热能。涡轮增压器利用排气热能驱动涡轮旋转,从而带动同一根轴上的压气机(或称压缩机)叶轮旋转,吸入并压缩大气中的新鲜空气。大量压缩空气被压入气缸使燃油在气缸内更充分的燃烧。但是,即使是最先进的涡轮增压器,其排气热能的回收率仅能达到20-30%,依旧有70%以上的排气能量未被利用。以一台13L重型涡轮增压柴油机为例,其发动机最高排气温度在额定功率下达到675度,排气通过涡轮增压器做功后的剩余排气温度为525度。此外,很多车载涡轮增压器为了提高低速扭矩和响应性,使用小流量涡轮,多余排气通过旁通排出,造成排气能量的浪费。
传统的涡轮增压技术中,由于在发动机低转速工况下的发动机排气不足,涡轮增压器不但无法带来动力提升,还会因为阻碍发动机排气产生动力响应迟滞效应。在发动机高转速工况下,发动机排气过剩,为了避免过增压现象,在涡轮增压器上设置旁通阀,将含有很高热量的发动机排气直接排掉,造成了大量的能源浪费。
目前对未被利用的排气能量,即排气余热再利用的技术很多,可是这些现有技术都有各自明显的缺点使其无法大量普及,比如:
1.机械增压复合,大幅增加了发动机排气背压,劣化了发动机本身的燃烧性能,且成本过高,投资回报周期长,投资回报率较低,即使是在发达国家也应用的不普遍。
2.霍尼韦尔e-TURBO和博格华纳的e-booster技术,结构紧凑,无排气背压影响。在涡轮增压器和压气机之间安装一台超高速发电机,使部分涡轮做出的功用于发电机发电。但为了平衡发动机瞬态性能,涡轮不可能做的太大,故此发电量有限,仅数千瓦。
3.朗肯循环,无排气背压影响,发电量可达十数千瓦,但体积庞大,不便于在车辆上安装布置,故鲜有量产的案例。
发明内容
本发明的目的是提供一种涡轮增压装置、方法以及增压系统,以解决上述现有技术中存在的问题。
为了解决上述问题,根据本发明的一个方面,提供了一种涡轮增压装置,其特征在于, 包括依次设置的起发电机、压轮、一级涡轮、至少一个二级涡轮,发动机排气从一级涡轮流向二级涡轮,发动机排气推动所述一级涡轮和所述二级涡轮转动。
在一个实施例中,所述起发电机的电机轴轴线、所述压轮的轴线、所述一级涡轮的轴线、所述二级涡轮的轴线均位于同一条直线上。
在一个实施例中,涡轮增压装置还包括发动机,所述发动机包括发动机进气通道和发动机排气通道,空气经所述压轮增压后进入发动机进气通道,发动机排气从所述发动机排气通道排出以推动所述一级涡轮。
在一个实施例中,所述发动机的转速在低速状态时,所述起发电机作为电动机用于增加所述压轮的转速,所述发动机的转速在高速状态时,所述起发电机作为发电机,所述一级涡轮和所述二级涡轮带动所述起发电机旋转发电。
在一个实施例中,所述一级涡轮为径向涡轮,所述二级涡轮为轴向涡轮。
在一个实施例中,所述二级涡轮包括多个串联的轴向涡轮。
在一个实施例中,涡轮增压装置还包括ECU控制器和蓄电池,所述ECU控制器分别连接所述起发电机和所述蓄电池。
根据本发明的一个方面,提供了一种交通工具,包括上述的涡轮增压装置,交通工具包括汽车、船舶等。
根据本发明的一个方面,提供了一种涡轮增压方法,其特征在于,包括以下步骤:起发电机带动压轮、一级涡轮、二级涡轮转动,发动机排气从发动机排气通道进入所述一级涡轮进气口,推动所述一级涡轮转动,发动机排气从所述一级涡轮流向所述二级涡轮,空气进入压轮进气口,经所述压轮增压后进入发动机进气通道。
根据本发明的一个方面,提供了一种涡轮增压方法,其特征在于,包括以下步骤:发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,一级涡轮转动带动压轮与二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道;或
发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,所述一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从所述一级涡轮流向所述二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道。
在一个实施例中,所述发动机排气从发动机排气通道进入一级涡轮进气口包括:所述发动机排气从所述发动机排气通道经所述一级涡轮的径向进入所述一级涡轮进气口,所述发动机排气从所述一级涡轮的轴向流出,并经所述二级涡轮的轴向流入所述二级涡轮,所述二级涡轮包括一个或多个串联的轴向涡轮。
根据本发明的一个方面,提供了一种涡轮增压系统,包括涡轮增压装置和低压后处理装置,所述涡轮增压装置为上述的涡轮增压装置,所述低压后处理装置位于涡轮增压装置 后,用于对发动机排气进行处理后达到排放标准。
于本发明一示例中,低压后处理系统的背压低于30KPa、20KPa、15KPa、10KPa、5KPa、3KPa。
于本发明一示例中,所述低压后处理系统为电场处理系统。
于本发明一示例中,所述涡轮发电系统给所述低压后处理系统供电。
本发明还提供一种涡轮增压方法,包括以下步骤中的至少一种:
S1:起发电机带动压轮、一级涡轮、二级涡轮转动,发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经叶轮增压后进入发动机进气通道;
S2:发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,一级涡轮转动带动压轮与二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经压轮增压后进入发动机进气通道;
S3:发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经压轮增压后进入发动机进气通道。
于本发明一示例中,所述S1、S2、S3中,所述发动机排气从发动机排气通道进入一级涡轮包括:所述发动机排气从所述发动机排气通道经所述一级涡轮的径向进入所述一级涡轮。
于本发明一示例中,所述S1、S2、S3中,所述发动机排气从一级涡轮流向二级涡轮包括:所述发动机排气从所述一级涡轮的轴向流出,并经所述二级涡轮的轴向流入所述二级涡轮。
于本发明一示例中,所述S1、S2、S3中,所述空气进入压轮,经压轮增压后进入发动机进气通道包括:空气从所述压轮的轴向进入所述压轮,经所述压轮增压后从所述压轮的径向进入所述发动机进气通道。
于本发明一示例中,所述S1、S2、S3中,所述发动机排气从一级涡轮流向二级涡轮包括:多个二级涡轮单元串联组成所述二级涡轮,所述发动机排气从一级涡轮流向多个所述二级涡轮单元。
于本发明一示例中,所述S1中,所述起发电机带动压轮、一级涡轮、二级涡轮转动包括:ECU控制器控制蓄电池给所述起发电机供电,使所述起发电机带动所述压轮、一级涡轮、二级涡轮转动。
于本发明一示例中,所述S3中,所述一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从一级涡轮流向二级涡轮包括:ECU控制器控制起发电机转动产生的机械能转化为蓄电池的电能。
根据本发明的一个方面,提供了一种涡轮发电装置,包括涡轮增压器、至少一个二级涡轮单元以及增压器排气通道,所述增压器排气通道具有进口和至少一个出口,所述涡轮增压器包括增压器涡轮排气口,所述增压器排气通道的进口连通所述增压器涡轮排气口,所述增压器排气通道的出口连通所述二级涡轮单元。
在一个实施例中,所述二级涡轮单元包括至少一个二级涡轮。
在一个实施例中,所述二级涡轮单元包括多个二级涡轮,多个所述二级涡轮均为径向涡轮,或均为轴向涡轮,或为径向涡轮和轴向涡轮的组合。
在一个实施例中,所述二级涡轮单元包括涡轮轴、第一涡轮、第二涡轮,所述第一涡轮和所述第二涡轮位于所述涡轮轴上,且相对设置。
在一个实施例中,所述第一涡轮、所述第二涡轮均为径向涡轮。
根据本发明的一个方面,提供了一种涡轮发电系统,其特征在于,包括涡轮发电装置,所述涡轮发电装置为上述的涡轮发电装置。
根据本发明的一个方面,提供了一种涡轮发电方法,其特征在于,发动机排气从发动机排气通道进入涡轮增压器,从涡轮增压器流出后分成两支进入二级涡轮单元,一支带动所述二级涡轮单元中的第一涡轮转动,并从第一涡轮的一端流出,另一支带动所述二级涡轮单元中的第二涡轮转动,并从所述第二涡轮的一端流出。
在一个实施例中,一支从第一涡轮的径向进入、轴向流出,另一支从第二涡轮的径向流入、轴向流出,发动机排气进入第一涡轮的方向与进入第二涡轮的方向相同,从第一涡轮流出的方向与从第二涡轮的流出方向相背。
根据本发明的一个方面,提供了一种涡轮增压处理系统,其特征在于,包括涡轮发电装置和低压后处理系统,所述低压后处理装置位于涡轮发电装置后,用于对发动机排气进行处理后达到排放标准,所述涡轮增压装置为上述的涡轮增压装置。
根据本发明的一个方面,提供了一种涡轮增压处理方法,其特征在于,发动机排气进入涡轮发电装置,通过涡轮发电装置后进入低压后处理系统,再从低压后处理系统流出。
根据本发明的另一个方面,提供了一种涡轮发电装置,包括涡轮增压器、一级涡轮、二级涡轮,所述涡轮增压器与所述一级涡轮和所述二级涡轮连通。
于本发明一示例中,所述一级涡轮包括位于一级涡轮径向的一级涡轮进气口、位于一级涡轮轴向的一级涡轮排气口,所述二级涡轮包括位于二级涡轮径向的二级涡轮进气口、位于二级涡轮轴向的二级涡轮排气口,所述一级涡轮进气口与所述二级涡轮进气口的进气方向相同,所述一级涡轮排气口与所述二级涡轮排气口的排气方向相反,且相背。
于本发明一示例中,所述一级涡轮和所述二级涡轮的转速相同。
于本发明一示例中,所述涡轮增压器包括增压器涡轮、增压器叶轮,所述增压器涡轮包括增压器涡轮进气口、增压器涡轮排气口,所述增压器涡轮排气口与所述一级涡轮和所 述二级涡轮连通。
于本发明一示例中,其中所述增压器涡轮排气口与所述一级涡轮进气口、所述二级涡轮进气口连通。
于本发明一示例中,所述涡轮增压装置还包括发电机,所述发电机位于所述一级涡轮远离所述二级涡轮的一侧,且与所述一级涡轮、二级涡轮在一条直线上。
于本发明一示例中,所述发电机包括电机轴,所述电机轴与所述涡轮轴连接。
于本发明一示例中,所述涡轮增压装置还包括发动机,所述发动机包括发动机排气通道,所述发动机排气通道连接所述增压器涡轮。
于本发明一示例中,所述发动机为六缸发动机。
根据本发明的另一个方面,提供了一种涡轮发电系统,包括涡轮发电装置和低压后处理系统。
于本发明一示例中,所述低压后处理系统为电场处理系统。
于本发明一示例中,所述涡轮发电系统给所述低压后处理系统供电。
根据本发明的另一个方面,提供了一种涡轮发电方法,包括发动机排气从发动机排气通道进入涡轮增压器,从涡轮增压器流出后分成两支,一支进入一级涡轮,带动一级涡轮转动,并从一级涡轮的一端流出,另一支进入二级涡轮,带动二级涡轮转动,并从二级涡轮的一端流出。
于本发明一示例中,从涡轮增压器流出后的发动机排气分成的两支,一支从一级涡轮的径向进入、轴向流出,另一支从二级涡轮的径向流入、轴向流出。
于本发明一示例中,发动机排气进入一级涡轮的方向与进入二级涡轮的方向相同,从一级涡轮流出的方向与从二级涡轮的流出方向相背。
于本发明一示例中,发动机排气从发动机排气通道进入涡轮增压器的增压器涡轮,带动增压器涡轮转动,并从增压器涡轮的轴向排气口流出,增压器涡轮转动带动与增压器涡轮同轴的增压器压轮转动。
根据本发明的另一个方面,提供了一种涡轮增压方法,包括:发动机排气进入涡轮发电装置,通过涡轮发电装置后进入低压后处理系统,再从低压后处理系统流出。
于本发明一示例中,发动机排气进入涡轮发电装置后,带动涡轮转动,使发动机排气中的能量部分转换为电能。通过涡轮发电装置后的发动机排气进入低压后处理系统,对发动机排气进行处理。
于本发明一示例中,利用涡轮发电装置发出的电给低压后处理系统供电。
根据本发明的一个方面,提供了一种涡轮发电装置,其特征在于,包括涡轮增压器、涡轮增压器排气通道、至少一个一级涡轮单元、至少一个二极涡轮单元以及至少一个中间进气口,所述涡轮增压器包括增压器涡轮进气口和增压器涡轮排气口,所述一级涡轮单元 包括一级涡轮、一级涡轮进气口和一级涡轮出气口,所述二级涡轮单元包括二级涡轮、二级涡轮进气口和二级涡轮出气口,所述一级涡轮出气口与所述二级涡轮进气口连通,所述中间进气口与所述二级涡轮进气口连通,所述涡轮增压器排气通道的进口连通所述增压器涡轮排气口,所述涡轮增压器排气通道的出口连通所述中间进气口。
在一个实施例中,还包括发动机排气通道,所述发动机排气通道包括至少一个发动机排气通道出口。
在一个实施例中,所述发动机排气通道出口包括第一出口和第二出口,所述第一出口连通级涡轮进气口,所述第二出口连通增压器涡轮进气口。
在一个实施例中,连通所述第一出口与所述一级涡轮进气口的通道上设有单向阀。
在一个实施例中,还包括涡轮转轴,所述一级涡轮、二级涡轮位于所述涡轮转轴上,且转速相同。
在一个实施例中,所述一级涡轮为径流涡轮,所述二级涡轮为轴流涡轮。
一个实施例中,还包括发电机,所述发电机包括发电机轴,所述发电机轴与所述涡轮转轴连接,且转速相同。
根据本发明的一个方面,提供了一种交通工具,其特征在于,包括上述的涡轮发电装置。
根据本发明的一个方面,提供了一种涡轮发电系统,其特征在于,包括涡轮发电装置和低压后处理装置,所述涡轮发电装置包括上述任一项涡轮发电装置。
根据本发明的一个方面,提供了一种涡轮发电方法,包括发动机排气一部分进入涡轮增压器,带动所述涡轮增压器工作,并从所述涡轮增压器流出;发动机排气另一部分进入一级涡轮,带动所述一级涡轮转动,并从所述一级涡轮流出;从所述涡轮增压器流出的发动机排气和从所述一级涡轮流出的发动机排气一起流入二级涡轮,带动所述二级涡轮转动。
在一个实施例中,发动机排气流向所述一级涡轮的通道上设有单向阀。
根据本发明的另一个方面,提供了一种涡轮发电装置,包括一级涡轮、二级涡轮。
于本发明一示例中,涡轮发电装置还包括中间进气口,所述一级涡轮包括一级涡轮进气口和一级涡轮出气口,所述二级涡轮包括二级涡轮进气口和二级涡轮出气口,所述一级涡轮出气口与所述二级涡轮进气口连通,所述中间进气口与所述二级涡轮进气口连通。
于本发明一示例中,所述涡轮增压器包括涡轮增压器进气口和涡轮增压器出气口,所述涡轮增压器出气口与所述中间进气口连通。
于本发明一示例中,所述发电机位于所述一级涡轮进气口一侧。
于本发明一示例中,所述涡轮发电装置还包括发动机。
于本发明一示例中,所述发动机包括发动机排气通道,所述发动机排气通道连接所述 涡轮增压器进气口和所述一级涡轮进气口。
于本发明一示例中,所述发动机排气通道连接所述一级涡轮进气口的通道上包括单向阀。
根据本发明的另一个方面,提供了一种涡轮发电系统,包括涡轮发电装置和低压后处理系统。
于本发明一示例中,所述低压后处理系统的背压低于30KPa、20KPa、15KPa、10KPa、5KPa、3KPa。
于本发明一示例中,所述低压后处理系统为电场处理系统。
于本发明一示例中,所述涡轮发电装置给所述低压后处理系统供电。
根据本发明的另一个方面,提供了一种涡轮发电方法,包括发动机排气一部分进入涡轮增压器,带动所述涡轮增压器工作,并从所述涡轮增压器流出;发动机排气另一部分进入一级涡轮,带动所述一级涡轮转动,并从所述一级涡轮流出;从所述涡轮增压器流出的发动机排气和从所述一级涡轮流出的发动机排气一起流入二级涡轮,带动所述二级涡轮转动。
于本发明一示例中,所述发动机排气另一部分从所述一级涡轮的径向进入,并从所述一级涡轮的轴向流出。
于本发明一示例中,所述发动机排气另一部分通过单向阀进入所述一级涡轮。
于本发明一示例中,从所述涡轮增压器流出的发动机排气和从所述一级涡轮流出的发动机排气从所述二级涡轮的轴向进入,并从所述二级涡轮的轴向流出。
于本发明一示例中,所述一级涡轮和所述二级涡轮同轴,且转速相同。
于本发明一示例中,所述一级涡轮和所述二级涡轮转动带动发电机发电。
于本发明一示例中,还包括:发动机排气从所述二级涡轮流出,进入低压后处理系统。
于本发明一示例中,利用涡轮发电装置发出的电给低压后处理系统供电。
附图说明
图1为本发明实施例1中涡轮增压装置的结构示意图;
图2为本发明实施例2中涡轮增压系统的结构示意图;
图3为本发明实施例3中涡轮发电装置的结构示意图;
图4为本发明实施例4中涡轮发电系统的结构示意图;
图5为本发明实施例6中涡轮发电装置的结构示意图;
图6为本发明实施例7中涡轮发电系统的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
在现有技术中,业界通常说的涡轮增压指的是废气涡轮增压器,传统的涡轮增压技术中,由于在发动机低转速工况下的发动机排气不足,涡轮增压器不但无法带来动力提升,还会因为阻碍发动机排气产生动力响应迟滞效应。在发动机高转速工况下,发动机排气过剩,为了避免过增压现象,在涡轮增压器上设置旁通阀,将含有很高热量的发动机排气直接排掉,该发动机排气没有被充分利用,造成了大量的能源浪费。
实施例1
本实施例在低速状态时由ECU控制蓄电池给起发电机通电,增加涡轮增压器的转速,使其达到额定值;当发动机的转速及排气温度达到额定值后,供需平衡,蓄电池停止给电机供电,电机处于空载状态;当发动机的转速及排气温度持续上升时,取消传统的放气活门,通过增加电机的负载,使涡轮转速不变,同时电机也处于发电状态;在整个过程中,与涡轮增压器同轴连接一级或多级轴流涡轮,利用涡轮增压器的径向涡轮后的高温尾气继续膨胀做功,带动发电机发电,同时也降低了尾气温度。
在一个实施例中,一种涡轮增压装置包括依次设置的起发电机、涡轮增压单元以及二级涡轮单元,所述涡轮增压单元包括一级涡轮、一级涡轮进气口、一级涡轮出气口、压轮、压轮进气口、压轮出气口,二级涡轮单元包括二级涡轮进气口、二级涡轮出气口以及至少一个二级涡轮,其中,一级涡轮出气口与二级涡轮进气口连通。
在一个实施例中,一种涡轮增压装置,包括依次设置的起发电机、压轮、一级涡轮、至少一个二级涡轮,发动机排气从一级涡轮流向二级涡轮,发动机排气从一级涡轮流向二级涡轮,发动机排气推动所述一级涡轮和所述二级涡轮转动,一级涡轮转动带动压轮转动。
在一个实施例中,所述起发电机的电机轴轴线、所述压轮的轴线、所述一级涡轮的轴线、所述二级涡轮的轴线均位于同一条直线上,在其他实施例中,二级涡轮的轴线也可以不与一级涡轮的轴线在同一条直线上。
如图1所示,本实施例提供一种涡轮增压装置10,包括起发电机1、压轮2、一级涡 轮3、至少一个二级涡轮4,其中,起发电机1的电机轴轴线、压轮2的轴线、一级涡轮3的轴线、二级涡轮4的轴线均位于同一条直线上,且按顺序依次分布。
起发电机1具有电动机或发电机的作用,可以根据实际工况选择性转换功能。例如,当发动机排气不足时,起发电机1作为电动机,驱动压轮2、一级涡轮3、二级涡轮4同速转动,同时,压轮2转动为发动机进气增加压力。当发动机排气过剩时,起发电机1作为发电机时,发动机排气驱动一级涡轮3、二级涡轮4转动,一级涡轮3、二级涡轮4转动带动叶轮2、起发电机1转动,压轮2转动为发动机进气增加压力,起发电机1转动发电。本实施例起发电机1的设置,解决了现有技术中涡轮的迟滞效应问题。
在一个实施例中,一级涡轮3可以是径向涡轮或轴向涡轮,二级涡轮4也可以是径向涡轮或轴向涡轮,发动机排气先经过一级涡轮3,再进入二级涡轮4,然后从二级涡轮4流出。本实施例中,一级涡轮3为径向涡轮,二级涡轮4为轴向涡轮,发动机排气从一级涡轮3的径向流入一级涡轮3,经一级涡轮3的轴向流出,并从二级涡轮4的轴向流入二级涡轮4,再从二级涡轮4的轴向流出,这样的布置首先是利用发动机排气径向冲击力大做功效率高的优势驱动径向涡轮即一级涡轮3旋转做功,其次,利用来自一级涡轮3流出的含有很高热量的发动机排气驱动轴向涡轮即二级涡轮4旋转做功,从而让含有很高热量的发动机排气得到充分使用,这部分是利用了热膨胀做功效率高的优势,最终一级涡轮3和二级涡轮4做功旋转并带动起发电机1发电。本实施例这样的径向涡轮与轴向涡轮结合,充分发挥了各自的优势,不仅同时实现了发电与尾气降温的效果,而且实现了系统要求的最优。
压轮2和一级涡轮3形成涡轮增压组合,发动机进气和发动机排气均通过该涡轮增压组合,以实现发动机涡轮增压。
二级涡轮4可以包括至少一个二级涡轮或多个二级涡轮,各二级涡轮单元的连接方式可以是任何合适的连接方式。当二级涡轮4为径向涡轮时,发动机排气从二级涡轮4中的一个或多个二级涡轮的径向流入,轴向流出。当二级涡轮4为轴向涡轮时,发动机排气从二级涡轮4中的一个或多个二级涡轮的轴向流入,轴向流出。优选的,二级涡轮4中的一个或多个二级涡轮均为轴向涡轮,多个二级涡轮串联连接。图1示例性地给出了由两个轴向涡轮串联组成的二级涡轮4。
同时,一级涡轮3和二级涡轮4的设置,增加了发动机排气做功效率,提高了发动机排气利用率。
起发电机1、压轮2、一级涡轮3、二级涡轮4形成组合式装置,发动机进气和发动机排气均通过该组合式装置,以改善涡轮迟滞效应和发动机排气利用效率。此外,该组合式装置可以不限定用于发动机,还可以用于其他合适的场景。
涡轮增压装置10还包括一级涡轮轴、二级涡轮轴。压轮2和一级涡轮3位于一级涡 轮轴上,二级涡轮4位于二级涡轮轴上。起发电机1包括电机轴。电机轴与一级涡轮轴、一级涡轮轴与二级涡轮轴均通过联轴器连接。
起发电机1、压轮2、一级涡轮3、二级涡轮4同速转动的转速可以为0.7-5万转/min,起发电机1的功率可以为10-20KW。
涡轮增压装置10还包括ECU控制器6和蓄电池7,ECU控制器6连接起发电机1和蓄电池7。通过ECU控制器6控制起发电机1的功能转换,具体的,当发动机排气不足时,ECU控制器6控制蓄电池7为起发电机1供电,起发电机1作为电动机,驱动压轮2、一级涡轮3、二级涡轮4同速转动。当发动机排气过剩时,发动机排气驱动一级涡轮3、二级涡轮4转动,一级涡轮3、二级涡轮4转动带动压轮2、起发电机1转动,ECU控制器6控制起发电机1作为发电机,为蓄电池7充电。
涡轮增压装置10还包括发动机5,发动机5包括发动机进气通道51和发动机排气通道52,发动机进气通道51连通压轮2的出气口,发动机排气通道52连通一级涡轮3进气口。图1中实心箭头的方向为发动机进气方向,空心箭头的方向为发动机排气方向。发动机排气通过发动机排气通道52进入一级涡轮3,给一级涡轮3的转动提供驱动力。气体通过压轮2增压后进入发动机进气通道51,再从发动机进气通道51进入发动机5,为发动机5提供高压进气。
本实施例提供了一种交通工具,包括上述的涡轮增压装置。
在一个实施例中,交通工具包括汽车、船舶等。
本实施例提供了一种涡轮增压方法,包括以下步骤:
发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,一级涡轮转动带动压轮与二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道;或
发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,所述一级涡轮转动带动起发电机、叶轮、二级涡轮转动,发动机排气从所述一级涡轮流向所述二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道。
在一个实施例中,所述发动机排气从发动机排气通道进入一级涡轮进气口包括:所述发动机排气从所述发动机排气通道经所述一级涡轮的径向进入所述一级涡轮进气口,所述发动机排气从所述一级涡轮的轴向流出,并经所述二级涡轮的轴向流入所述二级涡轮,所述二级涡轮包括一个或多个串联的轴向涡轮。
在一个实施例中,提供一种涡轮增压方法,包括以下步骤中的至少一种:
S1:起发电机带动压轮、一级涡轮、二级涡轮转动,发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经压轮增压后进入发动机进气通道;
S2:发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,一级涡轮转动带动叶轮与二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经压轮增压后进入发动机进气通道;
S3:发动机排气从发动机排气通道进入一级涡轮,推动一级涡轮转动,一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮,经压轮增压后进入发动机进气通道。
其中,S1、S2、S3中,发动机排气从发动机排气通道进入一级涡轮具体可以是:发动机排气从发动机排气通道经一级涡轮的径向进入一级涡轮。
S1、S2、S3中,发动机排气从一级涡轮流向二级涡轮具体可以是:发动机排气从一级涡轮的轴向流出,并经二级涡轮的轴向流入二级涡轮。
S1、S2、S3中,气体进入压轮,经压轮增压后进入发动机进气通道具体可以是:气体从压轮的轴向进入叶轮,经压轮增压后从压轮的径向进入发动机进气通道。
S1、S2、S3中,发动机排气从一级涡轮流向二级涡轮具体可以是:多个二级涡轮单元串联组成二级涡轮,发动机排气从一级涡轮流向多个二级涡轮单元。
S1中,起发电机带动压轮、一级涡轮、二级涡轮转动具体可以是:ECU控制器控制蓄电池给起发电机供电,使起发电机带动压轮、一级涡轮、二级涡轮转动。
S3中,一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从一级涡轮流向二级涡轮具体可以是:ECU控制器控制起发电机转动产生的机械能转化为蓄电池的电能。
本实施例具有以下有益效果:
1.本实施例利用起发电机与叶轮和一级涡轮的结合,使发动机在排气不足时,可以由起发电机带动叶轮和一级涡轮转动,既能减小发动机排气阻力又能增加发动机进气压力,改善现有技术中的涡轮迟滞效应,同时,当发动机排气过剩时,还能将多余的发动机排气利用起来,避免了能量的大量浪费。
2.本实施例利用一级涡轮与二级涡轮的结合,增加了发动机排气做功效率,使发动机排气能够得到更充分的利用。
实施例2
本实施例提供一种涡轮增压系统,包括如图2所示的涡轮增压装置10和低压后处理装置20。
其中,涡轮增压装置10可以包括单轴向或单径向涡轮,也可以是多个轴向涡轮的组合,也可以是多个径向涡轮的组合,还可以是轴向涡轮和径向涡轮的组合等。具体的,涡轮增压装置10可以是实施例1中的涡轮增压装置10。
在一个实施例中,涡轮增压装置10发出的电可以供低压后处理系统20用电。
在一个实施例中,低压后处理装置20位于涡轮增压装置10后,用于对发动机排气进行处理,使发动机排气排入大气中时达到排放标准。低压后处理装置20的背压低于国六后处理系统同等水平,例如,低压后处理装置20的背压低于30KPa、20KPa、15KPa、10KPa、5KPa、3KPa。具体的,低压后处理装置20可以是电场处理系统。
实施例3
实施例提供了一种涡轮发电装置,包括涡轮增压器、至少一个二级涡轮单元以及增压器排气通道,所述增压器排气通道具有进口和至少一个出口,所述涡轮增压器包括增压器涡轮排气口,所述增压器排气通道的进口连通所述增压器涡轮排气口,所述增压器排气通道的出口连通所述二级涡轮单元。
在一个实施例中,所述二级涡轮单元包括至少一个二级涡轮,即二级涡轮单元包括一个或多个二级涡轮。
在一个实施例中,二级涡轮单元中的二级涡轮可以全部为径向涡轮,也可以为可以全部为轴向涡轮,或者可以部分为径向涡轮,部分为轴向涡轮。
在一个实施例中,所述二级涡轮单元包括涡轮轴和两个二级涡轮,即第一涡轮、第二涡轮,所述第一涡轮和所述第二涡轮位于所述涡轮轴上,且镜像相对设置。
在一个实施例中,所述第一涡轮、所述第二涡轮均为径向涡轮。
如图3所示,本实施例提供一种涡轮发电装置,包括涡轮增压器21、二级涡轮单元以及增压器排气通道29,二级涡轮单元包括第一涡轮22、第一涡轮进气口、第一涡轮排气口、第二涡轮23、第二涡轮进气口、第二涡轮排气口以及涡轮轴24,第一涡轮22、第二涡轮23位于涡轮轴24上,且相对设置。增压器排气通道具有进口和至少一个出口,所述涡轮增压器包括增压器涡轮211、增压器涡轮进气口、增压器涡轮排气口以及增压器压轮212。实施例中,增压器排气通道29具有进口和两个出口,即第一出口292和第二出口293,涡轮增压器21通过排气通道29分别与第一涡轮进气口和第二涡轮进气口连通。具体地,增压器排气通道29的进口连通增压器涡轮排气口,增压器排气通道29的第一出口292连通第一涡轮进气口,增压器排气通道的第二出口293连通第二涡轮进气口。
实施例中的高温的增压器排气通过增压器排气通道29被均分为两路,分别进入同轴双涡轮装置(二级涡轮单元)。同轴双涡轮装置有一对互为镜像的尾气涡轮和涡壳,两个涡轮背对背由一根轴联结在一起,由于进气压力、温度和转子转速基本近似,故两个涡轮的轴向力相互抵消或很小,能够达到自平衡状态,这样对于轴承的选择范围就变得很广,从而降低了制造成本。
在一个实施例中,涡轮由一对滑动轴承为转子提供支撑。
第一涡轮22、第二涡轮23可以都是轴向涡轮,也可以都是径向涡轮,也可以是径向和轴向的结合。优选的,第一涡轮12、第二涡轮23均为径向涡轮。具体地,第一涡轮进气口位于第一涡轮22的径向,第一涡轮排气口位于第一涡轮22的轴向,第二涡轮进气口位于第二涡轮23的径向,第二涡轮排气口位于第二涡轮23的轴向,第一涡轮进气口与第二涡轮进气口的进气方向相同,第一涡轮排气口与第二涡轮排气口的排气方向相反,且相背。
当第一涡轮22、第二涡轮23均为径向涡轮时,可以由一对轴承为涡轮轴提供支撑,而不需要用止推销抑制涡轮的轴向漂移,结构简单。
第一涡轮22与第二涡轮23互为镜像,且转速相同。来自涡轮增压器21的发动机排气在第一涡轮进气口和第二涡轮进气口处的进气压力、温度基本相同,高温排气被平均分配利用。本实施例在同一根轴上串联两个大小形状相同的涡轮,发动机排气可以带动第一涡轮22和第二涡轮23同速转动,最大限度避免了两个涡轮之间的相互影响。
涡轮增压器21包括增压器涡轮211、增压器压轮212、增压器涡轮进气口、增压器涡轮排气口。增压器涡轮进气口位于增压器涡轮的径向,增压器涡轮排气口位于增压器涡轮的轴向,且远离增压器压轮212。发动机排气从增压器涡轮211的径向上的增压器涡轮进气口进入增压器涡轮211的腔室,带动增压器涡轮211转动,然后从增压器涡轮211的轴向上的增压器涡轮排气口远离增压器叶轮212的一侧离开增压器涡轮211。增压器涡轮211转动带动与增压器涡轮211同轴的增压器叶轮212同速转动,为发动机进气增压。
增压器涡轮排气口与第一涡轮22和第二涡轮23的进气口连通。具体的,增压器涡轮排气口与第一涡轮进气口和第二涡轮进气口连通,从增压器涡轮排气口流出的发动机排气分成两支,一支从第一涡轮进气口流入,带动第一涡轮22转动,并从第一涡轮排气口流出,另一支从第二涡轮进气口流入,带动第二涡轮23转动,并从第二涡轮排气口流出。
涡轮发电装置还包括发电机25,发电机25位于第一涡轮22远离第二涡轮23的一侧,发电机25的旋转轴的轴线与第一涡轮22的轴线、第二涡轮23的轴线在同一条直线上。第一涡轮22与第二涡轮23转动可以带动发电机25发电。
具体的,发电机25包括电机轴,电机轴与涡轮轴24连接,连接方式可以是任何合适的方式,如采用联轴器。第一涡轮22与第二涡轮23转动带动电机轴转动,使发电机25发电。
涡轮增压装置还包括发动机26,发动机26包括发动机排气通道,发动机排气通道连通增压器涡轮进气口,使发动机排气进带动增压器涡轮211转动。
在一个实施例中,发动机26可以为六缸发动机。
实施例中的废气涡轮增压器前旁通的排气被引入一个小流量涡轮从而带动发电机发电。既不影响发动机背压又可利用旁通的排气能量发电。此方案的潜在好处是允许涡轮增 压器使用更小流量的涡轮以提高发动机低速扭矩和改善瞬态响应性。
本实施例使用两个较小流量的涡轮即可以提高排气流通速度又可以克服大流量涡轮的缺点,即将涡轮增压器流出后的发动机排气分成的两支的结构,既提高了排气流通速度又可以克服大流量涡轮的缺点,同时涡轮的效率较高,可大幅度提高发动机排气的能量转化率。
进一步地,高温排气被平均分配利用,两个涡轮大小相同且镜像设置使得其轴向力相互抵消,能够达到自平衡状态,这样对于轴承的选择范围就变得很广,从而降低了制造成本。
通常在发动机高转速工况下,发动机排气过剩,为了避免过增压现象,在涡轮增压器上设置旁通阀,将含有很高热量的发动机排气直接排掉,该发动机排气没有被充分利用,造成了大量的能源浪费。
本实施例利用涡轮增压器的径向涡轮后的高温尾气带动二级涡轮转动并带动发电机发电。
本实施例提供了一种交通工具,包括上述的涡轮发电装置。
在一个实施例中,交通工具包括汽车、船舶等。
本实施例提供一种涡轮发电方法,包括:
在一个实施例中,发动机排气从发动机排气通道进入涡轮增压器,从涡轮增压器流出后进入二级涡轮单元。
本实施例中,从涡轮增压器流出后发动机排气分成两支进入二级涡轮单元,一支进入第一涡轮,带动第一涡轮转动,并从第一涡轮的一端流出,另一支进入第二涡轮,带动第二涡轮转动,并从第二涡轮的一端流出。
其中,从涡轮增压器流出后的发动机排气分成的两支,一支从第一涡轮的径向进入、轴向流出,另一支从第二涡轮的径向流入、轴向流出。发动机排气进入第一涡轮的方向与进入第二涡轮的方向相同,从第一涡轮流出的方向与从第二涡轮的流出方向相背。具体的,发动机排气从第一涡轮径向上的一级涡轮进气口进入一级涡轮,并从第一涡轮轴向上的远离第二涡轮一侧的第一涡轮排气口流出。发动机排气从第二涡轮径向上的第二涡轮进气口进入第二涡轮,并从第二涡轮轴向上的远离第一涡轮一侧的第二涡轮排气口流出。
第一涡轮和第二涡轮同轴,且转速相同。在第一涡轮进气口和第二涡轮进气口处,进气压力、温度基本相同,发动机进气排气可以带动第一涡轮和第二涡轮同速转动。
发动机排气从发动机排气通道进入涡轮增压器的增压器涡轮,带动增压器涡轮转动,并从增压器涡轮的轴向排气口流出,增压器涡轮转动带动与增压器涡轮同轴的增压器压轮转动。
第一涡轮、第二涡轮转动带动发电机发电。
本实施例的涡轮发电方法将涡轮增压器流出后的发动机排气分成的两支,既提高了排气流通速度又可以克服大流量涡轮的缺点,同时涡轮的效率较高,可大幅度提高发动机排气的能量转化率。
实施例4
如图4所示,本实施例提供一种涡轮增压处理系统,包括涡轮发电装置210和低压后处理装置220,涡轮发电装置210可以包括至少一个二级涡轮单元,例如,二级涡轮单元中的涡轮可以是一个轴向或径向涡轮,也可以是多个轴向涡轮的组合,也可以是多个径向涡轮的组合,还可以是轴向涡轮和径向涡轮的组合。具体的,涡轮发电装置为实施例1中的涡轮发电装置。
低压后处理装置220位于涡轮增压装置210后,低压后处理装置220的背压低于国六后处理系统同等水平,具体的,低压后处理系统220的背压低于30KPa、20KPa、15KPa、10KPa、5KPa、3KPa。低压后处理装置220可以是电场处理系统。
本实施例应用于安装了无压力降尾气后处理装置的13升柴油机,实验结果显示排气背压低于30KPa(与国六后处理系统同等水平)、结构紧凑、发电量数倍于朗肯循环和e-TURBO。
在一个实施例中,涡轮发电装置210发出的电可以供低压后处理装置220用电。
实施例5
本实施例提供一种涡轮增压处理方法,包括:
发动机排气进入涡轮发电装置,通过涡轮发电装置后进入低压后处理系统,再从低压后处理系统流出。
其中,发动机排气进入涡轮发电装置后,带动涡轮转动,使发动机排气中的能量部分转换为电能。通过涡轮发电装置后的发动机排气进入低压后处理系统,对发动机排气进行处理。
在其中一种示例中,利用涡轮发电装置发出的电可以给低压后处理系统供电。
实施例6
在一个实施例中,一种涡轮发电装置包括涡轮增压器、涡轮增压器排气通道、至少一个一级涡轮单元、至少一个二极涡轮单元以及至少一个中间进气口,所述涡轮增压器包括增压器涡轮进气口和增压器涡轮排气口,所述一级涡轮单元包括一级涡轮、一级涡轮进气口和一级涡轮出气口,所述二级涡轮单元包括二级涡轮、二级涡轮进气口和二级涡轮出气口,所述一级涡轮出气口与所述二级涡轮进气口连通,所述中间进气口与所述二级涡轮进 气口连通,所述涡轮增压器排气通道的进口连通所述增压器涡轮排气口,所述涡轮增压器排气通道的出口连通所述中间进气口。
在一个实施例中,涡轮发电装置还包括发动机排气通道,所述发动机排气通道包括至少一个发动机排气通道出口。
在一个实施例中,所述发动机排气通道出口包括第一出口和第二出口,所述第一出口连通一级涡轮进气口,所述第二出口连通增压器涡轮进气口。
在一个实施例中,连通所述第一出口与所述一级涡轮进气口的通道上设有单向阀,用于控制通向一级涡轮的发动机排气量。
在一个实施例中,涡轮发电装置还包括涡轮转轴,所述一级涡轮、所述二级涡轮均位于所述涡轮转轴上,且转速相同。
在一个实施例中,所述一级涡轮为径流涡轮,所述二级涡轮为轴流涡轮。在其他实施例中,所述一级涡轮为轴流涡轮,所述二级涡轮为径流涡轮,或者,所述一级涡轮和所述二级涡轮均为径流涡轮,或者,所述一级涡轮和所述二级涡轮均为轴流涡轮。
在一个实施例中,涡轮发电装置还包括发电机,所述发电机包括发电机轴,所述发电机轴与所述涡轮转轴连接,且转速相同,所述发电机位于所述一级涡轮出气口的相反一侧。
在一个实施例中,一种涡轮发电装置包括涡轮增压器、涡轮增压器排气通道、至少一个一级涡轮单元、至少一个二极涡轮单元以及至少一个中间进气口,所述涡轮增压器包括增压器涡轮进气口和增压器涡轮排气口,所述一级涡轮单元包括一级涡轮、一级涡轮进气口和一级涡轮出气口,所述二级涡轮单元包括二级涡轮、二级涡轮进气口和二级涡轮出气口,所述一级涡轮出气口与所述二级涡轮进气口连通,所述中间进气口与所述二级涡轮进气口连通,所述涡轮增压器排气通道的进口连通所述增压器涡轮排气口,所述涡轮增压器排气通道的出口连通所述中间进气口。
如图5所示,本实施例提供一种涡轮发电装置310,包括涡轮增压器35、涡轮增压器排气通道353、至少一个一级涡轮单元、至少一个二级涡轮单元以及至少一个中间进气口33,具体的,涡轮增压器35包括增压器涡轮351、增压器涡轮进气口、增压器涡轮出气口以及增压器压轮352、增压器压轮进气口、增压器压轮出气口。增压器涡轮351和增压器压轮352同轴且转速相同。增压器涡轮进气口位于增压器涡轮351径向,增压器涡轮出气口位于增压器涡轮351轴向,且远离增压器压轮352。涡轮增压器进气口即为增压器涡轮进气口,涡轮增压器出气口即为增压器涡轮出气口。增压器压轮进气口位于增压器压轮352轴向,且远离增压器涡轮351,增压器压轮出气口位于增压器压轮352径向。
一级涡轮单元包括一级涡轮31、一级涡轮进气口和一级涡轮出气口,二级涡轮单元包括二级涡轮32、二级涡轮进气口和二级涡轮出气口,所述一级涡轮出气口与所述二级涡轮进气口连通,所述中间进气口与所述二级涡轮进气口连通,所述涡轮增压器排气通道 353的进口连通所述增压器涡轮排气口,所述涡轮增压器排气通道353的出口连通所述中间进气口33。其中,中间进气口33位于一级涡轮31与二级涡轮32之间,中间进气口33与二级涡轮进气口连通,涡轮增压器出气口与中间进气口33连通。图1中的箭头所示方向为发动机排气流动方向。
一级涡轮31、二级涡轮32可以都是轴流涡轮,也可以都是径流涡轮,也可以是径向和轴向的结合。实施例中,一级涡轮31为径流涡轮,二级涡轮32为轴流涡轮。
当一级涡轮31为径流涡轮,二级涡轮32为轴流涡轮时,一级涡轮进气口位于一级涡轮31径向,一级涡轮出气口位于一级涡轮31轴向,二级涡轮进气口位于二级涡轮32轴向,二级涡轮出气口位于二级涡轮32轴向。
涡轮发电装置还包括涡轮转轴34,一级涡轮31、二级涡轮32位于涡轮转轴34上,且转速相同。其中,一级涡轮31位于二级涡轮32进气口一侧,也就是说,一级涡轮出气口正对二级涡轮进气口。
涡轮发电装置还包括发电机36。发电机36包括发电机轴,发电机轴与涡轮转轴34连接,且转速相同。发电机36位于非一级涡轮出气口一侧,也就是说,一级涡轮出气口远离发电机36,一级涡轮31位于发电机36二级涡轮2之间。
涡轮发电装置还包括发动机37。
在一个实施例中,发动机37包括发动机进气通道、发动机排气通道,所述发动机排气通道包括至少一个发动机排气通道出口。其中,发动机进气通道连接增压器压轮出气口。
在本实施例中,所述发动机排气通道出口包括第一出口和第二出口,所述第一出口连通一级涡轮进气口,所述第二出口连通增压器涡轮进气口。即发动机排气通道一端连通发动机排气出口,另一端具有两支出口,一支出口即发动机排气通道第二出口连通涡轮增压器进气口(即位于增压器涡轮351径向上的增压器涡轮进气口),另一支出口即发动机排气通道第一出口连通位于一级涡轮31径向上的一级涡轮进气口。
在本实施例中,在发动机排气通道连接一级涡轮进气口的通道上,即连通所述第一出口与所述一级涡轮进气口的通道上设有单向阀38。单向阀38可以在发动机37排气不足时关闭,在发动机37排气过剩时开启,将多余的排气旁通进入一径流式涡轮机,高温高压的排气在此带动一级涡轮31旋转,这里是利用发动机排气径向冲击力大做功效率高的优势驱动径向涡轮即一级涡轮31旋转做功,其次,利用来自一级涡轮31流出的还含有很高热量的发动机排气加上来自增压器涡轮351排出的通过涡轮增压器排气通道353经过中间进气口33进入的发动机排气一起驱动二级涡轮32旋转做功,从而让还含有很高热量的发动机排气得到充分使用,这部分是利用了热膨胀做功效率高的优势,最终一级涡轮31和二级涡轮32做功旋转并带动发电机36发电。本实施例这样的分段利用,充分发挥了两股气体各自的优势,提高了排气能量的利用率,实现了系统要求的最优。
另外,实施例中的废气涡轮增压器前旁通的排气被引入一个小流量涡轮从而带动发电机36发电。这样既不影响发动机背压又可利用旁通的排气能量发电。此方案的另一个潜在好处是允许涡轮增压器使用更小流量的涡轮以提高发动机低速扭矩和改善瞬态响应性。因此,仅利用涡轮增压器旁通的排气发电,既不会影响涡轮增压器后的排气背压,减小一级涡轮31和二级涡轮32对排气背压的影响。另外还提高了排气能量的利用率。
本实施例提供了一种交通工具,包括上述的涡轮发电装置。
在一个实施例中,交通工具包括汽车、船舶等。
实施例7
如图6所示,本实施例提供一种涡轮发电系统,包括涡轮发电装置310和低压后处理装置320,涡轮发电装置310可以包括至少一个涡轮,例如,可以是一个轴向或径向涡轮,也可以是多个轴向涡轮的组合,也可以是多个径向涡轮的组合,还可以是轴向涡轮和径向涡轮的组合。低压后处理装置320的背压低于国六后处理系统同等水平,具体的,低压后处理系统20的背压低于30KPa、20KPa、15KPa、10KPa、5KPa、3KPa。
具体的,涡轮发电装置为实施例1中的涡轮发电装置,低压后处理装置320可以是电场处理系统。
在一个实施例中,涡轮发电装置310发出的电可以供低压后处理装置320用电。
本实施例提供一种涡轮增压方法,包括:
发动机排气一部分进入涡轮增压器,带动涡轮增压器工作,并从涡轮增压器流出;
发动机排气另一部分进入一级涡轮,带动一级涡轮转动,并从一级涡轮流出;
从涡轮增压器流出的发动机排气和从一级涡轮流出的发动机排气一起流入二级涡轮,带动二级涡轮转动。
其中,发动机排气一部分从涡轮增压器中的增压器涡轮的径向进入增压器涡轮,并带动增压器涡轮转动,然后从增压器涡轮轴向流出。增压器涡轮转动带动同轴的增压器压轮同速转动。空气从增压器压轮的轴向流入,经增压器压轮增压后,从增压器压轮的径向流出,进入发动机,为发动机进气增压。
发动机排气另一部分从一级涡轮的径向进入一级涡轮,带动一级涡轮转动,并从一级涡轮的轴向流出。一级涡轮转动带动同轴的二级涡轮同速转动,并通过发电机发电。发动机排气另一部分通过单向阀进入一级涡轮。当发动机排气不足时关闭单向阀,发动机排气过剩时开启单向阀,使一级涡轮和二级涡轮对排气背压的影响尽可能减小。
从涡轮增压器流出的发动机排气和从一级涡轮流出的发动机排气从二级涡轮的轴向 进入,带动二级涡轮转动,并从二级涡轮的轴向流出。
从二级涡轮流出的发动机排气进入低压后处理系统,低压后处理系统对发动机排气进行净化处理,使发动机排气达到排放标准。
于本实施例中,可以利用涡轮发电装置发出的电给低压后处理系统供电。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (12)

  1. 一种涡轮增压装置,其特征在于,包括依次设置的起发电机、压轮、一级涡轮、至少一个二级涡轮,发动机排气从一级涡轮流向二级涡轮,发动机排气推动所述一级涡轮和所述二级涡轮转动。
  2. 如权利要求1所述的涡轮增压装置,其特征在于,所述起发电机的电机轴轴线、所述压轮的轴线、所述一级涡轮的轴线、所述二级涡轮的轴线均位于同一条直线上。
  3. 如权利要求1或2所述的涡轮增压装置,其特征在于,还包括发动机,所述发动机包括发动机进气通道和发动机排气通道,空气经所述压轮增压后进入发动机进气通道,发动机排气从所述发动机排气通道排出以推动所述一级涡轮。
  4. 如权利要求3所述的涡轮增压装置,其特征在于,所述发动机的转速在低速状态时,所述起发电机作为电动机用于增加所述压轮的转速,所述发动机的转速在高速状态时,所述起发电机作为发电机,所述一级涡轮和所述二级涡轮带动所述起发电机旋转发电。
  5. 如权利要求1或2所述的涡轮增压装置,其特征在于,所述一级涡轮为径向涡轮,所述二级涡轮为轴向涡轮。
  6. 如权利要求1或2所述的涡轮增压装置,其特征在于,所述二级涡轮包括多个串联的轴向涡轮。
  7. 如权利要求1至6中任一项所述的涡轮增压装置,其特征在于,还包括ECU控制器和蓄电池,所述ECU控制器分别连接所述起发电机和所述蓄电池。
  8. 一种交通工具,其特征在于,包括如权利要求1至7中任一项所述的涡轮增压装置。
  9. 一种涡轮增压方法,其特征在于,包括以下步骤:
    起发电机带动压轮、一级涡轮、二级涡轮转动,发动机排气从发动机排气通道进入所述一级涡轮进气口,推动所述一级涡轮转动,发动机排气从所述一级涡轮流向所述二级涡轮,空气进入压轮进气口,经所述压轮增压后进入发动机进气通道。
  10. 一种涡轮增压方法,其特征在于,包括以下步骤:
    发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,一级涡轮转动带动压轮与二级涡轮转动,发动机排气从一级涡轮流向二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道;或
    发动机排气从发动机排气通道进入一级涡轮进气口,推动所述一级涡轮转动,所述一级涡轮转动带动起发电机、压轮、二级涡轮转动,发动机排气从所述一级涡轮流向所述二级涡轮,空气进入压轮进气口,经压轮增压后进入发动机进气通道。
  11. 如权利要求9或10所述的涡轮增压方法,其特征在于,所述发动机排气从发动机排 气通道进入一级涡轮进气口包括:所述发动机排气从所述发动机排气通道经所述一级涡轮的径向进入所述一级涡轮进气口,所述发动机排气从所述一级涡轮的轴向流出,并经所述二级涡轮的轴向流入所述二级涡轮,所述二级涡轮包括一个或多个串联的轴向涡轮。
  12. 一种涡轮增压系统,包括涡轮增压装置和低压后处理装置,所述涡轮增压装置为权利要求1至7中任一项所述的涡轮增压装置,所述低压后处理装置位于涡轮增压装置后,用于对发动机排气进行处理后达到排放标准。
PCT/CN2021/095216 2020-05-21 2021-05-21 涡轮增压装置、方法以及增压系统 WO2021233431A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010437560.9 2020-05-21
CN202010437560 2020-05-21
CN202010473008 2020-05-29
CN202010473008.5 2020-05-29
CN202010501887.8 2020-06-04
CN202010501887 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021233431A1 true WO2021233431A1 (zh) 2021-11-25

Family

ID=78707716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095216 WO2021233431A1 (zh) 2020-05-21 2021-05-21 涡轮增压装置、方法以及增压系统

Country Status (2)

Country Link
CN (3) CN216157718U (zh)
WO (1) WO2021233431A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087273A2 (en) * 2008-01-10 2009-07-16 Wärtsilä Finland Oy Turbocharger arrangement for a piston engine
CN102444464A (zh) * 2011-11-03 2012-05-09 上海交通大学 双涡单压涡轮增压系统
JP2012102651A (ja) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd エンジン排気ガス浄化装置
CN204253169U (zh) * 2014-11-25 2015-04-08 山东交通学院 一种双独立涡轮可变增压器
CN108463621A (zh) * 2016-01-15 2018-08-28 三菱重工业株式会社 内燃机、内燃机的控制装置和方法
JP2019081504A (ja) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN110053491A (zh) * 2019-05-06 2019-07-26 大连海事大学 一种适用于电动汽车的双涡轮微燃机增程器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087273A2 (en) * 2008-01-10 2009-07-16 Wärtsilä Finland Oy Turbocharger arrangement for a piston engine
JP2012102651A (ja) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd エンジン排気ガス浄化装置
CN102444464A (zh) * 2011-11-03 2012-05-09 上海交通大学 双涡单压涡轮增压系统
CN204253169U (zh) * 2014-11-25 2015-04-08 山东交通学院 一种双独立涡轮可变增压器
CN108463621A (zh) * 2016-01-15 2018-08-28 三菱重工业株式会社 内燃机、内燃机的控制装置和方法
JP2019081504A (ja) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN110053491A (zh) * 2019-05-06 2019-07-26 大连海事大学 一种适用于电动汽车的双涡轮微燃机增程器

Also Published As

Publication number Publication date
CN216157718U (zh) 2022-04-01
CN216008614U (zh) 2022-03-11
CN216157719U (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
JP4892054B2 (ja) 排気ターボチャージャを備えた内燃機関
US8141360B1 (en) Hybrid gas turbine and internal combustion engine
CN107939513B (zh) 电辅助离合式动力涡轮复合增压器
US10513972B2 (en) Supercharger device for an internal combustion engine, and a method for operating said supercharger device
JP6738232B2 (ja) エンジンシステム
US9096116B2 (en) Drive with an internal combustion engine and an expansion machine with gas return
US20100170245A1 (en) Turbocharger configuration and turbochargeable internal combustion engine
CN105927370A (zh) 电辅助涡轮增压系统及其控制方法
CN102628396B (zh) 再生辅助涡轮增压系统
JP2006529016A (ja) 後退翼ブレードを持つコンプレッサホイールが設けられたラジアルタイプのコンプレッサステージからなる内燃エンジンのためのターボチャージャシステム
CN102421999A (zh) 带有相继增压系统的内燃机
CN103089405A (zh) 转子离合式电动发电涡轮增压器
CN102644499A (zh) 基于布雷顿循环的余热利用系统及余热利用发动机
CN105781716A (zh) 电辅助可变喷嘴涡轮增压系统及其控制方法
KR20210070826A (ko) 하이브리드 차량
CN110878713A (zh) 一种用于汽油机的复合涡轮增压系统
CN110500174A (zh) 一种并联式电动增压系统及其控制方法
CN105065110A (zh) 一种有机朗肯循环和电力双驱动的内燃机增压系统
CN109386376B (zh) 发动机增压系统、汽车及发动机增压系统的控制方法
CN113202643A (zh) 一种具有能量回收装置的系统及控制方法
WO2021233431A1 (zh) 涡轮增压装置、方法以及增压系统
WO2019192078A1 (zh) 一种两级涡轮增压系统
CN109944683A (zh) 柔性电动复合涡轮增压系统
CN205779233U (zh) 电动废气涡轮增压器装置
CN205349509U (zh) 一种增压柴油机复合相继增压结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808177

Country of ref document: EP

Kind code of ref document: A1