WO2021230639A1 - 충전 심도 설정 장치 및 방법 - Google Patents

충전 심도 설정 장치 및 방법 Download PDF

Info

Publication number
WO2021230639A1
WO2021230639A1 PCT/KR2021/005914 KR2021005914W WO2021230639A1 WO 2021230639 A1 WO2021230639 A1 WO 2021230639A1 KR 2021005914 W KR2021005914 W KR 2021005914W WO 2021230639 A1 WO2021230639 A1 WO 2021230639A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
target
differential
profile
Prior art date
Application number
PCT/KR2021/005914
Other languages
English (en)
French (fr)
Inventor
박상현
권준영
유설
박민수
이진욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180005982.1A priority Critical patent/CN114586258A/zh
Priority to EP21803568.1A priority patent/EP4050753A4/en
Priority to JP2022517830A priority patent/JP7287604B2/ja
Priority to US17/771,395 priority patent/US20220399739A1/en
Publication of WO2021230639A1 publication Critical patent/WO2021230639A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging depth setting apparatus and method, and more particularly, to a charging depth setting apparatus and method capable of setting a charging depth of a battery.
  • Non-Patent Document 1 the non-uniformity of LiC 6 and LiC 12 in the negative electrode of the battery. Accordingly, in order to prevent a reverse voltage of the battery, there is a need for resolving the non-uniformity between LiC 6 and LiC 12 in the negative electrode of the battery.
  • Non-Patent Document 1 J Wilhelm et al., In Situ Neutron Diffraction Study of Lithiation Gradients in Graphite Anodes during Discharge and Relaxation, Journal of The Electrochemical Society, 165(9) A1846-A1856 2018.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a charging depth setting apparatus and method for setting a charging depth of a battery based on a target peak in which the behavior of LiC 12 is most prominent.
  • a charging depth setting apparatus includes a charging/discharging unit configured to charge a battery to a set target voltage and discharge the charged battery; a profile obtaining unit configured to obtain a voltage profile for the capacity and voltage of the battery while the battery is being charged or discharged, and to obtain a differential profile for the capacity and differential voltage of the battery from the obtained voltage profile; and sequentially selecting any one of a plurality of preset voltages in electrical connection with the charging/discharging unit to set the target voltage, and when the profile obtaining unit obtains all of the plurality of differential profiles corresponding to the plurality of voltages, and a processor configured to obtain a feature value for a target peak from each of the plurality of differential profiles, and set a charging depth for the battery based on the obtained plurality of feature values.
  • the processor compares magnitudes of the plurality of acquired feature values, selects one of a plurality of target voltages corresponding to each of the plurality of acquired feature values as a reference voltage according to a comparison result, and selects the selected reference voltage may be configured to set as the charging depth.
  • the processor calculates a difference in magnitude between a plurality of feature values adjacent to a corresponding target voltage, selects a plurality of reference feature values having the largest calculated magnitude difference, and adds the difference in magnitude between the selected reference feature values. Accordingly, any one of the plurality of target voltages may be selected as the reference voltage.
  • the processor may be configured to calculate the difference in magnitude by comparing magnitudes between two adjacent feature values based on the corresponding target voltage.
  • the processor may be configured to select the lowest potential-side target voltage from among a plurality of target voltages corresponding to the plurality of selected reference feature values as the reference voltage.
  • the processor may be configured to select the low potential side target voltage as the reference voltage when a magnitude difference value between the plurality of selected reference feature values is equal to or greater than a predetermined magnitude value.
  • the processor may be configured to select, as the reference voltage, a highest potential side target voltage among the plurality of target voltages when a magnitude difference value between the plurality of selected reference feature values is less than a predetermined magnitude value.
  • the profile obtaining unit may be configured to obtain a differential voltage obtained by differentiating the voltage of the battery by the capacity and a differential profile with respect to the capacity of the battery.
  • the processor determines at least one pair of peaks from each of the plurality of differential profiles, selects a pair of peaks in which differential voltages of a plurality of peaks included in the determined pair of peaks are the most different, and selects a pair of peaks included in the selected pair of peaks. It may be configured to select a mid-low dose side peak as the target peak.
  • the processor may be configured to determine, as a pair of peaks, two peaks located at an upper end and a lower end in a section in which the differential voltage increases as the capacity of the battery increases among the plurality of peaks.
  • the target peak may be a peak related to the behavior of LiC 12 according to the depth of charge in a battery including graphite as an anode active material.
  • the processor may be configured to obtain a plurality of normal distribution profiles by normalizing each of the plurality of differential profiles, and to obtain a full width at half maximum for a corresponding target peak in each of the obtained plurality of normal distribution profiles as the feature value. have.
  • An apparatus for manufacturing a battery according to another aspect of the present invention may include the charging depth setting apparatus according to an aspect of the present invention.
  • a charging depth setting method includes: a target voltage setting step of sequentially selecting any one of a plurality of preset voltages and setting a target voltage; a charging/discharging step of charging the battery to the target voltage and discharging the charged battery; a voltage profile obtaining step of obtaining a voltage profile with respect to the capacity and voltage of the battery while the battery is being charged or discharged; a differential profile acquiring step of acquiring a differential profile for the capacity and differential voltage of the battery from the acquired voltage profile; a differential profile repeatedly acquiring step of acquiring all of a plurality of differential profiles corresponding to the plurality of voltages; a feature value acquisition step of acquiring a feature value for a target peak in each of the plurality of differential profiles; and a charging depth setting step of setting a charging depth for the battery based on the plurality of acquired feature values.
  • the charging depth at which the performance of the battery can be maximized can be set while the occurrence of the reverse voltage of the battery is suppressed.
  • FIG. 1 is a diagram schematically illustrating a charging depth setting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating an exemplary configuration of an apparatus for manufacturing a battery including a charging depth setting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating an embodiment of a differential profile obtained by the charging depth setting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating an embodiment of a plurality of differential profiles obtained by the charging depth setting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating an embodiment of feature points of a plurality of target peaks obtained by the apparatus for setting a charging depth according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a charging depth setting method according to another embodiment of the present invention.
  • a term such as a processor described in the specification means a unit for processing at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • FIG. 1 is a diagram schematically illustrating a charging depth setting apparatus 100 according to an embodiment of the present invention.
  • 2 is a diagram schematically illustrating an exemplary configuration of a battery manufacturing apparatus 1 including the charging depth setting apparatus 100 according to an embodiment of the present invention.
  • the battery manufacturing apparatus 1 may be applied in a process in which the battery B is manufactured.
  • the battery manufacturing apparatus 1 may be applied during an activation process among various processes in which the battery B is manufactured.
  • the charging depth setting apparatus 100 may include a charging/discharging unit 110 , a profile acquiring unit 120 , and a processor 130 .
  • the battery (B) means one independent cell having a negative terminal and a positive terminal and physically separable.
  • one pouch-type lithium polymer cell may be regarded as the battery (B).
  • the charging/discharging unit 110 may be configured to charge the battery B to a set target voltage.
  • the target voltage at which charging of the battery B is completed may be set by the processor 130 .
  • the charging/discharging unit 110 may obtain information on the target voltage from the processor 130 to charge the battery B to the target voltage.
  • the charging/discharging unit 110 may be electrically connected to the battery B .
  • the charging/discharging unit 110 may charge the battery B until the voltage of the battery B reaches a target voltage.
  • the charging/discharging unit 110 may be configured to discharge the charged battery B.
  • the completion of charging means that the voltage of the battery B has reached the target voltage. That is, after charging the battery B to the target voltage, the charging/discharging unit 110 may discharge the battery B again. For example, before the produced battery B is shipped, an activation process for the battery B may be performed while being charged and discharged by the charging/discharging unit 110 .
  • the charging/discharging unit 110 may discharge the battery B at a low rate.
  • the charging/discharging unit 110 may discharge the battery B at a seed rate of 0.33C or less. More preferably, the charging/discharging unit 110 may discharge the battery B at a seed rate of 0.05C.
  • the profile obtaining unit 120 may obtain a differential profile 20 , and in this differential profile 20 , the battery B is A plurality of peaks representing voltage behavior may be included. Since these peaks appear more accurately without being crushed or omitted when discharging at a low rate, the charging/discharging unit 110 may discharge the battery B at a low rate.
  • the profile obtaining unit 120 may be configured to obtain a voltage profile with respect to the capacity and voltage of the battery B while the battery B is being charged or discharged.
  • the profile acquisition unit 120 may measure the voltage across the battery (B) and the current of the battery (B). For example, in the embodiment of FIG. 2 , the profile obtainer 120 may measure the voltage of the battery B through the first sensing line SL1 and the second sensing line SL2 . In addition, the profile obtaining unit 120 may be connected to the current measuring unit A provided in the large current path of the battery B through the third sensing line SL3 . Accordingly, the profile acquisition unit 120 may measure the current of the battery B through the third sensing line SL3 .
  • the voltage profile may be a profile representing the voltage of the battery B with respect to the capacity of the battery B. More specifically, the voltage profile may be represented by a two-dimensional graph in which the X-axis is the capacity of the battery B and the Y-axis is the voltage of the battery B.
  • the profile obtaining unit 120 may obtain a voltage profile while the battery B is being charged and/or discharged, but it is assumed that the voltage profile is obtained during the discharging of the battery B for convenience of explanation. to explain
  • the profile acquisition unit 120 may be configured to acquire a differential profile 20 for the capacity and differential voltage of the battery B from the acquired voltage profile. Specifically, the profile obtaining unit 120 may be configured to obtain a differential voltage obtained by differentiating the voltage of the battery B by its capacity and a differential profile 20 for the capacity of the battery B.
  • the differential profile 20 may be a profile representing the differential voltage of the battery B with respect to the capacity of the battery B.
  • the differential voltage may be a value (dV/dQ) obtained by differentiating the voltage of the battery B by the capacity of the battery B.
  • the differential profile 20 may be represented by a two-dimensional graph in which the X-axis is the capacity of the battery B and the Y-axis is the differential voltage of the battery B.
  • FIG 3 is a diagram schematically illustrating an embodiment of the differential profile 20 obtained by the charging depth setting apparatus 100 according to an embodiment of the present invention.
  • FIG. 3 is a differential profile 20 obtained by the profile acquisition unit 120 in a process in which the battery B charged to 4.3 [V] is discharged to 2.0 [V].
  • the target voltage of the battery B corresponding to the corresponding differential profile 20 is 4.3 [V].
  • the differential profile 20 includes a plurality of peaks, and in order to clearly show the plurality of peaks, the battery B was discharged at a citrate of 0.05C.
  • the peak is a point corresponding to an inflection point in the voltage profile, and may mean a point having an instantaneous slope of 0 in the differential profile 20 .
  • the differential profile 20 of the embodiment of FIG. 3 includes a first peak (P1), a second peak (P2), a third peak (P3), a fourth peak (P4), a fifth peak (P5), and a sixth A peak P6 and a seventh peak P7 may be included.
  • the processor 130 may be electrically connected to the charging/discharging unit 110 and may be configured to sequentially select any one of a plurality of preset voltages and set it as the target voltage.
  • the plurality of preset voltages may be set according to the maximum available voltage of the battery (B).
  • the plurality of voltages preset for the battery B are a first target voltage of 4.0 [V], a second target voltage of 4.1 [V], a third target voltage of 4.2 [V], and a third target voltage of 4.3 [V]. It may be the fourth target voltage.
  • the plurality of voltages are set to four voltages according to the 0.1 [V] voltage interval, but the voltage interval between the plurality of voltages is narrower in order to more accurately set the charging depth of the battery (B), the set plurality Note that the number of voltages may be increased.
  • the processor 130 may set the target voltage to 4.3 [V], and transmit the set target voltage 4.3 [V] to the charging/discharging unit 110 . Thereafter, the charging/discharging unit 110 charges the battery B until the voltage of the battery B reaches 4.3 [V], and then the battery B until the voltage of the battery B reaches 2.0 [V]. (B) can be discharged.
  • the profile obtaining unit 120 may measure the voltage and current of the battery B, and may obtain the differential profile 20 based on the measured voltage and current.
  • the processor 130 is configured to obtain a feature value for a target peak from each of the plurality of differential profiles when the profile acquiring unit 120 acquires all of the plurality of differential profiles corresponding to the plurality of voltages.
  • the processor 130 may be electrically connected to the profile obtaining unit 120 . That is, the processor 130 may determine whether the profile obtaining unit 120 has obtained the differential profile 20 corresponding to any one target voltage. Then, when the profile obtaining unit 120 obtains the differential profile 20 corresponding to any one target voltage, the processor 130 sets a voltage that does not overlap with the corresponding target voltage among a plurality of preset voltages as the target voltage. can be set.
  • FIG. 4 is a diagram schematically illustrating an embodiment of a plurality of differential profiles 21 , 22 , 23 , and 24 obtained by the charging depth setting apparatus 100 according to an embodiment of the present invention.
  • the plurality of voltages are a first target voltage of 4.0 [V], a second target voltage of 4.1 [V], a third target voltage of 4.2 [V], and a fourth target voltage of 4.3 [V]. Assume it is preset to voltage.
  • the processor 130 may set 4.0 [V] among the plurality of voltages as the first target voltage, and transmit the set first target voltage to the charging/discharging unit 110 .
  • the profile acquisition unit 120 may acquire the first differential profile 21 while the battery B charged to the first target voltage is discharged.
  • the processor 130 may set 4.1 [V] among the plurality of voltages as the second target voltage, and transmit the set second target voltage to the charging/discharging unit 110 .
  • the profile acquisition unit 120 may acquire the second differential profile 22 while the battery B charged to the second target voltage is discharged.
  • the processor 130 may set 4.2 [V] among the plurality of voltages as the third target voltage, and transmit the set third target voltage to the charging/discharging unit 110 .
  • the profile acquisition unit 120 may acquire the third differential profile 23 while the battery B charged to the third target voltage is discharged.
  • the processor 130 may set 4.3 [V] among the plurality of voltages as the fourth target voltage, and transmit the set fourth target voltage to the charging/discharging unit 110 .
  • the profile acquisition unit 120 may acquire the fourth differential profile 24 while the battery B charged to the fourth target voltage is discharged.
  • the processor 130 selects the target peaks Tp1, Tp2, Tp3, and Tp4 from each of the first differential profile 21 to the fourth differential profile 24, and calculates a feature value of the selected target peak. .
  • the target peak may be any one selected from among a plurality of peaks included in the differential profile.
  • the target peak may be a peak related to the behavior of LiC 12 according to the depth of charge in the battery (B) including graphite as an anode active material.
  • the fourth peak P4 among the plurality of peaks P1 to P7 may be selected as the target peak. Details of the processor 130 selecting the target peak will be described later.
  • the processor 130 selects the first target peak Tp1 from the first differential profile 21 and selects the second target peak Tp2 from the second differential profile 22 .
  • the processor 130 may select the third target peak Tp3 from the third differential profile 23 and select the fourth target peak Tp4 from the fourth differential profile 24 .
  • the feature value of the target peak may be a value selected to obtain a difference between the target peaks Tp1 , Tp2 , Tp3 , and Tp4 selected from each of the plurality of differential profiles 21 , 22 , 23 , and 24 .
  • the characteristic value of the target peak may include a capacitance value, a differential voltage value, or a full width at half maximum (FWHM) of the target peak.
  • the feature value of the target peak may be a full width at half maximum.
  • the full width at half maximum may also be expressed as full width at half maximum, full width at half maximum, full width at half maximum or full width at half maximum.
  • FIG. 5 is a diagram schematically illustrating an embodiment of feature points of a plurality of target peaks Tp1 , Tp2 , Tp3 , and Tp4 obtained by the charging depth setting apparatus 100 according to an embodiment of the present invention.
  • the processor 130 calculates a feature value of each of the first target peak Tp1 , the second target peak Tp2 , the third target peak Tp3 , and the fourth target peak Tp4 .
  • the feature value calculated in the embodiment of FIG. 5 may be the full width at half maximum with respect to the target peak.
  • the processor 130 may be configured to set the charging depth for the battery B based on the plurality of acquired feature values.
  • the charge depth is a value set in the activation process of the battery B, and may mean a maximum allowable charge voltage for the battery B set to prevent a reverse voltage from being generated in the battery B. .
  • a reverse voltage may be generated in some batteries B due to various causes. Since the battery (B) in which the reverse voltage is generated has a problem in that the voltage increases over time, unlike the battery (B) in which the reverse voltage is not generated, the charging depth is lowered from the process stage (particularly, the activation process stage). It is important to set. Since it is necessary to experimentally confirm whether the reverse voltage is generated in the battery B, the processor 130 determines whether the reverse voltage is generated based on the characteristic values of a plurality of target peaks for one battery B. It may be determined whether the battery B has a possibility, and the charging depth of the battery B may be appropriately set according to the determination result.
  • the processor 130 performs the feature value of the first target peak Tp1 , the feature value of the second target peak Tp2 , the feature value of the third target peak Tp3 , and the fourth
  • the characteristic values of the target peak Tp4 may be compared, and 4.2 [V], which is a target voltage corresponding to the third differential profile 23 , may be set as the charging depth for the battery B based on the comparison result.
  • the charging depth setting apparatus 100 sets the charging depth corresponding to the battery B from the activation process step to prevent a reverse voltage from being generated in the battery B in advance. can Accordingly, since the deterioration rate of the battery B is slowed and the battery B can be used for a longer period of time, economical efficiency and eco-friendliness can be secured. In addition, since an appropriate charging depth is set for each of the batteries B, an accident that may occur due to a reverse voltage of the battery B can be prevented in advance.
  • the processor 130 provided in the charging depth setting device 100 includes a processor 130 known in the art, an application-specific integrated circuit (ASIC), another chipset, It may optionally include logic circuits, registers, communication modems, data processing devices, and the like.
  • ASIC application-specific integrated circuit
  • the processor 130 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the processor 130 .
  • the memory may be inside or outside the processor 130 , and may be connected to the processor 130 by various well-known means.
  • the charging depth setting apparatus 100 may further include a storage unit 140 .
  • the storage unit 140 may store programs and data necessary for the processor 130 to set the charging depth of the battery B. That is, the storage unit 140 may store data necessary for each component of the charging depth setting apparatus 100 to perform an operation and function, a program or data generated while the operation and function are performed.
  • the storage unit 140 is not particularly limited in its type as long as it is a known information storage means capable of writing, erasing, updating, and reading data.
  • the information storage means may include a RAM, a flash memory, a ROM, an EEPROM, a register, and the like.
  • the storage unit 140 may store program codes in which processes executable by the processor 130 are defined.
  • a plurality of voltage profiles and a plurality of differential profiles 21 , 22 , 23 , and 24 acquired by the profile acquiring unit 120 may be stored in the storage 140 . Then, the processor 130 directly acquires the differential profiles 21 , 22 , 23 , 24 from the profile acquiring unit 120 , or accesses the storage 140 and stores the stored differential profiles 21 , 22 , 23 , 24) can be obtained.
  • the charging depth of the battery B set by the processor 130 may be stored in the storage unit 140 .
  • the charging depth set by the processor 130 may be stored for each battery B in the storage unit 140 .
  • the charging depth of the battery B stored in the storage 140 may be stored in a battery management system (BMS) configured to manage the battery B or a storage unit connected to the battery management system.
  • BMS battery management system
  • the charging depth setting apparatus 100 sets the charging depth corresponding to the individual battery B, and applies the set charging depth to the battery management system configured to manage the individual battery B. can provide Accordingly, when the battery B is shipped and used, it is possible to prevent a reverse voltage from being generated in the battery B according to the charging depth set by the charging depth setting apparatus 100 . In addition, the deterioration of the battery (B) proceeds slowly, the lifespan of the battery (B) may be increased.
  • the processor 130 may be configured to compare magnitudes of the plurality of acquired feature values.
  • the processor 130 may calculate a difference in magnitude between a plurality of feature values adjacent to a corresponding target voltage. More specifically, the processor 130 may calculate the magnitude difference value by comparing magnitudes between two adjacent feature values based on the corresponding target voltage.
  • the characteristic values adjacent to the corresponding target voltages are the characteristic value of the first target peak Tp1 , the characteristic value of the second target peak Tp2 , and the characteristic value of the second target peak Tp2 . and the feature value of the third target peak Tp3, and the feature value of the third target peak Tp3 and the feature value of the fourth target peak Tp4.
  • the processor 130 may calculate a first magnitude difference value D1 between the feature value of the first target peak Tp1 and the feature value of the second target peak Tp2 .
  • the processor 130 may calculate a second magnitude difference value D2 between the feature value of the second target peak Tp2 and the feature value of the third target peak Tp3 .
  • the processor 130 may calculate a third magnitude difference value D3 between the feature value of the third target peak Tp3 and the feature value of the fourth target peak Tp4 .
  • the processor 130 may be configured to select one of a plurality of target voltages corresponding to each of the plurality of acquired feature values as a reference voltage according to a comparison result. In addition, the processor 130 may be configured to set the selected reference voltage as the charging depth.
  • the processor 130 may be configured to select a plurality of reference feature values having the largest calculated magnitude difference values. In addition, the processor 130 may be configured to select any one of the plurality of target voltages as the reference voltage according to a difference in magnitude between the plurality of selected reference feature values.
  • the processor 130 may compare the first magnitude difference value D1 , the second magnitude difference value D2 , and the third magnitude difference value D3 . Since the third magnitude difference value D3 is larger than the first magnitude difference value D1 and the second magnitude difference value D2, the processor 130 determines the feature value of the third target peak Tp3 and the fourth target value. A feature value of the peak Tp4 may be selected as a reference feature value. In addition, the processor 130 may select one of the third target voltage corresponding to the third target peak Tp3 and the fourth target voltage corresponding to the fourth target peak Tp4 as the reference voltage.
  • the processor 130 may be configured to select the lowest potential-side target voltage from among a plurality of target voltages corresponding to the plurality of selected reference feature values as the reference voltage.
  • the processor 130 may select a third target voltage on the lower potential side among the third target voltage and the fourth target voltage as the reference voltage. That is, the processor 130 selects two reference feature values having the largest difference in magnitude, and uses a lower target voltage among two target voltages corresponding to each of the two selected reference feature values as the charging depth of the battery B. can be set.
  • the charging depth setting apparatus 100 can set the charging depth at which the performance of the battery B can be maximized while suppressing the occurrence of the reverse voltage of the battery B.
  • the processor 130 may be configured to select the low potential side target voltage as the reference voltage when a difference in magnitude between the plurality of selected reference feature values is greater than or equal to a predetermined magnitude value.
  • the predetermined size value may be set to a predetermined value.
  • the predetermined size value may be set to any one of 0.5 or more and less than 1.
  • the predetermined size value may be set to a value twice as large as a second largest size difference value among the plurality of size difference values.
  • the plurality of magnitude difference values are a first magnitude difference value D1 , a second magnitude difference value D2 , and a third magnitude difference value D3 .
  • the third size difference value D3 is the largest among the plurality of size difference values
  • the first size difference value D1 is the second largest. Accordingly, the predetermined size value may be set to a value twice the first size difference value D1.
  • the processor 130 sets a predetermined size value in such a manner to determine the charging depth of the battery B when the size difference value between the plurality of reference feature values is significantly different from the size difference value between the remaining feature values. can be set appropriately.
  • the processor 130 selects the low potential side target voltage from among the plurality of target voltages corresponding to the plurality of reference characteristic values only when the magnitude difference value between the plurality of reference characteristic values is equal to or greater than a predetermined magnitude value. It can be set to the depth of charge of the battery (B). Conversely, the processor 130 may be configured to select the highest potential side target voltage among the plurality of target voltages as the reference voltage when the magnitude difference value between the plurality of selected reference feature values is less than a predetermined magnitude value. .
  • the processor 130 may compare the magnitude between the third magnitude difference value D3 and a predetermined magnitude value. If the third magnitude difference value D3 is equal to or greater than a predetermined magnitude value, the processor 130 may control the third target voltage corresponding to the plurality of reference feature values and the third target voltage corresponding to the low potential side of the fourth target voltage.
  • the target voltage may be set as the charging depth of the battery B.
  • the processor 130 sets the charging depth of the battery B to the high potential side target voltage among the plurality of target voltages corresponding to the plurality of reference characteristic values. is set, it may be determined that a reverse voltage will be generated in the battery B. Accordingly, in order to prevent a reverse voltage from being generated in the battery B, the processor 130 sets the charging depth of the battery B as a target voltage on the low potential side among a plurality of target voltages corresponding to a plurality of reference feature values. can be set.
  • the processor 130 may generate the first target voltage 4.0 [V], the second target voltage, and the third target voltage. , and a fourth target voltage that is a target voltage on the highest potential side among the fourth target voltages may be set as the charging depth of the battery B.
  • the processor 130 may determine that the reverse voltage of the battery B will not be generated if all the magnitude difference values between the feature values of the plurality of target peaks are less than a predetermined magnitude value. Accordingly, in order to maximize the performance of the battery B, the processor 130 may set the charging depth of the battery B to the highest potential side target voltage among the plurality of target voltages.
  • the charging depth setting apparatus 100 sets the charging depth of the battery B based on a result of comparing the size difference value between the predetermined size value and the reference feature value, thereby setting the charging depth of the battery ( There is an advantage in that the maximum performance of B) and the suppression of the reverse voltage of the battery (B) can be harmoniously achieved.
  • the processor 130 may be configured to determine one or more pairs of peaks in each of the plurality of differential profiles 21 , 22 , 23 , 24 .
  • the processor 130 includes a first peak P1 , a second peak P2 , a third peak P3 , a fourth peak P4 , a fifth peak P5 , Six peaks (P6) and seventh peaks (P7) can be selected.
  • the processor 130 determines, as a pair of peaks, two peaks located at the upper end and lower end in a section in which the differential voltage increases as the capacity of the battery B increases among the plurality of peaks. can be configured.
  • the second peak P2 and the third peak P3 may be included in a section in which the differential voltage increases as the capacity increases.
  • the second peak P2 and the third peak P3 are located at the lower end and upper end of the section in which the differential voltage is increased, respectively, it may be determined as a single peak pair.
  • the fourth peak P4 and the fifth peak P5 may also be included in a section in which the differential voltage increases as the capacity increases.
  • the fourth peak P4 and the fifth peak P5 are located at the lower end and upper end of the section in which the differential voltage is increased, respectively, it may be determined as a single peak pair.
  • the sixth peak P6 and the seventh peak P7 may be included in a section in which the differential voltage increases as the capacity increases. And, since the sixth peak P6 and the seventh peak P7 are respectively located at the lower end and upper end of the section in which the differential voltage increases, they may be determined as a single peak pair.
  • the processor 130 includes a first pair of peaks including a second peak (P2) and a third peak (P3), a second pair of peaks including a fourth peak (P4) and a fifth peak (P5), and the second peak (P5).
  • a third peak pair including the 6 peak (P6) and the 7th peak (P7) may be determined.
  • the processor 130 may be configured to select a peak pair in which differential voltages of a plurality of peaks included in the determined peak pair are the most different.
  • the processor 130 may calculate a difference between the differential voltages of the second peak P2 and the third peak P3 included in the first peak pair. Also, the processor 130 may calculate a difference between the differential voltages of the fourth peak P4 and the fifth peak P5 included in the second peak pair. Also, the processor 130 may calculate a difference between the differential voltages of the sixth peak P6 and the seventh peak P7 included in the third peak pair. In addition, the processor 130 may select the second peak pair as a peak pair in which differential voltages of a plurality of peaks included among the first peak pair, the second peak pair, and the third peak pair are the most different.
  • the processor 130 may be configured to select a low-capacity peak among a plurality of peaks included in the selected peak pair as the target peak.
  • the processor 130 may select the fourth peak P4 among the fourth peak P4 and the fifth peak P5 included in the second peak pair as the target peak.
  • the processor 130 may select the fourth peak P4 among the fourth peak P4 and the fifth peak P5 included in the second peak pair as the target peak.
  • the battery (B) in which graphite is included as an anode active material it may be a peak related to the behavior of LiC 12 according to the depth of charge.
  • one of the causes of the reverse voltage of the battery B may be non-uniformity between LiC 6 and LiC 12 .
  • the processor 130 selects a target peak in which the behavior of LiC 12 is most prominent in each differential profile 20 in the above-described manner, and compares the characteristic values of the plurality of target peaks.
  • the charging depth of the battery B can be set. That is, LiC 6 and LiC 12 may be uniformly maintained in the battery B to which the charging depth is set by the processor 130 .
  • the conversion of LiC 6 and LiC 12 may proceed rapidly in a predetermined voltage range of, if the non-uniformity of LiC 6 and LiC 12- caused there is a possibility that a reverse voltage is generated in the battery (B).
  • the predetermined voltage range may be 4.2 [V] to 4.3 [V].
  • the charging depth setting apparatus 100 compares the characteristic values of a plurality of target peaks for the battery B and sets the appropriate charging depth for the battery B, so that LiC 6 and LiC It is possible to prevent the rapid phase change of 12 from proceeding. Through this, it is possible to effectively prevent a reverse voltage from being generated in the battery B.
  • the processor 130 may be configured to obtain a plurality of normal distribution profiles by normalizing each of the plurality of differential profiles 21 , 22 , 23 , and 24 .
  • each differential profile 20 may not follow a normal distribution. Accordingly, the processor 130 normalizes each of the plurality of differential profiles 21, 22, 23, and 24 in order to calculate the full width at half maximum for each target peak of the plurality of differential profiles 21, 22, 23, and 24. can Through this process, the processor 130 may acquire a plurality of normal distribution profiles based on the plurality of differential profiles 21 , 22 , 23 , and 24 .
  • the processor 130 may be configured to obtain, as the feature value, a full width at half maximum for a corresponding target peak in each of the plurality of obtained normal distribution profiles.
  • the full width at half maximum may be defined as the difference between values of two independent variables that are half of the maximum value of the function. That is, it is assumed that the function F(X) has a maximum value F(Xmax) at Xmax, and the value of the function F(X) at X1 and X2 decreases to half of the maximum value F(Xmax). That is, F(X1) and F(X2) may be equally expressed as "F(Xmax)/2". In this case, the full width at half maximum is the absolute value of the difference between X1 and X2.
  • a method of calculating the difference between a plurality of full widths at half maximum is recognized as a more stable method than a method of directly comparing the sizes of the plurality of peak values.
  • the differential voltages of the first target peak Tp1 , the second target peak Tp2 , the third target peak Tp3 , and the fourth target peak Tp4 are shown to gradually increase.
  • the feature value of the first target peak Tp1, the feature value of the second target peak Tp2, the feature value of the third target peak Tp3, and the fourth target peak Tp4 The feature values also appear to gradually increase.
  • the differential voltages of the first target peak Tp1 to the fourth target peak Tp4 appear to increase linearly, so that the third target peak Tp3 and the fourth target peak Tp4 ) may be determined to have no significant difference from the differential difference between the remaining target peaks.
  • the third size difference value D3 is clearly different from the first size difference value D1 and the second size difference value D2 .
  • the processor 130 normalizes the plurality of differential profiles 21 , 22 , 23 , and 24 in order to more precisely compare the plurality of target peaks, and each of the plurality of target peaks as a feature value of each of the plurality of target peaks.
  • the full width at half maximum can be calculated. Accordingly, the charging depth setting apparatus 100 according to an embodiment of the present invention has the advantage of being able to set an optimal charging depth for preventing the reverse voltage of the battery B.
  • the charging depth setting apparatus 100 according to the present invention may be provided in the battery manufacturing apparatus 1 . That is, the battery manufacturing apparatus 1 according to the present invention may include the above-described charging depth setting apparatus 100 and one or more batteries B. In addition, the battery manufacturing apparatus 1 may further include electrical equipment (relays, fuses, etc.) and a case.
  • the charging depth setting apparatus 100 may be provided in the battery manufacturing apparatus 1 and may be electrically connected to the battery B.
  • such a battery manufacturing apparatus 1 may be configured in the course of the activation process of the battery (B). That is, the charging depth setting apparatus 100 according to an embodiment of the present invention may be electrically connected to the battery B during the activation process of the battery B to configure the battery manufacturing apparatus 1 . And, during the activation process, the charging depth setting apparatus 100 may set the optimal charging depth of the battery B.
  • FIG. 6 is a diagram schematically illustrating a charging depth setting method according to another embodiment of the present invention.
  • Each step of the charging depth setting method may be performed by the charging depth setting apparatus 100 according to an embodiment of the present invention.
  • content overlapping with the previously described content will be briefly described.
  • the charging depth setting method includes a target voltage setting step (S100), a charging/discharging step (S200), a voltage profile obtaining step (S300), a differential profile obtaining step (S400), and a differential profile repeatedly obtaining step (S500) , a feature value obtaining step (S600), and a charging depth setting step (S700).
  • the target voltage setting step S100 is a step of sequentially selecting any one of a plurality of preset voltages and setting the target voltage as a target voltage, and may be performed by the processor 130 .
  • the plurality of voltages may be preset to 4.0 [V], 4.1 [V], 4.2 [V], and 4.3 [V].
  • the processor 130 may first set 4.0 [V] as the first target voltage.
  • the charging/discharging step S200 is a step of charging the battery B to the target voltage and discharging the charged battery B, and may be performed by the charging/discharging unit 110 .
  • the charging/discharging unit 110 may charge the battery B up to a first target voltage (4.0 [V]) set by the processor 130 .
  • the charging/discharging unit 110 may discharge the battery B at a low rate of 0.05C until the voltage of the battery B reaches 2.0 [V].
  • the voltage profile obtaining step ( S300 ) is a step of obtaining a voltage profile for the capacity and voltage of the battery B in the process of charging and discharging the battery B , and may be performed by the profile obtaining unit 120 . have.
  • the profile obtainer 120 may measure the voltage and current of the battery B while the battery B is being discharged. In addition, the profile obtaining unit 120 may obtain a voltage profile with respect to the capacity of the battery B and the voltage of the battery B .
  • the differential profile acquiring step S400 is a step of acquiring the differential profile 20 for the capacity and differential voltage of the battery B from the acquired voltage profile, and may be performed by the profile acquiring unit 120 .
  • the profile obtaining unit 120 may differentiate the voltage of the battery B by the capacity of the battery B in the voltage profile obtained in the voltage profile obtaining step S300 . That is, the profile obtaining unit 120 obtains the differential profile 20 for the capacity of the battery B and the differential voltage of the battery B (the value obtained by differentiating the voltage of the battery B with the capacity of the battery B). can be obtained
  • the step of repeatedly acquiring the differential profile ( S500 ) is a step of acquiring all of the plurality of differential profiles ( 21 , 22 , 23 , and 24 ) corresponding to the plurality of voltages, and the processor 130 , the charging/discharging unit 110 , and the profile acquisition This may be performed by the unit 120 .
  • the differential profile repeated acquisition step (S500) includes the target voltage setting step (S100), the charging/discharging step (S200), and the voltage profile acquiring step (S300) until all the differential profiles 20 are obtained for a plurality of preset voltages. ), and may be a step of repeatedly performing the differential profile obtaining step (S400).
  • the feature value acquiring step S600 may be performed.
  • the target voltage setting step S100 may be performed.
  • the processor 130 may set 4.1 [V] as the second target voltage.
  • the charging/discharging unit 110 may charge the battery B until the voltage of the battery B reaches the second target voltage. Thereafter, the charging/discharging unit 110 may discharge the battery B at a low rate of 0.05C until the voltage of the battery B reaches 2.0 [V].
  • the profile acquisition unit 120 may acquire the second differential profile 22 corresponding to the second target voltage while the battery B is discharged. According to a similar method, the profile acquisition unit 120 generates a third differential profile 23 corresponding to the third target voltage 4.2 [V] and a fourth differential profile corresponding to the fourth target voltage 4.3 [V].
  • a profile 24 may be obtained.
  • the feature value acquisition step S600 is a step of acquiring a feature value for a target peak in each of the plurality of differential profiles 21 , 22 , 23 , and 24 , and may be performed by the processor 130 .
  • the processor 130 may select a target peak from each of the plurality of differential profiles 21 , 22 , 23 , and 24 .
  • the target peak may be a peak related to the behavior of LiC 12 according to the depth of charge.
  • the processor 130 may calculate the full width at half maximum as a feature value of each of the plurality of target peaks. To this end, the processor 130 obtains a plurality of normal distribution profiles by normalizing each of the plurality of differential profiles 21 , 22 , 23 , and 24 , and obtains the full width at half maximum of the target peak in each of the obtained normal distribution profiles, respectively. can be calculated.
  • the charging depth setting step S700 is a step of setting the charging depth for the battery B based on a plurality of acquired feature values, and may be performed by the processor 130 .
  • the processor 130 may calculate a first magnitude difference D1 between the feature value of the first target peak Tp1 and the feature value of the second target peak Tp2 .
  • the processor 130 may calculate a second magnitude difference value D2 between the feature value of the second target peak Tp2 and the feature value of the third target peak Tp3 .
  • the processor 130 may calculate a third magnitude difference value D3 between the feature value of the third target peak Tp3 and the feature value of the fourth target peak Tp4 . Then, the processor 130 determines the feature value of the third target peak Tp3 and the second value based on the first magnitude difference value D1, the second magnitude difference value D2, and the third magnitude difference value D3.
  • a feature value of the target peak Tp4 may be selected as a reference feature value.
  • the processor 130 may select one of the third target voltage corresponding to the third target peak Tp3 and the fourth target voltage corresponding to the fourth target peak Tp4 as the reference voltage.
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명의 일 실시예에 따른 충전 심도 설정 장치는 배터리를 설정된 목표 전압까지 충전시키고, 충전이 완료된 배터리를 방전시키도록 구성된 충방전부; 상기 배터리가 충전 또는 방전되는 과정에서 상기 배터리의 용량과 전압에 대한 전압 프로파일을 획득하고, 획득한 전압 프로파일로부터 상기 배터리의 용량과 미분 전압에 대한 미분 프로파일을 획득하도록 구성된 프로파일 획득부; 및 상기 충방전부와 전기적으로 연결되어 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 상기 목표 전압으로 설정하며, 상기 프로파일 획득부가 상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득한 경우, 상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하고, 획득된 복수의 특징값에 기반하여 상기 배터리에 대한 충전 심도를 설정하도록 구성된 프로세서를 포함한다.

Description

충전 심도 설정 장치 및 방법
본 출원은 2020년 05월 15일자로 출원된 한국 특허 출원번호 제10-2020-0058601호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 충전 심도 설정 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리의 충전 심도를 설정할 수 있는 충전 심도 설정 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
다만, 이러한 배터리는 생산 공정 중에서 역전압 불량에 따라 수율이 저하되는 문제가 제기된다. 이러한, 배터리의 역전압이 발생하는 원인 중 하나는 배터리의 음극 내 LiC 6과 LiC 12의 불균일이라고 지적되었다(비특허문헌 1). 따라서, 배터리의 역전압을 방지하기 위하여, 배터리의 음극 내 LiC 6과 LiC 12 간의 불균일을 해소할 수 있는 필요성이 대두된다.
(비특허문헌 1) J Wilhelm et al., In Situ Neutron Diffraction Study of Lithiation Gradients in Graphite Anodes during Discharge and Relaxation, Journal of The Electrochemical Society, 165(9) A1846-A1856 2018.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, LiC 12의 거동이 가장 잘 나타나는 타겟 피크에 기반하여 배터리의 충전 심도를 설정하는 충전 심도 설정 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 충전 심도 설정 장치는 배터리를 설정된 목표 전압까지 충전시키고, 충전이 완료된 배터리를 방전시키도록 구성된 충방전부; 상기 배터리가 충전 또는 방전되는 과정에서 상기 배터리의 용량과 전압에 대한 전압 프로파일을 획득하고, 획득한 전압 프로파일로부터 상기 배터리의 용량과 미분 전압에 대한 미분 프로파일을 획득하도록 구성된 프로파일 획득부; 및 상기 충방전부와 전기적으로 연결되어 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 상기 목표 전압으로 설정하며, 상기 프로파일 획득부가 상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득한 경우, 상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하고, 획득된 복수의 특징값에 기반하여 상기 배터리에 대한 충전 심도를 설정하도록 구성된 프로세서를 포함할 수 있다.
상기 프로세서는, 상기 획득된 복수의 특징값의 크기를 비교하고, 비교 결과에 따라 상기 획득된 복수의 특징값 각각에 대응되는 복수의 목표 전압들 중에서 어느 하나를 기준 전압으로 선택하며, 선택된 기준 전압을 상기 충전 심도로 설정하도록 구성될 수 있다.
상기 프로세서는, 대응되는 목표 전압이 인접한 복수의 특징값 간의 크기 차이값을 산출하고, 산출된 크기 차이값이 가장 큰 복수의 기준 특징값을 선택하며, 선택된 복수의 기준 특징값 간의 크기 차이값에 따라 상기 복수의 목표 전압 중에서 어느 하나를 상기 기준 전압으로 선택하도록 구성될 수 있다.
상기 프로세서는, 상기 대응되는 목표 전압을 기준으로 인접한 2개의 특징값 간의 크기를 비교하여 상기 크기 차이값을 산출하도록 구성될 수 있다.
상기 프로세서는, 상기 선택된 복수의 기준 특징값에 대응되는 복수의 목표 전압 중에서 가장 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
상기 프로세서는, 상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 이상인 경우, 상기 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
상기 프로세서는, 상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 미만인 경우, 상기 복수의 목표 전압 중 가장 고전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
상기 프로파일 획득부는, 상기 배터리의 전압을 용량으로 미분한 미분 전압과 상기 배터리의 용량에 대한 미분 프로파일을 획득하도록 구성될 수 있다.
상기 프로세서는, 상기 복수의 미분 프로파일 각각에서 하나 이상의 피크 쌍을 결정하고, 결정된 피크 쌍 중에서 포함되는 복수의 피크의 미분 전압이 가장 차이나는 피크 쌍을 선택하며, 선택된 피크 쌍에 포함된 복수의 피크 중 저용량측 피크를 상기 타겟 피크로 선택하도록 구성될 수 있다.
상기 프로세서는, 상기 복수의 피크 중에서 상기 배터리의 용량이 증가할수록 상기 미분 전압이 증가하는 구간에서 상단과 하단에 위치하는 2개의 피크를 하나의 피크 쌍으로 결정하도록 구성될 수 있다.
상기 타겟 피크는, 흑연이 음극 활물질로 포함된 배터리에서, 충전 심도에 따른 LiC 12의 거동과 관련된 피크일 수 있다.
상기 프로세서는, 상기 복수의 미분 프로파일 각각을 정규화하여 복수의 정규 분포 프로파일을 획득하고, 상기 획득된 복수의 정규 분포 프로파일 각각에서 대응되는 타겟 피크에 대한 반치전폭을 상기 특징값으로 획득하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 제조 장치는 본 발명의 일 측면에 따른 충전 심도 설정 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 다른 충전 심도 설정 방법은 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 목표 전압으로 설정하는 목표 전압 설정 단계; 배터리를 상기 목표 전압까지 충전시키고, 충전이 완료된 배터리를 방전시키는 충방전 단계; 상기 배터리가 충전 또는 방전되는 과정에서 상기 배터리의 용량과 전압에 대한 전압 프로파일을 획득하는 전압 프로파일 획득 단계; 획득한 전압 프로파일로부터 상기 배터리의 용량과 미분 전압에 대한 미분 프로파일을 획득하는 미분 프로파일 획득 단계; 상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득하는 미분 프로파일 반복 획득 단계; 상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하는 특징값 획득 단계; 및 획득된 복수의 특징값에 기반하여 상기 배터리에 대한 충전 심도를 설정하는 충전 심도 설정 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, 배터리의 역전압이 발생되는 것이 효과적으로 방지될 수 있다.
또한, 본 발명의 일 측면에 따르면, 배터리의 역전압 발생이 억제되면서 배터리의 성능이 최대로 발휘될 수 있는 충전 심도가 설정될 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 충전 심도 설정 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 충전 심도 설정 장치를 포함하는 배터리 제조 장치의 예시적 구성을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 충전 심도 설정 장치에서 획득한 미분 프로파일의 실시예를 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 충전 심도 설정 장치에서 획득한 복수의 미분 프로파일의 실시예를 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 충전 심도 설정 장치에서 획득한 복수의 타겟 피크의 특징점의 실시예를 개략적으로 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 충전 심도 설정 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
또한, 명세서에 기재된 프로세서와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)를 개략적으로 도시한 도면이다. 도 2는 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)를 포함하는 배터리 제조 장치(1)의 예시적 구성을 개략적으로 도시한 도면이다.
구체적으로, 배터리 제조 장치(1)는 배터리(B)가 제조되는 과정에서 적용될 수 있다. 바람직하게, 배터리 제조 장치(1)는 배터리(B)가 제조되는 여러 과정 중 활성화 공정 과정에서 적용될 수 있다.
도 1을 참조하면, 충전 심도 설정 장치(100)는 충방전부(110), 프로파일 획득부(120), 및 프로세서(130)를 포함할 수 있다.
여기서, 배터리(B)는, 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 파우치형 리튬 폴리머 셀 하나가 배터리(B)로 간주될 수 있다.
충방전부(110)는 배터리(B)를 설정된 목표 전압까지 충전시키도록 구성될 수 있다.
여기서, 배터리(B)의 충전이 완료되는 목표 전압은 프로세서(130)에 의해서 설정될 수 있다. 그리고, 충방전부(110)는 프로세서(130)로부터 목표 전압에 대한 정보를 획득하여 배터리(B)를 목표 전압까지 충전시킬 수 있다.
예컨대, 도 2의 실시예에서, 충방전부(110)는 배터리(B)와 전기적으로 연결될 수 있다. 그리고, 충방전부(110)는 배터리(B)의 전압이 목표 전압에 도달할 때까지 배터리(B)를 충전시킬 수 있다.
또한, 충방전부(110)는 충전이 완료된 배터리(B)를 방전시키도록 구성될 수 있다.
여기서, 충전이 완료되었다는 것은 배터리(B)의 전압이 목표 전압에 도달한 것을 의미한다. 즉, 충방전부(110)는 배터리(B)를 목표 전압까지 충전시킨 후, 다시 배터리(B)를 방전시킬 수 있다. 예컨대, 생산된 배터리(B)가 출하되기 전에, 충방전부(110)에 의해서 충전 및 방전을 거치면서 배터리(B)에 대한 활성화 공정이 진행될 수 있다.
바람직하게, 충방전부(110)는 저율로 배터리(B)를 방전시킬 수 있다. 예컨대, 충방전부(110)는 0.33C 이하의 씨레이트로 배터리(B)를 방전시킬 수 있다. 보다 바람직하게, 충방전부(110)는 0.05C의 씨레이트로 배터리(B)를 방전시킬 수 있다. 구체적으로, 충방전부(110)에 의해 배터리(B)가 방전되는 과정에서, 프로파일 획득부(120)는 미분 프로파일(20)을 획득할 수 있으며, 이러한 미분 프로파일(20)에는 배터리(B)의 전압 거동을 나타내는 복수의 피크가 포함될 수 있다. 이러한 피크는 저율로 방전될 경우에 뭉개지거나 생략되지 않고 보다 정확하게 나타나기 때문에, 충방전부(110)는 저율로 배터리(B)를 방전시킬 수 있다.
프로파일 획득부(120)는 상기 배터리(B)가 충전 또는 방전되는 과정에서 상기 배터리(B)의 용량과 전압에 대한 전압 프로파일을 획득하도록 구성될 수 있다.
구체적으로, 프로파일 획득부(120)는 배터리(B)의 양단 전압과 배터리(B)의 전류를 측정할 수 있다. 예컨대, 도 2의 실시예에서, 프로파일 획득부(120)는 제1 센싱 라인(SL1)과 제2 센싱 라인(SL2)을 통해 배터리(B)의 전압을 측정할 수 있다. 그리고, 프로파일 획득부(120)는 배터리(B)의 대전류 경로에 구비된 전류 측정 유닛(A)와 제3 센싱 라인(SL3)을 통해 연결될 수 있다. 따라서, 프로파일 획득부(120)는 제3 센싱 라인(SL3)을 통해서 배터리(B)의 전류를 측정할 수 있다.
예컨대, 전압 프로파일은 배터리(B)의 용량에 대한 배터리(B)의 전압을 나타내는 프로파일일 수 있다. 보다 구체적으로, 전압 프로파일은, X축이 배터리(B)의 용량이고, Y축이 배터리(B)의 전압인 2차원 그래프로 나타내어질 수 있다.
프로파일 획득부(120)는 배터리(B)가 충전 및/또는 방전되는 동안 전압 프로파일을 획득할 수 있으나, 이하에서는 설명의 편의를 위하여 배터리(B)가 방전되는 과정에서 전압 프로파일을 획득하는 것으로 가정하여 설명한다.
프로파일 획득부(120)는 획득한 전압 프로파일로부터 상기 배터리(B)의 용량과 미분 전압에 대한 미분 프로파일(20)을 획득하도록 구성될 수 있다. 구체적으로, 상기 프로파일 획득부(120)는, 상기 배터리(B)의 전압을 용량으로 미분한 미분 전압과 상기 배터리(B)의 용량에 대한 미분 프로파일(20)을 획득하도록 구성될 수 있다.
예컨대, 미분 프로파일(20)은 배터리(B)의 용량에 대한 배터리(B)의 미분 전압을 나타내는 프로파일일 수 있다. 여기서, 미분 전압이란 배터리(B)의 전압을 배터리(B)의 용량으로 미분한 값(dV/dQ)일 수 있다. 보다 구체적으로, 미분 프로파일(20)은, X축이 배터리(B)의 용량이고, Y축이 배터리(B)의 미분 전압인 2차원 그래프로 나타내어질 수 있다.
도 3은 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)에서 획득한 미분 프로파일(20)의 실시예를 개략적으로 도시한 도면이다.
구체적으로, 도 3은 4.3[V]까지 충전된 배터리(B)가 2.0[V]까지 방전되는 과정에서 프로파일 획득부(120)에 의해 획득된 미분 프로파일(20)이다. 해당 미분 프로파일(20)에 대응되는 배터리(B)의 목표 전압은 4.3[V]이다.
도 3의 실시예에서, 미분 프로파일(20)에는 복수의 피크가 포함되며, 이러한 복수의 피크가 명확하게 나타나게 하기 위하여, 배터리(B)는 0.05C의 씨레이트로 방전되었다. 여기서, 피크란, 전압 프로파일에서 변곡점에 대응되는 지점으로서, 미분 프로파일(20)에서 순간 기울기가 0인 포인트를 의미할 수 있다. 예컨대, 도 3의 실시예의 미분 프로파일(20)에는 제1 피크(P1), 제2 피크(P2), 제3 피크(P3), 제4 피크(P4), 제5 피크(P5), 제6 피크(P6), 및 제7 피크(P7)가 포함될 수 있다.
프로세서(130)는 상기 충방전부(110)와 전기적으로 연결되어 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 상기 목표 전압으로 설정하도록 구성될 수 있다.
구체적으로, 미리 설정된 복수의 전압은 배터리(B)의 최대 가용 전압에 따라 설정될 수 있다. 예컨대, 배터리(B)에 대해 미리 설정된 복수의 전압은 4.0[V]의 제1 목표 전압, 4.1[V]의 제2 목표 전압, 4.2[V]의 제3 목표 전압, 및 4.3[V]의 제4 목표 전압일 수 있다. 이하에서는, 복수의 전압이 0.1[V] 전압 간격에 따라 4개의 전압으로 설정된 것으로 설명하지만, 보다 정확하게 배터리(B)의 충전 심도를 설정하기 위하여 복수의 전압 간의 전압 간격은 더 좁아지고, 설정된 복수의 전압의 개수는 증가될 수도 있음을 유의한다.
예컨대, 도 3의 실시예에서, 프로세서(130)는 목표 전압을 4.3[V]로 설정하고, 설정한 목표 전압(4.3[V])을 충방전부(110)로 송신할 수 있다. 이후, 충방전부(110)는 배터리(B)의 전압이 4.3[V]에 도달할 때까지 배터리(B)를 충전시킨 후, 배터리(B)의 전압이 2.0[V]에 도달할 때까지 배터리(B)를 방전시킬 수 있다. 배터리(B)가 방전되는 과정에서, 프로파일 획득부(120)는 배터리(B)의 전압 및 전류를 측정하고, 측정된 전압 및 전류에 기반하여 미분 프로파일(20)을 획득할 수 있다.
또한, 프로세서(130)는, 상기 프로파일 획득부(120)가 상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득한 경우, 상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하도록 구성될 수 있다.
도 2의 실시예에서, 프로세서(130)는 프로파일 획득부(120)와 전기적으로 연결될 수 있다. 즉, 프로세서(130)는 프로파일 획득부(120)가 어느 하나의 목표 전압에 대응되는 미분 프로파일(20)을 획득하였는지를 판단할 수 있다. 그리고, 프로세서(130)는 프로파일 획득부(120)가 어느 하나의 목표 전압에 대응되는 미분 프로파일(20)을 획득한 경우, 미리 설정된 복수의 전압 중 해당 목표 전압과 중복되지 않는 전압을 목표 전압으로 설정할 수 있다.
도 4는 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)에서 획득한 복수의 미분 프로파일(21, 22, 23, 24)의 실시예를 개략적으로 도시한 도면이다.
도 4의 실시예에서, 복수의 전압은 4.0[V]의 제1 목표 전압, 4.1[V]의 제2 목표 전압, 4.2[V]의 제3 목표 전압, 및 4.3[V]의 제4 목표 전압으로 미리 설정되었다고 가정한다.
먼저, 프로세서(130)는 복수의 전압 중 4.0[V]를 제1 목표 전압으로 설정하고, 충방전부(110)에게 설정한 제1 목표 전압을 송신할 수 있다. 그리고, 프로파일 획득부(120)는 제1 목표 전압까지 충전된 배터리(B)가 방전되는 과정에서 제1 미분 프로파일(21)을 획득할 수 있다.
다음으로, 프로세서(130)는 복수의 전압 중 4.1[V]를 제2 목표 전압으로 설정하고, 충방전부(110)에게 설정한 제2 목표 전압을 송신할 수 있다. 그리고, 프로파일 획득부(120)는 제2 목표 전압까지 충전된 배터리(B)가 방전되는 과정에서 제2 미분 프로파일(22)을 획득할 수 있다.
다음으로, 프로세서(130)는 복수의 전압 중 4.2[V]를 제3 목표 전압으로 설정하고, 충방전부(110)에게 설정한 제3 목표 전압을 송신할 수 있다. 그리고, 프로파일 획득부(120)는 제3 목표 전압까지 충전된 배터리(B)가 방전되는 과정에서 제3 미분 프로파일(23)을 획득할 수 있다.
마지막으로, 프로세서(130)는 복수의 전압 중 4.3[V]를 제4 목표 전압으로 설정하고, 충방전부(110)에게 설정한 제4 목표 전압을 송신할 수 있다. 그리고, 프로파일 획득부(120)는 제4 목표 전압까지 충전된 배터리(B)가 방전되는 과정에서 제4 미분 프로파일(24)을 획득할 수 있다.
이후, 프로세서(130)는 제1 미분 프로파일(21) 내지 제4 미분 프로파일(24) 각각에서 타겟 피크(Tp1, Tp2, Tp3, Tp4)를 선택하고, 선택한 타겟 피크의 특징값을 산출할 수 있다.
여기서, 타겟 피크란 미분 프로파일에 포함된 복수의 피크 중에서 선택된 어느 하나의 피크일 수 있다. 구체적으로, 타겟 피크는 흑연이 음극 활물질로 포함된 배터리(B)에서, 충전 심도에 따른 LiC 12의 거동과 관련된 피크일 수 있다.
예컨대, 도 3의 실시예에서, 복수의 피크(P1 내지 P7) 중 제4 피크(P4)가 타겟 피크로 선택될 수 있다. 프로세서(130)가 타겟 피크를 선택하는 구체적인 내용은 후술한다.
또한, 도 4의 실시예에서, 프로세서(130)는 제1 미분 프로파일(21)에서 제1 타겟 피크(Tp1)를 선택하고, 제2 미분 프로파일(22)에서 제2 타겟 피크(Tp2)를 선택할 수 있다. 그리고, 프로세서(130)는 제3 미분 프로파일(23)에서 제3 타겟 피크(Tp3)를 선택하고, 제4 미분 프로파일(24)에서 제4 타겟 피크(Tp4)를 선택할 수 있다.
또한, 타겟 피크의 특징값이란, 복수의 미분 프로파일(21, 22, 23, 24) 각각에서 선택된 타겟 피크들(Tp1, Tp2, Tp3, Tp4) 간의 차이를 구하기 위해 선택된 값일 수 있다. 예컨대, 타겟 피크의 특징값은 타겟 피크의 용량값, 미분 전압값, 또는 반치전폭(Full width at half maximum, FWHM) 등을 포함할 수 있다. 바람직하게, 타겟 피크의 특징값은 반치전폭일 수 있다. 여기서, 반치전폭은 반값전폭, 반값폭, 반가폭 또는 반치폭 등으로도 표현될 수 있다.
도 5는 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)에서 획득한 복수의 타겟 피크(Tp1, Tp2, Tp3, Tp4)의 특징점의 실시예를 개략적으로 도시한 도면이다.
도 5를 참조하면, 프로세서(130)는 제1 타겟 피크(Tp1), 제2 타겟 피크(Tp2), 제3 타겟 피크(Tp3), 및 제4 타겟 피크(Tp4) 각각의 특징값을 산출할 수 있다. 구체적으로, 도 5의 실시예에서 산출되는 특징값은 타겟 피크에 대한 반치전폭일 수 있다.
그리고, 프로세서(130)는 획득된 복수의 특징값에 기반하여 상기 배터리(B)에 대한 충전 심도를 설정하도록 구성될 수 있다.
여기서, 충전 심도란, 배터리(B)의 활성화 공정에서 설정되는 값으로서, 배터리(B)에 역전압이 발생되는 것을 방지하기 위하여 설정되는 배터리(B)에 대한 최대 충전 허용 전압을 의미할 수 있다.
예컨대, 동일한 생산 라인에서 제조된 배터리(B)라고 하더라도, 여러 원인에 의해서 일부 배터리(B)에서는 역전압이 발생될 수 있다. 역전압이 발생되는 배터리(B)는 시간이 지남에 따라 전압이 증가하는 문제가 있기 때문에, 역전압이 발생되지 않는 배터리(B)와 달리 공정 단계(특히, 활성화 공정 단계)에서부터 충전 심도를 낮게 설정하는 것이 중요하다. 또한, 배터리(B)에서 역전압이 발생되는지 여부는 실험적으로 확인하여야 하기 때문에, 프로세서(130)는 하나의 배터리(B)에 대한 복수의 타겟 피크의 특징값에 기반하여, 역전압이 발생될 가능성이 있는 배터리(B)인지를 판단하고, 판단 결과에 따라 배터리(B)의 충전 심도를 알맞게 설정할 수 있다.
예컨대, 도 5의 실시예에서, 프로세서(130)는 제1 타겟 피크(Tp1)의 특징값, 제2 타겟 피크(Tp2)의 특징값, 제3 타겟 피크(Tp3)의 특징값, 및 제4 타겟 피크(Tp4)의 특징값을 비교하고, 비교 결과에 기반하여 제3 미분 프로파일(23)에 대응되는 목표 전압인 4.2[V]를 배터리(B)에 대한 충전 심도로 설정할 수 있다.
따라서, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 활성화 공정 단계부터 배터리(B)에 대응되는 충전 심도를 설정하여, 배터리(B)에 역전압이 발생되는 것을 미연에 방지할 수 있다. 따라서, 배터리(B)의 퇴화 속도가 늦춰져서 배터리(B)가 더 오랜 기간 동안 사용될 수 있으므로, 경제성 및 친환경성이 확보될 수 있다. 또한, 배터리(B) 각각에 대하여 알맞은 충전 심도가 설정되기 때문에, 배터리(B)의 역전압이 발생하여 생길 수 있는 사고가 미연에 방지될 수 있다.
한편, 충전 심도 설정 장치(100)에 구비된 프로세서(130)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서(130), ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 프로세서(130)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 프로세서(130)에 의해 실행될 수 있다. 상기 메모리는 프로세서(130) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(130)와 연결될 수 있다.
또한, 충전 심도 설정 장치(100)는 저장부(140)를 더 포함할 수 있다. 저장부(140)는 프로세서(130)가 배터리(B)의 충전 심도를 설정하는데 필요한 프로그램 및 데이터 등을 저장할 수 있다. 즉, 저장부(140)는 충전 심도 설정 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(140)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(140)는 프로세서(130)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
예컨대, 저장부(140)에는 프로파일 획득부(120)에 의해 획득된 복수의 전압 프로파일 및 복수의 미분 프로파일(21, 22, 23, 24)이 저장될 수 있다. 그리고, 프로세서(130)는 프로파일 획득부(120)로부터 직접 미분 프로파일(21, 22, 23, 24)을 획득하거나, 저장부(140)에 접근(Access)하여 저장된 미분 프로파일(21, 22, 23, 24)을 획득할 수 있다.
또한, 프로세서(130)에 의해 설정된 배터리(B)의 충전 심도는 저장부(140)에 저장될 수 있다. 예컨대, 저장부(140)에는 프로세서(130)에 의해 설정된 충전 심도가 배터리(B)별로 저장될 수 있다. 이후, 저장부(140)에 저장된 배터리(B)의 충전 심도는 배터리(B)를 관리하도록 구성된 배터리 관리 시스템(Battery management system, BMS) 또는 상기 배터리 관리 시스템과 연결된 저장 유닛에 저장될 수 있다.
즉, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 개별 배터리(B)에 대응되는 충전 심도를 설정하고, 설정된 충전 심도를 상기 개별 배터리(B)를 관리하도록 구성된 배터리 관리 시스템에 제공할 수 있다. 따라서, 배터리(B)가 출하되어 사용되는 경우, 충전 심도 설정 장치(100)에 의해 설정된 충전 심도에 따라 배터리(B)에 역전압이 발생되는 것이 방지될 수 있다. 또한, 배터리(B)의 퇴화가 더디게 진행되어, 배터리(B)의 수명이 증대될 수 있다.
이하에서는, 프로세서(130)가 타겟 피크를 선택하는 과정에 대해서 보다 구체적으로 설명한다.
상기 프로세서(130)는, 상기 획득된 복수의 특징값의 크기를 비교하도록 구성될 수 있다.
구체적으로, 프로세서(130)는 대응되는 목표 전압이 인접한 복수의 특징값 간의 크기 차이값을 산출할 수 있다. 보다 구체적으로, 프로세서(130)는 상기 대응되는 목표 전압을 기준으로 인접한 2개의 특징값 간의 크기를 비교하여 상기 크기 차이값을 산출할 수 있다.
예컨대, 도 5의 실시예에서, 대응되는 목표 전압이 인접한 특징값은 제1 타겟 피크(Tp1)의 특징값과 제2 타겟 피크(Tp2)의 특징값, 제2 타겟 피크(Tp2)의 특징값과 제3 타겟 피크(Tp3)의 특징값, 및 제3 타겟 피크(Tp3)의 특징값과 제4 타겟 피크(Tp4)의 특징값이다. 프로세서(130)는 제1 타겟 피크(Tp1)의 특징값과 제2 타겟 피크(Tp2)의 특징값 간의 제1 크기 차이값(D1)을 산출할 수 있다. 그리고, 프로세서(130)는 제2 타겟 피크(Tp2)의 특징값과 제3 타겟 피크(Tp3)의 특징값 간의 제2 크기 차이값(D2)을 산출할 수 있다. 그리고, 프로세서(130)는 제3 타겟 피크(Tp3)의 특징값과 제4 타겟 피크(Tp4)의 특징값 간의 제3 크기 차이값(D3)을 산출할 수 있다.
프로세서(130)는 비교 결과에 따라 상기 획득된 복수의 특징값 각각에 대응되는 복수의 목표 전압들 중에서 어느 하나를 기준 전압으로 선택하도록 구성될 수 있다. 그리고, 프로세서(130)는 선택된 기준 전압을 상기 충전 심도로 설정하도록 구성될 수 있다.
일 실시예에서, 프로세서(130)는 산출된 크기 차이값이 가장 큰 복수의 기준 특징값을 선택하도록 구성될 수 있다. 그리고, 프로세서(130)는 선택된 복수의 기준 특징값 간의 크기 차이값에 따라 상기 복수의 목표 전압 중에서 어느 하나를 상기 기준 전압으로 선택하도록 구성될 수 있다.
예컨대, 도 5의 실시예에서, 프로세서(130)는 제1 크기 차이값(D1), 제2 크기 차이값(D2), 및 제3 크기 차이값(D3)을 비교할 수 있다. 제1 크기 차이값(D1) 및 제2 크기 차이값(D2)보다 제3 크기 차이값(D3)이 더 크기 때문에, 프로세서(130)는 제3 타겟 피크(Tp3)의 특징값 및 제4 타겟 피크(Tp4)의 특징값을 기준 특징값으로 선택할 수 있다. 그리고, 프로세서(130)는 제3 타겟 피크(Tp3)에 대응되는 제3 목표 전압과 제4 타겟 피크(Tp4)에 대응되는 제4 목표 전압 중 어느 하나를 기준 전압으로 선택할 수 있다.
구체적으로, 상기 프로세서(130)는, 상기 선택된 복수의 기준 특징값에 대응되는 복수의 목표 전압 중에서 가장 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
예컨대, 도 5의 실시예에서, 프로세서(130)는 제3 목표 전압 및 제4 목표 전압 중 저전위측인 제3 목표 전압을 기준 전압으로 선택할 수 있다. 즉, 프로세서(130)는 크기 차이값이 가장 큰 2개의 기준 특징값을 선택하고, 선택한 2개의 기준 특징값 각각에 대응되는 2개의 목표 전압 중 더 낮은 목표 전압을 배터리(B)의 충전 심도로 설정할 수 있다.
즉, 배터리(B)의 충전 심도가 낮게 설정되기 때문에, 배터리(B)의 역전압 발생이 억제될 수 있다. 또한, 복수의 타겟 피크의 특징값 간의 크기 차이값이 가장 큰 2개의 기준 특징값에 기반하여 배터리(B)의 충전 심도가 설정되기 때문에, 배터리(B)의 충전 심도가 지나치게 낮게 설정되는 것이 방지될 수 있다. 따라서, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 배터리(B)의 역전압이 발생하는 것을 억제하면서 배터리(B)의 성능이 최대로 발휘될 수 있는 충전 심도를 설정할 수 있는 장점이 있다.
다른 실시예에서, 상기 프로세서(130)는, 상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 이상인 경우, 상기 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
예컨대, 소정의 크기값은 소정의 값으로 설정될 수 있다. 도 5의 실시예에서, 소정의 크기값은 0.5 이상 1 미만 중 어느 하나의 값으로 설정될 수 있다.
다른 예로, 소정의 크기값은 복수의 크기 차이값 중에서 두 번째로 큰 크기 차이값의 2배의 값으로 설정될 수 있다. 도 5의 실시예에서, 복수의 크기 차이값은 제1 크기 차이값(D1), 제2 크기 차이값(D2), 및 제3 크기 차이값(D3)이다. 그리고, 복수의 크기 차이값 중 제3 크기 차이값(D3)이 가장 크고, 제1 크기 차이값(D1)이 두 번째로 크다. 따라서, 소정의 크기값은 제1 크기 차이값(D1)의 2배의 값으로 설정될 수 있다.
프로세서(130)는 이와 같은 방식들로 소정의 크기값을 설정하여, 복수의 기준 특징값 간의 크기 차이값이 나머지 특징값 간의 크기 차이값과 큰 차이를 보이는 경우에 배터리(B)의 충전 심도를 적절하게 설정할 수 있다.
앞서 설명한 일 실시예와 달리, 프로세서(130)는 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 이상인 경우에만, 복수의 기준 특징값에 대응되는 복수의 목표 전압 중 저전위측 목표 전압을 배터리(B)의 충전 심도로 설정할 수 있다. 반대로, 상기 프로세서(130)는, 상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 미만인 경우, 상기 복수의 목표 전압 중 가장 고전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성될 수 있다.
예컨대, 도 5의 실시예에서, 제3 크기 차이값(D3)이 제1 크기 차이값(D1) 및 제2 크기 차이값(D2)보다 크기 때문에, 복수의 기준 특징값으로 제3 타겟 피크(Tp3)의 특징값과 제4 타겟 피크(Tp4)의 특징값이 선택될 수 있다. 그리고, 프로세서(130)는 제3 크기 차이값(D3)과 소정의 크기값 간의 대소를 비교할 수 있다. 만약, 제3 크기 차이값(D3)이 소정의 크기값 이상이면, 프로세서(130)는 복수의 기준 특징값에 대응되는 제3 목표 전압과 제4 목표 전압 중 저전위측의 목표 전압인 제3 목표 전압을 배터리(B)의 충전 심도로 설정할 수 있다.
즉, 프로세서(130)는 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 이상이라면, 복수의 기준 특징값에 대응되는 복수의 목표 전압 중 고전위측의 목표 전압으로 배터리(B)의 충전 심도를 설정할 경우, 배터리(B)에 역전압이 발생될 것으로 판단할 수 있다. 따라서, 프로세서(130)는 배터리(B)에 역전압이 발생되는 것을 방지하기 위하여, 복수의 기준 특징값에 대응되는 복수의 목표 전압 중 저전위측의 목표 전압으로 배터리(B)의 충전 심도를 설정할 수 있다.
반대로, 도 5의 실시예에서, 제3 크기 차이값(D3)이 소정의 크기값 미만이면, 프로세서(130)는 제1 목표 전압(4.0[V]), 제2 목표 전압, 제3 목표 전압, 및 제4 목표 전압 중 가장 고전위측의 목표 전압인 제4 목표 전압을 배터리(B)의 충전 심도로 설정할 수 있다.
즉, 프로세서(130)는 복수의 타겟 피크의 특징값 간의 크기 차이값이 모두 소정의 크기값 미만이라면, 배터리(B)의 역전압이 발생되지 않을 것으로 판단할 수 있다. 따라서, 프로세서(130)는 배터리(B)의 성능이 최대로 발휘되게 하기 위하여, 배터리(B)의 충전 심도를 복수의 목표 전압 중 가장 고전위측 목표 전압으로 설정할 수 있다.
따라서, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 소정의 크기값과 기준 특징값 간의 크기 차이값을 비교한 결과에 기반하여 배터리(B)의 충전 심도를 설정함으로써, 배터리(B)의 최대 성능 발휘와 배터리(B)의 역전압의 억제를 조화롭게 이룰 수 있는 장점이 있다.
이하에서는, 프로세서(130)가 복수의 미분 프로파일(21, 22, 23, 24) 각각에서 타겟 피크를 선택하는 과정에 대해서 구체적으로 설명한다.
상기 프로세서(130)는, 상기 복수의 미분 프로파일(21, 22, 23, 24) 각각에서 하나 이상의 피크 쌍을 결정하도록 구성될 수 있다. 예컨대, 도 3의 실시예에서, 프로세서(130)는 제1 피크(P1), 제2 피크(P2), 제3 피크(P3), 제4 피크(P4), 제5 피크(P5), 제6 피크(P6), 및 제7 피크(P7)를 선택할 수 있다.
구체적으로, 상기 프로세서(130)는, 상기 복수의 피크 중에서 상기 배터리(B)의 용량이 증가할수록 상기 미분 전압이 증가하는 구간에서 상단과 하단에 위치하는 2개의 피크를 하나의 피크 쌍으로 결정하도록 구성될 수 있다.
예컨대, 도 3의 실시예에서, 제2 피크(P2)와 제3 피크(P3)는 용량이 증가할수록 미분 전압이 증가하는 구간에 포함될 수 있다. 그리고, 제2 피크(P2)와 제3 피크(P3)는 각각 미분 전압이 증가하는 구간의 하단과 상단에 위치하기 때문에, 하나의 피크 쌍으로 결정될 수 있다.
또한, 제4 피크(P4)와 제5 피크(P5)도 용량이 증가할수록 미분 전압이 증가하는 구간에 포함될 수 있다. 그리고, 제4 피크(P4)와 제5 피크(P5)는 각각 미분 전압이 증가하는 구간의 하단과 상단에 위치하기 때문에, 하나의 피크 쌍으로 결정될 수 있다.
또한, 제6 피크(P6)와 제7 피크(P7)도 용량이 증가할수록 미분 전압이 증가하는 구간에 포함될 수 있다. 그리고, 제6 피크(P6)와 제7 피크(P7)는 각각 미분 전압이 증가하는 구간의 하단과 상단에 위치하기 때문에, 하나의 피크 쌍으로 결정될 수 있다.
즉, 프로세서(130)는 제2 피크(P2)와 제3 피크(P3)를 포함하는 제1 피크 쌍, 제4 피크(P4)와 제5 피크(P5)를 포함하는 제2 피크 쌍, 제6 피크(P6)와 제7 피크(P7)를 포함하는 제3 피크 쌍을 결정할 수 있다.
프로세서(130)는, 결정된 피크 쌍 중에서 포함되는 복수의 피크의 미분 전압이 가장 차이나는 피크 쌍을 선택하도록 구성될 수 있다.
예컨대, 도 3의 실시예에서, 프로세서(130)는 제1 피크 쌍에 포함된 제2 피크(P2)와 제3 피크(P3)의 미분 전압 간의 차이를 산출할 수 있다. 또한, 프로세서(130)는 제2 피크 쌍에 포함된 제4 피크(P4)와 제5 피크(P5)의 미분 전압 간의 차이를 산출할 수 있다. 또한, 프로세서(130)는 제3 피크 쌍에 포함된 제6 피크(P6)와 제7 피크(P7)의 미분 전압 간의 차이를 산출할 수 있다. 그리고, 프로세서(130)는 제1 피크 쌍, 제2 피크 쌍 및 제3 피크 쌍 중에서 포함되는 복수의 피크의 미분 전압이 가장 차이나는 피크 쌍으로 제2 피크 쌍을 선택할 수 있다.
그리고, 프로세서(130)는 선택된 피크 쌍에 포함된 복수의 피크 중 저용량측 피크를 상기 타겟 피크로 선택하도록 구성될 수 있다.
예컨대, 도 3의 실시예에서, 프로세서(130)는 제2 피크 쌍에 포함된 제4 피크(P4) 및 제5 피크(P5) 중 제4 피크(P4)를 타겟 피크로 선택할 수 있다. 구체적으로, 흑연이 음극 활물질로 포함된 배터리(B)에서, 충전 심도에 따른 LiC 12의 거동과 관련된 피크일 수 있다.
비특허문헌 1을 다시 참조하면, 배터리(B)의 역전압이 발생되는 원인 중 하나는 LiC 6와 LiC 12의 불균일일 수 있다.
이러한 불균일이 발생되는 것을 방지하기 위하여, 프로세서(130)는 상술한 방식으로 각각의 미분 프로파일(20)에서 LiC 12의 거동이 가장 잘 나타나는 타겟 피크를 선택하고, 복수의 타겟 피크의 특징값을 비교하여 배터리(B)의 충전 심도를 설정할 수 있다. 즉, 프로세서(130)에 의해 충전 심도가 설정된 배터리(B)에는 LiC 6와 LiC 12가 균일하게 유지될 수 있다.
구체적으로, LiC 6와 LiC 12의 상변환은 소정의 전압 구간에서 급격하게 진행될 수 있고, LiC 6와 LiC 12-의 불균일이 초래되면 배터리(B)에 역전압이 발생될 가능성이 있다. 예컨대, 도 5의 실시예에서, 소정의 전압 구간은 4.2[V] 내지 4.3[V] 구간일 수 있다.
따라서, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 배터리(B)에 대한 복수의 타겟 피크의 특징값을 비교하여 배터리(B)에 적합한 충전 심도를 설정함으로써, LiC 6와 LiC 12의 급격한 상변환이 진행되는 것을 방지할 수 있다. 이를 통해, 배터리(B)에 역전압이 발생되는 것이 효과적으로 방지될 수 있다.
상기 프로세서(130)는, 상기 복수의 미분 프로파일(21, 22, 23, 24) 각각을 정규화하여 복수의 정규 분포 프로파일을 획득하도록 구성될 수 있다.
예컨대, 도 4의 실시예에서, 각각의 미분 프로파일(20)은 정규 분포를 따르지 않을 수 있다. 따라서, 프로세서(130)는 복수의 미분 프로파일(21, 22, 23, 24) 각각의 타겟 피크에 대한 반치전폭을 산출하기 위하여, 복수의 미분 프로파일(21, 22, 23, 24) 각각을 정규화할 수 있다. 이러한 과정을 거쳐, 프로세서(130)는 복수의 미분 프로파일(21, 22, 23, 24)에 기반한 복수의 정규 분포 프로파일을 획득할 수 있다.
그리고, 프로세서(130)는, 상기 획득된 복수의 정규 분포 프로파일 각각에서 대응되는 타겟 피크에 대한 반치전폭을 상기 특징값으로 획득하도록 구성될 수 있다.
여기서, 반치전폭이란 함수의 최댓값의 절반이 되는 두 독립변수 값들의 차이로 정의될 수 있다. 즉, 함수 F(X)는 Xmax에서 최대값 F(Xmax)를 갖고, X1 및 X2에서 함수 F(X)의 값이 최대값 F(Xmax)의 절반으로 감소한다고 가정한다. 즉, F(X1)과 F(X2)는 동일하게 "F(Xmax)÷2"로 표현될 수 있다. 이 때, 반치전폭은 X1과 X2의 차이의 절대값이다.
일반적으로, 복수의 피크 간의 차이를 산출하기 위해서 복수의 반치전폭 간의 차이를 산출하는 방식은 복수의 피크값의 크기를 직접 비교하는 방식보다 안정적인 방식인 것으로 인식된다.
예컨대, 도 4의 실시예에서 제1 타겟 피크(Tp1), 제2 타겟 피크(Tp2), 제3 타겟 피크(Tp3), 및 제4 타겟 피크(Tp4)의 미분 전압이 점점 증가하는 것으로 나타난다. 마찬가지로, 도 5의 실시예에서 제1 타겟 피크(Tp1)의 특징값, 제2 타겟 피크(Tp2)의 특징값, 제3 타겟 피크(Tp3)의 특징값, 및 제4 타겟 피크(Tp4)의 특징값 또한 점점 증가하는 것으로 나타난다.
다만, 도 4의 실시예에서, 제1 타겟 피크(Tp1) 내지 제4 타겟 피크(Tp4)의 미분 전압이 선형적으로 증가하는 것으로 나타나서, 제3 타겟 피크(Tp3)와 제4 타겟 피크(Tp4) 간의 미분 차이가 나머지 타겟 피크 간의 미분 차이와 큰 차이가 없는 것으로 판단될 수 있다. 반면, 도 5의 실시예에서, 제3 크기 차이값(D3)은 제1 크기 차이값(D1) 및 제2 크기 차이값(D2)과 확연한 차이를 보이는 것으로 나타난다.
즉, 프로세서(130)는 복수의 타겟 피크를 보다 정밀하게 비교하기 위하여, 복수의 미분 프로파일(21, 22, 23, 24)을 정규화하고, 복수의 타겟 피크 각각의 특징값으로써 복수의 타겟 피크 각각의 반치전폭을 산출할 수 있다. 따라서, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 배터리(B)의 역전압을 방지하기 위한 최적의 충전 심도를 설정할 수 있는 장점이 있다.
또한, 본 발명에 따른 충전 심도 설정 장치(100)는, 배터리 제조 장치(1)에 구비될 수 있다. 즉, 본 발명에 따른 배터리 제조 장치(1)은, 상술한 충전 심도 설정 장치(100) 및 하나 이상의 배터리(B)를 포함할 수 있다. 또한, 배터리 제조 장치(1)은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
예컨대, 도 2의 실시예에서, 충전 심도 설정 장치(100)는 배터리 제조 장치(1)에 구비되어, 배터리(B)와 전기적으로 연결될 수 있다.
바람직하게, 이러한 배터리 제조 장치(1)은 배터리(B)의 활성화 공정 과정에서 구성될 수 있다. 즉, 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)는 배터리(B)의 활성화 공정 과정에서 배터리(B)와 전기적으로 연결되어 배터리 제조 장치(1)을 구성할 수 있다. 그리고, 활성화 공정 과정에서, 충전 심도 설정 장치(100)는 배터리(B)의 최적 충전 심도를 설정할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 충전 심도 설정 방법을 개략적으로 도시한 도면이다.
충전 심도 설정 방법의 각 단계는 본 발명의 일 실시예에 따른 충전 심도 설정 장치(100)에 의해서 수행될 수 있다. 이하에서는, 앞서 설명한 내용과 중복되는 내용은 간략히 설명한다.
도 6을 참조하면, 충전 심도 설정 방법은 목표 전압 설정 단계(S100), 충방전 단계(S200), 전압 프로파일 획득 단계(S300), 미분 프로파일 획득 단계(S400), 미분 프로파일 반복 획득 단계(S500), 특징값 획득 단계(S600), 및 충전 심도 설정 단계(S700)를 포함할 수 있다.
목표 전압 설정 단계(S100)는 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 목표 전압으로 설정하는 단계로서, 프로세서(130)에 의해서 수행될 수 있다.
예컨대, 복수의 전압은 4.0[V], 4.1[V], 4.2[V], 및 4.3[V]로 미리 설정될 수 있다. 프로세서(130)는 먼저 4.0[V]를 제1 목표 전압으로 설정할 수 있다.
충방전 단계(S200)는 배터리(B)를 상기 목표 전압까지 충전시키고, 충전이 완료된 배터리(B)를 방전시키는 단계로서, 충방전부(110)에 의해서 수행될 수 있다.
예컨대, 충방전부(110)는 프로세서(130)에 의해 설정된 제1 목표 전압(4.0[V])까지 배터리(B)를 충전시킬 수 있다. 그리고, 충방전부(110)는 배터리(B)의 전압이 2.0[V]에 도달할 때까지 0.05C의 저율로 배터리(B)를 방전시킬 수 있다.
전압 프로파일 획득 단계(S300)는 상기 배터리(B)가 충전 및 방전되는 과정에서 상기 배터리(B)의 용량과 전압에 대한 전압 프로파일을 획득하는 단계로서, 프로파일 획득부(120)에 의해서 수행될 수 있다.
프로파일 획득부(120)는 배터리(B)가 방전되는 동안 배터리(B)의 전압 및 전류를 측정할 수 있다. 그리고, 프로파일 획득부(120)는 배터리(B)의 용량과 배터리(B)의 전압에 대한 전압 프로파일을 획득할 수 있다.
미분 프로파일 획득 단계(S400)는 획득한 전압 프로파일로부터 상기 배터리(B)의 용량과 미분 전압에 대한 미분 프로파일(20)을 획득하는 단계로서, 프로파일 획득부(120)에 의해서 수행될 수 있다.
프로파일 획득부(120)는 전압 프로파일 획득 단계(S300)에서 획득한 전압 프로파일에서, 배터리(B)의 전압을 배터리(B)의 용량으로 미분할 수 있다. 즉, 프로파일 획득부(120)는 배터리(B)의 용량과 배터리(B)의 미분 전압(배터리(B)의 전압을 배터리(B)의 용량으로 미분한 값)에 대한 미분 프로파일(20)을 획득할 수 있다.
미분 프로파일 반복 획득 단계(S500)는 상기 복수의 전압에 대응되는 복수의 미분 프로파일(21, 22, 23, 24)을 모두 획득하는 단계로서, 프로세서(130), 충방전부(110), 및 프로파일 획득부(120)에 의해서 수행될 수 있다.
즉, 미분 프로파일 반복 획득 단계(S500)는 미리 설정된 복수의 전압에 대하여 미분 프로파일(20)이 모두 획득될 때까지 목표 전압 설정 단계(S100), 충방전 단계(S200), 전압 프로파일 획득 단계(S300), 및 미분 프로파일 획득 단계(S400)를 반복 수행하는 단계일 수 있다.
구체적으로, 미분 프로파일 반복 획득 단계(S500)에서, 복수의 전압에 대응되는 복수의 미분 프로파일(21, 22, 23, 24)이 모두 획득된 경우는 특징값 획득 단계(S600)가 수행될 수 있다. 이와 달리, 복수의 전압에 대응되는 복수의 미분 프로파일(21, 22, 23, 24)이 어느 하나라도 획득되지 않은 경우는 목표 전압 설정 단계(S100)가 수행될 수 있다.
예컨대, 프로파일 획득부(120)가 제1 목표 전압에 대한 제1 미분 프로파일(21)만 획득한 경우, 프로세서(130)는 4.1[V]를 제2 목표 전압으로 설정할 수 있다. 그리고, 충방전부(110)는 배터리(B)의 전압이 제2 목표 전압에 도달할 때까지 배터리(B)를 충전할 수 있다. 이후, 충방전부(110)는 배터리(B)의 전압이 2.0[V]에 도달할 때까지 0.05C의 저율로 배터리(B)를 방전시킬 수 있다. 프로파일 획득부(120)는 배터리(B)가 방전되는 과정에서 제2 목표 전압에 대응되는 제2 미분 프로파일(22)을 획득할 수 있다. 이와 유사한 방식에 따라서, 프로파일 획득부(120)는 제3 목표 전압(4.2[V])에 대응되는 제3 미분 프로파일(23) 및 제4 목표 전압(4.3[V])에 대응되는 제4 미분 프로파일(24)을 획득할 수 있다.
특징값 획득 단계(S600)는 상기 복수의 미분 프로파일(21, 22, 23, 24) 각각에서 타겟 피크에 대한 특징값을 획득하는 단계로서, 프로세서(130)에 의해서 수행될 수 있다.
프로세서(130)는 복수의 미분 프로파일(21, 22, 23, 24) 각각에서 타겟 피크를 선택할 수 있다. 구체적으로, 타겟 피크는 충전 심도에 따른 LiC 12의 거동과 관련된 피크일 수 있다.
그리고, 프로세서(130)는 복수의 타겟 피크 각각의 특징값으로써 반치전폭을 산출할 수 있다. 이를 위해, 프로세서(130)는 복수의 미분 프로파일(21, 22, 23, 24) 각각을 정규화하여 복수의 정규 분포 프로파일을 획득하고, 획득한 복수의 정규 분포 프로파일 각각에서 타겟 피크의 반치전폭을 각각 산출할 수 있다.
충전 심도 설정 단계(S700)는 획득된 복수의 특징값에 기반하여 상기 배터리(B)에 대한 충전 심도를 설정하는 단계로서, 프로세서(130)에 의해서 수행될 수 있다.
예컨대, 도 5의 실시예에서, 프로세서(130)는 제1 타겟 피크(Tp1)의 특징값과 제2 타겟 피크(Tp2)의 특징값 간의 제1 크기 차이값(D1)을 산출할 수 있다. 그리고, 프로세서(130)는 제2 타겟 피크(Tp2)의 특징값과 제3 타겟 피크(Tp3)의 특징값 간의 제2 크기 차이값(D2)을 산출할 수 있다. 또한, 프로세서(130)는 제3 타겟 피크(Tp3)의 특징값과 제4 타겟 피크(Tp4)의 특징값 간의 제3 크기 차이값(D3)을 산출할 수 있다. 그리고, 프로세서(130)는 제1 크기 차이값(D1), 제2 크기 차이값(D2), 및 제3 크기 차이값(D3)에 기반하여, 제3 타겟 피크(Tp3)의 특징값과 제4 타겟 피크(Tp4)의 특징값을 기준 특징값으로 선택할 수 있다. 그리고, 프로세서(130)는 제3 타겟 피크(Tp3)에 대응되는 제3 목표 전압과 제4 타겟 피크(Tp4)에 대응되는 제4 목표 전압 중 어느 하나를 기준 전압으로 선택할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
1: 배터리 제조 장치
20: 미분 프로파일
21: 제1 미분 프로파일
22: 제2 미분 프로파일
23: 제3 미분 프로파일
24: 제4 미분 프로파일
100: 충전 심도 설정 장치
110: 충방전부
120: 프로파일 획득부
130: 프로세서
140: 저장부
B: 배터리

Claims (14)

  1. 배터리를 설정된 목표 전압까지 충전시키고, 충전이 완료된 배터리를 방전시키도록 구성된 충방전부;
    상기 배터리가 충전 또는 방전되는 과정에서 상기 배터리의 용량과 전압에 대한 전압 프로파일을 획득하고, 획득한 전압 프로파일로부터 상기 배터리의 용량과 미분 전압에 대한 미분 프로파일을 획득하도록 구성된 프로파일 획득부; 및
    상기 충방전부와 전기적으로 연결되어 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 상기 목표 전압으로 설정하며, 상기 프로파일 획득부가 상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득한 경우, 상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하고, 획득된 복수의 특징값에 기반하여 상기 배터리에 대한 충전 심도를 설정하도록 구성된 프로세서를 포함하는 것을 특징으로 하는 충전 심도 설정 장치.
  2. 제1항에 있어서,
    상기 프로세서는,
    상기 획득된 복수의 특징값의 크기를 비교하고, 비교 결과에 따라 상기 획득된 복수의 특징값 각각에 대응되는 복수의 목표 전압들 중에서 어느 하나를 기준 전압으로 선택하며, 선택된 기준 전압을 상기 충전 심도로 설정하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  3. 제2항에 있어서,
    상기 프로세서는,
    대응되는 목표 전압이 인접한 복수의 특징값 간의 크기 차이값을 산출하고, 산출된 크기 차이값이 가장 큰 복수의 기준 특징값을 선택하며, 선택된 복수의 기준 특징값 간의 크기 차이값에 따라 상기 복수의 목표 전압 중에서 어느 하나를 상기 기준 전압으로 선택하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  4. 제3항에 있어서,
    상기 프로세서는,
    상기 대응되는 목표 전압을 기준으로 인접한 2개의 특징값 간의 크기를 비교하여 상기 크기 차이값을 산출하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  5. 제3항에 있어서,
    상기 프로세서는,
    상기 선택된 복수의 기준 특징값에 대응되는 복수의 목표 전압 중에서 가장 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  6. 제5항에 있어서,
    상기 프로세서는,
    상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 이상인 경우, 상기 저전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  7. 제3항에 있어서,
    상기 프로세서는,
    상기 선택된 복수의 기준 특징값 간의 크기 차이값이 소정의 크기값 미만인 경우, 상기 복수의 목표 전압 중 가장 고전위측 목표 전압을 상기 기준 전압으로 선택하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  8. 제1항에 있어서,
    상기 프로파일 획득부는,
    상기 배터리의 전압을 용량으로 미분한 미분 전압과 상기 배터리의 용량에 대한 미분 프로파일을 획득하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  9. 제8항에 있어서,
    상기 프로세서는,
    상기 복수의 미분 프로파일 각각에서 하나 이상의 피크 쌍을 결정하고, 결정된 피크 쌍 중에서 포함되는 복수의 피크의 미분 전압이 가장 차이나는 피크 쌍을 선택하며, 선택된 피크 쌍에 포함된 복수의 피크 중 저용량측 피크를 상기 타겟 피크로 선택하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  10. 제9항에 있어서,
    상기 프로세서는,
    상기 복수의 피크 중에서 상기 배터리의 용량이 증가할수록 상기 미분 전압이 증가하는 구간에서 상단과 하단에 위치하는 2개의 피크를 하나의 피크 쌍으로 결정하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  11. 제9항에 있어서,
    상기 타겟 피크는,
    흑연이 음극 활물질로 포함된 배터리에서, 충전 심도에 따른 LiC 12의 거동과 관련된 피크인 것을 특징으로 하는 충전 심도 설정 장치.
  12. 제9항에 있어서,
    상기 프로세서는,
    상기 복수의 미분 프로파일 각각을 정규화하여 복수의 정규 분포 프로파일을 획득하고, 상기 획득된 복수의 정규 분포 프로파일 각각에서 대응되는 타겟 피크에 대한 반치전폭을 상기 특징값으로 획득하도록 구성된 것을 특징으로 하는 충전 심도 설정 장치.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 충전 심도 설정 장치를 포함하는 배터리 제조 장치.
  14. 미리 설정된 복수의 전압 중 어느 하나를 순차적으로 선택하여 목표 전압으로 설정하는 목표 전압 설정 단계;
    배터리를 상기 목표 전압까지 충전시키고, 충전이 완료된 배터리를 방전시키는 충방전 단계;
    상기 배터리가 충전 또는 방전되는 과정에서 상기 배터리의 용량과 전압에 대한 전압 프로파일을 획득하는 전압 프로파일 획득 단계;
    획득한 전압 프로파일로부터 상기 배터리의 용량과 미분 전압에 대한 미분 프로파일을 획득하는 미분 프로파일 획득 단계;
    상기 복수의 전압에 대응되는 복수의 미분 프로파일을 모두 획득하는 미분 프로파일 반복 획득 단계;
    상기 복수의 미분 프로파일 각각에서 타겟 피크에 대한 특징값을 획득하는 특징값 획득 단계; 및
    획득된 복수의 특징값에 기반하여 상기 배터리에 대한 충전 심도를 설정하는 충전 심도 설정 단계를 포함하는 것을 특징으로 하는 충전 심도 설정 방법.
PCT/KR2021/005914 2020-05-15 2021-05-11 충전 심도 설정 장치 및 방법 WO2021230639A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180005982.1A CN114586258A (zh) 2020-05-15 2021-05-11 充电深度设定设备和方法
EP21803568.1A EP4050753A4 (en) 2020-05-15 2021-05-11 DEVICE AND METHOD FOR CONFIGURATION OF LOAD DEPTH
JP2022517830A JP7287604B2 (ja) 2020-05-15 2021-05-11 充電深度設定装置及び方法
US17/771,395 US20220399739A1 (en) 2020-05-15 2021-05-11 Doc setting apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0058601 2020-05-15
KR1020200058601A KR20210141219A (ko) 2020-05-15 2020-05-15 충전 심도 설정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2021230639A1 true WO2021230639A1 (ko) 2021-11-18

Family

ID=78524646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005914 WO2021230639A1 (ko) 2020-05-15 2021-05-11 충전 심도 설정 장치 및 방법

Country Status (6)

Country Link
US (1) US20220399739A1 (ko)
EP (1) EP4050753A4 (ko)
JP (1) JP7287604B2 (ko)
KR (1) KR20210141219A (ko)
CN (1) CN114586258A (ko)
WO (1) WO2021230639A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230108663A (ko) * 2022-01-11 2023-07-18 주식회사 엘지에너지솔루션 배터리 충전 심도 산출 장치 및 그것의 동작 방법
WO2023162544A1 (ja) 2022-02-24 2023-08-31 株式会社デンソートリム エンジン制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
KR20170045730A (ko) * 2015-10-19 2017-04-27 리튬 에너지 앤드 파워 게엠베하 운트 코. 카게 배터리의 노후화 상태를 결정하기 위한 방법, 배터리를 제어하기 위한 방법 및 작동 장치
JP2017129493A (ja) * 2016-01-21 2017-07-27 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
WO2020033343A1 (en) * 2018-08-06 2020-02-13 The Regents Of The University Of Michigan Electrode diagnostics for lithium ion battery
KR20200026128A (ko) * 2018-08-29 2020-03-10 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
KR20200058601A (ko) 2015-06-05 2020-05-27 캐논 가부시끼가이샤 프로세스 카트리지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315369B2 (ja) * 2011-03-01 2013-10-16 株式会社日立製作所 リチウム二次電池の異常充電状態検出装置及び検査方法
CN104871021B (zh) * 2012-12-04 2017-05-31 株式会社Lg化学 用于估计二次电池放电深度的方法和装置
WO2019199064A1 (ko) * 2018-04-10 2019-10-17 주식회사 엘지화학 배터리 진단 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
KR20200058601A (ko) 2015-06-05 2020-05-27 캐논 가부시끼가이샤 프로세스 카트리지
KR20170045730A (ko) * 2015-10-19 2017-04-27 리튬 에너지 앤드 파워 게엠베하 운트 코. 카게 배터리의 노후화 상태를 결정하기 위한 방법, 배터리를 제어하기 위한 방법 및 작동 장치
JP2017129493A (ja) * 2016-01-21 2017-07-27 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
WO2020033343A1 (en) * 2018-08-06 2020-02-13 The Regents Of The University Of Michigan Electrode diagnostics for lithium ion battery
KR20200026128A (ko) * 2018-08-29 2020-03-10 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J WILHELM ET AL.: "In Situ Neutron Diffraction Study of Lithiation Gradients in Graphite Anodes during Discharge and Relaxation", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 165, no. 9, 2018, pages A1846 - A1856
See also references of EP4050753A4

Also Published As

Publication number Publication date
EP4050753A1 (en) 2022-08-31
US20220399739A1 (en) 2022-12-15
JP7287604B2 (ja) 2023-06-06
KR20210141219A (ko) 2021-11-23
EP4050753A4 (en) 2023-06-14
JP2022549612A (ja) 2022-11-28
CN114586258A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2017034277A1 (ko) 이차 전지의 퇴화도 추정 장치 및 방법
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2016053055A1 (ko) 신속하게 절연 저항을 측정할 수 있는 절연 저항 측정 장치 및 방법
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2019074221A1 (ko) 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법
WO2018038383A1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2021049882A1 (ko) 배터리 관리 장치 및 방법
WO2022092827A1 (ko) 배터리 관리 장치 및 방법
WO2020189919A1 (ko) 배터리 상태 추정 장치
WO2022075708A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022015116A1 (ko) 배터리 관리 장치 및 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2022071776A1 (ko) 배터리 진단 장치, 방법 및 시스템
WO2021230537A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2021075771A1 (ko) 충전 상태 추정 장치 및 방법
WO2022080835A1 (ko) 배터리 진단 장치 및 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021803568

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE