WO2021233356A1 - 一种基于 harq 进程的数据传输方法及终端 - Google Patents

一种基于 harq 进程的数据传输方法及终端 Download PDF

Info

Publication number
WO2021233356A1
WO2021233356A1 PCT/CN2021/094719 CN2021094719W WO2021233356A1 WO 2021233356 A1 WO2021233356 A1 WO 2021233356A1 CN 2021094719 W CN2021094719 W CN 2021094719W WO 2021233356 A1 WO2021233356 A1 WO 2021233356A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
pending
terminal
harq process
bwp
Prior art date
Application number
PCT/CN2021/094719
Other languages
English (en)
French (fr)
Inventor
赵力
酉春华
娄崇
郭英昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022023357A priority Critical patent/BR112022023357A2/pt
Priority to EP21808937.3A priority patent/EP4145738A4/en
Publication of WO2021233356A1 publication Critical patent/WO2021233356A1/zh
Priority to US17/990,213 priority patent/US20230081816A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and terminal based on a Hybrid Automatic Repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) process.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ
  • the terminal supports multiple bandwidth parts (BWP) on an activated bandwidth part (BWP).
  • BWP bandwidth parts
  • Pre-configured authorization configuration configured grant configuration, CG configuration.
  • the CG configuration indicates the resources required for the uplink transmission (that is, the transmission of uplink data) pre-configured by the network device for the terminal, and the multiple CG configurations can share the HARQ process (that is, the HARQ process).
  • the terminal uses a HARQ process associated with a certain CG configuration to start sending uplink data, and uses the Listen Before Talk (LBT) mechanism to successfully send uplink data before starting the configured grant timer (CGT) and Pre-configured authorized retransmission timer (configured grant retransmission timer, CGRT).
  • LBT Listen Before Talk
  • CGT is used to limit the total duration of the process of transmitting one uplink data
  • CGRT is used to limit the transmission interval between retransmissions in the process of transmitting one uplink data.
  • the process of transmitting an uplink data includes new transmission and retransmission of the same uplink data.
  • the new transmission refers to the first transmission of uplink data.
  • Retransmission refers to sending uplink data each time after a new transmission fails.
  • both CGT and CGRT start timing.
  • the timing duration of the CGRT is equal to the retransmission duration threshold, or the terminal receives a non-acknowledgement (Negative Acknowledgement, NACK) feedback
  • NACK non-acknowledgement
  • the terminal automatically retransmits using the HARQ process on the CG configuration.
  • the terminal uses the HARQ process to retransmit on the CG configuration
  • the CGRT is started only when the LBT mechanism is used to successfully send the uplink data.
  • the timing duration of the CGT is equal to the transmission duration threshold, or the terminal receives an Acknowledgement (ACK) feedback
  • the CGT is stopped. At this time, the terminal can use the HARQ process to transmit other uplink data.
  • the terminal fails to transmit uplink data when LBT fails when using the HARQ process for new transmission, CGT and CGRT will not be started, and the uplink data will always be stored in the HARQ buffer (HARQ buffer) of the HARQ process. . Since the CGT is not running, the terminal may use the HARQ process to newly transmit the next uplink data, and the next uplink data will flush out the uplink data in the HARQ buffer. In this case, the medium access control (MAC) layer does not send the uplink data to the network device, nor does it send the uplink data again. In other words, it can only rely on the upper layer to retransmit the uplink data.
  • MAC medium access control
  • the NR-U system introduced a pending pending state of the HARQ process.
  • the terminal determines that the HARQ process is not pending; otherwise, it determines that the HARQ process is pending.
  • the pending state of the HARQ process is cancelled only when the uplink data is successfully sent or the buffer of the HARQ process is cleared.
  • the terminal in order to avoid the situation that the uplink data is discarded, the terminal not only determines that the CGRT and CGT stop timing, but also determines that the HARQ process is not pending before using the HARQ process to newly transmit the next uplink data.
  • the terminal cannot use the new HARQ transmission if it is not clear about the status of the HARQ process, that is, the HARQ process lacks the initial state (that is, the non-suspended state), which makes it impossible to use the HARQ.
  • the process is new.
  • the embodiment of the present application provides a data transmission method and terminal based on the HARQ process, which can determine the initial state of the HARQ process, and then can use the HARQ process in a not pending state for new transmission.
  • an embodiment of the present application provides a data transmission method based on the HARQ process.
  • the terminal may set one or more HARQ processes associated with the first CG configuration on the first part of the bandwidth BWP to the not pending state.
  • the first CG configuration may include one or more CG configurations configured by the network device for the terminal on the first BWP.
  • the first BWP is the BWP currently activated by the terminal. Then, the terminal can use the HARQ process associated with the first CG configuration and in the not pending state to send uplink data to the network device.
  • the terminal can set one or more HARQ processes associated with the first CG configuration to the not pending state.
  • the setting of the initial state (that is, the not pending state) of the one or more HARQ processes is realized.
  • the one or more HARQ processes are in the not pending state, which indicates that the one or more HARQ processes are available for new transmission. Therefore, the terminal can use one HARQ process among the one or more HARQ processes to newly transmit. In this way, it is possible for the terminal to use the new HARQ process whose initial state is not pending.
  • the terminal when receiving the first signaling related to the CG configuration, the terminal may set one or more HARQ processes associated with the first CG configuration to the not pending state.
  • the CG configuration indicated by the first signaling is the first CG configuration; the first signaling may include radio resource control (Radio Resource Control, RRC) signaling and Downlink Control Information (DCI) activation commands .
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the RRC signaling is used to configure and activate the CG configuration for the terminal.
  • the RRC signaling can also be used to configure only the CG configuration for the terminal.
  • the DCI activation command is used to activate the configured CG configuration of the terminal (first activation or reactivation).
  • the first CG configuration may include all CG configurations configured by the network device using RRC signaling for the terminal, and all CG configurations of this configuration may include activated CG configurations and inactive CG configurations.
  • the first CG configuration may also include a CG configuration configured and activated by the network device using RRC for the terminal.
  • the first CG configuration may also include that the network device uses the DCI activation command to activate (first activate or reactivate) the configured CG configuration for the terminal.
  • the terminal may determine the first CG configuration according to the first signaling; Multiple HARQ processes are set.
  • the terminal may receive a DCI activation command from the network device.
  • the DCI activation command is used to instruct the terminal to activate (first activation or reactivation) a CG configuration, which is activated (first activation or reactivation).
  • a CG configuration that is activated or reactivated) is the first CG configuration.
  • the terminal may set the aforementioned one or more HARQ processes to the not pending state.
  • the foregoing terminal setting one or more HARQ processes associated with the first CG configuration on the first BWP to the not pending state includes: in response to receiving a DCI activation command from the network device, the terminal configures the first CG The associated one or more HARQ processes are set to the not pending state.
  • the terminal will activate the first CG configuration in response to the DCI activation command, and the activated first CG configuration can be used directly.
  • the uplink data is sent through the available first CG configuration, specifically, the uplink data is sent using a certain HARQ process associated with the first CG configuration.
  • the terminal may also indicate the DCI activation command to one or more HARQs associated with the activated first CG configuration The process is set to the not pending state.
  • the terminal may receive RRC signaling from the network device.
  • the RRC signaling can be used to configure and activate the first CG configuration for the terminal, and can also be used to configure only the first CG configuration for the terminal (that is, only configure but not activate the first CG configuration).
  • the terminal may set the aforementioned one or more HARQ processes to the not pending state.
  • the foregoing terminal setting one or more HARQ processes associated with the first CG configuration on the first BWP to the not pending state includes: in response to receiving the RRC signaling from the network device, the terminal may set the first CG Configure one or more HARQ processes that are associated to be set to the not pending state.
  • the terminal configures and activates the first CG configuration on the currently activated first BWP, or only configures the first CG configuration.
  • Either the configured and activated first CG configuration or only the configured first CG configuration may be used to send uplink data.
  • the uplink data is sent through the available first CG configuration, specifically, the uplink data is sent using a certain HARQ process associated with the first CG configuration.
  • the terminal may also set one or more HARQ processes associated with the available first CG configuration to not pending state.
  • the one or more HARQ processes associated with the first CG configuration may include all HARQ processes associated with the first CG configuration. That is, the terminal can set all HARQ processes associated with the first CG configuration to the not pending state.
  • the one or more HARQ processes associated with the foregoing first CG configuration may include part of the HARQ processes associated with the first CG configuration.
  • the one or more HARQ processes associated with the first CG configuration may include: HARQ processes in the pending state among the HARQ processes associated with the first CG configuration; or, the HARQ processes associated with the first CG configuration The first HARQ process in the HARQ process; or, the HARQ process that is not being used in the HARQ process associated with the first CG configuration; or, the corresponding HARQ process in the HARQ process associated with the first CG configuration (ie Corresponding HARQ process).
  • the aforementioned corresponding HARQ process is a HARQ process randomly selected by the terminal.
  • the terminal can clear the buffers of all HARQ processes associated with the second CG configuration on the first BWP, Or, all HARQ processes associated with the second CG configuration on the first BWP can be set to the not pending state.
  • the second GG configuration includes all the CG configurations configured by the network device for the terminal on the first BWP, or the activated CG configuration of the terminal on the first BWP.
  • the second CG configuration may be the same as the first CG configuration, or may be different from the first CG configuration.
  • the terminal can switch from the first BWP to other BWPs.
  • any one or more associated with the second CG configuration on the first BWP that is, all the CG configurations configured by the network device for the terminal on the first BWP or the activated CG configuration of the terminal on the first BWP
  • the HARQ process may be in the pending state because of failure to send uplink data.
  • the CG configuration on other BWPs after the handover may also be associated with any one or more HARQ processes that are in the pending state due to failure to send uplink data.
  • any one or more HARQ processes are still in the pending state, the new transmission of any one or more HARQ processes cannot be used on the CG configuration on other BWPs after the handover; in this application, the terminal is determining the first After the BWP fails N consecutive uplink LBTs, any one or more HARQ processes associated with the second CG configuration on the first BWP can be set to the not pending state, so that it can be reused on other BWPs after the handover The any one or more HARQ processes are newly transmitted.
  • the terminal After receiving an instruction to activate the above-mentioned first BWP from a network device, the terminal starts to count the total number of uplink LBT failures on the first BWP.
  • the total number of uplink LBT failures on the first BWP may include the number of uplink LBT failures for all uplink transmissions (that is, the process of transmitting all uplink data) on the first BWP.
  • the terminal determines that the first BWP has N consecutive uplink LBT failures, triggers the continuous uplink LBT failure state, and clears the buffer of the HARQ process associated with the second CG configuration on the first BWP, or The HARQ process associated with the second CG configuration on the first BWP is set to the not pending state.
  • the terminal determines that N consecutive uplink LBT failures occur on the first BWP, and triggers the continuous uplink LBT failure state.
  • the terminal sends medium access control control elements (MAC CE) to the network device, it clears the buffer of the HARQ process associated with the second CG configuration on the first BWP, or removes the first BWP from the first BWP. 2.
  • the HARQ process associated with the CG configuration is set to the not pending state.
  • the MAC CE includes the LBT failure status indicator bit of the serving cell where the terminal is located. This design method provides a possible opportunity for the terminal to perform "clearing the buffers of all HARQ processes associated with the second CG configuration, or setting all HARQ processes associated with the second CG configuration to the not pending state".
  • the terminal when the terminal is located in the primary cell or primary and secondary cell and actively switches from the first BWP to the second BWP, all HARQs associated with the second CG configuration can be cleared Process cache, or set all HARQ processes associated with the second CG configuration to the not pending state.
  • the second BWP is a BWP configured with physical random access channel (Physical Random Access Channel, PRACH) resources and has not experienced N consecutive uplink LBT failures, and the second BWP and the first BWP belong to the same serving cell.
  • PRACH Physical Random Access Channel
  • N consecutive uplink LBT failures have not occurred may mean “N consecutive uplink LBT failures have not occurred as of the current moment”.
  • the terminal may receive a BWP switching instruction from the network device; in response to the BWP switching instruction, the terminal may clear the buffers of all HARQ processes associated with the second CG configuration, or change the first 2. All HARQ processes associated with the CG configuration are set to the not pending state.
  • This design method provides a possible opportunity for the terminal to perform "clearing the buffers of all HARQ processes associated with the second CG configuration, or setting all HARQ processes associated with the second CG configuration to the not pending state".
  • the terminal determines whether the HARQ process used to send uplink data is newly transmitted or retransmitted each time, and judges whether the HARQ process used to send uplink data is in the pending state. If the HARQ process used to send uplink data is in the pending state, the number of pending times recorded by the pending counter is increased by 1; the initial value of the number of pending times recorded by the pending counter is zero. If the pending number recorded by the pending counter is equal to the preset number threshold, the terminal clears the buffer of the HARQ process used to send uplink data, or sets the HARQ process used to send uplink data to the not pending state. Wherein, after the buffer of the HARQ process used to send uplink data is cleared, the HARQ process used to send uplink data is in the not pending state.
  • the terminal can determine whether the HARQ process used to send the uplink data is in the pending state or the not pending state each time it determines that the HARQ process used to send the uplink data is newly transmitted or retransmitted.
  • the pending state the number of pending counters recorded by the pending counter is increased by 1; if it is in the not pending state, the number of pending counters recorded by the pending counter is not increased by 1.
  • the number of pending times recorded by the pending counter indicates the total number of times that the HARQ process used to send uplink data changes to the pending state during the process of transmitting uplink data. If the total number of times is equal to the preset number of times threshold, the HARQ process used to send uplink data is not pending (that is, the buffer of the HARQ process used to send uplink data is cleared or the HARQ process used to send uplink data is set Is not pending). In other words, the HARQ process used to transmit uplink data can be used to newly transmit other uplink data.
  • the problem that the HARQ process for sending uplink data fails to send the uplink data multiple times is solved, and the HARQ process for sending uplink data is in the pending state for a long time, that is, the problem is occupied for a long time.
  • each time the terminal determines a new transmission or retransmission of the HARQ process used to send uplink data it determines whether the HARQ process used to send uplink data is in the pending state or the not pending state. It is determined that the HARQ process for sending uplink data is in the pending state and the pending timer is not started, and the pending timer is started. It is determined that the HARQ process used to send the uplink data is in the not pending state and the pending timer is running, and the pending timer is stopped.
  • the terminal clears the buffer of the HARQ process used to send uplink data, or sets the HARQ process used to send uplink data to the not pending state.
  • the suspension timer is used to count the total time that the HARQ process used to send uplink data is in the pending state during the process of transmitting uplink data. After the buffer of the HARQ process used to send uplink data is cleared, the HARQ process used to send uplink data is in the not pending state.
  • the terminal can determine whether the HARQ process for sending the uplink data is in a pending state or a not pending state each time the HARQ process for sending the uplink data is newly transmitted or retransmitted. If it is in the pending state, start the suspend timer if the suspend timer is not started, or the running suspend timer continues to run. In the not pending state, the pending timer will not be started if the pending timer is not started, and the pending timer will be stopped when the pending timer is running.
  • the suspension timer is used to count the total time that the HARQ process for sending uplink data is continuously in the pending state during the process of transmitting uplink data. Then, the timing duration obtained by the terminal through the suspension timer is the total duration of the HARQ process used to transmit the uplink data in the pending state continuously during the transmission of the uplink data. If the total duration is equal to the preset duration threshold, the HARQ process for sending uplink data is set to the not pending state (that is, the buffer of the HARQ process for sending uplink data is cleared and the HARQ process for sending uplink data is set Is not pending). In other words, the HARQ process used to transmit uplink data can be used to newly transmit other uplink data.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a state setting unit and a data sending unit.
  • the state setting unit is configured to set one or more HARQ processes associated with the first CG configuration on the first BWP to the not pending state; wherein, the first CG configuration includes one configured by the network device for the terminal on the first BWP Or multiple CG configurations; the first BWP is the BWP currently activated by the terminal.
  • the data sending unit is configured to use the HARQ process associated with the first CG configuration and in the not pending state to send uplink data to the network device.
  • the state setting unit is specifically configured to set one or more HARQ processes associated with the first CG configuration to not pending in response to receiving a DCI activation command from the network device state.
  • the DCI activation command is used to instruct the terminal to activate the first CG configuration.
  • the state setting unit is specifically configured to set one or more HARQ processes associated with the first CG configuration to not in response to receiving RRC signaling from the network device. pending state.
  • the RRC signaling is used to configure and activate the first CG configuration for the terminal, or to configure only the first CG configuration for the terminal.
  • the one or more HARQ processes associated with the first CG configuration include: all HARQ processes associated with the first CG configuration; or, the HARQ processes associated with the first CG configuration HARQ process in the pending state in the HARQ process; or, the first HARQ process in the HARQ process associated with the first CG configuration; or, the HARQ process that is not in use in the HARQ process associated with the first CG configuration; Or, the corresponding HARQ process in the HARQ process associated with the first CG configuration.
  • the corresponding HARQ process is a HARQ process randomly selected by the terminal.
  • the state setting unit is further configured to, if it is determined that N consecutive uplink LBT failures have occurred on the first BWP, clear all HARQs associated with the second CG configuration on the first BWP Process cache, or set all HARQ processes associated with the second CG configuration on the first BWP to the not pending state.
  • N the number of uplink LBT failures have occurred on the first BWP
  • the second GG configuration includes all CG configurations configured by the network device for the terminal on the first BWP, or activated CG configurations for the terminal on the first BWP. After the buffers of all HARQ processes associated with the second GG configuration are cleared, all HARQ processes associated with the second GG configuration are in the not pending state.
  • the state setting unit is specifically used to clear the buffers of all HARQ processes associated with the second CG configuration on the first BWP when sending MAC CE to the network device, or change All HARQ processes associated with the second CG configuration on the first BWP are set to the not pending state.
  • the MAC CE includes the LBT failure status indicator bit of the serving cell where the terminal is located.
  • the state setting unit is specifically configured to clear the second CG when the terminal is located in the primary cell or the primary and secondary cell and actively switches from the first BWP to the second BWP Configure the cache of all the HARQ processes associated with the configuration, or set all the HARQ processes associated with the second CG configuration to the not pending state.
  • the second BWP is a BWP that is configured with PRACH resources and has not experienced N consecutive uplink LBT failures, and the second BWP and the first BWP belong to the same serving cell.
  • the terminal further includes: a communication unit.
  • the communication unit is used to receive the BWP switching instruction from the network device.
  • the state setting unit is specifically configured to clear the buffers of all HARQ processes associated with the second CG configuration, or set all HARQ processes associated with the second CG configuration to the not pending state in response to the BWP switching instruction.
  • the terminal further includes: a frequency counting unit.
  • the frequency counting unit is used to determine the new transmission or retransmission of the HARQ process for sending uplink data each time, and to determine whether the HARQ process for sending uplink data is in the pending state; if the HARQ process for sending uplink data is in the pending state, The number of pending counters recorded by the pending counter is incremented by 1. The initial value of the number of pending counts recorded by the pending counter is zero.
  • the state setting unit is also used for clearing the HARQ process buffer for sending uplink data if the pending times recorded by the pending counter is equal to the preset threshold value, or setting the HARQ process for sending uplink data to the not pending state. Wherein, after the buffer of the HARQ process used to send uplink data is cleared, the HARQ process used to send uplink data is in the not pending state.
  • the terminal further includes: a duration statistics unit.
  • the duration statistics unit is used to determine the new transmission or retransmission of the HARQ process used to send uplink data each time, to determine whether the HARQ process used to send uplink data is pending or not pending; to determine the HARQ process used to send uplink data is In the pending state and the suspend timer is not started, start the suspend timer; determine that the HARQ process for sending uplink data is not pending and the suspend timer is running, stop the suspend timer.
  • the state setting unit is also used for clearing the buffer of the HARQ process for sending uplink data, or setting the HARQ process for sending uplink data to the not pending state if the duration of the suspension timer is equal to the preset duration threshold.
  • the suspension timer is used to count the total time that the HARQ process used to send uplink data is in the pending state during the process of transmitting uplink data. After the buffer of the HARQ process used to send uplink data is cleared, the HARQ process used to send uplink data is in the not pending state.
  • an embodiment of the present application provides a terminal.
  • the terminal includes: a processor, a memory, and a communication interface; the memory and the communication interface are coupled with the processor, and the memory is used to store computer program codes, and the computer program codes include computer instructions, and the memory It includes a non-volatile storage medium, and when the processor executes a computer instruction, it causes the terminal to execute the method described in the first aspect and any one of its possible design manners.
  • an embodiment of the present application provides a computer storage medium, the computer storage medium includes computer instructions, and when the computer instructions run on a terminal, the terminal executes the first aspect and any of its possible design methods The method described.
  • embodiments of the present application provide a computer program product, which when the computer program product runs on a terminal, causes the terminal to execute the method described in the first aspect and any of its possible design methods.
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the principle of a method for a terminal to send uplink data to a network device according to an embodiment of the application;
  • FIG. 4 is a first flowchart of a HARQ process-based data transmission method provided by an embodiment of the application
  • FIG. 5 is a second flowchart of a HARQ process-based data transmission method provided by an embodiment of the application.
  • FIG. 6 is a third flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 7 is a fourth flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 8 is a fifth flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 9 is a sixth flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 10 is a seventh flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 11 is a flowchart eight of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 12 is a ninth flowchart of a HARQ process-based data transmission method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram 1 of the structural composition of a terminal provided by an embodiment of this application.
  • FIG. 14 is a second schematic diagram of the structural composition of a terminal provided by an embodiment of the application.
  • first and second mentioned in the embodiments of the present application are used to distinguish different objects, or used to distinguish different processing of the same object, rather than describing a specific order of the objects.
  • first BWP and the second BWP are different BWPs.
  • the data transmission method based on the HARQ process provided by the embodiment of the present application can be applied to a process in which a terminal transmits uplink data to a network device.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system provided by an embodiment of this application.
  • the mobile communication system may include: a core network device 110, a wireless access network device 120, and at least one terminal (including a terminal 130 and a terminal 140). Among them, at least one terminal is connected to the wireless access network device 120 in a wireless manner, and the wireless access network device 120 is connected to the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the radio access network device 120 can be separate and different physical devices, or the functions of the core network device 110 and the logical functions of the radio access network device 120 can be integrated on the same physical device.
  • the terminal 130 or the terminal 140 may be a fixed position or movable. In the embodiments of the present application, at least one may be one, two, three, or more, which is not limited in the embodiments of the present application.
  • FIG. 1 is only a schematic diagram, and the mobile communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network equipment 110, radio access network equipment 120, and terminals included in the mobile communication system.
  • the wireless access network device 120 is an access device that the terminal accesses to the mobile communication system in a wireless manner, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), and a transmission reception point (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the wireless access network device 120 may also be a module or unit that completes part of the functions of the base station. For example, it can be a centralized unit (central unit, CU), or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device 120.
  • the wireless access network device 120 is referred to as a network device. Unless otherwise specified, the network device refers to the wireless access network device 120.
  • the device used to implement the function of the wireless access network device 120 may be a network device; it may also be a device capable of supporting the wireless access network device 120 to implement the function, such as a chip system. It is installed in the wireless access network device 120 or used in conjunction with the wireless access network device 120.
  • the device used to implement the functions of the radio access network device 120 is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the terminal involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), and so on.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminals, augmented reality terminals, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and wireless terminals in smart grids.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • the terminal 130 and the terminal 140 included in the system architecture of the present application are all shown by taking a mobile phone as an example.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, which may be installed in the terminal or used in conjunction with the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can be deployed on water; or, they can be deployed on airplanes, balloons, or satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of network devices and terminals.
  • a terminal can access network equipment and communicate with the network equipment wirelessly.
  • one network device can manage one or more (for example, 3 or 6, etc.) cells, and the terminal can access the network device in at least one of the one or more cells, and where the terminal is located Communicate with network equipment in the cell.
  • the basis of wireless communication is spectrum resources.
  • Spectrum resources are divided into licensed spectrum and unlicensed spectrum (unlicensed spectrum).
  • the authorized spectrum can only be used by a specific operator in a certain place, while the unlicensed spectrum can be used by any operator and is a shared spectrum resource.
  • the network device and the terminal can communicate through licensed spectrum, can communicate through unlicensed spectrum, or can communicate through licensed spectrum and unlicensed spectrum.
  • a network device and a terminal can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, or communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz.
  • the embodiments of the present application are mainly aimed at a situation where a terminal uses an unlicensed spectrum to communicate with a network device.
  • the embodiment of the present application takes the interaction between the radio access network device (network device) 120 and the terminal 130 as an example to introduce the radio access network device 120 and the terminal 130 in the system architecture shown in FIG. 1.
  • the radio access network device 120 activates the first BWP for the terminal 130, and configures at least one CG configuration and the HARQ process associated with the at least one CG configuration on the first BWP for the terminal 130. Then, the terminal 130 may use the HARQ process associated with an activated CG configuration on the first BWP to send uplink data to the radio access network device 120. If sending the uplink data fails, the terminal 130 continues to use the HARQ process to send the uplink data; if sending the uplink data is successful, it waits for feedback from the radio access network device 120.
  • the terminal 130 determines that the uplink data is successfully transmitted to the radio access network device 120; if receiving the NACK feedback from the radio access network device 120, the terminal 130 determines to transmit the uplink data to If the radio access network device 120 fails, it can continue to use the HARQ process to send the uplink data.
  • FIG. 2 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • the terminal may include at least one processor 21, a memory 22, a communication interface 23, and a bus 24.
  • the processor 21 may be one processor, or may be a collective term for multiple processing elements.
  • the processor 21 may be a central processing unit (CPU), a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits used to control the execution of the program of this application
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • microprocessors Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the processor 21 can execute various functions of the terminal by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • the processor 21 may include one or more CPUs.
  • the processor 21 includes CPU0 and CPU1.
  • the terminal may include multiple processors.
  • a processor 21 and a processor 25 are included.
  • Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 22 may be a read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 22 may exist independently, and is connected to the processor 21 through the bus 24.
  • the memory 22 may also be integrated with the processor 21.
  • the memory 22 is used to store a software program for executing the solution of the present application, and the processor 21 controls the execution.
  • the communication interface 23 is used to communicate with other devices or communication networks, such as communicating with communication networks such as Ethernet, radio access network (RAN), and wireless local area networks (WLAN).
  • the communication interface 23 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation on the terminal, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • the terminal may also include a battery, a camera, a Bluetooth module, a global positioning system (Global Positioning System, GPS) module, a display screen, etc., which will not be repeated here.
  • GPS Global Positioning System
  • LBT channel competition access technology It means that the channel occupancy of the unlicensed spectrum can be monitored before data transmission, and the channel can be used only when the channel is free. Since unlicensed spectrum is shared spectrum, many air interface technologies will use unlicensed spectrum, such as WiFi, Long Term Evolution (LTE)-based Licensed Assisted Access (LAA), MulteFire technology, etc. In order to ensure that multiple air interface technologies coexist on the unlicensed spectrum, the LBT mechanism is adopted to avoid mutual interference of multiple air interface technologies.
  • LTE Long Term Evolution
  • LAA Licensed Assisted Access
  • LBT failure refers to the failure to successfully occupy the channel due to the busy channel, and the inability to transmit signals (for example, data, commands).
  • LBT success refers to successfully occupying the channel and transmitting data.
  • the transmission signal is divided into uplink transmission and downlink transmission.
  • the uplink transmission refers to the terminal transmitting signals to the network equipment through the channel; the channel used for the uplink transmission is called the uplink channel; the signal for the uplink transmission is called the uplink signal (for example, uplink data, uplink command).
  • Downlink transmission refers to the network equipment transmitting signals to the terminal through the channel; the channel used for downlink transmission is called the downlink channel; the signal for downlink transmission is called the downlink signal (for example, downlink data, downlink command).
  • LBT is divided into uplink LBT and downlink LBT.
  • the uplink LBT refers to the channel occupancy of the terminal monitoring the unlicensed spectrum before the uplink transmission
  • the downlink LBT refers to the channel occupancy of the network equipment listening to the unlicensed spectrum before the downlink transmission. .
  • the channel access process using LBT is divided into two categories: The first category is based on fixed-duration energy detection, and the sending end (terminal or network device) detects the signal strength of the channel of the unlicensed spectrum; if the signal strength is greater than the preset threshold, The channel is considered busy, otherwise the channel is considered idle.
  • the second type is energy detection based on the fallback mechanism.
  • the sender (terminal or network device) randomly selects from a range of values (for example, window [min, max], where min is a minimum value, and max is a maximum value) A value A. If at least A free energy detection time slots are detected on the channel of the unlicensed spectrum, the channel is considered to be idle, otherwise the channel is considered to be busy. Wherein, each idle energy detection time slot is a time slot when the signal strength of the channel is not greater than a preset threshold.
  • the sender (terminal or network device) can only use the channel to transmit data when it considers the channel to be free.
  • an LBT counter (LBT counter) and an LBT timer (LBT timer) are introduced.
  • the LBT counter is used to record the number of uplink LBT failures (that is, the failure to successfully occupy the uplink channel because the uplink channel is busy).
  • This LBT timer is used to count the time period for which the continuous uplink LBT fails to be detected. Every time an upstream LBT fails, the LBT counter is incremented by 1, and at the same time, the LBT timer is started or restarted.
  • the number of upstream LBT failures recorded by the LBT counter is equal to the preset failure number threshold, it is considered that continuous upstream LBT failures have occurred. If the timing duration of the LBT timer is equal to the preset failure duration threshold, reset the LBT counter.
  • BWP With the development of communication technology, the usable spectrum bandwidth is getting wider and wider, especially the spectrum bandwidth used by NR is very wide. In order to use the spectrum more flexibly, NR introduces the BWP technology, which configures a part of the bandwidth BWP in the available spectrum bandwidth for the terminal. Among them, the network device can activate a suitable BWP for the terminal according to its own load and the service requirements of the terminal. For example, the network speed device determines that the terminal handles a large amount of data services and activates a wider BWP for the terminal. The network device finds that the load of the currently activated BWP of the terminal is heavy, and activates another relatively idle BWP for the terminal.
  • the existing NR protocol stipulates that after a terminal accesses a serving cell of a network device (for example, a primary cell, a secondary cell, and a primary and secondary cell), the network device will provide the terminal with its own load and service requirements of the terminal.
  • Configure dedicated BWP and configure up to 4 dedicated BWPs. Then choose to activate one of the configured BWPs.
  • the network device is any terminal, and only one BWP can be activated in a serving cell where the any terminal is located.
  • the terminal When N consecutive uplink LBT failures (or called continuous uplink LBT failures) occur on the currently activated BWP of the serving cell where the terminal is located, the terminal triggers the MAC CE (that is, the LBT failure MAC CE) to report to the network device.
  • the MAC CE is in the form of a bitmap and is used to indicate whether the corresponding serving cell has failed N consecutive uplink LBTs. If the terminal successfully sends the MAC CE, the terminal cancels the N consecutive uplink LBT failure status of the corresponding serving cell. In addition, the terminal can also cancel the N consecutive uplink LBT failure status of the corresponding serving cell at other occasions.
  • the network device sends a BWP switching instruction to the terminal to instruct the serving cell where the terminal is located to switch from the currently activated BWP to another BWP; or when the serving cell where the terminal is located is deactivated, the serving cell is no longer used.
  • the embodiment of the present application does not limit the timing of canceling the N consecutive uplink LBT failure states of the corresponding serving cell.
  • the serving cell where the terminal is located is the secondary cell
  • the terminal since the terminal cannot actively switch the BWP on the secondary cell, the terminal needs to send the MAC CE through other serving cells that have not experienced N consecutive uplink LBT failures.
  • the MAC CE in the embodiment of this application is the LBT failure MAC CE.
  • N consecutive uplink LBT failures are detected on the currently activated BWP of the serving cell, and the terminal can Actively switch from the currently active BWP to the second BWP.
  • the second BWP is a BWP that has PRACH resources configured on the serving cell and has not experienced N consecutive uplink LBT failures.
  • the terminal initiates the RACH random access procedure to complete the LBT failure recovery (that is, the terminal uses the switched BWP and network equipment to send and receive data).
  • the RACH random access procedure includes: interacting with the network device to inform the network device of the terminal and the BWP after the handover.
  • the switched BWP is used to send and receive data between the network device and the terminal.
  • HARQ process refers to the process of transmitting data using HARQ technology.
  • the HARQ technology combines Forward Error Correction (EFC) technology and Automatic Repeat Request (ARQ) technology.
  • EFC technology can increase the credibility of communication.
  • a data packet for example, uplink data
  • ARQ Automatic Repeat Request
  • the receiver cannot request the sender to retransmit the data packet.
  • the receiver can request the sender to retransmit the data packet through the ARQ mechanism.
  • the receiving end can use Cyclic Redundancy Check (CRC) to detect whether the received data packet has an error; if there is no error in the data packet, the receiving end returns the ACK feedback of the data packet to the sending end; if the data If the packet is wrong, the receiving end sends the NACK feedback of the data packet to the sending end; after receiving the NACK feedback of the data packet, the receiving end retransmits the data packet to the receiving end.
  • CRC Cyclic Redundancy Check
  • the network device ie, the receiving end
  • the receiving terminal ie, the sending end
  • use the HARQ process to send uplink data on the resources indicated by the uplink grant (UL grant).
  • the HARQ feedback state of the network device on the downlink is ACK (that is, the network device feeds back the ACK feedback of the uplink data to the terminal).
  • the HARQ feedback state of the network device on the downlink is NACK (that is, the network device feeds back the NACK feedback of the uplink data to the terminal).
  • the HARQ feedback as ACK is used to indicate that the network device correctly receives uplink data
  • the HARQ feedback as NACK is used to indicate that the network device does not correctly receive the uplink data. Then, if the terminal receives the NACK fed back by the network device, it retransmits the uplink data to the network device, so that the network device can perform HARQ combination of the retransmitted uplink data and the uplink data that is not correctly received.
  • the terminal can use the HARQ process to perform uplink transmission on the resource indicated by the UL grant.
  • the uplink grant associated with the HARQ process is delivered to the HARQ entity of the terminal, so that the uplink data is sent on the resource indicated by the uplink grant associated with the HARQ process.
  • the uplink grant may be a dynamic grant (dynamic grant, DG) of the network terminal dynamic scheduling, or it may be a pre-configured grant CG of the network terminal.
  • One HARQ entity of the terminal can maintain multiple parallel HARQ processes, and each HARQ process has a HARQ identity identification number (identity, ID), and different HARQ processes can be distinguished by HARQ ID.
  • CG configuration refers to the resources required for uplink transmission pre-configured by the network equipment in the NR-U for the terminal.
  • the pre-configured resources required for uplink transmission may be referred to as CG configuration, or pre-configured uplink authorization configuration.
  • the terminal can perform uplink transmission on the CG configuration without the need for dynamic scheduling of network equipment.
  • the CG configuration includes, but is not limited to, two pre-configured authorized resources adopted by the fifth-generation mobile communication technology (5th-Generation, 5G).
  • the two pre-configured authorization resources used by 5G are obtained through two authorization methods respectively.
  • the two authorization methods include configured authorization method 1 (configured grant type 1) and configured authorization method 2 (configured grant type 2).
  • configuration authorization method 1 means that the network device pre-configures the resources required for uplink transmission (CG configuration) for the terminal through the semi-static configuration method, that is, the CG configuration activated by periodic configuration, which does not require the terminal to send uplink data every time.
  • the network device obtains the uplink authorization configured by the CG.
  • the network device may configure a CG configuration for uplink transmission for the terminal through RRC signaling, and the RRC signaling may also include the period of the CG configuration.
  • Configuring authorization mode 2 means that the network device can configure part of the information used for uplink transmission for the terminal through RRC signaling, for example, the period of the CG configuration used for uplink transmission. Then, the network device activates the CG configuration through the physical layer signaling carrying the CG configuration for uplink transmission, so that the terminal can perform uplink transmission in the CG configuration.
  • the physical layer signaling includes DCI.
  • the naming of the above two authorization modes is not limited to configuration authorization mode 1 and configuration authorization mode 2, and other naming is also possible, and the embodiment of the present application does not limit the naming of these two authorization modes.
  • the communication system to which the above two authorization methods are applicable may also be an LTE communication system or other communication systems. The embodiments of the present application do not limit the communication systems to which these two authorization methods are applicable.
  • the NR-U system supports multiple CG configurations, that is, the terminal can simultaneously support multiple CG configurations on the currently activated BWP, and multiple different CG configurations can share the HARQ process.
  • the terminal transmits uplink data through any CG configuration, it randomly selects an HARQ process among the HARQ processes associated (supported) by the CG configuration. Then, the terminal uses this HARQ process on the CG configuration to send uplink data. If the uplink LBT is successful, it means that the uplink data is sent successfully; otherwise, the uplink data has failed to be sent, and the uplink data is resent.
  • the process of transmitting one piece of uplink data includes new transmission and retransmission of the same piece of uplink data.
  • the first transmission of uplink data in the process of transmitting an uplink data is called a new transmission, and a new transmission can also be called an initial transmission.
  • a new transmission can also be called an initial transmission.
  • the network device After the transmission of the new transmission is successful, if the network device does not correctly receive the uplink data, it indicates that the transmission of the new transmission has failed, and the terminal can retransmit the uplink data until the transmission is successful or the maximum transmission duration is reached.
  • each transmission of uplink data after a new transmission failure in the process of transmitting an uplink data is called a retransmission.
  • the NR-U system also supports cross-CG configuration retransmission, as long as the UE selects the same HARQ process in different CG configurations, and the different CG configurations have the same transport block size (TBS) .
  • TBS transport block size
  • a pre-configured authorized timer CGT is defined in the NR system.
  • the CGT is used to limit the total duration of the transmission process, and the CGT corresponds to a transmission duration threshold. Since the NR-U system follows the mechanism of the NR system, the NR-U system can use CGT, and in order to limit the retransmission interval, the NR-U system newly defines a pre-configured authorized retransmission timer CGRT, which is used for To limit the transmission interval between new transmission and retransmission in the transmission process, and the transmission interval between two retransmissions, the CGRT corresponds to a retransmission duration threshold. Wherein, the retransmission duration threshold is less than the transmission duration threshold.
  • the terminal can use CGRT and CGT to control new transmission and retransmission.
  • the terminal uses a HARQ process associated with a CG configuration to newly transmit. If the uplink LBT is successful, it means that the uplink data is successfully sent, and CGT and CGRT are started; otherwise, CGT and CGRT are not started. After starting the CGT and CGRT, during the CGT timing period, if the timing duration of the CGRT is equal to the retransmission duration threshold or a NACK feedback from the network device is received, the terminal stops the CGRT and uses the HARQ process to automatically retransmit. The terminal uses the HARQ process to retransmit.
  • the uplink LBT is successful, it means that the retransmission of the uplink data is successful, and the CGRT is restarted; otherwise, the CGRT is not restarted, and the HARQ process continues to be used for retransmission. If the timing duration of the CGT is equal to the transmission duration threshold or an ACK feedback from the network device is received, the CGT and CGRT are stopped. At this time, the terminal can use the HARQ process to newly transmit other uplink data.
  • the terminal automatically retransmits and only restarts CGRT, not CGT. If the ACK feedback from the network device is received, it means that the network device correctly receives the uplink data. The terminal will not stop CGT when receiving NACK feedback, and stop CGT when receiving ACK feedback.
  • the terminal cannot use the HARQ process to transmit other uplink data. In this way, it can be avoided that other uplink data flushes the uplink data in the HARQ buffer of the HARQ process, causing packet loss.
  • the process of a terminal using a HARQ process associated with a CG configuration to transmit uplink data can be divided into multiple time units in the time domain, and the multiple time units include t1, which are sorted in chronological order. t2, t3, t4, t5, t6,..., tm, where m is a positive integer.
  • the multiple time units may be continuous or may have time intervals, which is not particularly limited in the embodiment of the present application.
  • the length of a time unit can be arbitrarily set, and the embodiment of the present application is not particularly limited.
  • a time unit may include one or more subframes; or, a time unit may include one or more time slots.
  • the timing duration of CGRT is equal to the retransmission duration threshold, and the reception of NACK feedback can be regarded as CGRT timeout.
  • the timing duration of the CGT is equal to the transmission duration threshold, and the ACK feedback received from the network device can be regarded as the CGT timeout.
  • the process of the terminal using the HARQ process to transmit the uplink data may include: the terminal transmits newly at t1 and the uplink LBT succeeds, then starts the CGT and CGRT, and waits for the network device to receive the uplink data. After t2 and t3, CGRT times out, the terminal stops CGRT, and uses the HARQ process to automatically retransmit at t4. If an uplink LBT failure occurs at t4, CGRT will not be restarted, and the HARQ process will continue to be used for retransmission at t5. The terminal retransmits at t5, and the upstream LBT succeeds, restarts the CGRT, and waits for the network device to receive the upstream data. At tm, CGT times out, and the terminal stops CGT and CGRT. At this time, the terminal can use the HARQ process to newly transmit other uplink data.
  • the terminal fails to send uplink data when it starts a new transmission using the HARQ process, it will not start CGT and CGRT, nor can it retransmit, and the uplink data will always be stored in the HARQ buffer of the HARQ process. . Since CGT is not started, if other mechanisms are not introduced, the terminal may use the HARQ process to newly transmit other uplink data, and the other uplink data will flush out the uplink data in the HARQ buffer. In this case, the uplink data is not sent to the network device, and the HARQ process is no longer used to send the uplink data. In other words, the uplink data is discarded, and the upper layer can only rely on retransmission of the uplink data.
  • the NR-U system introduced a pending pending state of the HARQ process.
  • the terminal determines that the HARQ process is in a non-pending state; otherwise, it determines that the HARQ process is in a pending state.
  • the uplink data is successfully sent or the HARQ buffer of the HARQ process is emptied, and the pending state of the HARQ process is cancelled. Or, set the HARQ process to the not pending state when the CGT times out.
  • the terminal judges whether a HARQ process can do a new transmission, it must not only judge whether the CGRT and CCT stop timing, but also judge whether the HARQ process is not pending. Only when it is determined that CGRT and CCT stop timing and the HARQ process is not pending, the HARQ process is used for new transmission, otherwise, the HARQ process is used for retransmission. In this way, it is possible to avoid the situation that the uplink data is discarded due to the uplink LBT failure of the new transmission, the CGT is not started, and the terminal uses the HARQ process to transmit other uplink data newly.
  • the HARQ process after using the HARQ process for new transmission, it can be determined that the HARQ process is in the pending state or not pending state according to the success or failure of the uplink LBT of the new transmission. Then, when the HARQ process is initially used, the terminal is not aware of the status of the HARQ process, and cannot use the new HARQ transmission. In other words, the HARQ process lacks an initial state (that is, not pending state), which in turn makes it impossible to use the HARQ process for new transmission.
  • the terminal determines that N consecutive uplink LBT failures occur on the currently activated BWP of the serving cell where it is located, and the currently used The HARQ process may be in the pending state. If the serving cell is a primary cell or a primary and secondary cell, the terminal can switch the BWP, and the CG configuration on the BWP after the handover may also be associated with the HARQ process in the pending state.
  • the new HARQ process cannot be used on the BWP after the handover. That is to say, the above solution using the pending pending state also has the problem of unclear handling of the pending state of the HARQ process associated with one or more CG configurations on the BWP before the switch when the terminal switches the BWP. These HARQ processes cannot be used normally on the subsequent BWP.
  • the embodiment of the present application provides a HARQ process-based data transmission method, which can determine the initial state of the HARQ process, and then use the HARQ process in the not pending state for uplink transmission. It can also solve the problem that the pending status of the HARQ process associated with one or more CG configurations on the BWP before the switch is not clear when the BWP is switched, so that these HARQ processes can be used normally on the BWP after the switch. In addition, it can also avoid the problem of long-term occupancy of the HARQ process in an uplink data transmission process due to multiple consecutive uplink LBT failures before starting CGT and CGRT.
  • the embodiment of the present application provides a HARQ process-based data transmission method.
  • the HARQ process-based data transmission method includes S401-S402.
  • the terminal sets one or more HARQ processes associated with the first pre-configured authorized CG configuration on the first part of the bandwidth BWP to a non-suspended not pending state.
  • the first CG configuration includes one or more CG configurations configured by the network device for the terminal on the first BWP.
  • the first BWP is the BWP currently activated by the terminal.
  • the foregoing first BWP belongs to multiple dedicated BWPs configured for the terminal by the network device on the serving cell where the terminal is located.
  • the first BWP may be a BWP activated by the network device for the terminal.
  • the network device may also configure the first CG configuration for the first BWP.
  • the first CG configuration includes the HARQ process associated with the first CG configuration.
  • the terminal may receive the configuration of the network device, and may set one or more HARQ processes associated with the first CG configuration to the not pending state.
  • the terminal in any embodiment of the present application sets one or more HARQ processes to the not pending state, which is implemented internally by the terminal.
  • the terminal sets one or more HARQ processes to the not pending state can be replaced with "the terminal considers (or determines) one or more HARQ processes to be in the not pending state” or "the terminal considers it to be in the not pending state”. (Or determine) one or more HARQ processes are in the not pending state”.
  • the first CG configuration may be part of the CG configuration or all CG configurations configured by the network device for the terminal on the first BWP.
  • the one or more HARQ processes associated with the first CG configuration may be all HARQ processes or part of the HARQ processes associated with the first CG configuration.
  • the one or more HARQ processes associated with the first CG configuration may include at least any one of the following six types of HARQ processes:
  • the corresponding HARQ process (corresponding HARQ process) in the HARQ process associated with the first CG configuration.
  • the corresponding HARQ process is a HARQ process randomly selected by the terminal.
  • the uplink grants currently delivered to the HARQ entity of the terminal are all uplink grants associated with the HARQ process delivered to the HARQ entity before the current moment.
  • There is no uplink grant associated with the first HARQ process in the uplink grant currently delivered to the HARQ entity which means that the terminal has not used the first HARQ process before the current moment.
  • the aforementioned corresponding HARQ process may be used to send the uplink data, and the terminal implements a random selection of the corresponding HARQ process within the terminal.
  • the terminal when the terminal transmits uplink data through any CG configuration (including the first CG configuration), it can randomly select a HARQ process from the HARQ process associated with the first CG configuration . Therefore, some HARQ processes in the first CG configuration may have been used by other CG configurations or are being used by other CG configurations.
  • the other CG configurations are CG configurations other than the first CG configuration. Since the network device can dynamically schedule any HARQ process through the DG, some HARQ processes in the first CG configuration may have already been scheduled by the DG or are being scheduled by the DG.
  • the above "unused” can mean that it has not been used by any CG configuration and DG of the terminal.
  • the above "not being used” may mean that it is not being used by other CG configurations and/or DGs (the terminal is performing data transmission through this HARQ process on other CG configurations).
  • the terminal can configure the unused HARQ process associated with the first CG configuration, because if a HARQ process has been used, it indicates that the transmission has been performed. According to the existing communication According to the agreement, the HARQ process is already in the not pending state, and there is no problem of lack of initial state.
  • the terminal can also set the HARQ process that is not in use associated with the first CG configuration to the not pending state, because if a HARQ process is being used, the state of the HARQ process cannot be changed arbitrarily before the transmission is completed. Otherwise, the uplink data being transmitted may be discarded (that is, packet loss), so only the HARQ process that is not in use associated with the first CG configuration is set.
  • the one or more HARQ processes associated with the first CG configuration may further include: the first HARQ process among the HARQ processes associated with the first CG configuration, and the HARQ process associated with the first CG configuration HARQ processes that are in use and are not being used.
  • the terminal uses the HARQ process associated with the first CG configuration and is in a not pending state to send uplink data to the network device.
  • the terminal When the terminal needs to send uplink data, it can select one HARQ process from one or more HARQ processes associated with the first CG configuration and set to the not pending state. Since the HARQ process is in the not pending state, the terminal can use the HARQ process to send the uplink data.
  • the terminal may set one or more HARQ processes associated with the first CG configuration configured by the network device to the not pending state when receiving the configuration of the network device.
  • the setting of the initial state (that is, the not pending state) of the one or more HARQ processes is realized.
  • the one or more HARQ processes associated with the first CG configuration are already in the not pending state before being used for uplink transmission, that is, the one or more HARQ processes associated with the first CG configuration can be used for uplink transmission, or the One or more HARQ processes associated with the first CG configuration can be used for new transmission.
  • the terminal can use one HARQ process among the one or more HARQ processes to send uplink data (or newly transmit uplink data). In this way, it is possible to realize that the terminal uses the HARQ process whose initial state is not pending to perform uplink transmission (or new transmission).
  • the network device may use different configuration modes to configure the CG configuration on the first BWP for the terminal.
  • the first CG configuration obtained by using different configuration methods is also different.
  • the configuration mode adopted by the network device may include the above-mentioned configuration authorization mode 1 and the above-mentioned configuration authorization mode 2.
  • the first CG configuration includes all CGs configured and activated for the terminal on the first BWP by the network device using the configuration authorization method 1.
  • Configuration; or, the first CG configuration includes all CG configurations that the network device uses configuration authorization mode 2 to configure only for the terminal on the first BWP (that is, only configuration is not activated).
  • S401 may include S501.
  • the method provided in the embodiment of the present application includes S501-S502.
  • the terminal In response to receiving the RRC signaling from the network device, the terminal sets one or more HARQ processes associated with the first CG configuration to a non-pending not pending state.
  • the RRC signaling is used to configure and activate the first CG configuration for the terminal, or to configure only the first CG configuration for the terminal.
  • the terminal after receiving the RRC signaling from the network device, the terminal can set one or more HARQ processes associated with the first CG configuration to the not pending state for the first CG configuration indicated by the RRC signaling.
  • the RRC signaling in the configuration authorization mode 1 is used to configure the terminal and activate the first CG configuration.
  • the RRC signaling in the configuration authorization mode 2 is used to configure only the first CG configuration for the terminal.
  • the terminal uses the HARQ process associated with the first CG configuration and is in a not pending state to send uplink data to the network device.
  • step S502 is the same as the implementation process of step S402, and will not be repeated here.
  • the terminal may set one or more HARQ processes associated with the first CG configuration to the not pending state when receiving the first CG configuration configured by the network device.
  • the one or more HARQ processes associated with the first CG configuration are in the not pending state before being used for uplink transmission, which means that the one or more HARQ processes can be used for new transmission.
  • the first CG configuration may be a CG configuration that the DCI activation command indicates to activate.
  • the foregoing S401 may also include S601.
  • an embodiment of the present application provides a HARQ process-based data transmission method including S601-S602.
  • the terminal In response to receiving the DCI activation command from the network device, the terminal sets one or more HARQ processes associated with the first CG configuration to a non-pending state. Among them, the DCI activation command is used to instruct the terminal to activate the first CG configuration.
  • the network device before using the DCI activation command, the network device first uses the RRC signaling in the configuration authorization mode 2 to configure only one or more CG configurations on the first BWP for the terminal, and then uses the DCI activation command to activate (first activation or reactivation). Activate) One CG configuration of the one or more CG configurations, and this CG configuration is the first CG configuration.
  • the terminal Upon receiving the DCI activation command from the network device, the terminal sets one or more HARQ processes associated with the first CG configuration to the not pending state.
  • the DCI activation command may be the first activation command or the reactivation command.
  • the first CG configuration activated by the network device using the DCI activation command may be the first CG configuration activated for the first time using the DCI activation command; at this time, the DCI activation command may also be referred to as the first activation command.
  • the first CG configuration activated by the network device using the DCI activation command may also be the first CG configuration reactivated using the DCI activation command; in this case, the DCI activation command may also be referred to as a reactivation command.
  • the terminal uses the HARQ process associated with the first CG configuration and is in a non-pending state to send uplink data to the network device.
  • step S602 is the same as the implementation process of step S402, and will not be repeated here.
  • the terminal can associate one or more HARQs associated with the first CG configuration to be activated when receiving the DCI activation command configured by the network device for the first CG.
  • the process is set to the not pending state.
  • one or more HARQ processes associated with the first CG configuration to be activated are in the not pending state, which means that the one or more HARQ processes can be used for new transmission.
  • the terminal in addition to the above-mentioned first opportunity (that is, in response to receiving RRC signaling from the network device, or in response to receiving a DCI activation command from the network device), the terminal associates the first CG configuration with one or Multiple HARQ processes are set to the not pending state. It is also possible to set one or more HARQ processes associated with the first CG configuration to the not pending state at other timings other than the first timing, which is not limited in this embodiment of the application.
  • the above-mentioned S401 may further include: when the terminal processes a grant configuration associated with an activated CG configuration, this activated CG configuration is the first CG configuration.
  • a first HARQ process is determined among all HARQ processes associated with the first CG configuration. If there is no uplink grant associated with this first HARQ process in the uplink grants currently submitted to the HARQ entity, the terminal device considers the status of this first HARQ process to be in a non-pending state (that is, set this first HARQ The status of the process is not pending status).
  • the grant configuration associated with an activated CG configuration may appear according to a preset period, and the preset period may be specified by the RRC signaling used in the configuration authorization method 1 or the configuration authorization method 2.
  • the terminal after setting one or more HARQ processes associated with the first CG to the not pending state (for example, after step S401, step S501, or step S601), the terminal also detects the currently activated first CG. Whether there are N consecutive uplink LBT failures on the BWP.
  • the HARQ process-based data transmission method provided in the embodiment of the present application further includes steps S701-S702 after step S401.
  • S701 The terminal counts the total number of uplink LBT failures that occur on the first BWP, and compares whether the total number of uplink LBT failures is equal to a preset LBT failure number threshold N.
  • the total number of uplink LBT failures that occur on the first BWP includes: the number of uplink LBT failures that occur when the terminal performs uplink data transmission on the first BWP.
  • the terminal determines that N consecutive uplink LBT failures have occurred on the first BWP; otherwise, it determines that N consecutive uplink LBT failures have not occurred on the first BWP.
  • the terminal determines that the uplink LBT fails consecutively N times on the first BWP, and triggers the continuous uplink LBT failure state.
  • Step S701 may be to count the number of uplink LBT failures during the execution of step S402, or it may be to count the number of uplink LBT failures during the execution of step S402 and the subsequent execution of sending other uplink data.
  • step S702 the data transmission method based on the HARQ process further includes step S703.
  • Step S703 If the terminal determines that N consecutive uplink LBT failures occur on the first BWP, it clears the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or associates the second CG configuration on the first BWP All HARQ processes are set to non-pending not pending state.
  • the second GG includes all CG configurations configured by the network device for the terminal on the first BWP, or the activated CG configuration of the terminal on the first BWP; after the buffers of all HARQ processes associated with the second GG are cleared, the second All HARQ processes associated with the GG are in the not pending state.
  • the terminal determines that there are N consecutive uplink LBT failures on the first BWP, it directly triggers the clearing of the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or directly triggers the setting of the second CG configuration on the first BWP. All associated HARQ processes are in the not pending state.
  • the second CG configuration and the first CG configuration may be the same or different.
  • the terminal determines that N consecutive uplink LBT failures have occurred on the first BWP during transmission using one or more CG configurations associated with the HARQ process on the first BWP (that is, the BWP before handover). Indicates that the HARQ process being used on the first BWP may be in the pending state.
  • the terminal sets all HARQ processes associated with the second CG configuration on the first BWP to the not pending state. Among them, the terminal can clear the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or set all HARQ processes associated with the second CG configuration to the not pending state to set the first BWP on the first BWP.
  • All HARQ processes associated with a CG configuration are set to the not pending state. It can be understood that all HARQ processes associated with the foregoing second CG configuration may include HARQ processes in the pending state on the first BWP. Therefore, by clearing the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or setting all HARQ processes associated with the second CG configuration to the not pending state, the first CG on the first BWP can be set Configure all the associated HARQ processes to be set to the not pending state.
  • the terminal switches the BWP
  • the problem that the status of the HARQ process in the pending state on the first BWP (that is, the BWP before the switch) is not processed is solved.
  • the CG configuration of the terminal on the second BWP ie, the switched BWP
  • the HARQ process in the pending state on the first BWP has been set to In the not pending state, these HARQ processes can be newly transmitted on the BWP after the handover.
  • the terminal determines that N consecutive uplink LBT failures occur on the first BWP and sends MAC CE to the network device, it clears the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or All HARQ processes associated with the second CG configuration on the first BWP are set to the not pending state.
  • the MAC CE includes the LBT failure status indicator bit of the serving cell where the terminal is located.
  • the foregoing sending of the MAC CE control element for media access control to the network device may refer to the successful sending of the MAC CE by the terminal. Specifically, if the terminal receives a physical layer (PHY) LBT success indication for the MAC CE, indicating that the MAC CE can be successfully sent, it is considered that the MAC CE is successfully sent. In addition, it can also be viewed only from the MAC layer, that is, regardless of the failure or success of the LBT for the MAC CE, the MAC layer triggers the sending of the MAC CE and the transmission is considered successful, that is, the MAC CE is considered to be successfully sent.
  • PHY physical layer
  • the serving cell where the terminal is located may include a primary cell, a primary secondary cell, and a secondary cell. If the terminal determines that N consecutive uplink LBT failures have occurred on the first BWP, and when it is located in the primary cell or primary and secondary cell, when it actively switches from the first BWP to the second BWP, clear the second CG configuration on the first BWP. Cache of all associated HARQ processes, or set all HARQ processes associated with the second CG configuration on the first BWP to the not pending state.
  • the second BWP is a BWP that is configured with a physical random access channel PRACH resource and does not have N consecutive uplink LBT failures, and the second BWP and the first BWP belong to the same serving cell.
  • the terminal determines that N consecutive uplink LBT failures occur on the first BWP, in the case of any type of cell (ie, primary cell, primary secondary cell, or secondary cell) in the serving cell, the terminal receives data from the network BWP switching instruction of the device.
  • the terminal clears the buffers of all HARQ processes associated with the second CG configuration on the first BWP, or sets all HARQ processes associated with the second CG configuration on the first BWP to the not pending state.
  • the BWP switching instruction is used to instruct the terminal to switch from the first BWP to the third BWP.
  • the BWP switching instruction may be RRC signaling or DCI.
  • the third BWP may be the same as the above-mentioned second BWP, or may be different from the above-mentioned second BWP.
  • the terminal executes "clearing the first BWP on the first BWP).
  • the second CG configuration is to cache all HARQ processes associated with the second CG configuration, or to set all HARQ processes associated with the second CG configuration on the first BWP to the not pending state". It is also possible to execute "Clear all HARQ process buffers associated with the second CG configuration on the first BWP at other occasions than the second time, or set all HARQ processes associated with the second CG configuration on the first BWP.
  • the process is set to the not pending state", which is not limited in this embodiment of the application.
  • the terminal sets one or more HARQ processes associated with the first CG to the not pending state (for example, the above step S401, step S501 or After step S601), while sending uplink data to the network device, record the total time that the HARQ process used in the transmission process of an uplink data is in the pending state, or the number of times the HARQ process used in the transmission process enters the pending state. Using the total duration or the number of entering the pending state, it is possible to more accurately control the occupancy duration of the HARQ process in the transmission process of an uplink data.
  • the terminal can record the number of times the HARQ process used in the transmission process of an uplink data enters the pending state, so as to achieve more accurate control of the occupancy duration of the HARQ process in the transmission process of an uplink data.
  • steps S401-S402 as an example, as shown in FIG. 9, the HARQ process-based data transmission method provided in the embodiment of the present application may include steps S901-S902 after step S401.
  • Step S901 The terminal counts the number of pending pending times that the HARQ process used to send the uplink data is in the pending pending state during the process of transmitting the uplink data.
  • the number of pending times includes: the number of times the HARQ process used to send uplink data enters the pending state during new transmission and retransmission.
  • the terminal can define a pending counter, which is used to record the number of pending times.
  • the initial value of the number of pending times recorded by the pending counter is zero.
  • the preset number threshold corresponding to the pending counter may be preset through network device configuration or protocol.
  • the preset number threshold may be carried in the configuration information of the CG configuration, and the preset number threshold in the configuration information of different CG configurations may be the same or different.
  • This pending counter can be maintained by each HARQ process, that is, the number of times that each HARQ process enters the pending state is recorded.
  • the terminal determines whether the HARQ process used to send the uplink data is in the pending state each time it is newly transmitted or retransmitted during the transmission of an uplink data. If it is in the pending state, the pending counter is increased by 1 (that is, the number of pending times is increased by 1), otherwise, it is not increased by 1 (that is, the number of pending times is not increased by 1). It is also determined whether the number of pending times recorded by the pending counter is equal to the preset number threshold. If the number of pending times is equal to the preset number threshold, step S902 is executed; if the number of pending times is less than the preset number threshold, continue counting the number of pending times.
  • Step S902 If the number of pending pending times is equal to the preset number threshold, the terminal clears the buffer of the HARQ process used to send uplink data, or sets the HARQ process used to send uplink data to a non-pending state.
  • the HARQ process for sending uplink data is in a not pending state.
  • steps S901-S902 and step S402 in FIG. 9 are parallel, and step S901 can be executed at the same time as step S402 is started.
  • the number of times that the HARQ process used in the transmission of an uplink data enters the pending state is counted.
  • the number of pending times includes not only the number of HARQ processes entering the pending state caused by the failure of the uplink LBT after the start of CGRT and CGT, but also the number of HARQ caused by consecutive failures of the uplink LBT before the start of CGRT and CGT in this uplink transmission.
  • the number of times the process entered the pending state In other words, the number of pending times more accurately records the number of times the HARQ process enters the pending state during this uplink transmission.
  • the number of pending times is equal to the preset number threshold, and the buffer of the HARQ process is cleared or the HARQ process is set to the not pending state.
  • the occupancy time of the HARQ process of an uplink data transmission process can be controlled more accurately, and the HARQ process can be avoided for a long period of time due to multiple consecutive uplink LBT failures before starting CGT and CGRT. Condition.
  • the terminal can record the number of times the HARQ process used in the uplink data transmission process enters the pending state, which solves the problem of the long-term occupation of an uplink data transmission process due to multiple consecutive uplink LBT failures before starting CGT and CGRT The problem of the HARQ process.
  • the HARQ process-based data transmission method provided in the embodiment of the present application may further include steps S1001-S1003 after step S401.
  • step S1001 the terminal determines whether the HARQ process used to send uplink data is newly transmitted or retransmitted each time, and judges whether the HARQ process used to send uplink data is in a pending state.
  • the terminal judges whether the HARQ process used to send the uplink data is in the pending state every time a new transmission or retransmission is started. If it is in the pending state, the pending counter is incremented by 1 (that is, step S1002 is executed), otherwise, 1 is not incremented (that is, the number of pending counters recorded by the pending counter remains unchanged).
  • the terminal determines that it is in the pending state, when the pending counter has not started counting (that is, it has not been started), use the pending counter to start counting (that is, start the pending counter), and the pending counter is incremented by 1; when the pending counter is already counting Next, the pending counter is directly increased by 1 (that is, the number of pending times is increased by 1).
  • the terminal determines that it is not in the pending state, when the pending counter has not started counting, the pending counter does not start counting or does not start the pending counter, and the pending counter does not increase by 1.
  • the pending counter is already counting, reset the pending counter( That is, the number of pending counts recorded by the pending counter is set to 0), and the pending counter is not incremented by 1.
  • Step S1002 if the HARQ process for sending uplink data is in the pending pending state, the pending pending count recorded by the pending counter pending counter is incremented by one; the initial value of the pending pending count recorded by the pending counter pending counter is zero.
  • the terminal After adding 1 to the number of pending times, the terminal also determines whether the number of pending times is equal to the preset number threshold. If the number of pending times is equal to the threshold of the preset times, step S1003 is executed; if the number of pending times is less than the threshold of the preset times, continue to execute step S1001.
  • Step S1003 If the number of pending pending counts recorded by the pending counter is equal to the preset number threshold, the terminal clears the buffer of the HARQ process used to send uplink data, or sets the HARQ process used to send uplink data to not pending pending state.
  • the HARQ process for sending uplink data is in a not pending state.
  • steps S1001-S1003 and step S402 in FIG. 10 are parallel, and step S1001 can be executed at the same time as step S402 is started.
  • the number of times that the HARQ process used in an uplink data transmission process continuously enters the pending state is counted.
  • the number of pending times may include the number of times that the HARQ process enters the pending state due to multiple consecutive uplink LBT failures before starting CGRT and CGT in this uplink transmission. It is determined that the number of pending times is equal to the preset number threshold, and the buffer of the HARQ process is cleared or the HARQ process is set to the not pending state. Through the number of pending times, it is avoided that the HARQ process is occupied for a long time in the transmission process of one uplink data due to multiple consecutive uplink LBT failures before the CGT and CGRT are started.
  • the terminal can also record the total duration of the HARQ process in the pending state used in the transmission process of an uplink data, so as to achieve more accurate control over the duration of the HARQ process occupied by the transmission process of an uplink data.
  • the HARQ process-based data transmission method provided in the embodiment of the present application may include steps S1101-S1102 after step S401.
  • step S1101 the terminal counts the total length of time in the pending state during the HARQ process used to transmit the uplink data to transmit the uplink data.
  • the terminal may define a pending timer, which is used to record the total duration.
  • the preset duration threshold corresponding to the pending timer may be preset through network device configuration or protocol.
  • the preset duration threshold may be carried in the configuration information of the CG configuration, and the preset duration thresholds in the configuration information of different CG configurations may be the same or different.
  • This pending timer can be maintained by each HARQ process, that is, the total time that each HARQ process is in the pending state is recorded.
  • the terminal judges whether the HARQ process used for this uplink transmission is in the pending state during the transmission of an uplink data. If it is in the pending state, the terminal starts the pending timer, otherwise it stops the pending timer. In the pending timer timing, it is also determined whether the total duration of the HARQ process in the pending state recorded by the pending timer is equal to the preset duration threshold. If the total duration is equal to the preset duration threshold, perform step S1102; otherwise, continue to count the total duration.
  • the terminal determines whether the HARQ process used to send the uplink data is in the pending state each time it is newly transmitted or retransmitted in the transmission process of an uplink data. If it is in the pending state and the pending timer has not started timing (that is, it is not started), the terminal starts the pending timer; if it is in the pending state and the pending timer is already timing, the pending timer continues timing.
  • the pending timer is not started (that is, the pending timer is not used for timing); if it is not in the pending state and the pending timer is already in the timing, stop the pending timer (that is, the pending timer stops). Timing).
  • Step S1102 if the total duration is equal to the preset duration threshold, the terminal clears the buffer of the HARQ process for sending uplink data, or sets the HARQ process for sending uplink data to a non-pending state.
  • the HARQ process for sending uplink data is in a not pending state.
  • steps S1101-S1102 and step S402 in FIG. 11 are parallel, and step S1101 can be executed at the same time as step S402 is started.
  • the total length of time that the HARQ process used in the transmission of an uplink data is in the pending state is calculated.
  • the total duration includes not only the duration of the HARQ process in the pending state caused by the failure of the uplink LBT after the start of CGRT and CGT, but also the HARQ process caused by multiple consecutive uplink LBT failures before the start of the CGRT and CGT in this uplink transmission.
  • the length of time the process is in the pending state. In other words, the total duration more accurately records the duration of the HARQ process in the pending state during this uplink transmission.
  • the total duration is equal to the preset duration threshold, and the buffer of the HARQ process is cleared or the HARQ process is set to the not pending state.
  • the occupancy time of the HARQ process of an uplink data transmission process can be controlled more accurately, avoiding the situation that an uplink data transmission process occupies the HARQ process for a long time due to multiple consecutive uplink LBT failures before starting CGT and CGRT. .
  • the terminal can also record the total time that the HARQ process used in the transmission process of an uplink data is in the pending state, so as to solve the problem of multiple consecutive uplink LBT failures before starting CGT and CGRT.
  • the problem of occupying the HARQ process for a long time may further include steps S1201-S1204 after step S401.
  • Step S1201 each time the terminal determines a new transmission or retransmission of the HARQ process used to send uplink data, and judges whether the HARQ process used to send uplink data is pending or not pending.
  • the terminal can determine whether the HARQ process used to send the uplink data is pending or not pending each time a new transmission or retransmission is started. If it is in the pending state, if the pending timer is not started, step S1202 is executed; if the pending timer is running (that is, it is timing), the pending timer continues to run (that is, it continues timing). If it is in the not pending state, if the pending timer is not started, the pending timer is not started; if the pending timer is running, step S1203 is executed.
  • step S1202 the terminal determines that the HARQ process for sending uplink data is in the pending pending state and the pending timer is not started, and starts the pending timer pending timer.
  • the pending timer is used to count the total time that the HARQ process used to send the uplink data is in the pending state during the transmission of the uplink data.
  • the terminal is in the process of transmitting an uplink data and the pending timer is running (that is, in timing), and also determines whether the timing duration recorded by the pending timer (that is, the total duration of the HARQ process in the pending state) is equal to the preset duration threshold . If the timing duration is equal to the preset duration threshold, step S1204 is executed; otherwise, step S1201 is continued to be executed.
  • Step S1203 The terminal determines that the HARQ process for sending uplink data is in a non-pending not pending state, and the pending timer is running, and stops the pending timer.
  • the terminal is in the process of transmitting an uplink data and the pending timer is running (that is, in timing), and also determines whether the timing duration recorded by the pending timer (that is, the total duration of the HARQ process in the pending state) is equal to the preset duration threshold . If the timing duration is equal to the preset duration threshold, step S1204 is executed; otherwise, step S1201 is continued to be executed.
  • Step S1204 If the duration of the pending timer is equal to the preset duration threshold, the terminal clears the buffer of the HARQ process for sending uplink data, or sets the HARQ process for sending uplink data to the non-pending state .
  • the HARQ process used to send uplink data is in the not pending state.
  • the total length of time that the HARQ process used in the transmission of an uplink data is continuously in the pending state is counted.
  • the HARQ process continuously being in the pending state means that the HARQ process fails in an uplink LBT during a new transmission or retransmission and is in the pending state, and the next retransmission still has an uplink LBT failure and is in the pending state.
  • the total duration may include the duration of the HARQ process in the pending state caused by multiple consecutive uplink LBT failures before starting the CGRT and CGT in this uplink transmission. It is determined that the total duration is equal to the preset duration threshold, and the buffer of the HARQ process is cleared or the HARQ process is set to the not pending state. Through this total time length, it is avoided that the HARQ process is occupied for a long time in the transmission process of one uplink data due to multiple consecutive uplink LBT failures before the CGT and CGRT are started.
  • the above-mentioned terminal and the like include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiment of the present application may divide the above-mentioned terminal and the like into functional modules according to the above-mentioned method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • an embodiment of the present application provides a terminal 1300.
  • the terminal 1300 includes a state setting unit 1301 and a data sending unit 1302.
  • the state setting unit 1301 is used to support the terminal 1300 to execute S401, S501, S601, S703, S902, S1003, S1102, S1204 in the above method embodiment, and/or other processes used in the technology described herein;
  • the data sending unit 1302 It is used to support the terminal 1300 to execute S402, S502, and S602 in the foregoing method embodiment, and/or other processes used in the technology described herein.
  • the aforementioned terminal 1300 may further include: a communication unit 1303.
  • the communication unit 1303 is used to support the terminal 1300 to execute the "receive the BWP switching instruction from the network device" in the foregoing method embodiment, and/or other processes used in the technology described herein.
  • the aforementioned terminal 1300 may further include: a frequency counting unit 1304.
  • the frequency counting unit 1304 is used to support the terminal 1300 to execute S901, S1001-S1002 in the foregoing method embodiment, and/or other processes used in the technology described herein.
  • the foregoing terminal 1300 may further include: a duration statistics unit 1305.
  • the duration statistics unit 1305 may further include: a duration statistics unit 1305.
  • the aforementioned terminal 1300 includes but is not limited to the unit modules listed above.
  • the terminal 1300 may also include a storage unit for storing the non-pending state of the HARQ process.
  • the specific functions that can be realized by the above functional units also include but are not limited to the functions corresponding to the method steps described in the above examples.
  • the corresponding method steps which is implemented in this application. I won’t repeat the example here.
  • the state setting unit 1301, the communication unit 1303, the count counting unit 1304, and the duration counting unit 1305 can be integrated into one processing module, and the data sending unit 1302 and the communication unit 1303 can be terminal.
  • the above-mentioned storage unit may be a storage module of the terminal.
  • FIG. 14 shows a schematic diagram of a possible structure of the terminal involved in the foregoing embodiment.
  • the terminal 1400 includes: a processing module 1401, a storage module 1402, and a communication module 1403.
  • the processing module 1401 is used to control and manage the terminal 1400.
  • the storage module 1402 is used to store the program code and data of the terminal 1400.
  • the communication module 1403 is used to communicate with other devices. For example, the communication module is used to receive or send data to other devices.
  • the processing module 1401 may be a processor or a controller, for example, a CPU, a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (ASIC), and a field programmable Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 1403 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 1402 may be a memory.
  • the processing module 1401 is a processor (the processor 21 and the processor 25 shown in FIG. 2)
  • the communication module 1403 is a communication circuit (the communication interface 23 shown in FIG. 2)
  • the storage module 1402 is a memory (as shown in FIG. 2).
  • the terminal provided in this application may be the terminal shown in FIG. 2.
  • the foregoing processor, communication interface, and memory may be coupled together through a bus.
  • the embodiment of the present application also provides a computer storage medium in which computer program code is stored.
  • the terminal executes the relevant information in any of the drawings in FIG. 4 to FIG. 12
  • the method steps implement the method in the above embodiment.
  • the embodiment of the present application also provides a computer program product, which when the computer program product runs on a terminal, causes the terminal to execute the relevant method steps in any of the drawings in FIGS. 4-12 to implement the method in the foregoing embodiment.
  • the terminal 1300, the terminal 1400, the computer storage medium or the computer program product provided in the present application are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding method provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种基于 HARQ 进程的数据传输方法及终端,涉及通信技术,可以确定 HARQ 进程的初始状态,进而可以使用处于非挂起 (not pending) 状态的 HARQ 进程进行上行传输。具体方案包括: 终端将第一部分带宽 BWP 上的第一预配置授权 CG 配置所关联的一个或多个 HARQ 进程设置为 not pending 状态; 其中,第一 CG 配置包括网络设备在第一 BWP 上为终端配置的一个或多个 CG 配置; 第一 BWP 是终端当前激活的 BWP; 终端使用第一 CG 配置所关联的、处于 not pending 状态的 HARQ 进程,向网络设备发送上行数据。

Description

一种基于HARQ进程的数据传输方法及终端
本申请要求于2020年05月20日提交国家知识产权局、申请号为202010432833.0、申请名称为“一种基于HARQ进程的数据传输方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程的数据传输方法及终端。
背景技术
在基于新空口(new radio,NR)的非授权频段接入(NR-based access to unlicensed spectrum,NR-U)技术中,终端在一个激活的部分带宽(band width part,BWP)上支持多个预配置授权配置(configured grant configuration,CG配置)。CG配置表示网络设备为终端预配置的上行传输(即传输上行数据)所需的资源,该多个CG配置可以共享HARQ进程(即HARQ process)。
终端使用某一个CG配置所关联的一个HARQ进程开始发送上行数据,采用先听后说(Listen Before Talk,LBT)机制成功发送上行数据时才启动预配置授权计时器(configured grant timer,CGT)和预配置授权重传计时器(configured grant retransmission timer,CGRT)。其中,CGT用于限制传输一个上行数据的过程的总时长;CGRT用于限制在传输一个上行数据的过程中的重传之间的的传输间隔。传输一个上行数据的过程包括针对同一个上行数据的新传和重传,新传是指第一次发送上行数据。重传是指新传传输失败之后的每次发送上行数据。在新传发送上行数据成功时,CGT和CGRT都开始计时。当CGRT的计时时长等于重传时长阈值,或者终端收到非确认(Negative Acknowledgement,NACK)反馈时,如果确定CGT还在计时中,终端在该CG配置上使用该HARQ进程自动重传。同样地,终端在该CG配置上使用该HARQ进程重传时,采用LBT机制成功发送上行数据时才启动CGRT。当CGT的计时时长等于传输时长阈值,或者终端收到确认(Acknowledgement,ACK)反馈时,停止CGT,此时,终端可以用该HARQ进程传输其他的上行数据。
可以知道,上述技术中,如果终端用HARQ进程新传时发生LBT失败,导致上行数据传输失败,就不会启动CGT和CGRT,该上行数据就一直存储在该HARQ进程的缓存(HARQ buffer)中。由于CGT没有运行,终端可能用该HARQ进程新传下一个上行数据,该下一个上行数据就会把HARQ buffer中的该上行数据冲掉。这样的话,媒体接入控制(medium access control,MAC)层没有将该上行数据发送至网络设备,也不会再发送该上行数据。也就是说,只能依赖于高层重传该上行数据。
针对该问题,NR-U系统引入了一个HARQ进程的挂起pending状态。对于新传和重传,使用一个HARQ进程成功发送上行数据时,终端确定该HARQ进程为非挂起not pending状态;否则,确定该HARQ进程为pending状态。并且,在该HARQ进程为pending状态后,只有成功发送上行数据或清空了该HARQ进程的缓存,才取消该 HARQ进程的pending状态。如此,为了避免该上行数据被丢弃的情况,终端不仅确定CGRT和CGT停止计时,还要确定该HARQ进程为not pending状态时,才利用该HARQ进程新传下一个上行数据。
然而,在初始使用该HARQ进程时,终端不清楚该HARQ进程的状态,就不能使用该HARQ新传,也就是说,HARQ进程缺乏初始状态(即非挂起状态),进而导致无法使用该HARQ进程进行新传。
发明内容
本申请实施例提供一种基于HARQ进程的数据传输方法及终端,可以确定HARQ进程的初始状态,进而可以使用处于非挂起(not pending)状态的HARQ进程进行新传。
第一方面,本申请实施例提供一种基于HARQ进程的数据传输方法。其中,终端可将第一部分带宽BWP上的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。其中,第一CG配置可以包括网络设备在第一BWP上为终端配置的一个或多个CG配置。该第一BWP是终端当前激活的BWP。然后,终端可使用第一CG配置所关联的、处于not pending状态的HARQ进程,向网络设备发送上行数据。
通过本方案,针对网络设备在第一BWP上为该终端配置的第一CG配置,终端可将该第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。如此,便实现了对该一个或多个HARQ进程的初始状态(即not pending状态)的设置。其中,该一个或多个HARQ进程为not pending状态,表示该一个或多个HARQ进程是可用于新传的。因此,终端可以使用该一个或多个HARQ进程中的一个HARQ进程新传。如此,便可以实现终端利用初始状态为not pending状态的HARQ进程新传。
具体地,终端可以在收到与CG配置相关的第一信令时,对该第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。其中,该第一信令所指示的CG配置为第一CG配置;该第一信令可以包括无线资源控制(Radio Resource Control,RRC)信令和下行控制信息(Downlink Control Information,DCI)激活命令。该RRC信令用于为终端配置并激活CG配置。该RRC信令还可以用于为终端仅配置CG配置。该DCI激活命令用于对终端已配置的CG配置进行激活(首次激活或重新激活)。
相应地,该第一CG配置可以包括网络设备采用RRC信令为终端配置的所有CG配置,该配置的所有CG配置可以包括已激活的CG配置和未激活的CG配置。该第一CG配置还可以包括网络设备采用RRC为终端配置且激活的CG配置。该第一CG配置还可以包括网络设备采用DCI激活命令为终端激活(首次激活或重新激活)已配置的CG配置。
也就是说,本申请实施例中,终端可以在接收到网络设备的上述第一信令后,根据该第一信令确定上述第一CG配置;再对上述第一CG配置所关联的一个或多个HARQ进程进行设置。
在第一方面的一种可能的设计方式中,终端可接收到来自网络设备的DCI激活命令,该DCI激活命令用于指示终端激活(首次激活或重新激活)一个CG配置,这个被激活(首次被激活或重新被激活)的一个CG配置就是第一CG配置。该终端响应于接收到DCI激活命令,可以将上述一个或多个HARQ进程设置为not pending状态。 具体的,上述终端将第一BWP上的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态,包括:响应于接收到来自网络设备的DCI激活命令,终端将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。
可以理解的是,终端响应于该DCI激活命令,会激活该第一CG配置,激活后的该第一CG配置是可以直接使用的。而通过可用的第一CG配置发送上行数据,具体是使用该第一CG配置所关联的某一个HARQ进程发送上行数据。为了终端可以确定当前可用的第一CG配置所关联的HARQ进程的初始状态,响应于该DCI激活命令,终端还可以将该DCI激活命令指示激活的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。
在第一方面的另一种可能的设计方式中,终端可接收来自网络设备的RRC信令。该RRC信令可用于为终端配置且激活第一CG配置,也可用于为终端仅配置第一CG配置(即仅配置但不激活第一CG配置)。响应于接收到该RRC信令,终端可将上述一个或多个HARQ进程设置为not pending状态。具体的,上述终端将第一BWP上的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态,包括:终端响应于接收到来自网络设备的RRC信令,可将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。
可以理解的是,终端响应于不同的RRC信令,在当前激活的第一BWP上配置且激活该第一CG配置,或者,仅配置该第一CG配置。无论是配置且激活的第一CG配置,还是仅配置的第一CG配置,都可能被用于发送上行数据。而通过可用的第一CG配置发送上行数据,具体是使用该第一CG配置所关联的某一个HARQ进程发送上行数据。为了终端可以确定当前可用的第一CG配置所关联的HARQ进程的初始姿态,响应于该RRC信令,终端还可以将可用的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。
在第一方面的另一种可能的设计方式中,上述第一CG配置所关联的一个或多个HARQ进程可以包括该第一CG配置所关联的所有HARQ进程。也就是说,终端可将第一CG配置所关联的所有HARQ进程设置为not pending状态。
在第一方面的另一种可能的设计方式中,上述第一CG配置所关联的一个或多个HARQ进程可以包括该第一CG配置所关联的部分HARQ进程。
具体地,该第一CG配置所关联的一个或多个HARQ进程,可以包括:该第一CG配置所关联的HARQ进程中、处于pending状态的HARQ进程;或者,该第一CG配置所关联的HARQ进程中的第一HARQ进程;或者,该第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程;或者,该第一CG配置所关联的HARQ进程中的corresponding HARQ进程(即对应的HARQ进程)。
其中,当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权;当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权,表示第一HARQ进程未被终端使用过。上述corresponding HARQ进程为终端随机选择的HARQ进程。
在第一方面的另一种可能的设计方式中,终端若确定第一BWP上发生连续N次上行LBT失败,终端可以清空第一BWP上的第二CG配置所关联的所有HARQ进程 的缓存,或者可以将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。
其中,N≥2,N为正整数。第二GG配置包括网络设备在第一BWP上为终端配置的所有CG配置,或者第一BWP上终端已激活的CG配置。该第二CG配置可以和该第一CG配置相同,也可以和该第一CG配置不相同。第二GG配置所关联的所有HARQ进程的缓存被清空后,第二GG配置所关联的所有HARQ进程处于not pending状态。
可以理解的是,终端确定该第一BWP发生连续N次上行LBT失败后,可以从该第一BWP切换到其他BWP。而在该第一BWP上的第二CG配置(即网络设备在第一BWP上为终端配置的所有CG配置或者在第一BWP上为终端已激活的CG配置)所关联的任意一个或多个HARQ进程可能因为发送上行数据失败而处于pending状态。并且,切换后的其他的BWP上的CG配置也可能关联该任意一个或多个因为发送上行数据失败而处于pending状态的HARQ进程。
为了避免该任意一个或多个HARQ进程还处于pending状态,导致在切换后的其他BWP上的CG配置上无法使用该任意一个或多个HARQ进程新传;本申请中,终端在确定该第一BWP发生连续N次上行LBT失败后,可以将该第一BWP上的第二CG配置所关联的任意一个或多个HARQ进程设置为not pending状态,以使得在切换后的其他BWP上可以重新使用该任意一个或多个HARQ进程新传。
在这种设计方式中,终端在接收到网络设备发送的用于指示激活上述第一BWP的指令,开始统计在该第一BWP上发生上行LBT失败的总次数。该第一BWP上发生上行LBT失败的总次数可以包括该第一BWP上的所有上行传输(即传输所有上行数据的过程)发生上行LBT失败的次数。若该总次数等于N,终端确定该第一BWP发生连续N次上行LBT失败,触发连续上行LBT失败状态,并清空该第一BWP上的第二CG配置所关联的HARQ进程的缓存,或者将该第一BWP上的第二CG配置所关联的HARQ进程设置为not pending状态。
在第一方面的另一种可能的设计方式中,终端确定在第一BWP上发生连续N次上行LBT失败,触发连续上行LBT失败状态。终端向网络设备发送媒体接入控制的控制元素(medium access control control elements,MAC CE)时,清空第一BWP上的第二CG配置所关联的HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的HARQ进程设置为not pending状态。其中,MAC CE包括终端所在服务小区的LBT失败状态指示位。这种设计方式给出终端执行“清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态”的一种可能的时机。
在第一方面的另一种可能的设计方式中,终端在位于主小区或主辅小区的情况下,主动由第一BWP切换至第二BWP时,可以清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,第二BWP是配置有物理随机接入信道(Physical Random Access Channel,PRACH)资源的、且没有发生连续N次上行LBT失败的BWP,第二BWP与第一BWP属于同一个服务小区。其中,‘没有发生连续N次上行LBT失败’可以为‘截止当前时刻没有发生过连续N次上行LBT失败’。这种设计方式给出终端执行“清空第二CG配置所关联 的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态”的一种可能的时机。
在第一方面的另一种可能的设计方式中,终端可接收来自网络设备的BWP切换指令;响应于BWP切换指令,终端可清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态。这种设计方式给出终端执行“清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态”的一种可能的时机。
在第一方面的另一种可能的设计方式中,终端每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程是否为挂起pending状态。若用于发送上行数据的HARQ进程为pending状态,挂起计数器(pending counter)记录的pending次数加1;挂起计数器记录的pending次数的初始值为零。若挂起计数器记录的pending次数等于预设次数阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为not pending状态。其中,用于发送上行数据的HARQ进程的缓存被清空后,用于发送上行数据的HARQ进程处于not pending状态。
在这种设计方式中,终端可以在每次确定该用于发送该上行数据的HARQ进程新传或重传时,判断该用于发送该上行数据的HARQ进程是pending状态还是not pending状态,若是pending状态,挂起计数器记录的pending次数加1;若是not pending状态,挂起计数器记录的pending次数不加1。
可以理解的是,由于该挂起计数器记录的pending次数表示了用于发送上行数据的HARQ进程在传输上行数据的过程中变为pending状态的总次数。若该总次数等于预设次数阈值,就使该用于发送上行数据的HARQ进程为not pending状态(即清空该用于发送上行数据的HARQ进程的缓存或设置该用于发送上行数据的HARQ进程为not pending状态)。也就是说,该用于发送上行数据的HARQ进程可用于新传其他的上行数据。如此,解决了用于发送上行数据的HARQ进程多次发送上行数据失败的情况下,该用于发送上行数据的HARQ进程长时间处于pending状态,即长时间被占用的问题。
在第一方面的另一种可能的设计方式中,终端每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程为pending状态还是not pending状态。确定用于发送上行数据的HARQ进程为pending状态、且挂起计时器(pending timer)未启动,启动挂起计时器。确定用于发送所述上行数据的HARQ进程为not pending状态、且挂起计时器处于运行中,停止挂起计时器。若挂起计时器的计时时长等于预设时长阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为not pending状态。其中,该挂起计时器用于统计用于发送上行数据的HARQ进程在传输上行数据的过程中处于pending状态的总时长。用于发送上行数据的HARQ进程的缓存被清空后,用于发送上行数据的HARQ进程处于not pending状态。
在这种设计方式中,终端可以在每次该用于发送该上行数据的HARQ进程新传或重传时,判断该用于发送该上行数据的HARQ进程是pending状态还是not pending状 态。若是pending状态,挂起计时器未启动的情况下启动挂起计时器,或运行中的挂起计时器继续运行。若是not pending状态,挂起计时器未启动的情况下不启动挂起计时器,挂起计时器处于运行中的情况下停止挂起计时器。
可以理解的是,由于该挂起计时器用于统计用于发送上行数据的HARQ进程在传输上行数据的过程中连续处于pending状态的总时长。那么,终端通过挂起计时器得到的计时时长,就是该用于发送上行数据的HARQ进程在传输上行数据的过程中连续处于pending状态的总时长。若该总时长等于预设时长阈值,就使该用于发送上行数据的HARQ进程为not pending状态(即清空该用于发送上行数据的HARQ进程的缓存和设置该用于发送上行数据的HARQ进程为not pending状态)。也就是说,该用于发送上行数据的HARQ进程可用于新传其他的上行数据。如此,解决了用于发送上行数据的HARQ进程连续多次发送上行数据失败的情况下,该用于发送上行数据的HARQ进程长时间处于pending状态,即长时间被占用的问题。
第二方面,本申请实施例提供一种终端,该终端包括:状态设置单元和数据发送单元。状态设置单元,用于将第一BWP上的第一CG配置所关联的一个或多个HARQ进程设置为not pending状态;其中,第一CG配置包括网络设备在第一BWP上为终端配置的一个或多个CG配置;第一BWP是终端当前激活的BWP。数据发送单元,用于使用第一CG配置所关联的、处于not pending状态的HARQ进程,向网络设备发送上行数据。
在第二方面的一种可能的设计方式中,状态设置单元,具体用于响应于接收到来自网络设备的DCI激活命令,将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。其中,DCI激活命令用于指示终端激活第一CG配置。
在第二方面的另一种可能的设计方式中,状态设置单元,具体用于响应于接收到来自网络设备的RRC信令,将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。其中,RRC信令用于为终端配置且激活第一CG配置,或者用于为终端仅配置第一CG配置。
在第二方面的另一种可能的设计方式中,第一CG配置所关联的一个或多个HARQ进程,包括:第一CG配置所关联的所有HARQ进程;或者,第一CG配置所关联的HARQ进程中、处于pending状态的HARQ进程;或者,第一CG配置所关联的HARQ进程中的第一HARQ进程;或者,第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程;或者,第一CG配置所关联的HARQ进程中的corresponding HARQ进程。其中,当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权;当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权,表示第一HARQ进程未被终端使用过。corresponding HARQ进程为终端随机选择的HARQ进程。
在第二方面的另一种可能的设计方式中,状态设置单元,还用于若确定第一BWP上发生连续N次上行LBT失败,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,N≥2,N为正整数。第二GG配置包括网络设备在第一BWP上为终端配置的所有CG配置,或者在第一BWP上为终端已激活的CG配置。第二GG 配置所关联的所有HARQ进程的缓存被清空后,第二GG配置所关联的所有HARQ进程处于not pending状态。
在第二方面的另一种可能的设计方式中,状态设置单元,具体用于向网络设备发送MAC CE时,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,MAC CE包括终端所在服务小区的LBT失败状态指示位。
在第二方面的另一种可能的设计方式中,状态设置单元,具体用于在终端位于主小区或主辅小区的情况下,主动由第一BWP切换至第二BWP时,清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,第二BWP是配置有PRACH资源的、且没有发生过连续N次上行LBT失败的BWP,第二BWP与第一BWP属于同一个服务小区。
在第二方面的另一种可能的设计方式中,该终端还包括:通信单元。通信单元,用于接收来自网络设备的BWP切换指令。状态设置单元,具体用于响应于BWP切换指令,清空第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态。
在第二方面的另一种可能的设计方式中,该终端还包括:次数统计单元。次数统计单元,用于每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程是否为pending状态;若用于发送上行数据的HARQ进程为pending状态,挂起计数器记录的pending次数加1。该挂起计数器记录的pending次数的初始值为零。状态设置单元,还用于若挂起计数器记录的pending次数等于预设次数阈值,清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为not pending状态。其中,用于发送上行数据的HARQ进程的缓存被清空后,用于发送上行数据的HARQ进程处于not pending状态。
在第二方面的另一种可能的设计方式中,该终端还包括:时长统计单元。时长统计单元,用于每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程为pending状态还是not pending状态;确定用于发送上行数据的HARQ进程为pending状态、且挂起计时器未启动,启动挂起计时器;确定用于发送上行数据的HARQ进程为not pending状态、且挂起计时器处于运行中,停止挂起计时器。状态设置单元,还用于若挂起计时器的计时时长等于预设时长阈值,清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为not pending状态。其中,挂起计时器用于统计用于发送上行数据的HARQ进程在传输上行数据的过程中处于pending状态的总时长。用于发送上行数据的HARQ进程的缓存被清空后,用于发送上行数据的HARQ进程处于not pending状态。
第三方面,本申请实施例提供一种终端,该终端包括:处理器、存储器和通信接口;存储器和通信接口与处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,存储器包括非易失性存储介质,当处理器执行计算机指令时,使得终端执行如第一方面及其任一种可能的设计方式所述的方法。
第四方面,本申请实施例提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在终端上运行时,使得终端执行如第一方面及其任一种可 能的设计方式所述的方法。
第五方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在终端上运行时,使得终端执行如第一方面及其任一种可能的设计方式所述的方法。
本申请实施例第二方面及其任一种可能的设计方式,以及第三方面、第四方面和第五方面的所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种系统架构的简化示意图;
图2为本申请实施例提供的一种终端的硬件结构示意图;
图3为本申请实施例提供的一种终端向网络设备发送上行数据的方法原理示意图;
图4为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图一;
图5为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图二;
图6为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图三;
图7为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图四;
图8为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图五;
图9为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图六;
图10为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图七;
图11为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图八;
图12为本申请实施例提供的一种基于HARQ进程的数据传输方法的流程图九;
图13为本申请实施例提供的一种终端的结构组成示意图一;
图14为本申请实施例提供的一种终端的结构组成示意图二。
具体实施方式
本申请实施例中所述的“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。例如,第一BWP和第二BWP是不同的BWP。
本申请实施例提供的一种基于HARQ进程的数据传输方法,可以应用于终端向网络设备传输上行数据的过程中。
图1为本申请实施例提供的一种移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括:核心网设备110、无线接入网设备120和至少一个终端(包括终端130和终端140)。其中,至少一个终端通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与无线接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备110的功能和部分的无线接入网设备120的功能。终端130或终端140可以是固定位置的,也可以是可移动的。在本申请实施例中,至少一个可以是1个、2个、3个或者更多个,本申请实施例不做限制。
需要说明的是,图1只是示意图,该移动通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备110、无线接入网设备120和终端的数量不做限定。
无线接入网设备120是终端通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。无线接入网设备120也可以是完成基站部分功能的模块或单元。例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备120简称网络设备,如果无特殊说明,网络设备均指无线接入网设备120。
在本申请实施例中,用于实现无线接入网设备120的功能的装置可以是网络设备;也可以是能够支持无线接入网设备120实现该功能的装置,例如芯片系统,该装置可以被安装在无线接入网设备120中或者和无线接入网设备120匹配使用。在本申请实施例提供的技术方案中,以用于实现无线接入网设备120的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的终端也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。作为一种实施例,如图1所示,本申请的系统架构包括的终端130和终端140均以手机为例示出。
在本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中或者和终端匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;可以部署在水面上;或者,可以部署在空中的飞机、气球或人造卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
移动通信系统中,终端可以接入网络设备,并和网络设备进行无线通信。示例性地,一个网络设备可以管理一个或多个(例如,3个或6个等)小区,终端可以在该一个或多个小区中的至少一个小区中接入网络设备,并在该终端所在的小区中和网络设备进行通信。
其中,无线通信的基础是频谱资源。频谱资源分为授权频谱和非授权频谱(unlicensed spectrum)。其中,授权频谱在某个地方只能由特定运营商使用,而非授权频谱可以由任何运营商使用,是共享的频谱资源。网络设备和终端之间可以通过授权频谱进行通信,可以通过非授权频谱进行通信,或者可以通过授权频谱和非授权频谱进行通信。例如,网络设备和终端之间可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,可以通过6GHz以上的频谱进行通信,或者可以使用6GHz以下 的频谱和6GHz以上的频谱进行通信。本申请实施例主要针对终端使用非授权频谱和网络设备通信的情况。
示例性地,本申请实施例这里以无线接入网设备(网络设备)120与终端130的交互为例,对图1所示的系统架构中的无线接入网设备120与终端130进行介绍。
无线接入网设备120为终端130激活第一BWP,并为终端130在第一BWP上配置至少一个CG配置和该至少一个CG配置所关联的HARQ进程。然后,终端130可以使用该第一BWP上的一个激活的CG配置所关联的HARQ进程向无线接入网设备120发送上行数据。若发送该上行数据失败,终端130继续使用该HARQ进程发送该上行数据;若发送该上行数据成功,等待无线接入网设备120的反馈。若接收到无线接入网设备120的ACK反馈,终端130确定成功传输该上行数据至无线接入网设备120;若接收到无线接入网设备120的NACK反馈,终端130确定传输该上行数据至无线接入网设备120失败,可以继续使用该HARQ进程发送该上行数据。
图2为本申请实施例提供的一种终端的硬件结构示意图。如图2所示,该终端可以包括至少一个处理器21、存储器22、通信接口23和总线24。
下面结合图2对终端的各个构成部件进行具体的介绍:
处理器21可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21可以是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行终端的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU。例如,如图2所示,处理器21包括CPU0和CPU1。
在具体实现中,作为一种实施例,终端可以包括多个处理器。例如,如图2所示,包括处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。其中,存储器22用于存储执行本申请方案的软件程序,并由处理器21来控制执行。
通信接口23,用于与其他设备或通信网络通信,如用于与以太网,无线接入网 (radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等通信网络通信。通信接口23可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,终端还可以包括电池、摄像头、蓝牙模块、全球定位系统(Global Position System,GPS)模块、显示屏等,在此不再赘述。
以下对本申请实施例中涉及的术语进行介绍:
(1)LBT信道竞争接入技术:是指在进行数据传输前可监听非授权频谱的信道占用情况,满足信道空闲的条件方可使用该信道。由于非授权频谱是共享的频谱,很多空口技术都会使用非授权频谱,例如,WiFi,基于长期演进(Long Term Evolution,LTE)的授权频谱辅助接入(License Assisted Access,LAA),MulteFire技术等。为了保证多个空口技术在非授权频谱上共存,采用LBT机制避免多个空口技术的互相干扰。
其中,LBT失败是指由于信道繁忙而未能成功占用信道,不能传输信号(例如,数据,指令)。LBT成功是指成功占用信道,并传输数据。针对不同的信号传输方向,传输信号分为上行传输和下行传输。其中,上行传输是指终端通过信道向网络设备传输信号;用于上行传输的信道称为上行信道;上行传输的信号称为上行信号(例如,上行数据,上行指令)。下行传输是指网络设备通过信道向终端传输信号;用于下行传输的信道称为下行信道;下行传输的信号称为下行信号(例如,下行数据,下行指令)。相应地,LBT分为上行LBT和下行LBT,该上行LBT是指在上行传输前终端监听非授权频谱的信道占用情况,该下行LBT是指在下行传输前网络设备监听非授权频谱的信道占用情况。
采用LBT的信道接入过程分为两类:第一类是基于固定时长的能量检测,发送端(终端或网络设备)检测非授权频谱的信道的信号强度;如果该信号强度大于预设门限,认为该信道忙碌,否则认为该信道空闲。第二类是基于回退机制的能量检测,发送端(终端或网络设备)从一个取值范围(例如,窗口[min,max],min为一个最小值,max为一个最大值)中随机选取一个数值A。若在非授权频谱的信道上检测到至少A个空闲的能量检测时隙,认为该信道空闲,否则认为该信道忙碌。其中,每个空闲的能量检测时隙为该信道的信号强度不大于预设门限时的时隙。发送端(终端或网络设备)只有在认为信道空闲的时候,才可以使用该信道传输数据。
在NR-U技术中引入了一个LBT计数器(LBT counter)和一个LBT计时器(LBT timer)。其中,该LBT counter用于记录上行LBT失败(即由于上行信道繁忙而未能成功占用该上行信道)的次数。该LBT timer用于对检测连续上行LBT失败的时长进 行计时。每发生一次上行LBT失败,该LBT counter就加1,同时,该LBT timer就启动或者重新启动。当该LBT counter记录的上行LBT失败次数等于预设失败次数阈值,认为发生连续上行LBT失败。若该LBT timer的计时时长等于预设失败时长阈值,重置该LBT counter。
(2)BWP:随着通信技术的发展,可使用的频谱带宽愈来愈宽,尤其NR所使用的频谱带宽非常宽。为了更灵活使用频谱,NR引入了BWP技术,即为终端配置可使用的频谱带宽中的部分带宽BWP。其中,网络设备根据自身的负载和终端的业务需求,可以给终端激活合适的BWP。例如,网速设备确定终端处理大量的数据业务,为终端激活较宽的BWP。网络设备发现终端当前激活的BWP的负载较重,为终端激活另一个较空闲的BWP。
具体地,现有的NR协议中规定,终端接入到网络设备的服务小区(例如,主小区,辅小区,主辅小区)后,网络设备根据自身的负载和终端的业务需求,给该终端配置专用的BWP,最多配置4个专用的BWP。再选择激活所配置的BWP中的一个。另外,网络设备为任意一个终端,在该任意一个终端所在的一个服务小区下只能激活一个BWP。
当终端所在的服务小区的当前激活的BWP上发生连续N次上行LBT失败(或称为连续上行LBT失败),终端则触发MAC CE(即LBT失败MAC CE)上报给网络设备。该MAC CE是位图形式,用于指示相应的服务小区是否发生连续N次上行LBT失败。若终端成功发送了该MAC CE,终端取消相应的服务小区的连续N次上行LBT失败状态。另外,终端还可以在其他的时机取消相应的服务小区的连续N次上行LBT失败状态。例如,网络设备向终端发送BWP切换指令,指示终端所在的服务小区从当前激活的BWP切换到其他的BWP;或者当终端所在的服务小区去激活,不再使用该服务小区。本申请实施例对取消相应的服务小区的连续N次上行LBT失败状态的时机不做限制。
需要说明的是,在终端所在的服务小区为辅小区的情况下,由于终端在辅小区上不能主动切换BWP,终端需要通过其他的没有发生连续N次上行LBT失败的服务小区发送该MAC CE。另外,本申请实施例中的MAC CE就是LBT失败MAC CE。
在终端所在的服务小区为主小区(primary cell,PCell)或主辅小区(primary secondary cell,PScell)的情况下,该服务小区的当前激活的BWP上检测到连续N次上行LBT失败,终端可以主动从该当前激活的BWP切换到第二BWP。该第二BWP是该服务小区上配置了PRACH资源的、且没有发生过连续N次上行LBT失败的BWP。然后,终端发起RACH随机接入流程,完成LBT失败恢复(即终端使用切换后的BWP和网络设备进行收发数据)。该RACH随机接入流程包括:通过和网络设备交互,告知网络设备该终端及其切换后的BWP。该切换后的BWP用于网络设备和该终端之间的收发数据。
(3)HARQ进程:是指采用HARQ技术的传输数据进程。该HARQ技术结合了前向纠错(Forward Error Correction,EFC)技术与自动重传请求(Automatic Repeat Request,ARQ)技术。其中,通过EFC技术可以增加通信的可信度,但是,在单向通信信道(如LTE的FDD系统)中,接收端接收发送端发送的数据包(例如,上行 数据)时,如果接收端检测到无法纠正的错误,该接收端不能请求发送端重传该数据包。而HARQ技术中,接收端则可以通过ARQ机制请求发送端重传数据包。具体的,接收端可以通过循环冗余校验(Cyclic Redundancy Check,CRC)来检测接收到的数据包是否出错;如果数据包未出错,接收端向发送端返回该数据包的ACK反馈;如果数据包出错,接收端向发送端发送该数据包的NACK反馈;接收端接收到该数据包的NACK反馈后,向接收端重传该数据包。
以传输上行数据为例,网络设备(即接收端)接收终端(即发送端)使用HARQ进程在上行授权(uplink grant,UL grant)指示的资源上发送上行数据。如果网络设备正确接收该上行数据,网络设备在下行链路上进行HARQ反馈的状态为ACK(即网络设备向终端反馈该上行数据的ACK反馈)。如果网络设备未正确接收该上行数据,网络设备在下行链路上进行HARQ反馈的状态为NACK(即网络设备向终端反馈该上行数据的NACK反馈)。也就是说,HARQ反馈为ACK用于指示网络设备正确接收上行数据;HARQ反馈为NACK用于指示网络设备未正确接收上行数据。然后,终端如果接收到网络设备反馈的NACK,则向网络设备重传该上行数据,使得网络设备可以将重传的上行数据和没有正确接收的上行数据进行HARQ合并。
通常,终端可以使用HARQ进程在UL grant所指示的资源上进行上行传输。例如,将HARQ进程关联的上行授权递交到终端的HARQ实体,以使得在该HARQ进程关联的上行授权所指示的资源上发送上行数据。其中,上行授权可以是网络终端动态调度的动态授权(dynamic grant,DG),也可以是网络终端的预配置授权CG。终端的一个HARQ实体可以维护多个并行的HARQ进程,每个HARQ进程都有一个HARQ身份标识号码(identity,ID),通过HARQ ID可以区分不同的HARQ进程。
(4)CG配置:是指NR-U中的网络设备为终端预配置的上行传输所需的资源。其中,将预配置的上行传输所需的资源可以称为CG配置,或预配置上行授权配置。终端无需网络设备的动态调度,就可以在CG配置上进行上行传输。CG配置包括但不限于第五代移动通信技术(5th-Generation,5G)所采用的两种预配置授权资源。5G所采用的两种预配置授权资源分别是通过两种授权方式得到,该两种授权方式包括配置授权方式1(configured grant type1)和配置授权方式2(configured grant type2)。
其中,配置授权方式1是指网络设备通过半静态配置方式为终端预配置上行传输所需的资源(CG配置),即按周期配置激活的CG配置,不需要终端每次发送上行数据前都向网络设备获取该CG配置的上行授权。例如,网络设备可以通过RRC信令为终端配置用于上行传输的CG配置,该RRC信令还可以包括该CG配置的周期。
配置授权方式2是指网络设备可以通过RRC信令为终端配置用于上行传输的部分信息,例如,用于上行传输的CG配置的周期等。然后,网络设备通过携带有用于上行传输的CG配置的物理层信令,激活该CG配置,从而终端可以在该CG配置进行上行传输。其中,物理层信令包括DCI。
需要说明的是,上述两种授权方式的命名不仅仅局限于配置授权方式1和配置授权方式2,还可以有其他命名,本申请实施例对这两种授权方式的命名不做限制。上述两种授权方式适用的通信系统除了5G通信系统,也可以是LTE通信系统,或者其他通信系统,本申请实施例对这两种授权方式适用的通信系统也不做限制。
NR-U系统中支持多个CG配置,即终端在当前激活的BWP上可以同时支持多个CG配置,并且多个不同的CG配置可以共享HARQ进程。终端通过任意一个CG配置传输上行数据的时候,在该CG配置所关联的(所支持的)HARQ进程中随机选择一个HARQ进程。然后,终端在该CG配置上使用这个HARQ进程发送上行数据,上行LBT成功,则表示发送上行数据成功,否则,发送上行数据失败,重新发送上行数据。其中,传输一个上行数据的过程包括针对同一个上行数据的新传和重传。将传输一个上行数据的过程中的第一次发送上行数据称为新传,新传也可以称为初传。在新传发送成功后,若网络设备未正确接收上行数据,表示新传传输失败,终端可以重新传输上行数据,直至传输成功或者达到最大传输时长。其中,将传输一个上行数据的过程中的新传传输失败之后的每次发送上行数据称为重传。
另外,NR-U系统中还支持跨CG配置的重传,只要UE在不同的CG配置中都选择相同的HARQ进程,并且该不同的CG配置具有相同的传输包大小(transport block size,TBS)。
NR系统中定义了一个预配置授权计时器CGT,CGT用于限制传输过程的总时长,该CGT对应一个传输时长阈值。由于NR-U系统沿用了NR系统的机制,NR-U系统可以使用CGT,并且为了限定重传间隔,NR-U系统中新定义了一个预配置授权的重传计时器CGRT,该CGRT用于限制在传输过程中的新传和重传之间的传输间隔、以及两次重传之间的传输间隔,该CGRT对应一个重传时长阈值。其中,该重传时长阈值小于该传输时长阈值。在NR-U系统中终端可以利用CGRT和CGT来控制新传和重传。
具体地,终端使用一个CG配置所关联的一个HARQ进程新传,上行LBT成功,则表示发送上行数据成功,启动CGT和CGRT;否则,不启动CGT和CGRT。启动CGT和CGRT后,在CGT计时期间,若CGRT的计时时长等于重传时长阈值或者接收到网络设备的NACK反馈,终端停止CGRT,并使用该HARQ进程自动重传。终端使用该HARQ进程重传,上行LBT成功,则表示重传发送上行数据成功,重启CGRT;否则,不重启CGRT,继续使用该HARQ进程重传。若CGT的计时时长等于传输时长阈值或者接收到网络设备的ACK反馈,停止CGT和CGRT。此时,终端可以用该HARQ进程新传其他的上行数据。
其中,终端自动重传,只会重启CGRT,不会重启CGT。若接收到网络设备的ACK反馈,表示网络设备正确接收该上行数据。终端在接收到NACK反馈的时候不会停止CGT,收到ACK反馈的时候停止CGT。
可以理解的是,在HARQ进程的CGT计时期间,终端不能使用该HARQ进程传输其他的上行数据。这样,可以避免其他的上行数据将该HARQ进程的HARQ buffer中的该上行数据冲掉,造成丢包。
示例性地,如图3所示,终端使用一个CG配置所关联的一个HARQ进程传输上行数据的过程可以在时域上划分为多个时间单元,多个时间单元包括按照时间先后排序的t1、t2、t3、t4、t5、t6、…、tm,m为正整数。其中,多个时间单元可以是连续的,也可以是有时间间隔的,本申请实施例并未特别限定。一个时间单元的长度可以任意设定,本申请实施例并未特别限定。例如,一个时间单元可以包括一个或多个子 帧;或者,一个时间单元可以包括一个或多个时隙。另外,CGRT的计时时长等于重传时长阈值,以及接收到NACK反馈都可以认为是CGRT超时。CGT的计时时长等于传输时长阈值,以及接收到网络设备的ACK反馈都可以认为是CGT超时。
在此基础上,说明终端使用该HARQ进程传输该上行数据的过程可以包括:终端在t1新传,且发生上行LBT成功,则启动CGT和CGRT,并等待网络设备接收上行数据。经过t2和t3,CGRT超时,终端停止CGRT,并在t4使用该HARQ进程自动重传。在t4发生上行LBT失败,不重启CGRT,继续使用该HARQ进程在t5重传。终端在t5重传,且发生上行LBT成功,重启CGRT,并等待网络设备接收上行数据。在tm,CGT超时,终端停止CGT和CGRT。此时,终端可以用该HARQ进程新传其他的上行数据。
可以理解的是,上述技术中,如果终端用HARQ进程开始新传时发送上行数据失败,就不会启动CGT和CGRT,也不能重传,该上行数据就一直存储在该HARQ进程的HARQ buffer中。由于CGT没有启动,如果不引入其他机制,终端可能用该HARQ进程新传其他的上行数据,该其他的上行数据就会把HARQ buffer中的该上行数据冲掉。这样的话,没有将该上行数据发送至网络设备,也不会再使用该HARQ进程发送该上行数据。也就是说,该上行数据被丢弃,只能依赖高层重传该上行数据。
针对该问题,NR-U系统引入了一个HARQ进程的挂起pending状态。对于新传和重传,使用一个HARQ进程成功发送上行数据(即上行LBT成功)时,终端确定该HARQ进程为非挂起not pending状态;否则,确定该HARQ进程为pending状态。其次,在该HARQ进程为pending状态后,成功发送该上行数据或清空了该HARQ进程的HARQ buffer,才取消该HARQ进程的pending状态。或者,在CGT超时时设置该HARQ进程为not pending状态。也就是说,终端在判断一个HARQ进程是否可以做新传的时候,不仅要判断CGRT和CCT是否停止计时,还要判断该HARQ进程是否为not pending状态。只有确定CGRT和CCT停止计时,且该HARQ进程为not pending状态时,才使用该HARQ进程新传,否则,使用该HARQ进程重传。这样可以避免由于新传发生上行LBT失败,CGT未启动,终端使用该HARQ进程新传其他的上行数据所导致的上行数据被丢弃的情况。
然而,上述方案是在使用该HARQ进程新传之后,根据新传发生上行LBT成功或上行LBT失败才能确定出该HARQ进程为pending状态或not pending状态。那么,在初始使用该HARQ进程时,终端不清楚该HARQ进程的状态,就不能使用该HARQ新传。也就是说,HARQ进程缺乏初始状态(即not pending状态),进而导致无法使用该HARQ进程进行新传。
进一步地,终端正在使用当前激活的BWP上的一个或多个CG配置所关联HARQ进程传输的过程中,终端确定所在的服务小区的当前激活的BWP上发生连续N次上行LBT失败,正在使用的HARQ进程可能处于pending状态。如果服务小区是主小区或者主辅小区,终端可以切换BWP,并且,切换后的BWP上的CG配置也可能关联该处于pending状态的HARQ进程。
由于在切换前的BWP上的一个或多个CG配置所关联的HARQ进程可能处于pending状态,导致在切换后的BWP上也不能使用这些HARQ进程新传。也就是说, 上述使用挂起pending状态的方案还存在终端切换BWP时,对切换前的BWP上的一个或多个CG配置所关联的HARQ进程的pending状态处理不清楚的问题,进而导致在切换后的BWP上无法正常使用这些HARQ进程。
最后,如果传输一个上行数据的过程中在启动CGT和CGRT之前,连续发生多次上行LBT失败,该HARQ进程会一直处于pending状态。并且,由于上述上行LBT失败发生在CGT和CGRT启动之前,因此终端无法确定上述连续多次上行LBT失败的时长,从而无法解决一个上行数据的传输过程长期占用HARQ进程的问题。
针对上述的问题,本申请实施例提供一种基于HARQ进程的数据传输方法,可以确定HARQ进程的初始状态,进而使用处于not pending状态的HARQ进程进行上行传输。还可以解决切换BWP时对切换前的BWP上的一个或多个CG配置所关联的HARQ进程的pending状态处理不清楚的问题,使得切换后的BWP上可以正常使用这些HARQ进程。另外,还可以避免由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程存在长期占用HARQ进程的问题。
本申请实施例提供一种基于HARQ进程的数据传输方法,如图4所示,该基于HARQ进程的数据传输方法包括S401-S402。
S401、终端将第一部分带宽BWP上的第一预配置授权CG配置所关联的一个或多个HARQ进程设置为非挂起not pending状态。
其中,第一CG配置包括网络设备在第一BWP上为终端配置的一个或多个CG配置。第一BWP是终端当前激活的BWP。
示例性的,上述第一BWP属于网络设备在终端所在的服务小区上为终端配置的专用的多个BWP。该第一BWP可以是网络设备为终端激活的BWP。网络设备还可以为该第一BWP,配置第一CG配置。第一CG配置中包含了第一CG配置关联的HARQ进程。终端可接收网络设备的配置,并可以设置第一CG配置所关联的一个或多个HARQ进程为not pending状态。
需要说明的是,本申请任一实施例中的终端将上述一个或多个HARQ进程设置为not pending状态,是由终端内部实现的。本申请任一实施例中所述的“终端将一个或多个HARQ进程设置为not pending状态”可以替换为“终端认为(或确定)一个或多个HARQ进程为not pending状态”或者“终端认为(或确定)一个或多个HARQ进程处于not pending状态”。
其中,该第一CG配置可以是网络设备在该第一BWP上为终端配置的部分CG配置或所有CG配置。该第一CG配置所关联的一个或多个HARQ进程可以是第一CG配置所关联的所有HARQ进程或部分HARQ进程。
在一些实施例中,第一CG配置所关联的一个或多个HARQ进程,至少可以包括以下六种HARQ进程中的任一种:
(1):第一CG配置所关联的所有HARQ进程。
(2):第一CG配置所关联的HARQ进程中、处于挂起pending状态的HARQ进程。
(3):第一CG配置所关联的HARQ进程中、不处于非挂起not pending状态的HARQ进程。
(4):第一CG配置所关联的HARQ进程中的第一HARQ进程。其中,当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权。当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权,表示第一HARQ进程未被所述终端使用过。
(5):第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程。
(6):第一CG配置所关联的HARQ进程中的corresponding HARQ进程(对应的HARQ进程)。该corresponding HARQ进程为终端随机选择的HARQ进程。
其中,当前递交到终端的HARQ实体的上行授权(即终端的HARQ实体当前处理过的上行授权),都是在当前时刻之前递交到HARQ实体的与HARQ进程关联的上行授权。当前递交到HARQ实体的上行授权中不存在与第一HARQ进程关联的上行授权,表示在当前时刻之前终端没有使用过该第一HARQ进程。上述corresponding HARQ进程可以用于发送该上行数据,并且终端内部实现随机选择该corresponding HARQ进程。
需要说明的是,由于不同CG配置可以共享HARQ进程,终端通过任意一个CG配置(包括第一CG配置)传输上行数据的时候,可以在第一CG配置所关联的HARQ进程中随机选择一个HARQ进程。所以第一CG配置中的某些HARQ进程可能已经被其他CG配置使用过了或者正在被其他CG配置使用。其他CG配置为除了第一CG配置之外的CG配置。由于网络设备可以通过DG动态调度任意一个HARQ进程,所以第一CG配置中的某些HARQ进程也可能已经被DG调度过了或者正在被DG调度。上述“没有使用过”可以指没有被终端的任意一个CG配置和DG使用过。上述“未被正在使用”可以指没有正在被其他CG配置和/或DG使用(终端正在其他CG配置上通过这个HARQ进程做数据传输)。
可以理解的是,终端可以将第一CG配置所关联的没有使用过的HARQ进程,是因为如果一个HARQ进程已经被使用过,表明传输已经进行过了(transmission has been performed),根据现有通信协议,该HARQ进程已经处于not pending状态,就不存在缺乏初始状态的问题。另外,终端还可以将第一CG配置所关联的未被正在使用的HARQ进程设置为not pending状态,是因为如果一个HARQ进程正在被使用,在传输完成前,不能随便改变该HARQ进程的状态,否则可能造成正在传输的上行数据被丢弃(即丢包),所以只对第一CG配置所关联的未被正在使用的HARQ进程进行设置。
在一些实施例中,第一CG配置所关联的一个或多个HARQ进程,还可以包括:第一CG配置所关联的HARQ进程中的第一HARQ进程,以及第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程。
S402、终端使用第一CG配置所关联的、处于非挂起not pending状态的HARQ进程,向网络设备发送上行数据。
终端需要发送上行数据时,可以从第一CG配置所关联的、设置为not pending状态的一个或多个HARQ进程,选择一个HARQ进程。由于该HARQ进程处于not pending状态,终端可以使用该HARQ进程发送该上行数据。
本申请实施例提供的基于HARQ进程的数据传输方法,终端可以在接收到网络设 备的配置时,将网络设备配置的第一CG配置所关联的一个或多个HARQ进程设为not pending状态。如此,便实现了对该一个或多个HARQ进程的初始状态(即not pending状态)的设置。该第一CG配置所关联的一个或多个HARQ进程在用于上行传输之前,已经处于not pending状态,即该第一CG配置所关联的一个或多个HARQ进程可用于上行传输,或者说该第一CG配置所关联的一个或多个HARQ进程可用于新传。因此,终端可以使用该一个或多个HARQ进程中的一个HARQ进程,发送上行数据(或新传上行数据)。如此,便可以实现终端利用初始状态为not pending状态的HARQ进程进行上行传输(或新传)。
在一些实施例中,网络设备可以采用不同的配置方式为终端在第一BWP上配置CG配置。采用不同的配置方式得到的第一CG配置也不同。其中,网络设备采用的配置方式可以包括上述配置授权方式1和上述配置授权方式2。
在网络设备使用RRC信令(即使用配置授权方式1或上述配置授权方式2)的情况下,第一CG配置包括网络设备采用配置授权方式1在第一BWP上为终端配置且激活的所有CG配置;或者,第一CG配置包括网络设备采用配置授权方式2在第一BWP上为终端仅配置(即仅配置不激活)的所有CG配置。具体的,上述S401可以包括S501。例如,如图5所示,本申请实施例提供的方法包括S501-S502。
S501、终端响应于接收到来自网络设备的RRC信令,将第一CG配置所关联的一个或多个HARQ进程设置为非挂起not pending状态。其中,RRC信令用于为终端配置且激活第一CG配置,或者用于为终端仅配置第一CG配置。
需要说明的是,S501中所述的第一CG配置所关联的一个或多个HARQ进程的详细描述,可以参考上述实施例对S401中所述的第一CG配置所关联的一个或多个HARQ进程的介绍,本申请实施例这里不予赘述。
其中,终端接收到来自网络设备的RRC信令后,便可以针对该RRC信令所指示的第一CG配置,将该第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。
其中,配置授权方式1中的RRC信令用于为终端配置且激活第一CG配置。配置授权方式2中的RRC信令用于为终端仅配置第一CG配置。
S502、终端使用第一CG配置所关联的、处于非挂起not pending状态的HARQ进程,向网络设备发送上行数据。
需要说明的是,步骤S502的实现过程和步骤S402的实现过程相同,此处不再赘述。
本申请实施例提供的基于HARQ进程的数据传输方法,终端可以在接收到网络设备配置第一CG配置时,将该第一CG配置所关联的一个或多个HARQ进程设为not pending状态。如此,该第一CG配置所关联的一个或多个HARQ进程在用于上行传输之前处于not pending状态,表示可以使用该一个或多个HARQ进程新传。
采用DCI激活命令(即采用配置授权方式2)的情况下,第一CG配置可以是该DCI激活命令指示激活的一个CG配置。具体的,上述S401还可以包括S601。例如,如图6所示,本申请实施例提供一种基于HARQ进程的数据传输方法包括S601-S602。
S601、终端响应于接收到来自网络设备的DCI激活命令,将第一CG配置所关联 的一个或多个HARQ进程设置为非挂起not pending状态。其中,DCI激活命令用于指示终端激活第一CG配置。
需要说明的是,S601中所述的第一CG配置所关联的一个或多个HARQ进程的详细描述,可以参考上述实施例对S401中所述的第一CG配置所关联的一个或多个HARQ进程的介绍,本申请实施例这里不予赘述。
其中,网络设备在使用DCI激活命令之前,先使用配置授权方式2中的RRC信令给终端在第一BWP上仅配置一个或多个CG配置,再使用该DCI激活命令激活(首次激活或者重新激活)该一个或多个CG配置中的一个CG配置,这一个CG配置就是第一CG配置。终端接收到来自网络设备的该DCI激活命令,就将该第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。其中,DCI激活命令可以是首次激活命令或重激活命令。
网络设备使用该DCI激活命令激活的第一CG配置可以为使用该DCI激活命令首次激活的第一CG配置;此时,该DCI激活命令也可以称为首次激活命令。网络设备使用该DCI激活命令激活的第一CG配置也可以为使用该DCI激活命令重新激活的第一CG配置;此时,该DCI激活命令也可以称为重激活命令。
S602、终端使用第一CG配置所关联的、处于非挂起not pending状态的HARQ进程,向网络设备发送上行数据。
需要说明的是,步骤S602的实现过程和步骤S402的实现过程相同,此处不再赘述。
本申请实施例提供的基于HARQ进程的数据传输方法,终端可以在接收到网络设备针对第一CG配置的DCI激活命令时,将当前要被激活的第一CG配置所关联的一个或多个HARQ进程设为not pending状态。如此,当前要被激活的第一CG配置所关联的一个或多个HARQ进程处于not pending状态,表示可以使用该一个或多个HARQ进程新传。
需要说明的是,终端除了在上述第一时机(即响应于接收到来自网络设备的RRC信令,或者响应于接收到来自网络设备的DCI激活命令),将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态。还可以在除了第一时机之外的其他时机下将第一CG配置所关联的一个或多个HARQ进程设置为not pending状态,本申请实施例不做限制。
示例性地,针对上述第一HARQ进程,上述S401还可以包括:终端在处理一个已激活的CG配置关联的授权(grant)配置时,这一个已激活的CG配置就是第一CG配置,在该第一CG配置所关联的所有HARQ进程里确定一个第一HARQ进程。如果当前递交到HARQ实体的上行授权中不存在与这一个第一HARQ进程关联的上行授权,终端设备认为这一个第一HARQ进程的状态为非挂起not pending状态(即设置这一个第一HARQ进程的状态为not pending状态)。其中,一个已激活的CG配置关联的grant配置可以是按照预设周期出现的,预设周期可以是上述配置授权方式1或上述配置授权方式2所采用的RRC信令指定的。
在一些实施例中,终端在将上述第一CG所关联的一个或多个HARQ进程设置为not pending状态后(例如,上述步骤S401、步骤S501或步骤S601之后),还检测当 前激活的第一BWP上是否发生连续N次上行LBT失败。
以步骤S401-S402为例,如图7所示,本申请实施例提供的基于HARQ进程的数据传输方法,在步骤S401之后还包括步骤S701-S702。
S701、终端统计第一BWP上发生的上行LBT失败的总次数,并比较该上行LBT失败的总次数是否等于预设LBT失败次数阈值N。
该第一BWP上发生的上行LBT失败的总次数包括:终端在该第一BWP上进行上行数据传输时发生上行LBT失败的次数。
S702、若该上行LBT失败的总次数等于预设LBT失败次数阈值N,终端确定第一BWP上发生连续N次上行LBT失败,否则,确定第一BWP上没有发生连续N次上行LBT失败。
其中,终端确定第一BWP上连续N次上行LBT失败,触发连续上行LBT失败状态。
需要说明的是,图7中的步骤S701-S702和步骤S402为并列的,图7对步骤S701-S702和步骤S402的执行顺序仅仅为一种示例性的说明。步骤S701可以是对步骤S402的执行过程中的上行LBT失败次数进行统计,也可以是对步骤S402的执行过程及其之后的发送其他上行数据的执行过程中的上行LBT失败次数进行统计。
进一步地,如图8所示,在步骤S702之后,基于HARQ进程的数据传输方法还包括步骤S703。
步骤S703、终端若确定第一BWP上发生连续N次上行LBT失败,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为非挂起not pending状态。
其中,第二GG包括网络设备在第一BWP上为终端配置的所有CG配置,或者第一BWP上终端已激活的CG配置;第二GG所关联的所有HARQ进程的缓存被清空后,第二GG所关联的所有HARQ进程处于not pending状态。
终端若确定第一BWP上发生连续N次上行LBT失败,直接触发清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者直接触发设置第一BWP上的第二CG配置所关联的所有HARQ进程为not pending状态。
需要说明的是,该第二CG配置和该第一CG配置可以相同,也可以不同。
本申请实施例中,终端在使用第一BWP(即切换前的BWP)上的一个或多个CG配置所关联的HARQ进程传输的过程中,确定第一BWP上发生连续N次上行LBT失败,表示第一BWP上正在使用的HARQ进程可能处于pending状态。此时,终端将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,终端可以通过清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态,以将第一BWP上的第一CG配置所关联的所有HARQ进程设置为not pending状态。可以理解,上述第二CG配置所关联的所有HARQ进程可以包括第一BWP上的处于pending状态的HARQ进程。因此,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第二CG配置所关联的所有HARQ进程设置为not pending状态,可以实现将第一BWP上的第一CG配置所关联的所有HARQ进程设置为not pending状态。
如此,解决了终端切换BWP时,存在对第一BWP(即切换前的BWP)上的处于pending状态的HARQ进程的状态未处理的问题。进而,终端在第二BWP(即切换后的BWP)上的CG配置可能关联该第一BWP上的处于pending状态的HARQ进程,由于该第一BWP上的处于pending状态的HARQ进程已经被设置为not pending状态,在切换后的BWP上能够使用这些HARQ进程新传。
在一些实施例中,终端若确定第一BWP上发生连续N次上行LBT失败,向网络设备发送MAC CE时,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,MAC CE包括终端所在服务小区的LBT失败状态指示位。
其中,上述向网络设备发送媒体接入控制的控制元素MAC CE可以指终端成功发送MAC CE。具体地,终端收到物理层(physical layer,PHY)的关于该MAC CE的LBT成功指示,表明该MAC CE可以成功发送,则认为成功发送MAC CE。另外,也可以只从MAC层看,即不论关于该MAC CE的LBT失败或成功,MAC层触发了发送该MAC CE就认为发送成功,即认为成功发送MAC CE。
在一些实施例中,终端所在服务小区可以包括主小区、主辅小区和辅小区。终端若确定第一BWP上发生连续N次上行LBT失败,在位于主小区或主辅小区的情况下,主动由第一BWP切换至第二BWP时,清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,第二BWP是配置有物理随机接入信道PRACH资源的、且没有发生连续N次上行LBT失败的BWP,第二BWP与第一BWP属于同一个服务小区。
在一些实施例中,终端若确定第一BWP上发生连续N次上行LBT失败,在位于服务小区中的任意一类小区(即主小区、主辅小区或辅小区)的情况下,接收来自网络设备的BWP切换指令。响应于BWP切换指令,终端清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态。其中,该BWP切换指令用于指示终端从第一BWP切换到第三BWP。该BWP切换指令可以是RRC信令,也可以是DCI。该第三BWP可以和上述第二BWP相同,也可以和上述第二BWP不同。
需要说明的是,终端除了在上述第二时机(即向网络设备发送MAC CE时、主动由第一BWP切换至第二BWP时或者响应于BWP切换指令),执行“清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态”。还可以在除了第二时机之外的其他时机下执行“清空第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者将第一BWP上的第二CG配置所关联的所有HARQ进程设置为not pending状态”,本申请实施例不做限制。
为了更准确地控制一个上行数据的传输过程对HARQ进程的占用时长,终端在将上述第一CG所关联的一个或多个HARQ进程设置为not pending状态之后(例如,上述步骤S401、步骤S501或步骤S601之后),在向网络设备发送上行数据的同时,记录一个上行数据的传输过程所使用的HARQ进程处于pending状态的总时长,或该传 输过程所使用的HARQ进程进入pending状态的次数。利用该总时长或该进入pending状态的次数,实现更准确控制一个上行数据的传输过程对HARQ进程的占用时长。
终端可以通过记录一个上行数据的传输过程所使用的HARQ进程进入pending状态的次数,实现更准确控制一个上行数据的传输过程对HARQ进程的占用时长。以步骤S401-S402为例,如图9所示,本申请实施例提供的基于HARQ进程的数据传输方法,在步骤S401之后可以包括步骤S901-S902。
步骤S901、终端统计用于发送上行数据的HARQ进程传输上行数据的过程中进入挂起pending状态的挂起pending次数。
其中,该pending次数包括:用于发送上行数据的HARQ进程在新传和重传时进入pending状态的次数。
终端可以定义一个挂起计数器pending counter,该pending counter用于记录该pending次数。该pending counter所记录的该pending次数的初始值为零。该pending counter对应的预设次数阈值可以通过网络设备配置或者协议预设。该预设次数阈值可以携带在CG配置的配置信息中,不同CG配置的配置信息中的预设次数阈值可以相同,也可以不同。这个pending counter可以由每个HARQ进程来维护,即对每个HARQ进程进入pending状态的次数进行记录。
进一步地,终端在一个上行数据的传输过程中每次新传或者重传的时候,判断用于发送上行数据的HARQ进程是否为pending状态。如果是pending状态,pending counter就加1(即pending次数加1),否则,不加1(即pending次数不加1)。还判断pending counter记录的pending次数是否等于预设次数阈值。若pending次数等于预设次数阈值,执行步骤S902;若pending次数小于预设次数阈值,继续统计pending次数。
步骤S902、若挂起pending次数等于预设次数阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为非挂起not pending状态。
其中,该用于发送上行数据的HARQ进程的缓存被清空后,该用于发送上行数据的HARQ进程处于not pending状态。
需要说明的是,图9中的步骤S901-S902和步骤S402为并列的,可以在开始执行步骤S402的同时执行步骤S901。
本申请实施例中,通过统计在一个上行数据的传输过程中所使用的HARQ进程进入pending状态的pending次数。该pending次数不仅包括发生在启动CGRT和CGT之后的上行LBT失败导致的HARQ进程进入pending状态的次数,还包括了这次上行传输中在启动CGRT和CGT之前发生连续多次上行LBT失败导致的HARQ进程进入pending状态的次数。也就是说,该pending次数更准确地记录了HARQ进程在这次上行传输中进入pending状态的次数。再确定该pending次数等于预设次数阈值,清空该HARQ进程的缓存或设置该HARQ进程为not pending状态。通过统计该pending次数更准确地控制一个上行数据的传输过程对HARQ进程的占用时长,避免了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的情况。
示例性地,终端可以通过记录一个上行数据的传输过程所使用的HARQ进程进入pending状态的次数,解决了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的问题。以步骤S401-S402为例,如图10所示,本申请实施例提供的基于HARQ进程的数据传输方法,在步骤S401之后还可以包括步骤S1001-S1003。
步骤S1001、终端每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程是否为挂起pending状态。
终端在一个上行数据的传输过程中,每开始一次新传或重传的时候,判断用于发送上行数据的HARQ进程是否为pending状态。如果是pending状态,pending counter就加1(即执行步骤S1002),否则,不加1(即pending counter记录的pending次数不变)。
其中,终端确定是pending状态时,在pending counter未开始计数(即未启动)的情况下,用pending counter开始计数(即启动pending counter),pending counter加1;在pending counter已经在计数中的情况下,pending counter直接加1(即pending次数加1)。终端确定不是pending状态时,在pending counter未开始计数的情况下,不用pending counter开始计数或不启动pending counter,pending counter不加1;在pending counter已经在计数中的情况下,重置pending counter(即将pending counter所记录的pending次数置为0),pending counter不加1。
步骤S1002、若用于发送上行数据的HARQ进程为挂起pending状态,挂起计数器pending counter记录的挂起pending次数加1;该挂起计数器pending counter记录的挂起pending次数的初始值为零。
终端在pending次数加1后,还判断pending次数是否等于预设次数阈值。若pending次数等于预设次数阈值,执行步骤S1003;若pending次数小于预设次数阈值,继续执行步骤S1001。
步骤S1003、若挂起计数器pending counter记录的挂起pending次数等于预设次数阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为非挂起not pending状态。
其中,该用于发送上行数据的HARQ进程的缓存被清空后,该用于发送上行数据的HARQ进程处于not pending状态。
需要说明的是,图10中的步骤S1001-S1003和步骤S402为并列的,可以在开始执行步骤S402的同时执行步骤S1001。
本申请实施例中,通过统计在一个上行数据的传输过程中所使用的HARQ进程连续进入pending状态的pending次数。该HARQ进程连续进入pending状态是指该HARQ进程在一次新传或重传发生上行LBT失败后,下一次重传仍旧发生上行LBT失败。该pending次数可以包括这次上行传输中在启动CGRT和CGT之前发生连续多次上行LBT失败导致的HARQ进程进入pending状态的次数。再确定该pending次数等于预设次数阈值,清空该HARQ进程的缓存或设置该HARQ进程为not pending状态。通过该pending次数,避免了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的情况。
终端还可以通过记录一个上行数据的传输过程所使用的HARQ进程处于pending状态的总时长,实现更准确控制一个上行数据的传输过程对HARQ进程的占用时长。以步骤S401-S402为例,如图11所示,本申请实施例提供的基于HARQ进程的数据传输方法,在步骤S401之后可以包括步骤S1101-S1102。
步骤S1101、终端统计用于发送上行数据的HARQ进程传输上行数据的过程中处于挂起pending状态的总时长。
终端可以定义一个挂起计时器pending timer,该pending timer用于记录该总时长。该pending timer对应的预设时长阈值可以通过网络设备配置或者协议预设。该预设时长阈值可以携带在CG配置的配置信息中,不同CG配置的配置信息中的预设时长阈值可以相同,也可以不同。这个pending timer可以由每个HARQ进程来维护,即对每个HARQ进程处于pending状态的总时长进行记录。
进一步地,终端在一个上行数据的传输过程中判断这次上行传输所使用的HARQ进程是否为pending状态。如果是pending状态,终端启动pending timer,否则就停止pending timer。在pending timer计时中,还判断pending timer所记录的该HARQ进程处于pending状态的总时长是否等于预设时长阈值。若总时长等于预设时长阈值,执行步骤S1102,否则,继续统计该总时长。
具体地,终端在一个上行数据的传输过程中的每次新传或重传,判断用于发送上行数据的HARQ进程是否为pending状态。如果是pending状态、且pending timer未开始计时(即未启动),终端启动pending timer;如果是pending状态、且pending timer已经在计时中,pending timer继续计时。如果不是pending状态、且pending timer未开始计时(即未启动),不启动pending timer(即不用pending timer计时);如果不是pending状态、且pending timer已经在计时中,停止pending timer(即pending timer停止计时)。
步骤S1102、若总时长等于预设时长阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为非挂起not pending状态。
其中,该用于发送上行数据的HARQ进程的缓存被清空后,该用于发送上行数据的HARQ进程处于not pending状态。
需要说明的是,图11中的步骤S1101-S1102和步骤S402为并列的,可以在开始执行步骤S402的同时执行步骤S1101。
本申请实施例中,通过统计在一个上行数据的传输过程中所使用的HARQ进程处于pending状态的总时长。该总时长不仅包括发生在启动CGRT和CGT之后的上行LBT失败导致的HARQ进程处于pending状态的时长,还包括了这次上行传输中在启动CGRT和CGT之前发生连续多次上行LBT失败导致的HARQ进程处于pending状态的时长。也就是说,该总时长更准确地记录了HARQ进程在这次上行传输中处于pending状态的时长。再确定该总时长等于预设时长阈值,清空该HARQ进程的缓存或设置该HARQ进程为not pending状态。通过该总时长更准确地控制一个上行数据的传输过程对HARQ进程的占用时长,避免了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的情况。
示例性地,终端还可以通过记录一个上行数据的传输过程所使用的HARQ进程处 于pending状态的总时长,解决了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的问题。以步骤S401-S402为例,如图12所示,本申请实施例提供的基于HARQ进程的数据传输方法,在步骤S401之后还可以包括步骤S1201-S1204。
步骤S1201、终端每次确定用于发送上行数据的HARQ进程新传或重传,判断用于发送上行数据的HARQ进程为挂起pending状态还是非挂起not pending状态。
终端可以在一个上行数据的传输过程中,每开始一次新传或重传时的时候,判断用于发送上行数据的HARQ进程为pending状态还是not pending状态。如果是pending状态,在pending timer未启动的情况下,执行步骤S1202;在pending timer处于运行中(即处于计时中)的情况下,pending timer继续运行(即继续计时)。如果是not pending状态,在未启动pending timer的情况下,不启动pending timer;在pending timer处于运行中的情况下,执行步骤S1203。
步骤S1202、终端确定所述用于发送上行数据的HARQ进程为挂起pending状态、且挂起计时器pending timer未启动,启动挂起计时器pending timer。
其中,pending timer用于统计用于发送上行数据的HARQ进程在传输上行数据的过程中处于pending状态的总时长。
终端在一个上行数据的传输过程中、且pending timer处于运行中(即处于计时中),还判断pending timer所记录的计时时长(即该HARQ进程处于pending状态的总时长)是否等于预设时长阈值。若计时时长等于预设时长阈值,执行步骤S1204,否则,继续执行步骤S1201。
步骤S1203、终端确定用于发送上行数据的HARQ进程为非挂起not pending状态、且挂起计时器pending timer处于运行中,停止挂起计时器pending timer。
终端在一个上行数据的传输过程中、且pending timer处于运行中(即处于计时中),还判断pending timer所记录的计时时长(即该HARQ进程处于pending状态的总时长)是否等于预设时长阈值。若计时时长等于预设时长阈值,执行步骤S1204,否则,继续执行步骤S1201。
步骤S1204、若挂起计时器pending timer的计时时长等于预设时长阈值,终端清空用于发送上行数据的HARQ进程的缓存,或者将用于发送上行数据的HARQ进程设置为非挂起not pending状态。
其中,用于发送上行数据的HARQ进程的缓存被清空后,用于发送上行数据的HARQ进程处于not pending状态。
本申请实施例中,通过统计在一个上行数据的传输过程中所使用的HARQ进程连续处于pending状态的总时长。该HARQ进程连续处于pending状态是指该HARQ进程在一次新传或重传发生上行LBT失败并处于pending状态,下一次重传仍旧发生上行LBT失败并处于pending状态。该总时长可以包括这次上行传输中在启动CGRT和CGT之前发生连续多次上行LBT失败导致的HARQ进程处于pending状态的时长。再确定该总时长等于预设时长阈值,清空该HARQ进程的缓存或设置该HARQ进程为not pending状态。通过该总时长,避免了由于在启动CGT和CGRT之前发生连续多次上行LBT失败,一个上行数据的传输过程长期占用HARQ进程的情况。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,如图13所示,本申请实施例提供一种终端1300,该终端1300包括:状态设置单元1301和数据发送单元1302。
状态设置单元1301用于支持终端1300执行上述方法实施例中的S401,S501,S601,S703,S902,S1003,S1102,S1204,和/或用于本文所描述的技术的其它过程;数据发送单元1302用于支持终端1300执行上述方法实施例中的S402、S502,S602,和/或用于本文所描述的技术的其它过程。
进一步的,上述终端1300还可以包括:通信单元1303。该通信单元1303用于支持终端1300执行上述方法实施例中的“接收来自网络设备的BWP切换指令”,和/或用于本文所描述的技术的其它过程。
进一步的,上述终端1300还可以包括:次数统计单元1304。该次数统计单元1304用于支持终端1300执行上述方法实施例中的S901、S1001-S1002,和/或用于本文所描述的技术的其它过程。
进一步的,上述终端1300还可以包括:时长统计单元1305。该时长统计单元1305
用于支持终端1300执行上述方法实施例中的S1001、S1201-S1203,和/或用于本文所描述的技术的其它过程。
当然,上述终端1300包括但不限于上述所列举的单元模块。例如,该终端1300还可以包括用于保存HARQ进程的非挂起not pending状态的存储单元。并且,上述功能单元的具体所能够实现的功能也包括但不限于上述实例所述的方法步骤对应的功能,终端1300的其他单元的详细描述可以参考其所对应方法步骤的详细描述,本申请实施例这里不再赘述。
在采用集成单元的情况下,上述状态设置单元1301、通信单元1303、次数统计单元1304和时长统计单元1305等可以集成在一个处理模块中实现,上述数据发送单元1302和通信单元1303可以是终端的通信电路,上述存储单元可以是终端的存储模块。
图14示出了上述实施例中所涉及的终端的一种可能的结构示意图。该终端1400包括:处理模块1401、存储模块1402和通信模块1403。
该处理模块1401用于对终端1400进行控制管理。该存储模块1402,用于保存终端1400的程序代码和数据。通信模块1403用于与其他设备通信。如通信模块用于接收或者向其他设备发送的数据。
其中,处理模块1401可以是处理器或控制器,例如可以是CPU,通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1403可以是收发器、收发电路或通信接口等。存储模块1402可以是存储器。
当处理模块1401为处理器(如图2所示的处理器21和处理器25),通信模块1403为通信电路(如图2所示的通信接口23),存储模块1402为存储器(如图2所示的存储器22)时,本申请所提供的终端可以为图2所示的终端。其中,上述处理器、通信接口和存储器可以通过总线耦合在一起。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,该终端执行图4-图12中任一附图中的相关方法步骤实现上述实施例中的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在终端上运行时,使得终端执行图4-图12中任一附图中的相关方法步骤实现上述实施例中的方法。
其中,本申请提供的终端1300、终端1400、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种基于混合自动重传请求HARQ进程的数据传输方法,其特征在于,所述方法应用于终端,所述方法包括:
    确定第一部分带宽BWP上的第一预配置授权CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;其中,所述第一CG配置包括网络设备在所述第一BWP上为所述终端配置的一个或多个CG配置;所述第一BWP是所述终端当前激活的BWP;
    使用所述第一CG配置所关联的、处于所述非挂起not pending状态的HARQ进程,向所述网络设备发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述确定第一部分带宽BWP上的第一预配置授权CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态,包括:
    接收到来自所述网络设备的下行控制信息DCI激活命令,确定所述第一CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;
    其中,所述DCI激活命令用于指示所述终端激活所述第一CG配置。
  3. 根据权利要求1所述的方法,其特征在于,所述确定第一部分带宽BWP上的第一预配置授权CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态,包括:
    接收到来自所述网络设备的无线资源控制RRC信令,确定所述第一CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;
    其中,所述RRC信令用于为所述终端配置且激活所述第一CG配置。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一CG配置所关联的一个或多个HARQ进程,包括:
    所述第一CG配置所关联的所有HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中、处于挂起pending状态的HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中的第一HARQ进程;其中,当前递交到HARQ实体的上行授权中不存在与所述第一HARQ进程关联的上行授权;所述当前递交到HARQ实体的上行授权中不存在与所述第一HARQ进程关联的上行授权,表示所述第一HARQ进程未被所述终端使用过;
    或者,所述第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中的corresponding HARQ进程;所述corresponding HARQ进程为所述终端随机选择的HARQ进程。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    若确定所述第一BWP上发生连续N次上行先听后说LBT失败,清空所述第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第一BWP上的第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,N≥2,N为整数;所述第二GG配置包括所述网络设备在所述第一BWP上为所述终端配置的所有CG配置,或者在所述第一BWP上为所述终端已激活的CG配 置;所述第二GG配置所关联的所有HARQ进程的缓存被清空后,所述第二GG配置所关联的所有HARQ进程处于非挂起not pending状态。
  6. 根据权利要求5所述的方法,其特征在于,所述清空所述第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第一BWP上的第二CG配置所关联的所有HARQ进程处于非挂起not pending状态,包括:
    向所述网络设备发送媒体接入控制的控制元素MAC CE时,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,所述MAC CE包括所述终端所在服务小区的LBT失败状态指示位。
  7. 根据权利要求5所述的方法,其特征在于,所述清空所述第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第一BWP上的第二CG配置所关联的所有HARQ进程处于非挂起not pending状态,包括:
    所述终端位于主小区或主辅小区的情况下,所述终端主动由所述第一BWP切换至第二BWP时,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,所述第二BWP是配置有物理随机接入信道PRACH资源的、且没有发生连续N次上行LBT失败的BWP,所述第二BWP与所述第一BWP属于同一个服务小区。
  8. 根据权利要求5所述的方法,其特征在于,所述清空所述第一BWP上的第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第一BWP上的第二CG配置所关联的所有HARQ进程处于非挂起not pending状态,包括:
    接收来自所述网络设备的BWP切换指令;
    响应于所述BWP切换指令,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端每次确定用于发送所述上行数据的HARQ进程新传或重传,判断所述用于发送所述上行数据的HARQ进程是否为挂起pending状态;
    若所述用于发送所述上行数据的HARQ进程为挂起pending状态,挂起计数器记录的挂起pending次数加1;所述挂起计数器记录的挂起pending次数的初始值为零;
    若所述挂起计数器记录的挂起pending次数等于预设次数阈值,所述终端清空所述用于发送所述上行数据的HARQ进程的缓存,或者确定所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态;其中,所述用于发送所述上行数据的HARQ进程的缓存被清空后,所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端每次确定用于发送上行数据的HARQ进程新传或重传,判断所述用于发送上行数据的HARQ进程为挂起pending状态还是所述非挂起not pending状态;
    确定所述用于发送所述上行数据的HARQ进程为所述pending状态、且挂起计时器未启动,启动所述挂起计时器;所述挂起计时器用于统计所述用于发送所述上行数 据的HARQ进程在传输所述上行数据的过程中处于挂起pending状态的总时长;
    确定所述用于发送所述上行数据的HARQ进程为非挂起not pending状态、且所述挂起计时器处于运行中,停止所述挂起计时器;
    若所述挂起计时器的计时时长等于预设时长阈值,所述终端清空所述用于发送所述上行数据的HARQ进程的缓存,或者确定所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态;其中,所述用于发送所述上行数据的HARQ进程的缓存被清空后,所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态。
  11. 一种终端,其特征在于,所述终端包括:状态确定单元和数据发送单元;
    所述状态确定单元,用于确定第一部分带宽BWP上的第一预配置授权CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;其中,所述第一CG配置包括网络设备在所述第一BWP上为所述终端配置的一个或多个CG配置;所述第一BWP是所述终端当前激活的BWP;
    所述数据发送单元,用于使用所述第一CG配置所关联的、处于所述not pending状态的HARQ进程,向所述网络设备发送上行数据。
  12. 根据权利要求11所述的终端,其特征在于,
    所述状态确定单元,用于响应于接收到来自所述网络设备的下行控制信息DCI激活命令,确定所述第一CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;
    其中,所述DCI激活命令用于指示所述终端激活所述第一CG配置。
  13. 根据权利要求11所述的终端,其特征在于,
    所述状态确定单元,用于响应于接收到来自所述网络设备的无线资源控制RRC信令,确定所述第一CG配置所关联的一个或多个HARQ进程处于非挂起not pending状态;
    其中,所述RRC信令用于为所述终端配置且激活所述第一CG配置。
  14. 根据权利要求11-13中任一项所述的终端,其特征在于,所述第一CG配置所关联的一个或多个HARQ进程,包括:
    所述第一CG配置所关联的所有HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中、处于挂起pending状态的HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中的第一HARQ进程;其中,当前递交到HARQ实体的上行授权中不存在与所述第一HARQ进程关联的上行授权;所述当前递交到HARQ实体的上行授权中不存在与所述第一HARQ进程关联的上行授权,表示所述第一HARQ进程未被所述终端使用过;
    或者,所述第一CG配置所关联的HARQ进程中、未被正在使用的HARQ进程;
    或者,所述第一CG配置所关联的HARQ进程中的corresponding HARQ进程;所述corresponding HARQ进程为所述终端随机选择的HARQ进程。
  15. 根据权利要求11-14中任一项所述的终端,其特征在于,
    所述状态确定单元,还用于若确定所述第一BWP上发生连续N次上行先听后说LBT失败,清空所述第一BWP上的第二CG配置所关联的所有HARQ进程的缓存, 或者确定所述第一BWP上的第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,N≥2,N为整数;所述第二GG配置包括所述网络设备在所述第一BWP上为所述终端配置的所有CG配置,或者在所述第一BWP上为所述终端已激活的CG配置;所述第二GG配置所关联的所有HARQ进程的缓存被清空后,所述第二GG配置所关联的所有HARQ进程处于非挂起not pending状态。
  16. 根据权利要求15所述的终端,其特征在于,
    所述状态确定单元,用于向所述网络设备发送媒体接入控制的控制元素MAC CE时,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,所述MAC CE包括所述终端所在服务小区的LBT失败状态指示位。
  17. 根据权利要求15所述的终端,其特征在于,
    所述状态确定单元,用于在所述终端位于主小区或主辅小区的情况下,主动由所述第一BWP切换至第二BWP时,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态;
    其中,所述第二BWP是配置有物理随机接入信道PRACH资源的、且没有发生连续N次上行LBT失败的BWP,所述第二BWP与所述第一BWP属于同一个服务小区。
  18. 根据权利要求15所述的终端,其特征在于,所述终端还包括:通信单元;
    所述通信单元,用于接收来自所述网络设备的BWP切换指令;
    所述状态确定单元,用于响应于所述BWP切换指令,清空所述第二CG配置所关联的所有HARQ进程的缓存,或者确定所述第二CG配置所关联的所有HARQ进程处于非挂起not pending状态。
  19. 根据权利要求11-18中任一项所述的终端,其特征在于,所述终端还包括:次数统计单元;
    所述次数统计单元,用于每次确定用于发送所述上行数据的HARQ进程新传或重传,判断所述用于发送所述上行数据的HARQ进程是否为挂起pending状态;
    若所述用于发送所述上行数据的HARQ进程为挂起pending状态,挂起计数器记录的挂起pending次数加1;所述挂起计数器记录的挂起pending次数的初始值为零;
    所述状态确定单元,还用于若所述挂起计数器记录的挂起pending次数等于预设次数阈值,清空所述用于发送所述上行数据的HARQ进程的缓存,或者确定所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态;其中,所述用于发送所述上行数据的HARQ进程的缓存被清空后,所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态。
  20. 根据权利要求11-18中任一项所述的终端,其特征在于,所述终端还包括:时长统计单元;
    所述时长统计单元,用于每次确定用于发送上行数据的HARQ进程新传或重传,判断所述用于发送上行数据的HARQ进程为挂起pending状态还是非挂起not pending状态;
    确定所述用于发送所述上行数据的HARQ进程为挂起pending状态、且挂起计时器未启动,启动所述挂起计时器;所述挂起计时器用于统计所述用于发送所述上行数据的HARQ进程在传输所述上行数据的过程中处于挂起pending状态的总时长;
    确定所述用于发送所述上行数据的HARQ进程为非挂起not pending状态、且所述挂起计时器处于运行中,停止所述挂起计时器;
    所述状态确定单元,还用于若所述挂起计时器的计时时长等于预设时长阈值,清空所述用于发送所述上行数据的HARQ进程的缓存,或者确定所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态;其中,所述用于发送所述上行数据的HARQ进程的缓存被清空后,所述用于发送所述上行数据的HARQ进程处于非挂起not pending状态。
  21. 一种通信装置,其特征在于,包括:处理器、存储器和通信接口;所述存储器和所述通信接口与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;其中,当所述处理器执行所述计算机指令时,使得所述终端执行如上述权利要求1-10中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括用于执行如权利要求1至10中任一项所述方法的模块。
  23. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至10中任一项所述的方法。
  24. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求1-10中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1-10中任一项所述的方法。
PCT/CN2021/094719 2020-05-20 2021-05-19 一种基于 harq 进程的数据传输方法及终端 WO2021233356A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022023357A BR112022023357A2 (pt) 2020-05-20 2021-05-19 Método de transmissão de dados baseados em processo harq, um aparelho de comunicação, um meio legível por computador e um sistema de comunicação
EP21808937.3A EP4145738A4 (en) 2020-05-20 2021-05-19 DATA TRANSMISSION METHOD AND TERMINAL BASED ON HARQ PROCESS
US17/990,213 US20230081816A1 (en) 2020-05-20 2022-11-18 HARQ Process Based Data Transmission Method and Terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010432833.0 2020-05-20
CN202010432833.0A CN113708897A (zh) 2020-05-20 2020-05-20 一种基于harq进程的数据传输方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/990,213 Continuation US20230081816A1 (en) 2020-05-20 2022-11-18 HARQ Process Based Data Transmission Method and Terminal

Publications (1)

Publication Number Publication Date
WO2021233356A1 true WO2021233356A1 (zh) 2021-11-25

Family

ID=78645732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094719 WO2021233356A1 (zh) 2020-05-20 2021-05-19 一种基于 harq 进程的数据传输方法及终端

Country Status (5)

Country Link
US (1) US20230081816A1 (zh)
EP (1) EP4145738A4 (zh)
CN (1) CN113708897A (zh)
BR (1) BR112022023357A2 (zh)
WO (1) WO2021233356A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168644A1 (en) * 2022-03-10 2023-09-14 Qualcomm Incorporated Flushing hybrid automatic repeat request buffers in a multiple transmission reception point configuration
WO2023202316A1 (zh) * 2022-04-22 2023-10-26 大唐移动通信设备有限公司 一种一致性lbt失败的处理方法、终端及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792792A (zh) * 2016-09-30 2019-05-21 Lg 电子株式会社 在drx配置或者重新配置之后的pdcch监测
CN110557835A (zh) * 2018-06-04 2019-12-10 华为技术有限公司 数据传输方法、通信装置及存储介质
WO2019245219A1 (en) * 2018-06-21 2019-12-26 Lg Electronics Inc. Method and apparatus for retransmitting data unit by user equipment in wireless communication system
US20200137821A1 (en) * 2018-10-31 2020-04-30 Comcast Cable Communications, Llc Beam Management for Cells in Wireless Communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139516A1 (en) * 2018-01-10 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Radio node and methods in a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792792A (zh) * 2016-09-30 2019-05-21 Lg 电子株式会社 在drx配置或者重新配置之后的pdcch监测
CN110557835A (zh) * 2018-06-04 2019-12-10 华为技术有限公司 数据传输方法、通信装置及存储介质
WO2019245219A1 (en) * 2018-06-21 2019-12-26 Lg Electronics Inc. Method and apparatus for retransmitting data unit by user equipment in wireless communication system
US20200137821A1 (en) * 2018-10-31 2020-04-30 Comcast Cable Communications, Llc Beam Management for Cells in Wireless Communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "MPDCCH monitoring for receiving HARQ ACK feedback", 3GPP DRAFT; 36321_CR1359_(REL-15)_R2-1817041_HARQ ACK FEEDBACK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051556590 *

Also Published As

Publication number Publication date
EP4145738A1 (en) 2023-03-08
US20230081816A1 (en) 2023-03-16
CN113708897A (zh) 2021-11-26
BR112022023357A2 (pt) 2023-01-24
EP4145738A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
CN111213334B (zh) 用于自主上行链路传输和重传的方法
US10986662B2 (en) Conditional uplink radio resource utilization in a cellular network
US10314032B2 (en) Method and base station identifying PUCCH for processing feedback of user equipment
KR101792167B1 (ko) 데이터 전송 방법, 장치 및 시스템
WO2021244501A1 (zh) 通信方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
JP7330287B2 (ja) 通信方法および通信装置
US20230081816A1 (en) HARQ Process Based Data Transmission Method and Terminal
CN104170306B (zh) 一种数据传输方法、设备和系统
WO2021062854A1 (zh) 一种控制harq进程的方法以及装置
EP4087292A1 (en) Sidelink data transmission method and terminal device
WO2021062823A1 (zh) 一种通信方法及装置
US20230269036A1 (en) Communication method and apparatus
CN105722096B (zh) 一种业务数据传输方法及设备
WO2018121643A1 (zh) 一种数据传输方法、装置及系统
US20220264586A1 (en) Resource Allocation in Wireless Network
WO2022021412A1 (zh) Cg配置方法、装置、设备及介质
WO2021134151A1 (zh) 通信方法及装置
US20220174737A1 (en) Contention window maintenance method and device
US20240040651A1 (en) Method of avoiding survival time failure and related devices
WO2023246588A1 (zh) 一种通信方法及装置
CN116266779A (zh) 通信方法、装置及设备
CN115669160A (zh) Harq进程确定方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808937

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023357

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021808937

Country of ref document: EP

Effective date: 20221202

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022023357

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221117