WO2021230261A1 - 刺激に応答して酸素を放出する系 - Google Patents

刺激に応答して酸素を放出する系 Download PDF

Info

Publication number
WO2021230261A1
WO2021230261A1 PCT/JP2021/017959 JP2021017959W WO2021230261A1 WO 2021230261 A1 WO2021230261 A1 WO 2021230261A1 JP 2021017959 W JP2021017959 W JP 2021017959W WO 2021230261 A1 WO2021230261 A1 WO 2021230261A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
stimulus
protein
response
reducing agent
Prior art date
Application number
PCT/JP2021/017959
Other languages
English (en)
French (fr)
Inventor
典弥 松▲崎▼
博貴 中辻
芳樹 澤
繁 宮川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2021230261A1 publication Critical patent/WO2021230261A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a system that releases oxygen in response to a stimulus, a cell culture vessel or an artificial three-dimensional tissue containing the system, and a cell culture method or a method for producing an artificial three-dimensional tissue using the system.
  • Non-Patent Document 1 In recent years, scaffolds that slowly release oxygen have been attracting attention, and for example, scaffolds containing calcium peroxide have been reported (Non-Patent Document 2).
  • the conventional system that releases oxygen has a problem of insufficient supply of oxygen to the inside of the tissue.
  • the present inventors have combined a protein having a heme structure and a reducing agent that reduces or eliminates the reducing power in response to a stimulus, and the present inventors respond to the stimulus.
  • a system that releases oxygen can be constructed, and have completed the present invention.
  • the present invention provides: [1] A system that releases oxygen in response to a stimulus, which comprises a protein having a heme structure and a reducing agent that reduces or eliminates the reducing power in response to the stimulus.
  • a system that releases oxygen in response to a stimulus, which comprises a protein having a heme structure and a reducing agent that reduces or eliminates the reducing power in response to the stimulus.
  • the system according to [1], wherein the protein having a heme structure is myoglobin or hemoglobin.
  • the reducing agent has biocompatibility.
  • the reducing agent is ascorbic acid, tocopherol, cysteine, NADH or NADPH.
  • the stimulus is acceptable to a living tissue.
  • [6] The system according to any one of [1] to [5], wherein the stimulus is due to temperature change, light irradiation, pH change or a drug.
  • a cell culture container containing the system according to any one of [1] to [6].
  • An artificial three-dimensional tissue containing the system according to any one of [1] to [6].
  • a cell culture method comprising stimulating the system according to any one of [1] to [6] to release oxygen.
  • a method for producing an artificial three-dimensional tissue which comprises stimulating the system according to any one of [1] to [6] to release oxygen.
  • oxygen can be released by a stimulus
  • the position or time at which oxygen is released can be controlled
  • the amount of oxygen released can be controlled
  • the amount of oxygen released can be controlled by the timing and intensity of the stimulus.
  • oxygen can be released slowly.
  • FIG. 1 shows the measurement result of the absorbance of the Mb solution.
  • FIG. 2 shows the change in absorbance between the absorbance of the Mb solution and the absorbance of the oxyMb solution.
  • FIG. 3 shows the change in oxygen partial pressure of the oxyMb solution after the addition of ascorbic acid.
  • FIG. 4 shows the amount of dissolved oxygen of the oxyMb solution over time at 20 ° C, 37 ° C and 45 ° C.
  • FIG. 5 shows the changes in the absorbance of Mb and AA in the oxyMb solution at 20 ° C, 37 ° C and 45 ° C.
  • FIG. 6 shows the measurement results of the frequency change ( ⁇ F (Hz)) of each LBL (layer by layer) nano-thin film prepared by alternately immersing in a myoglobin (Mb) solution and a type I collagen (Col) solution. show.
  • FIG. 7 shows the fluorescence spectra of the fluorescent oxygen probe in the absence and presence of the LBL nanothin film.
  • FIG. 8 shows the cell viability in the absence and presence of the LBL nanothin film.
  • FIG. 9 shows UV-vis absorption spectra 4, 24, 48, and 72 hours after the addition of NADH to the oxyMb solution.
  • FIG. 10 shows UV-vis absorption spectra at 0, 2, 4, 8, 24, 48, 72 hours after the addition of NADH to phosphate buffered saline at 4 ° C or 37 ° C.
  • FIG. 11 shows the cell viability under Mb microgel, under microgel without Mb, and under a sample without microgel.
  • the present invention provides a system that releases oxygen in response to a stimulus, including a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus.
  • the heme structure refers to a structure containing a porphyrin complex having a metal atom as a central metal, for example, iron or copper, but may be a structure containing a complex similar to the porphyrin complex.
  • heme structure refers to ferrohem, which is a protohem consisting of divalent iron and IX-type protoporphyrin, but other iron complexes of porphyrin such as ferrihem, hemochrome, hemin, and hematin and similar structures are also available. included.
  • the heme structure has the function that iron in the heme structure can become divalent and trivalent, for example, by oxidation and / or reduction reaction.
  • the heme structure has the ability to bind oxygen molecules to, for example, metal atoms in the heme structure, such as iron or copper, to store and release oxygen molecules.
  • a protein having a heme structure refers to a protein having one or more heme structures.
  • the protein having a heme structure may be a naturally occurring protein, a mutant or an artificial product.
  • the protein having a heme structure may be myoglobin, hemoglobin, hemocyanin, chlorocruorin, erythrocruorin or hemerythrin.
  • the protein having a heme structure may be in an oxidized state or a reduced state.
  • myoglobin includes oxymyoglobin (oxyMb), metmyoglobin (metMb) and deoxymyoglobin (deoxyMb).
  • the protein having a heme structure may be a protein having a heme structure derived from humans, or may be a protein having a heme structure derived from a non-human animal.
  • Animals are, for example, fish, amphibians, reptiles, birds or mammals. Animals are, for example, frogs, chickens, humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice or rabbits.
  • a protein having a heme structure is preferably a protein having a heme structure acceptable to living tissues, particularly a heme structure having no cytotoxicity or inhibition of cell behavior or having low cytotoxicity or inhibition of cell behavior. It is a protein that has. Examples of proteins having a heme structure preferably used in the present invention include myoglobin and hemoglobin.
  • the reducing agent refers to any substance having a reducing power and having a function of reducing or eliminating the reducing power in response to a stimulus.
  • the reducing power is the ability of the reducing agent to oxidize itself and at the same time reduce the partner substance.
  • the reducing agent reduces a metal atom of a protein having a hem structure, for example, iron or copper, and an oxygen molecule is bonded to the reduced metal atom, for example, iron or copper.
  • the reducing agent may be appropriately selected depending on the binding property of the oxygen molecule to the metal atom of the protein having a heme structure, for example, iron or copper.
  • Reducing agents include ascorbic acids (ascorbic acid (vitamin C) or erythorbic acid, etc.), phenols (tocopherol (vitamin E) or 2,6-di-tert-butyl-4-methylphenol (BHT), etc.), cysteines, etc. (Glutathion, etc.), sulfites (such as subdithioic acid), NADH (nicotinamide adenine dinucleotide), NADPH (nicotinamide adenine dinucleotide phosphate) or any salt thereof (sodium salt, calcium salt or hydrochloride, etc.) May be.
  • ascorbic acids ascorbic acid (vitamin C) or erythorbic acid, etc.
  • phenols tocopherol (vitamin E) or 2,6-di-tert-butyl-4-methylphenol (BHT), etc.
  • cysteines etc.
  • Glutathion, etc. sulfites (such as
  • the reducing agent is preferably a biocompatible reducing agent, particularly a reducing agent that does not have cytotoxicity or cytotoxicity or has low cytotoxicity or cell behavior inhibition.
  • examples of the reducing agent preferably used in the present invention include ascorbic acid, tocopherol, cysteine, NADH and NADPH.
  • the metal atom of the heme-structured protein such as iron or copper
  • oxygen is released from the metal atom, such as iron or copper.
  • the stimulus may be any stimulus that can reduce or eliminate the reducing power of the reducing agent.
  • the reducing agent may be one that changes its structure by being stimulated or is decomposed by itself.
  • the stimulus may be various stimuli, such as the passage of time, physical stimuli, such as temperature changes, light irradiation, UV irradiation, ultrasonic irradiation or pressure changes, or chemical stimuli, such as pH changes or drug additions.
  • the stimulus may be, for example, at a temperature of 20 ° C to 50 ° C, 25 ° C to 50 ° C, 25 ° C to 45 ° C, 30 ° C to 45 ° C, 37 ° C to 45 ° C, 37 ° C or 45 ° C.
  • the stimulus is preferably a stimulus that is acceptable to living tissue, in particular a stimulus that does not have cytotoxicity or cytotoxicity or has low cytotoxicity or cytotoxicity.
  • Preferred stimuli in the present invention include temperature changes, light irradiation, pH changes and drugs.
  • Decrease refers to level decrease, downregulation or suppression, etc.
  • the decrease in reducing power is 100%, 95% or more, 90% or more, 80% or more, 70% or more, 60% or more, 50% or more, 40% or more, 30% or more, 20 of the reducing power of the reducing agent.
  • the decrease in reducing power is 100%, 95% or more, 90% or more, 80% or more, 70% or more, 60% or more, 50% or more, 40% or more, 30% or more, 20 of the reducing power of the reducing agent.
  • Disappearance refers to a complete or virtually complete loss of level.
  • the loss of reducing power refers to a decrease of 100%, 99% or more, 98% or more, 97% or more, 96% or more, 95% or more or 90% or more of the reducing power of the reducing agent.
  • the system according to the invention includes a system, system or mechanism that releases oxygen in response to a stimulus, including a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus.
  • the system according to the invention comprises a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus, such as a material or a material that releases oxygen in response to a stimulus. It may be a material or the like. Further, the system according to the present invention may be the substance, the material or a substance containing the material, for example, a solution, a container, a medium, a culture container, a tissue, an organ or an organ.
  • the shape of the system according to the present invention may be liquid, semi-solid, or solid.
  • the system according to the present invention may be a solution, gel, paste, film, plate, stick, block, powder, granule, pellet or the like.
  • Specific examples of the system according to the present invention include a cell culture medium (medium containing the system according to the present invention), a medium additive (liquid, paste, powder, granule, pellet, etc.), and as a scaffold on the inner surface of the cell culture container. Items to be installed (gels, sheets, etc.), scaffolds for artificial tissue production (gels, sheets, etc.), artificial tissues (eg, organs, blood vessels, blood, etc.-including the system according to the present invention), etc. However, it is not limited to these.
  • the system according to the invention combines a scaffolding material (substrate) such as gelatin or collagen with a protein having a hem structure, for example a protein having a hem structure on a scaffolding material (substrate) such as gelatin or collagen.
  • a scaffold having the system according to the present invention may be formed. Scaffolds may be manufactured to mimic blood vessels.
  • a person skilled in the art can appropriately select a scaffolding material (board) according to the use of the system according to the present invention.
  • the system according to the present invention can release oxygen by stimulation. Therefore, the timing of stimulation by the system according to the present invention and the intensity of stimulation can be appropriately adjusted according to the intended use, place of use, cell type, tissue type, and the like.
  • the release of oxygen by the system according to the present invention may be sustained release.
  • the system according to the present invention has 10 minutes or more, 30 minutes or more, 1 hour or more, 2 hours or more, 4 hours or more, 5 hours or more, 8 hours or more, 10 hours or more, 20 hours or more, 24 hours or more, 30 hours.
  • Oxygen can be released for 40 hours or more, 48 hours or more, 50 hours or more, 72 hours or more, 100 hours or more, or more.
  • the release of oxygen may be stopped or temporarily interrupted by stopping or temporarily interrupting the stimulus.
  • system according to the invention may be used for cell culture or artificial three-dimensional tissue.
  • the system according to the present invention can be used for cell culture to create a better culture environment.
  • a sufficient amount of oxygen can be released into the medium from the system according to the present invention to allow cells to take up a sufficient amount of oxygen.
  • cell viability is improved and cell yield is improved.
  • the system according to the present invention may be coated on the inner surface of the culture vessel.
  • the system according to the present invention may be added to the medium.
  • the system according to the invention combines a scaffolding material (substrate) such as gelatin or collagen with a protein having a hem structure, for example by coating a scaffolding material (substrate) with a protein having a hem structure.
  • the system of the present invention can be obtained by forming a scaffold by adding a protein having a hem structure to a scaffold material (substrate) and adding a reducing agent in an environment in contact with the scaffold (for example, a medium) or by adding a reducing agent to the scaffold itself. You may build it.
  • a person skilled in the art can appropriately select a scaffolding material (base) according to the usage mode of the system according to the present invention.
  • the cell may be a human-derived cell or a non-human animal-derived cell.
  • Animals are, for example, insects, fish, amphibians, reptiles, birds or mammals. Animals are, for example, frogs, chickens, humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice or rabbits.
  • the animal is, for example, a human.
  • the cell is, for example, a cell from which a mesenchymal stem cell, an embryonic stem cell, an induced pluripotent stem cell, or the like is derived.
  • the cell is, for example, a cell derived from a healthy cell or an unhealthy cell.
  • the cell may be a cultured cell.
  • the cultured cells include primary cultured cells, subcultured cells, cell line cells and the like. Further, the cell may be a cell derived from any tissue.
  • the cells are, for example, skin fibroblasts, umbilical vein endothelial cells, myoblasts or myoblasts.
  • the cells are, for example, muscle tissue or any cell derived from muscle tissue, such as skeletal muscle, visceral muscle, striated muscle, voluntary muscle, involuntary muscle, smooth muscle or myocardial origin.
  • the cell is, for example, a cardiomyocyte.
  • the system according to the present invention may be used for constructing an artificial three-dimensional structure.
  • the system according to the present invention can be introduced into the artificial three-dimensional tissue at the start of construction of the artificial three-dimensional tissue or during the construction.
  • the system according to the present invention may be added to an extracellular matrix containing gelatin or fibronectin.
  • the system according to the present invention may be added to the medium for culturing the extracellular matrix.
  • an artificial three-dimensional structure may be constructed on the scaffold (board) described above.
  • a protein having a heme structure is immobilized on the inner and / or outer surfaces of a tube made of a material permeable material (for example, imitating a blood vessel) and passed through an artificial three-dimensional tissue, and the inner surface and / or outer surface of the tube is passed.
  • the reducing agent may be placed in contact with the.
  • the tube may be filled or flushed with a nutrient solution containing a reducing agent.
  • An artificial three-dimensional tissue is, for example, an aggregate of cells containing cultured cells and an extracellular matrix.
  • a three-dimensional tissue is, for example, a mature tissue or organ.
  • the artificial three-dimensional tissue can be any tissue, such as epithelial tissue, connective tissue, muscle tissue, and nervous tissue.
  • the artificial three-dimensional tissue is, for example, epithelial tissue or muscle tissue.
  • the artificial three-dimensional tissue can also be any organ, such as the intestine, stomach, liver, pancreas, lungs, heart, brain.
  • the artificial three-dimensional structure may be integrated with the system according to the present invention.
  • the system according to the invention may be appropriately modified to release any additional substances other than oxygen.
  • additional substances include, for example, cell or tissue differentiation-inducing components, culture components or nutrients such as carbohydrates, vitamins, minerals including proteins, fats, glucose. , Fiber, fatty acids or amino acids including palmitic acid.
  • the system of the present invention can be constructed in a cell culture system or an artificial three-dimensional tissue construction system. Therefore, the present invention provides the following.
  • the present invention provides, in one embodiment, a cell culture vessel containing the system according to the present invention.
  • the cell culture vessel can be any vessel such as a petri dish, a flask, a microplate, a container for bioprints, and the like.
  • the present invention in one embodiment, provides an artificial three-dimensional structure comprising the system according to the present invention.
  • the present invention provides, in one embodiment, a cell culture method comprising stimulating the system to release oxygen.
  • the present invention provides, in one embodiment, a method for producing an artificial three-dimensional tissue, which comprises stimulating the system to release oxygen. Further, the step of removing the scaffold (scaffold) in which the above system is used may be included from the manufactured artificial three-dimensional structure.
  • the present invention provides, in a further aspect, the following: A material containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus and releases oxygen in response to a stimulus. A medium containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus and releases oxygen in response to a stimulus. A culture vessel containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus and releases oxygen in response to a stimulus.
  • a cell culture scaffold containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus is a scaffold that releases oxygen in response to a stimulus.
  • An artificial three-dimensional tissue culture scaffold containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus, and releases oxygen in response to a stimulus. ..
  • An artificial three-dimensional tissue culture culture vessel containing a protein having a heme structure and a reducing agent that reduces or eliminates reducing power in response to a stimulus, and is used for artificial three-dimensional tissue culture that releases oxygen in response to a stimulus. Culture vessel.
  • Example 1 (I) A 200 ⁇ M myoglobin (Mb) solution was prepared using phosphate buffered saline. The absorbance of the prepared Mb solution was measured (FIG. 1). Mb in this solution is metmyoglobin in an oxidized state.
  • Oxygen partial pressure of oxyMb solution 1 minute, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 minutes, 100 minutes, 110 minutes and 120 minutes after the addition of ascorbic acid.
  • the changes are shown in FIG. Reduction of myoglobin by ascorbic acid and adsorption of oxygen to myoglobin were confirmed.
  • Mb myoglobin
  • Col type I collagen
  • the solution was covered with mineral oil to prevent the diffusion of oxygen. After incubating at 37 ° C. for 30 minutes in the dark, the fluorescence spectrum of the fluorescent oxygen probe was measured. In addition, the fluorescence spectrum of the fluorescent oxygen probe was measured in the same manner even when there was no thin film. The experimental results are shown in FIG. Sustained release of 0.71 nmol of oxygen was confirmed from the LBL nanothin film.
  • NHDF normal human skin fibroblasts
  • DMEM medium Dulbecco's modified Eagle's medium
  • Example 3 (I) Mb was dissolved in phosphate buffered saline at a concentration of 5 mg / mL, 20 equivalents of ascorbic acid was added, and the mixture was allowed to stand at 4 ° C. for 48 hours.
  • the obtained oxyMb solution containing ascorbic acid was dialyzed against a dialysis membrane having a molecular weight cut-off of 3500 at 4 ° C. for 48 hours to remove ascorbic acid from the oxyMb solution.
  • 2 mM nicotinamide adenine dinucleotide (NADH) was added to a 200 ⁇ M oxyMb solution, incubated at 37 ° C. for 72 hours, and UV-vis absorption spectra were measured after 0, 2, 4, 8, 24, 48 and 72 hours. ..
  • the experimental results are shown in FIG. NADH confirmed a long-term autoxidation of myoglobin over 48 hours.
  • NADH was dissolved in phosphate buffered saline at a concentration of 2 mM and incubated at 4 ° C or 37 ° C. After 0, 2, 4, 8, 24, 48, and 72 hours, a part of the NADH solution was taken out, diluted 5-fold with phosphate buffered saline, and UV-vis absorption spectrum measurement was performed. The experimental results are shown in FIG. NADH decomposed at 37 ° C. in a time-dependent manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

刺激に応答して酸素を放出する系、その系を含む細胞培養容器または人工三次元組織、およびその系を用いる細胞培養方法または人工三次元組織の製造方法を提供する。

Description

刺激に応答して酸素を放出する系
 本発明は、刺激に応答して酸素を放出する系、その系を含む細胞培養容器または人工三次元組織、およびその系を用いる細胞培養方法または人工三次元組織の製造方法に関する。
 再生医療において、生体外での三次元組織の構築は大きな課題がある。特に、200μm以上の厚さを有する組織を構築することは未だ困難である。その原因として、組織内部への酸素や栄養素の供給不足があげられる(非特許文献1)。近年、酸素を徐放する足場が注目されており、例えば過酸化カルシウムを含有する足場などが報告されている(非特許文献2)。
T.Shimizu et al.,FASEB J.2006,20,708 K.Park et al.,Biomaterials 2018,182,234
 しかしながら、従来の酸素を放出する系は、組織内部への酸素の供給不足の問題が存在する。また、従来の酸素を放出する系は、酸素を徐放することが困難である。そのため、組織内部へ酸素を供給するおよび酸素を徐放する系が必要とされている。十分な酸素を供給することができれば、従来よりも厚い組織を構築することができると期待される。
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を組み合わせたところ、刺激に応答して酸素を放出する系を構築できることを見いだし、本発明を完成させるに至った。
 すなわち、本発明は以下を提供する:
[1]ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む、刺激に応答して酸素を放出する系。
[2]ヘム構造を有するタンパク質がミオグロビンまたはヘモグロビンである、[1]記載の系。
[3]還元剤が生体適合性を有するものである、[1]または[2]記載の系。
[4]還元剤がアスコルビン酸、トコフェロール、システイン、NADHまたはNADPHである、[3]記載の系。
[5]刺激が生体組織に受容可能なものである、[1]~[3]のいずれかに記載の系。
[6]刺激が温度変化、光照射、pH変化または薬剤によるものである、[1]~[5]のいずれかに記載の系。
[7][1]~[6]のいずれかに記載の系を含む細胞培養容器。
[8][1]~[6]のいずれかに記載の系を含む人工三次元組織。
[9][1]~[6]のいずれかに記載の系に刺激を与えて酸素を放出させることを含む、細胞培養方法。
[10][1]~[6]のいずれかに記載の系に刺激を与えて酸素を放出させることを含む、人工三次元組織の製造方法。
 本発明によれば、刺激によって酸素を放出することができるため、刺激をおこなうタイミングおよび刺激の強度によって、酸素を放出する位置または時間を制御すること、放出する酸素の量を制御すること、および/または酸素を徐放することができる。本発明の酸素放出系を用いることで、従来よりも厚い組織を構築することができ、より良い細胞培養の環境を作出することができる。
図1は、Mb溶液の吸光度の測定結果を示す。 図2は、Mb溶液の吸光度とoxyMb溶液の吸光度との吸光度変化を示す。 図3は、アスコルビン酸添加後のoxyMb溶液の酸素分圧変化を示す。 図4は、20℃、37℃および45℃下での、oxyMb溶液の経時的な溶存酸素量を示す。 図5は、20℃、37℃および45℃下での、oxyMb溶液のMbとAAの吸光度の変化を示す。 図6は、ミオグロビン(Mb)溶液とI型コラーゲン(Col)溶液に交互に浸漬して作製された各LBL(layer by layer)ナノ薄膜の振動数変化(−ΔF(Hz))の測定結果を示す。 図7は、LBLナノ薄膜の非存在下および存在下における蛍光酸素プローブの蛍光スペクトルを示す。 図8は、LBLナノ薄膜の非存在下および存在下における細胞生存率を示す。 図9は、oxyMb溶液にNADHの添加の4、24、48、および72時間後のUV−vis吸収スペクトルを示す。 図10は、4℃または37℃での、リン酸緩衝生理食塩水にNADHの添加の0、2、4、8、24、48、72時間後のUV−vis吸収スペクトルを示す。 図11は、Mb microgel下、Mbを含まないmicrogel下およびmicrogelを含まないサンプル下における細胞生存率を示す。
 本発明は、ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む、刺激に応答して酸素を放出する系を提供する。
 ヘム構造は、中心金属として金属原子、例えば鉄または銅を有するポルフィリン錯体を含む構造を指すが、ポルフィリン錯体と類似した錯体を含む構造であってもよい。一般的に、ヘム構造は、二価の鉄とIX型プロトポルフィリンからなるプロトヘムであるフェロヘムのことを指すが、フェリヘムやヘモクロム、ヘミン、ヘマチンなど、その他のポルフィリンの鉄錯体およびそれと類似した構造も含まれる。ヘム構造は、例えば、酸化および/または還元反応によってヘム構造中の鉄が二価および三価となることができる機能を有する。ヘム構造は、例えば、ヘム構造中の金属原子、例えば鉄または銅に酸素分子が結合し、酸素分子を貯蔵および放出する能力を有する。
 ヘム構造を有するタンパク質は、1以上のヘム構造を有するタンパク質を指す。ヘム構造を有するタンパク質は、天然由来のタンパク質であっても、変異体または人工物であってもよい。ヘム構造を有するタンパク質は、ミオグロビン、ヘモグロビン、ヘモシアニン、クロロクルオリン、エリスロクルオリンまたはヘムエリスリンであってよい。ヘム構造を有するタンパク質は、酸化状態や還元状態であってもよい。例えば、ミオグロビンは、オキシミオグロビン(oxyMb)、メトミオグロビン(metMb)やデオキシミオグロビン(deoxyMb)を含む。ヘム構造を有するタンパク質は、ヒト由来のヘム構造を有するタンパク質であってよく、またはヒト以外の動物由来のヘム構造を有するタンパク質であってもよい。動物は、例えば、魚類、両生類、爬虫類、鳥類または哺乳類である。動物は、例えば、カエル、ニワトリ、ヒト、サル、ブタ、ウマ、ウシ、ヒツジ、イヌ、ネコ、マウスまたはウサギである。ヘム構造を有するタンパク質は、好ましくは、生体組織に受容可能なヘム構造を有するタンパク質、特に、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低いヘム構造を有するタンパク質である。本発明において好ましく用いられるヘム構造を有するタンパク質の例としては、ミオグロビンおよびヘモグロビンなどが挙げられる。
 還元剤は、還元力を有し、かつ刺激に応答して還元力を低下または消失する機能を有するあらゆる物質を指す。還元力は、還元剤自ら酸化されると同時に相手物質を還元する能力である。本発明において、還元剤は、ヘム構造を有するタンパク質の金属原子、例えば鉄または銅を還元し、還元された金属原子、例えば鉄または銅に酸素分子が結合する。還元剤は、ヘム構造を有するタンパク質の金属原子、例えば鉄または銅への酸素分子の結合性などに応じて適宜選択されうる。還元剤は、アスコルビン酸類(アスコルビン酸(ビタミンC)またはエリソルビン酸など)、フェノール類(トコフェロール(ビタミンE)または2,6−ジ−tert−ブチル−4−メチルフェノール(BHT)など)、システイン類(グルタチオンなど)、亜硫酸塩類(亜ジチオ酸など)、NADH(ニコチンアミドアデニンジヌクレオチド)、NADPH(ニコチンアミドアデニンジヌクレオチドリン酸)またはこれらの任意の塩(ナトリウム塩、カルシウム塩または塩酸塩など)であってよい。還元剤は、好ましくは、生体適合性を有する還元剤、特に、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低い還元剤である。本発明において好ましく用いられる還元剤の例としては、アスコルビン酸、トコフェロール、システイン、NADHおよびNADPHなどが挙げられる。
 還元剤の還元力が十分である間は、ヘム構造を有するタンパク質の金属原子、例えば鉄または銅への酸素分子の結合が維持される。還元剤が刺激を受けてその還元力を低下または消失させると、ヘム構造を有するタンパク質の金属原子、例えば鉄または銅が自動酸化され、金属原子、例えば鉄または銅から酸素が放出される。
 刺激は、還元剤の還元力を低下または消失させることができるあらゆる刺激であってよい。還元剤は、刺激を受けることによってその構造を変化させ、あるいはそれ自体が分解されるものであってもよい。刺激は、様々な刺激、例えば時間の経過、物理的刺激、例えば温度変化、光照射、UV照射、超音波照射または圧力変化、あるいは化学的刺激、例えばpH変化または薬剤添加であってよい。刺激は、例えば20℃~50℃、25℃~50℃、25℃~45℃、30℃~45℃、37℃~45℃、37℃または45℃の温度であってよい。刺激は、好ましくは、生体組織に受容可能な刺激、特に、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低い刺激である。本発明において好ましい刺激は、温度変化、光照射、pH変化および薬剤などが挙げられる。
 低下は、レベルの減少、下方制御または抑制などを指す。例えば、還元力の低下は、還元剤の還元力の100%、95%以上、90%以上、80%以上、70%以上、60%以上、50%以上、40%以上、30%以上、20%以上または10%以上の低下を指す。
 消失は、レベルの完全な喪失または実質的に完全な喪失を指す。例えば、還元力の消失は、還元剤の還元力の100%、99%以上、98%以上、97%以上、96%以上、95%以上または90%以上の低下を指す。
 本発明による系は、ヘム構造を有するタンパク質および刺激に応答して還元力を低下または消失する還元剤を含む、刺激に応答して酸素を放出するシステム、体系または機構を包含する。
 一実施形態において、本発明による系は、ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む、刺激に応答して酸素を放出する物、例えば、素材または材料などであってよい。また、本発明による系は、当該物、当該素材または当該材料を含む物、例えば、溶液、容器、培地、培養容器、組織、器官または臓器などであってもよい。
 本発明による系の形状は、液体、半固体、固体であってよい。例えば本発明による系は、溶液、ゲル、ペースト、フィルム、プレート、スティック、ブロック、粉末、顆粒、ペレットなどであってもよい。本発明による系の具体例としては、細胞培養培地(本発明による系が含まれている培地)、培地添加剤(液剤、ペースト、粉末、顆粒、ペレットなど)、細胞培養容器の内面に足場として設置されるもの(ゲル、シートなど)、人工組織製造用の足場(ゲル、シートなど)、人工組織(例えば臓器、血管、血液など−その中に本発明による系が含まれている)などが挙げられるがこれらに限定されない。
 一実施形態において、本発明による系は、ゼラチンまたはコラーゲンなどの足場材料(基板)とヘム構造を有するタンパク質を組み合わせて、例えばゼラチンまたはコラーゲンなどの足場材料(基板)上にヘム構造を有するタンパク質を被覆することによって、本発明による系を有する足場(スキャフォールド)を形成してもよい。足場(スキャフォールド)は、血管を模すように製造されてよい。当業者は、本発明による系の使用に応じて、足場材料(基板)を適宜選択することができる。
 本発明による系は、刺激によって酸素を放出することができる。したがって、本発明による系による刺激をおこなうタイミングおよび刺激の強度は、用途、使用場所、細胞の種類、組織の種類などに応じて適宜調節されうる。
 本発明による系による酸素の放出は、徐放性であってよい。例えば、本発明による系は、10分以上、30分以上、1時間以上、2時間以上、4時間以上、5時間以上、8時間以上、10時間以上、20時間以上、24時間以上、30時間以上、40時間以上、48時間以上、50時間以上、72時間以上、100時間以上またはそれ以上の時間、酸素を放出することができる。また、刺激を停止または一時的に中断することによって、酸素の放出を停止または一時的に中断させてもよい。
 一実施形態において、本発明による系は、細胞培養または人工三次元組織に関して使用されてよい。
 本発明による系を細胞培養に用いて、より良い培養環境を作出することが出来る。本発明による系から十分な量の酸素を培地に放出させて、細胞に十分な量の酸素を取り込ませることができる。その結果、細胞のバイアビリティが向上し、細胞収量が向上する。
 例えば本発明による系を、培養容器内面にコーティングしてもよい。あるいは本発明による系を培地に添加してもよい。一実施形態において、本発明による系は、ゼラチンまたはコラーゲンなどの足場材料(基板)とヘム構造を有するタンパク質を組み合わせることによって、例えば足場材料(基板)上にヘム構造を有するタンパク質を被覆することによって、あるいは足場材料(基板)中にヘム構造を有するタンパク質を添加することによって足場を形成し、足場に接する環境(例えば培地)中または足場自体に還元剤を添加することによって、本発明の系を構築してもよい。当業者は、本発明による系の使用態様に応じて足場材料(基盤)を適宜選択することができる。
 細胞は、ヒト由来の細胞であってよく、またはヒト以外の動物由来の細胞であってもよい。動物は、例えば、昆虫、魚類、両生類、爬虫類、鳥類または哺乳類である。動物は、例えば、カエル、ニワトリ、ヒト、サル、ブタ、ウマ、ウシ、ヒツジ、イヌ、ネコ、マウスまたはウサギである。動物は、例えばヒトである。細胞は、例えば、間葉系幹細胞、胚性幹細胞または人工多能性幹細胞等の由来の細胞である。細胞は、例えば、健常細胞または非健常細胞由来の細胞である。細胞は、培養細胞であってもよい。培養細胞としては、初代培養細胞、継代培養細胞、及び細胞株細胞等が挙げられる。また、細胞は、あらゆる組織由来の細胞であってよい。細胞は、例えば皮膚線維芽細胞、臍帯静脈内皮細胞、筋細胞または筋芽細胞である。細胞は、例えば筋組織または筋肉組織由来のあらゆる細胞、例えば骨格筋、内臓筋、横紋筋、随意筋、不随意筋、平滑筋または心筋由来の細胞である。細胞は、例えば心筋細胞である。
 本発明による系を人工三次元組織の構築のために用いてもよい。人工三次元組織の構築開始時点で、あるいは構築途中で、本発明による系を人工三次元組織中に導入することができる。例えば本発明による系を、ゼラチンやフィブロネクチンを含む細胞外マトリックスに添加してもよい。あるいは本発明による系を、細胞外マトリックスを培養するための培地に添加してもよい。あるいは上で説明した足場(基板)上で人工三次元組織を構築してもよい。あるいは物質透過性のある材料でできたチューブ(例えば血管を模したもの)の内面および/または外面にヘム構造を有するタンパク質を固定化して人工三次元組織中に通し、チューブ内面および/またはチューブ外面に接触するように還元剤を配置してもよい。チューブ内に還元剤を含む栄養液を充填あるいは流してもよい。
 人工三次元組織は、例えば、培養された細胞と細胞外マトリックスとを含む細胞の集合体である。三次元組織は、例えば、成熟された組織または臓器である。人工三次元組織は、あらゆる組織であってよく、例えば、上皮組織、結合組織、筋組織、神経組織である。人工三次元組織は、例えば上皮組織、筋組織である。人工三次元組織は、また、あらゆる臓器であってよく、例えば、腸、胃、肝臓、膵臓、肺、心臓、脳である。人工三次元組織は、本発明による系と一体となっていてもよい。
 一実施形態において、本発明による系は、酸素以外の任意のさらなる物質も放出するように適宜調節されてもよい。本発明による系が細胞培養または人工三次元組織に関して使用されるとき、さらなる物質は、例えば細胞または組織の分化誘導促進成分、培養成分または栄養分、例えばタンパク質、脂肪、グルコースを含む炭水化物、ビタミン、ミネラル、繊維、パルミチン酸を含む脂肪酸またはアミノ酸であってよい。当業者は、本発明による系の使用に応じて、さらなる物質を適宜選択することができる。
 上で説明したように、細胞培養系または人工三次元組織構築系中に本発明の系を構築することができる。したがって、本発明は以下のものを提供する。
 本発明は、一実施形態において、本発明による系を含む細胞培養容器を提供する。例えば、細胞培養容器は、シャーレ、フラスコ、マイクロプレート、バイオプリント用容器などのあらゆる容器でありうる。
 本発明は、一実施態様において、本発明による系を含む人工三次元組織を提供する。
 本発明は、一実施形態において、上記系に刺激を与えて酸素を放出させることを含む、細胞培養方法を提供する。
 本発明は、一実施形態において、上記系に刺激を与えて酸素を放出させることを含む、人工三次元組織の製造方法を提供する。さらに、製造された人工三次元組織から、例えば上記系が使用される足場(スキャフォールド)を取り除く工程を含んでもよい。
 本発明は、さらなる態様において、以下のものを提供する:
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む素材であって、刺激に応答して酸素を放出する素材。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む培地であって、刺激に応答して酸素を放出する培地。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む培養容器であって、刺激に応答して酸素を放出する培養容器。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む細胞培養用足場であって、刺激に応答して酸素を放出する足場。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む人工三次元組織であって、刺激に応答して酸素を放出する人工三次元組織。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む人工三次元組織培養用培地であって、刺激に応答して酸素を放出する人工三次元組織培養用培地。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む人工三次元組織培養用足場であって、刺激に応答して酸素を放出する人工三次元組織培養用足場。
 ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む人工三次元組織培養用培養容器であって、刺激に応答して酸素を放出する人工三次元組織培養用培養容器。
 以下に実施例を示して本発明をさらに具体的かつ詳細に説明するが、本発明の範囲がこれらの実施例に限定されると解すべきではない。
実施例1
 (I) リン酸緩衝生理食塩水を用いて200μMのミオグロビン(Mb)溶液を調製した。調製されたMb溶液の吸光度を測定した(図1)。この溶液中のMbは酸化状態のメトミオグロビンである。
 (II) (I)上で調製されたMb溶液に2mMのアスコルビン酸(AA)を加えて、酸素吸着状態のオキシミオグロビン(oxyMb)溶液を調製した。アスコルビン酸添加の1分、10分、20分、30分、40分、50分、60分、70分、80分、90分、100分、110分および120分後に、oxyMb溶液の吸光度を測定した。(I)で測定されたMb溶液の吸光度とoxyMb溶液の吸光度を図2に示す。アスコルビン酸添加の1分、10分、20分、30分、40分、50分、60分、70分、80分、90分、100分、110分および120分後のoxyMb溶液の酸素分圧変化を図3に示す。アスコルビン酸によるミオグロビンの還元およびミオグロビンへの酸素吸着が確認された。
 (III) 20℃、37℃および45℃下での、(II)で調製されたoxyMb溶液の経時的な溶存酸素量と吸光度の変化を測定した。溶存酸素量を図4に示す。吸光度を図5に示す。
 図4に示されるとおり、20℃で保持された場合、溶存酸素量は時間経過と共に増加しなかったが、37℃および45℃で保持された場合、溶存酸素量は時間経過と共に増加した。また、図5に示されるとおり、20℃の場合、吸収スペクトルの変化が見られなかったが、37℃および45℃の場合、吸収スペクトルのピークの減少が観察された。図5におけるoxyMb溶液の吸収スペクトルのピークの減少は、oxyMbからの酸素の放出を示す。図5に示されるAAの吸収スペクトルのピークの減少は、アスコルビン酸の分解を示す。
 したがって、温度上昇によってAAの還元力が低下または消失され、oxyMbに吸着していた酸素が徐放されたと考察される。
実施例2
 (I) 水晶子マイクロバランス(QCM)チップをピラニア溶液(濃硫酸:30%過酸化水素=3:1)に1分間浸漬し、ミリQで洗浄した。この作業を2回行い、QCMチップを20℃のミオグロビン(Mb)溶液(10mg/ml、pH5.0)とI型コラーゲン(Col)溶液(1mg/ml、pH7.4)に交互に15分ずつ浸漬した。各ステップ間で、QCMチップは1/50倍濃度のリン酸緩衝生理食塩水で洗浄し、窒素ガスで乾燥させた。各溶液への浸漬は5回ずつ行い、各ステップでの振動数変化(−ΔF(Hz))を測定した。実験結果を図6に示す。膜厚約20nmのLBL(layer by layer)ナノ薄膜の形成が確認された。
 (II) pH5.0のリン酸緩衝生理食塩水にMbを10mg/mLの濃度で溶解し、20当量のアスコルビン酸を加えて20℃で3時間静置した。蛍光用石英セルをピラニア溶液で2回洗浄した後、調整したMb溶液とCol溶液(1mg/ml、pH7.4)を20℃で交互に15分ずつ浸漬した。各ステップ間で石英セルはミリQで洗浄し、窒素ガスで乾燥させた。Mb溶液6回目の浸漬を行った後、蛍光酸素プローブを含むリン酸緩衝生理食塩水を石英セルに加えた。酸素の拡散を防ぐため、溶液はミネラルオイルを用いて蓋をした。遮光下37℃で30分間インキュベートした後、蛍光酸素プローブの蛍光スペクトルを測定した。また、薄膜がない場合においても同様に蛍光酸素プローブの蛍光スペクトルを測定した。実験結果を図7に示す。LBLナノ薄膜から0.71nmolの酸素徐放が確認された。
 (III) pH5.0のリン酸緩衝生理食塩水にMbを10mg/mLの濃度で溶解し、20当量のアスコルビン酸を加えて20℃で3時間静置した。室温において、調整したMb溶液とCol溶液(1mg/ml、pH7.4)を35mmの培養皿に交互に15分ずつ浸漬した。各ステップ間で培養皿はミリQで洗浄し、Mb溶液を計11回、Col溶液を計10回浸漬した。
 ナノ薄膜をコーティングした培養皿とコーティングしていない培養皿に1×10の正常ヒト皮膚線維芽細胞(NHDF)を播種し、ダルベッコ改変イーグル培地(DMEM培地)を加えた。培養皿と酸素ガス吸着パックを密閉容器内に入れ、37℃で24時間培養した。このとき、密閉容器内の酸素濃度を測定すると2%であった。低酸素条件における培養後、各培養皿の細胞についてWST assayを行った。また、コーティングしていない培養皿に1×10のNHDFを播種し、通常酸素分圧条件で24時間培養したものについても同様にWST assayを行い、その吸光度から細胞生存率を計算した。実験結果を図8に示す。図8において、100%細胞生存率は、通常の酸素条件下で非LBL培養皿に播種した細胞から定義した。LBLナノ薄膜は低酸素条件下で細胞の生存率を向上させた。
実施例3
 (I) リン酸緩衝生理食塩水にMbを5mg/mLの濃度で溶解し、20当量のアスコルビン酸を加えて4℃で48時間静置した。得られたアスコルビン酸を含むoxyMb溶液を分画分子量3500の透析膜を用いて4℃で48時間透析し、oxyMb溶液からアスコルビン酸を取り除いた。200μMのoxyMb溶液に2mMのニコチンアミドアデニンジヌクレオチド(NADH)を加え、37℃で72時間インキュベートし、0、2、4、8、24、48、72時間後のUV−vis吸収スペクトルを測定した。実験結果を図9に示す。NADHによって48時間以上にわたる長期的なミオグロビンの自動酸化反応が確認された。
 (II) リン酸緩衝生理食塩水にNADHを2mMの濃度で溶解し、4℃または37℃でインキュベートした。0、2、4、8、24、48、72時間後、NADH溶液の一部を取り出し、リン酸緩衝生理食塩水で濃度を5倍に希釈してUV−vis吸収スペクトル測定を行った。実験結果を図10に示す。NADHは37℃で時間依存的に分解した。
実施例4
 (I) 1wt%のCol溶液にMbを5mg/mLの濃度で溶解し、20等量のアスコルビン酸を加えた。4℃で2時間静置した後、溶液に2.5mMの白金イオンを添加し、800rpmで攪拌したオリーブオイルに滴下して4℃で2時間攪拌した。4℃で72時間静置した後、ヘキサンを用いてオリーブオイルを3回洗浄し、空気中で1時間乾燥させてMbマイクロゲル粒子(Mb microgel)を得た。
 5.0×10のiPS由来ヒト心筋細胞と2.5×10個のMb microgelを10%血清入りDMEM培地200μLに懸濁させ、懸濁液をインサートに播種した。インサートに10%血清入りDMEM培地を加え、37℃で3日間培養した。また、コントロールとしてMbを含まないmicrogel、microgelを含まないサンプルも同様にインサート内に作成し、各サンプルにおいてWST assayを行った。実験結果を図11に示す。Mb microgelを用いた場合、Mbを含まないmicrogel(Microgel(w/o Mb))やmicrogelを含まないサンプル(Cell only)と比較して、高い細胞生存が確認された。

Claims (10)

  1.  ヘム構造を有するタンパク質、および刺激に応答して還元力を低下または消失する還元剤を含む、刺激に応答して酸素を放出する系。
  2.  ヘム構造を有するタンパク質がミオグロビンまたはヘモグロビンである、請求項1記載の系。
  3.  還元剤が生体適合性を有するものである、請求項1または2記載の系。
  4.  還元剤がアスコルビン酸、トコフェロール、システイン、NADHまたはNADPHである、請求項3記載の系。
  5.  刺激が生体組織に受容可能なものである、請求項1~3のいずれか1項記載の系。
  6.  刺激が温度変化、光照射、pH変化または薬剤によるものである、請求項1~5のいずれか1項記載の系。
  7.  請求項1~6のいずれか1項記載の系を含む細胞培養容器。
  8.  請求項1~6のいずれか1項記載の系を含む人工三次元組織。
  9.  請求項1~6のいずれか1項記載の系に刺激を与えて酸素を放出させることを含む、細胞培養方法。
  10.  請求項1~6のいずれか1項記載の系に刺激を与えて酸素を放出させることを含む、人工三次元組織の製造方法。
PCT/JP2021/017959 2020-05-11 2021-04-30 刺激に応答して酸素を放出する系 WO2021230261A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083181 2020-05-11
JP2020083181 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230261A1 true WO2021230261A1 (ja) 2021-11-18

Family

ID=78524561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017959 WO2021230261A1 (ja) 2020-05-11 2021-04-30 刺激に応答して酸素を放出する系

Country Status (1)

Country Link
WO (1) WO2021230261A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146759A (ja) * 1997-08-06 1999-02-23 Terumo Corp 細胞培養液
JP2004307404A (ja) * 2003-04-08 2004-11-04 Nipro Corp 人工酸素運搬体を含む医薬組成物
WO2007094511A1 (ja) * 2006-02-15 2007-08-23 Oxygenix Co., Ltd. ヘモグロビンベース酸素運搬体を用いた動物細胞の培養方法
US20120040453A1 (en) * 2009-04-23 2012-02-16 Hemarina Bioreactor using oxygen-carrying molecules
JP2016530891A (ja) * 2013-09-13 2016-10-06 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ボルデテラ属種の工業規模培養のための合成培地

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146759A (ja) * 1997-08-06 1999-02-23 Terumo Corp 細胞培養液
JP2004307404A (ja) * 2003-04-08 2004-11-04 Nipro Corp 人工酸素運搬体を含む医薬組成物
WO2007094511A1 (ja) * 2006-02-15 2007-08-23 Oxygenix Co., Ltd. ヘモグロビンベース酸素運搬体を用いた動物細胞の培養方法
US20120040453A1 (en) * 2009-04-23 2012-02-16 Hemarina Bioreactor using oxygen-carrying molecules
JP2016530891A (ja) * 2013-09-13 2016-10-06 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ボルデテラ属種の工業規模培養のための合成培地

Similar Documents

Publication Publication Date Title
Fathollahipour et al. Oxygen regulation in development: lessons from embryogenesis towards tissue engineering
Farris et al. Oxygen delivering biomaterials for tissue engineering
JP6781352B2 (ja) 膵島細胞の再細胞化のための灌流型脱細胞化肝臓の使用
Merckx et al. Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: Focus on stem cells
Yang et al. Nitric oxide based strategies for applications of biomedical devices
US5108923A (en) Bioadhesives for cell and tissue adhesion
JP2017195900A (ja) 臓器および組織を脱細胞化および再細胞化する方法
CN105188786B (zh) 微粒及内皮细胞和脱细胞化的器官和组织的用途
Androjna et al. Oxygen diffusion through natural extracellular matrices: implications for estimating “critical thickness” values in tendon tissue engineering
CA3017772C (en) Colony forming medium and use thereof
KR20120089235A (ko) 저산소 조건 하에 배양된 세포로부터의 조정 배지 및 세포외 기질 조성물
KR20110011599A (ko) 세포외 기질 조성물
Wu et al. Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver
JP6835384B1 (ja) 細胞培養装置及びその使用
Yang et al. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation
CN112689518A (zh) 稳定的一氧化氮释放聚合物和制品及其制备方法和用途
RU2539918C1 (ru) Способ получения тканеспецифического матрикса для тканевой инженерии паренхиматозного органа
Lim et al. Functionalized biomaterials-oxygen releasing scaffolds
Mao et al. Sustained in vivo perfusion of a re-endothelialized tissue engineered porcine liver
WO2021230261A1 (ja) 刺激に応答して酸素を放出する系
Veisi et al. Evaluation of co-cultured spermatogonial stem cells encapsulated in alginate hydrogel with Sertoli cells and their transplantation into azoospermic mice
JP5974093B2 (ja) 組織保存液および組織保存方法
JP2021514744A (ja) 神経再生、骨形成、及び血管新生を刺激するためのヒドロゲル
Kang et al. Design of advanced polymeric hydrogels for tissue regenerative medicine: oxygen-controllable hydrogel materials
Kashani et al. Effects of hepatic stimulatory factor released from free or microencapsulated hepatocytes on galactosamine induced fulminant hepatic failure animal model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP