WO2021232970A1 - 一种大功率储能设备的热管理系统及其控制方法 - Google Patents
一种大功率储能设备的热管理系统及其控制方法 Download PDFInfo
- Publication number
- WO2021232970A1 WO2021232970A1 PCT/CN2021/085409 CN2021085409W WO2021232970A1 WO 2021232970 A1 WO2021232970 A1 WO 2021232970A1 CN 2021085409 W CN2021085409 W CN 2021085409W WO 2021232970 A1 WO2021232970 A1 WO 2021232970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- energy storage
- storage device
- temperature control
- preset
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000498 cooling water Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000003507 refrigerant Substances 0.000 claims description 28
- 230000001105 regulatory effect Effects 0.000 claims description 22
- 238000005057 refrigeration Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 230000017525 heat dissipation Effects 0.000 abstract description 12
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 239000003990 capacitor Substances 0.000 description 122
- 239000007788 liquid Substances 0.000 description 27
- 238000001816 cooling Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/18—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
Definitions
- the embodiment of the present invention relates to the technical field of new energy thermal management, in particular to a thermal management system and a control method of a high-power energy storage device.
- High-power energy storage equipment such as supercapacitors
- the thermal management of high-power energy storage equipment is particularly important.
- the prior art usually uses multiple circuits in parallel to cool the energy storage equipment, but due to the different distances between the circuits and the external machine, the flow rate of the cooling water in each circuit is different, which makes the cooling effect of the remote circuit poor. And the energy storage equipment cannot be cooled in time, which easily affects the performance and life of the energy storage equipment. At the same time, the prior art usually designs a cooling device for the maximum heat release of the energy storage device, which often has the problem of overprotection, and cannot accurately adjust the temperature of the energy storage device, which is economical.
- the embodiment of the present invention provides a thermal management system for high-power energy storage equipment and a control method thereof to achieve precise adjustment of the temperature of the high-power energy storage equipment, thereby improving the performance and service life of the energy storage equipment, and improving the system Economics.
- an embodiment of the present invention provides a control method for a thermal management system of a high-power energy storage device, the thermal management system of the high-power energy storage device includes at least two-stage temperature control modules with successively lower temperature control levels;
- the control method includes:
- the first preset condition includes a preset temperature difference and a preset time ;
- the operating parameters of the temperature control module with the lowest temperature control level reach the maximum value, and the temperature of the energy storage device exceeds the first preset condition, adjust the operating parameters of the temperature control module with the temperature control level one level higher ; Until the temperature of the energy storage device meets the first preset condition.
- the operating parameters include: the air output of the fan, the flow rate of the flow control valve, and the refrigeration capacity of the compressor; wherein, the operating parameters of the temperature control level from low to high are the air output of the fan, and the flow adjustment.
- the flow rate of the valve and the cooling capacity of the compressor are the air output of the fan, and the flow adjustment.
- an over-temperature alarm signal is sent.
- the operating parameter of the temperature control module with the lowest temperature control level reaches a maximum value, and the temperature of the energy storage device exceeds a first preset condition, then adjust the temperature control level one level higher.
- the operating parameters of the temperature control module; until the temperature of the energy storage device meets the first preset condition includes:
- the air output of the fan is the maximum, it is determined whether the flow of the flow regulating valve is the maximum; if not, the flow of the flow regulating valve is increased and then the temperature of the energy storage device is continuously determined whether the temperature exceeds The first preset condition;
- the flow rate of the flow control valve is at the maximum value, it is determined whether the refrigeration capacity of the compressor is the maximum value; After the flow regulating valve, continue to determine whether the temperature of the energy storage device exceeds the first preset condition.
- the operation mode of the thermal management system of the high-power energy storage device is set according to the input conditions of the stroke prediction, wherein all The operating modes include economic mode, general mode and performance mode.
- the economy mode is set; wherein, the second preset condition includes the first preset ambient temperature and the first preset average temperature of the energy storage device , The first preset passenger capacity, the first preset cruising speed, the first preset wind speed level and the first preset temperature of cooling water.
- the third preset condition includes at least a second preset ambient temperature and a second preset average value of the energy storage device.
- an embodiment of the present invention provides a thermal management system for a high-power energy storage device, including:
- An internal machine and an external machine module including at least two-stage temperature control modules with successively lower temperature control levels, and the temperature control module is used to adjust the temperature of the energy storage device;
- a temperature collection module which is used to collect the temperature of a plurality of said energy storage devices
- the BMS control module is configured to adjust the operating parameters of the temperature control module with the lowest temperature control level if the temperature of at least one of the energy storage devices exceeds the first preset condition; if the temperature control module with the lowest temperature control level When the operating parameters of the energy storage device reach the maximum value, and the temperature of the energy storage device exceeds the first preset condition, the operating parameters of the temperature control module with the temperature control level one level higher are adjusted; until the temperature of the energy storage device meets the first A preset condition.
- the temperature control module includes a fan, a flow regulating valve, and a compressor; wherein the temperature control levels of the temperature control module from low to high are fan, flow regulating valve and compressor in order.
- the inner machine and the outer machine module include an inner machine module and an outer machine module
- the outer machine module includes an outer machine body and peripheral accessories
- the outer machine body includes a compressor, an expansion valve, and a first heat exchange module.
- the peripheral accessories include a refrigerant water pump
- the first end of the compressor is connected to the first end of the first heat exchanger
- the second end of the first heat exchanger Is connected to the first end of the expansion valve
- the second end of the expansion valve is connected to the first end of the second heat exchanger
- the second end of the second heat exchanger is connected to the compressor The second end is connected
- the third end of the second heat exchanger is connected to the first end of the refrigerant water pump
- the internal machine module includes a fan, a third heat exchanger, and a super capacitor module.
- the first end of the third heat exchanger is connected to the second end of the refrigerant water pump.
- the second end is connected to the fourth end of the second heat exchanger, and the third heat exchanger is used for convective heat exchange with the air flow blown by the fan to cool the super capacitor module.
- the peripheral accessory further includes a cooling water pump, and the cooling water pump is connected to the third end of the first heat exchanger.
- the outer machine body and the peripheral accessories are an integral structure, and the integral structure includes a first layer and a second layer;
- the first layer includes the outer machine body and the cooling water pump, and the second layer includes the refrigerant water pump.
- the thermal management system of the high-power energy storage device provided by the embodiment of the present invention further includes a flow regulating valve and a flow sensor;
- the flow regulating valve is connected in series between the refrigerant water pump and the third heat exchanger, and the flow sensor is connected to the first end of the third heat exchanger.
- An embodiment of the present invention provides a method for controlling a thermal management system of a high-power energy storage device by collecting the temperatures of multiple energy storage devices to determine whether there is an excessive temperature difference in a single box of the energy storage device, if at least one super capacitor If the standard box is overheated, the temperature control modules of different temperature control levels are used to adjust the temperature of the energy storage device. First, adjust the operating parameters of the temperature control module with the lowest temperature control level, and take whether the operating parameters of the temperature control module reach the maximum value as the limit. If the operating parameters of the temperature control module with the lowest temperature control level have reached the maximum value, continue to adjust the temperature control The operating parameters of the temperature control module one level higher until the temperature of the energy storage device meets the first preset condition.
- the technical solution provided by the embodiments of the present invention adjusts the temperature of the energy storage device by adopting a multi-level temperature control method, which can achieve precise temperature control, ensure uniform heat dissipation of the super capacitor, and help improve the performance of the super capacitor. And the service life, and meet the economic requirements of the system.
- FIG. 1 is a flowchart of a control method of a thermal management system for high-power energy storage equipment according to Embodiment 1 of the present invention
- FIG. 2 is a flowchart of a control method of a thermal management system for high-power energy storage equipment according to Embodiment 2 of the present invention
- FIG. 3 is a flowchart of a control method of a thermal management system for a high-power energy storage device according to Embodiment 3 of the present invention
- FIG. 4 is a flowchart of a temperature adjustment method for a thermal management system of a high-power energy storage device according to Embodiment 4 of the present invention.
- FIG. 5 is a flowchart of a method for determining the operation mode of a thermal management system of a high-power energy storage device according to Embodiment 4 of the present invention
- FIG. 6 is a schematic structural diagram of a thermal management system for high-power energy storage equipment according to Embodiment 5 of the present invention.
- FIG. 7 is a schematic structural diagram of a thermal management system for a high-power energy storage device according to Embodiment 6 of the present invention.
- FIG. 8 is a schematic structural diagram of a thermal management system for a high-power energy storage device according to Embodiment 7 of the present invention.
- Fig. 1 is a flow chart of a control method of a thermal management system for high-power energy storage equipment according to the first embodiment of the present invention.
- This embodiment can be applied to a situation where a marine supercapacitor has a large heat dissipation capacity.
- the method can be executed by a thermal management system of a high-power energy storage device.
- the thermal management system of a high-power energy storage device includes at least two-stage temperature control modules with successively lower temperature control levels.
- the embodiment of the present invention uses the energy storage device as a super capacitor. Take an example to illustrate the specific working principle of the control method.
- the control method specifically includes the following steps:
- Step 110 Collect the temperatures of multiple energy storage devices respectively.
- the high-power energy storage device may be a super capacitor and a lithium battery.
- a super capacitor is an electrochemical energy storage device between ordinary capacitors and storage capacitors. It has the characteristics of fast charging speed, high charging rate, and large output power.
- the standard box of super capacitor has at least one super capacitor module.
- a super capacitor module includes multiple super capacitors, which are used to provide power energy for ships. In practical applications, ships have large energy requirements for super capacitors. Normally, the number of standard boxes of super capacitors loaded on a single ship is large and the volume is large, which will cause huge additional charges during the discharge or charging of the super capacitor system. Heat.
- the temperature of the super capacitor standard box can be collected in real time, and the collected temperature is the average temperature of multiple super capacitors in the super capacitor standard box.
- Step 120 If the temperature of the at least one energy storage device exceeds the first preset condition, adjust the operating parameters of the temperature control module with the lowest temperature control level; wherein the first preset condition includes a preset temperature difference and a preset time.
- the temperature sensor installed in the super capacitor standard box is used to collect the temperature of each super capacitor standard box in real time, and detect whether the temperature of a certain super capacitor standard box is greater than the temperature of other standard boxes, and determine the super capacitor standard through the control system Whether the temperature of the box exceeds the first preset condition, where the first preset condition includes a preset temperature difference and a preset time, and the preset temperature difference may be a temperature difference between an over-temperature supercapacitor standard cabinet and other supercapacitor standard cabinets.
- the preset temperature difference is 10°C, and the preset time is 10 minutes; when the control system detects that the temperature of the first super capacitor standard box is greater than the temperature of other super capacitor standard boxes, it will determine the first super capacitor standard Whether the temperature difference between the box and other super capacitor standard boxes exceeds 10°C, and the temperature difference lasts for more than 10 minutes. If the control system determines that the temperature of the first super capacitor standard box exceeds the first preset condition, the control system sends a control signal to the temperature control module with the lowest temperature control level, and adjusts the operating parameters of the temperature control module to relieve the first The temperature difference of the super capacitor standard box.
- the temperature control level refers to the adjustment accuracy of the temperature control module. The lower the adjustment accuracy, the lower the level of the temperature control module.
- Step 130 If the operating parameters of the temperature control module with the lowest temperature control level reach the maximum value, and the temperature of the energy storage device exceeds the first preset condition, adjust the operating parameters of the temperature control module with the temperature control level one level higher; The temperature of the energy device satisfies the first preset condition.
- the control system determines that the temperature of the first supercapacitor standard box exceeds the first preset condition, it adjusts the operating parameters of the temperature control module with the lowest temperature control level. If the operating parameters of the temperature control module with the lowest temperature control level are Reaches the maximum value, and at this time, the temperature of the super capacitor standard box still exceeds the first preset condition, adjust the operating parameters of the temperature control module with a higher temperature control level until the temperature of the super capacitor standard box meets the first preset condition. Set the conditions so far.
- the operating parameters include: the air output of the fan, the flow of the flow control valve, and the refrigeration capacity of the compressor; among them, the operating parameters of the temperature control level from low to high are the air output of the fan, the flow of the flow control valve, and The cooling capacity of the compressor.
- the control system first sends a control signal to the fan to adjust the air output of the fan.
- control system After the air volume is adjusted to the maximum value, and the temperature of the first super capacitor standard box still exceeds the first preset condition, the control system will continue to send control signals to the flow control valve to adjust the flow of the flow control valve, and so on, until the super capacitor The temperature of the capacitor standard box meets the first preset condition.
- An embodiment of the present invention provides a method for controlling a thermal management system of a high-power energy storage device by collecting the temperatures of multiple energy storage devices to determine whether there is an excessive temperature difference in a single box of the energy storage device. If the device is overheated, temperature control modules with different temperature control levels are used to adjust the temperature of the energy storage device. First, adjust the operating parameters of the temperature control module with the lowest temperature control level, and take whether the operating parameters of the temperature control module reach the maximum value as the limit. If the operating parameters of the temperature control module with the lowest temperature control level have reached the maximum value, continue to adjust the temperature control The operating parameters of the temperature control module one level higher until the temperature of the energy storage device meets the first preset condition.
- the technical solution provided by the embodiments of the present invention adjusts the temperature of the energy storage device by adopting a multi-level temperature control method, which can achieve precise temperature control, ensure uniform heat dissipation of the energy storage device, and help improve the energy storage device.
- the performance and service life of the system and meet the economic requirements of the system.
- FIG. 2 is a flowchart of a control method of a thermal management system for a high-power energy storage device according to Embodiment 2 of the present invention.
- the control method provided by the second embodiment of the present invention includes:
- Step 210 Collect the temperatures of multiple energy storage devices respectively.
- Step 220 If the temperature of the at least one energy storage device exceeds the first preset condition, adjust the operating parameters of the temperature control module with the lowest temperature control level; where the first preset condition includes a preset temperature difference and a preset time.
- Step 230 Determine whether the air output of the fan is at the maximum value. If not, adjust the air output of the fan and continue to determine whether the temperature of the energy storage device exceeds the first preset condition.
- the control system After determining that the temperature difference of a certain super capacitor standard box (energy storage device) exceeds the first preset condition, it is determined whether the air output of the fan with the lowest temperature control level is the maximum value. If the air output of the fan does not reach the maximum value, the control system sends a control signal to the fan to step the air output of the fan with an accuracy of 10%, and re-check the temperature of the super capacitor standard box after each increase of the air output of the fan , To determine whether the temperature of the super capacitor standard box exceeds the first preset condition.
- Step 240 If the air output of the fan is at the maximum value, determine whether the flow rate of the flow control valve is the maximum value; if not, increase the flow rate of the flow control valve and continue to determine whether the temperature of the energy storage device exceeds the first preset condition .
- the operating parameters of the next-level temperature control module are adjusted.
- the flow rate of the flow control valve is further adjusted.
- the control system sends a control signal to the flow control valve and controls the flow control valve to step with an accuracy of 5% to increase the flow of refrigerant water.
- the control system continues to determine the temperature difference of the standard box of the super capacitor.
- the temperature difference of the standard box of the super capacitor is lower than the first preset condition during the increase of the flow rate of the flow control valve, the temperature of the standard box of the super capacitor meets the safety regulations, Then the temperature control is no longer adjusted, which is beneficial to save the power consumption of the system.
- Step 250 If the flow rate of the flow control valve is the maximum value, determine whether the refrigeration capacity of the compressor is the maximum value; if not, increase the refrigeration capacity of the compressor and reduce the flow control valve of the energy storage device that has not overheated Then continue to determine whether the temperature of the energy storage device exceeds the first preset condition.
- the next-level temperature control module is further adjusted.
- the cooling capacity of the compressor is further adjusted.
- the control system sends a control signal to the compressor.
- the compressor steps with an accuracy of 5% to increase the cooling capacity of the compressor.
- Step 260 If the air output of the fan, the flow of the flow control valve, and the refrigeration capacity of the compressor all reach the maximum value, and the temperature of the energy storage device exceeds the first preset condition, send an over-temperature alarm signal.
- the temperature of the super capacitor standard box can be precisely controlled, so that the temperature difference between the super capacitor standard boxes is lower than the preset Temperature difference to ensure uniform heat dissipation of the super capacitor. If the air output of the fan, the flow rate of the flow control valve and the refrigeration capacity of the compressor all reach the maximum value, and the temperature of the super capacitor standard box exceeds the first preset condition, the temperature of the super capacitor standard box cannot be automatically adjusted, then the control The center sends an over-temperature alarm signal for the staff to check and repair.
- An embodiment of the present invention provides a method for controlling a thermal management system of a high-power energy storage device by collecting the temperatures of a plurality of super capacitor standard boxes to determine whether there is an excessive temperature difference in a single box of a super capacitor standard box.
- the air output of the fan, the flow rate of the flow control valve and the refrigeration capacity of the compressor are adjusted step by step.
- the temperature difference between the standard boxes of the super capacitors can be achieved.
- Precise control is conducive to achieving uniform heat dissipation of each super capacitor standard box, and at the same time, it can accurately control the heat exchange and energy consumption of temperature control modules at all levels.
- FIG. 3 is a flowchart of a control method of a thermal management system for a high-power energy storage device according to an embodiment of the present invention.
- the first and second embodiments above adjust the temperature of the energy storage device when the temperature difference of the energy storage device is too large.
- the thermal management system It will automatically switch modes to realize the switching of multiple operating modes under different working conditions.
- the control method provided by the third embodiment of the present invention includes:
- Step 310 Collect the temperatures of multiple energy storage devices respectively.
- Step 320 If the temperature of the multiple energy storage devices does not exceed the first preset condition, set the operation mode of the thermal management system of the high-power energy storage device according to the input conditions of the travel prediction, where the operation mode includes economic mode, General mode and performance mode.
- the control system uses electricity according to the input conditions predicted by the ship’s itinerary, and Set the operating mode of the thermal management system of the high-power energy storage equipment according to the power consumption prediction results to improve the economy of the system.
- the input conditions for the itinerary prediction include ambient temperature, average temperature of the energy storage device, passenger capacity (load capacity), average speed of the journey, average wind speed of the journey, inlet temperature of the cooling water at the ship's end, and whether the super capacitor is charged.
- the operating mode switching conditions of the thermal management system of the high-power energy storage device are shown in Table 1.
- Step 330 If the input condition of the itinerary prediction is less than the second preset condition, it is set to the economy mode; wherein, the second preset condition includes the first preset ambient temperature, the first preset average temperature of the energy storage device, and the first preset The preset passenger capacity, the first preset cruise speed, the first preset wind speed level, and the first preset temperature of cooling water.
- the economic mode means that when the energy storage device is in an uncharged state, the thermal management system of the high-power energy storage device operates in the most economical way to reduce the heat dissipation capacity of the energy storage device.
- the energy storage device may be a super capacitor.
- the thermal management system of the high-power energy storage equipment enters In economic mode, the control system sends a control signal to the compressor to adjust the cooling capacity of the compressor to 30% of the maximum cooling capacity; sends a control signal to the fan to adjust the air output of the fan to the maximum value; sends a control signal to the flow control valve to adjust The flow rate of the flow control valve is adjusted to 50% of the maximum flow rate.
- Step 340 If the input condition of the itinerary prediction is greater than the third preset condition, set the performance mode; the third preset condition includes at least the second preset ambient temperature, the second preset average temperature of the energy storage device, and the second preset condition. Set one of passenger capacity, second preset cruising speed, second preset wind speed level, and second preset temperature of cooling water.
- the performance mode refers to a mode that can ensure timely heat dissipation of the energy storage device when the energy storage device is in a fast charging profile or a heavy load output condition.
- the travel prediction input conditions at least satisfy that the ambient temperature is lower than 35°C, the average temperature of the supercapacitor is greater than 50°C, the passenger capacity is greater than 80%, the high-speed cruise is greater than 80%, and the wind speed is level 5 If the temperature of the cooling water at the ship's end is greater than 25°C, the thermal management system of the high-power energy storage equipment will switch to the performance mode.
- the control system sends control signals to the compressor, the flow control valve and the fan respectively to adjust the cooling capacity of the compressor to the maximum, the air output of the fan to the maximum, and the flow of the flow control valve to the maximum to make the super capacitor Able to dissipate heat evenly.
- the cooling time of the super capacitor is doubled. For example, if the charging time of the super capacitor is 15 minutes, the thermal management system of the high-power energy storage device is forced to run for 30 minutes to ensure that the super capacitor can be sufficiently cooled.
- the thermal management system of the high-power energy storage device is switched to the general mode, which can avoid the waste of system resources and at the same time The super capacitor is fully cooled.
- FIG. 4 is a flowchart of a temperature adjustment method of a thermal management system for a high-power energy storage device according to Embodiment 4 of the present invention
- FIG. 5 is a thermal management system for a high-power energy storage device according to Embodiment 4 of the present invention
- the flow chart of the method for determining the operating mode of the device On the basis of the foregoing embodiments, referring to Figs. 4 and 5, the embodiment of the present invention takes the over-temperature of the first super capacitor standard box as an example to illustrate the specific working principle of the control method of the thermal management system of the high-power energy storage device:
- the control system can be a BMS control module on the ship. Collect the temperature of each super capacitor standard box in real time through the temperature sensor set in the super capacitor standard box, and determine that the temperature of the first super capacitor standard box is greater than the temperature of other super capacitor standard boxes, and determine the first super capacitor standard through the BMS control module If the box temperature difference is always greater than the preset temperature difference within the preset time, the BMS control module continues to determine whether the air output of the fan is at the maximum value.
- the control system sends a control signal to the fan to step the air output of the fan with an accuracy of 10%, and re-check the temperature of the super capacitor standard box after each increase of the air output of the fan , And determine whether the temperature difference of the first supercapacitor standard box exceeds the first preset condition. If the air output of the fan has reached the maximum value and the temperature difference of the first super capacitor standard box is still greater than the first preset condition, the BMS control module further adjusts the flow rate of the flow regulating valve.
- the BMS control module sends a control signal to the flow control valve to control the flow control valve to step with an accuracy of 5% to increase the flow of cooling water, and then the BMS control module continues to determine the first If the temperature difference of the standard tank of a super capacitor reaches the maximum value and the temperature difference of the standard tank of the first super capacitor is still greater than the first preset condition after the flow rate of the flow regulating valve is reached, the BMS control module further adjusts the cooling capacity of the compressor. The BMS control module sends a control signal to the compressor. The compressor is stepped with an accuracy of 5% to increase the cooling capacity of the compressor.
- the BMS control module sends the first super capacitor standard box over-temperature alarm signal to the control center to notify the staff Carry out repairs.
- the BMS control module uses electricity according to the input conditions of the ship's journey prediction, and sets the high-power energy storage equipment according to the results of the electricity consumption prediction
- the operating mode of the thermal management system when the super capacitor is not charged, and at the same time, the ambient temperature is lower than 15°C, the average temperature of the super capacitor is lower than 35°C, and the ship returns without load or the passenger capacity is lower than 10%, the cruising speed
- the wind speed is lower than 10%, the wind speed is 1-2, the temperature of the cooling water at the ship's end is lower than 15°C
- the thermal management system of the high-power energy storage equipment enters the economic mode
- the BMS control module sends a control signal to the compressor to adjust the compressor
- the cooling capacity is 30% of the maximum cooling capacity; send a control signal to the fan to adjust the air output of the fan to the maximum; send a control signal to the flow control valve to adjust the flow of the flow
- the travel prediction input conditions must meet at least the ambient temperature is lower than 35°C, the average temperature of the supercapacitor is greater than 50°C, the passenger capacity is greater than 80%, the high-speed cruise is greater than 80%, the wind speed is level 5 and above, and the ship If the end cooling water temperature is greater than 25°C for at least one item, the thermal management system of the high-power energy storage device switches to the performance mode.
- the BMS control module sends control signals to the compressor, flow control valve and fan to adjust the cooling capacity of the compressor to the maximum, the air output of the fan to the maximum, and the flow of the flow control valve to the maximum to make the super capacitor Able to dissipate heat evenly.
- the cooling time of the super capacitor is doubled. For example, if the charging time of the super capacitor is 15 minutes, the thermal management system of the high-power energy storage device is forced to run for 30 minutes to ensure that the super capacitor can be sufficiently cooled.
- the input condition of the itinerary prediction is neither less than the second preset condition, nor greater than the third preset condition, the thermal management system of the high-power energy storage device is switched to the general mode, which can avoid the waste of system resources and at the same time The super capacitor is fully cooled.
- An embodiment of the present invention provides a method for controlling a thermal management system of a high-power energy storage device by collecting the temperatures of a plurality of super capacitor standard boxes to determine whether there is an excessive temperature difference in a single box of a super capacitor standard box. If the standard box of the super capacitor is overheated, the temperature control module of different temperature control levels is used to adjust the temperature of the standard box of the super capacitor. First, adjust the operating parameters of the temperature control module with the lowest temperature control level, and take whether the operating parameters of the temperature control module reach the maximum value as the limit. If the operating parameters of the temperature control module with the lowest temperature control level have reached the maximum value, continue to adjust the temperature control The operating parameters of the temperature control module with a higher level until the temperature of the super capacitor standard box meets the first preset condition.
- the technical solution provided by the embodiment of the present invention adjusts the temperature of the super capacitor standard box by adopting a multi-level temperature control method, which can achieve precise temperature control, ensure uniform heat dissipation of the super capacitor, and help improve the performance of the super capacitor. Performance and service life, and meet the economic requirements of the system.
- FIG. 6 is a schematic structural diagram of a thermal management system for a high-power energy storage device according to Embodiment 5 of the present invention.
- the thermal management system for high-power energy storage equipment provided by the fifth embodiment of the present invention includes:
- the internal machine and the external machine module 81, the internal machine and the external machine module 81 include at least two-stage temperature control modules with successively lower temperature control levels, and the temperature control module is used to adjust the temperature of the energy storage device 82;
- the temperature collection module 83 is used to collect the temperature of multiple energy storage devices 82;
- the BMS control module 84 is used to adjust the operating parameters of the temperature control module with the lowest temperature control level if the temperature of at least one energy storage device 82 exceeds the first preset condition; if the operating parameters of the temperature control module with the lowest temperature control level reach If the temperature of the energy storage device 82 exceeds the first preset condition, the operating parameters of the temperature control module with a higher temperature control level are adjusted until the temperature of the energy storage device 82 meets the first preset condition.
- the thermal management system of the high-power energy storage device provided in the fifth embodiment of the present invention can execute the control method of the thermal management system of the high-power energy storage device provided in any of the above embodiments, and is equipped with a thermal management system that executes the thermal management system of the high-power energy storage device.
- the module of the control method, therefore, the thermal management system of the high-power energy storage device provided in the fifth embodiment of the present invention has the beneficial effects described in any of the foregoing embodiments.
- the temperature control module includes a fan, a flow regulating valve, and a compressor; wherein, the temperature control level of the temperature control module from low to high is the fan, the flow regulating valve, and the compressor in order.
- FIG. 7 is a schematic structural diagram of a thermal management system for a high-power energy storage device according to Embodiment 6 of the present invention.
- the internal machine and external machine module 81 includes an internal machine module 811 and an external machine module 812.
- the external machine module 812 includes an external machine body 820 and peripheral accessories 830.
- the external machine body 820 includes The compressor 1, the expansion valve 2, the first heat exchanger 3 and the second heat exchanger 4, the peripheral accessories 830 include the refrigerant water pump 5, the first end of the compressor 1 and the first end a of the first heat exchanger 3 Connected, the second end b of the first heat exchanger 3 is connected to the first end of the expansion valve 2, the second end of the expansion valve 2 is connected to the first end e of the second heat exchanger 4, and the second heat exchanger 4 The second end f of is connected to the second end of the compressor 1, and the third end g of the second heat exchanger 4 is connected to the first end of the refrigerant water pump 5;
- the internal machine module 811 includes a fan 6, a third heat exchanger 7 and an energy storage device 8.
- the first end of the third heat exchanger 7 is connected to the second end of the refrigerant water pump 5, and the second end of the third heat exchanger 7 The end is connected to the fourth end h of the second heat exchanger 4, and the third heat exchanger 7 is used to exchange heat with the air flow blown by the fan 6 to cool the energy storage device 8.
- the external machine module 812 is used to provide cooling water
- the internal machine module 811 is used to cooperate with the external machine module 812 to cool the energy storage device 8
- the energy storage device 8 may be a super capacitor module.
- the compressor 1 sucks the refrigerant gas in the external body 820 and compresses it, compresses the refrigerant gas into a high-temperature and high-pressure gas, and then discharges the high-temperature and high-pressure gas and sends it to the first heat exchanger 3 to exchange it with the first heat exchanger 3.
- the cooling water in the heat exchanger 3 performs heat exchange, so that the high-temperature and high-pressure gas is condensed into a medium-temperature and high-pressure liquid.
- the first heat exchanger 3 may be a double-pipe heat exchanger.
- the low-temperature and low-pressure liquid that is throttled by the expansion valve 2 enters the second heat exchanger 4, and the low-temperature and low-pressure liquid that passes through the second heat exchanger 4 is pumped into the internal machine module by the refrigerant water pump 5
- the cooling water of 811 exchanges heat.
- the cooling water cooled by the second heat exchanger 4 exchanges heat with the air flow blown by the fan 6 in the internal machine module 811.
- the liquid entering the third heat exchanger 7 is a low-temperature liquid
- the air flow is cooled by the low-temperature liquid
- the liquid in the third heat exchanger 7 becomes medium-high temperature liquid.
- the energy storage device 8 is cooled under the action of the cooled air flow, and the energy storage device 8 can achieve uniform heat dissipation under the cooling of the low temperature air flow.
- the medium and high temperature liquid that has completed heat exchange in the third heat exchanger 7 is circulated to the second heat exchanger 4, and exchanges heat with the low temperature and low pressure liquid in the second heat exchanger 4 to evaporate the low temperature and low pressure liquid into gas , It is sucked by the compressor 1 again to recirculate.
- the peripheral accessory 830 further includes a cooling water pump 9, and the cooling water pump 9 is connected to the third end c of the first heat exchanger 3.
- the cooling water pump 9 is used to deliver seawater, river water, and other ship-end storage water into the first heat exchanger 3 to form high-temperature and high-pressure gas with the compressor 1 for heat exchange.
- the embodiment of the present invention uses the cooling water pump 9 to provide long-lasting low-temperature cooling water for the thermal management system of the high-power energy storage equipment according to the characteristics of the ship, so as to realize the internal machine module 811 Effective condensation.
- the high-temperature cooling water formed after the heat exchange is completed in the first heat exchanger 3 is discharged from the fourth end d of the first heat exchanger 3, which avoids the waste of water resources and can play a role in providing good cooling water.
- the thermal management system for a high-power energy storage device provided in Embodiment 6 of the present invention further includes a flow regulating valve 10 and a flow sensor 11;
- the flow regulating valve 10 is connected in series between the refrigerant water pump 5 and the third heat exchanger 7, and the flow sensor 11 is connected to the first end of the third heat exchanger 7.
- the flow regulating valve 10 is used to regulate the flow of the low-temperature and low-pressure liquid entering the third heat exchanger 7 to achieve precise control of the temperature of the supercapacitor module 8.
- the flow sensor 11 is used to monitor the flow of the low-temperature and low-pressure liquid entering the third heat exchanger 7.
- each flow regulating valve 10 in the thermal management system of the high-power energy storage device is provided with a flow sensor 11 so as to be able to monitor the flow of the liquid.
- FIG. 8 is a schematic structural diagram of a thermal management system for a high-power energy storage device according to Embodiment 7 of the present invention.
- the outer body 820 and the peripheral accessory 830 are an integrated structure, and the integrated structure includes a first layer and a second layer;
- the first layer includes the outer machine body 820 and the cooling water pump 9, and the second layer includes the refrigerant water pump 5.
- the advantage of such a configuration is that the volume of the thermal management system of the high-power energy storage device can be greatly optimized, the occupied area is reduced, and the space of the external unit module 812 can be reasonably arranged to facilitate the maintenance of the external unit module 812.
- the compressor 1 sucks the refrigerant gas in the outer body 820 and then compresses it, compresses the refrigerant gas into a high-temperature and high-pressure gas, and then discharges the high-temperature and high-pressure gas and sends it to the first heat exchanger 3.
- the cooling water in the heat exchanger 3 performs heat exchange, so that the high-temperature and high-pressure gas is condensed into a medium-temperature and high-pressure liquid.
- the first heat exchanger 3 may be a double-pipe heat exchanger, and the cooling water pump 9 is used to deliver seawater, river water and other ship-end storage water into the first heat exchanger 3 to form high-temperature and high-pressure gas with the compressor 1. Perform heat exchange.
- the low-temperature and low-pressure liquid that is throttled by the expansion valve 2 enters the second heat exchanger 4, and the low-temperature and low-pressure liquid that passes through the second heat exchanger 4 is pumped into the internal machine module by the refrigerant water pump 5
- the cooling water of 811 exchanges heat.
- the cooling water cooled by the second heat exchanger 4 exchanges heat with the air flow blown by the fan 6 in the internal machine module 811. Since the liquid entering the third heat exchanger 7 is a low-temperature liquid, after completing heat exchange with the air flow blown out by the fan 6, the air flow is cooled by the low-temperature liquid, and the liquid in the third heat exchanger 7 becomes medium-high temperature Liquid.
- the super capacitor module is cooled under the action of the cooled air flow, and the super capacitor module can achieve uniform heat dissipation under the cooling of the low temperature air flow.
- the medium and high temperature liquid that has completed heat exchange in the third heat exchanger 7 is circulated to the second heat exchanger 4, and exchanges heat with the low temperature and low pressure liquid in the second heat exchanger 4 to evaporate the low temperature and low pressure liquid into gas , It is sucked by the compressor 1 again to recirculate.
- the pressure sensor 13 is installed in the pipeline corresponding to the shut-off valve 12 at the ship end.
- the shut-off valve 12 is automatically opened, and the cabin domestic water is introduced into the first heat exchanger 3 through the cooling water pump 9 to ensure the internal circulation between the internal machine module 811 and the external machine module 812
- the coolant is sufficient to make the system operate safely.
- the return valve 14 can prevent the coolant in the pipeline from flowing back.
- a dehumidifier 15 is provided in the internal machine module 811 to remove the condensate and water in the internal machine module 811.
- Water vapor, and a temperature sensor and humidity sensor are also provided on the super capacitor module.
- the temperature control strategy has been described in detail in other embodiments of the present invention and will not be repeated here.
- the BMS control module 84 detects that the temperature of the super capacitor module does not exceed the first preset condition, when the input conditions of the stroke prediction meet the second preset condition at the same time, the thermal management system is switched to the economic mode, and the BMS control module 84 Send a control signal to compressor 1 to adjust the cooling capacity of compressor 1 to 30% of the maximum cooling capacity; send a control signal to the fan to adjust the air output of the fan to the maximum value; send a control signal to the flow control valve to adjust the flow control valve The flow rate is adjusted to 50% of the maximum flow rate, and the flow rate of the refrigerant water pump is adjusted to 50% of the maximum flow rate.
- the thermal management system is switched to the performance mode, and the BMS control module sends control signals to the compressor, flow control valve, refrigerant water pump, and fan to adjust the cooling capacity of the compressor.
- the flow rate of the refrigerant water pump is adjusted to the maximum value
- the air output volume of the fan is adjusted to the maximum value
- the flow rate of the flow control valve is adjusted to the maximum value.
- the thermal management system provided by the embodiment of the present invention is directly powered by the super capacitor module, and the external machine module 812 adopts parallel dual-loop operation, which has high reliability.
- the nominal 20kW external machine module 812 can use two sets of 10kW external machine modules 812 in parallel, and each external machine module 812 contains an independent operating system.
- the other group of external machine modules 812 fails.
- the machine module 812 can ensure normal operation, provide the necessary minimum cooling capacity, and ensure that the ship can continue to operate at a low speed and can safely return to the port for maintenance.
- the BMS control module 84 in the thermal management system is electrically connected with the external machine module 812 and the internal machine module 811 to control the operating status of the cooling water pump 9, the refrigerant water pump 5, the fan 6 and the compressor 1, and by changing the related operation Parameters can be used to precisely adjust the temperature of the supercapacitor module.
- the BMS control module can be set in the electric control box.
- the electric control box is equipped with a display screen, which can display the speed of the compressor 1, the speed of the refrigerant water pump 5 and the cooling water pump 9 in real time, the speed of the fan 6, and the super capacitor module.
- the temperature and the pressure value of the pressure sensor 13 and the flow value of the flow sensor 11 so that the staff can understand the operating status of each module in time.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Air Conditioning Control Device (AREA)
- Secondary Cells (AREA)
Abstract
提供一种大功率储能设备的热管理系统及其控制方法,控制方法包括:分别采集多个储能设备的温度;若至少一个储能设备的温度超出第一预设条件,则调节控温等级最低的控温模块的运行参数;其中,第一预设条件包括预设温差和预设时间;若控温等级最低的控温模块的运行参数达到最大值,且储能设备的温度超出第一预设条件,则调节控温等级高一级的控温模块的运行参数;直至储能设备的温度满足第一预设条件。提供的技术方案通过采用多级控温的方式对储能设备的温度进行调节,能够实现精准控温,保证储能设备散热均匀,有利于提高储能设备的性能和使用寿命,且满足系统的经济性要求。
Description
本发明实施例涉及新能源热管理技术领域,尤其涉及一种大功率储能设备的热管理系统及其控制方法。
大功率储能设备,如超级电容,有着输出功率高,充电倍率大,充电速度快等特点,在船舶渡轮上有着广泛的应用。但是由于船舶对超级电容的能量需求大,单船装载的超级电容数量多且体积大,在充电及运行过程中会产生巨大的附加热量,因此大功率储能设备的热管理问题尤为重要。
现有技术通常采用多个回路并联的方式对储能设备进行冷却,但是由于各回路与外机的距离不同,导致各回路的冷却水的流量存在差异,使得较远回路的冷却效果不佳,且无法及时对储能设备进行冷却,容易对储能设备的性能和寿命造成影响。同时,现有技术通常是针对储能设备最大放热量来设计冷却装置,往往存在过保护的问题,不能对储能设备的温度进行精准调节,经济性较差。
发明内容
本发明实施例提供了一种大功率储能设备的热管理系统及其控制方法,以实现对大功率储能设备的温度进行精准调节,从而提高储能设备的性能和使用寿命,并提高系统的经济性。
第一方面,本发明实施例提供了一种大功率储能设备的热管理系统的控制方法,所述大功率储能设备的热管理系统包括控温等级依次降低的至少两级控温模块;所述控制方法包括:
分别采集多个所述储能设备的温度;
若至少一个所述储能设备的温度超出第一预设条件,则调节控温等级最低的所述控温模块的运行参数;其中,所述第一预设条件包括预设温差和预设时间;
若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件。
可选地,所述运行参数包括:风机的出风量、流量调节阀的流量和压缩机的制冷量;其中,所述控温等级从低到高的运行参数依次为风机的出风量、流量调节阀的流量和压缩机的制冷量。
可选地,若所述风机的出风量、流量调节阀的流量和压缩机的制冷量均达到最大值,且所述储能设备的温度超出第一预设条件,则发送超温报警信号。
可选地,所述若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件包括:
可选地,确定所述风机的出风量是否为最大值,若否,则调节所述风机的出风量后继续确定所述储能设备的温度是否超出第一预设条件;
若所述风机的出风量为最大值,则确定所述流量调节阀的流量是否为最大值;若否,则增大所述流量调节阀的流量后继续确定所述储能设备的温度是否超出第一预设条件;
若所述流量调节阀的流量为最大值,则确定所述压缩机的制冷量是否为最大值;若否,则提高所述压缩机的制冷量,并减小未超温的储能设备的流量调节阀后继续确定所述储能设备的温度是否超出第一预设条件。
可选地,若多个所述储能设备的温度均不超出第一预设条件,则根据行程预测的输入条件设定所述大功率储能设备的热管理系统的运行模式,其中,所述运行模式包括经济模式、一般模式和性能模式。
可选地,若所述行程预测的输入条件小于第二预设条件,则设定为经济模式;其中,第二预设条件包括第一预设环境温度、储能设备第一预设平均温度、第一预设载客量、第一预设巡航速度、第一预设风速等级和冷却水第一预设温度。
可选地,若所述行程预测的输入条件大于第三预设条件,则设定为性能模式;所述第三预设条件至少包括第二预设环境温度、储能设备第二预设平均温度、第二预设载客量、第二预设巡航速度、第二预设风速等级和冷却水第二预设温度中一种。
第二方面,本发明实施例提供了一种大功率储能设备的热管理系统,包括:
内机和外机模块,所述内机和外机模块包括控温等级依次降低的至少两级控温模块,所述控温模块用于调节储能设备的温度;
温度采集模块,用于采集多个所述储能设备的温度;
BMS控制模块,用于若至少一个所述储能设备的温度超出第一预设条件,则调节控温等级最低的所述控温模块的运行参数;若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件。
可选地,所述控温模块包括风机、流量调节阀和压缩机;其中,所述控温模块的控温等级从低到高依次为风机、流量调节阀和压缩机。
可选地,所述内机和外机模块包括内机模块和外机模块,所述外机模块包括外机本体和外围附件,所述外机本体包括压缩机、膨胀阀、第一换热器和第二换热器,所述外围附件包括冷媒水水泵,所述压缩机的第一端和所述第一换热器的第一端连接,所述第一换热器的第二端与所述膨胀阀的第一端连接,所述膨胀阀的第二端和所述第二换热器的第一端连接,所述第二换热器的第二端与所述压缩机的第二端连接,所述第二换热器的第三端与所述冷媒水水泵的第一端连接;
所述内机模块包括风机、第三换热器和超级电容模组,所述第三换热器的第一端与所述冷媒水水泵的第二端连接,所述第三换热器的第二端与所述第二换热器的第四端连接,所述第三换热器用于与所述风机吹出的气流进行对流热交换,以对所述超级电容模组进行冷却。
可选地,所述外围附件还包括冷却水水泵,所述冷却水水泵与所述第一换热器的第三端连接。
可选地,所述外机本体与所述外围附件为一体结构,所述一体结构包括第一层和第二层;
所述第一层包括所述外机本体和所述冷却水水泵,所述第二层包括所述冷媒水水泵。
可选地,本发明实施例提供的大功率储能设备的热管理系统还包括流量调节阀和流量传感器;
所述流量调节阀串联于所述冷媒水水泵和所述第三换热器之间,所述流量传感器与所述第三换热器的第一端连接。
本发明实施例提供的一种大功率储能设备的热管理系统的控制方法通过采集多个储能设备的温度来确定是否有储能设备出现单箱温差过大的现象,若至少一个超级电容的标准箱出现过温,则采用不同控温等级的控温模块对储能设备的温度进行调节。首先调节控温等级最低的控温模块的运行参数,以控温模块的运行参数是否达到最大值为界限,若控温等级最低的控温模块的运行参数已达最大值,则继续调节控温等级高一级的控温模块的运行参数,直到储能设备的温度满足第一预设条件为止。相对于现有技术,本发明实施例提供的技术方案通过采用多级控温的方式对储能设备的温度进行调节,能够实现精准控温,保证超级电容散热均匀,有利于提高超级电容的性能和使用寿命,且满足系统的经济性要求。
图1为本发明实施例一提供的一种大功率储能设备的热管理系统的控制方法的流程图;
图2为本发明实施例二提供的一种大功率储能设备的热管理系统的控制方法的流程图;
图3为本发明实施例提供三的一种大功率储能设备的热管理系统的控制方法的流程图;
图4为本发明实施例提供四的一种大功率储能设备的热管理系统的温度调节方法的流程图;
图5为本发明实施例提供四的一种大功率储能设备的热管理系统的运行模式的判定方法的流程图;
图6为本发明实施例五提供的一种大功率储能设备的热管理系统的结构示意图;
图7为本发明实施例六提供的一种大功率储能设备的热管理系统的结构示意图;
图8为本发明实施例七提供的一种大功率储能设备的热管理系统的结构示意图。
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1为本发明实施例一提供的一种大功率储能设备的热管理系统的控制方法的流 程图,本实施例可适用于船用超级电容散热量大的情况。该方法可以由大功率储能设备的热管理系统来执行,大功率储能设备的热管理系统包括控温等级依次降低的至少两级控温模块,本发明实施例以储能设备为超级电容为例说明该控制方法的具体工作原理。该控制方法具体包括如下步骤:
步骤110、分别采集多个储能设备的温度。
具体地,大功率储能设备可以为超级电容和锂电池。超级电容是一种介于普通电容和蓄电容之间的电化学储能器件,具有充电速度快、充电倍率高、输出功率大等特点,超级电容标准箱内置有至少一个超级电容模组,每个超级电容模组中包括多个超级电容,用于为船舶提供动力能源。在实际应用中,船舶对超级电容的能量需求较大,通常情况下,单船装载的超级电容标准箱的数量较多且体积较大,在超级电容系统放电或充电过程中会产生巨大的附加热量。通过在超级电容标准箱中设置温度传感器,可以实时采集超级电容标准箱的温度,采集到的温度为超级电容标准箱中多个超级电容的平均温度。
步骤120、若至少一个储能设备的温度超出第一预设条件,则调节控温等级最低的控温模块的运行参数;其中,第一预设条件包括预设温差和预设时间。
具体地,由于船用超级电容标准箱的数量较多,每个超级电容标准箱的温度可能会存在温差,若所有超级电容标准箱长期处于温差较大的环境中,容易对超级电容的性能和使用寿命造成较大的影响。因此,通过设置在超级电容标准箱内的温度传感器实时采集各超级电容标准箱的温度,并检测是否有某一超级电容标准箱的温度大于其他标准箱的温度,通过控制系统判定该超级电容标准箱的温度是否超出第一预设条件,其中,第一预设条件包括预设温差和预设时间,预设温差可以为超温的超级电容标准箱与其他超级电容标准箱之间的温差。示例性的,预设温差为10℃,预设时间为10分钟;当控制系统检测到第一个超级电容标准箱的温度大于其他超级电容标准箱的温度时,并判定第一个超级电容标准箱与其他超级电容标准箱之间的温差是否超过10℃,且温差持续时间超过10分钟。若果控制系统确定第一个超级电容标准箱的温度超出第一预设条件,则控制系统向控温等级最低的控温模块发送控制信号,调节控温模块的运行参数,以缓解第一个超级电容标准箱的温差。其中控温等级指的是控温模块的调节精度,调节精度越低,控温模块的等级越低。
步骤130、若控温等级最低的控温模块的运行参数达到最大值,且储能设备的温度超出第一预设条件,则调节控温等级高一级的控温模块的运行参数;直至储能设备的温度满足第一预设条件。
具体地,控制系统确定第一个超级电容标准箱的温度超出第一预设条件后,对控温等级最低的控温模块的运行参数进行调节,若控温等级最低的控温模块的运行参数达到最大值,并且,此时超级电容标准箱的温度仍然超出第一预设条件,则调节控温等级更高一级的控温模块的运行参数,直至超级电容标准箱的温度满足第一预设条件为止。
可选地,运行参数包括:风机的出风量、流量调节阀的流量和压缩机的制冷量;其中,控温等级从低到高的运行参数依次为风机的出风量、流量调节阀的流量和压缩机的制冷量。示例性地,通过采集多个超级电容标准箱的温度,确定第一个超级电容标准箱存在温差过大的现象,则控制系统首先向风机发送控制信号,调节风机的出风量,若将风机的出风量调节到最大值后,第一个超级电容标准箱的温度仍然超出第一预设条件,则控制系统继续向流量调节阀发送控制信号,调节流量调节阀的流量,以此类推,直至超级电容标准箱的 温度满足第一预设条件为止。
本发明实施例提供的一种大功率储能设备的热管理系统的控制方法通过采集多个储能设备的温度来确定是否有储能设备出现单箱温差过大的现象,若至少一个储能设备出现过温,则采用不同控温等级的控温模块对储能设备的温度进行调节。首先调节控温等级最低的控温模块的运行参数,以控温模块的运行参数是否达到最大值为界限,若控温等级最低的控温模块的运行参数已达最大值,则继续调节控温等级高一级的控温模块的运行参数,直到储能设备的温度满足第一预设条件为止。相对于现有技术,本发明实施例提供的技术方案通过采用多级控温的方式对储能设备的温度进行调节,能够实现精准控温,保证储能设备散热均匀,有利于提高储能设备的性能和使用寿命,且满足系统的经济性要求。
实施例二
图2为本发明实施例二提供的一种大功率储能设备的热管理系统的控制方法的流程图。参考图2,在上述实施例的基础上,本发明实施例二提供的控制方法包括:
步骤210、分别采集多个储能设备的温度。
步骤220、若至少一个储能设备的温度超出第一预设条件,则调节控温等级最低的控温模块的运行参数;其中,第一预设条件包括预设温差和预设时间。
步骤230、确定风机的出风量是否为最大值,若否,则调节风机的出风量后继续确定储能设备的温度是否超出第一预设条件。
具体地,在确定某个超级电容标准箱(储能设备)的温差超第一预设条件后,确定控温等级最低的风机的出风量是否为最大值。若风机的出风量没有达到最大值,则控制系统向风机发送控制信号,以精度为10%步进风机的出风量,在每一次增大风机的出风量后均重新检测超级电容标准箱的温度,确定超级电容标准箱的温度是否超出第一预设条件。
步骤240、若风机的出风量为最大值,则确定流量调节阀的流量是否为最大值;若否,则增大流量调节阀的流量后继续确定储能设备的温度是否超出第一预设条件。
具体地,如果风机的出风量已经达到最大值,无法再对风机进行调节,则对下一级控温模块的运行参数进行调节。按照控温等级的顺序,在风机的出风量达到最大值后,如果超级电容标准箱的温差仍然超过第一预设条件,则进一步调节流量调节阀的流量。在流量调节阀的流量没有达到最大值之前,控制系统向流量调节阀发送控制信号,控制流量调节阀以5%的精度步进,以增大冷媒水的流量。控制系统继续判定该超级电容标准箱的温差,如果在流量调节阀的流量增大的过程中,该超级电容标准箱的温差低于第一预设条件,超级电容标准箱的温度满足安全规定,则不再进行控温调节,有利于节省系统的功耗。
步骤250、若流量调节阀的流量为最大值,则确定压缩机的制冷量是否为最大值;若否,则提高压缩机的制冷量,并减小未超温的储能设备的流量调节阀后继续确定储能设备的温度是否超出第一预设条件。
具体地,当流量调节阀的流量调节到最大值时,超温的超级电容标准箱的温差仍然超出第一预设条件,则进一步调节下一级控温模块。按照控温模块的控温等级,当流量调节阀的流量为最大值,且超级电容标准箱的温差超出第一预设条件时,进一步调节压缩机的制冷量。控制系统向压缩机发送控制信号,压缩机以精度为5%步进,以增大压缩机的制冷量,同时向其他超级电容标准箱的流量调节阀发送控制信号,以精度为(3/n)%步进减小流量调节阀的流量,以减小超温超级电容标准箱与其他超级电容标准箱之间的温差,从而 保证各个超级电容标准箱之间的温差较小,使得超级电容散热均匀,进而有利于提高超级电容的性能和使用寿命。
步骤260、若风机的出风量、流量调节阀的流量和压缩机的制冷量均达到最大值,且储能设备的温度超出第一预设条件,则发送超温报警信号。
具体地,通过逐级对风机的出风量、流量调节阀的流量和压缩机的制冷量进行调节,可以精准控制超级电容标准箱的温度,使得各超级电容标准箱之间的温差低于预设温差,以保证超级电容均匀散热。如果风机的出风量、流量调节阀的流量和压缩机的制冷量均达到最大值,且超级电容标准箱的温度超出第一预设条件时,无法自动调节超级电容标准箱的温度,则向控制中心发送超温报警信号,以便工作人员检修。
本发明实施例提供的一种大功率储能设备的热管理系统的控制方法通过采集多个超级电容标准箱的温度来确定是否有超级电容标准箱出现单箱温差过大的现象,若至少一个超级电容的标准箱出现过温,则逐级调节风机的出风量、流量调节阀的流量和压缩机的制冷量,通过对三者的综合调节,可以实现对各超级电容标准箱之间温差的精准控制,有利于实现各超级电容标准箱的均匀散热,同时,能够精准控制各级控温模块的换热量和能耗。
实施例三
图3为本发明实施例提供三的一种大功率储能设备的热管理系统的控制方法的流程图。上述实施例一和实施例二是在储能设备的温差过大时,对储能设备的温度进行调节,当调节后的超级电容标准箱的温度满足第一预设条件后,则热管理系统会自动进行模式切换,以实现在不同工况下多种运行模式的切换。在上述各实施例的基础上,参考图3,本发明实施例三提供的控制方法包括:
步骤310、分别采集多个储能设备的温度。
步骤320、若多个储能设备的温度均不超出第一预设条件,则根据行程预测的输入条件设定大功率储能设备的热管理系统的运行模式,其中,运行模式包括经济模式、一般模式和性能模式。
具体地,在分别采集多个超级电容标准箱的温度后,如果多个超级电容标准箱的温度均不超出第一预设条件,则控制系统根据船舶的行程预测的输入条件进行用电,并根据用电预测结果设定大功率储能设备的热管理系统的运行模式,以提高系统的经济性。可选地,行程预测的输入条件包括环境温度、储能设备平均温度、载客量(载重量)、行程平均航速、行程平均风速、船端冷却水进水温度以及超级电容是否充电。示例性的,大功率储能设备的热管理系统的运行模式切换的条件如表1所示。
表1
步骤330、若行程预测的输入条件小于第二预设条件,则设定为经济模式;其中,第二预设条件包括第一预设环境温度、储能设备第一预设平均温度、第一预设载客量、第一预设巡航速度、第一预设风速等级和冷却水第一预设温度。
具体地,经济模式指的是当储能设备处于未充电状态时,在储能设备的散热量较小的情况下,大功率储能设备的热管理系统以最经济的方式运行,以减小系统的换热量和功耗。示例性的,储能设备可以为超级电容,当超级电容未充电时,且同时满足环境温度低于15℃,超级电容平均温度低于35℃,船舶空载返程或载客量低于10%时(以最大载客量为基础,下同)、巡航速度低于10%且风速1~2级、船端冷却水温度低于15℃等条件时,大功率储能设备的热管理系统进入经济模式,控制系统向压缩机发出控制信号,调节压缩机的制冷量为最大制冷量的30%;向风机发送控制信号,调节风机的出风量至最大值;向流量调节阀发送控制信号,将流量调节阀的流量调节为最大流量的50%。
步骤340、若行程预测的输入条件大于第三预设条件,则设定为性能模式;第三预设条件至少包括第二预设环境温度、储能设备第二预设平均温度、第二预设载客量、第二预设巡航速度、第二预设风速等级和冷却水第二预设温度中一种。
具体地,性能模式指的是当储能设备处于快速充电概况或大负荷输出工况时,能够保证储能设备及时散热的模式。示例性的,当超级电容未充电时,行程预测输入条件至少满足环境温度低大于35℃,超级电容平均温度大于50℃,载客量大于80%时、高速巡航高于80%,风速5级及以上、船端冷却水温度大于25℃至少一项,则大功率储能设备的热管理系统切换至性能模式。控制系统分别向压缩机、流量调节阀和风机发送控制信号,将压缩机的制冷量调节至最大值、风机的出风量调节至最大值以及流量调节阀的流量调节至最大值,以使超级电容能够均匀散热。当超级电容处于充电状态下,将超级电容的冷却时间延长一倍。例如,超级电容的充电时间为15分钟,则强制大功率储能设备的热管理系统运行30分钟,以保证超级电容能够充分的冷却。
当行程预测的输入条件既不小于第二预设条件,也不大于第三预设条件时,大功率储能设备的热管理系统切换至一般模式,能够避免系统资源的浪费,且同时能够对超级电容进行充分的冷却。
实施例四
图4为本发明实施例提供四的一种大功率储能设备的热管理系统的温度调节方法的流程图,图5为本发明实施例提供四的一种大功率储能设备的热管理系统的运行模式的判定方法的流程图。在上述各实施例的基础上,参考图4和图5,本发明实施例以第一超级电容标准箱超温为例说明大功率储能设备的热管理系统的控制方法的具体工作原理:
控制系统可以为船舶上的BMS控制模块。通过设置在超级电容标准箱内的温度传感器实时采集各超级电容标准箱的温度,并确定第一超级电容标准箱的温度大于其他超级电容标准箱的温度,通过BMS控制模块判定第一超级电容标准箱温差的在预设时间内一直大于预设温差,则BMS控制模块继续判定风机的出风量是否处于最大值。若风机的出风量没有达到最大值,则控制系统向风机发送控制信号,以精度为10%步进风机的出风量,在每一次增大风机的出风量后均重新检测超级电容标准箱的温度,并确定第一超级电容标准箱的温差是否超出第一预设条件。若风机的出风量已经达到最大值,并且第一超级电容标准箱的温差仍然大于第一预设条件,则BMS控制模块进一步调节流量调节阀的流量。在流量调节阀的流量没有达到最大值之前,BMS控制模块向流量调节阀发送控制信号,控制流量调节阀以5%的精度步进,以增大冷却水的流量,之后BMS控制模块继续判定第一超级电容标准箱的温差,若流量调节阀的流量达到最大值后,第一超级电容标准箱的温差仍然大于第一预设条件,则BMS控制模块进一步调节压缩机的制冷量。BMS控制模块向压缩机发送控制信号,压缩机以精度为5%步进,以增大压缩机的制冷量,同时向其他超级电容标准箱的流量调节阀发送控制信号,以精度为(3/n)%步进减小流量调节阀的流量,以减小超温超级电容标准箱与其他超级电容标准箱之间的温差,其中n为超级电容标准箱的数量。若压缩机的制冷量达到最大值后,第一超级电容标准箱的温差仍然大于第一预设条件,则BMS控制模块向控制中心发送第一超级电容标准箱超温报警信号,以通知工作人员进行维修。
当BMS控制模块判定第一超级电容标准箱的温差不超过第一预设条件时,BMS控制模块根据船舶的行程预测的输入条件进行用电,并根据用电预测结果设定大功率储能设备的热管理系统的运行模式,当超级电容未充电时,且同时满足环境温度低于15℃,超级电容平均温度低于35℃,船舶空载返程或载客量低于10%时、巡航速度低于10%且风速1~2级、船端冷却水温度低于15℃等条件时,大功率储能设备的热管理系统进入经济模式,BMS控制模块向压缩机发出控制信号,调节压缩机的制冷量为最大制冷量的30%;向风机发送控制信号,调节风机的出风量至最大值;向流量调节阀发送控制信号,将流量调节阀的流量调节为最大流量的50%。当超级电容未充电时,行程预测输入条件至少满足环境温度低大于35℃,超级电容平均温度大于50℃,载客量大于80%时、高速巡航高于80%,风速5级及以上、船端冷却水温度大于25℃至少一项,则大功率储能设备的热管理系统切换至性能模式。BMS控制模块分别向压缩机、流量调节阀和风机发送控制信号,将压缩机的制冷量调节至最大值、风机出风量调节至最大值以及流量调节阀的流量调节至最大值,以使超级电容能够均匀散热。当超级电容处于充电状态下,将超级电容的冷却时间延长一倍。例如,超级电容的充电时间为15分钟,则强制大功率储能设备的热管理系统运行30分钟,以保证超级电容能够充分的冷却。当行程预测的输入条件既不小于第二预设条件,也不大于第三预设条件时,大功率储能设备的热管理系统切换至一般模式,能够避免系统资源的浪费,且同时能够对超级电容进行充分的冷却。
本发明实施例提供的一种大功率储能设备的热管理系统的控制方法通过采集多 个超级电容标准箱的温度来确定是否有超级电容标准箱出现单箱温差过大的现象,若至少一个超级电容的标准箱出现过温,则采用不同控温等级的控温模块对超级电容标准箱的温度进行调节。首先调节控温等级最低的控温模块的运行参数,以控温模块的运行参数是否达到最大值为界限,若控温等级最低的控温模块的运行参数已达最大值,则继续调节控温等级高一级的控温模块的运行参数,直到超级电容标准箱的温度满足第一预设条件为止。当超级电容标准箱的单箱温差不超出第一预设条件时,根据船舶的行程预测的输入条件切换大功率储能设备的热管理系统的工作模式,以合理的控制大功率储能设备的热管理系统的换热量以及功耗。相对于现有技术,本发明实施例提供的技术方案通过采用多级控温的方式对超级电容标准箱的温度进行调节,能够实现精准控温,保证超级电容散热均匀,有利于提高超级电容的性能和使用寿命,且满足系统的经济性要求。
实施例五
图6为本发明实施例五提供的一种大功率储能设备的热管理系统的结构示意图。参考图6,在上述各实施例的基础上,本发明实施例五提供的大功率储能设备的热管理系统包括:
内机和外机模块81,内机和外机模块81包括控温等级依次降低的至少两级控温模块,控温模块用于调节储能设备82的温度;
温度采集模块83,用于采集多个储能设备82的温度;
BMS控制模块84,用于若至少一个储能设备82的温度超出第一预设条件,则调节控温等级最低的控温模块的运行参数;若控温等级最低的控温模块的运行参数达到最大值,且储能设备82的温度超出第一预设条件,则调节控温等级高一级的控温模块的运行参数;直至储能设备82的温度满足第一预设条件。
本发明实施例五提供的大功率储能设备的热管理系统能够执行上述任意实施例所提供的大功率储能设备的热管理系统的控制方法,具备执行大功率储能设备的热管理系统的控制方法的模块,因此,本发明实施例五提供的大功率储能设备的热管理系统具备上述任意实施例所描述的有益效果。
可选地,控温模块包括风机、流量调节阀和压缩机;其中,控温模块的控温等级从低到高依次为风机、流量调节阀和压缩机。
实施例六
图7为本发明实施例六提供的一种大功率储能设备的热管理系统的结构示意图。参考图7,在上述各实施例的基础上,内机和外机模块81包括内机模块811和外机模块812,外机模块812包括外机本体820和外围附件830,外机本体820包括压缩机1、膨胀阀2、第一换热器3和第二换热器4,外围附件830包括冷媒水水泵5,压缩机1的第一端和第一换热器3的第一端a连接,第一换热器3的第二端b与膨胀阀2的第一端连接,膨胀阀2的第二端和第二换热器4的第一端e连接,第二换热器4的第二端f与压缩机1的第二端连接,第二换热器4的第三端g与冷媒水水泵5的第一端连接;
内机模块811包括风机6、第三换热器7和储能设备8,第三换热器7的第一端与冷媒水水泵5的第二端连接,第三换热器7的第二端与第二换热器4的第四端h连接,第三换热器7用于与风机6吹出的气流进行热交换,以对储能设备8进行冷却。
具体地,外机模块812用于提供冷却水,内机模块811用于与外机模块812进行配 合,以实现对储能设备8进行降温,储能设备8可以为超级电容模组。压缩机1将外机本体820中的制冷剂气体吸入后进行压缩,将制冷剂气体压缩成高温高压的气体,然后将高温高压气体排出并送入第一换热器3中,与第一换热器3内的冷却水进行热交换,使得高温高压气体冷凝成中温高压的液体。其中,第一换热器3可以为套管换热器。中温高压的液体经过膨胀阀2后,被膨胀阀2节流成低温低压的液体进入第二换热器4,经过第二换热器4的低温低压液体与被冷媒水水泵5泵入内机模块811的冷却水进行热交换。经过第二换热器4冷却后的冷却水再在内机模块811中与风机6吹出的气流进行热交换。由于进入第三换热器7中的液体为低温的液体,在与风机6吹出的气流完成热交换后,气流被低温液体降温,而第三换热器7中的液体则变为中高温的液体。储能设备8在经过降温的气流的作用下进行冷却,储能设备8在低温的气流冷却下,能够实现均匀的散热。第三换热器7中完成热交换的中高温液体循环至第二换热器4中,并与第二换热器4中的低温低压的液体进行热交换,将低温低压的液体蒸发为气体,再次被压缩机1吸入重新循环。
可选地,继续参考图7,外围附件830还包括冷却水水泵9,冷却水水泵9与第一换热器3的第三端c连接。
具体地,冷却水水泵9用于将海水、江水等船端储水送入第一换热器3中,与压缩机1形成高温高压的气体进行热交换。相比于现有技术中的冷凝风机装置,本发明实施例针对船舶特性,利用冷却水水泵9为大功率储能设备的热管理系统提供持久的低温冷却水,以实现对内机模块811的有效冷凝。同时在第一换热器3中完成热交换后形成的高温冷却水从第一换热器3的第四端d排出,避免水资源的浪费,且能够起到提供良好的冷却水的作用。
可选地,继续参考图7,在上述各实施例的基础上,本发明实施例六提供的大功率储能设备的热管理系统还包括流量调节阀10和流量传感器11;
流量调节阀10串联于冷媒水水泵5和第三换热器7之间,流量传感器11与第三换热器7的第一端连接。
具体地,流量调节阀10用于调节进入第三换热器7中低温低压液体的流量,以实现对超级电容模组8的温度的精准控制。流量传感器11用于监测进入第三换热器7中低温低压液体的流量。
在其他实施例中,大功率储能设备的热管理系统中每一流量调节阀10的输入端或输出端均设置有一个流量传感器11,以便能够监测液体的流量。
实施例七
图8为本发明实施例七提供的一种大功率储能设备的热管理系统的结构示意图。参考图8,在上述各实施例的基础上,外机本体820与外围附件830为一体结构,一体结构包括第一层和第二层;
第一层包括外机本体820和冷却水水泵9,第二层包括冷媒水水泵5。
具体地,这样设置的好处是,能够极大地优化大功率储能设备的热管理系统的体积,减小占用面积,且通过合理布置外机模块812空间,便于对外机模块812进行维护。
参考图7,以储能设备8为超级电容模组为例,说明本发明实施例提供的热管理系统的工作原理具体如下:
压缩机1将外机本体820中的制冷剂气体吸入后进行气体压缩,将制冷剂气体压缩成高温高压的气体,然后将高温高压气体排出并送入第一换热器3中,与第一换热器3内的 冷却水进行热交换,使得高温高压气体冷凝成中温高压的液体。其中,第一换热器3可以为套管换热器,冷却水水泵9用于将海水、江水等船端储水送入第一换热器3中,与压缩机1形成高温高压的气体进行热交换。中温高压的液体经过膨胀阀2后,被膨胀阀2节流成低温低压的液体进入第二换热器4,经过第二换热器4的低温低压液体与被冷媒水水泵5泵入内机模块811的冷却水进行热交换。经过第二换热器4冷却后的冷却水再在内机模块811中与风机6吹出的气流进行热交换。由于进入第三换热器7中的液体为低温的液体,在与风机6吹出的气流完成热交换后,气流被低温的液体降温,而第三换热器7中的液体则变为中高温的液体。超级电容模组在经过降温的气流的作用下进行冷却,超级电容模组在低温的气流冷却下,能够实现均匀的散热。第三换热器7中完成热交换的中高温液体循环至第二换热器4中,并与第二换热器4中的低温低压的液体进行热交换,将低温低压的液体蒸发为气体,再次被压缩机1吸入重新循环。
在船端的截止阀12对应的管路内安装压力传感器13,当内机模块811和外机模块812之间内循环的冷却液会由于蒸发、渗漏等情况导致冷却液减少。当压力传感器13检测到水压不足时,截止阀12自动打开,将船舱生活用水通过冷却水水泵9引入第一换热器3中,以保证内机模块811和外机模块812之间内循环的冷却液充足,使系统安全运行。在冷却水水泵9和第一换热器3之间、冷媒水水泵5与第三换热器7之间,以及第三换热器7与第二换热器4之间均设置有截止止回阀14,能够防止管道中的冷却液倒流。
由于超级电容模组采用经过降温的气流进行冷却,因此,为了避免冷凝水及水汽对超级电容产生影响,在内机模块811中设置有除湿器15,以去除内机模块811中的冷凝水及水汽,同时在超级电容模组上还设置有温度传感器和湿度传感器(图中未示出),当BMS控制模块84检测到湿度超过预设值时,启动对应的湿度控制策略或发出报警信号;当BMS控制模块84检测到超级电容模组的温差超过预设值时,启动对应的温度控制策略或发出报警信号,温度控制策略在本发明其他实施例中已经详细描述,在此不再赘述。当BMS控制模块84检测到超级电容模组的温度不超出第一预设条件时,在行程预测的输入条件同时满足第二预设条件时,将热管理系统切换至经济模式,BMS控制模块84向压缩机1发出控制信号,调节压缩机1的制冷量为最大制冷量的30%;向风机发送控制信号,调节风机的出风量至最大值;向流量调节阀发送控制信号,将流量调节阀的流量调节为最大流量的50%,同时将冷媒水水泵的流量调节至最大流量的50%。在行程预测输入条件满足第三预设条件时,将热管理系统切换至性能模式,BMS控制模块分别向压缩机、流量调节阀、冷媒水水泵和风机发送控制信号,将压缩机的制冷量调节至最大值、冷媒水水泵的流量调节至最大值、风机的出风量调节至最大值以及流量调节阀的流量调节至最大值。
此外,本发明实施例提供的热管理系统由超级电容模组直接供电,且外机模块812采用并联双回路运行,有较高的可靠性。示例性的,标称20kW外机模块812可以采用两组10kW外机模块812并联,每个外机模块812都包含独立的运行系统,当一组外机模块812故障失效时,另一组外机模块812能保证正常工作,提供必要的最低冷却能力,保证船舶可以继续低速运行,能够安全回港检修。热管理系统中的BMS控制模块84分别与外机模块812和内机模块811电连接,以控制冷却水水泵9、冷媒水水泵5、风机6以及压缩机1的运行状态,通过改变相关的运行参数,可以对超级电容模组的温度进行精准调节。BMS控制模块可以设置在电控箱中,电控箱上设置有显示屏,可以实时显示压缩机1的转速、冷媒水水泵5和冷却水水 泵9的转速,风机6的转速、超级电容模组的温度、压力传感器13压力值,流量传感器11的流量值,以便工作人员能够及时了解各模块的运行状态。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。
Claims (13)
- 一种大功率储能设备的热管理系统的控制方法,其特征在于,所述热管理系统包括控温等级依次降低的至少两级控温模块;所述控制方法包括:分别采集多个所述储能设备的温度;若至少一个所述储能设备的温度超出第一预设条件,则调节控温等级最低的所述控温模块的运行参数;其中,所述第一预设条件包括预设温差和预设时间;若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件。
- 根据权利要求1所述的大功率储能设备的热管理系统的控制方法,其特征在于,所述运行参数包括:风机的出风量、流量调节阀的流量和压缩机的制冷量;其中,所述控温等级从低到高的运行参数依次为风机的出风量、流量调节阀的流量和压缩机的制冷量。
- 根据权利要求2所述的大功率储能设备的热管理系统的控制方法,其特征在于,若所述风机的出风量、流量调节阀的流量和压缩机的制冷量均达到最大值,且所述储能设备的温度超出第一预设条件,则发送超温报警信号。
- 根据权利要求3所述的大功率储能设备的热管理系统的控制方法,其特征在于,所述若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件包括:确定所述风机的出风量是否为最大值,若否,则调节所述风机的出风量后继续确定所述储能设备的温度是否超出第一预设条件;若所述风机的出风量为最大值,则确定所述流量调节阀的流量是否为最大值;若否,则增大所述流量调节阀的流量后继续确定所述储能设备的温度是否超出第一预设条件;若所述流量调节阀的流量为最大值,则确定所述压缩机的制冷量是否为最大值;若否,则提高所述压缩机的制冷量,并减小未超温的储能设备的流量调节阀后继续确定所述储能设备的温度是否超出第一预设条件。
- 根据权利要求1所述的大功率储能设备的热管理系统的控制方法,其特征在于,若多个所述储能设备的温度均不超出第一预设条件,则根据行程预测的输入条件设定所述大功率储能设备的热管理系统的运行模式,其中,所述运行模式包括经济模式、一般模式和性能模式。
- 根据权利要求5所述的大功率储能设备的热管理系统的控制方法,其特征在于,若所述行程预测的输入条件小于第二预设条件,则设定为经济模式;其中,第二预设条件包括第一预设环境温度、储能设备第一预设平均温度、第一预设载客量、第一预设巡航速度、第一预设风速等级和冷却水第一预设温度。
- 根据权利要求5所述的大功率储能设备的热管理系统的控制方法,其特征在于,若所述行程预测的输入条件大于第三预设条件,则设定为性能模式;所述第三预设条件至少包括第二预设环境温度、储能设备第二预设平均温度、第二预设载客量、第二预设巡航速度、第二预设风速等级和冷却水第二预设温度中一种。
- 一种大功率储能设备的热管理系统,其特征在于,包括:内机和外机模块,所述内机和外机模块包括控温等级依次降低的至少两级控温模块, 所述控温模块用于调节储能设备的温度;温度采集模块,用于采集多个所述储能设备的温度;BMS控制模块,用于若至少一个所述储能设备的温度超出第一预设条件,则调节控温等级最低的所述控温模块的运行参数;若控温等级最低的所述控温模块的运行参数达到最大值,且所述储能设备的温度超出第一预设条件,则调节控温等级高一级的所述控温模块的运行参数;直至所述储能设备的温度满足第一预设条件。
- 根据权利要求8所述的大功率储能设备的热管理系统,其特征在于,所述控温模块包括风机、流量调节阀和压缩机;其中,所述控温模块的控温等级从低到高依次为风机、流量调节阀和压缩机。
- 根据权利要求8所述的大功率储能设备的热管理系统,其特征在于,所述内机和外机模块包括内机模块和外机模块,所述外机模块包括外机本体和外围附件,所述外机本体包括压缩机、膨胀阀、第一换热器和第二换热器,所述外围附件包括冷媒水水泵,所述压缩机的第一端和所述第一换热器的第一端连接,所述第一换热器的第二端与所述膨胀阀的第一端连接,所述膨胀阀的第二端和所述第二换热器的第一端连接,所述第二换热器的第二端与所述压缩机的第二端连接,所述第二换热器的第三端与所述冷媒水水泵的第一端连接;所述内机模块包括风机、第三换热器和储能设备,所述第三换热器的第一端与所述冷媒水水泵的第二端连接,所述第三换热器的第二端与所述第二换热器的第四端连接,所述第三换热器用于与所述风机吹出的气流进行对流热交换,以对所述储能设备进行冷却。
- 根据权利要求10所述的大功率储能设备的热管理系统,其特征在于,所述外围附件还包括冷却水水泵,所述冷却水水泵与所述第一换热器的第三端连接。
- 根据权利要求11所述的大功率储能设备的热管理系统,其特征在于,所述外机本体与所述外围附件为一体结构,所述一体结构包括第一层和第二层;所述第一层包括所述外机本体和所述冷却水水泵,所述第二层包括所述冷媒水水泵。
- 根据权利要求10所述的大功率储能设备的热管理系统,其特征在于,还包括流量调节阀和流量传感器;所述流量调节阀串联于所述冷媒水水泵和所述第三换热器之间,所述流量传感器与所述第三换热器的第一端连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010424003.3A CN111584242B (zh) | 2020-05-19 | 2020-05-19 | 一种大功率储能设备的热管理系统及其控制方法 |
CN202010424003.3 | 2020-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021232970A1 true WO2021232970A1 (zh) | 2021-11-25 |
Family
ID=72126810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/085409 WO2021232970A1 (zh) | 2020-05-19 | 2021-04-02 | 一种大功率储能设备的热管理系统及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111584242B (zh) |
WO (1) | WO2021232970A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114293246A (zh) * | 2021-12-30 | 2022-04-08 | 中国电子科技集团公司第四十八研究所 | 一种硅外延设备用水流冷却和流量分配装置 |
CN115329703A (zh) * | 2022-07-05 | 2022-11-11 | 陈卫科 | 基于车载超级电容热的管理系统 |
CN116914317A (zh) * | 2023-08-10 | 2023-10-20 | 无锡柯诺威新能源科技有限公司 | 储能热管理系统低温启动方法 |
CN118380694A (zh) * | 2024-06-21 | 2024-07-23 | 湖南西来客储能装置管理系统有限公司 | 一种储能柜冷却系统及冷却方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111584242B (zh) * | 2020-05-19 | 2021-09-28 | 上海奥威科技开发有限公司 | 一种大功率储能设备的热管理系统及其控制方法 |
CN112432330B (zh) * | 2020-11-26 | 2021-11-16 | 珠海格力电器股份有限公司 | 恒温除湿控制方法、装置、电子设备和空调器 |
CN112880254A (zh) * | 2021-01-28 | 2021-06-01 | 深圳市东露阳实业有限公司 | 电子膨胀阀加发热管开度精准控制冷水机水温方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180008215A (ko) * | 2016-07-15 | 2018-01-24 | 주식회사 엘지화학 | 배터리 셀의 온도 제어 시스템 및 방법 |
CN207664204U (zh) * | 2017-12-06 | 2018-07-27 | 上海航天电源技术有限责任公司 | 一种锂电池多级温度控制装置 |
CN108470964A (zh) * | 2018-06-04 | 2018-08-31 | 常熟理工学院 | 一种新能源汽车动力电池热管理装置及其管理方法 |
CN109980316A (zh) * | 2019-02-27 | 2019-07-05 | 深圳市力通威电子科技有限公司 | 动力电池温度管理控制系统 |
CN111146512A (zh) * | 2019-12-09 | 2020-05-12 | 清华大学 | 带有复合射喷装置的电动汽车热安全管理系统及方法 |
CN111584242A (zh) * | 2020-05-19 | 2020-08-25 | 上海奥威科技开发有限公司 | 一种大功率储能设备的热管理系统及其控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515902B2 (ja) * | 2016-11-02 | 2019-05-22 | ダイキン工業株式会社 | 冷凍装置の熱源ユニット |
CN107425232B (zh) * | 2017-05-11 | 2019-06-25 | 厦门金龙联合汽车工业有限公司 | 一种动力电池水冷机组系统及其智能控制方法 |
US20190063313A1 (en) * | 2017-08-28 | 2019-02-28 | Mustafa Rez | Disc Turbine Engine |
CN109152278A (zh) * | 2017-12-29 | 2019-01-04 | 扬州海通电子科技有限公司 | 一种液冷源机柜的自动控制方法 |
CN108376810B (zh) * | 2018-02-12 | 2021-02-05 | 威马智慧出行科技(上海)有限公司 | 动力电池热管理方法及系统 |
CN109679840A (zh) * | 2019-01-16 | 2019-04-26 | 上海海洋大学 | 微藻批量保种培养装置及由该装置批量培养微藻的方法 |
-
2020
- 2020-05-19 CN CN202010424003.3A patent/CN111584242B/zh active Active
-
2021
- 2021-04-02 WO PCT/CN2021/085409 patent/WO2021232970A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180008215A (ko) * | 2016-07-15 | 2018-01-24 | 주식회사 엘지화학 | 배터리 셀의 온도 제어 시스템 및 방법 |
CN207664204U (zh) * | 2017-12-06 | 2018-07-27 | 上海航天电源技术有限责任公司 | 一种锂电池多级温度控制装置 |
CN108470964A (zh) * | 2018-06-04 | 2018-08-31 | 常熟理工学院 | 一种新能源汽车动力电池热管理装置及其管理方法 |
CN109980316A (zh) * | 2019-02-27 | 2019-07-05 | 深圳市力通威电子科技有限公司 | 动力电池温度管理控制系统 |
CN111146512A (zh) * | 2019-12-09 | 2020-05-12 | 清华大学 | 带有复合射喷装置的电动汽车热安全管理系统及方法 |
CN111584242A (zh) * | 2020-05-19 | 2020-08-25 | 上海奥威科技开发有限公司 | 一种大功率储能设备的热管理系统及其控制方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114293246A (zh) * | 2021-12-30 | 2022-04-08 | 中国电子科技集团公司第四十八研究所 | 一种硅外延设备用水流冷却和流量分配装置 |
CN115329703A (zh) * | 2022-07-05 | 2022-11-11 | 陈卫科 | 基于车载超级电容热的管理系统 |
CN115329703B (zh) * | 2022-07-05 | 2024-03-12 | 苏州斯迈特电子科技有限公司 | 基于车载超级电容热的管理系统 |
CN116914317A (zh) * | 2023-08-10 | 2023-10-20 | 无锡柯诺威新能源科技有限公司 | 储能热管理系统低温启动方法 |
CN118380694A (zh) * | 2024-06-21 | 2024-07-23 | 湖南西来客储能装置管理系统有限公司 | 一种储能柜冷却系统及冷却方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111584242B (zh) | 2021-09-28 |
CN111584242A (zh) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021232970A1 (zh) | 一种大功率储能设备的热管理系统及其控制方法 | |
CN114267907B (zh) | 一种电池储能的热安全管理系统、控制方法及其应用 | |
US11089719B2 (en) | Computer room heat-pipe air conditioning system with emergency cooling function and control and method thereof | |
CN108711659B (zh) | 电动汽车电池复合冷却系统及其控制方法 | |
US8042343B2 (en) | Cooling of avionics using a fuel tank and refrigerant source | |
US10356962B2 (en) | Power electronic device cooling system and distributed power generation system | |
CN113871750B (zh) | 车载能源系统热管理方法及热管理系统 | |
CN207637905U (zh) | 全钒液流电池系统 | |
US20210222923A1 (en) | Refrigerating system | |
CN112236022A (zh) | 一种数据中心用节能散热系统及实现方法 | |
KR101445942B1 (ko) | 수냉형 냉각 시스템, 수냉형 냉각장치 및 그 제어방법 | |
CN213636112U (zh) | 冷水机组与储能系统 | |
CN212691955U (zh) | 一种机房冷却系统 | |
CN219350370U (zh) | 一种储能3kW液冷机组 | |
CN117331387A (zh) | 一种液冷储能单元的温控方法 | |
CN216903111U (zh) | 一种用于储能电池的混合外冷却系统 | |
US11723176B2 (en) | Multi-tier cooling system without load perception | |
JP2024504886A (ja) | 熱管理システム、熱管理方法及び電力消費機器 | |
CN212109083U (zh) | 一种空调系统 | |
CN112086712A (zh) | 一种水冷储能电池的冷却装置及其控制方法 | |
CN210107867U (zh) | 一种丙烯满液式制冷系统 | |
CN113137710A (zh) | 蒸发式冷凝器机组的控制方法 | |
CN212648333U (zh) | 一种水冷储能电池的冷却装置 | |
CN221327871U (zh) | 液冷系统、冷水机组及储能系统 | |
CN221687616U (zh) | 储能系统的热管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21807915 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21807915 Country of ref document: EP Kind code of ref document: A1 |