WO2021232991A1 - 触控面板和触控显示装置 - Google Patents

触控面板和触控显示装置 Download PDF

Info

Publication number
WO2021232991A1
WO2021232991A1 PCT/CN2021/086043 CN2021086043W WO2021232991A1 WO 2021232991 A1 WO2021232991 A1 WO 2021232991A1 CN 2021086043 W CN2021086043 W CN 2021086043W WO 2021232991 A1 WO2021232991 A1 WO 2021232991A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
branch
branches
adjacent
Prior art date
Application number
PCT/CN2021/086043
Other languages
English (en)
French (fr)
Inventor
项大林
薄赜文
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/641,726 priority Critical patent/US11868156B2/en
Publication of WO2021232991A1 publication Critical patent/WO2021232991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present disclosure relates to the field of touch technology, and in particular, to a touch panel and a touch display device.
  • the purpose of the present disclosure is to overcome the above-mentioned shortcomings of the prior art and provide a touch panel and a touch display device with good touch sensitivity.
  • the present disclosure provides a touch panel, which includes a substrate and a touch sensing layer on the substrate.
  • the touch sensing layer includes a plurality of touch units, each of which includes at least one A touch pattern, the touch pattern includes a first touch electrode and a second touch electrode that are insulated from each other;
  • the first touch electrode has at least one first touch group, and the first touch group includes a plurality of first touch branches and a first conductive group connected to one end of the plurality of first touch branches. Connection
  • the second touch electrode has at least one second touch group, and the second touch group includes a plurality of second touch branches and a second conductive group connected to one end of the plurality of second touch branches. Connecting portion, the second touch branches and the first touch branches are alternately arranged in a first direction and spaced apart from each other;
  • the surface of the first touch-control branch opposite to the second touch-control branch is a wavy surface; and/or the surface of the second touch-control branch opposite to the first touch-control branch is a wavy surface .
  • the opposite sides of the first touch branch in the first direction are both wavy surfaces; the opposite sides of the second touch branch in the first direction Both sides are wavy surfaces.
  • the wave surface is formed by splicing a plurality of teeth arranged in a second direction, and the second direction intersects the first direction;
  • the teeth of the adjacent first touch control branch and the second touch control branch are engaged with each other.
  • the size and shape of the teeth of the first touch branch are the same as the sizes and shapes of the teeth of the second touch branch;
  • the dimensions in the first direction are the same everywhere in the channel formed between the adjacent first touch branch and the second touch branch.
  • the first touch branch is arranged in a staggered manner relative to the teeth on both sides in the first direction;
  • the second touch control branch is arranged in a staggered arrangement with respect to the teeth on both sides in the first direction.
  • the tooth portion is triangular, arc-shaped or trapezoidal.
  • the angle between the side surface of the tooth portion and the plane where the first direction is located is 5° to 95°.
  • the first touch group in the first touch electrode of each touch pattern is provided with multiple groups, which are arranged in order in the first direction. Cloth, and the first conductive connecting portions of the adjacent first touch groups are connected;
  • the second touch groups are arranged in multiple groups, and they are arranged sequentially in the first direction, and are adjacent to the second touch groups ⁇ first conductive connection part is connected;
  • the second touch branches close to each other between the adjacent second touch groups are located between the adjacent first touch groups, and the second touch branches between the adjacent second touch groups are close to each other.
  • One end of the two touch branches close to the first conductive connection portion is connected through the third conductive connection portion to form a closed annular space.
  • a first dummy electrode insulated from the second touch electrode is provided in the closed annular space.
  • the touch unit has a first center line extending in the first direction and a second center line extending in a second direction, the second direction being aligned with The first directions are perpendicular to each other;
  • the touch unit is arranged in a mirror image with respect to the first center line and/or the second center line.
  • the touch unit is arranged in a mirror image with respect to the first center line; and each of the touch patterns further includes a second dummy that is insulated from the first touch electrode and the second touch electrode.
  • An electrode, the second dummy electrode is located in an edge area of the touch pattern away from the second center line.
  • the plurality of touch control units are arranged in an array in the first direction and the second direction, and the touch control units adjacent to each other in the first direction are arranged in an array.
  • the second conductive connection portions between the units are connected to form a whole row of touch units, and the first conductive connection portions between adjacent touch units in the second direction are connected , To form a whole row of touch units;
  • the second conductive connecting portions in the entire row of touch units are connected to the chip through at least one lead; the first conductive connecting portions in the entire row of touch units are connected to the chip through at least one lead.
  • the chip is located at one end of the touch panel in the first direction, and one of the touch units in the entire column of touch units is close to the chip
  • the second conductive connection part of the chip is connected to the chip through a lead, and the second conductive connection part of the touch unit that is far away from the chip is connected to the chip through another lead.
  • the first touch electrode and the second touch electrode are both metal electrodes; wherein,
  • the orthographic projection surfaces of the first touch branch, the first conductive connection portion, the second touch branch, and the second conductive connection portion on the substrate are all grid-shaped, and each The grid is configured to correspond to one sub-pixel.
  • the present disclosure also provides a touch display device, which includes a display panel and the touch panel described in any one of the above, the touch panel is located on the display side of the display panel.
  • FIG. 1 shows a schematic diagram of the structure of the touch unit in the first solution in the related art
  • FIG. 2 shows a schematic diagram of the structure of the touch unit of the second solution in the related art
  • FIG. 3 shows a touch effect diagram of the touch track when the touch unit in FIG. 1 or FIG. 2 is applied to an ultra-thin stack structure and the diameter of the copper pillar is 7 mm;
  • FIG. 4 shows a touch effect diagram of the touch track when the touch unit in FIG. 1 or FIG. 2 is applied to an ultra-thin stack structure and the diameter of the copper pillar is 20 mm;
  • Figure 5 shows the backhaul mechanism diagram of the touch unit in the LGM state
  • FIG. 6 shows a schematic diagram of assembling a touch panel and a chip according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram of the touch unit shown in FIG. 6;
  • FIG. 8 shows a schematic diagram of the structure of the touch pattern shown in FIG. 7;
  • Fig. 9 shows a schematic diagram of the cooperation of the structure of part C and the sub-pixels in the touch pattern shown in Fig. 8;
  • FIG. 10 shows a schematic diagram of an enlarged structure of part D shown in FIG. 8;
  • FIG. 11 shows a partial cross-sectional view of the touch panel according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic structural diagram for completing step S1;
  • FIG. 13 shows a schematic structural diagram for completing step S2
  • FIG. 14 shows a schematic structural diagram for completing step S3
  • FIG. 15 shows a schematic structural diagram of a touch display device according to an embodiment of the present disclosure
  • FIG. 16 shows a schematic structural diagram of a touch display device according to another embodiment of the present disclosure.
  • on can mean that one layer is directly formed or disposed on another layer, or can mean a layer A layer is formed indirectly or arranged on another layer, that is, there are other layers between the two layers.
  • first may be used herein to describe various components, components, elements, regions, layers and/or parts, these components, components, elements, regions, and layers And/or part should not be limited by these terms. Rather, these terms are used to distinguish one component, member, element, region, layer, and/or section from another.
  • the term “same layer arrangement” used means that two layers, parts, components, elements or parts can be formed by the same patterning process, and the two layers, parts, components , Components or parts are generally formed of the same material.
  • patterning process generally includes the steps of photoresist coating, exposure, development, etching, and photoresist stripping.
  • one-time patterning process means a process of forming patterned layers, parts, components, etc., using one mask.
  • the first touch electrode 101 and the second touch electrode 102 in the touch unit 10 include a plurality of rectangular touch branches, and the touch branches of the first touch electrode 101 and the second touch electrode 102 are mutually connected. Cross, as shown in Figure 1;
  • the first touch electrodes 201 and the second touch electrodes 202 in the touch unit 20 are diamond-shaped, and the first touch electrodes 201 are sequentially arranged and connected in the row direction, and the second touch electrodes 202 are in the column direction They are arranged and connected in sequence, as shown in FIG. 2, which shows a schematic diagram of the parts of the two first touch electrodes 201 and the parts of the two second touch electrodes 202 being matched with each other.
  • the inventors tested the touch performance of the touch units of the above two solutions they found that in the case of weak grounding, the same touch unit (for example: the touch unit 10 shown in FIG. 1 or the touch unit 10 shown in FIG. 2)
  • the shown touch unit 20) in the ultra-thin stack ie: the thickness of the stack is less than 200 ⁇ m
  • the conventional stack ie: the thickness of the stack is greater than 500 ⁇ m
  • the diameter difference is huge.
  • the thickness of the stacked structure mentioned here refers to the distance between the touch electrode and the copper pillar in the touch unit, and can also be understood as the distance between the touch electrode and the top surface of the cover plate; This top surface is the surface in contact with the finger or the copper pillar.
  • Fig. 3 shows the touch control when the touch unit in Fig. 1 or Fig. 2 is applied to an ultra-thin stack and the diameter of the copper pillar is 7mm
  • the touch effect diagram of the track at this time, the touch sensitivity is good, and the touch effect is good
  • Figure 4 shows the touch track when the copper pillar is 20mm when applied to the ultra-thin stack in Figure 1 or Figure 2 Touch effect diagram.
  • the touch sensitivity is poor, and touch problems such as jump points, ghost points (point A in Figure 4), and disconnection (point B in Figure 4) are prone to occur, namely: The touch effect is poor. Since the width of a human thumb is usually about 20 mm, the touch unit mentioned in the above two solutions is in an ultra-thin stack structure, and in the case of weak grounding, it cannot meet the touch requirements of the thumb under normal conditions.
  • Figure 5 shows the backhaul mechanism of the touch unit in the LGM state.
  • Iac1 is the current branch from the TX (transmit) electrode to the human body through the finger;
  • Iac2 is the touch, the TX electrode and RX (receive) )
  • the increased current branch between the electrodes will increase the capacitance between TX and RX.
  • the increased capacitance is the capacitance between the finger and the TX electrode Cftx and the capacitance between the finger and the RX electrode Cfrx;
  • Iac3 is the TX electrode and the RX electrode
  • the capacitance of this branch is Cm. During touch, the capacitance Cm of this branch will decrease due to the finger touch.
  • Cbody in Figure 5 refers to the body capacitance; OP refers to the operational amplifier.
  • a touch panel 3 which may include a substrate 30 and a touch sensing layer on the substrate 30.
  • the substrate 30 can be a single-layer or multi-layer structure; and the substrate 30 can be made of transparent inorganic materials or organic materials.
  • the touch sensing layer can be a multilayer structure, which can include a conductive pattern layer and an insulating layer.
  • the conductive pattern layer can be made of metal materials to ensure its conductive effect; the insulating layer can be made of transparent inorganic materials or organic materials Become.
  • the touch sensing layer may include a plurality of touch units 31, and each touch unit 31 may include at least one touch pattern 31a, and the touch pattern 31a includes mutually insulated second A touch electrode 310 and a second touch electrode 311; wherein, the first touch electrode 310 and the second touch electrode 311 can be located on the same conductive pattern layer, in order to realize the first touch electrode 310 and the second touch electrode 311
  • the first touch electrode 310 and the second touch electrode 311 need to be spaced apart from each other.
  • the first touch electrode 310 may be a receiving (RX) electrode and a transmitting (TX) electrode.
  • the second touch electrode 311 can be the other of the (RX) electrode and the transmit (TX) electrode.
  • the first touch electrode 310 of each touch pattern 31a has at least one first touch group 3101.
  • the first touch group 3101 includes a plurality of first touch branches 31011 and a plurality of first touch branches 31011.
  • One end of a touch branch 31011 is connected to the first conductive connection portion 31012; and the second touch electrode 311 has at least one second touch group 3111, and the second touch group 3111 includes a plurality of second touch branches 31111 And the second conductive connection portion 31112 connected to one end of the plurality of second touch branches 31111.
  • first conductive connection portion 31012 in the first touch group 3101 is located in the plurality of first touch branches 31011 away from the first One side of the two conductive connecting portions 31112 is arranged at an interval from the end of each second touch branch 31111; the second conductive connecting portion 31112 in the second touch group 3111 is located in the plurality of second touch branches 31111 away from the first conductive One side of the connecting portion 31012 is spaced apart from the end of each first touch branch 31011; wherein, the second touch branch 31111 of the second touch group 3111 in each touch pattern 31a and the first touch
  • the first touch branches 31011 of the group 3101 are alternately arranged and spaced apart in the first direction X, that is, the first touch electrodes 310 and the second touch electrodes 311 are arranged to cross each other.
  • the surface of the first touch branch 31011 opposite to the second touch branch 31111 is a wavy surface; and/or the surface of the second touch branch 31111 and the first touch branch 31111
  • the opposite surface of the touch branch 31011 is a wavy surface; this can increase the length of the channel formed between the first touch branch 31011 and the second touch branch 31111, thereby increasing the first touch branch 31011 and the second touch branch 31111
  • the fringe field between the branches 31111 can then increase the basic mutual capacitance value in the touch panel 3 and the mutual capacitance change between the TX electrode and the RX electrode when a touch occurs, so that the touch panel 3 has good sensitivity and reliability.
  • Noise ratio and floating performance (LGM) namely: improve the touch sensitivity and improve the touch performance in the LGM state.
  • the surface of the first touch branch 31011 opposite to the second touch branch 31111 a wavy surface; and/or the surface of the second touch branch 31111 opposite to the first touch branch 31011 is a wavy surface,
  • the touch unit 31 is applied to a display product, compared with the touch unit 10 of the first solution in the related art, the problem of uneven light reflection caused by uneven cutting density can be improved, and the display effect can be improved.
  • the first touch electrode 310 and the second touch electrode 311 are both metal electrodes, that is, they can be made of metal materials, such as copper, silver, etc., to improve the first touch electrode 310 and the second touch electrode.
  • the conductive effect of the two touch electrodes 311; wherein, the orthographic projection surfaces of the first touch branch 31011, the first conductive connection portion 31012, the second touch branch 31111, and the second conductive connection portion 31112 on the substrate 30 may all be Mesh-like, that is, the first touch branch 31011, the first conductive connection portion 31012, the second touch branch 31111, and the second conductive connection portion 31112 may have a metal mesh structure.
  • first touch electrode 310 and the second touch electrode 311 are metal grid structures; wherein, each grid is configured to correspond to a sub-pixel 4, as shown in FIG. 9, that is, the orthographic projection of each sub-pixel 4 on the substrate 30
  • the surface is located in a metal grid, wherein the colors of the sub-pixels 4 corresponding to different metal grids can be the same or different.
  • the metal mesh can be rectangular, rhombic, but not limited to this, and can also be triangular, pentagonal, hexagonal, and so on.
  • the first touch branch 31011 of the first touch electrode 310 in the touch pattern 31a has wavy surfaces on opposite sides in the first direction X to further increase the touch panel.
  • the second touch branch 31111 of the second touch electrode 311 in the touch pattern 31a has wavy surfaces on opposite sides in the first direction X to further increase the touch panel.
  • the first touch branch 31011 of the first touch electrode 310 in the touch pattern 31a has wavy surfaces on the opposite sides in the first direction X; and in the touch pattern 31a
  • the opposite sides of the second touch branch 31111 of the second touch electrode 311 in the first direction X are wavy surfaces to further increase the basic mutual capacitance value in the touch panel and the relationship between the TX electrode and the RX electrode when a touch occurs. The amount of mutual capacitance change between.
  • the wave surface is formed by splicing a plurality of teeth arranged in the second direction Y.
  • the second direction Y intersects the first direction X.
  • the second direction Y It is perpendicular to the first direction X.
  • teeth of the adjacent first touch branch 31011 and the second touch branch 31111 may also be designed to be in a non-fitting state, depending on the specific situation.
  • the size and shape of the teeth 31011 of the first touch branch and the size and shape of the teeth of the second touch branch 31111 may be the same.
  • the teeth on opposite sides of the first touch branch 31011 in the first direction X can be arranged in a staggered manner, so that the design can make the width of the first touch branch 31011 (the width refers to Is the size in the first direction X) is substantially the same, so that the uniformity of the performance of the first touch branch 31011 can be ensured.
  • the second touch branch 31111 can be arranged in a staggered manner with respect to the teeth on both sides in the first direction X.
  • the first touch branch 31011 and the second touch branch 31111 may also be symmetrically arranged relative to the teeth on the two sides in the first direction X, depending on the specific situation.
  • the distance between the adjacent first touch branch 31011 and the second touch branch 31111 in the first direction X may be 1 ⁇ m to 10 ⁇ m, such as 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, etc., but It is not limited to this, and may be larger than 10 ⁇ m, depending on the specific circumstances.
  • the distance between the adjacent first touch branch 31011 and the second touch branch 31111 in the first direction X may be 5 ⁇ m, so as to increase the basic mutual capacitance value and occurrence in the touch panel 3 The change in mutual capacitance between the TX electrode and the RX electrode during touch reduces the processing difficulty.
  • the distance between the adjacent first touch branch 31011 and the second touch branch 31111 in the first direction X is not limited to the above-mentioned value, and may also be other values, depending on the specific situation.
  • the dimensions of the channels formed between the first touch branch 31011 and the second touch branch 31111 in the first direction X can be equal, so that the uniformity of the fringe electric field can be ensured. Ensure touch sensitivity and touch accuracy everywhere.
  • the teeth of the wavy surface may be triangular, arc-shaped or trapezoidal, but it is not limited to this, and may also have other shapes.
  • the angle ⁇ between the side surface of the tooth part and the plane where the first direction X is located is 5° to 95°, such as: 5°, 30°, 45° , 60°, 95°, etc.; optionally, the angle ⁇ between the side surface of the tooth and the plane where the first direction X is located can be 45°, so the design adds the first touch branch 31011 and the second touch branch 31111
  • the length of the channel in between can also balance the widths of the first touch branch 31011 and the second touch branch 31111 to avoid the situation where the width is too large and affects the touch performance.
  • the first touch group 3101 in the first touch electrode 310 of each touch pattern 31a may be provided with multiple groups, and they may be arranged sequentially in the first direction X, and The first conductive connecting portions 31012 of the adjacent first touch groups 3101 are connected; and the second touch electrodes 311 of each touch pattern 31a are provided with multiple groups of the second touch groups 3111, and are arranged in the first direction X And the first conductive connecting portions 31012 of the adjacent second touch groups 3111 are connected; wherein, the second touch branches 31111 close to each other between the adjacent second touch groups 3111 are located in the adjacent first One end of the second touch branch 31111 close to the first conductive connection portion 31012 between the touch groups 3101 and between the adjacent second touch groups 3111 is connected by the third conductive connection portion 3112 to form a closed loop
  • the second touch electrode 311 is connected in a ring shape between the adjacent second touch groups 3111.
  • This design can reduce the channel impedance of the second touch electrode 311; it should be understood that this third conductive connection
  • the portion 3112 may belong to a part of the second touch electrode 311, and the third conductive connection portion 3112 may have a metal mesh structure, and each metal mesh corresponds to a sub-pixel.
  • the two surfaces of the first conductive connection portion 31012, the second conductive connection portion 31112, and the third conductive connection portion 3112 in the second direction Y may be flat surfaces or the aforementioned wavy surfaces, depending on the specific situation. Depends.
  • the first touch electrode 310 of each touch pattern 31a may include two first touch groups 3101; the second touch electrode of each touch pattern 31a 311 may include two second touch groups 3111, and each second touch group 3111 may cross a first touch group 3101 to form a touch electrode group; but not limited to this, each touch electrode More touch groups can also be provided, and the second touch group 3111 and the first touch group 3101 are not limited to a one-to-one format, and can also be one-to-many, depending on the specific situation.
  • first touch branches 31011 in each first touch group 3101 may be the same or different, depending on the specific situation.
  • second touch branches 31111 in each second touch group 3111 may be the same or different, depending on the specific situation.
  • the closed annular space of each touch pattern 31a may be provided with a first dummy electrode 312 insulated from the second touch electrode 311.
  • the first dummy electrode There are gaps between 312 and the second touch branch 31111, the second conductive connection portion 31112, and the third conductive connection portion 3112 to achieve mutual insulation between the first dummy electrode 312 and the second touch electrode 311.
  • the first dummy electrode 312 refers to an electrode that is not driven and is not used for sensing, such as a TX electrode, and is not used for sensing; the first dummy electrode 312 can be grounded, Floating (not connected to a specific voltage potential) or a combination of the two.
  • the optical characteristics of the touch panel 3 can be controlled by arranging the first dummy electrode 312; and by arranging the first dummy electrode 312 in the closed annular space of the touch pattern 31a, the first dummy electrode 312
  • the dummy electrodes 312 and the first touch group 3101/the second touch group 3111 are scattered and arranged at intervals, thereby improving the linearity and accuracy of touch performance.
  • the first dummy electrode 312 may be a metal mesh structure, and each metal mesh corresponds to a sub-pixel 4.
  • the first dummy electrode 312 can be arranged in the same layer as the first touch electrode 310 and the second touch electrode 311.
  • the touch unit 31 has a first center line Q1 extending in the first direction X and a second center line Q2 extending in the second direction Y.
  • the second direction Y and the first direction X are perpendicular to each other, and touch The control unit 31 is arranged in a mirror image with respect to the first center line Q1 and/or the second center line Q2. That is to say, the touch patterns 31a in each touch unit 31 can be arranged according to a certain rule, so that the final touch The unit 31 may be arranged in a mirror image with respect to the first center line Q1 and/or the second center line Q2.
  • four touch patterns 31a in the touch unit 31 may be provided, and the four touch patterns 31a are arranged in an array in the first direction X and the second direction Y.
  • the touch unit 31 is arranged in a mirror image with respect to the first center line. Specifically, adjacent touch patterns 31a in the first direction X can share the first touch branch 31011 located at the edge, and the first touch patterns 31a adjacent in the second direction Y can be located at the edge.
  • Branch 31011 is directly connected; adjacent touch patterns 31a in the second direction Y share the second conductive connection portion 31112, and the second conductive connection portion 31112 between adjacent touch patterns 31a in the first direction X passes through
  • the conductive bridge 314 is connected, that is, the adjacent second touch electrodes 311 are connected through the conductive bridge 314; the conductive bridge 314 and the first touch electrode 310 are insulated from each other.
  • Step S1 a first conductive pattern layer may be formed on the substrate 30 first, as shown in FIG. 12, the first conductive pattern layer includes conductive
  • the process flow that can be used includes cleaning and coating, exposure, development, etching, peeling, and cleaning
  • step S2 then a first insulating layer 315 is formed on the first conductive pattern layer, as shown in FIG. 13, which can be used The process flow of glue application, exposure, and development; step S3, after the first insulating layer 315 is made, a second conductive pattern layer is made, as shown in FIG.
  • the second conductive pattern layer may include the first touch electrode 310,
  • the second touch electrode 311 can be sputtered, cleaned, glued, exposed, developed, etched, stripped, and cleaned. Among them, the second touch pattern 31a between adjacent touch patterns 31a in the first direction X
  • the conductive connecting portions 31112 can be respectively connected to the conductive bridge 314 through a via hole on the first insulating layer 315; step S4, finally, a second insulating layer 316 is formed on the top, as shown in FIGS. 7 and 11.
  • each touch pattern 31a in the aforementioned touch unit 31 further includes a second dummy electrode 313 insulated from the first touch electrode 310 and the second touch electrode 311, namely: A touch electrode 310 and a second touch electrode 311 are arranged at intervals to achieve mutual insulation; the second dummy electrode 313 can be arranged in the same layer as the first dummy electrode 312.
  • the second dummy electrode 313 is located in the edge area of the touch pattern 31 a far away from the second center line Q2.
  • the second dummy electrode 313 refers to an electrode that is not driven and is not used for sensing, such as a TX electrode, and is not used for sensing; this second dummy electrode 313 can be grounded, Floating (not connected to a specific voltage potential) or a combination of the two.
  • the optical characteristics of the touch panel 3 can be controlled by arranging the second dummy electrode 313; the first touch electrode 310/the second touch electrode 311 in adjacent touch units 31 can be dispersed at intervals. Layout, which can improve the linearity and accuracy of touch performance.
  • the number of touch patterns 31a in the touch unit 31 is not limited to four, and one, two, six, eight, etc. can also be provided, depending on the specific situation.
  • the number of touch patterns 31a in the touch unit 31 The touch pattern 31a is not limited to the form described in the above embodiment, and may also be in other forms, as long as it can ensure that the touch panel 3 can increase the touch sensitivity and improve the touch performance in the LGM state under the ultra-thin stack structure. Can.
  • the size of the first touch branch 31011 of the first touch electrode 310 and the second touch branch 31111 of the second touch electrode 311 in the second direction Y in the touch pattern 31a may be 1/40 to 1/2 of the size of the touch unit 31 in the second direction Y; the first touch branch 31011 of the first touch electrode 310 and the second touch of the second touch electrode 311 in the touch pattern 31a
  • the size of the control branch 31111 in the first direction X may be 1/100 to 1/4 of the size of the touch unit 31 in the first direction X.
  • a plurality of touch units 31 are arranged in an array in a first direction X and a second direction Y, and the first direction between adjacent touch units 31 in the first direction X
  • the two conductive connection parts 31112 are connected to form a whole row of touch units
  • the first conductive connection parts 31012 between adjacent touch units 31 in the second direction Y are connected to form a whole row of touch units. Unit, this can appropriately reduce the number of channels.
  • the second conductive connecting portions 31112 in a whole row of touch units are connected to the chip 5 through at least one lead 6; the first conductive connecting portions 31012 in a whole row of touch units are connected with at least one lead 6 Connect with chip 5.
  • the chip 5 is located at one end of the touch panel 3 in the first direction X, and a second conductive connection portion 31112 of a touch unit 31 close to the chip 5 in a whole row of touch units passes through
  • the lead 6 is connected to the chip 5, and the second conductive connection portion 31112 of a touch unit 31 far away from the chip 5 is connected to the chip 5 through another lead 6.
  • This design can avoid excessive signal attenuation of the touch unit 31 far away from the chip 5 Therefore, the touch sensitivity and accuracy of the touch panel 3 can be improved.
  • the following describes the touch performance of the touch unit in a specific embodiment of the present disclosure and the touch unit in the related technology when applied to an ultra-thin stack structure and in an LGM state in conjunction with a chart.
  • Table 1 shows the simulation results of the touch unit 31 (shown in FIG. 7) in an embodiment of the present disclosure and the touch unit 10 of the related technical solution 1 (shown in FIG. 1).
  • the overall size of the touch unit 31 (as shown in FIG. 7) in the embodiment of the present disclosure in Table 1 and the touch unit 10 of the related technical solution 1 (as shown in FIG. 1) is 4.2 mm. ⁇ 4.2mm, and the line width of the metal grid is 3 ⁇ m.
  • the change in mutual capacitance between TX electrode and RX electrode during control is ⁇ Cm is 0.118pF; the ratio between ⁇ Cm and Cm is 12.40%; the resistance of TX electrode Rtx is 49.2ohm; the resistance of RX electrode Rrx is 43.4ohm;
  • the touch unit 10 of the related technical solution 1 is applied to a stack of 177 ⁇ m in thickness and in the LGM state, the basic mutual capacitance Cm between the TX electrode and the RX electrode is 0.757pF, and the TX electrode and the RX electrode are touched
  • the mutual capacitance change between ⁇ Cm is 0.061pF; the ratio between ⁇ Cm and Cm is 8.10%; the resistance Rtx of TX is 43.8 ohm; the resistance Rrx of RX is 43.1 ohm; the comparison shows that the embodiment of the present disclosure Compared with the touch unit 10 of the related technical solution 1, Cm increased by 25.8%, ⁇ Cm increased by 93.4%,
  • Table 2 shows the simulation results of the touch unit 31 (shown in FIG. 7) in the embodiment of the present disclosure and the touch unit 20 of the related technical solution 2 (shown in FIG. 2).
  • the overall size of the touch unit 31 (as shown in FIG. 7) in the embodiment of the present disclosure in Table 2 and the touch unit 20 of the related technical solution 2 (as shown in FIG. 2) is 4.2 mm. ⁇ 4.2mm, and the line width of the metal grid is 3 ⁇ m.
  • the change in mutual capacitance between TX electrode and RX electrode during control is ⁇ Cm is 0.118pF; the ratio between ⁇ Cm and Cm is 12.40%; the resistance of TX electrode Rtx is 49.2ohm; the resistance of RX electrode Rrx is 43.4ohm; The capacitance Cftx between the TX electrode and the finger is 0.601pF, and the capacitance Cfrx between the RX electrode and the finger is 0.386pF; when the touch unit 20 of the related technical solution 2 is applied to a 170 ⁇ m-thick stack structure and in the LGM state ,
  • the basic mutual capacitance value Cm between TX electrode and RX electrode is 0.511pF, when touch occurs, the mutual capacitance change between TX electrode and RX electrode is ⁇ Cm is 0.085pF; the ratio between ⁇ Cm and Cm is 16.6%
  • the resistance Rtx of the TX electrode is 37ohm; the resistance Rrx of the RX electrode is
  • Touch unit 20 Cm increased by 86.5%, ⁇ Cm increased by 38.8%.
  • ⁇ Cm/Cm is lower than the related technical solution 2
  • the Cfrx in the solution of the embodiment of the present disclosure is much smaller than the Cfrx in the related technical solution 2, so it can be seen
  • the touch unit 31 of the embodiment of the present disclosure greatly increases the mutual capacitance variation ( ⁇ Cm) and the basic mutual capacitance value (Cm) during touch, and improves the touch performance in the LGM state.
  • the embodiment of the present disclosure also provides a touch display device, as shown in FIG. 15, which includes a display panel 7 and the touch panel 3 described in any of the above embodiments, the touch panel 3 is located on the display panel 7 Display side.
  • the display panel 7 may be an OLED (Organic Light-Emitting Diode) display.
  • the display panel 7 may include a substrate 70 formed on The organic light-emitting function layer 71 on the substrate 70 and the packaging film 72 covering the organic light-emitting function layer 71.
  • the substrate 70 may have a multilayer or single-layer structure, and may use one of inorganic insulating materials and organic insulating materials.
  • the organic light-emitting functional layer 71 may include a driving transistor and an organic light-emitting device connected to the driving transistor, etc.; the packaging film 72 may be a single-layer or multi-layer structure, and when the packaging film 72 is a multi-layer structure, An inorganic insulating layer and an organic insulating layer are alternately formed. However, it is not limited to this, and the display panel 7 may also be a liquid crystal display.
  • the touch panel 3 can be formed on the packaging film 72; the specific formation process of the touch panel 3 can refer to the manufacturing process of the touch unit 31 mentioned above. I will not repeat them here.
  • the display device may further include a cover plate 8, which is located on the side of the touch panel 3 away from the display panel 7, wherein the touch sensing layer of the touch panel 3 faces the cover plate 8.
  • the distance h between one side and the side of the cover 8 away from the touch sensing layer can be less than 200 ⁇ m; that is, the touch panel 3 can be used in an ultra-thin stack structure, so that the design can ensure touch performance while ensuring , Which can make the display device have a certain degree of flexibility, and facilitate its bending and curling; but not limited to this, the touch panel 3 can be applied to a thicker stack, that is, the touch sensing layer in the touch panel 3 faces
  • the distance h between one side of the cover plate 8 and the side of the cover plate 8 away from the touch sensing layer can also be greater than or equal to 200 ⁇ m, for example: 500 ⁇ m or more, that is to say, the touch panel 3 can be applied to any display
  • the device has a good scope of application.
  • the specific type of the display device is not particularly limited.
  • the types of display devices commonly used in the field can be used, such as mobile devices such as displays, mobile phones, and laptop computers, wearable devices such as watches, bracelets, etc.
  • mobile devices such as displays, mobile phones, and laptop computers
  • wearable devices such as watches, bracelets, etc.
  • Those skilled in the art can select VR devices and so on according to the specific purpose of the display device, which will not be repeated here.
  • the display device also includes other necessary components and components. Taking the display as an example, it may also include a main circuit board (ie, a main board) and a housing. , Power cord, etc., those skilled in the art can make corresponding supplements according to the specific use requirements of the display device, which will not be repeated here.
  • a main circuit board ie, a main board
  • a housing ie, Power cord, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板和触控显示装置。触控面板包括具有多个触控单元(31)的触控感应层,每个触控单元(31)包括至少一触控图案(31a),触控图案(31a)包括相互绝缘的第一触控电极(310)和第二触控电极(311);第一触控电极(310)具有至少一组第一触控组(3101),第一触控组(3101)包括多条第一触控分支(31011)及与多条第一触控分支(31011)的一端连接的第一导电连接部(31012);第二触控电极(311)具有至少一组第二触控组(3111),第二触控组(3111)包括多条第二触控分支(31111)及与多条第二触控分支(31111)的一端连接的第二导电连接部(31112),第二触控分支(31111)与第一触控分支(31011)在第一方向上交替排布且相互间隔;其中,第一触控分支(31011)中与第二触控分支(31111)相对的面为波浪面;和/或第二触控分支(31111)中与第一触控分支(31011)相对的面为波浪面。所述触控面板具有良好触控灵敏度。

Description

触控面板和触控显示装置
交叉引用
本公开要求于2020年05月22日提交的申请号为202010441849.8名称为“触控面板和触控显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及触控技术领域,尤其涉及一种触控面板和触控显示装置。
背景技术
目前,显示产品向着轻薄化方向发展,但随着显示产品厚度变薄,互容式触控面板的LGM(Low Ground Mass,弱接地)问题逐渐凸显,尤其是当整机处于弱接地状态、发生大面积触控和多点同轴触控时,由于Rtransmission(回传)效应,互容变化量较小,触控芯片基本无法检测到互容变化量,因此,容易出现灵敏度低、精度差、跳点、鬼点等触控问题。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种具有良好触控灵敏度的触控面板和触控显示装置。
本公开提供了一种触控面板,其包括衬底及位于所述衬底上的触控感应层,所述触控感应层包括多个触控单元,每个所述触控单元包括至少一触控图案,所述触控图案包括相互绝缘的第一触控电极和第二触控电极;
所述第一触控电极具有至少一组第一触控组,所述第一触控组包括多条第一触控分支及与所述多条第一触控分支的一端连接的第一导电连接部;
所述第二触控电极具有至少一组第二触控组,所述第二触控组包括多条第二触控分支及与所述多条第二触控分支的一端连接的第二导电连接部,所述第二触控分支与所述第一触控分支在第一方向上交替排布且相互间隔;
其中,所述第一触控分支中与所述第二触控分支相对的面为波浪面;和/或所述第二触控分支中与所述第一触控分支相对的面为波浪面。
在本公开的一种示例性实施例中,所述第一触控分支在所述第一方向上的相对两面均为波浪面;所述第二触控分支在所述第一方向上的相对两面均为波浪面。
在本公开的一种示例性实施例中,所述波浪面由多个在第二方向上排列的齿部拼接而成,所述第二方向与所述第一方向相交;其中,
相邻所述第一触控分支和所述第二触控分支的齿部之间相互嵌合。
在本公开的一种示例性实施例中,所述第一触控分支的齿部的大小、形状和所述第二触控分支的齿部的大小、形状相同;
且相邻所述第一触控分支和所述第二触控分支之间形成的通道中各处在所述第一方向上的尺寸相等。
在本公开的一种示例性实施例中,所述第一触控分支在所述第一方向上相对两面的齿部错位设置;
所述第二触控分支在所述第一方向上相对两面的齿部错位设置。
在本公开的一种示例性实施例中,所述齿部为三角形、弧形或梯形。
在本公开的一种示例性实施例中,在所述齿部为三角形时,所述齿部的侧面与所述第一方向所在平面的夹角为5°至95°。
在本公开的一种示例性实施例中,每一所述触控图案的所述第一触控电极中所述第一触控组设置有多组,并在所述第一方向上依次排布,且相邻所述第一触控组的第一导电连接部相连接;
每一所述触控图案的所述第二触控电极中所述第二触控组设置有多组,并在所述第一方向上依次排布,且相邻所述第二触控组的第一导电连接部相连接;
其中,相邻所述第二触控组之间靠近彼此的第二触控分支位于相邻所述第一触控组之间,且相邻所述第二触控组之间靠近彼此的第二触控分支中靠近所述第一导电连接部的一端通过第三导电连接部连接,以形成封闭环状空间。
在本公开的一种示例性实施例中,所述封闭环状空间内设置有与所述第二触控电极相互绝缘的第一虚设电极。
在本公开的一种示例性实施例中,所述触控单元具有在所述第一方向上延伸的第一中心线和在第二方向上延伸的第二中心线,所述第二方向与所述第一方向相互垂直;
其中,所述触控单元中所述触控图案设置有多个,且所述触控单元关于所述第一中心线和/或所述第二中心线呈镜像设置。
在本公开的一种示例性实施例中,所述触控单元中所述触控图案设置有四个,四个所述触控图案在所述第一方向上和所述第二方向上阵列排布;在所述第一方向上相邻的触控图案共用位于边缘的所述第一触控分支,且在所述第二方向上相邻的触控图案中位于边缘的所述第一触控分支直接相连;在所述第二方向上相邻的触控图案共用所述第二导电连接部,且在所述第一方向上相邻的触控图案之间的第二导电连接部通过导电桥连接,所述导电桥与所述第一触控电极相互绝缘;
其中,所述触控单元关于所述第一中心线呈镜像设置;且每一所述触控图案还包括与所述第一触控电极和所述第二触控电极相互绝缘的第 二虚设电极,所述第二虚设电极位于所述触控图案中远离所述第二中心线的边缘区。
在本公开的一种示例性实施例中,所述多个触控单元在所述第一方向和所述第二方向上阵列排布,在所述第一方向上相邻的所述触控单元之间的所述第二导电连接部相连接,以形成为一整列触控单元,在所述第二方向上相邻的所述触控单元之间的所述第一导电连接部相连接,以形成为一整行触控单元;
其中,所述一整列触控单元中的第二导电连接部至少通过一条引线与芯片连接;所述一整行触控单元中的第一导电连接部至少通过一条引线与芯片连接。
在本公开的一种示例性实施例中,所述芯片位于所述触控面板在所述第一方向上的一端,所述一整列触控单元中靠近所述芯片的一所述触控单元的第二导电连接部通过一条引线与所述芯片连接,远离所述芯片的一所述触控单元的第二导电连接部通过另一条引线与所述芯片连接。
在本公开的一种示例性实施例中,所述第一触控电极和所述第二触控电极均为金属电极;其中,
所述第一触控分支、所述第一导电连接部、所述第二触控分支、所述第二导电连接部在所述衬底上的正投影面均为网格状,且每个网格被配置为与一子像素对应。
本公开还提供了一种触控显示装置,其包括显示面板及上述任一项所述的触控面板,所述触控面板位于所述显示面板的显示侧。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了相关技术中方案一的触控单元的结构示意图;
图2示出了相关技术中方案二的触控单元的结构示意图;
图3示出了图1或图2中的触控单元在应用于超薄叠构时且铜柱直径为7mm时触控轨迹的触控效果图;
图4示出了图1或图2中的触控单元在应用于超薄叠构时且铜柱直径为20mm时触控轨迹的触控效果图;
图5示出了触控单元在LGM状态下的回传机理图;
图6示出了本公开一实施例所述的触控面板与芯片的组装示意图;
图7示出了图6中所示的触控单元的结构示意图;
图8示出了图7中所示的触控图案的结构示意图;
图9示出了图8中所示的触控图案中C部结构与子像素相配合的示 意图;
图10示出了图8中所示的D部的放大结构示意图;
图11示出了本公开一实施例所述的触控面板的局部剖视图;
图12示出了完成步骤S1的结构示意图;
图13示出了完成步骤S2的结构示意图;
图14示出了完成步骤S3的结构示意图;
图15示出了本公开一实施例所述的触控显示装置的结构示意图;
图16示出了本公开另一实施例所述的触控显示装置的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
需要说明的是,本文中所述的“在……上”、“在……上形成”和“设置在……上”可以表示一层直接形成或设置在另一层上,也可以表示一层间接形成或设置在另一层上,即两层之间还存在其它的层。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。
在本公开中,除非另有说明,所采用的术语“同层设置”指的是两个层、部件、构件、元件或部分可以通过同一构图工艺形成,并且,这两个层、部件、构件、元件或部分一般由相同的材料形成。
在本公开中,除非另有说明,表述“构图工艺”一般包括光刻胶的涂布、曝光、显影、刻蚀、光刻胶的剥离等步骤。表述“一次构图工艺”意指使用一块掩模板形成图案化的层、部件、构件等的工艺。
相关技术中,发明人设计了两种触控单元:
方案一:触控单元10中的第一触控电极101和第二触控电极102 包括多条矩形状触控分支,且第一触控电极101和第二触控电极102的触控分支相互交叉,如图1所示;
方案二:触控单元20中的第一触控电极201和第二触控电极202为菱形,且第一触控电极201在行向上依次排列并连接,第二触控电极202在列方向上依次排列并连接,如图2所示,图2中示出两个第一触控电极201的局部与两个第二触控电极202的局部相互配的示意图。
具体地,发明人在对上述两种方案的触控单元的触控性能进行检测时发现,在弱接地情况下,同一触控单元(例如:图1所示的触控单元10或图2所示的触控单元20)在超薄叠构(即:叠构的厚度小于200μm)下可支持的最大铜柱直径与常规叠构(即:叠构的厚度大于500μm)的可支持最大铜柱直径差异巨大。需要说明的是,此处提到的叠构的厚度指的是触控单元中触控电极与铜柱之间的距离,也可理解为触控电极与盖板的顶表面之间的距离;此顶表面为与手指或铜柱接触的面。
其中,图1或图2中所示的触控单元在应用于超薄叠构中时,不能满足大直径铜柱的触控需求,在LGM状态时,随着铜柱尺寸变大,回传电容增加,触控性能下降;具体如图3和图4所示,图3示出了图1或图2中的触控单元在应用于超薄叠构时且铜柱直径为7mm时触控轨迹的触控效果图,此时,触控灵敏度好,且触控效果良好;图4示出了图1或图2中在应用于超薄叠构时且铜柱为20mm时触控轨迹的触控效果图,此时,触控灵敏度差,且容易出现触控出现跳点、鬼点(如图4中A处)、断线(如图4中B处)等触控问题,即:触控效果差。由于人的大拇指的宽度通常在20mm左右,因此,上述两种方案提到的触控单元在超薄叠构中,且在弱接地情况下,不能满足正常情况大拇指的触控需求。
其中,图5示出了触控单元在LGM状态下的回传机理,图5中Iac1为TX(发送)电极经手指至人体的电流支路;Iac2为触控时,TX电极与RX(接收)电极之间增加的电流支路,会增加TX与RX之间电容,增加的电容为手指与TX电极之间的电容Cftx和手指与RX电极之间的电容Cfrx;Iac3为TX电极与RX电极中AC电流支路,此支路的电容为Cm,触控时,该支路的电容Cm会因为手指触摸而减小,当发生大面积触控时,手指与TX电极之间的电容Cftx和手指与RX电极之间的电容Cfrx会变大,这样使得Iac2增加量大于Iac3减小量,导致触控系统整体的互容变化量ΔCm降低甚至为零,芯片(IC)很难检测到触控点互容变化量,导致触控精度变差。
此外,还需说明的是,图5中的Cbody指的是人体电容;OP指的是运算放大器。
为了解决上述问题,如图6和图11所示,发明人又设计了一种触控面板3,该触控面板3可包括衬底30及位于衬底30上的触控感应层。此衬底30可为单层或多层结构;且该衬底30可采用透明无机材料或有 机材料制作而成。此触控感应层可为多层结构,其可包括导电图案层和绝缘层,此导电图案层可采用金属材料制作而成,以保证其导电效果;绝缘层可采用透明无机材料或有机材料制作而成。
详细说明,如图6至图8所示,触控感应层可包括多个触控单元31,每个触控单元31可包括至少一触控图案31a,该触控图案31a包括相互绝缘的第一触控电极310和第二触控电极311;其中,第一触控电极310和第二触控电极311可位于同一导电图案层,为了实现第一触控电极310和第二触控电极311相互绝缘,此第一触控电极310和第二触控电极311的各部位需间隔设置;应当理解的是,此第一触控电极310可为接收(RX)电极和发送(TX)电极中的一种;第二触控电极311可为(RX)电极和发送(TX)电极中的另一种。
如图8所示,每个触控图案31a的第一触控电极310具有至少一组第一触控组3101,第一触控组3101包括多条第一触控分支31011及与多条第一触控分支31011的一端连接的第一导电连接部31012;而第二触控电极311具有至少一组第二触控组3111,该第二触控组3111包括多条第二触控分支31111及与多条第二触控分支31111的一端连接的第二导电连接部31112,应当理解的是,第一触控组3101中第一导电连接部31012位于多条第一触控分支31011远离第二导电连接部31112的一侧并与各第二触控分支31111的端部呈间隔设置;第二触控组3111中第二导电连接部31112位于多条第二触控分支31111远离第一导电连接部31012的一侧并与各第一触控分支31011的端部呈间隔设置;其中,每个触控图案31a中的第二触控组3111的第二触控分支31111与第一触控组3101的第一触控分支31011在第一方向X上交替排布且相互间隔,也就是说,第一触控电极310与第二触控电极311之间呈相互交叉设置。
此外,如图8所示,在本公开的实施例中,第一触控分支31011中与第二触控分支31111相对的面为波浪面;和/或第二触控分支31111中与第一触控分支31011相对的面为波浪面;这样可增加第一触控分支31011和第二触控分支31111之间形成的通道的长度,从而可增大第一触控分支31011和第二触控分支31111之间的边缘场,继而可增加触控面板3中的基础互容值和发生触控时TX电极和RX电极之间的互容变化量,使得触控面板3具有良好的灵敏度、信噪比和浮地性能(LGM),即:提高触控灵敏度及改善LGM状态下的触控性能。
此外,通过将第一触控分支31011中与第二触控分支31111相对的面为波浪面;和/或第二触控分支31111中与第一触控分支31011相对的面为波浪面,在将此触控单元31应用于显示产品中时,相比于相关技术中方案一的触控单元10,可改善由于切割密度不均而导致光的反射不均的问题,从而可改善显示效果。
举例而言,第一触控电极310和第二触控电极311均为金属电极, 即:可采用金属材料制作而成,例如:铜、银等材料,以提高第一触控电极310和第二触控电极311的导电效果;其中,第一触控分支31011、第一导电连接部31012、第二触控分支31111、第二导电连接部31112在衬底30上的正投影面可均为网格状,也就是说,第一触控分支31011、第一导电连接部31012、第二触控分支31111、第二导电连接部31112可为金属网格结构,进一步地,第一触控电极310和第二触控电极311为金属网格结构;其中,每个网格被配置为与一子像素4对应,如图9所示,即:每个子像素4在衬底30上的正投影面对应位于一金属网格内,其中,不同金属网格对应的子像素4的颜色可相同或不同。此外,该金属网格可为矩形、菱形,但不限于此,也可为三角形、五边形、六边形等等。
在一些实施例中,如图8所示,触控图案31a中第一触控电极310的第一触控分支31011在第一方向X上的相对两面均为波浪面,以进一步增加触控面板3中的基础互容值和发生触控时TX电极和RX电极之间的互容变化量。
在一些实施例中,如图8所示,触控图案31a中第二触控电极311的第二触控分支31111在第一方向X上的相对两面均为波浪面,以进一步增加触控面板3中的基础互容值和发生触控时TX电极和RX电极之间的互容变化量。
在一些实施例中,如图8所示,触控图案31a中第一触控电极310的第一触控分支31011在第一方向X上的相对两面均为波浪面;且触控图案31a中第二触控电极311的第二触控分支31111在第一方向X上的相对两面均为波浪面,以进一步增加触控面板中的基础互容值和发生触控时TX电极和RX电极之间的互容变化量。
应当理解的是,波浪面由多个在第二方向Y上排列的齿部拼接而成,如图8所示,此第二方向Y与第一方向X相交,可选地,第二方向Y与第一方向X相互垂直。
其中,如图8所示,在第一触控分支31011、第二触控分支31111在第一方向X上的相对两面均为波浪面时,可使相邻第一触控分支31011和第二触控分支31111的齿部之间相互嵌合,这样设计可使第一触控电极310和第二触控电极311之间排列的更加紧密,从而可增加单位面积内第一触控电极310和第二触控电极311的数量,继而可提高触控面板3的触控精准度和灵敏度。
应当理解的是,相邻第一触控分支31011和第二触控分支31111的齿部之间也可设计为呈非嵌合状态,视具体情况而定。
可选地,第一触控分支的齿部31011的大小、形状和第二触控分支31111的齿部的大小、形状可相同。
可选地,如图8所示,第一触控分支31011在第一方向X上相对两面的齿部可错位设置,这样设计可使得第一触控分支31011各处的宽度 (此宽度指的是在第一方向X上的尺寸)基本相等,从而可保证第一触控分支31011各处性能的均一性。同理,第二触控分支31111在第一方向X上相对两面的齿部可错位设置。但不限于此,第一触控分支31011、第二触控分支31111在第一方向X上相对两面的齿部也可对称设置,视具体情况而定。
在一些实施例中,相邻第一触控分支31011与第二触控分支31111在第一方向X上的间距可为1μm至10μm,比如:1μm、3μm、5μm、7μm、10μm等等,但不限于此,也可大于10μm,视具体情况而定。在本公开的实施例中,相邻第一触控分支31011与第二触控分支31111在第一方向X上的间距可为5μm,以在增加触控面板3中的基础互容值和发生触控时TX电极和RX电极之间的互容变化量的同时,降低加工难度。需要说明的是,相邻第一触控分支31011与第二触控分支31111在第一方向X上的间距不限于上述数值,也可为其他数值,视具体情况而定。
在一些实施例中,第一触控分支31011与第二触控分支31111之间形成的通道中各处在第一方向X上的尺寸可相等,从而可保证各处边缘电场的均一性,继而保证各处的触控灵敏度和触控精度。
在一些实施例中,波浪面的齿部可为三角形、弧形或梯形,但不限于此,也可为其他形状。其中,如图8和图10所示,在齿部为三角形时,齿部的侧面与第一方向X所在平面的夹角α为5°至95°,比如:5°、30°、45°、60°、95°等等;可选地,齿部的侧面与第一方向X所在平面的夹角α可为45°,这样设计在增加第一触控分支31011和第二触控分支31111之间通道的长度同时,还可平衡第一触控分支31011和第二触控分支31111的宽度,避免其宽度过大而影响触控性能的情况。
在一些实施例中,如图8所示,每一触控图案31a的第一触控电极310中第一触控组3101可设置有多组,并在第一方向X上依次排布,且相邻第一触控组3101的第一导电连接部31012相连接;而每一触控图案31a的第二触控电极311中第二触控组3111设置有多组,并在第一方向X上依次排布,且相邻第二触控组3111的第一导电连接部31012相连接;其中,相邻第二触控组3111之间靠近彼此的第二触控分支31111位于相邻第一触控组3101之间,且相邻第二触控组3111之间靠近彼此的第二触控分支31111中靠近第一导电连接部31012的一端通过第三导电连接部3112连接,以形成封闭环状空间,即:第二触控电极311中相邻第二触控组3111之间呈环状连接,这样设计可降低第二触控电极311通道阻抗;应当理解的是,此第三导电连接部3112可属于第二触控电极311的一部分,且此第三导电连接部3112可为金属网格结构,每一金属网格对应一子像素。
需要说明的是,第一导电连接部31012、第二导电连接部31112、第三导电连接部3112在第二方向Y上的两面可为平面,也可为前述提 到的波浪面,视具体情况而定。
在本公开的实施例中,如图8所示,每一触控图案31a的第一触控电极310可包括两组第一触控组3101;每一触控图案31a的第二触控电极311可包括两组第二触控组3111,每一第二触控组3111可与一第一触控组3101相互交叉,以形成一触控电极组;但不限于此,每个触控电极也可设置更多触控组,且第二触控组3111与第一触控组3101也不限于一对一的形式,也可为一对多,视具体情况而定。
需要说明的是,各第一触控组3101中第一触控分支31011的数量可相同,也可不相同,视具体情况而定。同理,各第二触控组3111中第二触控分支31111的数量可相同,也可不相同,视具体情况而定。
在一些实施例中,如图8所示,每一触控图案31a的封闭环状空间内可设置有与第二触控电极311相互绝缘的第一虚设电极312,具体地,第一虚设电极312与第二触控分支31111、第二导电连接部31112、第三导电连接部3112之间具有间隙,以实现第一虚设电极312与第二触控电极311之间相互绝缘。需要说明的是,此第一虚设电极312是指未被驱动并且不被用于感测的电极,如:TX电极,并且不被用于感测;此第一虚设电极312能够是接地的、浮动的(未连接到特定电压电位)或者两者的组合。在本公开的实施例中,通过设置第一虚设电极312可以控制触控面板3的光学特性;且通过将第一虚设电极312设置在触控图案31a的封闭环状空间内,这样使得第一虚设电极312与第一触控组3101/第二触控组3111间隔分散布置,从而可提高触控性能线性度、精度等。
举例而言,此第一虚设电极312可为金属网格结构,每一金属网格对应一子像素4。此第一虚设电极312可与第一触控电极310和第二触控电极311同层设置。
在一些实施例中,如图7所示,每一触控单元31中触控图案31a可设置有多个,多个触控图案31a可按照一定规律排列。具体地,触控单元31具有在第一方向X上延伸的第一中心线Q1和在第二方向Y上延伸的第二中心线Q2,第二方向Y与第一方向X相互垂直,且触控单元31关于第一中心线Q1和/或第二中心线Q2呈镜像设置,也就是说,每一触控单元31中各触控图案31a可按照一定规律排列,以使得最终形成的触控单元31可关于第一中心线Q1和/或第二中心线Q2呈镜像设置。
在本公开的一实施例中,如图7所示,触控单元31中触控图案31a可设置有四个,四个触控图案31a在第一方向X上和第二方向Y上阵列排布;其中,触控单元31关于第一中心线呈镜像设置。具体地,在第一方向X上相邻的触控图案31a可共用位于边缘的第一触控分支31011,且在第二方向Y上相邻的触控图案31a中位于边缘的第一触控分支31011直接相连;在第二方向Y上相邻的触控图案31a共用第二导电连接部31112,且在第一方向X上相邻的触控图案31a之间的第二导电连 接部31112通过导电桥314连接,即:相邻第二触控电极311通过导电桥314连接;此导电桥314与第一触控电极310相互绝缘。
应当理解的是,在制作上述触控单元31时,可包括以下步骤:步骤S1、可先在衬底30上形成第一导电图案层,如图12所示,此第一导电图案层包括导电桥314,可以采用的工艺流程有清洗涂胶,曝光,显影,刻蚀,剥离,清洗;步骤S2、然后在第一导电图案层上制作第一绝缘层315,如图13所示,可以采用涂胶,曝光,显影的工艺流程;步骤S3、制作完第一绝缘层315后,制作第二导电图案层,如图14所示,此第二导电图案层可包括第一触控电极310、第二触控电极311,可以采用溅射,清洗涂胶,曝光,显影,刻蚀,剥离,清洗的工艺流程;其中,在第一方向X上相邻的触控图案31a之间的第二导电连接部31112可分别通过第一绝缘层315上的一过孔与导电桥314连接;步骤S4、最后在最上方制作第二绝缘层316,如图7和图11所示。
如图7和图8所示,前述触控单元31中每一触控图案31a还包括与第一触控电极310和第二触控电极311相互绝缘的第二虚设电极313,即:与第一触控电极310和第二触控电极311之间呈间隔设置,以实现相互绝缘;该第二虚设电极313可与第一虚设电极312同层设置。
其中,如图7和图8所示,此第二虚设电极313位于触控图案31a中远离第二中心线Q2的边缘区。需要说明的是,此第二虚设电极313是指未被驱动并且不被用于感测的电极,如:TX电极,并且不被用于感测;此第二虚设电极313能够是接地的、浮动的(未连接到特定电压电位)或者两者的组合。在本公开的实施例中,通过设置第二虚设电极313可以控制触控面板3的光学特性;还可使得相邻触控单元31中第一触控电极310/第二触控电极311间隔分散布置,从而可提高触控性能线性度、精度等。
应当理解的是,触控单元31中触控图案31a的数量不限于四个,也可设置一个、两个、六个、八个等等,视具体情况而定,此外,触控单元31中的触控图案31a也不限于上述实施例所描述的形式,也可为其他形式,只要能够保证触控面板3在超薄叠构下能够提高触控灵敏度及改善LGM状态下的触控性能即可。
在本公开的实施例中,触控图案31a中第一触控电极310的第一触控分支31011、第二触控电极311的第二触控分支31111在第二方向Y上的尺寸可为触控单元31在第二方向Y上的尺寸的1/40至1/2;触控图案31a中第一触控电极310的第一触控分支31011、第二触控电极311的第二触控分支31111在第一方向X上的尺寸可为触控单元31在第一方向X上的尺寸的1/100至1/4。
在一些实施例中,如图6所示,多个触控单元31在第一方向X和第二方向Y上阵列排布,在第一方向X上相邻的触控单元31之间的第二导电连接部31112相连接,以形成为一整列触控单元,在第二方向Y 上相邻的触控单元31之间的第一导电连接部31012相连接,以形成为一整行触控单元,这样可适当减少通道数。
其中,如图6所示,一整列触控单元中的第二导电连接部31112至少通过一条引线6与芯片5连接;一整行触控单元中的第一导电连接部31012至少通过一条引线6与芯片5连接。可选地,如图6所示,芯片5位于触控面板3在第一方向X上的一端,一整列触控单元中靠近芯片5的一触控单元31的第二导电连接部31112通过一条引线6与芯片5连接,远离芯片5的一触控单元31的第二导电连接部31112通过另一条引线6与芯片5连接,这样设计可避免远离芯片5的触控单元31信号过度衰减的情况,从而可提高触控面板3的触控灵敏度及精确度。
下面结合图表对本公开一具体实施例的触控单元和相关技术中的触控单元在应用于超薄叠构下且处于LGM状态下的触控性能进行说明。
如下表1所示,表1中示出了本公开实施例中的触控单元31(如图7所示)与相关技术方案一(如图1所示)的触控单元10的仿真结果。
表1
触控单元 相关技术方案一 本公开实施例的方案
叠构厚度(μm) 177 177
Cm(pF) 0.757 0.953
△Cm(pF) 0.061 0.118
△Cm/Cm 8.10% 12.40%
Rtx(ohm) 43.8 49.2
Rrx(ohm) 43.1 43.4
需要说明的是,表1中本公开实施例中的触控单元31(如图7所示)与相关技术方案一(如图1所示)的触控单元10中整体的尺寸均为4.2mm×4.2mm,且金属网格的线宽为3μm。
基于上述表1可知,本公开实施例中的触控单元31在应用于177μm厚度的叠构下且处于LGM状态下时,TX电极与RX电极之间基础互容值Cm为0.953pF,发生触控时TX电极与RX电极之间互容变化量为△Cm为0.118pF;△Cm与Cm之间的比值为12.40%;TX电极的电阻Rtx为49.2ohm;RX电极的电阻Rrx为43.4ohm;相关技术方案一的触控单元10在应用于177μm厚度的叠构下且处于LGM状态下时,TX电极与RX电极之间基础互容值Cm为0.757pF,发生触控时TX电极与RX电极之间互容变化量为△Cm为0.061pF;△Cm与Cm之间的比值为8.10%;TX的电阻Rtx为43.8ohm;RX的电阻Rrx为43.1ohm;通过比对可知,本公开实施例的触控单元31相比于相关技术方案一的触控单元10:Cm增加25.8%,△Cm增加93.4%,△Cm/Cm增加4.3%,因此可知,本公开实施例的触控单元31大幅增加了触控时互容变化量(△Cm)和基础互容值(Cm),提高了LGM状态下的触控性能。
如下表2所示,表2中示出了本公开实施例中的触控单元31(如图7所示)与相关技术方案二(如图2所示)的触控单元20的仿真结果。
表2
触控单元 相关技术方案二 本公开实施例的方案
叠构厚度(μm) 170 170
Cm(pF) 0.511 0.953
△Cm(pF) 0.085 0.118
△Cm/Cm 16.6% 12.40%
Rtx(ohm) 37 49.2
Rrx(ohm) 38.8 43.4
Cftx(pF) 0.561 0.601
Cfrx(pF) 0.538 0.386
需要说明的是,表2中本公开实施例中的触控单元31(如图7所示)与相关技术方案二(如图2所示)的触控单元20中整体的尺寸均为4.2mm×4.2mm,且金属网格的线宽为3μm。
基于上述表2可知,本公开实施例中的触控单元31在应用于170μm厚度的叠构下且处于LGM状态下时,TX电极与RX电极之间基础互容值Cm为0.953pF,发生触控时TX电极与RX电极之间互容变化量为△Cm为0.118pF;△Cm与Cm之间的比值为12.40%;TX电极的电阻Rtx为49.2ohm;RX电极的电阻Rrx为43.4ohm;TX电极与手指之间的电容Cftx为0.601pF,RX电极与手指之间的电容Cfrx为0.386pF;相关技术方案二的触控单元20在应用于170μm厚度的叠构下且处于LGM状态下时,TX电极与RX电极之间基础互容值Cm为0.511pF,发生触控时TX电极与RX电极之间互容变化量为△Cm为0.085pF;△Cm与Cm之间的比值为16.6%;TX电极的电阻Rtx为37ohm;RX电极的电阻Rrx为38.8ohm;Cftx为0.561pF,Cfrx为0.538pF;通过比对可知,本公开实施例的触控单元31相比于相关技术方案二的触控单元20:Cm增加86.5%,△Cm增加38.8%,虽然△Cm/Cm低于相关技术方案二,但本公开实施例的方案中的Cfrx远小于相关技术方案二中的Cfrx,因此可知,本公开实施例的触控单元31大幅增加了触控时互容变化量(△Cm)和基础互容值(Cm),提高了LGM状态下的触控性能。
本公开的实施例还提供了一种触控显示装置,如图15所示,其包括显示面板7及上述任一实施例所描述的触控面板3,该触控面板3位于显示面板7的显示侧。
在本公开的实施例中,如图15和图16所示,此显示面板7可为OLED(Organic Light-Emitting Diode;有机发光二极管)显示,具体地,显示面板7可包括基底70、形成在基底70上的有机发光功能层71及覆盖有机发光功能层71的封装薄膜72,应当理解的是,此基底70可为多 层或单层结构,可采用无机绝缘材料和有机绝缘材料中的一种制作而成;此有机发光功能层71可包括驱动晶体管和与驱动晶体管连接的有机发光器件等等;封装薄膜72可为单层或多层结构,在封装薄膜72为多层结构时,可交替形成无机绝缘层和有机绝缘层。但不限于此,该显示面板7也可为液晶显示。
在显示面板7为OLED显示时,如图15和图16所示,触控面板3可形成在封装薄膜72上;此触控面板3的具体形成过程可参考前述触控单元31的制作过程,在此不重复赘述。
其中,如图16所示,显示装置还可包括盖板8,此盖板8位于触控面板3远离显示面板7的一侧,其中,触控面板3中触控感应层朝向盖板8的一侧与盖板8远离触控感应层的一侧之间的距离h可小于200μm;也就是说,该触控面板3可应用于超薄叠构中,这样设计在保证触控性能的同时,可使得显示装置能够具有一定的柔性,便于实现其弯折、卷曲;但不限于此,触控面板3可应用于较厚的叠构中,即:触控面板3中触控感应层朝向盖板8的一侧与盖板8远离触控感应层的一侧之间的距离h也可大于等于200μm,例如:500μm以上等等,也就是说,该触控面板3可适用于任何显示装置,具有较好的适用范围。
根据本公开的实施例,该显示装置的具体类型不受特别的限制,本领域常用的显示装置类型均可,具体例如显示器、手机、笔记本电脑等移动装置、手表、手环等可穿戴设备、VR装置等等,本领域技术人员可根据该显示设备的具体用途进行相应地选择,在此不再赘述。
需要说明的是,该显示装置除了显示面板7、触控面板3、盖板8以外,还包括其他必要的部件和组成,以显示器为例,还可包括主电路板(即:主板)、外壳、电源线,等等,本领域技术人员可根据该显示装置的具体使用要求进行相应地补充,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (15)

  1. 一种触控面板,其中,包括衬底及位于所述衬底上的触控感应层,所述触控感应层包括多个触控单元,每个所述触控单元包括至少一触控图案,所述触控图案包括相互绝缘的第一触控电极和第二触控电极;
    所述第一触控电极具有至少一组第一触控组,所述第一触控组包括多条第一触控分支及与所述多条第一触控分支的一端连接的第一导电连接部;
    所述第二触控电极具有至少一组第二触控组,所述第二触控组包括多条第二触控分支及与所述多条第二触控分支的一端连接的第二导电连接部,所述第二触控分支与所述第一触控分支在第一方向上交替排布且相互间隔;
    其中,所述第一触控分支中与所述第二触控分支相对的面为波浪面;和/或所述第二触控分支中与所述第一触控分支相对的面为波浪面。
  2. 根据权利要求1所述的触控面板,其中,
    所述第一触控分支在所述第一方向上的相对两面均为波浪面;所述第二触控分支在所述第一方向上的相对两面均为波浪面。
  3. 根据权利要求2所述的触控面板,其中,
    所述波浪面由多个在第二方向上排列的齿部拼接而成,所述第二方向与所述第一方向相交;其中,
    相邻所述第一触控分支和所述第二触控分支的齿部之间相互嵌合。
  4. 根据权利要求3所述的触控面板,其中,
    所述第一触控分支的齿部的大小、形状和所述第二触控分支的齿部的大小、形状相同;
    且相邻所述第一触控分支和所述第二触控分支之间形成的通道中各处在所述第一方向上的尺寸相等。
  5. 根据权利要求3所述的触控面板,其中,
    所述第一触控分支在所述第一方向上相对两面的齿部错位设置;
    所述第二触控分支在所述第一方向上相对两面的齿部错位设置。
  6. 根据权利要求3所述的触控面板,其中,所述齿部为三角形、弧形或梯形。
  7. 根据权利要求6所述的触控面板,其中,在所述齿部为三角形时,所述齿部的侧面与所述第一方向所在平面的夹角为5°至95°。
  8. 根据权利要求1至7中任一项所述的触控面板,其中,
    每一所述触控图案的所述第一触控电极中所述第一触控组设置有多组,并在所述第一方向上依次排布,且相邻所述第一触控组的第一导电连接部相连接;
    每一所述触控图案的所述第二触控电极中所述第二触控组设置有多组,并在所述第一方向上依次排布,且相邻所述第二触控组的第一导电连接部相连接;
    其中,相邻所述第二触控组之间靠近彼此的第二触控分支位于相邻所述第一触控组之间,且相邻所述第二触控组之间靠近彼此的第二触控分支中靠近所述第一导电连接部的一端通过第三导电连接部连接,以形成封闭环状空间。
  9. 根据权利要求8所述的触控面板,其中,所述封闭环状空间内设置有与所述第二触控电极相互绝缘的第一虚设电极。
  10. 根据权利要求9所述的触控面板,其中,
    所述触控单元具有在所述第一方向上延伸的第一中心线和在第二方向上延伸的第二中心线,所述第二方向与所述第一方向相互垂直;
    其中,所述触控单元中所述触控图案设置有多个,且所述触控单元关于所述第一中心线和/或所述第二中心线呈镜像设置。
  11. 根据权利要求10所述的触控面板,其中,
    所述触控单元中所述触控图案设置有四个,四个所述触控图案在所述第一方向上和所述第二方向上阵列排布;在所述第一方向上相邻的触控图案共用位于边缘的所述第一触控分支,且在所述第二方向上相邻的触控图案中位于边缘的所述第一触控分支直接相连;在所述第二方向上相邻的触控图案共用所述第二导电连接部,且在所述第一方向上相邻的触控图案之间的第二导电连接部通过导电桥连接,所述导电桥与所述第一触控电极相互绝缘;
    其中,所述触控单元关于所述第一中心线呈镜像设置;且每一所述触控图案还包括与所述第一触控电极和所述第二触控电极相互绝缘的第二虚设电极,所述第二虚设电极位于所述触控图案中远离所述第二中心线的边缘区。
  12. 根据权利要求11所述的触控面板,其中,
    所述多个触控单元在所述第一方向和所述第二方向上阵列排布,在所述第一方向上相邻的所述触控单元之间的所述第二导电连接部相连接,以形成为一整列触控单元,在所述第二方向上相邻的所述触控单元之间的所述第一导电连接部相连接,以形成为一整行触控单元;
    其中,所述一整列触控单元中的第二导电连接部至少通过一条引线与芯片连接;所述一整行触控单元中的第一导电连接部至少通过一条引线与芯片连接。
  13. 根据权利要求12所述的触控面板,其中,
    所述芯片位于所述触控面板在所述第一方向上的一端,所述一整列触控单元中靠近所述芯片的一所述触控单元的第二导电连接部通过一条引线与所述芯片连接,远离所述芯片的一所述触控单元的第二导电连接部通过另一条引线与所述芯片连接。
  14. 根据权利要求1所述的触控面板,其中,
    所述第一触控电极和所述第二触控电极均为金属电极;其中,
    所述第一触控分支、所述第一导电连接部、所述第二触控分支、所 述第二导电连接部在所述衬底上的正投影面均为网格状,且每个网格被配置为与一子像素对应。
  15. 一种触控显示装置,其中,包括显示面板及权利要求1至14中任一项所述的触控面板,所述触控面板位于所述显示面板的显示侧。
PCT/CN2021/086043 2020-05-22 2021-04-09 触控面板和触控显示装置 WO2021232991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/641,726 US11868156B2 (en) 2020-05-22 2021-04-09 Touch-control panel and touch-control display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010441849.8A CN111625139A (zh) 2020-05-22 2020-05-22 触控面板和触控显示装置
CN202010441849.8 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021232991A1 true WO2021232991A1 (zh) 2021-11-25

Family

ID=72272132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086043 WO2021232991A1 (zh) 2020-05-22 2021-04-09 触控面板和触控显示装置

Country Status (3)

Country Link
US (1) US11868156B2 (zh)
CN (1) CN111625139A (zh)
WO (1) WO2021232991A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625139A (zh) * 2020-05-22 2020-09-04 京东方科技集团股份有限公司 触控面板和触控显示装置
CN114237412B (zh) * 2020-09-09 2023-11-03 京东方科技集团股份有限公司 触控结构、显示面板及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170168609A1 (en) * 2015-12-09 2017-06-15 Mstar Semiconductor, Inc. Mutual capacitive touch sensing device of touch panel
CN108196736A (zh) * 2018-01-03 2018-06-22 上海天马有机发光显示技术有限公司 一种触控显示面板及触控显示装置
CN110764660A (zh) * 2019-09-26 2020-02-07 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN110968221A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 触控面板和显示装置
CN111625139A (zh) * 2020-05-22 2020-09-04 京东方科技集团股份有限公司 触控面板和触控显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599150B2 (en) 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
CN103970378B (zh) 2013-01-31 2018-03-02 宸鸿科技(厦门)有限公司 触控显示装置
CN104536635A (zh) 2015-01-26 2015-04-22 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN105786256A (zh) * 2016-03-21 2016-07-20 京东方科技集团股份有限公司 触控基板及显示装置
TWI597669B (zh) * 2016-05-19 2017-09-01 晨星半導體股份有限公司 指紋感測器
CN107562249B (zh) 2016-07-01 2024-04-30 瀚宇彩晶股份有限公司 触控显示装置
CN106816460B (zh) * 2017-03-01 2020-04-24 上海天马微电子有限公司 一种柔性触控显示面板及柔性触控显示装置
CN108628483B (zh) 2017-03-15 2021-03-05 京东方科技集团股份有限公司 触控单元、互电容触控屏和触控显示装置
CN109426399B (zh) 2017-09-05 2022-03-01 瀚宇彩晶股份有限公司 触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170168609A1 (en) * 2015-12-09 2017-06-15 Mstar Semiconductor, Inc. Mutual capacitive touch sensing device of touch panel
CN108196736A (zh) * 2018-01-03 2018-06-22 上海天马有机发光显示技术有限公司 一种触控显示面板及触控显示装置
CN110764660A (zh) * 2019-09-26 2020-02-07 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN110968221A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 触控面板和显示装置
CN111625139A (zh) * 2020-05-22 2020-09-04 京东方科技集团股份有限公司 触控面板和触控显示装置

Also Published As

Publication number Publication date
US20220300110A1 (en) 2022-09-22
US11868156B2 (en) 2024-01-09
CN111625139A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
TWI477851B (zh) 觸控顯示面板與觸控液晶顯示面板
EP3321784B1 (en) Touch display panel and manufacturing method therefor, and touch display device
TWI459254B (zh) 觸控裝置及其製造方法
TWI652607B (zh) 觸控面板及應用其的觸控顯示裝置
WO2018205660A1 (zh) 一种触控基板、触控显示面板和触控显示装置
WO2021232991A1 (zh) 触控面板和触控显示装置
WO2019029226A1 (zh) 触控面板及其制作方法、触控显示装置
WO2019061874A1 (zh) 阵列基板及其制作方法、触控显示面板
TW201445408A (zh) 觸控面板
CN108228014B (zh) 触控模组及其制备方法、触控屏
US9778808B2 (en) Touch panel and method for manufacturing the same
US11907456B2 (en) Touch substrate, display panel, and touch display device
US10606388B2 (en) Array substrate, manufacturing method thereof and touch display panel
US20110248944A1 (en) Touch display panel
KR20130044144A (ko) 터치 감지 장치 및 그 제조 방법
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
US20210333942A1 (en) Touch substrate, touch control display apparatus, method of fabricating touch substrate
TW201349306A (zh) 觸控面板及其製作方法
US20200150804A1 (en) Touch substrate and method of fabracating the same, touch display device
US11086460B2 (en) Touch substrate, method for manufacturing same, and touch device
WO2018018753A1 (zh) 一种单面双层多点触摸屏
KR20150052682A (ko) 터치 패널 및 이의 제조 방법
TW201541326A (zh) 觸控式螢幕設備及其單層互電容觸控式螢幕體和電子裝置
WO2020063538A1 (zh) 触控面板、触控显示装置及触控面板制作方法
WO2020113750A1 (zh) 一种显示屏及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807627

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21807627

Country of ref document: EP

Kind code of ref document: A1