WO2021233144A1 - 一种供冷系统及其供冷方法 - Google Patents

一种供冷系统及其供冷方法 Download PDF

Info

Publication number
WO2021233144A1
WO2021233144A1 PCT/CN2021/092400 CN2021092400W WO2021233144A1 WO 2021233144 A1 WO2021233144 A1 WO 2021233144A1 CN 2021092400 W CN2021092400 W CN 2021092400W WO 2021233144 A1 WO2021233144 A1 WO 2021233144A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cold storage
cooling
refrigeration
cold
Prior art date
Application number
PCT/CN2021/092400
Other languages
English (en)
French (fr)
Inventor
刘刚峰
刘培国
张晓飞
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21808526.4A priority Critical patent/EP4141338A4/en
Publication of WO2021233144A1 publication Critical patent/WO2021233144A1/zh
Priority to US17/988,208 priority patent/US20230084749A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This application relates to the field of cooling technology, and in particular to a cooling system and a cooling method thereof.
  • the air-conditioning equipment includes terminal equipment and chiller equipment. Reduce the temperature of the space.
  • temporary power generation equipment such as a diesel generator to supply power to the chiller equipment, so as to ensure that the chiller equipment can continue to provide cooling for the terminal equipment.
  • diesel It takes a certain amount of time to start the generator and restart the chiller equipment under the power of the diesel generator. During this period, the heat generated in the computer room and other spaces cannot be dissipated in time.
  • cold storage equipment can be deployed. During the period when the diesel generator is started and the chiller equipment is restarted under the power of the diesel generator, the cold storage equipment is used to cool the terminal air-conditioning equipment.
  • the method of deploying terminal equipment, chiller equipment and cold storage equipment can be to connect the chiller equipment and cold storage equipment in series with the terminal equipment through pipelines.
  • Figure 1 is a cooling architecture provided by this application.
  • the cold storage equipment is deployed on the pipeline that the chiller equipment provides cooling medium to the terminal equipment.
  • the cooling medium output by the chiller equipment can flow to the terminal equipment through the cold storage equipment. It can not only charge cold storage equipment, but also provide cold capacity for terminal equipment.
  • this method makes the cold storage equipment in the process of being charged, a part of the higher temperature medium will flow to the terminal equipment, affecting the cooling stability of the terminal equipment; on the other hand, due to the cooling medium required by the terminal equipment
  • the temperature is constant, and the chiller equipment, the cold storage equipment and the terminal equipment are connected in series, so the temperature of the cooling medium output by the chiller equipment is determined according to the temperature of the cooling medium required by the terminal equipment, that is It is said that the temperature of the cooling medium that is input from the chiller device to the cold storage device is fixed.
  • the cold storage capacity of the cold storage device is mainly affected by the capacity of the cold storage device and the temperature of the cooling medium output to the cold storage device, in this case, the cold storage device The total amount of cold storage is also fixed, which makes it difficult to adjust the cold storage capacity of the cold storage equipment.
  • This application provides a cooling system and a cooling method thereof. Through this application, the cooling stability of terminal equipment can be ensured, and the adjustability of the cold storage capacity of the cold storage device can be enhanced.
  • the first aspect of this application provides a cooling system that can be used to provide cooling to terminal equipment such as air conditioners.
  • the cooling system can ensure the cooling stability of the terminal equipment and can realize the cold storage of the cold storage equipment.
  • the amount is flexible and adjustable.
  • the cooling system includes at least a first cooling device, a second cooling device and a cold storage device, and different devices can be connected by pipelines.
  • the first refrigeration equipment and the second refrigeration equipment are equipment that has a cooling function for the first medium.
  • the first medium is the medium used by the cold supply system to cool the terminal equipment, and it also charges the cold storage equipment in the cold supply system.
  • the first medium may be water, or a mixture of water and ethylene glycol, and so on.
  • Both the first refrigeration device and the cold storage device can be used to provide the first medium to the end device to provide cold to the end device, and the second refrigeration device can be used to provide the first medium to the cold storage device to charge the cold storage device. .
  • the first refrigeration equipment includes a freezing-side medium output port and a freezing-side medium input port
  • the second refrigeration equipment includes a cooling-side medium output port, a cooling-side medium input port, a freezing-side medium input port, and a freezing-side medium output port.
  • the cooling-side medium input port of the second refrigeration equipment is used to receive the first medium output by the terminal equipment;
  • the freezing side medium output port of the first refrigeration equipment is used to output the first medium for cooling to the terminal equipment.
  • the freezing side medium output port of the second refrigeration device is used to output the first medium for charging cold to the cold storage device, and the freezing side medium input port of the second refrigeration device is used to receive the first medium output from the cold storage device.
  • the cooling of the terminal device by the first cooling device and the cooling of the cooling storage device by the second cooling device can be performed independently of each other, and the cooling of the cooling storage device by the second cooling device will not affect the first cooling device
  • the cooling of the terminal equipment ensures the stability of the cooling of the terminal equipment, and realizes the flexible adjustment of the cold storage capacity of the cold storage equipment; in addition, the cold side medium input port of the first refrigeration equipment and the cold side medium of the second refrigeration equipment
  • the output ports are connected to realize the reuse of the cooling side of the second refrigeration equipment and the refrigeration side of the first refrigeration equipment, saving the deployment cost of the cooling side of the second refrigeration equipment.
  • the temperature of the first medium provided by the second refrigeration device to the cold storage device is lower than the temperature of the first medium provided by the first refrigeration device to the terminal device. Since the first refrigeration device provides cooling to the terminal device and the second refrigeration device charges and cools the cold storage device independently, reducing the charging temperature of the second refrigeration device is beneficial to increase the cold storage capacity of the cold supply system.
  • the cooling system may also include a water mixing device, and the temperature of the first medium outputted by the cold storage device when cooling the terminal device is lower than that of the first refrigeration system.
  • the water mixing equipment is used to receive the first medium output from the cold storage equipment and the first medium output from the terminal equipment to mix, and The mixed first medium is sent to the terminal equipment.
  • the cold storage capacity of the cold storage equipment is increased and the cold storage capacity is flexibly adjusted while ensuring the cooling stability of the terminal equipment.
  • the cooling system includes multiple second cooling devices connected in parallel, and the multiple second cooling devices are mutually backup to ensure the reliability of the cooling system.
  • the second refrigeration device may be used to charge the cold storage device through the first medium convergence path.
  • the cold storage device is prevented from failing to charge cold caused by the failure of a single second refrigeration device, and the reliability of cold storage of the cold storage device is ensured.
  • the cooling-side medium output ports of the plurality of second refrigeration devices are connected to the freezing-side medium input ports of the first refrigeration device through the second medium convergence path.
  • One first refrigeration device is used to cool the cooling side medium of a plurality of second refrigeration devices, thereby improving the use efficiency of the first refrigeration device.
  • the cold supply system includes multiple cold storage devices connected in parallel, and the second cold storage device may be used to charge the multiple cold storage devices separately through the first medium shunt path. It prevents the system's cold storage failure caused by the failure of a single cold storage device, and ensures the reliability of the system's cold storage.
  • the cooling system includes a plurality of first refrigeration devices connected in parallel, and the cooling side medium outlet of the second refrigeration device is connected to the plurality of first refrigeration devices through a second medium shunt path.
  • the cold storage medium in the cold storage device may be the same phase medium, that is, the material state of the cold storage medium in the cold storage device before the cold storage device supplies cold to the terminal device, and the material state of the cold storage medium in the cold storage device is different from that in the cold storage device.
  • the material state of the cold storage medium in the cold storage device is the same after the equipment supplies cold to the terminal device.
  • the cold storage medium in the cold storage device may be a phase change medium, that is, the material state of the cold storage medium in the cold storage device before the cold storage device supplies cold to the terminal device, and the material state of the cold storage medium in the cold storage device The material state of the cold storage medium in the cold storage device is different after supplying cold to the terminal device.
  • phase change medium as the cold storage medium can increase the cold storage capacity of the cold storage device.
  • the second aspect of the present application provides a cooling method of a cooling system.
  • the cooling method of the cooling system can be used to cool terminal equipment such as air conditioners. This method can ensure the cooling stability of the terminal equipment, and The cold storage capacity of the cold storage device can be flexibly adjusted.
  • the cooling system includes at least a first cooling device, a second cooling device and a cold storage device, and different devices can be connected by pipelines.
  • the first refrigeration equipment and the second refrigeration equipment are equipment that has a cooling function for the first medium.
  • the first medium is the medium used by the cold supply system to cool the terminal equipment, and it also charges the cold storage equipment in the cold supply system.
  • the first medium may be water, or a mixture of water and ethylene glycol, and so on.
  • Both the first refrigeration device and the cold storage device can be used to provide the first medium to the end device to provide cold to the end device, and the second refrigeration device can be used to provide the first medium to the cold storage device to charge the cold storage device. .
  • the first refrigeration equipment includes a freezing-side medium output port and a freezing-side medium input port
  • the second refrigeration equipment includes a cooling-side medium output port, a cooling-side medium input port, a freezing-side medium input port, and a freezing-side medium output port.
  • the cooling-side medium input port of the second refrigeration equipment is used to receive the first medium output by the terminal equipment;
  • the freezing side medium output port of the first refrigeration equipment is used to output the first medium for cooling to the terminal equipment.
  • the freezing side medium output port of the second refrigeration device is used to output the first medium for charging cold to the cold storage device, and the freezing side medium input port of the second refrigeration device is used to receive the first medium output from the cold storage device.
  • the first medium output by the terminal equipment can be transmitted to the cooling side input port of the second refrigeration equipment, and the first medium output by the cooling side medium output port of the second refrigeration equipment can be transmitted to the refrigeration equipment of the first refrigeration equipment.
  • Side media input port
  • the cold charging of the cold storage device by the second refrigeration device does not affect the cold supply of the first refrigeration device to the terminal device, which ensures the stability of the cold supply of the terminal device, and realizes the flexible adjustment of the cold storage capacity of the cold storage device; and this method
  • the first medium output from the cooling side medium output port of the second refrigeration equipment is transmitted to the freezing side medium input port of the first refrigeration equipment, realizing the recovery of the cooling side of the second refrigeration equipment and the freezing side of the first refrigeration equipment. This saves the deployment cost of the second refrigeration equipment on the cooling side.
  • the temperature of the first medium provided by the second refrigeration device to the cold storage device is lower than the temperature of the first medium provided by the first refrigeration device to the terminal device. Since the first refrigeration device provides cooling to the terminal device and the second refrigeration device charges and cools the cold storage device independently, reducing the charging temperature of the second refrigeration device is beneficial to increase the cold storage capacity of the cold supply system.
  • the temperature of the first medium output is lower than that of the first refrigeration device The temperature of the first medium output from the freezing side medium output port when cooling the terminal device.
  • the method may further include mixing the first medium output by the cold storage device and the first medium output by the terminal device and then transferring the first medium to the terminal device. While improving the flexible adjustment of the cold storage capacity of the cold storage equipment, it also ensures the cold supply stability of the terminal equipment.
  • the cooling system includes multiple second cooling devices connected in parallel, and the multiple second cooling devices are mutually backup to ensure the reliability of the cooling system.
  • the method may further include transmitting the first medium output by the plurality of second refrigeration devices to the cold storage device through the first medium convergence path.
  • the cold storage device charging failure caused by the failure of a single second refrigeration device is avoided, and the reliability of the cold storage device charging is ensured.
  • the first medium output from the cooling-side medium output ports of the second refrigeration equipment can be transported to the refrigeration equipment of the first refrigeration equipment through the second medium convergence path.
  • Side media input port One first refrigeration device is used to cool the cooling side medium of a plurality of second refrigeration devices, thereby improving the use efficiency of the first refrigeration device.
  • the cooling system includes a plurality of cold storage devices connected in parallel, and the method may further include transmitting the first medium output by the second cooling device through the first medium shunt path respectively.
  • the method may further include transmitting the first medium output by the second cooling device through the first medium shunt path respectively.
  • the cooling system includes a plurality of first refrigeration equipment connected in parallel, and the method may specifically output the first refrigeration medium output port of the second refrigeration equipment.
  • the medium is respectively transported to the freezing side medium input ports of the plurality of first refrigeration equipment through the second medium shunt path.
  • the failure of a single first refrigeration device can prevent the cooling of the cooling side medium of the second refrigeration device from failing, and the reliability of cooling the cooling side medium of the second refrigeration device can be ensured.
  • the cold storage medium in the cold storage device may be the same phase medium, that is, the material state of the cold storage medium in the cold storage device before the cold storage device supplies cold to the terminal device, and the material state of the cold storage medium in the cold storage device is different from that in the cold storage device.
  • the material state of the cold storage medium in the cold storage device is the same after the equipment supplies cold to the terminal device.
  • the cold storage medium in the cold storage device can be a phase change medium, that is, the material state of the cold storage medium in the cold storage device before the cold storage device supplies cold to the terminal device, and the material state of the cold storage medium in the cold storage device The material state of the cold storage medium in the cold storage device is different after supplying cold to the terminal device.
  • the use of phase change medium as the cold storage medium can increase the cold storage capacity of the cold storage device.
  • FIG. 1 is a schematic diagram of a cooling architecture provided by the present application.
  • FIG. 2 is a schematic diagram of a deployment scenario of a water-cooled refrigeration device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the architecture of a cooling system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the architecture of another cooling system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the architecture of another cooling system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the architecture of another cooling system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another cooling system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of system operation when the cooling system shown in FIG. 7 is in a mode 1 state according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of system operation when the cooling system shown in FIG. 7 is in mode 2 state according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of system operation when the cooling system shown in FIG. 7 is in the mode 3 state according to an embodiment of the present application;
  • FIG. 11 is a schematic flowchart of a cooling method of a cooling system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a deployment scenario of a water-cooled refrigeration device provided by an embodiment of the present application. As shown in FIG. 2, the deployment scenario may include a tower cooling device 01 , Water-cooled refrigeration equipment 02 and terminal equipment 03.
  • the water-cooled refrigeration equipment 02 includes four transfer ports: transfer port 021, transfer port 022, transfer port 023, and transfer port 024. These four transfer ports can be divided into a freezing-side transfer port and a cooling-side transfer port.
  • the freezing-side transfer port It includes a transmission port 023 and a transmission port 024, and the cooling side transmission port includes a transmission port 021 and a transmission port 022.
  • the freezing side transmission port is used to input or output the freezing side medium of the water-cooled refrigeration equipment 02.
  • the freezing side medium is the object of cooling when the water-cooled refrigeration equipment 02 is cooling, and it is also the water-cooled refrigeration equipment 02 to provide cooling to other equipment. Or charge a cold medium.
  • the cooling side transmission port is used to input or output the cooling side medium of the water-cooled refrigeration equipment 02.
  • the cooling side medium is the water-cooled refrigeration equipment 02.
  • the heat carries the medium of the water-cooled refrigeration equipment 02. It should be understood that the freezing-side medium may indirectly exchange heat with the cooling-side medium through the refrigerant.
  • the transmission port 023 is the freezing side output port of the water-cooled refrigeration equipment 02, which is used to output the freezing side medium of temperature 1 to the terminal equipment 03 and provide cold energy for the terminal equipment 03;
  • the transmission port 024 is the freezing of the water-cooled refrigeration equipment 02
  • the side input port is used to input the freezing-side medium of temperature 2 (temperature 2 is higher than temperature 1) transmitted by the terminal device 03 into the water-cooled refrigeration device 02.
  • the transmission port 021 is the cooling side input port of the water-cooled refrigeration equipment 02, which is used to input the cooling side medium of the temperature 3 transmitted by the tower cooling equipment 01 into the water-cooled refrigeration equipment 02, and then the water-cooled refrigeration equipment 02 passes through the cooling side of the temperature 3
  • the medium is to cool the freezing side medium of temperature 2 input from the transmission port 024 to obtain the freezing side medium of temperature 1 and the cooling side medium of temperature 4 (temperature 4 is higher than temperature 3);
  • the transmission port 022 is the water-cooled refrigeration equipment 02
  • the cooling side output port is used to output the cooling side medium of temperature 4 to the tower cooling device 01.
  • the tower cooling device 01 is used to cool the cooling side medium of temperature 4 to obtain the cooling side medium of temperature 3, and output the cooling side medium of temperature 3 to the water-cooled refrigeration device 02.
  • the above deployment scenario may also include at least one medium circulating power device (not shown in FIG. 2) for driving the medium to circulate between the devices through the pipeline.
  • a cooling-side water pump can be deployed on the pipeline between the transmission port 022 and the tower cooling device 01 to drive the cooling-side medium to circulate between the tower cooling device 01 and the water-cooled refrigeration device 02, as in the transmission
  • a freezing-side water pump can be deployed on the pipeline between the port 023 and the terminal equipment 03 for the circulating flow of the freezing-side medium between the water-cooled refrigeration equipment 02 and the terminal equipment 03.
  • the water-cooled refrigeration equipment can cool the refrigerated-side medium with a higher temperature returned from the terminal equipment through the cooling-side medium, so as to realize the cooling of the terminal equipment.
  • the air-cooled refrigeration equipment is the same as the water-cooled refrigeration equipment in that the air-cooled refrigeration equipment also includes a refrigeration-side transmission port for inputting the higher-temperature refrigeration-side medium transmitted from the terminal device, or for outputting to the terminal device The cold side medium with a lower temperature; the difference is that the air-cooled refrigeration equipment does not include a cooling side transmission port.
  • the cold side medium with a higher temperature After the cold side medium with a higher temperature is input into the air-cooled refrigeration equipment, it passes through the finned condenser and other equipment, and uses air as the The cooling medium cools the freezing-side medium with a higher temperature, thereby obtaining a freezing-side medium with a lower temperature for conveying to the end.
  • the cooling system can provide cooling to terminal equipment such as air conditioners.
  • the cooling system can ensure the cooling stability of the terminal equipment and realize the flexibility of the cold storage capacity of the cold storage equipment. Adjustable.
  • FIG. 3 is a schematic structural diagram of a cooling system provided by an embodiment of the present application.
  • the cooling system at least includes a first cooling device 301, a second cooling device 302, and a cold storage device 303.
  • Different devices can be connected by pipelines, and the pipelines can be used to transmit the first medium.
  • the first medium is the medium used by the cooling system to cool the terminal equipment, and it is also the medium used to charge the cold storage device 303 in the cooling system.
  • the first medium may be water, or a mixture of water and glycol. Mixtures, etc.
  • the first refrigeration equipment 301 and the second refrigeration equipment 302 are equipment that has a cooling function for the first medium.
  • the first refrigeration equipment 301 can be an air-cooled refrigeration equipment or a water-cooled refrigeration equipment
  • the second refrigeration equipment 302 is a water-cooled refrigeration equipment. equipment.
  • the cooling system also includes a tower cooling device corresponding to the first refrigeration device 301 (not shown in FIG. 3). Both the first refrigeration device 301 and the cold storage device 303 can be used to provide the first medium to the end device to supply cold to the end device, and the second refrigeration device 302 can be used to provide the first medium to the cold storage device 303 to provide the cold storage device 303 with the first medium.
  • the equipment is cold.
  • the first refrigeration equipment 301 includes a freezing-side medium output port 3011 and a freezing-side medium input port 3012
  • the second refrigeration equipment 302 includes a cooling-side medium output port 3021, a cooling-side medium input port 3022, a freezing-side medium input port 3023, and a freezing-side medium Output port 3024.
  • the cooling medium input port 3022 of the second refrigeration equipment 302 is used to receive the first medium output by the terminal equipment;
  • the refrigeration medium input port 3012 of the first refrigeration equipment 301 is connected to the cooling medium output port of the second refrigeration equipment 302 through a pipeline 3021 is connected to receive the first medium output from the cooling side medium output port 3021 of the second refrigeration equipment.
  • the freezing side medium output port 3011 of the first refrigeration device 301 is used to output the first medium for cooling to the terminal device 303.
  • the freezing-side medium output port 3024 of the second refrigeration equipment 302 is used to output the first medium for charging cold to the cold storage device, and the freezing-side medium input port 3023 of the second refrigeration equipment 302 is used to receive the first medium output from the cold storage device. medium.
  • the temperature of the first medium input or output from the transmission ports of different devices in the cooling system is introduced.
  • the first medium provided by the first refrigeration equipment and the cold storage device for supplying cold to the terminal equipment is the first medium at the first temperature
  • the second refrigeration equipment provided for charging the cold storage equipment is the second temperature at the second temperature.
  • the cooling-side medium input port of the second refrigeration equipment receives the first medium of the third temperature output by the terminal equipment, and the first medium of the third temperature is used by the second refrigeration equipment to input the freezing-side medium from the second refrigeration equipment
  • the first medium at the fourth temperature input from the port is cooled to obtain the first medium at the second temperature for charging and cooling, and the first medium at the fifth temperature for output from the cooling-side medium outlet of the second refrigeration equipment A medium, wherein the fifth temperature is higher than the third temperature, and the second temperature is lower than the fourth temperature.
  • the freezing side medium input port of the first refrigeration equipment receives the first medium of the fifth temperature output from the cooling side medium output port of the second refrigeration equipment, and the first medium of the fifth temperature is used for cooling by the first refrigeration equipment Through processing, a first medium for cooling at a first temperature is obtained, wherein the first temperature is lower than the fifth temperature.
  • each of the above-mentioned temperatures is not limited to a fixed value, and may be a temperature within a certain temperature range that meets certain conditions, for example, the second temperature (that is, the first medium output from the freezing side medium outlet of the second refrigeration equipment).
  • the fourth temperature that is, the temperature of the first medium input from the freezing side medium input port of the second refrigeration equipment
  • the second temperature 7°C-10°C lower than the fourth temperature
  • the third temperature that is, the second cooling The temperature of the first medium input from the cooling side medium input port of the equipment
  • the fifth temperature that is, the temperature of the first medium output from the cooling side medium output port of the second refrigeration equipment
  • the fifth temperature that is, the temperature of the first medium input from the freezing side medium input port of the first refrigeration equipment
  • the first temperature that is, the temperature of the first medium output from the freezing side medium output port of the first refrigeration equipment
  • Satisfying that the fifth temperature is 7°C-10°C lower than the first temperature.
  • the specific temperature range can be set according to different application scenarios.
  • the first temperature may be a temperature between 10°C and 20°C
  • the third temperature may be 17°C- A certain temperature between 28°C is used to flexibly adjust the cold storage capacity of the cold storage device
  • the second temperature can be any temperature lower than the first temperature and matching the cooling power of the second refrigeration device.
  • the first temperature can be around 7°C
  • the third temperature can be around 12°C
  • the second temperature can be low. Any temperature at the first temperature that matches the cooling power of the second refrigeration device.
  • the temperature can be set for the first temperature in the first refrigeration equipment and the second temperature in the second refrigeration equipment based on the above range, and the first refrigeration equipment and the second refrigeration equipment detect their own freezing side medium through the temperature sensor
  • the temperature of the first medium at the output port (the second refrigeration device can also adjust its own cooling power in real time according to the temperature of the first medium input from its own cooling side medium input port), so that the output from its own freezing side medium output port
  • the temperature of the first medium matches the set temperature.
  • the first refrigeration equipment is used to supply cold to the terminal equipment
  • the second refrigeration equipment is used to charge the cold storage equipment
  • the first refrigeration equipment supplies cold to the end equipment
  • the second refrigeration equipment charges cold to the cold storage equipment It can be performed independently of each other.
  • the cold charging of the cold storage device by the second refrigeration device will not affect the cold supply of the first refrigeration device to the end device, ensuring the stability of the cold supply of the end device, and realizing the flexibility of the cold storage capacity of the cold storage device.
  • the cooling side medium input port of the second refrigeration device receives the first medium output from the terminal device, and uses the first medium output by the terminal device to cool the cooling side medium of the second refrigeration device, and the first refrigeration
  • the freezing-side medium input port of the equipment is connected to the cooling-side medium output port of the second refrigeration equipment, and is used to input the first medium used for refrigeration of the second refrigeration equipment into the first refrigeration equipment for cooling, thereby realizing the second refrigeration equipment
  • the multiplexing of the cooling side and the freezing side of the first refrigeration equipment saves the deployment cost of the cooling side of the second refrigeration equipment.
  • the temperature of the first medium provided to the cold storage device by the second refrigeration device may be the same as the temperature of the first medium provided to the cold storage device by the first refrigeration device in the process of cooling the terminal device.
  • the temperature is the same, and it can also be lower than the temperature of the first medium provided by the first refrigeration device to the cold storage device in the process of cooling the terminal device.
  • the cold supply temperature of the first refrigeration device and the second refrigeration device can be independently controlled, which enhances the adjustability of the cold storage capacity of the cold storage device.
  • the cooling system may include a plurality of second cooling devices connected in parallel.
  • the cold supply system may include multiple cold storage devices connected in parallel.
  • the cooling system may include a plurality of first cooling devices connected in parallel.
  • the above-mentioned multiple devices of the same kind connected in parallel to each other are mutually backed up to ensure the cooling capacity of the cooling system, and at the same time improve the sudden-resistance and reliability of the cooling system.
  • the cooling system may also include at least one medium circulating power device, such as a water pump device, for driving the first medium to circulate between the devices through the pipeline.
  • a medium circulating power device such as a water pump device
  • a cooling-side water pump can be deployed to drive the circulating flow of the first medium between the second refrigeration equipment and the cold storage device.
  • a cooling side water pump can be deployed to drive the circulation of the first medium between the terminal equipment, the second refrigeration equipment and the first refrigeration equipment flow.
  • the cooling system may also include at least one sensor device, such as a temperature sensor, a pressure sensor, a flow sensor, etc., for collecting corresponding state parameters in the cooling system, and then adjusting the operation of the cooling system according to the state parameters Status, such as adjusting the medium flow of different pipelines in the cooling system, adjusting the operating frequency of the fan of the medium circulating power equipment, and adjusting the tower type of the first refrigeration equipment when the first refrigeration equipment is a water-cooled refrigeration equipment.
  • the cooling system may also include a control device, which may be connected to one or more of the first refrigeration device, the second refrigeration device, the cold storage device, the medium circulation power device, the valve or the sensor device, and It is used to control the switching of the three operating modes of the cooling system (the three operating modes will be introduced below), the scheduling of the cooling equipment of the terminal equipment, and the adjustment of the operating status of the cooling system according to the state parameters collected by the sensor equipment, etc. .
  • a control device which may be connected to one or more of the first refrigeration device, the second refrigeration device, the cold storage device, the medium circulation power device, the valve or the sensor device, and It is used to control the switching of the three operating modes of the cooling system (the three operating modes will be introduced below), the scheduling of the cooling equipment of the terminal equipment, and the adjustment of the operating status of the cooling system according to the state parameters collected by the sensor equipment, etc. .
  • the cold storage device contains a cold storage medium, which can store the cold energy charged by the second refrigeration device.
  • the cold storage device may be a cold storage tank, including a vertical cold storage tank, a horizontal cold storage tank, and the like.
  • the cold storage medium in the cold storage device may be the first medium.
  • the cold storage device heats and stores the low-temperature first medium received from the second refrigeration device to achieve cold storage.
  • the cold storage device outputs the first medium stored in the heat preservation to realize cold supply.
  • the cold storage medium in the cold storage device may be another cold storage medium other than the first medium.
  • the cold storage device will heat the first medium at a low temperature from the second refrigeration device and the cold storage medium.
  • Exchange transfer the cold energy of the first medium to the cold storage medium, and then heat and store the cold storage medium after the cold energy transfer to achieve cold storage.
  • the cold storage device heats the cold storage medium stored in the heat preservation with the first medium.
  • Exchange transfer the cold energy in the heat-preserving and stored cold storage medium to the first medium, and output the first medium after the cold energy has been transferred to realize cooling.
  • the cold storage medium in the cold storage device can be a medium that is in the same phase before and after cooling, or a medium that changes phase before and after cooling.
  • the cold storage medium in the cold storage device is water with a lower temperature.
  • the cold storage medium in the cold storage device is water with a higher temperature.
  • the substance of the cold storage medium before and after the cold supply The status has not changed.
  • the cold storage medium in the cold storage device is ice. After the cold storage device is supplied with cold, the water in the cold storage medium in the cold storage device changes its material state before and after the cold storage device is supplied.
  • the same amount of cold storage is stored.
  • the volume required for cold storage with ice as the cold storage medium will be smaller than the volume required for water as the cold storage medium. Therefore, in the case of the same volume of cold storage equipment Next, using the phase change medium as the cold storage medium can increase the cold storage capacity of the cold storage device.
  • first refrigeration equipment, the second refrigeration equipment, the cold storage equipment and the terminal equipment can be connected or deployed in any one or more of the following alternative ways:
  • the multiple second refrigeration devices can charge the cold storage device through the first medium convergence path, that is, in the The plurality of second refrigeration devices and the cold storage device may be connected by a first medium convergence path, and the first medium convergence path is used to converge the first medium output from the freezing side medium output ports of the plurality of second refrigeration devices Then it is transferred to the cold storage device. If there is only one cold storage device in the cold supply system, the first medium that has been converged through the first medium convergence path can be transported to the cold storage device; if the cold storage device in the system contains multiple cold storage devices, the first medium can be passed through the first medium.
  • the first medium converged by the converging path is split, and the split first medium is transmitted to each cold storage device.
  • the first medium convergence path may be a medium path in the water collector device, or may be a path formed by a pipeline with multiple input ports.
  • each second refrigeration device is connected in parallel with each other, and the cold storage device is charged through the first medium convergence path to prevent the failure of the cold storage device caused by the failure of a single second refrigeration device, and ensure that the cold storage device is charged cold. Reliability.
  • the second refrigeration device when the system contains multiple cold storage devices connected in parallel, can charge the multiple cold storage devices separately through the first medium shunt path, that is, in the first The second refrigeration equipment and multiple cold storage equipment can be connected by a first medium shunt path.
  • the first medium shunt path is used to split the first medium output from the freezing side medium output port of the second refrigeration equipment and then transfer them to Various cold storage equipment.
  • the first medium output from the freezing side medium output port of the second refrigeration device can be split through the first medium shunt path and then transmitted to each cold storage device; if
  • the cooling system includes multiple second refrigeration equipment, which can converge the freezing side medium of each second refrigeration equipment, divide it through the first medium shunt path, and transmit the divided first medium to each cold storage. equipment.
  • the first medium distribution path may be a medium path in the water separator device, or may be a path formed by a pipeline with multiple output ports.
  • the second refrigeration device charges the cold storage devices in parallel through the first medium shunt path to prevent the system cold storage failure caused by the failure of a single cold storage device, and ensure the reliability of the system cold storage.
  • the system when the system includes multiple second refrigeration devices connected in parallel and multiple cold storage devices connected in parallel, an implementation method In the second refrigeration equipment module formed by each second refrigeration equipment connected in parallel, and the cold storage equipment module formed by each parallel cold storage equipment are connected in series with each other. That is, the first medium output from the freezing side medium output port of each second refrigeration equipment may be transmitted to the first medium diversion path after passing through the first medium convergence path, and the first medium diversion path diverts and transmits the first medium to each cold storage. equipment.
  • the first media convergence path and the first media distribution path may be media paths on the same device, or media paths on different devices.
  • the first media convergence path may be the media in the first water collector device.
  • the first medium distribution path may be the medium path in the first water separator device; or the first medium convergence path and the first medium distribution path may be the medium path in the integrated water collector/separator device, through which The integrated water collector/splitter device can converge the first medium output from the freezing side medium output port of each second refrigeration device, and divide the first medium for each cold storage device.
  • each second refrigeration device may have a corresponding cold storage device for supplying cold, and the second refrigeration device is connected to the cold storage device for supplying cold.
  • each second refrigeration equipment and cold storage equipment can be connected in a one-to-one correspondence to charge the connected cold storage equipment; another example is in the second refrigeration equipment.
  • multiple second refrigeration devices can be connected to the same cold storage device to charge the same cold storage device; for example, when the number of cold storage devices is greater than the second refrigeration device In the case of a large number of cold storage devices, the same second refrigeration device can be connected to multiple cold storage devices for charging the multiple cold storage devices.
  • the cooling side medium outlets of the multiple second refrigeration equipment may communicate with the first medium through the second medium convergence path.
  • the refrigeration equipment's freezing side medium input port is connected.
  • there is a second medium convergence path between the plurality of second refrigeration equipment and the first refrigeration equipment and the second medium convergence path is used for the first medium output from the cooling side medium outlet of the second refrigeration equipment , After converging, it is transmitted to the first refrigeration equipment.
  • the first medium that has been converged through the second medium convergence path can be delivered to the first refrigeration device; if the first refrigeration device in the system contains multiple, The first medium converged by the second medium converging path can be split and transmitted to each first refrigeration device.
  • the cooling-side medium output ports of the plurality of second refrigeration equipment are connected with the freezing-side medium input ports of the first refrigeration equipment, and the cooling-side medium of the plurality of second refrigeration equipment is connected through one first refrigeration equipment. Perform cooling to improve the efficiency of the first refrigeration equipment.
  • the cooling side medium outlet of the second refrigeration device may be connected to the plurality of The freezing side medium input port of the first refrigeration equipment is connected. That is to say, there is a second medium shunt path between the cooling-side medium output port of the second refrigeration equipment and the freezing-side medium input port of the first refrigeration equipment, and the second medium shunt path is used to remove the power from the second refrigeration equipment.
  • the first medium output from the cooling-side medium output port is split and transmitted to the freezing-side medium input port of each first refrigeration equipment.
  • the first medium output from the cooling side medium output port of the second refrigeration device can be split through the second medium shunt path, and the split first medium Transmitted to the refrigeration-side medium input port of each first refrigeration equipment; if the second refrigeration equipment in the cooling system includes multiple, the first medium output from the cooling-side medium output port of each second refrigeration equipment can be converged , The converged first medium is split through the second medium splitting path, and transmitted to the freezing side medium input port of each first refrigeration equipment.
  • the cooling-side medium output port of the second refrigeration equipment is connected with the freezing-side medium input ports of the multiple first refrigeration equipment, and the cooling-side medium of the second refrigeration equipment is cooled by the multiple first refrigeration equipment to avoid a single first refrigeration equipment.
  • the failure of the refrigeration equipment causes the cooling of the cooling side medium of the second refrigeration equipment to fail, and the reliability of cooling the cooling side medium of the second refrigeration equipment is ensured.
  • the cooling system when the cooling system includes a plurality of first refrigeration devices connected in parallel and a plurality of second refrigeration devices connected in parallel,
  • the second refrigeration equipment module formed by each second refrigeration device connected in parallel is connected in series with the first refrigeration equipment module formed by each first refrigeration device connected in parallel. That is to say, the first medium output from the freezing side medium output port of each second refrigeration equipment can be transmitted to the second medium diversion path after passing through the second medium convergence path, and the second medium diversion path diverts and transmits the first medium to The freezing side medium input port of each first refrigeration equipment.
  • the second media convergence path and the second media distribution path may be media paths on the same device, or media paths on different devices.
  • the second media convergence path may be the media in the second water collector device.
  • the second medium distribution path may be the medium path in the second water separator device; or the second medium convergence path and the second medium distribution path may be the medium path in the integrated water collector/separator device, through which The integrated water collector/splitter device can converge the first medium output from the cooling side medium output port of each second refrigeration equipment, and divide the first medium to the freezing side medium input port of each first refrigeration equipment .
  • Each of the first refrigeration equipment may have a corresponding second refrigeration equipment, and the freezing side medium input port of the first refrigeration equipment is connected with the cooling side medium output port of the corresponding second refrigeration equipment.
  • the freezing-side medium input ports of each first refrigeration equipment and the cooling-side medium output ports of the second refrigeration equipment can be connected in a one-to-one correspondence; for another example, In the case that the number of the first refrigeration equipment is greater than the number of the second refrigeration equipment, the refrigeration-side medium input ports of multiple first refrigeration equipment may be connected to the cooling-side medium output port of the same second refrigeration equipment through the second medium shunt path. For example, in the case that the number of the first refrigeration equipment is less than the number of the second refrigeration equipment, the freezing side medium input port of the same first refrigeration equipment can be connected to multiple second refrigeration equipment through the second medium convergence path The cooling side media outlet is connected.
  • the cooling system may also include a water mixing device, which can be connected to the output port for outputting the first medium when the cold storage device is used for cooling, and the input port for the terminal device to receive the first medium. , And the output port of the terminal device for outputting the first medium. If the temperature of the first medium output by the cold storage device when cooling the terminal device is lower than the temperature of the first medium output from the freezing side medium outlet when the first refrigeration device is cooling the terminal device, the water mixing device uses When the cold storage device supplies cold to the terminal device, the first medium output by the cold storage device is mixed with the first medium output by the terminal device, and the mixed first medium is output to the terminal device.
  • the water mixing device may be a three-way valve.
  • the temperature of the first medium (denoted as T1) provided to the cold storage device is lower than the first medium.
  • the temperature of the first medium provided by a refrigerating device to the end device when it is cooling the end device (denoted as T2, which is the required temperature of the first medium that the end device provides to itself for cooling under normal operation) , Then after the cold storage device receives the first medium, the temperature of the first medium stored in the heat preservation device is T1.
  • the temperature of the first medium output from the cold storage device is also T1, because T1 It is lower than T2, so the higher temperature first medium output by the terminal device is required.
  • the first medium output by the cold storage device is mixed and heated, it becomes the first medium with T2 temperature and then transmitted to the terminal device for supply cold.
  • the pipeline between the first refrigeration device, the second refrigeration device, the cold storage device or the terminal device may include at least one valve, which can be used to control the open/close state of the corresponding pipeline, or control The transmission parameters of the first medium (including flow, temperature or pressure, etc.).
  • the valve includes but is not limited to two-way valve, three-way valve, etc. Referring to Figure 4, Figure 4 is a schematic diagram of the architecture of another cooling system provided by an embodiment of the present application.
  • the freezing side medium input port of the first refrigeration device may be connected to the output port of the terminal device for outputting the first medium through the first valve 401.
  • the first valve 401 When the second refrigeration device charges the cold storage device or the cold storage device supplies cold to the end device, the first valve 401 is in the closed state to prevent the first medium output by the end device from being transferred to the refrigeration of the first refrigeration device Side medium input port; when the first refrigeration equipment supplies cold to the terminal equipment, and the second refrigeration equipment does not charge cold storage equipment, the first valve 401 is in an open state for inputting the first medium output by the terminal equipment The freezing side medium input port of the first refrigeration equipment.
  • the cooling side medium input port of the second refrigeration device may be connected to the output port of the terminal device for outputting the first medium through the second valve 402.
  • the second valve 402 When the second refrigeration device charges the cold storage device, the second valve 402 is in an open state, and is used to transmit the first medium output by the terminal device to the cooling side medium input port of the second refrigeration device;
  • the second valve 402 When cooling is performed, or when the first refrigeration device is cooling the terminal device and the second cooling device is not cooling the cold storage device, the second valve 402 is closed to prevent the transmission of the first medium output by the terminal device To the cooling side medium input port of the second refrigeration equipment.
  • the freezing-side medium input port of the first refrigeration equipment may be connected to the cooling-side medium output port of the second refrigeration equipment through a third valve 403.
  • the third valve 403 When the second refrigeration equipment charges the cold storage equipment, the third valve 403 is in an open state, and is used to transfer the first medium output from the cooling side medium output port of the second refrigeration equipment to the freezing side medium of the first refrigeration equipment Input port; when the cold storage device supplies cold to the end device, or when the first refrigeration device supplies cold to the end device and the second refrigeration device does not supply cold to the cold storage device, the second valve 402 is closed to prevent The first medium output from the cooling side medium output port of the second refrigeration equipment is transmitted to the freezing side medium input port of the first refrigeration equipment.
  • the output port of the cold storage device for outputting the first medium when cooling the terminal device can be connected to the output port of the terminal device for outputting the first medium through the fourth valve 404.
  • the fourth valve 404 When the cold storage device supplies cold to the terminal device, the fourth valve 404 is in an open state, and is used to transmit the first medium output by the terminal device to the cold storage device; when the first refrigeration device supplies cold to the terminal device, the fourth valve 404 is in a closed state and is used to prevent the first medium output by the terminal device from being transmitted to the cold storage device.
  • the freezing side medium output port of the second refrigeration equipment can be connected to the input port of the first medium when the cold storage equipment is charged through the fifth valve 405, and the cooling side of the second refrigeration equipment
  • the medium input port can be connected to the output port for outputting the first medium when the cold storage device is charged with cold through the sixth valve 406.
  • the fifth valve 405 and the sixth valve 406 are in an open state, and the fifth valve 405 is used to transfer the first medium output from the cooling side medium output port of the second refrigeration device to the cold storage device.
  • the sixth valve 406 is used to transmit the first medium output by the cold storage device to the cooling side medium input port of the second refrigeration device; when the second refrigeration device does not charge the cold storage device, the fifth valve 405 and the sixth valve 405 The valve 406 is in a closed state.
  • the fifth valve 405 is used to prevent the first medium output from the cooling side medium output port of the second refrigeration equipment from being transmitted to the cold storage device
  • the sixth valve 406 is used to prevent the first medium output from the cold storage device from being transmitted to the second refrigeration equipment. 2.
  • the medium input port of the cooling side of the refrigeration equipment is used to transmit the first medium output by the cold storage device to the cooling side medium input port of the second refrigeration device.
  • connection or deployment mode in the selected mode is modified to realize the corresponding function. It should be noted that other modified deployment modes should also fall within the protection scope of this application. Two examples are listed below to illustrate the deformation examples of the above connection or deployment methods. This example should not be understood as all the deformation methods defined by the cost application.
  • the first valve 401 in the above-mentioned first optional manner and the second valve 402 in the second optional manner may be implemented by using a three-way valve in a pipeline multiplexing manner.
  • the three-way valve includes an input port and two output ports.
  • FIG. 5 is a schematic diagram of another cooling system architecture provided by an embodiment of the present application. As shown in FIG.
  • the terminal device is used to output the first
  • the output port of the medium can be connected to the input port of the three-way valve 407 through a section of multiplexing pipeline r1, and the cooling side medium input port of the first refrigeration equipment is connected to an output port of the three-way valve 407 through the first dedicated pipeline r2 ,
  • the cooling side medium input port of the second refrigeration equipment is connected to the other output port of the three-way valve 407 through the second dedicated pipeline r3.
  • the function of the first optional way when the first valve 401 is in the closed state can be realized;
  • the input port of the valve 407 is opened and the output port connected to the freezing side medium input port of the first refrigeration equipment is opened, the function when the first valve 401 is in the open state can be realized.
  • the function of the second valve 402 in the closed state can be realized in the second optional way; in the three-way valve 407
  • the function of the second valve 402 when the second valve 402 is in the open state can be realized when the input port of the second refrigeration equipment is opened and the refrigerating side medium input port connected to the second refrigeration equipment is opened.
  • the three-way valve 407 is closed, that is, when both the input port and the two output ports are closed, the function of the first valve 401 and the second valve 402 in the closed state at the same time can be realized.
  • Figure 6 is a schematic diagram of another cooling system provided by this application.
  • the input port of the first medium can be the same transmission port.
  • the same transmission port is connected to the collector/splitter c1 through a section of multiplexing pipeline r4, and the collector/splitter c1 passes through the fourth dedicated pipe.
  • Road r5 is connected to the freezing side medium input port of the second refrigeration equipment, and is connected to the output port of the terminal equipment for outputting the first medium through the fifth dedicated pipeline r6.
  • the reuse pipeline r4 may include a valve 408, the fourth dedicated pipeline r5 may include a valve 409, and the fifth dedicated pipeline r6 may include a valve 410.
  • the opening of the valve 408 and the opening of the valve 410 can be realized.
  • the function when the fourth valve 404 is in the open state can be realized by closing the valve 410, and the function when the fourth valve 404 is in the closed state can be realized through the opening of the valve 408 and the opening of the valve 409. , Can realize the function when the sixth valve 406 is in the open state in the fifth optional way mentioned above.
  • By closing the valve 409 the function of the sixth valve 406 in the closed state can be realized.
  • the valve 409 By closing the valve 408, the valve 409 The closing of the valve 410 and the closing of the valve 410 can realize the function that the fourth valve 404 and the sixth valve 406 are in the closed state at the same time.
  • Mode 1 The first refrigeration equipment supplies cold to the terminal equipment, the second refrigeration equipment does not charge the cold storage equipment, and the cold storage equipment does not charge or supply cold.
  • Mode 2 The first refrigerating device supplies cold to the terminal, and the second refrigerating device charges cold to the cold storage device.
  • Mode 3 The first refrigeration device does not supply cold to the terminal device, the second refrigeration device does not charge the cold storage device, and the cold storage device supplies cold to the terminal device.
  • mode 1 may be a situation where the first refrigeration device is in a normal working state, the cold storage device is completely charged, and the second refrigeration device is in a sleep or shut down state.
  • Mode 2 may be a situation in which the first refrigeration device is in a normal working state, and the cold storage device has consumed some cold energy after supplying cold, and is being charged by the second refrigeration device.
  • Mode 3 may be a situation where the first refrigeration device cannot normally supply cold to the end device due to power failure or other reasons, and the cold storage device provides cold to the end device.
  • FIG. 7 is taken as an example.
  • the control and deployment methods for the above three modes are further introduced in detail.
  • n second cooling devices and n cold storage devices are deployed in the cooling system, and the second The refrigeration equipment and the cold storage equipment are connected in a one-to-one correspondence.
  • first refrigeration equipment is deployed in the cooling system, and the first refrigeration equipment constitutes The second refrigeration module constituted by the first refrigeration equipment module and the second refrigeration equipment is connected in series through the collector/splitter.
  • the cold storage medium in the cold storage device is the first medium, and in order to increase the cold storage capacity of the cold storage device, the temperature of the first medium provided by the second refrigeration device when the cold storage medium is charged is lower than the first medium. 2.
  • the temperature of the first medium provided by the refrigeration equipment when the terminal equipment is cooled.
  • Figure 7 is a schematic structural diagram of another cooling system provided by an embodiment of the present application.
  • the cold charging refrigeration pump is used to drive the circulating flow of the first medium between the second refrigeration equipment and the cold storage equipment when the second refrigeration equipment charges the cold storage equipment.
  • the cold-charging side collector/splitter is used to divert the first medium output by the end device when the cold storage device supplies cold to the end device, or is used to output the cold storage device when the second refrigeration device charges the cold storage device.
  • the first medium is transferred to the cooling side medium input port of the second refrigeration equipment.
  • the output port of the terminal device that outputs the first medium through the multiplexed cooling side collector/splitter 1, the cooling refrigeration pump, and the cooling side collector/splitter 2, respectively, and the cooling side input port of the second refrigeration device It is connected with the output port of the cold storage device for outputting the first medium during cooling.
  • the cold-supply-side collector/splitter 1 is used to converge the first medium output from each output port of the terminal device.
  • the cold supply refrigeration pump is used to drive the first refrigeration equipment to supply cold to the terminal equipment, the first medium circulates between the terminal equipment and the cold storage equipment, or when the cold storage equipment is driven to supply cold to the terminal equipment, the first medium is Circulating flow between terminal equipment and cold storage equipment.
  • the cold-supply-side collector/splitter 2 is used to divert the first medium output by the terminal device.
  • the cooling system also contains eight valves v1-v8, which are respectively deployed on the corresponding pipelines in Figure 7.
  • Each valve realizes the above-mentioned three operating modes of the cooling system through its own combination of different states.
  • the corresponding relationship between the state combination and each operating mode is shown in Table 1:
  • valve v7 is a three-way valve with two input ports and one output port.
  • One input port of valve v7 is connected to the cold charging side collector/splitter, and the other input port of valve v7 is connected to the cold storage device.
  • the output port of the first medium is connected, and the output port of valve v7 is connected with the input port of the end device inputting the first medium.
  • valve v7 can realize the function of water mixing equipment by adjusting its own two
  • the flow rate of the input port realizes the adjustment of the temperature of the first medium provided to the terminal device.
  • the valve v7 can adjust the flow rates of the two input ports under the control of the control device in the cooling system.
  • FIG. 8 is a schematic diagram of the system operation of the cooling system shown in FIG. 7 in the mode 1 state provided by an embodiment of the present application.
  • the first medium with a lower temperature is transmitted to the input port of the terminal device for the input of the first medium, and the terminal device is cooled; the terminal device outputs the first medium with a higher temperature, and the first medium with a higher temperature is supplying
  • the cold-side collector/splitter 1 converges, and based on the drive of the cooling refrigeration pump, it is sequentially transmitted to the cooling-side collector/splitter 2 and the cooling-side collector/splitter 3, and then is further divided and transmitted to each first
  • the freezing side medium input port of the refrigeration equipment is cooled by the first refrigeration equipment to obtain a lower temperature first medium. According to this cycle, the cooling of the terminal equipment is realized.
  • Figure 9 is a system operation schematic diagram of the cooling system shown in Figure 7 in the mode 2 state provided by an embodiment of the present application.
  • the first medium, the first medium with a lower temperature is transmitted to the input port of the terminal device for the input of the first medium, and the terminal device is cooled; the terminal device outputs the first medium with a higher temperature, and the first medium with a higher temperature is cooling
  • the side collector/splitter 1 converges, and based on the driving of the cooling refrigeration pump, it is transmitted to the cooling side collector/splitter 2, and the cooling side collector/splitter 2 splits and transmits the higher temperature first medium to
  • the first medium with higher temperature is used as cooling water by the second refrigeration equipment to cool the first medium received from the cold storage equipment, and the second refrigeration equipment receives the medium from the freezing side
  • the output port outputs the first mechanism with a lower temperature to the cold storage device, and outputs the first medium heated further from the medium output port on the cooling side to
  • the first medium with a lower temperature output by the second refrigeration device is transmitted to the input port of the cold storage device for receiving the first medium when it is charged, so as to charge the terminal device; the first medium output by the cold storage device when it is charged
  • the medium is transmitted to the freezing-side medium input port of the second refrigeration equipment, so that the second refrigeration equipment cools the first medium inputted from the freezing-side medium input port through the first medium output by the terminal device, and obtains a relatively high value for transmission to the cold storage device.
  • the low-temperature first medium realizes the second refrigeration equipment to charge the cold storage equipment.
  • FIG. 10 is a schematic diagram of the system operation of the cooling system shown in FIG. 7 in the mode 3 state provided by an embodiment of the present application, where the temperature of the first medium stored in the cold storage device is lower than the first The temperature of the first medium provided by the refrigeration equipment to the end equipment when the refrigeration equipment is cooling the end equipment (that is, the required temperature of the first medium for cooling by the end equipment), so in mode 3, the first medium output by the cold storage equipment After mixing with the first medium output by the terminal device through the valve v7, the temperature of the mixed first medium is matched with the required temperature of the first medium for cooling by the terminal device, and then the mixed first medium is transferred to the terminal The equipment realizes the cooling of the terminal equipment; the terminal equipment outputs the first medium with a higher temperature, and the first medium with a higher temperature is collected in the cooling side collector/splitter 1, and based on the driving of the cooling pump To the cold-supply-side collector/splitter 2, the cold-supply-side collector/splitter 2 splits and transmits the
  • the cooling system can realize uninterrupted cooling of the terminal equipment in the above three modes, ensuring stable cooling of the terminal equipment, and in mode 2, the first refrigeration equipment and the second refrigeration equipment can be independent
  • the terminal equipment and the cold storage equipment are supplied with cold (or cold charge) to realize the flexible adjustment of the cold storage capacity of the cold storage equipment.
  • an embodiment of the present application also provides a cooling method of the cooling system.
  • the method can be implemented based on any of the above-mentioned cooling systems.
  • the first cooling device and the cold storage device are both used to pass through
  • the terminal device provides the first medium to cool the terminal device
  • the second refrigeration device is used to provide the first medium to the terminal device to charge the cold storage device.
  • FIG 11 which is a kind of cooling provided by an embodiment of the application.
  • the schematic flow diagram of the cooling method of the system, as shown in Fig. 11, the method includes at least steps S1 and S2.
  • S1 Transmit the first medium output by the terminal device to the cooling side medium input port of the second refrigeration device.
  • the second refrigeration equipment uses the first medium input from the cooling-side medium input port as the cooling-side medium, and cools the first medium input from the freezing-side medium input port of the second refrigeration equipment. After cooling, it is used as the first medium of the cooling-side medium. The medium is output through the medium outlet on the cooling side.
  • S2 Transmit the first medium output from the cooling-side medium output port of the second refrigeration equipment to the freezing-side medium input port of the first refrigeration equipment.
  • the first refrigeration equipment uses the first medium input from the freezing side medium input port as the freezing side medium, and cools it. After cooling, the cooled first medium is output through the freezing side medium output port. Through step S2, the first refrigeration device is implemented to cool the cooling side medium of the second refrigeration device, which realizes the reuse of equipment and saves deployment costs.
  • the method may further include step S3.
  • S3 Transmit the first medium output from the freezing side medium output port of the first refrigeration equipment to the terminal equipment.
  • steps S1-S3 the cooling of the terminal device by the first refrigeration device and the cooling of the first medium by the second refrigeration device can be realized.
  • the method may further include steps S4-S5.
  • S4 Transmit the first medium output from the freezing side medium output port of the second refrigeration equipment to the cold storage equipment.
  • the second refrigeration equipment After the second refrigeration equipment cools the first medium input from the freezing side medium input port, the cooled first medium is output through the freezing side output port.
  • the intensity of cooling the first medium by the second refrigeration device has nothing to do with the intensity of cooling the first medium by the first refrigeration device.
  • the medium output port of the second refrigeration device outputs The temperature of the first medium is lower than the temperature of the first medium output from the freezing side medium outlet of the first refrigeration equipment.
  • S5 Transmit the first medium output by the cold storage device to the freezing side medium input port of the second refrigeration device.
  • the cold storage device can store the cold amount in the first medium provided by the second refrigeration device, and output the first medium after the cold amount is released.
  • Steps S4-S5 can be executed in parallel with steps S2-S3.
  • the cooling system includes a plurality of second cooling devices connected in parallel.
  • the method further includes: transmitting the first medium output by the second refrigeration device to the cold storage device through the first medium convergence path.
  • the first medium output from the cooling-side medium output ports of the plurality of second refrigeration equipment can be specifically transmitted to the freezing-side medium input port of the first refrigeration equipment through the second medium convergence path.
  • the cold supply system includes a plurality of cold storage devices connected in parallel, and the method further includes: transmitting the first medium output by the second refrigeration device to the plurality of cold storage devices through the first medium shunt path.
  • the cooling system includes a plurality of first refrigeration devices connected in parallel.
  • the first medium output from the cooling side medium output port of the second refrigeration device may be separately transmitted through the second medium shunt path.
  • S1-S5 are the cooling methods of the cooling system. While the first refrigeration device provides cooling for the terminal device, the second refrigeration device is the cooling scenario where the cold storage device is charged with cold, that is, Figure 3-10
  • the cooling method used by the cooling system under the operating state of mode 2 can be referred to the above description of mode 2 and the description of mode 2 in Figure 9 for specific implementation. An example of the system running status will not be repeated here.
  • S1-S5 the cooling stability of the terminal equipment can be realized, and the adjustability of the cold storage capacity of the cold storage equipment can be enhanced.
  • the cooling method of the cooling system may further include the following steps:
  • the first medium output by the cold storage device and the first medium output by the terminal device are mixed and then sent to the terminal device.
  • This step is executed when the temperature of the first medium output by the cold storage device when cooling the terminal device is lower than the temperature of the first medium output from the medium outlet on the freezing side when the first refrigeration device is cooling the terminal device .
  • this step please refer to the description of the function of the water mixing device in the fifth alternative method in the introduction of the cooling system and the related description of the operation mode of the cooling system in mode 3 in Figure 8, here No longer.
  • the cooling method of the cooling system may further include the following steps:
  • the first medium is provided to the terminal device through the freezing side medium output port of the first refrigeration device to cool the terminal device; the first medium output by the terminal device is transmitted to the freezing side medium input port of the first refrigeration device.
  • the cooling of the terminal device by the first refrigeration device and the cooling of the cooling storage device by the second refrigeration device are performed independently of each other.
  • the stability of the cold supply realizes the flexible adjustment of the cold storage capacity of the cold storage device;
  • the cooling side medium of the second refrigeration device is cooled by the first refrigeration device to realize the cooling side of the second refrigeration device and the first refrigeration device.
  • the multiplexing of the refrigeration side saves the deployment cost of the second refrigeration equipment on the cooling side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种供冷系统及其供冷方法,该供冷系统包括第一制冷设备(301)、第二制冷设备(302)和蓄冷设备(303),第一制冷设备(301)和蓄冷设备(303)均用于通过向末端设备提供第一介质对末端设备进行供冷,第二制冷设备(302)用于向蓄冷设备(303)提供第一介质对蓄冷设备(303)进行充冷;第二制冷设备(302)的冷却侧介质输入口(3012)用于接收末端设备输出的第一介质;第一制冷设备(301)的冷冻侧介质输入口(3012)与第二制冷设备(302)的冷却侧介质输出口(3021)相连,用于接收第二制冷设备(302)的冷却侧介质输出口输出(3021)的第一介质。

Description

一种供冷系统及其供冷方法
本申请要求于2020年5月18日提交中国专利局、申请号为202010421234.9、申请名称为“一种供冷系统及其供冷方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及供冷技术领域,尤其涉及一种供冷系统及其供冷方法。
背景技术
为解决空间散热问题,如大型机房的散热问题,通常需要部署空调设备,空调设备包括末端设备以及冷水机设备,冷水机设备为末端设备供冷,进而通过末端设备为机房等空间提供冷气,从而降低空间温度。在一些特殊情况下,如冷水机设备突发断电的情况下,需要临时发电设备,如柴油发电机为冷水机设备供电,进而保证冷水机设备能继续正常为末端设备供冷,但是,柴油发电机的启动、冷水机设备在柴油发电机的供电下重启,都需要一定的时间,在这期间,机房等空间中产生的热量不能被及时散发。为解决这一问题,可以部署蓄冷设备,在柴油发电机启动、以及冷水机设备在柴油发电机的供电下重启这一期间,通过蓄冷设备为末端空调设备供冷。
目前,部署末端设备、冷水机设备和蓄冷设备的方式可以是将冷水机设备、蓄冷设备通过管路与末端设备依次串联,具体可参阅图1,图1是本申请提供的一种供冷架构示意图,如图1所示,蓄冷设备部署于冷水机设备向末端设备提供供冷介质的管路上,冷水机设备在正常工作时,冷水机设备输出的供冷介质可以通过蓄冷设备流向末端设备,不仅可以为蓄冷设备充冷,还以为末端设备提供冷量。一方面,这种方式使得蓄冷设备在被充冷的过程中,会有一部分较高温度的介质流向末端设备,影响末端设备的供冷稳定性;另一方面,由于末端设备需要的供冷介质的温度是一定的,而冷水机设备、蓄冷设备和末端设备是串联的关系,因此冷水机设备输出的供冷介质的温度,是根据末端设备的需要的供冷介质的温度确定的,也就是说从冷水机设备输入蓄冷设备的供冷介质的温度是固定的,由于蓄冷设备的蓄冷量主要由蓄冷设备的容量以及输出蓄冷设备的供冷介质的温度影响,因此,这种情况下蓄冷设备的蓄冷总量也是固定的,这种方式使得蓄冷设备的蓄冷量难以调节。
发明内容
本申请提供一种供冷系统及其供冷方法,通过本申请可以保证末端设备的供冷稳定性,以及增强蓄冷设备的蓄冷量的可调性。
本申请第一方面提供了一种供冷系统,该供冷系统可以用于对空调等末端设备进行供冷,该供冷系统可以保证末端设备的供冷稳定性,并可以实现蓄冷设备的蓄冷量的灵活可调。
该供冷系统至少包括第一制冷设备、第二制冷设备和蓄冷设备,不同设备之间可以通过管路连接。第一制冷设备和第二制冷设备是对第一介质具有冷却功能的设备,第一介质是该供冷系统对末端设备进行供冷的介质,也是对该供冷系统中的蓄冷设备进行充冷的介质,例如,第一介质可以是水、或者水和乙二醇的混合物,等等。第一制冷设备和蓄冷设备均可以用于通过向末端设备提供第一介质,实现对末端设备的供冷,第二制冷设备可以用于向蓄冷设备提供第一介质,实现对蓄冷设备的充冷。
第一制冷设备包含冷冻侧介质输出口和冷冻侧介质输入口,第二制冷设备包含冷却侧介质输出口、冷却侧介质输入口、冷冻侧介质输入口和冷冻侧介质输出口。第二制冷设备的冷却侧介质输入口用于接收末端设备输出的第一介质;第一制冷设备的冷冻侧介质输入口通过管路与第二制冷设备的冷却侧介质输出口相连,用于接收第二制冷设备的冷却侧介质输出口输出的第一介质。第一制冷设备的冷冻侧介质输出口用于向末端设备输出用于进行供冷的第一介质。第二制冷设备的冷冻侧介质输出口用于向蓄冷设备输出用于进行充冷的第一介质,第二制冷设备的冷冻侧介质输入口用于接收从蓄冷设备输出的第一介质。
该供冷系统中,第一制冷设备对末端设备的供冷和第二制冷设备对蓄冷设备的充冷可以相互独立地进行,第二制冷设备对蓄冷设备的充冷不会影响第一制冷设备对末端设备的供冷,保证了末端设备的供冷稳定性,实现了蓄冷设备的蓄冷量的灵活可调;此外,第一制冷设备的冷冻侧介质输入口与第二制冷设备的冷却侧介质输出口相连,实现了第二制冷设备的冷却侧与第一制冷设备的冷冻侧的复用,节约了第二制冷设备的冷却侧部署成本。
结合第一方面,在一种可能的实现方式中,第二制冷设备向蓄冷设备提供的第一介质的温度,低于第一制冷设备向末端设备提供的第一介质的温度。由于第一制冷设备对末端设备的供冷和第二制冷设备对蓄冷设备的充冷独立进行,因此,降低第二制冷设备的充冷温度,有利于提高供冷系统的蓄冷量。
结合第一方面,在另一种可能的实现方式中,该供冷系统中还可以包含混水设备,在蓄冷设备对末端设备进行供冷时输出的第一介质的温度,低于第一制冷设备在向末端设备供冷时从冷冻侧介质输出口输出的第一介质的温度的情况下,混水设备用于接收蓄冷设备输出的第一介质和末端设备输出的第一介质进行混合,并将混合后的第一介质输至末端设备。通过混水设备的使用,在提高蓄冷设备的蓄冷量灵活调节的同时,保证了末端设备的供冷稳定性。
结合第一方面,在另一种可能的实现方式中,该供冷系统中包括并联的多个第二制冷设备,多个第二制冷设备互为备份,保证供冷系统的可靠性。
结合第一方面,在另一种可能的实现方式中,第二制冷设备可以用于通过第一介质汇聚路径向蓄冷设备充冷。防止单个第二制冷设备出现故障导致的蓄冷设备充冷失败,保证了蓄冷设备充冷的可靠性。
结合第一方面,在另一种可能的实现方式中,多个第二制冷设备的冷却侧介质输出口通过第二介质汇聚路径与第一制冷设备的冷冻侧介质输入口相连。通过一个第一制冷设备对多个第二制冷设备的冷却侧介质进行冷却,提高第一制冷设备的使用效率。
结合第一方面,在另一种可能的实现方式中,该供冷系统包括并联的多个蓄冷设备,第二制冷设备可以用于通过第一介质分流路径分别向多个蓄冷设备充冷。防止单个蓄冷设 备出现故障导致的系统蓄冷失败,保证了系统蓄冷的可靠性。
结合第一方面,在另一种可能的实现方式中,该供冷系统中包括并联的多个第一制冷设备,第二制冷设备的冷却侧介质输出口通过第二介质分流路径连接至多个第一制冷设备的冷冻侧介质输入口。避免单个第一制冷设备出现故障导致第二制冷设备的冷却侧介质冷却失败,保证对第二制冷设备的冷却侧介质冷却的可靠性。
结合第一方面,在另一种可能的实现方式中,蓄冷设备中的蓄冷介质可以是同相介质,即蓄冷设备在蓄冷设备向末端设备供冷之前蓄冷设备中蓄冷介质的物质状态,与在蓄冷设备向末端设备供冷之后蓄冷设备中蓄冷介质的物质状态相同。
结合第一方面,在另一种可能的实现方式中,蓄冷设备中的蓄冷介质可以是相变介质,即在蓄冷设备向末端设备供冷之前蓄冷设备中蓄冷介质的物质状态,与在蓄冷设备向末端设备供冷之后蓄冷设备中蓄冷介质的物质状态不同。采用相变介质作为蓄冷介质可以提高蓄冷设备的蓄冷量。
本申请第二方面提供了一种供冷系统的供冷方法,该供冷系统的供冷方法可以用于对空调等末端设备进行供冷,该方法可以保证末端设备的供冷稳定性,并可以实现蓄冷设备的蓄冷量的灵活可调。
该供冷系统至少包括第一制冷设备、第二制冷设备和蓄冷设备,不同设备之间可以通过管路连接。第一制冷设备和第二制冷设备是对第一介质具有冷却功能的设备,第一介质是该供冷系统对末端设备进行供冷的介质,也是对该供冷系统中的蓄冷设备进行充冷的介质,例如,第一介质可以是水、或者水和乙二醇的混合物,等等。第一制冷设备和蓄冷设备均可以用于通过向末端设备提供第一介质,实现对末端设备的供冷,第二制冷设备可以用于向蓄冷设备提供第一介质,实现对蓄冷设备的充冷。
第一制冷设备包含冷冻侧介质输出口和冷冻侧介质输入口,第二制冷设备包含冷却侧介质输出口、冷却侧介质输入口、冷冻侧介质输入口和冷冻侧介质输出口。第二制冷设备的冷却侧介质输入口用于接收末端设备输出的第一介质;第一制冷设备的冷冻侧介质输入口通过管路与第二制冷设备的冷却侧介质输出口相连,用于接收第二制冷设备的冷却侧介质输出口输出的第一介质。第一制冷设备的冷冻侧介质输出口用于向末端设备输出用于进行供冷的第一介质。第二制冷设备的冷冻侧介质输出口用于向蓄冷设备输出用于进行充冷的第一介质,第二制冷设备的冷冻侧介质输入口用于接收从蓄冷设备输出的第一介质。
该方法中,可以将末端设备输出的第一介质传输至第二制冷设备的冷却侧输入口,并将第二制冷设备的冷却侧介质输出口输出的第一介质传输至第一制冷设备的冷冻侧介质输入口。
第二制冷设备对蓄冷设备的充冷不会影响第一制冷设备对末端设备的供冷,保证了末端设备的供冷稳定性,实现了蓄冷设备的蓄冷量的灵活可调;并且,该方法中将第二制冷设备的冷却侧介质输出口输出的第一介质,传输至第一制冷设备的冷冻侧介质输入口,实现了第二制冷设备的冷却侧与第一制冷设备的冷冻侧的复用,节约了第二制冷设备的冷却侧部署成本。
结合第二方面,在一种可能的实现方式中,第二制冷设备向蓄冷设备提供的第一介质的温度,低于第一制冷设备向末端设备提供的第一介质的温度。由于第一制冷设备对末端 设备的供冷和第二制冷设备对蓄冷设备的充冷独立进行,因此,降低第二制冷设备的充冷温度,有利于提高供冷系统的蓄冷量。
结合第二方面,在另一种可能的实现方式中,在蓄冷设备对末端设备进行供冷时,若蓄冷设备对末端设备进行供冷时输出的第一介质的温度,低于第一制冷设备向末端设备供冷时从冷冻侧介质输出口输出的第一介质的温度,该方法还可以包括将蓄冷设备输出的第一介质和末端设备输出的第一介质混合后传输至末端设备。在提高蓄冷设备的蓄冷量灵活调节的同时,保证了末端设备的供冷稳定性。
结合第二方面,在另一种可能的实现方式中,该供冷系统中包括并联的多个第二制冷设备,多个第二制冷设备互为备份,保证供冷系统的可靠性。
结合第二方面,在另一种可能的实现方式中,该方法还可以包括将多个第二制冷设备输出的第一介质通过第一介质汇聚路径输至蓄冷设备。避免单个第二制冷设备出现故障导致的蓄冷设备充冷失败,保证了蓄冷设备充冷的可靠性。
结合第二方面,在另一种可能的实现方式中,具体可以将多个第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质汇聚路径输至第一制冷设备的冷冻侧介质输入口。通过一个第一制冷设备对多个第二制冷设备的冷却侧介质进行冷却,提高第一制冷设备的使用效率。
结合第二方面,在另一种可能的实现方式中,该供冷系统包括并联的多个蓄冷设备,该方法还可以包括将第二制冷设备输出的第一介质通过第一介质分流路径分别输至多个蓄冷设备。避免单个蓄冷设备出现故障导致的系统蓄冷失败,保证了系统蓄冷的可靠性。
结合第二方面,在另一种可能的实现方式中,该供冷系统中包括并联的多个第一制冷设备,该方法中具体可以将第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质分流路径分别输至多个第一制冷设备的冷冻侧介质输入口。避免单个第一制冷设备出现故障导致第二制冷设备的冷却侧介质冷却失败,保证对第二制冷设备的冷却侧介质冷却的可靠性。
结合第二方面,在另一种可能的实现方式中,蓄冷设备中的蓄冷介质可以是同相介质,即蓄冷设备在蓄冷设备向末端设备供冷之前蓄冷设备中蓄冷介质的物质状态,与在蓄冷设备向末端设备供冷之后蓄冷设备中蓄冷介质的物质状态相同。
结合第二方面,在另一种可能的实现方式中,蓄冷设备中的蓄冷介质可以是相变介质,即在蓄冷设备向末端设备供冷之前蓄冷设备中蓄冷介质的物质状态,与在蓄冷设备向末端设备供冷之后蓄冷设备中蓄冷介质的物质状态不同。采用相变介质作为蓄冷介质可以提高蓄冷设备的蓄冷量。
附图说明
图1是本申请提供的一种供冷架构示意图;
图2是本申请实施例提供的一种水冷式制冷设备的部署场景示意图;
图3是本申请实施例提供的一种供冷系统的架构示意图;
图4是本申请实施例提供的另一种供冷系统的架构示意图;
图5是本申请实施例提供的另一种供冷系统的架构示意图;
图6是本申请实施例提供的另一种供冷系统的架构示意图;
图7是本申请实施例提供的又一种供冷系统的架构示意图;
图8是本申请实施例提供的图7所示的供冷系统处于模式1状态下的系统运行示意图;
图9是本申请实施例提供的图7所示的供冷系统处于模式2状态下的系统运行示意图;
图10是本申请实施例提供的图7所示的供冷系统处于模式3状态下的系统运行示意图;
图11是本申请实施例提供的一种供冷系统的供冷方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本申请实施例提供的供冷系统及其供冷方法之前,首先介绍本申请实施例可能涉及到的制冷设备的工作原理。
本申请实施例中可能涉及的制冷设备可以包含水冷式制冷设备和风冷式制冷设备,例如水冷式冷水机和风冷式冷水机。其中,关于水冷式制冷设备,可以参见图2,图2是本申请实施例提供的一种水冷式制冷设备的部署场景示意图,如图2所示,该部署场景中可以包含塔式冷却设备01、水冷式制冷设备02和末端设备03。
水冷式制冷设备02包含传输口021、传输口022、传输口023和传输口024四个传输口,这四个传输口可以划分为冷冻侧传输口和冷却侧传输口,其中,冷冻侧传输口包含传输口023和传输口024,冷却侧传输口包含传输口021和传输口022。冷冻侧传输口用于输入或输出水冷式制冷设备02的冷冻侧介质,冷冻侧介质是水冷式制冷设备02在进行制冷时,进行冷却的对象,也是水冷式制冷设备02向其他设备进行供冷或充冷的媒介。冷却侧传输口用于输入或输出水冷式制冷设备02的冷却侧介质,冷却侧介质是水冷式制冷设备02在对冷冻侧介质进行冷却时,与冷冻侧介质进行热交换,将冷冻侧介质的热量携带出水冷式制冷设备02的媒介。应理解,冷冻侧介质可以是通过制冷剂间接与冷却侧介质进行热交换。
传输口023是水冷式制冷设备02的冷冻侧输出口,用于将温度1的冷冻侧介质输出给末端设备03,并为末端设备03提供冷量;传输口024是水冷式制冷设备02的冷冻侧输入口,用于将末端设备03传输的温度2(温度2高于温度1)的冷冻侧介质输入水冷式制冷设备02。
传输口021是水冷式制冷设备02的冷却侧输入口,用于将塔式冷却设备01传输的温度3的冷却侧介质输入水冷式制冷设备02,进而水冷式制冷设备02通过温度3的冷却侧介质,对传输口024输入的温度2的冷冻侧介质进行冷却,得到温度1的冷冻侧介质以及温度4(温度4高于温度3)的冷却侧介质;传输口022是水冷式制冷设备02的冷却侧输出口,用于将温度4的冷却侧介质输出给塔式冷却设备01。塔式冷却设备01用于对温度4的冷却侧介质进行冷却,得到温度3的冷却侧介质,并将温度3的冷却侧介质输出给水冷 式制冷设备02。
应理解,上述部署场景中,还可以包含至少一个介质循环动力设备(图2中未示出),用于驱动介质通过管路在设备之间的循环流动。例如在传输口022与塔式冷却设备01之间的管路上可以部署冷却侧水泵,用于驱动冷却侧介质在塔式冷却设备01和水冷式制冷设备02之间的循环流动,又如在传输口023和末端设备03之间的管路上可以部署冷冻侧水泵,用于冷冻侧介质在水冷式制冷设备02和末端设备03之间的循环流动。
基于上述部署架构,水冷式制冷设备可以通过冷却侧介质对末端设备返回的温度较高的冷冻侧介质进行冷却,从而实现对末端设备的供冷。而风冷式制冷设备与水冷式制冷设备相同的是,风冷式制冷设备也包含冷冻侧传输口,用于输入从末端设备传输的温度较高的冷冻侧介质,或者用于向末端设备输出温度较低的冷冻侧介质;不同的是风冷式制冷设备不包含冷却侧传输口,温度较高的冷冻侧介质输入风冷式制冷设备后,通过翅片式冷凝器等设备,以空气作为冷却介质对温度较高的冷冻侧介质进行冷却,进而得到用于向末端传输的温度较低的冷冻侧介质。
下面介绍本申请实施例提供的供冷系统,该供冷系统可以向空调等末端设备进行供冷,该供冷系统可以保证末端设备的供冷稳定性,并可以实现蓄冷设备的蓄冷量的灵活可调。
参见图3,图3是本申请实施例提供的一种供冷系统的架构示意图,如图3所示,该供冷系统至少包括第一制冷设备301、第二制冷设备302和蓄冷设备303,不同设备之间可以通过管路连接,该管路可以用于传输第一介质。第一介质是该供冷系统对末端设备进行供冷的介质,也是对该供冷系统中的蓄冷设备303进行充冷的介质,例如,第一介质可以是水、或者水和乙二醇的混合物,等等。
第一制冷设备301和第二制冷设备302是对第一介质具有冷却功能的设备,例如第一制冷设备301可以是风冷式制冷设备或水冷式制冷设备,第二制冷设备302是水冷式制冷设备。若第一制冷设备301是水冷式制冷设备,该供冷系统中还包含第一制冷设备301对应的塔式冷却设备(图3中未示出)。第一制冷设备301和蓄冷设备303均可以用于通过向末端设备提供第一介质,实现对末端设备的供冷,第二制冷设备302可以用于向蓄冷设备303提供第一介质,实现对蓄冷设备的充冷。
第一制冷设备301包含冷冻侧介质输出口3011和冷冻侧介质输入口3012,第二制冷设备302包含冷却侧介质输出口3021、冷却侧介质输入口3022、冷冻侧介质输入口3023和冷冻侧介质输出口3024。第二制冷设备302的冷却侧介质输入口3022用于接收末端设备输出的第一介质;第一制冷设备301的冷冻侧介质输入口3012通过管路与第二制冷设备302的冷却侧介质输出口3021相连,用于接收第二制冷设备的冷却侧介质输出口3021输出的第一介质。第一制冷设备301的冷冻侧介质输出口3011用于向末端设备303输出用于进行供冷的第一介质。第二制冷设备302的冷冻侧介质输出口3024用于向蓄冷设备输出用于进行充冷的第一介质,第二制冷设备302的冷冻侧介质输入口3023用于接收从蓄冷设备输出的第一介质。
这里,对该供冷系统中不同设备的传输口输入或输出的第一介质的温度进行介绍。第一制冷设备和蓄冷设备所提供的用于向末端设备进行供冷的是第一温度的第一介质,第二 制冷设备所提供的用于向蓄冷设备进行充冷的是第二温度的第一介质,其中,第二温度等于或低于第一温度。第二制冷设备的冷却侧介质输入口接收的是末端设备输出的第三温度的第一介质,第三温度的第一介质被第二制冷设备用于对从第二制冷设备的冷冻侧介质输入口输入的第四温度的第一介质进行冷却处理,得到用于进行充冷的第二温度的第一介质,以及用于从第二制冷设备的冷却侧介质输出口输出的第五温度的第一介质,其中,第五温度高于第三温度,第二温度低于第四温度。第一制冷设备的冷冻侧介质输入口接收的是从第二制冷设备的冷却侧介质输出口输出的第五温度的第一介质,第五温度的第一介质被第一制冷设备用于进行冷却处理,得到用于进行供冷第一温度的第一介质,其中第一温度低于第五温度。
应理解,上述各个温度并不限定为固定的数值,可以是在一定温度范围内的满足一定条件的温度,例如,第二温度(即第二制冷设备的冷冻侧介质输出口输出的第一介质的温度)和第四温度(即第二制冷设备的冷冻侧介质输入口输入的第一介质的温度)满足第二温度低于第四温度7℃-10℃;第三温度(即第二制冷设备的冷却侧介质输入口输入的第一介质的温度)和第五温度(即第二制冷设备的冷却侧介质输出口输出的第一介质的温度)满足第五温度高于第三温度3℃-7℃;第五温度(即第一制冷设备的冷冻侧介质输入口输入的第一介质的温度)和第一温度(即第一制冷设备的冷冻侧介质输出口输出的第一介质的温度)满足第五温度低于第一温度7℃-10℃。具体的温度范围可以是根据不同的应用场景设置不同的范围。
一种实现方式中,若该供冷系统用于对数据中心等机房的末端设备进行供冷,第一温度可以是10℃-20℃之间的某一温度,第三温度可以是17℃-28℃之间的某一温度,为灵活调节蓄冷设备的蓄冷量,第二温度可以是低于第一温度的、与第二制冷设备制冷功率匹配的任一温度。
另一种方式中,若该供冷系统用于对办公室、居民楼等的末端设备进行供冷,第一温度可以是7℃左右,第三温度可以是12℃左右,第二温度可以是低于第一温度的、与第二制冷设备制冷功率匹配的任一温度。
具体实现中,可以基于上述范围为第一制冷设备中的第一温度和第二制冷设备中的第二温度设置温度取值,第一制冷设备和第二制冷设备通过温度传感器检测自身冷冻侧介质输出口的第一介质的温度,(第二制冷设备还可以根据从自身的冷却侧介质输入口输入的第一介质的温度)来实时调节自身制冷功率,使得从自身的冷冻侧介质输出口输出的第一介质的温度,与设置的温度取值相匹配。
本实施例中,第一制冷设备用于对末端设备供冷,第二制冷设备用于对蓄冷设备充冷,第一制冷设备对末端设备的供冷和第二制冷设备对蓄冷设备的充冷可以相互独立地进行,第二制冷设备对蓄冷设备的充冷不会影响第一制冷设备对末端设备的供冷,保证了末端设备的供冷稳定性,实现了蓄冷设备的蓄冷量的灵活可调;此外,第二制冷设备的冷却侧介质输入口接收从末端设备输出的第一介质,将末端设备输出的第一介质,用于第二制冷设备的冷却侧介质进行制冷,并且第一制冷设备的冷冻侧介质输入口与第二制冷设备的冷却侧介质输出口相连,用于将第二制冷设备的用于制冷的第一介质,输入第一制冷设备进行冷却,实现了第二制冷设备的冷却侧与第一制冷设备的冷冻侧的复用,节约了第二制冷设 备的冷却侧部署成本。
可选的,第二制冷设备在对蓄冷设备充冷过程中,向蓄冷设备提供的第一介质的温度可以与第一制冷设备在对末端设备供冷过程中,向蓄冷设备提供的第一介质的温度相同,也可以低于第一制冷设备在对末端设备供冷过程中,向蓄冷设备提供的第一介质的温度。第一制冷设备与第二制冷设备的供冷温度可独立控制,增强了蓄冷设备的蓄冷量的可调节性。
可选的,该供冷系统中可以包含多个并联的第二制冷设备。
可选的,该供冷系统中可以包含多个并联的蓄冷设备。
可选的,该供冷系统中可以包含多个并联的第一制冷设备。
上述多个互相并联的同一种设备互为备份,保证供冷系统的供冷能力的同时,提高了供冷系统的抗突发能力和可靠性。
可选的,该供冷系统中还可以包括至少一个介质循环动力设备,如水泵设备,用于驱动第一介质通过管路在设备之间的循环流动。例如,在第二制冷设备的冷冻侧介质输出口与蓄冷设备之间的管路上,可以部署冷却侧水泵,用于驱动第一介质在第二制冷设备和蓄冷设备之间的循环流动,又如,在第二制冷设备的冷却侧介质输入口与末端设备之间的管路上,可以部署冷却侧水泵,用于驱动第一介质在末端设备、第二制冷设备和第一制冷设备之间的循环流动。
可选的,该供冷系统中还可以包括至少一个传感器设备,如温度传感器、压力传感器、流量传感器等,用于采集供冷系统中相应的状态参数,进而根据状态参数调节供冷系统的运行状态,比如对供冷系统中不同管路的介质流量进行调节、对介质循环动力设备的风机运行频率的调节、在第一制冷设备是水冷式制冷设备的情况下对第一制冷设备的塔式冷却设备中风机运行频率的调节、供冷系统的不同运行模式的转换等。
可选的,该供冷系统中还可以包括控制设备,该设备可以与第一制冷设备、第二制冷设备、蓄冷设备、介质循环动力设备、阀门或传感器设备中的一个或多个相连,用于控制供冷系统的三种运行模式(三种运行模式将在下文进行介绍)的切换、末端设备的供冷设备的调度、根据传感器设备采集的状态参数对供冷系统的运行状态的调节等。
可选的,蓄冷设备中包含蓄冷介质,可以对第二制冷设备充冷的冷量进行存储,蓄冷设备可以是蓄冷罐,包括立式蓄冷罐、卧式蓄冷罐等。一种实现方式中,蓄冷设备中的蓄冷介质可以是第一介质,在充冷过程中,蓄冷设备将从第二制冷设备接收的低温的第一介质进行保温存储以实现蓄冷,在放冷过程中,蓄冷设备将保温存储的第一介质输出以实现供冷。另一种实现方式中,蓄冷设备中的蓄冷介质可以是第一介质以外的其他蓄冷介质,在充冷过程中,蓄冷设备将从第二制冷设备接收的低温的第一介质与蓄冷介质进行热交换,将第一介质的冷量传递给蓄冷介质,进而对冷量传递后的蓄冷介质进行保温存储以实现蓄冷,在放冷过程中,蓄冷设备将保温存储的蓄冷介质与第一介质进行热交换,将保温存储的蓄冷介质中的冷量传递给第一介质,将冷量传递后的第一介质输出以实现供冷。
应理解,蓄冷设备中的蓄冷介质可以是供冷前后同相的介质,也可以是供冷前后相变的介质,也就是说蓄冷介质在供冷之前的物质状态,与供冷之后的物质状态可以相同,也可以不同。例如,在蓄冷设备充冷完毕后,蓄冷设备中的蓄冷介质是温度较低的水,在蓄 冷设备供冷后,蓄冷设备中的蓄冷介质是温度较高的水,供冷前后蓄冷介质的物质状态未发生变化。又如,在蓄冷设备充冷完毕后,蓄冷设备中的蓄冷介质是冰,在蓄冷设备供冷后,蓄冷设备中的蓄冷介质的水,供冷前后蓄冷介质的物质状态发生了变化。与水为蓄冷介质进行蓄冷相比,储存同样多的冷量,以冰为蓄冷介质进行蓄冷所需的体积,将比以水为蓄冷介质所需的体积小,因此在蓄冷设备容积相同的情况下,以相变介质作为蓄冷介质可以提高蓄冷设备的蓄冷量。
具体实现中,第一制冷设备、第二制冷设备、蓄冷设备和末端设备之间可以通过以下任意一种或多种可替换的方式进行连接或部署:
第一种可替换的方式中,在该系统中包含多个并行的第二制冷设备的情况下,多个第二制冷设备可以通过第一介质汇聚路径向蓄冷设备充冷,也就是说,在多个第二制冷设备与蓄冷设备之间可以通过第一介质汇聚路径相连,该第一介质汇聚路径用于将从多个第二制冷设备的冷冻侧介质输出口输出的第一介质,进行汇聚后传输至蓄冷设备。若该供冷系统中的蓄冷设备仅有一个,可以将通过第一介质汇聚路径汇聚后的第一介质输送给该蓄冷设备;若该系统中的蓄冷设备包含多个,可以将通过第一介质汇聚路径汇聚后的第一介质,进行分流,并将分流后的第一介质传输给各个蓄冷设备。第一介质汇聚路径可以是集水器设备内的介质路径,也可以是具有多个输入端口的管路形成的路径。在该可替换的方式中,各个第二制冷设备互相并联,通过第一介质汇聚路径向蓄冷设备充冷,防止单个第二制冷设备出现故障导致的蓄冷设备充冷失败,保证了蓄冷设备充冷的可靠性。
第二种可替换的方式中,在该系统中包含多个并联的蓄冷设备的情况下,第二制冷设备可以通过第一介质分流路径分别向多个蓄冷设备充冷,也就是说,在第二制冷设备与多个蓄冷设备之间可以通过第一介质分流路径相连,该第一介质分流路径用于将第二制冷设备的冷冻侧介质输出口输出的第一介质,进行分流后分别传输给各个蓄冷设备。若该供冷系统中的第二制冷设备仅有一个,可以将第二制冷设备的冷冻侧介质输出口输出的第一介质,通过第一介质分流路径进行分流后分别传输给各个蓄冷设备;若该供冷系统中的第二制冷设备包含多个,可以将各个第二制冷设备的冷冻侧介质汇聚后,通过第一介质分流路径进行分流,并将分流后的第一介质分别传输给各个蓄冷设备。第一介质分流路径可以是分水器设备内的介质路径,也可以是具有多个输出端口的管路形成的路径。该可替换的方式中,第二制冷设备通过第一介质分流路径向并联的多个蓄冷设备充冷,防止单个蓄冷设备出现故障导致的系统蓄冷失败,保证了系统蓄冷的可靠性。
应理解,基于第一种可替换的方式和第二种可替换的方式,在该系统中包含多个并联的第二制冷设备,且包含多个并联的蓄冷设备的情况下,一种实现方式中,各个并联的第二制冷设备构成的第二制冷设备模块,与各个并联的蓄冷设备构成的蓄冷设备模块互相串联。也就是,各个第二制冷设备的冷冻侧介质输出口输出的第一介质可以经第一介质汇聚路径后,传输给第一介质分流路径,第一介质分流路径将第一介质分流传输给各个蓄冷设备。上述第一介质汇聚路径和上述第一介质分流路径可以是同一设备上的介质路径,也可以是不同设备上的介质路径,例如,第一介质汇聚路径可以是第一集水器设备内的介质路径,第一介质分流路径可以是第一分水器设备内的介质路径;或者第一介质汇聚路径和第一介质分流路径可以是一体式的集/分水器设备内的介质路径,通过该一体式的集/分水器设 备可以实现对各个第二制冷设备的冷冻侧介质输出口输出的第一介质进行汇聚,以及对各个蓄冷设备进行第一介质的分流。
基于第一种可替换的方式和第二种可替换的方式,在该系统中包含多个并联的第二制冷设备,且包含多个并联的蓄冷设备的情况下,另一种实现方式中,各个第二制冷设备可以有各自对应进行供冷的蓄冷设备,第二制冷设备与自身对应进行供冷的蓄冷设备相连接。例如,在第二制冷设备的数量与蓄冷设备的数量相同的情况下,各个第二制冷设备与蓄冷设备可以一一对应相连,用于向相连的蓄冷设备进行充冷;又如,在第二制冷设备的数量大于蓄冷设备的数量的情况下,多个第二制冷设备可以连接同一个蓄冷设备,用于为同一个蓄冷设备进行充冷;又如,在蓄冷设备的数量大于第二制冷设备的数量的情况下,同一个第二制冷设备可以与多个蓄冷设备相连,用于为多个蓄冷设备进行充冷。
在第三种可替换的方式中,在该供冷系统中包括多个第二制冷设备的情况下,多个第二制冷设备的冷却侧介质输出口,可以通过第二介质汇聚路径与第一制冷设备的冷冻侧介质输入口相连。也就是说,在多个第二制冷设备与第一制冷设备之间存在第二介质汇聚路径,该第二介质汇聚路径用于将从第二制冷设备的冷却侧介质输出口输出的第一介质,进行汇聚后传输至第一制冷设备。若该供冷系统中的第一制冷设备仅有一个,可以将通过第二介质汇聚路径汇聚后的第一介质输送给该第一制冷设备;若该系统中的第一制冷设备包含多个,可以将通过第二介质汇聚路径汇聚后的第一介质分流后,传输给各个第一制冷设备。在该可替换的方式中,多个第二制冷设备的冷却侧介质输出口与第一制冷设备的冷冻侧介质输入口相连,通过一个第一制冷设备对多个第二制冷设备的冷却侧介质进行冷却,提高第一制冷设备的使用效率。
在第四种可替换的方式中,在该供冷系统中包括并联的多个第一制冷设备的情况下,第二制冷设备的冷却侧介质输出口,可以通过第二介质分流路径与多个第一制冷设备的冷冻侧介质输入口相连。也就是说,在第二制冷设备的冷却侧介质输出口与第一制冷设备的冷冻侧介质输入口之间存在第二介质分流路径,该第二介质分流路径用于将从第二制冷设备的冷却侧介质输出口输出的第一介质,进行分流后传输给各个第一制冷设备的冷冻侧介质输入口。若该供冷系统中的第二制冷设备仅有一个,可以将该第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质分流路径进行分流,将分流后的第一介质传输给各个第一制冷设备的冷冻侧介质输入口;若该供冷系统中的第二制冷设备包含多个,可以将各个第二制冷设备的冷却侧介质输出口输出的第一介质,进行汇聚,将汇聚后的第一介质通过第二介质分流路径进行分流,并传输给各个第一制冷设备的冷冻侧介质输入口。第二制冷设备的冷却侧介质输出口与多个第一制冷设备的冷冻侧介质输入口之间相连,通过多个第一制冷设备对第二制冷设备的冷却侧介质进行冷却,避免单个第一制冷设备出现故障导致第二制冷设备的冷却侧介质冷却失败,保证对第二制冷设备的冷却侧介质冷却的可靠性。
应理解,基于第三种可替换的方式和第四种可替换的方式,在该供冷系统中包含多个并联的第一制冷设备,且包含多个并联的第二制冷设备的情况下,一种实现方式中,各个并联的第二制冷设备构成的第二制冷设备模块,与各个并联的第一制冷设备构成的第一制冷设备模块互相串联。也就是说,各个第二制冷设备的冷冻侧介质输出口输出的第一介质, 可以经第二介质汇聚路径后,传输给第二介质分流路径,第二介质分流路径将第一介质分流传输给各个第一制冷设备的冷冻侧介质输入口。上述第二介质汇聚路径和上述第二介质分流路径可以是同一设备上的介质路径,也可以是不同设备上的介质路径,例如,第二介质汇聚路径可以是第二集水器设备内的介质路径,第二介质分流路径可以是第二分水器设备内的介质路径;或者第二介质汇聚路径和第二介质分流路径可以是一体式的集/分水器设备内的介质路径,通过该一体式的集/分水器设备可以实现对各个第二制冷设备的冷却侧介质输出口输出的第一介质进行汇聚,以及对各个第一制冷设备的冷冻侧介质输入口进行第一介质的分流。
基于第三种可替换的方式和第四种可替换的方式,在该系统中包含多个并联的第一制冷设备,且包含多个并联的第二制冷设备的情况下,另一种实现方式中,各个第一制冷设备可以有各自对应的第二制冷设备,第一制冷设备的冷冻侧介质输入口,与自身对应的第二制冷设备的冷却侧介质输出口相连。例如,在第一制冷设备与第二制冷设备的数量相同的情况下,各个第一制冷设备的冷冻侧介质输入口与第二制冷设备的冷却侧介质输出口可以一一对应相连;又如,在第一制冷设备的数量大于第二制冷设备的数量的情况下,多个第一制冷设备的冷冻侧介质输入口可以通过第二介质分流路径与同一个第二制冷设备的冷却侧介质输出口相连;又如,在第一制冷设备的数量小于第二制冷设备的数量的情况下,同一个第一制冷设备的冷冻侧介质输入口可以通过第二介质汇聚路径与多个第二制冷设备的冷却侧介质输出口相连。
第五种可替换的方式,该供冷系统中还可以包括混水设备,该混水设备可以连接蓄冷设备供冷时用于输出第一介质的输出口、末端设备接收第一介质的输入口、以及末端设备用于输出第一介质的输出口。若蓄冷设备在向末端设备供冷时输出的第一介质的温度,低于第一制冷设备在向末端设备供冷时从冷冻侧介质输出口输出的第一介质的温度,该混水设备用于将蓄冷设备在对末端设备进行供冷时,接收蓄冷设备输出的第一介质和末端设备输出的第一介质进行混合,并将混合后的第一介质输出给末端设备。一种实现方式中,该混水设备可以是三通阀门。
例如,在蓄冷设备中的蓄冷介质是第一介质的情况下,若第二制冷设备在对蓄冷设备进行充冷时,向蓄冷设备提供的第一介质的温度(记为T1),低于第一制冷设备在对末端设备进行供冷时,向末端设备提供的第一介质的温度(记为T2,也就是末端设备在正常工作下对提供给自身进行供冷的第一介质的需求温度),那么蓄冷设备接收到第一介质后,保温存储的第一介质的温度为T1,在蓄冷设备向末端设备进行供冷过程中,从蓄冷设备输出的第一介质的温度也为T1,由于T1低于T2,因此需要通过末端设备输出的较高温度的第一介质,对蓄冷设备输出的第一介质进行混合升温后,使其变为T2温度的第一介质后,传输给末端设备进行供冷。通过混水设备的使用,在提高蓄冷设备的蓄冷量灵活调节的同时,保证了末端设备的供冷稳定性。
第六种可替代的方式中,第一制冷设备、第二制冷设备、蓄冷设备或末端设备之间的管路上可以包括至少一个阀门,可以用于控制相应管路的开/闭状态,或控制第一介质的传输参数(包括流量、温度或压力等)。该阀门包括但不限于二通阀门、三通阀门等。参阅图4,图4是本申请实施例提供的另一种供冷系统的架构示意图,下面结合图4介绍该供冷系 统中阀门的六种示例性的部署方式,阀门可以按照以下任意一种或多种可选的方式进行部署,应该理解的是,图4仅为更方便地介绍以下各种可选的方式,不代表以下各种可选的方式需要在图4对应的同一架构中实现。如图4所示:
第一种可选的方式中,第一制冷设备的冷冻侧介质输入口可以通过第一阀门401,与末端设备用于输出第一介质的输出口相连。在第二制冷设备对蓄冷设备进行充冷时,或者蓄冷设备对末端设备进行供冷时,第一阀门401处于关闭状态,用于阻止末端设备输出的第一介质传输至第一制冷设备的冷冻侧介质输入口;在第一制冷设备对末端设备进行供冷,且第二制冷设备未对蓄冷设备进行充冷时,第一阀门401处于打开状态,用于将末端设备输出的第一介质输入第一制冷设备的冷冻侧介质输入口。
第二种可选的方式中,第二制冷设备的冷却侧介质输入口可以通过第二阀门402,与末端设备用于输出第一介质的输出口相连。在第二制冷设备对蓄冷设备进行充冷时,第二阀门402处于打开状态,用于将末端设备输出的第一介质传输给第二制冷设备的冷却侧介质输入口;在蓄冷设备对末端设备进行供冷时,或者在第一制冷设备对末端设备进行供冷且第二制冷设备未对蓄冷设备进行供冷时,第二阀门402处于关闭状态,用于阻止末端设备输出的第一介质传输至第二制冷设备的冷却侧介质输入口。
第三种可选的方式中,第一制冷设备的冷冻侧介质输入口可以通过第三阀门403,与第二制冷设备的冷却侧介质输出口相连。在第二制冷设备对蓄冷设备进行充冷时,第三阀门403处于打开状态,用于将第二制冷设备的冷却侧介质输出口输出的第一介质,传输给第一制冷设备的冷冻侧介质输入口;在蓄冷设备对末端设备进行供冷时,或者第一制冷设备对末端设备进行供冷且第二制冷设备未对蓄冷设备进行供冷时,第二阀门402处于关闭状态,用于阻止将第二制冷设备的冷却侧介质输出口输出的第一介质,传输给第一制冷设备的冷冻侧介质输入口。
第四种可选的方式中,蓄冷设备在对末端设备进行供冷时用于输出第一介质的输出口可以通过第四阀门404,与末端设备用于输出第一介质的输出口相连。在蓄冷设备对末端设备进行供冷时,第四阀门404处于打开状态,用于将末端设备输出的第一介质传输至蓄冷设备;在第一制冷设备对末端设备进行供冷时,第四阀门404处于关闭状态,用于阻止末端设备输出的第一介质传输至蓄冷设备。
第五种可选的方式中,第二制冷设备的冷冻侧介质输出口可以通过第五阀门405,与蓄冷设备在被充冷时输入第一介质的输入口相连,第二制冷设备的冷却侧介质输入口可以通过第六阀门406,与蓄冷设备在被充冷时用于输出第一介质的输出口相连。在第二制冷设备对蓄冷设备充冷时,第五阀门405和第六阀门406处于打开状态,第五阀门405用于将第二制冷设备的冷却侧介质输出口输出的第一介质传输给蓄冷设备,第六阀门406用于将蓄冷设备输出的第一介质传输给第二制冷设备的冷却侧介质输入口;在第二制冷设备未对蓄冷设备进行充冷时,第五阀门405和第六阀门406处于关闭状态,第五阀门405用于阻止第二制冷设备的冷却侧介质输出口输出的第一介质传输给蓄冷设备,第六阀门406用于阻止蓄冷设备输出的第一介质传输给第二制冷设备的冷却侧介质输入口。
应理解,上述五种可选的方式均为使用二通阀门的实现方式,也可以通过传输口的复用、管路的复用、三通阀门、集/分水器等方式,对上述可选的方式中的连接或部署方式进 行变形以实现对应的功能,需要说明的是,其他变形的部署方式也应属于本申请的保护范围。下面列举两个示例对上述连接或部署方式的变形举例进行说明,该示例不应被理解成本申请限定的全部变形方式。
例如,上述第一种可选的方式中的第一阀门401和第二种可选的方式中的第二阀门402,可以通过管路复用的方式,使用一个三通阀门实现。该三通阀门包含一个输入口和两个输出口,参阅图5,图5是本申请实施例提供的另一种供冷系统的架构示意图,如图5所示,末端设备用于输出第一介质的输出口可以通过一段复用管路r1,与三通阀门407的输入口相连,第一制冷设备的冷却侧介质输入口通过第一专用管路r2与三通阀门407的一个输出口相连,第二制冷设备的冷却侧介质输入口通过第二专用管路r3与三通阀门407的另一个输出口相连。其中,在三通阀门407中连接第一制冷设备的冷冻侧介质输入口的输出口关闭时,可以实现第一种可选的方式中,第一阀门401处于关闭状态时的功能;在三通阀门407的输入口打开、连接第一制冷设备的冷冻侧介质输入口的输出口打开时,可以实现第一阀门401处于打开状态时的功能。在三通阀门407中连接第二制冷设备的冷却侧介质输入口的输出口关闭时,可以实现第二种可选的方式中,第二阀门402处于关闭状态时的功能;在三通阀门407的输入口打开、连接第二制冷设备的冷冻侧介质输入口打开时,可以实现第二阀门402处于打开状态时的功能。在三通阀门407关闭时,即输入口和两个输出口均关闭时,可以实现第一阀门401和第二阀门402同时处于关闭状态的功能。
又如,参阅图6,图6是本申请提供的另一种供冷系统的架构示意图,如图6所示,蓄冷设备在对末端设备供冷时用于输出第一介质的输出口,与蓄冷设备在被供冷时输入第一介质的输入口可以为同一传输口,该同一传输口通过一段复用管路r4连接集/分水器c1,集/分水器c1通过第四专用管路r5连接第二制冷设备的冷冻侧介质输入口,并通过第五专用管路r6连接末端设备用于输出第一介质的输出口。其中,复用管路r4中可以包括阀门408,第四专用管路r5中可以包括阀门409,第五专用管路r6中可以包括阀门410,通过阀门408的打开、阀门410的打开,可以实现上述第四种可选的方式中,第四阀门404处于打开状态时的功能,通过阀门410的关闭,可以实现第四阀门404处于关闭状态时的功能,通过阀门408的打开、阀门409的打开,可以实现上述第五种可选的方式中,第六阀门406处于打开状态时的功能,通过阀门409的关闭,可以实现第六阀门406处于关闭状态的功能,通过阀门408的关闭、阀门409的关闭、阀门410的关闭,可以实现第四阀门404和第六阀门406同时处于关闭状态的功能。
本申请实施例提供的供冷系统在对末端设备进行供冷时,包含以下三种运行模式:
模式1:第一制冷设备对末端设备进行供冷,第二制冷设备未对蓄冷设备进行充冷,蓄冷设备未进行充冷或供冷。
模式2:第一制冷设备对末端进行供冷,第二制冷设备对蓄冷设备进行充冷。
模式3:第一制冷设备未对末端设备进行供冷,第二制冷设备未对蓄冷设备进行充冷,蓄冷设备对末端设备进行供冷。
其中,模式1可以是第一制冷设备处于正常工作状态,蓄冷设备被充冷完毕,第二制冷设备处于休眠或关闭状态的情况。模式2可以是第一制冷设备处于正常工作状态,蓄冷 设备在供冷之后,冷量有所消耗,正在被第二制冷设备充冷的情况。模式3可以是第一制冷设备因为断电等原因,无法正常对末端设备进行供冷,由蓄冷设备对末端设备进行供冷的情况。
应理解,本申请实施例的系统架构可以基于包括上述各种可替代的或可选的实现方式在内的多种实现方式进行部署,以实现上述三种模式的运行,这里以图7为例进一步具体介绍实现上述三种模式的控制和部署方式。图7的供冷系统中,结合上述第一种可替代的实现方式和第二种可替代的实现方式,在该供冷系统中部署n个第二制冷设备和n个蓄冷设备,且第二制冷设备和蓄冷设备一一对应连接,结合上述第三种可替代的实现方式和第四种可替代的实现方式,在该供冷系统中部署n个第一制冷设备,且第一制冷设备构成的第一制冷设备模块和第二制冷设备构成的第二制冷模块,通过集/分水器串联。在该供冷系统中,蓄冷设备中的蓄冷介质为第一介质,并且,为提高蓄冷设备的蓄冷量,第二制冷设备对蓄冷介质进行充冷时提供的第一介质的温度,低于第二制冷设备对末端设备进行供冷时提供的第一介质的温度。
请参阅图7,图7是本申请实施例提供的又一种供冷系统的架构示意图,如图7所示,各个第二制冷设备的冷却侧介质输入口,与蓄冷设备在充冷时输出第一介质的输出口之间的管路上存在充冷冷冻泵和充冷侧集/分水器。充冷冷冻泵用于在第二制冷设备对蓄冷设备充冷时,驱动第一介质在第二制冷设备和蓄冷设备之间的循环流动。充冷侧集/分水器用于在蓄冷设备对末端设备供冷时,末端设备输出的第一介质进行分流,或用于在第二制冷设备对蓄冷设备进行充冷时,将蓄冷设备输出的第一介质传输给第二制冷设备的冷却侧介质输入口。
末端设备输出第一介质的输出口,通过复用的供冷侧集/分水器1、供冷冷冻泵、供冷侧集/分水器2,分别与第二制冷设备的冷却侧输入口和蓄冷设备在供冷时输出第一介质的输出口相连。供冷侧集/分水器1用于将末端设备各个输出口输出的第一介质进行汇聚。供冷冷冻泵用于驱动第一制冷设备对末端设备进行供冷时,第一介质在末端设备与蓄冷设备之间的循环流动,或者驱动蓄冷设备对末端设备进行供冷时,第一介质在末端设备与蓄冷设备之间的循环流动。供冷侧集/分水器2用于对末端设备输出的第一介质进行分流。
第一制冷设备的冷冻侧介质输入口,与第二制冷设备的冷却侧介质输出口之间的管路上存在供冷侧集/分水器3,供水侧集/分水器3用于将各个第二制冷设备在对蓄冷设备进行充冷时,冷却侧介质输出口输出的第一介质进行汇聚后,分流传输给各个第一制冷设备的冷冻侧介质输入口。
此外,该供冷系统中还包含v1-v8这八个阀门,分别部署在图7中相应的管路上,各个阀门通过自身不同状态的组合,实现供冷系统上述的三种运行模式,各个阀门的状态组合与各个运行模式的对应关系如表1所示:
阀门 v1 v2 v3 v4 v5 v6 v7 v8
模式1
模式2
模式3 调节
表1
需要说明的是,阀门v7是三通阀门,有两个输入口和一个输出口,阀门v7的一个输入口与充冷侧集/分水器相连,阀门v7的另一个输入口与蓄冷设备在供冷时输出第一介质的输出口相连,阀门v7的输出口与末端设备输入第一介质的输入口相连,在模式3中,阀门v7可以实现混水设备的功能,通过调节自身的两个输入口的流量大小,实现向末端设备提供的第一介质的温度的调节。一种实现方式中,阀门v7可以是在供冷系统中的控制设备的控制下,对两个输入口的流量大小进行调节。
下面结合图8-图10,介绍图7所示的供冷系统在三种运行模式下的系统运行,需要说明的是,图8-图10中,用灰色线条表示的管路或集/分水器,在相应的模式中处于不工作的状态,也就是其中承载的第一介质,可以由于相应阀门等的控制,处于不流通状态,而用黑色线条表示的管路或集/分水器,在相应的模式中处于工作状态,也就是其中承载的第一介质,可以按照标记的箭头对应的方向进行流通。
首先参阅图8,图8是本申请实施例提供的图7所示的供冷系统处于模式1状态下的系统运行示意图,其中,图8中第一制冷设备的冷冻侧介质输出口输出较低温的第一介质,较低温的第一介质传输给末端设备用于输入第一介质的输入口,对末端设备进行供冷;末端设备输出较高温的第一介质,较高温的第一介质在供冷侧集/分水器1进行汇聚,并基于供冷冷冻泵的驱动,依次传输至供冷侧集/分水器2和供冷侧集/分水器3,进一步分流传输给各个第一制冷设备的冷冻侧介质输入口,通过第一制冷设备进行冷却,得到较低温的第一介质,按此循环,实现对末端设备的供冷。
参阅图9,图9是本申请实施例提供的图7所示的供冷系统处于模式2状态下的系统运行示意图,其中,图9中第一制冷设备的冷冻侧介质输出口输出较低温的第一介质,较低温的第一介质传输给末端设备用于输入第一介质的输入口,对末端设备进行供冷;末端设备输出较高温的第一介质,较高温的第一介质在供冷侧集/分水器1进行汇聚,并基于供冷冷冻泵的驱动,传输至供冷侧集/分水器2,供冷侧集/分水器2将较高温的第一介质分流传输给各个第二制冷设备的冷却侧介质输入口;较高温的第一介质被第二制冷设备作为冷却水,用于对从蓄冷设备接收的第一介质进行冷却,进而第二制冷设备从冷冻侧介质输出口向蓄冷设备输出较低温的第一机制,并从冷却侧介质输出口向第一制冷设备输出进一步升温的第一介质;进一步升温的第一介质通过供冷侧集/分水器的汇聚和分流,传输给各个第一制冷设备的冷冻侧介质输入口,通过第一制冷设备进行冷却,得到较低温的第一介质,按此循环,实现第一制冷设备对末端设备的供冷。
第二制冷设备输出的较低温的第一介质,传输至蓄冷设备在充冷时用于接收第一介质的输入口,实现对末端设备的充冷;蓄冷设备在被充冷时输出的第一介质传输给第二制冷设备的冷冻侧介质输入口,使第二制冷设备通过末端设备输出的第一介质对冷冻侧介质输入口输入的第一介质进行冷却,得到用于向蓄冷设备传输的较低温的第一介质,按此循环,实现第二制冷设备对蓄冷设备的充冷。
参阅图10,图10是本申请实施例提供的图7所示的供冷系统处于模式3状态下的系统运行示意图,其中,由于蓄冷设备中保温存储的第一介质的温度,低于第一制冷设备在对末端设备进行供冷时,向末端设备提供的第一介质的温度(也就是末端设备对供冷的第一介质的需求温度),因此模式3中,蓄冷设备输出的第一介质通过阀门v7与末端设备输 出的第一介质混合后,使混合后的第一介质的温度与末端设备对供冷的第一介质的需求温度相匹配,进而将混合后的第一介质传输给末端设备,实现对末端设备的供冷;末端设备输出较高温度的第一介质,较高温的第一介质在供冷侧集/分水器1进行汇聚,并基于供冷冷冻泵的驱动,传输至供冷侧集/分水器2,供冷侧集/分水器2将较高温的第一介质分流传输给各个充冷侧集/分水器,各个充冷侧集/分水器将末端设备输出的第一介质分流传输给蓄冷设备,或传输给阀门v7进行混水,按此循环,实现蓄冷设备对末端设备的供冷。
本实施例中,供冷系统在上述三种模式中均可实现对末端设备的不间断供冷,保证末端设备的稳定供冷,并且在模式2中第一制冷设备和第二制冷设备可以独立地对末端设备和蓄冷设备进行供冷(或充冷),实现蓄冷设备的蓄冷量的灵活可调。
基于上述供冷系统,本申请实施例还提供了供冷系统的供冷方法,该方法可以基于上述任意一种供冷系统实现,该方法中,第一制冷设备和蓄冷设备均用于通过向末端设备提供第一介质对末端设备进行供冷,第二制冷设备用于向末端设备提供第一介质对蓄冷设备进行充冷,参阅图11,图11是本申请实施例提供的一种供冷系统的供冷方法的流程示意图,如图11所示,该方法至少包含步骤S1和S2。
S1,将末端设备输出的第一介质传输至第二制冷设备的冷却侧介质输入口。
第二制冷设备将冷却侧介质输入口输入的第一介质作为冷却侧介质,对第二制冷设备的冷冻侧介质输入口输入的第一介质进行冷却,冷却之后,被作为冷却侧介质的第一介质通过冷却侧介质输出口输出。
S2,将第二制冷设备的冷却侧介质输出口输出的第一介质传输至第一制冷设备的冷冻侧介质输入口。
第一制冷设备将冷冻侧介质输入口输入的第一介质作为冷冻侧介质,对其进行冷却,冷却之后,将被冷却的第一介质通过冷冻侧介质输出口输出。通过步骤S2实现第一制冷设备对第二制冷设备的冷却侧介质进行冷却,实现了设备的复用,节约了部署成本。
可选的,该方法还可以包含步骤S3。
S3,将第一制冷设备的冷冻侧介质输出口输出的第一介质传输至末端设备。
通过步骤S1-S3可以实现第一制冷设备对末端设备的供冷,以及第二制冷设备对第一介质的冷却。
可选的,该方法还可以包含步骤S4-S5。
S4,将第二制冷设备的冷冻侧介质输出口输出的第一介质传输至蓄冷设备。
第二制冷设备对从冷冻侧介质输入口输入的第一介质进行冷却后,将被冷却的第一介质通过冷冻侧输出口输出。需要说明的是,第二制冷设备对第一介质进行冷却的强度,与第一制冷设备对第一介质进行冷却的强度无关,一种实现方式中,第二制冷设备的冷冻侧介质输出口输出的第一介质的温度,低于第一制冷设备的冷冻侧介质输出口输出的第一介质的温度。
S5,将蓄冷设备输出的第一介质传输至第二制冷设备的冷冻侧介质输入口。
蓄冷设备可以将第二制冷设备提供的第一介质中的冷量进行存储,并输出冷量释放后的第一介质。
通过步骤S4-S5可以实现第二制冷设备对蓄冷设备的充冷。步骤S4-S5可以与步骤S2-S3并列执行。
可替换的,该供冷系统中包括并联的多个第二制冷设备。
进一步的,该方法还包括:将第二制冷设备输出的第一介质通过第一介质汇聚路径传输至蓄冷设备。
进一步的,该方法中具体可以将多个第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质汇聚路径传输至第一制冷设备的冷冻侧介质输入口。
可替换的,该供冷系统中包括并联的多个蓄冷设备,该方法还包括:将第二制冷设备输出的第一介质通过第一介质分流路径分别传输至多个蓄冷设备。
可替换的,该供冷系统中包括并联的多个第一制冷设备,具体可以将第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质分流路径分别传输中多个第一制冷设备的冷冻侧介质输入口。
上述可替换的或进一步的实现方式可以参阅图3-图10对应的实施例中第一制冷设备、第二制冷设备、蓄冷设备和末端设备之间的第一种至第四种可替换的方式的相关介绍,此处不在赘述。
其中,S1-S5为该供冷系统的供冷方法中,在第一制冷设备为末端设备供冷的同时,第二制冷设备为蓄冷设备充冷的供冷场景,也就是图3-图10对应的实施例介绍的供冷系统的三种运行模式中模式2的运行状态下,供冷系统所使用的供冷方法,具体实现可以参阅上述针对模式2的介绍以及图9中对模式2的系统运行状态的举例介绍,此处不再赘述。通过S1-S5可以实现末端设备的供冷稳定性,以及增强蓄冷设备的蓄冷量的可调性。
可选的,在第一制冷设备停止为末端设备供冷,由蓄冷设备对末端设备进行供冷的场景中,也就是图3-图10对应的实施例介绍的供冷系统的三种运行模式中模式3的运行状态下,该供冷系统的供冷方法还可以包括以下步骤:
将所述蓄冷设备输出的第一介质和所述末端设备输出的第一介质混合后输至所述末端设备。
该步骤在蓄冷设备对末端设备进行供冷时输出的第一介质的温度,低于第一制冷设备向末端设备供冷时从冷冻侧介质输出口输出的第一介质的温度的情况下执行的。该步骤的具体实现方式可以参阅上述供冷系统的介绍中第五种可替换的方式关于混水设备的功能描述,以及图8中关于供冷系统的模式3的运行模式的相关描述,此处不再赘述。通过该步骤在提高蓄冷设备的蓄冷量灵活调节的同时,保证了末端设备的供冷稳定性。
可选的,在第一制冷设备为末端设备供冷,且第二制冷设备停止为蓄冷设备充冷的场景中,也就是图3-图10对应的实施例介绍的供冷系统的三种运行模式中模式1的运行状态下,该供冷系统的供冷方法还可以包括以下步骤:
通过第一制冷设备的冷冻侧介质输出口向末端设备提供第一介质对末端设备进行供冷;将末端设备输出的第一介质传输至第一制冷设备的冷冻侧介质输入口。
该步骤的具体实现方式可以参阅上述针对模式1的介绍以及图8关于供冷系统的模式1的运行模式的相关描述,此处不再赘述。
本实施例中,第一制冷设备对末端设备的供冷和第二制冷设备对蓄冷设备的充冷相互 独立地进行,蓄冷设备的充冷不会影响末端设备的供冷,保证了末端设备的供冷稳定性,实现了蓄冷设备的蓄冷量的灵活可调;此外,通过第一制冷设备对第二制冷设备的冷却侧介质进行冷却,实现了第二制冷设备的冷却侧与第一制冷设备的冷冻侧的复用,节约了第二制冷设备的冷却侧部署成本。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或设备的过程、方法、系统或产品没有限定于已列出的步骤或设备,而是可选的还包括没有列出的步骤或设备,或可选的还包括对于这些过程、方法或产品固有的其它步骤或设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种供冷系统,其特征在于,包括第一制冷设备、第二制冷设备和蓄冷设备,其中:
    所述第一制冷设备和所述蓄冷设备均用于通过向末端设备提供第一介质对所述末端设备进行供冷,所述第二制冷设备用于向所述蓄冷设备提供第一介质对所述蓄冷设备进行充冷;
    所述第二制冷设备的冷却侧介质输入口用于接收所述末端设备输出的第一介质;
    所述第一制冷设备的冷冻侧介质输入口与所述第二制冷设备的冷却侧介质输出口相连,用于接收所述第二制冷设备的冷却侧介质输出口输出的第一介质。
  2. 根据权利要求1所述的供冷系统,其特征在于,所述第二制冷设备向所述蓄冷设备提供的第一介质的温度低于所述第一制冷设备向所述末端设备提供的第一介质的温度。
  3. 根据权利要求1或2所述的供冷系统,其特征在于,所述供冷系统还包括混水设备;
    所述混水设备用于接收所述蓄冷设备输出的第一介质和所述末端设备输出的第一介质进行混合,并将混合后的第一介质输至所述末端设备。
  4. 根据权利要求1-3中任一所述的供冷系统,其特征在于,所述供冷系统包括并联的多个第二制冷设备。
  5. 根据权利要求4所述的供冷系统,其特征在于,所述第二制冷设备用于向所述蓄冷设备充冷为:
    所述多个第二制冷设备用于通过第一介质汇聚路径向所述蓄冷设备充冷。
  6. 根据权利要求4所述的供冷系统,其特征在于,所述多个第二制冷设备的冷却侧介质输出口通过第二介质汇聚路径与所述第一制冷设备的冷冻侧介质输入口相连。
  7. 根据权利要求1-6中任一所述的供冷系统,其特征在于,所述供冷系统包括并联的多个蓄冷设备,所述第二制冷设备用于向所述蓄冷设备充冷为:
    所述第二制冷设备用于通过第一介质分流路径分别向所述多个蓄冷设备充冷。
  8. 根据权利要求1-7中任一所述的供冷系统,其特征在于,所述供冷系统包括并联的多个第一制冷设备,所述第二制冷设备的冷却侧介质输出口通过第二介质分流路径连接至所述多个第一制冷设备的冷冻侧介质输入口。
  9. 根据权利要求1-8中任一所述的供冷系统,其特征在于,在所述蓄冷设备向所述末端设备供冷之前所述蓄冷设备中蓄冷介质的物质状态,与在所述蓄冷设备向所述末端设备供冷之后所述蓄冷设备中蓄冷介质的物质状态相同。
  10. 根据权利要求1-8中任一所述的供冷系统,其特征在于,在所述蓄冷设备向所述末端设备供冷之前所述蓄冷设备中蓄冷介质的物质状态,与在所述蓄冷设备向所述末端设备供冷之后所述蓄冷设备中蓄冷介质的物质状态不同。
  11. 一种供冷系统的供冷方法,其特征在于,所述供冷系统包括第一制冷设备、第二制冷设备和蓄冷设备,所述第一制冷设备和所述蓄冷设备均用于通过向末端设备提供第一介质对所述末端设备进行供冷,所述第二制冷设备用于向所述蓄冷设备提供第一介质对所述蓄冷设备进行充冷;
    所述方法包括:
    将所述末端设备输出的第一介质传输至所述第二制冷设备的冷却侧介质输入口;
    将所述第二制冷设备的冷却侧介质输出口输出的第一介质传输至所述第一制冷设备的冷冻侧介质输入口。
  12. 根据权利要求11所述的方法,其特征在于,所述第二制冷设备向所述蓄冷设备提供的第一介质的温度低于所述第一制冷设备向所述末端设备提供的第一介质的温度。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述蓄冷设备对所述末端设备进行供冷时输出的第一介质的温度,低于所述第一制冷设备向所述末端设备供冷时从所述冷冻侧介质输出口输出的第一介质的温度的情况下,所述方法还包括:
    在所述蓄冷设备对所述末端设备进行供冷时,将所述蓄冷设备输出的第一介质和所述末端设备输出的第一介质混合后输至所述末端设备。
  14. 根据权利要求11-13中任一所述的方法,其特征在于,所述供冷系统包括并联的多个第二制冷设备。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    将所述多个第二制冷设备输出的第一介质通过第一介质汇聚路径输至所述蓄冷设备。
  16. 根据权利要求14所述的方法,其特征在于,所述将所述第二制冷设备的冷却侧介质输出口输出的第一介质传输至所述第一制冷设备的冷冻侧介质输入口包括:
    将所述多个第二制冷设备的冷却侧介质输出口输出的第一介质,通过所述第二介质汇聚路径输至所述第一制冷设备的冷冻侧介质输入口。
  17. 根据权利要求11-16中任一所述的方法,其特征在于,所述供冷系统包括并联的多个蓄冷设备,所述方法还包括:
    将所述第二制冷设备输出的第一介质通过第一介质分流路径分别输至所述多个蓄冷设备。
  18. 根据权利要求11-17中任一所述的方法,其特征在于,所述供冷系统包括并联的多个第一制冷设备,
    所述将所述第二制冷设备的冷却侧介质输出口输出的第一介质传输至所述第一制冷设备的冷冻侧介质输入口包括:
    将所述第二制冷设备的冷却侧介质输出口输出的第一介质,通过第二介质分流路径分别输至所述多个第一制冷设备的冷冻侧介质输入口。
  19. 根据权利要求11-18中任一所述的方法,其特征在于,在所述蓄冷设备向所述末端设备供冷之前所述蓄冷设备中蓄冷介质的物质状态,与在所述蓄冷设备向所述末端设备供冷之后所述蓄冷设备中蓄冷介质的物质状态相同。
  20. 根据权利要求11-18中任一所述的方法,其特征在于,在所述蓄冷设备向所述末端设备供冷之前所述蓄冷设备中蓄冷介质的物质状态,与在所述蓄冷设备向所述末端设备供冷之后所述蓄冷设备中蓄冷介质的物质状态不同。
PCT/CN2021/092400 2020-05-18 2021-05-08 一种供冷系统及其供冷方法 WO2021233144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21808526.4A EP4141338A4 (en) 2020-05-18 2021-05-08 COOLING SYSTEM AND COOLING METHOD THEREFOR
US17/988,208 US20230084749A1 (en) 2020-05-18 2022-11-16 Cooling system and cooling method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421234.9 2020-05-18
CN202010421234.9A CN111664524B (zh) 2020-05-18 2020-05-18 一种供冷系统及其供冷方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,208 Continuation US20230084749A1 (en) 2020-05-18 2022-11-16 Cooling system and cooling method thereof

Publications (1)

Publication Number Publication Date
WO2021233144A1 true WO2021233144A1 (zh) 2021-11-25

Family

ID=72383934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092400 WO2021233144A1 (zh) 2020-05-18 2021-05-08 一种供冷系统及其供冷方法

Country Status (4)

Country Link
US (1) US20230084749A1 (zh)
EP (1) EP4141338A4 (zh)
CN (1) CN111664524B (zh)
WO (1) WO2021233144A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664524B (zh) * 2020-05-18 2022-05-13 华为数字能源技术有限公司 一种供冷系统及其供冷方法
CN114698327A (zh) * 2020-12-31 2022-07-01 河北思达歌数据科技投资有限公司 一种多级制冷系统及制冷方法
CN114485002B (zh) * 2022-03-17 2023-06-13 骊阳(广东)节能科技股份有限公司 一种双工况蓄冰一体机组
WO2024113105A1 (zh) * 2022-11-28 2024-06-06 航霈科技(深圳)有限公司 蓄冷装置、制冷系统及其控制方法及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052721A (zh) * 2010-12-27 2011-05-11 东南大学 一种水蓄能空调装置
KR20130028616A (ko) * 2011-09-09 2013-03-19 주식회사 그린에너텍 수냉식 열교환 구조를 갖는 실외기 없는 냉,난방장치
CN103314266A (zh) * 2011-01-11 2013-09-18 株式会社日立制作所 热源系统、其控制方法以及其程序
CN204421253U (zh) * 2015-01-15 2015-06-24 上海建筑设计研究院有限公司 内融冰冰蓄冷空调系统
CN105318467A (zh) * 2015-11-16 2016-02-10 深圳达实智能股份有限公司 基于空调系统能效的蓄能系统及其运行方法
CN205227623U (zh) * 2015-11-16 2016-05-11 深圳达实智能股份有限公司 基于空调系统能效的蓄能系统
CN107355926A (zh) * 2017-07-11 2017-11-17 福建省建筑设计研究院 基于温湿度独立控制的高温制冷耦合蓄能冷源空调系统及其控制方法
WO2018127712A1 (en) * 2017-01-09 2018-07-12 Robert Long Thermal management systems and methods
US20190063766A1 (en) * 2017-08-30 2019-02-28 Ruentex Engineering & Construction Co., Ltd. Housing system for heat balance and air conditioning system for energy-saving using the same
US20190093959A1 (en) * 2017-09-26 2019-03-28 China State Construction Engineering Corporation Limited Trans-seasonal cold-storage heat-storage system
CN111664524A (zh) * 2020-05-18 2020-09-15 华为技术有限公司 一种供冷系统及其供冷方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139549A (en) * 1991-04-05 1992-08-18 Chicago Bridge & Iron Technical Services Company Apparatus and method for cooling using aqueous ice slurry
CN2498527Y (zh) * 2001-09-20 2002-07-03 新疆兰环水处理科技有限公司 储能式地温冷暖中央空调
CN2630718Y (zh) * 2003-06-18 2004-08-04 孙霆 双储能式空调器
US20160187013A1 (en) * 2014-12-29 2016-06-30 Hy-Save Limited Air Conditioning with Thermal Storage
CN104613577B (zh) * 2015-01-15 2017-08-25 上海建筑设计研究院有限公司 内融冰冰蓄冷空调系统及其运行方法
CN209399625U (zh) * 2018-10-11 2019-09-17 丁玉龙 充冷设备及包括该设备的供冷系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052721A (zh) * 2010-12-27 2011-05-11 东南大学 一种水蓄能空调装置
CN103314266A (zh) * 2011-01-11 2013-09-18 株式会社日立制作所 热源系统、其控制方法以及其程序
KR20130028616A (ko) * 2011-09-09 2013-03-19 주식회사 그린에너텍 수냉식 열교환 구조를 갖는 실외기 없는 냉,난방장치
CN204421253U (zh) * 2015-01-15 2015-06-24 上海建筑设计研究院有限公司 内融冰冰蓄冷空调系统
CN105318467A (zh) * 2015-11-16 2016-02-10 深圳达实智能股份有限公司 基于空调系统能效的蓄能系统及其运行方法
CN205227623U (zh) * 2015-11-16 2016-05-11 深圳达实智能股份有限公司 基于空调系统能效的蓄能系统
WO2018127712A1 (en) * 2017-01-09 2018-07-12 Robert Long Thermal management systems and methods
CN107355926A (zh) * 2017-07-11 2017-11-17 福建省建筑设计研究院 基于温湿度独立控制的高温制冷耦合蓄能冷源空调系统及其控制方法
US20190063766A1 (en) * 2017-08-30 2019-02-28 Ruentex Engineering & Construction Co., Ltd. Housing system for heat balance and air conditioning system for energy-saving using the same
US20190093959A1 (en) * 2017-09-26 2019-03-28 China State Construction Engineering Corporation Limited Trans-seasonal cold-storage heat-storage system
CN111664524A (zh) * 2020-05-18 2020-09-15 华为技术有限公司 一种供冷系统及其供冷方法

Also Published As

Publication number Publication date
US20230084749A1 (en) 2023-03-16
CN111664524B (zh) 2022-05-13
EP4141338A4 (en) 2023-10-25
EP4141338A1 (en) 2023-03-01
CN111664524A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021233144A1 (zh) 一种供冷系统及其供冷方法
EP2096369A1 (en) Apparatus and method for cooling of a space with recirculation air
US20210148585A1 (en) Method of operating a heating or cooling system
CN207815571U (zh) 空气调节系统、制冷设备及空调设备
WO2016148858A1 (en) Chilled water cooling system
CN111319514B (zh) 一种热管理系统和新能源汽车
JP2010501404A (ja) 航空機内の熱負荷を冷却する冷却システムおよびこのような冷却システムを動作させる方法
CN111520794A (zh) 热回收供热系统
EP4336127A3 (en) Apparatuses and methods for modular heating and cooling system
CN107764122B (zh) 一种基于余热利用的大温差冷水复合式梯级利用系统
CN109140878B (zh) 一种冷却系统
CN109110098B (zh) 舰船封闭式桅杆内空调系统
CN110953668A (zh) 双冷源空调系统
CN113573543B (zh) 分布式复合制冷系统和数据中心
CN114312397B (zh) 一种充电用热管理系统、充电设备及充电方法
CN104390412A (zh) 用于切片机工艺水的冷却系统
CN108344071A (zh) 一种全空气数据中心空调系统
CN210986801U (zh) 一种数据中心机房系统
CN110602930A (zh) 一种数据中心机房系统
CN110838687A (zh) 大型电力电子设备高可靠性闭式风冷散热系统和散热方法
KR20150027418A (ko) 선박의 냉난방 시스템
CN217154609U (zh) 一种测试设备的制冷系统
CN214648972U (zh) 一种高速船水氟式模块空调
CN116634721A (zh) 用于数据中心机房的空调系统及数据中心机房管理方法
KR100911777B1 (ko) 열병합 발전부의 폐열을 이용한 냉방 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021808526

Country of ref document: EP

Effective date: 20221125

NENP Non-entry into the national phase

Ref country code: DE