WO2021232689A1 - 一种准全向天线及信号收发设备 - Google Patents

一种准全向天线及信号收发设备 Download PDF

Info

Publication number
WO2021232689A1
WO2021232689A1 PCT/CN2020/125915 CN2020125915W WO2021232689A1 WO 2021232689 A1 WO2021232689 A1 WO 2021232689A1 CN 2020125915 W CN2020125915 W CN 2020125915W WO 2021232689 A1 WO2021232689 A1 WO 2021232689A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
lateral
quasi
omnidirectional
area
Prior art date
Application number
PCT/CN2020/125915
Other languages
English (en)
French (fr)
Inventor
丁峰
吉星辉
马士民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022570136A priority Critical patent/JP2023526617A/ja
Priority to EP20936617.8A priority patent/EP4131648A4/en
Priority to KR1020227039389A priority patent/KR102673808B1/ko
Publication of WO2021232689A1 publication Critical patent/WO2021232689A1/zh
Priority to US18/057,229 priority patent/US20230077791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • This application relates to the field of antenna technology, and in particular to a quasi-omnidirectional antenna and a signal transceiving device.
  • antenna feed systems made of omnidirectional antennas are generally used.
  • an omnidirectional antenna refers to an antenna that radiates uniformly in a plane
  • an antenna feed system refers to a system that radiates electromagnetic waves from the antenna to the surrounding space.
  • the use of omnidirectional antennas has low cost on the one hand, and can be directly installed on the other hand, which is very convenient for installation and operation.
  • the antenna device In the practical application of omnidirectional antennas, since users want the antenna device formed by the omnidirectional antenna to be more beautiful and not easy to be found intuitively, during installation, the antenna device is generally hung on the wall or set on the edge of the field through a pole. Moreover, in design, the omnidirectional antenna of the antenna device is "hidden". In order to maintain the high gain of the omnidirectional antenna, some antenna devices forcibly integrate the omnidirectional antenna into the product. As shown in the structure shown in FIG. 1, the four omnidirectional antennas 02 are directly arranged on one end of the columnar body 1 along the a direction, forming the structure shown in FIG. 2. And as shown in Figure 3, a beautifying cover 03 is used to cover the antenna.
  • the antenna device uses a beautification cover 03 to cover the omnidirectional antenna 02 on one end of the columnar body 01, the omnidirectional antenna 02 is stored inside the product, but the product is The overall length is elongated by the omnidirectional antenna 02, which increases the size of the entire antenna device product, making the entire antenna device product more conspicuous.
  • the installation space reserved for the antenna by the antenna device is relatively small. This makes the length of the omnidirectional antenna limited, and the reduction of the length of the omnidirectional antenna will cause the antenna gain to be too small.
  • multiple sets of omnidirectional antennas are placed in a small installation space, the antennas and circuit boards between the antennas will affect each other, resulting in occlusion or reflection.
  • the size of the antenna device will increase on the premise of maintaining the high gain of the antenna, and the gain of the antenna will be reduced on the premise of maintaining the size of the antenna device.
  • the present application provides a quasi-omnidirectional antenna and signal transceiver equipment to reduce the size of the antenna device while ensuring the high gain of the antenna.
  • the present application provides a quasi-omnidirectional antenna, which can be directly hung on the wall, or can be installed in the installation area through a mounting pole.
  • the quasi-omnidirectional antenna is generally installed on the edge of the playground. Due to the influence of the crowd distribution and the installation of poles, the importance of the antenna to achieve backward radiation is not great.
  • a pole can be erected on the edge of the installation area, and the quasi-omnidirectional antenna can be installed on the pole.
  • the metal back shell in the quasi-omnidirectional antenna faces the edge of the installation area, and correspondingly, the front shell disposed opposite to the metal back shell faces the inside of the installation area.
  • the metal ground in each lateral antenna is signal connected to the metal back shell.
  • the metal back shell is used as a part of the metal ground of the lateral antenna.
  • This structure can enlarge the total area of the metal ground in the lateral antenna, so that the metal back shell also participates in radiation.
  • the energy radiated by each lateral antenna is distributed in the area between the metal back shell and the boundary of the installation area, instead of being reflected by the metal back shell. Based on this, the radiation area of each lateral antenna and the radiation area of the forward antenna form an overlapping area, which can avoid a radiation gap between the lateral antenna and the forward antenna, thereby increasing the gain of the quasi-omnidirectional antenna.
  • the quasi-omnidirectional antenna is composed of two lateral antennas and a forward antenna.
  • the lateral antenna and the forward antenna can meet the miniaturization requirement of the antenna device as long as the internal space of the housing is reasonably used when the lateral antenna and the forward antenna are installed.
  • the metal ground inside each lateral antenna is connected to the metal back shell, so that the metal back shell also participates in radiation, and no longer reflects the energy generated by the lateral antenna, so that each lateral antenna
  • the radiated energy is distributed on the front and rear sides at the same time, thereby expanding the distribution range of the radiated energy of each lateral antenna, thereby increasing the gain of the quasi-omnidirectional antenna.
  • the quasi-omnidirectional antenna When the quasi-omnidirectional antenna is specifically set up, it is based on the radiation symmetry characteristics of a planner inverted F antenna (PIFA) on both sides of its radiation center.
  • PIFA planner inverted F antenna
  • both the first lateral antenna and the second lateral antenna adopt PIFA antennas, and the radiation range of the forward antenna is set to 60° ⁇ 80° to avoid radiation gaps between the lateral antenna and the forward antenna.
  • Increase the gain of the quasi-omnidirectional antenna As for the shape and area of the first overlapping area and the second overlapping area, they may be the same or different, and are not limited here.
  • the metal ground and metal back shell of each lateral antenna are specifically set, one possible way is to implement: directly overlap the metal ground of the lateral antenna on the metal back shell; in another possible way: Coupling between the metal ground and the metal back shell.
  • the signal connection mode between the metal ground of the first lateral antenna and the metal back shell is any one of the above two modes.
  • the signal connection mode between the metal ground of the second lateral antenna and the metal back shell is also any one of the above two modes. That is, in each quasi-omnidirectional antenna, the connection mode of the metal ground and the metal back shell of the first lateral antenna and the connection mode of the metal ground and the metal back shell of the second lateral antenna may be the same or different.
  • a lateral antenna is used for coupling between the metal ground and the metal back shell, it is necessary to form a gap of less than 1 millimeter (mm) between the metal ground and the metal back shell.
  • each forward unit includes one or more forward antenna units.
  • each lateral antenna includes one or more lateral antenna units.
  • the quasi-omnidirectional antenna can satisfy the multiple input, multiple output (MIMO) technology. This technology can make full use of space resources, and realize multiple transmission and multiple reception through the quasi-omnidirectional antenna. Without increasing the spectrum resources and antenna transmission power, the system channel capacity can be doubled.
  • MIMO multiple input, multiple output
  • the present application also provides a signal transceiving device, the signal transceiving device includes a quasi-omnidirectional antenna, and the quasi-omnidirectional antenna is any one of the above technical solutions.
  • the quasi-omnidirectional antenna is composed of a combination of two lateral antennas and a forward antenna, and the lateral antenna and the forward antenna are arranged to make reasonable use of the internal space of the housing, thereby meeting the miniaturization requirements of the antenna device.
  • the metal ground inside each lateral antenna is connected to the metal back shell, so that the metal back shell also participates in radiation, and no longer reflects the energy generated by the lateral antenna, so that each lateral antenna
  • the radiated energy is distributed on the front and rear at the same time, expanding the distribution range of the radiated energy of each lateral antenna, thereby increasing the gain of the quasi-omnidirectional antenna in the signal transceiving device.
  • Figure 1 is a schematic diagram of the structure of an antenna product
  • Figure 2 is a schematic diagram of the structure of an antenna product
  • Figure 3 is a schematic diagram of the structure of an antenna product
  • FIG. 4 is a schematic structural diagram of a quasi-omnidirectional antenna provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a quasi-omnidirectional antenna provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a quasi-omnidirectional antenna provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a quasi-omnidirectional antenna provided by an embodiment of this application.
  • Fig. 8 is a schematic diagram of the internal structure of the quasi-omnidirectional antenna corresponding to Fig. 4;
  • Fig. 9 is a schematic diagram of the internal structure of the quasi-omnidirectional antenna corresponding to Fig. 4;
  • FIG. 10 is a schematic diagram of the radiation angle of the quasi-omnidirectional antenna corresponding to the structure in FIG. 9;
  • FIG. 11 is a directional diagram of a quasi-omnidirectional antenna provided by an embodiment of this application.
  • Fig. 12 is a measured combined pattern of the quasi-omnidirectional antenna corresponding to Fig. 11;
  • Fig. 13 is a schematic cross-sectional view of the structure in Fig. 4 along the extension direction;
  • FIG. 14 is a schematic diagram of the internal structure of a quasi-omnidirectional antenna provided by an embodiment of the application.
  • 15 is a schematic diagram of the internal structure of a quasi-omnidirectional antenna provided by an embodiment of the application.
  • 16 is a schematic diagram of the internal structure of a quasi-omnidirectional antenna provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of the internal structure of a quasi-omnidirectional antenna provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a signal transceiving device provided by an embodiment of the application.
  • omnidirectional antennas are generally used.
  • omnidirectional antennas are housed inside the antenna device to beautify the antenna device to meet the viewing needs of users.
  • the antenna device integrates the omnidirectional antenna into the device, if the antenna needs to maintain high gain, the volume of the antenna device cannot be reduced; if the overall antenna device is to be kept small, the high gain of the antenna cannot be guaranteed.
  • the embodiments of the present application provide a quasi-omnidirectional antenna to reduce the size of the antenna while ensuring high gain of the antenna.
  • the omnidirectional antenna can be directly hung on the wall, or can be installed in the installation area through a mounting pole.
  • the installation area is a playground, due to the influence of the crowd distribution and the installation of poles, the importance of the antenna's rearward radiation is of little importance. Therefore, a pole can be erected on the edge of the installation area, and the quasi-omnidirectional antenna can be installed on the pole.
  • the embodiment of the present application provides a quasi-omnidirectional antenna.
  • the shape of the housing 1 of the quasi-omnidirectional antenna is a cylinder as shown in FIG. 4, a rectangular parallelepiped as shown in FIG. 5, a sphere as shown in FIG. 6, and the shape shown in FIG. The irregular shape.
  • the shape of the housing 1 can also be other shapes, which will not be repeated here.
  • Fig. 8 corresponds to a schematic diagram of the internal structure of the quasi-omnidirectional antenna in Fig. 4. As shown in the structure shown in FIG.
  • the quasi-omnidirectional antenna provided by the embodiment of the present application includes a cylindrical housing 1, a forward antenna 2 and two lateral antennas 3 placed on both sides of the forward antenna 2.
  • the housing 1 is formed by two parts.
  • One part is the metal back shell 11 used to face the boundary of the installation area.
  • the metal back shell 11 plays a role of heat dissipation on the one hand, and on the other hand cooperates with the front shell 12 to form a closed whole machine structure.
  • the other part is the front shell 12.
  • the front shell 12 can be made of plastic or other materials such as metal. It should be understood that the mating form of the front shell 12 and the metal back shell 11 is not limited to the structure in the figure.
  • the housing 1 provided by the embodiment of the present application is provided with a forward antenna 2, a first lateral antenna 31 and a second lateral antenna 32, and the three antennas are all placed in the housing. 1 inside, and the three antennas have a reasonable spatial layout, which can reduce the volume of the housing 1, thereby reducing the volume of the quasi-omnidirectional antenna.
  • the A direction is referred to as the front of the housing 1
  • the C direction is referred to as the directly rear of the housing 1
  • the B direction is referred to as the right left of the housing 1.
  • the D direction is called the right side of the housing 1.
  • the radiation direction of the forward antenna 2 at the radiation center faces the direction A; the radiation direction of the first lateral antenna 31 at the radiation center faces the direction B, and the radiation direction of the second lateral antenna 32 at the radiation center faces the direction D.
  • the provisions here are only to facilitate a clear description of the quasi-omnidirectional antenna.
  • the radiation direction of the forward antenna 2 at the radiation center, the radiation direction of the first lateral antenna 31 at the radiation center, and The radiation direction of the second lateral antenna 32 at the radiation center can be changed according to design requirements, and is not limited to the above structure.
  • the first lateral antenna 31 and the second lateral antenna 32 are both PIFA antennas for description.
  • Fig. 10 is a schematic diagram of the radiation angle of the quasi-omnidirectional antenna corresponding to the structure in Fig. 9.
  • the radiation angle of the forward antenna 2 is a1, and a1 can be 60°-80°.
  • the radiation angle range of the first side antenna 31 is a2, and the range of a2 may be 0°-180°.
  • the radiation angle range of the second lateral antenna 32 is a3, and the range of a3 may be 0° ⁇ 180°.
  • the metal ground of the first lateral antenna 31 and the metal back shell 11 are signally connected, and the metal back shell 11 is used as a part of the ground of the first lateral antenna 31.
  • the area of the ground of the first lateral antenna 31 is calculated. At this time, the energy radiated backward by the first lateral antenna 31, that is, the energy within the angle range c1 is no longer reflected by the metal back shell 11.
  • a direct overlap method may be adopted, or a coupling method with a gap of less than 1 mm may be provided between the metal ground of the first lateral antenna 31 and the metal back shell 11.
  • the energy radiated backward by the second lateral antenna 32 that is, the energy within the angular range c2 is no longer reflected by the metal back shell 11.
  • the sizes of a3 and a2 may be the same or different.
  • the radiation area of the first lateral antenna 31 There is a first overlap area b1 with the radiation area of the forward antenna 2, and there is a second overlap area b2 between the radiation area of the second lateral antenna 32 and the radiation area of the forward antenna 2. It should be understood that the sizes of b1 and b2 may be the same or different.
  • Figure 11 shows the radiation pattern of the quasi-omnidirectional antenna, where the area enclosed by the line L is formed by the radiation of the forward antenna 2, and the area enclosed by the line M is formed by the first lateral antenna 31 is formed by radiation, and the area enclosed by line N is formed by radiation of the second lateral antenna 32.
  • the first lateral antenna 31 and the second lateral antenna 32 have radiation energy distribution in the front and rear directions, which enlarges the first lateral antenna 31 and the second lateral antenna 32 The distribution range of radiant energy.
  • Fig. 12 shows the actual combined pattern of the quasi-omnidirectional antenna corresponding to Fig. 11. It can be seen from Fig. 12 that the quasi-omnidirectional antenna provided by the embodiment of the present application has a wide energy distribution range, which can improve the quasi-omnidirectional antenna. The gain to the antenna.
  • the forward antenna 2 may include one or more forward antenna units 21.
  • the first lateral antenna 31 may include one or more first lateral antenna units 311, and each first lateral antenna unit 311 is a PIFA antenna. It should be understood that the PIFA antennas used by the multiple first lateral antenna units 311 may be different, that is, each PIFA antenna may be changed according to usage requirements.
  • the second lateral antenna 32 may include one or more second lateral antenna units 321, and each second lateral antenna unit 321 is a PIFA antenna.
  • the PIFA antennas used by the multiple second lateral antenna units 321 may also be different, that is, each PIFA antenna may be changed according to usage requirements. There are multiple implementation manners when the above-mentioned number is specifically set, including but not limited to the following implementation manners.
  • Embodiment 1 Refer to FIG. 14 in conjunction with FIG. 13, the forward antenna 2 in the housing 1 includes a forward antenna unit 21, and the first lateral antenna 31 includes a first lateral antenna unit 311 (due to the angle of view, the figure Not shown in 14), the second lateral antenna 32 has a second lateral antenna unit 321.
  • Embodiment 2 This embodiment is formed on the basis of Embodiment 1. The difference from Embodiment 1 is that the second lateral antenna 32 includes a plurality of second lateral antenna units 321.
  • Embodiment 3 This embodiment is formed on the basis of Embodiment 1. The difference from Embodiment 1 is that the first lateral antenna 31 includes a plurality of first lateral antenna units 311.
  • Embodiment 4 This embodiment is formed on the basis of Embodiment 1. The difference from Embodiment 1 is that the first lateral antenna 31 includes a plurality of first lateral antenna units 311, and the second lateral antenna 32 includes A plurality of second lateral antenna units 321.
  • the forward antenna 2 is always controlled to include one forward antenna unit 21. It should be understood that when the forward antenna 2 includes a plurality of forward antenna units 21, there are the following several implementation manners.
  • the fifth embodiment is formed on the basis of the first embodiment, and the difference from the first embodiment is that the forward antenna 2 includes a plurality of forward antenna units 21.
  • Embodiment 6 This embodiment is formed on the basis of Embodiment 2. The difference from Embodiment 1 is that the forward antenna 2 includes a plurality of forward antenna units 21.
  • Embodiment 7 This embodiment is formed on the basis of Embodiment 3. The difference from Embodiment 1 is that the forward antenna 2 includes a plurality of forward antenna units 21.
  • Embodiment 8 This embodiment is formed on the basis of Embodiment 4. The difference from Embodiment 1 is that the forward antenna 2 includes a plurality of forward antenna units 21.
  • the fifth embodiment described above changes the number of forward antenna units 21 in the forward antenna 2 in the first embodiment from “one” to multiple, which is only a quantitative change, so it is not shown in the figure;
  • the sixth embodiment described above changes the number of forward antenna units 21 in the forward antenna 2 in the second embodiment from “one” to multiple, which is only a quantitative change, so it is not shown in the figure;
  • the seventh embodiment above changes the number of forward antenna units 21 in the forward antenna 2 in the third embodiment from "one” to multiple, which is only a quantitative change, so it is not shown in the figure;
  • the above The eighth embodiment changes the number of forward antenna units 21 in the forward antenna 2 in the fourth embodiment from "one" to multiple, which is only a change in number, and therefore is not shown in the figure.
  • the “multiple” in the foregoing embodiments refers to any integer greater than one. It should be understood that the “multiple” corresponding to the forward antenna 2, the “multiple” corresponding to the first lateral antenna 31, and the “multiple” corresponding to the second lateral antenna 32 may be the same or different. When the forward antenna 2, the first lateral antenna 31, and the second lateral antenna 32 have their corresponding "multiple” set to any integer greater than 1, they can also be combined on the basis of Embodiment Mode 2 to Embodiment Mode 8. A number of specific embodiments are formed. For example, the first lateral antenna 31 includes two first lateral antenna units 311, the second lateral antenna 32 includes three second lateral antenna units 321, and the forward antenna 2 includes five The forward antenna unit 21 will not be repeated here.
  • the quasi-omnidirectional antenna can satisfy the MIMO technology. This technology can make full use of space resources, and realize multiple transmission and multiple reception through the quasi-omnidirectional antenna. Without increasing the spectrum resources and antenna transmission power, the system channel capacity can be doubled.
  • FIG. 15 is a schematic cross-sectional view of the structure in FIG. 4 formed along the length of the cylindrical housing 1.
  • a first mounting plate 4 and a second mounting plate 5 can be arranged inside the housing 1, and the second mounting plate 5 is arranged in parallel on the first mounting plate 4 away from the metal back shell 11 using a supporting structure.
  • the accommodating cavity 6 and the lateral antenna 3 should have a one-to-one correspondence.
  • a forward antenna unit 21 is installed on the mounting surface, and accommodating cavities 6 are provided on opposite sides of the forward antenna unit 21.
  • the number of accommodating cavities 6 on the side where the second lateral antenna unit 321 is placed is one, and the accommodating cavity 6 is provided with a second lateral antenna unit 321 inside.
  • both the forward antenna unit 21 and the second lateral antenna unit 321 are two, two forward antenna units 21 are provided on the mounting surface, so that the two forward antenna units 21 They are arranged along the columnar extension direction of the housing 1.
  • accommodating cavities 6 are provided on opposite sides of the forward antenna unit 21. Specifically, the number of accommodating cavities 6 on the side where the second lateral antenna unit 321 is placed is two, and one second lateral antenna unit 321 is placed in each accommodating cavity 6.
  • An embodiment of the present application also provides a signal transceiving device.
  • the signal transceiving device includes a quasi-omnidirectional antenna, and the quasi-omnidirectional antenna is any one of the quasi-omnidirectional antennas provided in the foregoing technical solutions.
  • the housing 1 of the quasi-omnidirectional antenna is connected to the mounting member 7.
  • the mounting member 7 is shown in the form of a pole. It should be understood that the mounting member 7 may also have other structural forms, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

一种准全向天线及信号收发设备,该准全向天线包括:壳体,壳体包括朝向安装区域边界的金属背壳和与金属背壳相对设置的前壳;壳体内设置有前向天线,前向天线用于沿背离金属背壳方向辐射;壳体内还设置有两个侧位天线,两个侧位天线中的第一侧位天线和第二侧位天线相对设置在前向天线的两侧;两个侧位天线中的每个侧位天线的金属地与金属背壳信号连接,以使每个侧位天线的辐射区域包括金属背壳与安装区域边界间的至少部分区域;每个侧位天线的辐射区域与前向天线的辐射区域之间具有重叠区域。该准全向天线可以在缩小天线装置体积的同时,保证天线的高增益。

Description

一种准全向天线及信号收发设备
相关申请的交叉引用
本申请要求在2020年05月21日提交的申请号为202010438202.X、申请名称为“一种准全向天线及信号收发设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及到一种准全向天线及信号收发设备。
背景技术
室外无线局域网(wireless local area network,WLAN)覆盖场景中,一般采用全向天线做成的天馈系统。其中,全向天线是指在平面中均匀辐射的天线,天馈系统是指天线向周围空间辐射电磁波的系统。采用全向天线一方面成本较低,另一方面可直接进行安装,安装操作十分便利。
在全向天线的实际应用中,由于用户希望全向天线形成的天线装置更为美观且不易被直观发现,在安装时,天线装置一般挂设在墙壁上或者通过抱杆设置在场地边缘。而且,在设计上,将天线装置的全向天线进行“隐藏”。出于保持全向天线高增益的目的,部分天线装置强行将全向天线融合到产品内部。如图1中的结构,4根全向天线02沿a方向直接设置在柱状主体1一端侧,形成如图2中的结构。且如图3中所示采用美化罩03对天线进行遮盖。由图1、图2以及图3所示出的结构可知,天线装置虽然采用美化罩03遮盖将柱状主体01一端侧的全向天线02遮盖,使全向天线02收纳至产品内部,但是产品的整体长度被全向天线02拉长,增大了整个天线装置产品的尺寸,使得整个天线装置产品较为显眼。反之,当以控制天线装置整体尺寸为前提时,天线装置预留给天线的安装空间较小。这就使得全向天线长度受限,而全向天线的长度减小会导致天线增益过小。而且,多组全向天线放置在较小的安装空间内时,各天线之间的天线和电路板会发生相互影响,产生遮挡或反射现象。
综上所述,天线装置在保持天线高增益的前提下,天线装置的尺寸就会变大,而在保持天线装置尺寸的前提下,天线的增益就会减小,天线装置小型化与天线高增益这两个需求不能同时满足。
发明内容
本申请提供一种准全向天线及信号收发设备,以在缩小天线装置体积的同时,保证天线的高增益。
一方面,本申请提供一种准全向天线,该准全向天线可以直接挂设在墙壁上,也可以通过安装杆设置在安装区域内。可选地,当安装区域为操场时,该准全向天线一般安装于操场的边缘,由于人群分布和安装杆体的影响,天线实现后向辐射的重要性不大。基于此,当安装区域为操场时,可以通在安装区域的边缘竖立杆柱,在杆柱上安装该准全向天线。 此时,该准全向天线内的金属背壳朝向安装区域的边缘,相应的,与金属背壳相对设置的前壳朝向安装区域内部。至于位于前向天线两侧区域、相对设置的两个侧位天线,每个侧位天线内的金属地与金属背壳之间信号连接。金属背壳作为侧位天线金属地的一部分,该结构可以扩大侧位天线内金属地的总面积,使得金属背壳也参与辐射。此时,每个侧位天线辐射出的能量分布在金属背壳与安装区域边界之间的区域,而不是被金属背壳反射。基于此,每个侧位天线的辐射区域与前向天线的辐射区域之间形成重叠区域,能够避免侧位天线与前向天线间产生辐射缺口,从而提升该准全向天线的增益。
该准全向天线由两个侧位天线以及一个前向天线组合而成,侧位天线与前向天线只要在设置时合理利用壳体内部空间,即能够满足天线装置的小型化需求。而且,该准全向天线中,每个侧位天线内部的金属地与金属背壳连接,使得金属背壳也参与辐射,不再对侧位天线产生的能量进行反射,使得每个侧位天线的辐射能量同时分布在前后两侧,从而扩大每个侧位天线辐射能量的分布范围,进而提升该准全向天线的增益。
在具体设置该准全向天线时,基于平面倒F型天线(planner inverted F antenna,PIFA)在自身辐射中心两侧的辐射对称特性。可选地,第一侧位天线和第二侧位天线均采用PIFA天线,且设置前向天线的辐射范围为60°~80°,避免侧位天线与前向天线间产生辐射缺口,从而可以提升该准全向天线的增益。至于第一重叠区域与第二重叠区域的形状以及面积大小,则可以相同或者不同,在此不做限定。
在具体设置每个侧位天线的金属地与金属背壳时,一个可能实现的方式中:在金属背壳上直接搭接侧位天线金属地;另一个可能实现的方式中:侧位天线的金属地与金属背壳间耦合。可选地,第一侧位天线的金属地与金属背壳的信号连接方式为上述两种方式中的任意一种。同样可选地的,第二侧位天线的金属地与金属背壳的信号连接方式也为上述两种方式中的任意一种。即每个准全向天线中,第一侧位天线的金属地与金属背壳的连接方式与第二侧位天线的金属地与金属背壳的连接方式可以相同也可以不同。当采用侧位天线的金属地与金属背壳间耦合时,需要在金属地与金属背壳间形成小于1毫米(mm)的间隙。
在具体设置前向天线与侧位天线时,可以按照需求设置前向天线包括的前向单元数量,以及,每个侧位天线包括的侧位天线单元数量。具体来说,每个前向单元包括一个或者多个前向天线单元,同样的,每个侧位天线包括一个或者多个侧位天线单元。当前向天线包括不止一个单元和/或每个侧位天线包括不止一个单元时,该准全向天线即可以满足多进多出(multiple input,multiple output,MIMO)技术。该技术能充分利用空间资源,通过该准全向天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
另一方面,本申请还提供了一种信号收发设备,该信号收发设备包括准全向天线,准全向天线为上述技术方案中的任意一种准全向天线。该准全向天线由两个侧位天线以及一个前向天线组合而成,侧位天线与前向天线在设置上合理利用壳体内部空间,从而满足天线装置的小型化需求。而且,该准全向天线中,每个侧位天线内部的金属地与金属背壳连接,使得金属背壳也参与辐射,不再对侧位天线产生的能量进行反射,使得每个侧位天线的辐射能量同时分布在前后两侧,扩大每个侧位天线辐射能量的分布范围,进而提升该信号收发设备内准全向天线的增益。
附图说明
图1为一种天线产品结构示意图;
图2为一种天线产品结构示意图;
图3为一种天线产品结构示意图;
图4为本申请实施例提供的一种准全向天线的结构示意图;
图5为本申请实施例提供的一种准全向天线的结构示意图;
图6为本申请实施例提供的一种准全向天线的结构示意图;
图7为本申请实施例提供的一种准全向天线的结构示意图;
图8为对应图4中准全向天线的内部结构示意图;
图9为对应图4中准全向天线的内部结构示意图;
图10为对应图9中结构的准全向天线辐射角度的示意简图;
图11为本申请实施例提供的准全向天线的方向图;
图12为对应图11的准全向天线的实测组合方向图;
图13为图4中结构沿延伸方向的截面示意图;
图14为本申请实施例提供的一种准全向天线的内部结构示意图;
图15为本申请实施例提供的一种准全向天线的内部结构示意图;
图16为本申请实施例提供的一种准全向天线的内部结构示意图;
图17为本申请实施例提供的一种准全向天线的内部结构示意图;
图18为本申请实施例提供的一种信号收发设备的结构示意图。
具体实施方式
首先介绍一下本申请的应用场景:基于全向天线成本低以及易于安装的优点,在室外WLAN覆盖场景中,一般会采用全向天线。目前,全向天线被收纳至天线装置内部,以对天线装置进行美化,满足用户的观赏性需求。但是,天线装置在将全向天线融合至装置内部时,若要保持天线高增益,则无法减小天线装置的体积;若要保持天线装置整体小型化,则无法保证天线的高增益。
基于上述应用场景,本申请实施例提供了一种准全向天线,以在缩小天线体积的同时,保证天线的高增益。该全向天线可以直接挂设在墙壁上,也可以通过安装杆设置在安装区域内。示例性地,当安装区域为操场时,由于人群分布和安装杆体的影响,天线在后向辐射的重要性不大。因此,可以在安装区域的边缘竖立杆柱,在杆柱上安装该准全向天线。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供一种准全向天线。可选地,该准全向天线的壳体1形状为如图4所示出的圆柱体、如图5所示出的长方体、如图6所示出的球形以及如图7所述示出的不规 则状。当然,壳体1的形状还可以为其他形状,在此不再赘述。现以准全向天线的壳体1为如图4所示出的圆柱体为例进行说明。图8对应图4中准全向天线的内部结构示意图。如图8中所示出的结构,本申请实施例提供的准全向天线包括圆柱状的壳体1、前向天线2和置于前向天线2两侧的两个侧位天线3。其中,壳体1由两部分形成。一部分为用于朝向安装区域边界的金属背壳11。该金属背壳11一方面发挥散热的作用,另一方面配合前壳12构成封闭的整机结构。另一部分为前壳12。可选地,该前壳12可由塑料制备,也可以由金属等其他材料制备。应理解,前壳12与金属背壳11的配合形式并不限于该图中的结构。
如图9示出的结构,本申请实施例提供的壳体1内设置有一个前向天线2、一个第一侧位天线31和一个第二侧位天线32,三个天线均置于壳体1内部,且三个天线在空间布局上合理,能够缩小壳体1的体积,进而缩小该准全向天线的体积。为了便于对该准全向天线的结构进行清晰的描述,将A方向称为壳体1的正前方,C方向称为壳体1的正后方,B方向称为壳体1的正左侧,D方向称为壳体1的正右侧。同时规定,前向天线2在辐射中心的辐射方向朝向A方向;第一侧位天线31在辐射中心的辐射方向朝向B方向,第二侧位天线32在辐射中心的辐射方向朝向D方向。应理解,此处规定仅是为了便于对该准全向天线进行清晰的描述,在实际应用中,前向天线2在辐射中心的辐射方向、第一侧位天线31在辐射中心的辐射方向以及第二侧位天线32在辐射中心的辐射方向可以根据设计需求进行变化,并不限制于上述结构。现结合以上具体结构,同时以第一侧位天线31与第二侧位天线32均为PIFA天线进行说明。
图10为对应图9中结构的准全向天线辐射角度的示意简图。请参见图10,前向天线2的辐射角度为a1,a1可以为60°~80°。第一侧位天线31的辐射角度范围为a2,a2的范围可以为0°~180°。同样的,第二侧位天线32的辐射角度范围为a3,a3的范围可以为0°~180°。具体来说,本申请实施例提供的准全向天线内第一侧位天线31的金属地与金属背壳11间信号连接,将金属背壳11作为第一侧位天线31地的一部分,扩大了第一侧位天线31的地的面积。此时,第一侧位天线31向后方辐射的能量,即c1角度范围内的能量不再被金属背壳11反射。至于信号连接的方式可以采用直接搭接的方式,也可以在第一侧位天线31的金属地与金属背壳11间设置小于1mm间隙的耦合方式。同样的,基于相同的原理,第二侧位天线32向后方辐射的能量,即c2角度范围内的能量也不再被金属背壳11反射。此外,应理解a3与a2的大小可以相同也可以不同。在具体设置a3与a2时,为了避免第一侧位天线31与前向天线2间和/或第二侧位天线32与前向天线2间产生辐射缺口,第一侧位天线31的辐射区域与前向天线2的辐射区域间存在第一重叠区域b1,第二侧位天线32的辐射区域与前向天线2的辐射区域间存在第二重叠区域b2。应理解,b1与b2的大小可以相同也可以不同。结合图10参见图11,如图11所示为准全向天线的辐射方向图,其中,线L围成的区域由前向天线2辐射形成,线M围成的区域由第一侧位天线31辐射形成,线N围成的区域由第二侧位天线32辐射形成。具体如图10和图11所示,第一侧位天线31和第二侧位天线32在前后两个方向上均有辐射能量分布,扩大了第一侧位天线31和第二侧位天线32辐射能量的分布范围。在此基础上,图12所示为对应图11的准全向天线的实测组合方向图,由图12可知,本申请实施例提供的准全向天线的能量分布范围广,可以提升该准全向天线的增益。
可选地,如图13所示,在本申请实施例提供的准全向天线的壳体1内,设置:前向 天线2可以包括一个或者多个前向天线单元21。第一侧位天线31可以包括一个或者多个第一侧位天线单元311,每个第一侧位天线单元311即为一个PIFA天线。应理解,多个第一侧位天线单元311采用的PIFA天线可以不相同,即每个PIFA天线可以根据使用需求进行变化。同样的,第二侧位天线32可以包括一个或者多个第二侧位天线单元321,每个第二侧位天线单元321,即为一个PIFA天线。多个第二侧位天线单元321采用的PIFA天线也可以不相同,即每个PIFA天线可以根据使用需求进行变化。在具体设置上述数量时存在多种实施方式,包括但不限于以下几个实施方式。
实施方式一:结合图13参见图14,壳体1内的前向天线2包括一个前向天线单元21,第一侧位天线31包括一个第一侧位天线单元311(由于视图角度问题,图14中未示出),第二侧位天线32一个第二侧位天线单元321。
实施方式二:该实施方式在实施方式一基础上形成,其与实施方式一的区别点在于,第二侧位天线32包括多个第二侧位天线单元321。
实施方式三:该实施方式在实施方式一基础上形成,其与实施方式一的区别点在于,第一侧位天线31包括多个第一侧位天线单元311。
实施方式四:该实施方式在实施方式一基础上形成,其与实施方式一的区别点在于:第一侧位天线31包括多个第一侧位天线单元311,且第二侧位天线32包括多个第二侧位天线单元321。
结合图13来看,上述实施方式一至实施方式四中,仅是对壳体1内设置的第一侧位天线31所包含第一侧位天线单元311,以及,第二侧位天线32所包含的第二侧位天线单元321的数量进行一个或者多个的变化,始终控制前向天线2包括一个前向天线单元21。应理解,当前向天线2包括多个前向天线单元21时,还存在以下几个实施方式。
实施方式五;该实施方式在实施方式一基础上形成,其与实施方式一的区别点在于,前向天线2包括多个前向天线单元21。
实施方式六:该实施方式在实施方式二基础上形成,其与实施方式一的区别点在于,前向天线2包括多个前向天线单元21。
实施方式七;该实施方式在实施方式三基础上形成,其与实施方式一的区别点在于,前向天线2包括多个前向天线单元21。
实施方式八:该实施方式在实施方式四基础上形成,其与实施方式一的区别点在于,前向天线2包括多个前向天线单元21。
需要说明的是,上述实施方式五将实施方式一中的前向天线2内的前向天线单元21数量由“一个”变为多个,仅是数量上的变更,因此未以图示出;同样的,上述实施方式六将实施方式二中的前向天线2内的前向天线单元21数量由“一个”变为多个,仅是数量上的变更,因此未以图示出;同样的,上述实施方式七将实施方式三中的前向天线2内的前向天线单元21数量由“一个”变为多个,仅是数量上的变更,因此未以图示出;同样的,上述实施方式八将实施方式四中的前向天线2内的前向天线单元21数量由“一个”变为多个,仅是数量上的变更,因此未以图示出。
值得注意的是,上述各实施例中的“多个”指大于1的任意整数。应理解,前向天线2对应的“多个”,第一侧位天线31对应的“多个”以及第二侧位天线32对应的“多个”可以相同或者不同。当前向天线2、第一侧位天线31以及第二侧位天线32将各自对应的“多个”设成大于1的任意整数时,还可在实施例方式二至实施方式八的基础上组合形成 多个具体实施方式,例如,第一侧位天线31包括两个第一侧位天线单元311,第二侧位天线32包括三个第二侧位天线单元321,前向天线2包括五个前向天线单元21,在此不再赘述。
需要说明的是,当设置各实施例中的多个指大于1的任意整数,该准全向天线即可以满足MIMO技术。该技术能充分利用空间资源,通过该准全向天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
在具体设置本申请实施例提供的准全向天线时,图15为图4中结构沿柱状的壳体1长度延伸方向形成的截面示意图。结合图4参见图15,可以在壳体1内部设置第一安装板4和第二安装板5,且利用支撑结构将第二安装板5平行设置于第一安装板4背离金属背壳11的一侧;在第二安装板5背离金属背壳11的一侧形成用于安装前向天线2的安装面,且在第二安装板5与第一安装板4之间形成有用于放置侧位天线3的容纳腔6。
另外,此处的容纳腔6应该与侧位天线3满足一一对应的关系,例如图16所示出的结构,当前向天线单元21与第二侧位天线单元321的数量均为一个时,安装面上安装一个前向天线单元21,且在前向天线单元21的相对两侧设置容纳腔6。具体来说,设置放置第二侧位天线单元321一侧的容纳腔6的数量为1,该容纳腔6内部设置有一个第二侧位天线单元321。
又例如图17所示出的结构,当前向天线单元21和第二侧位天线单元321均为两个时,在安装面上设置2个前向天线单元21,使得两个前向天线单元21沿壳体1的柱状延伸方向排列。且在前向天线单元21的相对两侧设置容纳腔6。具体来说,设置放置第二侧位天线单元321一侧的容纳腔6数量为2,每个容纳腔6内放置一个第二侧位天线单元321。
本申请实施例还提供一种信号收发设备,该信号收发设备包括准全向天线,该准全向天线为上述技术方案提供的任意一种准全向天线。在本申请实施例提供的信号收发设备中,如图18所示出的结构,准全向天线的壳体1与安装件7连接。其中,安装件7以杆柱形式示出。应理解,安装件7还可以为其它结构形式,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种准全向天线,其特征在于,包括:壳体,所述壳体包括朝向安装区域边界的金属背壳和与所述金属背壳相对设置的前壳;
    所述壳体内设置有前向天线,所述前向天线用于沿背离所述金属背壳方向辐射;
    所述壳体内还设置有两个侧位天线,所述两个侧位天线中的第一侧位天线和第二侧位天线相对设置在所述前向天线的两侧;所述两个侧位天线中的每个侧位天线的金属地与所述金属背壳信号连接,以使所述每个侧位天线的辐射区域包括所述金属背壳与所述安装区域边界间的至少部分区域;所述每个侧位天线的辐射区域与所述前向天线的辐射区域之间具有重叠区域。
  2. 根据权利要求1所述的准全向天线,其特征在于,所述每个侧位天线为平面倒F型天线。
  3. 根据权利要求2所述的准全向天线,其特征在于,所述每个侧位天线的金属地与所述金属背壳间搭接。
  4. 根据权利要求2所述的准全向天线,其特征在于,所述每个侧位天线的金属地与所述金属背壳间耦合。
  5. 根据权利要求4所述的准全向天线,其特征在于,所述每个侧位天线的金属地与所述金属背壳之间具有间隙,且所述间隙的尺寸小于1毫米。
  6. 根据权利要求2-5任一项所述的准全向天线,其特征在于,所述前向天线的辐射角度范围为60°~80°。
  7. 根据权利要求2-6任一项所述的准全向天线,其特征在于,所述第一侧位天线的辐射区域与所述前向天线的辐射区域之间形成第一重叠区域,所述第二侧位天线的辐射区域与所述前向天线的辐射区域之间形成第二重叠区域,其中:
    所述第一重叠区域与所述第二重叠区域相同;或者,
    所述第一重叠区域与所述第二重叠区域不相同。
  8. 根据权利要求2-7任一项所述的准全向天线,其特征在于,每个所述前向天线包括至少一个前向天线单元;和/或,
    每个所述侧位天线包括至少一个侧位天线单元。
  9. 一种信号收发设备,其特征在于,包括如权利要求1-8任一项所述的准全向天线。
PCT/CN2020/125915 2020-05-21 2020-11-02 一种准全向天线及信号收发设备 WO2021232689A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022570136A JP2023526617A (ja) 2020-05-21 2020-11-02 準全方向性アンテナおよび信号トランシーバ
EP20936617.8A EP4131648A4 (en) 2020-05-21 2020-11-02 QUASI-OMNIDIRECTIONAL ANTENNA AND SIGNAL TRANSMITTING AND RECEIVING DEVICE
KR1020227039389A KR102673808B1 (ko) 2020-05-21 2020-11-02 준-무지향성 안테나 및 신호 송수신기
US18/057,229 US20230077791A1 (en) 2020-05-21 2022-11-28 Quasi-omnidirectional antenna and signal transceiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010438202.XA CN113708065B (zh) 2020-05-21 2020-05-21 一种准全向天线及信号收发设备
CN202010438202.X 2020-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/057,229 Continuation US20230077791A1 (en) 2020-05-21 2022-11-28 Quasi-omnidirectional antenna and signal transceiver

Publications (1)

Publication Number Publication Date
WO2021232689A1 true WO2021232689A1 (zh) 2021-11-25

Family

ID=78645967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125915 WO2021232689A1 (zh) 2020-05-21 2020-11-02 一种准全向天线及信号收发设备

Country Status (5)

Country Link
US (1) US20230077791A1 (zh)
EP (1) EP4131648A4 (zh)
JP (1) JP2023526617A (zh)
CN (1) CN113708065B (zh)
WO (1) WO2021232689A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800248A (zh) * 2011-05-25 2012-11-28 瑞轩科技股份有限公司 具指向性天线的显示装置
CN103996356A (zh) * 2011-05-25 2014-08-20 瑞轩科技股份有限公司 具指向性天线的显示装置
CN108736136A (zh) * 2017-04-20 2018-11-02 惠州硕贝德无线科技股份有限公司 一种应用在移动终端金属外壳上的天线及天线系统
CN208385639U (zh) * 2018-07-11 2019-01-15 Oppo广东移动通信有限公司 电子设备
JP6679120B1 (ja) * 2019-02-01 2020-04-15 Necプラットフォームズ株式会社 無線通信装置およびアンテナ構成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542314A1 (en) * 2003-12-11 2005-06-15 Sony International (Europe) GmbH Three-dimensional omni-directional monopole antenna designs for ultra- wideband applications
JP2010010822A (ja) * 2008-06-24 2010-01-14 Toshiba Corp 電子機器
US9979078B2 (en) * 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
CN104425874B (zh) * 2013-09-10 2017-05-17 启碁科技股份有限公司 天线及电子装置
CN104134861A (zh) * 2014-07-23 2014-11-05 深圳市视晶无线技术有限公司 Mimo天线系统、近似全向的天线装置及其高增益微型天线
GB201515145D0 (en) * 2015-08-26 2015-10-07 Nable It Ltd Mobile communications devices
US11056783B2 (en) * 2018-09-17 2021-07-06 Htc Corporation Communication device and communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800248A (zh) * 2011-05-25 2012-11-28 瑞轩科技股份有限公司 具指向性天线的显示装置
CN103996356A (zh) * 2011-05-25 2014-08-20 瑞轩科技股份有限公司 具指向性天线的显示装置
CN108736136A (zh) * 2017-04-20 2018-11-02 惠州硕贝德无线科技股份有限公司 一种应用在移动终端金属外壳上的天线及天线系统
CN208385639U (zh) * 2018-07-11 2019-01-15 Oppo广东移动通信有限公司 电子设备
JP6679120B1 (ja) * 2019-02-01 2020-04-15 Necプラットフォームズ株式会社 無線通信装置およびアンテナ構成方法

Also Published As

Publication number Publication date
CN113708065A (zh) 2021-11-26
EP4131648A1 (en) 2023-02-08
JP2023526617A (ja) 2023-06-22
CN113708065B (zh) 2023-03-10
EP4131648A4 (en) 2023-10-11
US20230077791A1 (en) 2023-03-16
KR20230002632A (ko) 2023-01-05

Similar Documents

Publication Publication Date Title
US10522900B2 (en) Wireless communication device with leaky-wave phased array antenna
KR102464064B1 (ko) 안테나 및 안테나를 포함하는 무선 통신 장치
US11316263B2 (en) Radiation apparatus
KR102505800B1 (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
CN103915678B (zh) 全向式天线
WO2021104191A1 (zh) 天线单元及电子设备
US20130076582A1 (en) Wireless device and multi-antenna system having dual open-slot radiators
WO2018130097A1 (zh) 一种天线结构及应用于该天线结构的赋形方法
WO2021013010A1 (zh) 天线单元和电子设备
WO2018035209A1 (en) Antenna arrangement for wireless virtual reality headset
WO2022088866A1 (zh) 天线、天线模组和电子设备
CN110112561B (zh) 一种单极化天线
WO2021213182A1 (zh) 一种电子设备及天线装置
CN110808462A (zh) 一种毫米波印刷偶极子天线阵列辐射单元及阵列天线
WO2021232689A1 (zh) 一种准全向天线及信号收发设备
CN110139287A (zh) 一种毫米波室内无源覆盖方法
CN103050775A (zh) 一种加载介质透镜的高增益高效率平板天线
WO2023066206A1 (zh) 电子设备
CN104124517B (zh) 一种缝隙阵列pcb天线
KR102673808B1 (ko) 준-무지향성 안테나 및 신호 송수신기
US10283838B2 (en) Multi-mode mobile device and radiation enhancing device
CN108767496A (zh) 高增益笔形波束和轨道角动量涡旋波束的发生装置
CN204230414U (zh) 一种缝隙阵列pcb天线
WO2024032066A1 (zh) 一种天线系统
WO2022247349A1 (zh) 天线、通信设备、电磁波辐射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227039389

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020936617

Country of ref document: EP

Effective date: 20221026

ENP Entry into the national phase

Ref document number: 2022570136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE