WO2021230191A1 - Thickener composition - Google Patents

Thickener composition Download PDF

Info

Publication number
WO2021230191A1
WO2021230191A1 PCT/JP2021/017676 JP2021017676W WO2021230191A1 WO 2021230191 A1 WO2021230191 A1 WO 2021230191A1 JP 2021017676 W JP2021017676 W JP 2021017676W WO 2021230191 A1 WO2021230191 A1 WO 2021230191A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
modified cellulose
cellulose fiber
mass
less
Prior art date
Application number
PCT/JP2021/017676
Other languages
French (fr)
Japanese (ja)
Inventor
穣 吉田
晴香 中川
嘉則 長谷川
和洋 松村
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202180024633.4A priority Critical patent/CN115335445B/en
Priority to KR1020227036542A priority patent/KR20230009880A/en
Publication of WO2021230191A1 publication Critical patent/WO2021230191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a thickener composition, a viscosity control agent for a non-aqueous solvent, a thickener composition, and a method for applying an inorganic compound.
  • Patent Document 1 includes a fine cellulose fiber composite in which an amine is bonded to an anionic group of an anionic modified cellulose fiber containing an anionic group via an ionic bond, a dispersant, and an organic liquid compound.
  • Patent Document 2 describes a step of dispersing cellulose having a cellulose type I crystal structure in water and then converting a hydroxyl group of the cellulose into a substituent having a carboxyl group, and water as a dispersion medium of the cellulose.
  • a gel-like composition in which the cellulose nanofibers are dispersed in an organic solvent by nano-defibrating the cellulose after the hydrophobicization, the step of replacing the cellulose with an organic solvent, and the step of making the cellulose after the dispersion medium substitution hydrophobic is disclosed, wherein the hydrophobicity of the cellulose is carried out by a neutralization reaction with a polyether amine.
  • Patent Document 1 describes the dispersibility of cellulose fibers in an organic liquid compound
  • Patent Document 2 describes a method for producing a gel-like composition in which cellulose fibers are dispersed in an organic solvent.
  • these documents do not describe any change in viscosity physical properties at high temperatures.
  • the modified cellulose fiber is one or more selected from the group consisting of the following (1) and (2), and is a thickener composition.
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • Acid-type anion-modified cellulose fibers having an I-type crystal structure [2] For electronic materials, optical materials or structural materials, as described above [1]. ] The thickener composition according to. [3] The thickener composition according to the above [1] or [2], which further contains an inorganic compound. [4] A viscosity control agent for a non-aqueous solvent containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2).
  • a modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure [7] One selected from the groups consisting of (1) and (2) below.
  • the method for applying an inorganic compound which comprises a step of heating the composition containing the modified cellulose fiber, the non-aqueous solvent and the inorganic compound to 100 ° C. or higher to remove the non-aqueous solvent.
  • a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • a modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • FIG. 1 is a rheometer chart of the thickener composition in Example 1 and Comparative Example 1.
  • FIG. 2 is a rheometer chart of the thickener composition in Examples 8-10.
  • the present invention relates to a non-aqueous solvent thickener composition suitable for use at 50 ° C. or higher because the decrease in viscosity is suppressed even at high temperatures.
  • the non-aqueous solvent thickener composition of the present invention can suppress a decrease in viscosity even at a high temperature of 50 ° C. or higher.
  • the cellulose fibers into which the hydrophobic modifying group has been introduced are uniformly dispersed in a non-aqueous solvent to form a loose network structure. It is presumed that the viscosity maintaining effect at high temperature is exhibited.
  • the thickener composition of the present invention contains a modified cellulose fiber and a non-aqueous solvent, and is used at 50 ° C. or higher.
  • the modified cellulose fiber in the present invention is one or more selected from the group consisting of the following (1) and (2).
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of.
  • (2) An acid-type anion-modified cellulose fiber having an I-type crystal structure.
  • modified cellulose fiber of (1) is referred to as "modified cellulose fiber (1)”
  • the modified cellulose fiber of (2) is "modified”. Quality Cellulose Fiber (2) ”.
  • the modified cellulose fiber (1) is formed by binding a modifying group to the cellulose fiber.
  • a modifying group As the cellulose fiber, an anion-modified cellulose fiber is preferable from the viewpoint of easiness of binding of a modifying group.
  • the anion-modified cellulose fiber is a cellulose fiber having one or more groups selected from the group consisting of an anionic group, for example, a carboxy group, a (sub) phosphate group and a sulfonic acid group in the molecule.
  • the introduction of anionic groups into cellulose fibers can be achieved by the method described below. From the viewpoint of availability and effect, anion-modified cellulose fiber having a carboxy group as an anionic group is preferable, and the group at the C6 position (-CH 2 OH) of the glucose unit constituting the cellulose fiber is selectively converted into a carboxy group.
  • the anion-modified cellulose fiber (referred to as "oxidized cellulose fiber") is more preferable.
  • the ion (counter ion) paired with the anionic group is preferably a proton.
  • the content of anionic groups in the anion-modified cellulose fiber is preferably 0.1 mmol / g or more, more preferably 0.4 mmol / g or more, still more preferably 0.6 mmol / g or more, from the viewpoint of stable introduction of modifying groups. , More preferably 0.7 mmol / g or more, still more preferably 0.8 mmol / g or more. Further, from the viewpoint of improving handleability, it is preferably 3 mmol / g or less, more preferably 2.5 mmol / g or less, still more preferably 2.3 mmol / g or less, still more preferably 2.1 mmol / g or less, still more preferably.
  • anionic group content means the total amount of anionic groups in glucose constituting the cellulose fiber, and is specifically measured by the method described in Examples described later.
  • the preferable range of the average fiber diameter and the average fiber length of the anion-modified cellulose fiber depends on the order of the manufacturing process, but is preferably the same as that of the raw material cellulose fiber.
  • the binding of the modifying group to the anionic group of the anion-modified cellulose fiber means that the modifying group is bound to the anionic group, preferably the carboxy group of the anion-modified cellulose fiber.
  • the bonding mode between the modifying group and the anionic group include an ionic bond and / or a covalent bond.
  • the covalent bond include an amide bond, an ester bond, and a urethane bond, and an amide bond is preferable.
  • Modifying group examples include (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. These modifying groups may be bonded (introduced) to the cellulose fiber by one type alone or in combination of two or more types.
  • hydrocarbon groups examples include monovalent hydrocarbon groups, for example, chain-type saturated hydrocarbon groups, chain-type unsaturated hydrocarbon groups, cyclic-type saturated hydrocarbon groups, and aromatic hydrocarbon groups. Can be mentioned.
  • the number of carbon atoms of the hydrocarbon group is 1 or more from the viewpoint of improving the dispersibility of cellulose in a non-aqueous solvent and from the viewpoint of suppressing the decrease in viscosity even at a high temperature of 50 ° C. or higher (hereinafter, also simply referred to as high temperature). It is preferably 3 or more, more preferably 8 or more, still more preferably 10 or more, and from the same viewpoint, preferably 30 or less, more preferably 22 or less, still more preferably 20 or less.
  • the hydrocarbon group may further have a substituent described later, and a part of the hydrocarbon group may be substituted with a hydrogen nitride group.
  • the chain saturated hydrocarbon group preferably has 3 or more carbon atoms and 30 or less carbon atoms, and specific examples thereof include a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, and a pentyl group.
  • tert-pentyl group isopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetraethyl group, tetrabutyl group, tetrapropyl group, tetradecyl Examples thereof include a group, an octadecyl group, a docosyl group, an octacosanyl group and the like.
  • the chain unsaturated hydrocarbon group preferably has 3 or more and 30 or less carbon atoms, and specific examples thereof include a propenyl group, a butenyl group, an isobutenyl group, an isoprenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group. Examples thereof include a group, a nonenyl group, a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group and an octadecenyl group.
  • the cyclic saturated hydrocarbon group preferably has 3 or more and 20 or less carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclononyl group. , Cyclodecyl group, cyclododecyl group, cyclotridecyl group, cyclotetradecyl group, cyclooctadecyl group and the like.
  • aromatic hydrocarbon group examples include an aryl group and an aralkyl group.
  • the aromatic ring itself may be substituted or unsubstituted.
  • the heterocyclic aromatic hydrocarbon group examples include an imidazole group.
  • the total number of carbon atoms of the aryl group is preferably 6 or more and 24 or less, and specific examples of the aryl group include, for example, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, a triphenyl group and a terphenyl group. , And groups in which these groups are substituted with substituents.
  • the total number of carbon atoms of the aralkyl group is preferably 7 or more and 24 or less, and specific examples of the aralkyl group include, for example, a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, a phenylhexyl group and a phenylheptyl group. Examples thereof include a phenyloctyl group and a group in which the aromatic group of these groups is substituted with a substituent.
  • the total carbon number of the imidazole group is preferably 3 or more and 24 or less, and specific examples of the imidazole group include, for example, an imidazole group, a methylimidazole group, an ethylimidazole group, a propylimidazole group, a 2-phenylimidazole group, and a benzo. Examples thereof include an imidazole group and a group in which these groups are substituted with a substituent.
  • Silicone chain is a monovalent group having a siloxane bond as a main chain, and may be further accompanied by an alkylene group.
  • the silicone chain may further have a substituent described later.
  • the alkylene oxide chain is a structure containing a (co) polymer of ethylene oxide (EO) or propylene oxide (PO), and is preferably a structure containing a polymer of EO (EO polymerization). Part), a structure containing a polymer of PO (PO polymerization part), and a structure containing a copolymer in which EO and PO are polymerized randomly or in a block shape ((EO / PO) copolymer part). One or more (co) polymerized portions to be selected.
  • the alkylene oxide chain may further have a substituent described later.
  • alkylene oxide chain for example, the following formula:
  • R 1 represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or -CH 2 CH (CH 3 ) NH 2 groups.
  • EO and PO exist in a random or block form, and a is. 0 or a positive number indicating the average number of added moles of EO, b is 0 or a positive number indicating the average number of added moles of PO, except when both a and b are 0). There is a monovalent group.
  • a indicates the average number of moles of EO added, and is preferably 0 or more, more preferably 1 or more, still more preferably 2 or more from the viewpoint of availability and affinity with a non-aqueous solvent, and the same viewpoint. Therefore, it is preferably 100 or less, more preferably 70 or less.
  • b indicates the average number of moles of PO added, and is preferably 0 or more, more preferably 1 or more, still more preferably 3 or more from the viewpoint of affinity with a non-aqueous solvent, and from the viewpoint of availability. It is preferably 50 or less, more preferably 40 or less.
  • hydrocarbon group having 1 to 6 carbon atoms of R 1 in the formula is a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, sec- butyl group, tert- butyl group, an isobutyl group, Examples thereof include a pentyl group, a tert-pentyl group, an isopentyl group, a hexyl group and an isohexyl group.
  • the formula weight (molecular weight) of the alkylene oxide chain is preferably 500 or more, more preferably 1,000 or more, from the viewpoint of suppressing a decrease in viscosity even at a high temperature (for example, 50 ° C. or higher), and is preferable from the same viewpoint. Is 10,000 or less, more preferably 7,000 or less.
  • the formula amount of the alkylene oxide chain can be calculated from the average number of moles added when producing the amine compound having the alkylene oxide chain described later.
  • the PO content (mol%) in the (EO / PO) copolymer is preferably 1 mol% or more, more preferably 5 mol% or more, and is similar from the viewpoint of suppressing the decrease in viscosity even at high temperatures. From the viewpoint, it is preferably 100 mol% or less, more preferably 95 mol% or less, still more preferably 90 mol% or less.
  • the content of PO in the (EO / PO) copolymer can be calculated from the average number of moles added when producing an amine compound having an alkylene oxide chain, which will be described later.
  • the modifying group may further have a substituent.
  • substituents include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, an isopentyloxy group, a hexyloxy group and the like.
  • An alkoxy group having 1 to 6 carbon atoms a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a carbon number 1 such as an acetyl group and a propionyl group.
  • Examples thereof include an acyl group of up to 6; an aralkyl group; an aralkyloxy group; an alkylamino group having 1 to 6 carbon atoms; a dialkylamino group having 1 to 6 carbon atoms of the alkyl group; a hydroxy group.
  • modified cellulose fiber (1) for example, an anionic group is introduced into the raw material cellulose fiber to produce an anion-modified cellulose fiber (step 1), and then a modifying group is bonded to the anionic group of the anion-modified cellulose fiber. It can be manufactured by making it (step 2).
  • Step 1 Cellulose fiber as a raw material
  • natural cellulose is preferable from the environmental point of view.
  • wood pulp such as coniferous pulp and broadleaf pulp
  • cotton pulp such as cotton linter and cotton lint.
  • Non-wood pulp such as straw pulp and bagus pulp; bacterial cellulose and the like can be mentioned, and one of these can be used alone or in combination of two or more.
  • the average fiber diameter of the raw material cellulose fiber is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more from the viewpoint of handleability and cost, and preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less from the same viewpoint. Is.
  • the average fiber diameter of the raw material cellulose fiber is obtained by the method described in Examples described later.
  • the average fiber length of the raw material cellulose fiber is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, and preferably 5,000 ⁇ m or less, from the viewpoint of availability and cost. It is preferably 3,000 ⁇ m or less.
  • the average fiber length of the raw material cellulose fiber can be measured according to the method described in Examples described later.
  • Processing method (1) When introducing a carboxy group as an anionic group into a cellulose fiber
  • a method for introducing a carboxy group into a cellulose fiber for example, a method of oxidizing a hydroxy group of a cellulose fiber to convert it into a carboxy group, or a method of converting a hydroxy group of a cellulose fiber into a carboxy group.
  • the group include a method of reacting at least one selected from the group consisting of a compound having a carboxy group, an acid anhydride of the compound having a carboxy group and a derivative thereof.
  • a method for oxidizing the hydroxy group of the cellulose fiber for example, 2,2,6,6-tetramethyl-1-piperidin-N described in JP-A-2015-143336 or JP-A-2015-143337.
  • examples include a method in which an oxidizing agent such as sodium hypochlorite and a bromide such as sodium bromide are reacted with the raw material cellulose fiber using oxyl (TEMPO) as a catalyst.
  • TEMPO oxyl
  • the compound having a carboxy group for use in introducing a carboxy group into a cellulose fiber is not particularly limited, and specific examples thereof include acetic acid halide.
  • Examples of the halogenated acetic acid include chloroacetic acid and the like.
  • the acid anhydrides of the compounds having a carboxy group and their derivatives for use in introducing the carboxy group into the cellulose fiber are not particularly limited, but are not particularly limited, such as maleic anhydride, succinic anhydride, phthalic anhydride and adipic acid anhydride.
  • examples thereof include an acid anhydride of a dicarboxylic acid compound, an imide product of an acid anhydride of a compound having a carboxy group, and a derivative of an acid anhydride of a compound having a carboxyl group. These compounds may be substituted with hydrophobic groups.
  • a method for introducing a (sub) phosphoric acid group into a cellulose fiber a method of mixing a powder or an aqueous solution of (sub) phosphoric acid or a (sub) phosphoric acid derivative with a dry or wet state cellulose fiber, or a method of mixing a cellulose fiber.
  • examples thereof include a method of adding an aqueous solution of (sub) phosphoric acid or a (sub) phosphoric acid derivative to the dispersion liquid of.
  • Step 2 The introduction of the modifying group into the anionic group of the anionic modified cellulose fiber is achieved by reacting the compound for introducing the modifying group into the anionic group (referred to as "modifying compound") with the anionic modified cellulose fiber.
  • modifying compound a compound for introducing the modifying group into the anionic group
  • a method for introducing a modifying group (1) Japanese Patent Application Laid-Open No. 2015-143336 can be referred to when introducing via an ionic bond, and (2) when introducing via an amide bond, Japanese Patent Application Laid-Open No. 2015-143336 can be referred to. 2015-143337 can be referred to.
  • post-treatment may be appropriately performed in order to remove unreacted compounds and the like.
  • the post-treatment method for example, filtration, centrifugation, dialysis and the like can be used.
  • the anion-modified cellulose fiber and the modifying compound may be mixed, whereby the anion contained in the anion-modified cellulose fiber may be mixed.
  • An ionic bond is formed between the sex group and the amino group of the modifying compound.
  • glucose constituting the cellulose fiber is as shown in the following formula.
  • the C6 position carboxy group of, via ionic bonds, in can be introduced modifying group of the above (formula, C 6 is a carbon atom of 6 position of the glucose constituting the cellulose fibers, R represents a modifying group It is.).
  • the modifying compound used in this embodiment may be any compound capable of introducing a desired modifying group, preferably an amine compound having the above-mentioned hydrocarbon group, alkylene oxide chain, or silicone chain, phosphonium. Examples thereof include compounds and compounds containing a guanidino group.
  • the amine compound is, for example, an amine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and the hydrocarbon group or the like is an anion-modified cellulose fiber via an ionic bond. Introduced into a modifying group in a modified cellulose fiber.
  • the amine compound may be any of a primary amine, a secondary amine, a tertiary amine and a quaternary ammonium compound.
  • anion component of the quaternary ammonium compound from the viewpoint of reactivity, halogen ions such as chlorine ion and bromine ion, hydrogen sulfate ion, perchlorate ion, tetrafluoroborate ion and hexafluorophosphate ion are preferable. , Trifluoromethanesulfonate ion, hydroxy ion and the like.
  • Amine compounds having a hydrocarbon group Specific examples of amine compounds having a hydrocarbon group include ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, dibutylamine and hexyl as primary to tertiary amines.
  • quaternary ammonium compound examples include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetraethylammonium chloride, tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), and tetra.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TPAH tetrapropylammonium hydroxide
  • TBAH tetrabutylammonium hydroxide
  • examples thereof include butylammonium chloride, lauryltrimethylammonium chloride, dilauryldimethylchloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, and alkylbenzyldimethylammonium
  • the amine compound having a hydrocarbon group can be prepared by using a commercially available product or by a known method.
  • Amine compound having an alkylene oxide chain In an amine compound, the alkylene oxide chain and the nitrogen atom of the amine compound are preferably bonded directly or via a linking group.
  • a hydrocarbon group is preferable, and an alkylene group having a carbon number of preferably 1 or more and 6 or less, more preferably 1 or more and 3 or less can be mentioned.
  • an alkylene group for example, an ethylene group and a propylene group are preferable.
  • amine having an alkylene oxide chain examples include the following formula (i):
  • R 1, a and b in the formula (i) is the same as R 1, a and b in the formula of an example of the aforementioned alkylene oxide chain.
  • the amine compound having an alkylene oxide chain can be prepared according to a known method. For example, ethylene oxide and propylene oxide may be added in a desired amount to the propylene glycol alkyl ether, and then the hydroxy group terminal may be aminated. If necessary, the alkyl ether can be cleaved with an acid to form a hydrogen atom at the end.
  • Japanese Patent Application Laid-Open No. 3-181448 can be referred to, and details of such amine compounds are described in, for example, Japanese Patent No. 6105139.
  • amine compound having an alkylene oxide chain for example, a commercially available product can be preferably used, and specific examples thereof include Jeffamine M-2070, Jeffamine M-2005, Jeffamine M-2095, and Jeffamine M-1000 manufactured by HUNTSMAN.
  • amine compounds include those having a structure in which an amino group is bonded to the skeleton of a silicone chain via an alkylene group or the like.
  • amine compounds may be referred to as "amino-modified silicones".
  • the amino-modified silicone can be prepared by using a commercially available product or by a known method. Only one kind of amino-modified silicone may be used, or two or more kinds may be used.
  • TSF4703 kinematic viscosity: 1000, amino equivalent: 1600
  • TSF4708 kinematic viscosity: 1000, amino equivalent: 2800
  • Toray Dow Corning manufactured by Momentive Performance Materials Co., Ltd.
  • SS-3551 (Dynamic Viscosity: 1000, Amino Equivalent: 1600), SF8457C (Dynamic Viscosity: 1200, Amino Equivalent: 1800), SF8417 (Dynamic Viscosity: 1200, Amino Equivalent: 1700), BY16- 209 (Dynamic Viscosity: 500, Amino Equivalent: 1800), BY16-892 (Dynamic Viscosity: 1500, Amino Equivalent: 2000), BY16-898 (Dynamic Viscosity: 2000, Amino Equivalent: 2900), FZ-3760 (Dynamic Viscosity: 220, Amino Equivalent: 1600), KF8002 (Dynamic Viscosity: 1100, Amino Equivalent: 1700), KF867 (Dynamic Viscosity: 1300, Amino Equivalent: 1700), KF-864 (Dynamic Viscosity
  • the kinematic viscosity shows a measured value (unit: mm 2 / s) at 25 ° C., and the unit of amino equivalent is g / mol.
  • the guanidine group-containing compound is, for example, a guanidine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and such a hydrocarbon group or the like is mediated by an ionic bond. It is introduced into anion-modified cellulose fibers and becomes a modifying group in modified cellulose fibers.
  • the guanidine group-containing compound include diphenylguanidine, ditrilguanidine, 1,2,3-triphenylguanidine, aminoguanidine, and arginine.
  • the amount of the modifying compound used is preferably such that the amino group in the modifying compound is 0.01 mol or more, more preferably 0.01 mol or more, with respect to 1 mol of the carboxy group of the oxidized cellulose fiber.
  • the amount is 0.1 mol or more, more preferably 0.5 mol or more, further preferably 0.7 mol or more, still more preferably 1 mol or more, and preferably 50 mol from the viewpoint of product purity.
  • the amount is as follows, more preferably 20 mol or less, still more preferably 10 mol or less.
  • a solvent for mixing it is preferable to use a solvent for mixing.
  • a solvent in which the compound to be used is dissolved and for example, methanol, ethanol, isopropanol (IPA), N, N-dimethylformamide (DMF), dimethylsulfonate (DMSO), N, N-dimethylacetamide. , Tetrahydrofuran (THF), acetone, methylethylketone (MEK), cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, chloroform, toluene, acetic acid, 1-methoxy-2-propanol (PGME), water and the like. It can be used alone or in combination of two or more.
  • IPA methanol, ethanol, isopropanol
  • DMF N-dimethylformamide
  • DMSO dimethylsulfonate
  • THF Tetrahydrofuran
  • MEK methylethylketone
  • the temperature at the time of mixing is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, from the viewpoint of compound reactivity. Further, from the viewpoint of suppressing coloration of the modified cellulose fiber, the temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 30 ° C. or lower.
  • the mixing time can be appropriately set depending on the type of the compound and the solvent used, but from the viewpoint of the reactivity of the compound, it is preferably 0.01 hours or more, more preferably 0.1 hours or more, and the productivity. From the viewpoint of the above, it is preferably 48 hours or less, more preferably 24 hours or less.
  • the anion-modified cellulose fiber and the modifying compound may be mixed in the presence of a known condensing agent, whereby the modifying compound may be mixed.
  • An amide bond is formed between the anionic group contained in the anion-modified cellulose fiber and the amino group of the modifying compound.
  • the cellulose fiber is constituted as shown in the following formula.
  • the C6 position carboxy group of glucose, via an amide bond, in can be introduced modifying group of the above (formula, C 6 is a carbon atom of 6 position of the glucose constituting the cellulose fibers, R represents modified It is the basis.).
  • the modifying compound used in this embodiment may be any compound capable of introducing a desired modifying group, and preferably includes the above-mentioned amine compounds having a hydrocarbon group, an alkylene oxide chain, or a silicone chain. Be done.
  • the amine compound is, for example, an amine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and the hydrocarbon group or the like is an anion-modified cellulose fiber via an amide bond. Introduced into, it becomes a modifying group in modified cellulose fibers.
  • Examples of the amine compound include primary amines and secondary amines.
  • Specific examples of the amine compound include an amine compound having a hydrocarbon group, an amine compound having an alkylene oxide chain, and an amine compound having a silicone chain, which are exemplified in the above-mentioned "(1) Aspects of introduction via an ion bond". Of these, primary amines and secondary amines are mentioned.
  • the amount of the modifying compound used is such that the amino group in the modifying compound is preferably 0.05 mol or more, more preferably 0.1 mol or more, with respect to 1 mol of the carboxy group of the oxidized cellulose fiber.
  • the amount is more preferably 0.2 mol or more, further preferably 0.3 mol or more, still more preferably 0.5 mol or more, and from the viewpoint of product purity, preferably 50 mol or less, more preferably 20 mol or less.
  • the amount is, more preferably 10 mol or less.
  • the condensing agent is not particularly limited, and examples thereof include the condensing agent described in Synthetic Chemistry Series Peptide Synthesis (Maruzen Co., Ltd.) P116 or Tetrahedron, 57, 1551 (2001), and examples thereof include 4- (4,6-). Examples thereof include dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (hereinafter, may be referred to as "DMT-MM”) and the like. It is also possible to carry out the reaction only by heat treatment without using a condensing agent.
  • the solvent may or may not be used in the amidation reaction.
  • a solvent it is preferable to select a solvent in which the compound to be used dissolves, and specific examples of the solvent include the solvent exemplified in the above-mentioned "(1) Aspects of introduction via an ionic bond".
  • the reaction time and reaction temperature in the amidation reaction can be appropriately selected depending on the type of compound and solvent used, but are preferably 1 to 24 hours, more preferably 10 to 20 hours from the viewpoint of the reaction rate. be.
  • the reaction temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, from the viewpoint of reactivity. Further, from the viewpoint of product quality such as coloring, it is preferably 200 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 30 ° C. or lower.
  • the cellulose fibers on the micrometer scale can be made into nanometer scale. Can be made finer. It is preferable to reduce the average fiber diameter to the nanometer size because the dispersibility in the resin is improved.
  • a known miniaturization treatment method can be adopted for the miniaturization treatment.
  • a treatment method using a grinder such as a mass colloider or a treatment method using a high-pressure homogenizer or the like in a medium may be carried out.
  • Examples of the medium include water, methanol, ethanol, propanol, 1-methoxy-2-propanol (PGME) and other alcohols having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • PGME 1-methoxy-2-propanol
  • Ketones with 3 to 6 carbon atoms Ketones with 2 to 4 carbon atoms such as ethyl acetate and butyl acetate; Saturated or unsaturated hydrocarbons with 1 to 6 carbon atoms; Aromatic hydrocarbons such as benzene and toluene; Methylene chloride , Hydrocarbons such as chloroform; lower alkyl ethers having 2 to 5 carbon atoms; polar solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, dimethylsulfoxide and the like are exemplified. These can be used alone or in admixture of two or more.
  • DMF N-dimethylformamide
  • the amount of the medium used may be an effective amount capable of dispersing the modified cellulose fiber, and is preferably 1 mass times or more, more preferably 2 mass times or more, preferably 500 mass times or less, based on the modified cellulose fiber. It is more preferable to use 200% by mass or less.
  • a known disperser is preferably used in addition to the high-pressure homogenizer.
  • a breaker, a beater, a low-pressure homogenizer, a grinder, a mascot, a cutter mill, a ball mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic stirrer, a household juicer mixer and the like can be used.
  • the solid content of the modified cellulose fiber in the miniaturization treatment is preferably 50% by mass or less.
  • a treatment for shortening the cellulose fiber that is, a treatment for shortening the fiber length may be further carried out.
  • the shortening fiber treatment is achieved by carrying out one or more treatment methods selected from the group consisting of alkali treatment, acid treatment, heat treatment, ultraviolet treatment, electron beam treatment, mechanical treatment and enzyme treatment on the target cellulose fiber. Can be done.
  • the modified cellulose fiber (2) is an acid-type anion-modified cellulose fiber having a predetermined average fiber diameter.
  • the acid-type anion-modified cellulose fiber is the "anion-modified cellulose fiber" described in the modified cellulose fiber (1) in which the counter ion of the anionic group is a proton, and is preferably an oxidized cellulose fiber. Therefore, the counter ion of the carboxy group is a proton.
  • the preferred range of the anionic group content in the modified cellulose fiber (2) is the same as that in the "anionic modified cellulose fiber" in the description of the modified cellulose fiber (1).
  • the modified cellulose fiber (2) can be produced by going through step 1 in the "method for producing the modified cellulose fiber (1)" and then the above-mentioned "miniaturization step". At any stage of the method for producing the modified cellulose fiber (2), the cellulose fiber may be shortened.
  • modified cellulose fiber The main properties of the modified cellulose fiber in the present invention are as follows.
  • the modified cellulose fiber is preferably one that has been subjected to a miniaturization treatment so as to have a nanometer size.
  • the average fiber diameter of the modified cellulose fiber in this case is preferably 1 nm or more, more preferably 2 nm or more, and is easy to handle and is easy to obtain, cost, and suppresses a decrease in viscosity even at high temperatures. From the viewpoint of solvent dispersibility, it is preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm or less, still more preferably 120 nm or less.
  • the average fiber diameter of the modified cellulose fiber that has undergone the micronization treatment is determined by the method described in Examples described later.
  • the average fiber length of the modified cellulose fiber is preferably 100 nm or more, more preferably 200 nm or more, and the handleability and 80 ° C./ From the viewpoint of bringing the viscosity ratio at 25 ° C. closer to 1, it is preferably 10,000 nm or less, more preferably 5000 nm or less.
  • the average fiber length of the modified cellulose fiber is determined by the method described in Examples described later.
  • the modified cellulose fiber may be a short fiber-treated one.
  • the average aspect ratio of the modified cellulose fiber is not particularly limited, but is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more, while availability, from the viewpoint of exhibiting the effect as a thickener. And from the viewpoint of handleability, it is preferably 300 or less, more preferably 200 or less, still more preferably 100 or less.
  • the average aspect ratio of the modified cellulose fiber is determined by the method described in Examples described later. By using the modified cellulose fiber having a small average aspect ratio, the viscosity ratio of 80 ° C./25 ° C. can be brought close to 1, and the handleability can be improved.
  • the amount of the modifying group bonded to the modified cellulose fiber is preferably 0.01 mmol / g or more, more preferably 0.1 mmol / g or more, and is similar from the viewpoint of suppressing the decrease in viscosity even at high temperature and dispersibility. From the viewpoint, it is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less.
  • the amount of the modifying group bonded is preferably within the above range.
  • the introduction rate of the modifying group in the modified cellulose fiber is preferably 10 mol% or more, preferably higher, preferably 100 mol%, from the viewpoint of dispersibility and suppressing the decrease in viscosity even at high temperature.
  • the total introduction rate is within the above range within the range not exceeding the upper limit of 100 mol%.
  • the binding amount and introduction rate of the modifying group can be adjusted according to the type and addition amount of the modifying compound, reaction temperature, reaction time, type of solvent and the like.
  • the binding amount (mmol / g) and introduction rate (mol%) of the modifying group are the amount and ratio of the modifying group introduced (bonded) to the anionic group in the modified cellulose fiber.
  • the binding amount and introduction rate of the modifying group in the modified cellulose fiber are calculated by the method described in Examples described later, for example, when the anionic group is a carboxy group.
  • the modified cellulose fiber preferably has a cellulose I-type crystal structure from the viewpoint of suppressing a decrease in viscosity even at a high temperature, and the crystallinity of the modified cellulose fiber is determined from the viewpoint of developing the strength of the molded product of the resin composition. It is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more. Further, from the viewpoint of raw material availability, it is preferably 90% or less, more preferably 85% or less, still more preferably 80% or less, still more preferably 75% or less.
  • the crystallinity of the cellulose fiber is the cellulose I-type crystallinity calculated from the diffraction intensity value by the X-ray diffraction method, and can be measured according to the method described in Examples described later.
  • the cellulose type I is the crystal form of natural cellulose, and the cellulose type I crystallization degree means the ratio of the amount of the crystal region to the whole cellulose fiber.
  • the content of the modified cellulose fiber in the composition of the present invention is preferably in terms of cellulose (not including modifying groups) from the viewpoint of imparting viscosity to the composition and suppressing a decrease in viscosity even at high temperatures. It is 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, and on the other hand, from the viewpoint of handling the composition, it is preferably 50% by mass or less, more preferably 30% by mass or more. It is mass% or less, more preferably 20% by mass or less, more preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.
  • the amount of the modified cellulose fiber is a cellulose equivalent value containing no modifying group.
  • the non-aqueous solvent has a melting point of preferably 100 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 20 ° C. or lower, from the viewpoint of using the thickener composition of the present invention at 50 ° C. or higher. From the same viewpoint, the boiling point is preferably 80 ° C. or higher, more preferably 100 ° C. or higher.
  • the non-aqueous solvent is preferably liquid at the temperature at which it is used.
  • the non-aqueous solvent is preferably a hydrophobic solvent from the viewpoint of workability such as being used together with an inorganic compound.
  • the hydrophobic solvent has a dissolved amount (20 ° C., 1 atm) of 100 g of water, preferably 100 g or less, more preferably 50 g or less, still more preferably 30 g or less, still more preferably 10 g or less.
  • alcohol-based solvents such as methanol, normal and isopropanol, t-butanol, 1-butanol, 1-hexanol, hexanal, and glycerin; to acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone, and methyl.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • cyclohexanone methyl.
  • Ketone solvents such as xylketone, diisobutylketone, diacetone alcohol, isophorone; ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane; methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, polyvalent carboxylic acid esters (eg) , Phtalic acid ester, succinic acid ester, adipic acid ester, etc.), ester solvent such as fatty acid ester of aliphatic polyol such as glycerin; N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethylene carbonate, N, Highly polar solvents such as N-dimethylacetamide (DMAc) and N-methylpyrrolidone; halogen-based solvents such as methylene chloride, dichloromethane, chloroform, trichloroethylene, perchloro
  • glycol ether solvent includes the following glycol ether (ester) solvents: butyl cellosolve acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, methoxy butyl acetate, methyl methoxy butyl acetate, ethyl-3.
  • polymerizable compounds for example, [epoxy prepolymer (eg, bisphenol type, novolak type, biphenyl type, biphenyl aralkyl type, arylalkylene type, tetrapheni).
  • epoxy prepolymer eg, bisphenol type, novolak type, biphenyl type, biphenyl aralkyl type, arylalkylene type, tetrapheni
  • Roll ethane type naphthalene type, anthracene type, phenoxy type, dicyclopentadiene type, norbornen type, adamantan type, fluorene type, glycidyl methacrylate copolymer type, etc.
  • Acrylate prepolymers eg, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid, etc.
  • aliphatic systems such as hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, tetramethylxylylene diisocyanate, etc.
  • the non-aqueous solvent preferably contains a hydrocarbon solvent or a glycol ether solvent, and among these, when the modifying group is (a) a hydrocarbon group and (b) a silicone chain, it is carbonized.
  • Hydrogen-based solvents, silicone oils or glycol ether-based solvents are preferable, and (c) in the case of alkylene oxide chains, hydrocarbon-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, glycols.
  • Aether-based solvent including glycol ether ester-based solvent), fatty acid, animal / vegetable oil, silicone oil, fluorine-based inert liquid, process oil, etc.
  • a hydrocarbon-based solvent or glycol ether A system solvent (including a glycol ether ester solvent) is more preferable, and a glycol ether solvent (including a glycol ether ester solvent) is further preferable.
  • a highly polar solvent is preferable.
  • the content of the non-aqueous solvent in the composition of the present invention depends on the presence or absence of the inorganic compound, but is generally preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or more. It is preferably 75% by mass or more, more preferably 85% by mass or more, while preferably 99.5% by mass or less, more preferably 99% by mass or less, still more preferably 98% by mass or less, and preferably 15% by mass. % Or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less. If necessary, a part or all of the non-aqueous solvent may be removed from the composition of the present invention. Therefore, the composition of the present invention may be in the form of a solution or dispersion, or may be in the form of a dry powder.
  • the content of the modified cellulose fiber is preferably 100 parts by mass with respect to 100 parts by mass of the non-aqueous solvent from the viewpoint of suppressing a decrease in viscosity even at a high temperature. It is 0.01 part by mass or more, more preferably 0.05 part by mass or more, further preferably 0.1 part by mass or more, and from the same viewpoint, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferable. Is 5 parts by mass or less, preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.05 parts by mass or more and 10 parts by mass or less, still more preferably 0. It is 1 part by mass or more and 5 parts by mass or less.
  • the content of water is preferably 20% by mass or less, more preferably 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass. % Or less, and may be substantially 0% by mass.
  • the water content includes the amount of water brought in from a non-aqueous solvent.
  • the composition of the present invention comprises metal oxides such as titanium oxide, zinc oxide, aluminum oxide and zirconium oxide; gold, silver, copper, iron, tin, lead, zinc, aluminum and the like.
  • Inorganic compounds exemplified for inorganic solids such as may be contained.
  • the shape of the inorganic compound is not particularly limited, but powder, granular, fibrous, flake, pellet, lump, and paste are preferable from the viewpoint of handleability.
  • the content of the inorganic compound in the composition of the present invention varies depending on the intended use and is not particularly limited, but from the viewpoint of the dispersion stability of the inorganic compound at a high temperature of 50 ° C. or higher and the expression of the effect of adding the inorganic compound.
  • 100 parts by mass of the modified cellulose fiber preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, still more preferably 2 parts by mass or more, still more preferably 3 parts by mass.
  • More than parts more preferably 10 parts by mass or more, still more preferably 100 parts by mass or more, while, from the viewpoint of exhibiting the effect of the present invention, preferably 1,000,000 parts by mass or less, more preferably 500,000 parts by mass. Parts or less, more preferably 300,000 parts by mass or less, still more preferably 100,000 parts by mass or less, still more preferably 50,000 parts by mass or less, still more preferably 30,000 parts by mass or less, still more preferably 10,000 parts by mass. It is less than a part.
  • the mass ratio of the inorganic compound / modified cellulose fiber is preferably 0.1/100 or more and 10000/1 or less, more preferably, from the viewpoint of dispersing the inorganic compound in a non-aqueous solvent. It is 1/100 or more and 1000/1 or less, more preferably 1/10 or more and 300/1 or less, and further preferably 1/1 or more and 100/1 or less.
  • the content of the inorganic compound in the composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 10% by mass or more, while preferably 99% by mass or less. It is preferably 95% by mass or less, more preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
  • the mass ratio of the inorganic compound / non-aqueous solvent is preferably 1/100 or more, more preferably 1/10 or more, still more preferably 1/1 or more, from the viewpoint of dispersing the inorganic compound in the non-aqueous solvent. From the viewpoint of dispersion stability in a non-aqueous solvent at 50 ° C. or higher, it is preferably 500/1 or less, more preferably 300/1 or less, still more preferably 100/1 or less.
  • Other components such as plasticizers, crystal nucleating agents, fillers (inorganic fillers, organic fillers), hydrolysis inhibitors, flame retardants, antioxidants, hydrocarbons, as long as the effects of the present invention are not impaired.
  • Waxes and anionic surfactants such as gelatin, UV absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, surfactants; starches, alginic acid, etc.
  • Polysaccharides; natural proteins such as gelatin, gelatin, casein; tannins; fragrances; flow regulators; leveling agents; conductive agents; UV dispersants; deodorants and the like may be contained in the composition of the present invention. No.
  • other polymer materials and other compositions can be added as long as the effects of the present invention are not impaired.
  • the other component may be the above-mentioned inorganic compound.
  • the thickener composition of the present invention can be produced, for example, by mixing the modified cellulose fiber with the non-aqueous solvent or the like.
  • each of the above-mentioned components is kneaded using a known kneader such as a closed kneader, a single-screw extruder, a roll mill, or an open-roll kneader, or by a solvent casting method, or. It can be carried out by shearing with a shearing device such as a high shearing machine.
  • the viscosity of a liquid object tends to decrease as the temperature increases, but the composition of the present invention is characterized in that the tendency is smaller.
  • the value of [viscosity at 80 ° C.] / [viscosity at 25 ° C.] (viscosity ratio at 80 ° C./25 ° C.) of the composition of the present invention is preferable from the viewpoint of suppressing the decrease in viscosity even at high temperatures. Is 0.6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably 0.9 or more, and preferably 5 or less, still more preferably, from the viewpoint of reducing the temperature dependence.
  • the value of [viscosity at 125 ° C.] / [viscosity at 25 ° C.] (viscosity ratio at 125 ° C./25 ° C.) of the composition of the present invention is preferably 0. 6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably 0.9 or more, and from the viewpoint of reducing the temperature dependence, preferably 5 or less, still more preferably 3 or less. , More preferably 2 or less, still more preferably 1.5 or less.
  • the viscosity (mPa ⁇ s) of the composition of the present invention at 25 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1.
  • it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less. Is.
  • the viscosity (mPa ⁇ s) of the composition of the present invention at 80 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1.
  • it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less. Is.
  • the viscosity (mPa ⁇ s) of the composition of the present invention at 125 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1.
  • it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less.
  • the thickener composition of the present invention has fluidity as described above, so that workability can be improved.
  • the method for measuring the viscosity in the present specification can be carried out by the method described in Examples described later using a rheometer.
  • the thickener composition of the present invention can be used in various products without particular limitation.
  • Specific examples of products to which the thickener composition of the present invention can be applied include foods and drinks, cosmetics, quasi-drugs, pharmaceuticals, daily necessities, feeds, miscellaneous goods, pesticides and chemical industry products. More specifically, in the fields of home appliance parts, electronic materials (electronics), packaging containers, aerospace, civil engineering, automobiles, automobiles, etc., resin molding materials, electrical insulation materials, paints, inks, coating agents, adhesives, etc. , Repair materials, adhesives, lubricants, sealing materials, heat insulating materials, sound absorbing materials, artificial leather materials, electronic materials, semiconductor materials, tires, automobile parts, fiber composite materials and the like. Of these, preferred are for electronic materials, optical materials or structural materials.
  • the blending amount of the thickener composition blended in these products is not particularly limited, but is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass, based on 100 parts by mass of the product (or the total amount of each component constituting the product). It is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, while preferably 1000 parts by mass or less, more preferably 800 parts by mass or less, still more preferably 500 parts by mass or less.
  • the thickener composition of the present invention contains the modified cellulose fiber and a non-aqueous solvent, and is intended for use at 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher.
  • the upper limit of the usable temperature is preferably 300 ° C., more preferably 280 ° C., still more preferably 250 ° C., still more preferably 200 ° C. from the viewpoint of developing thickening.
  • the thickener composition of the present invention is preferably used in a temperature range of 50 ° C. or higher, more preferably 100 ° C. or higher, preferably 250 ° C. or lower, while maintaining thickening. Is preferable.
  • the temperature range of 50 ° C. or higher is, for example, 50 ° C. to 100 ° C. (50 ° C. temperature range), 40 ° C. to 150 ° C. (110 ° C. temperature range), 70 ° C. to 200 ° C. (130 ° C. temperature range). Is.
  • the use of a thickener composition at a specified temperature means adding the thickening agent composition at a specified temperature (or temperature range) to an object to be thickened. After adding the thickener composition to the object to be thickened, the temperature may be adjusted to a specified temperature (or temperature range). Since the thickener composition of the present invention is used at 50 ° C. or higher, a part or all of the non-aqueous solvent may volatilize, but it can be used without any problem. Further, depending on the application, there is a mode in which the solvent component is completely evaporated and solidified by further heating after maintaining the viscosity up to a certain temperature. Even in such a mode, the thickening of the present invention is performed.
  • the use of the agent composition was suitably achieved.
  • the thickener composition it is preferable that the thickener composition further contains the above-mentioned inorganic compound.
  • Specific embodiments used over a temperature range of 50 ° C. or higher include, for example, a lubricant, grease oil, and the like.
  • Specific embodiments of use over a temperature range of 50 ° C. or higher to remove a non-aqueous solvent as a result are, for example, paints and inks.
  • the viscosity control agent of the present invention contains the modified cellulose fiber.
  • the viscosity control agent of the present invention is for a non-aqueous solvent, and by applying the viscosity control agent to a non-aqueous solvent, it is possible to control the viscosity of the non-aqueous solvent, for example, to suppress a decrease in viscosity at a high temperature of 50 ° C. or higher.
  • a high temperature viscosity control agent As described above, the viscosity control agent of the present invention is preferably used at 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, while preferably 300 ° C. or lower, more preferably 280 ° C. or higher, still more preferable. Is used at 200 ° C. or lower, more preferably 150 ° C. or lower. Examples of the non-aqueous solvent include those mentioned above.
  • the content of the modified cellulose fiber (not including modifying groups) is preferably 0.
  • the content of the modified cellulose fiber is preferably 0.
  • the content of the modified cellulose fiber is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 0.05 part by mass with respect to 100 parts by mass of the non-aqueous solvent. 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less.
  • the viscosity control agent of the present invention may contain an inorganic compound that can be used in the above-mentioned thickener composition as long as the effect of the present invention is not impaired.
  • the shape of the inorganic compound is not particularly limited, but powder, granular, fibrous, flake, pellet, lump, and paste are preferable from the viewpoint of handleability.
  • the amount of the inorganic compound with respect to the modified cellulose fiber in the viscosity control agent of the present invention is as described in the above-mentioned thickener composition, and the preferable range is the same.
  • the viscosity control agent of the present invention uses a non-aqueous solvent as described in the above-mentioned properties of the thickener composition, having a viscosity of 25 ° C., 80 ° C., 120 ° C., a viscosity ratio of 80 ° C./25 ° C., and a viscosity ratio of 80 ° C./25 ° C.
  • the viscosity ratio of 120 ° C./25 ° C. can be controlled to a preferable value.
  • a composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2), a non-aqueous solvent and an inorganic compound is heated to 100 ° C. or higher.
  • a method for applying an inorganic compound which comprises a step of removing a non-aqueous solvent.
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • Non-aqueous solvents and inorganic compounds are as described above.
  • the heating temperature depends on the non-aqueous solvent used, but is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. It is preferable to remove the non-aqueous solvent almost completely. Since the composition is suppressed from decreasing in viscosity even at a high temperature of 50 ° C. or higher, it can be applied by suppressing the diffusion of the inorganic compound. Examples of the object to be applied include a metal surface, a plastic surface, paper and the like, and can be used, for example, for paints and inks. Preferred compounds, preferred contents, preferred content ratios, etc. of each component of the composition in the coating method are as described in the above-mentioned composition.
  • the present invention further discloses the following methods for applying a thickener composition, a thickener composition, a viscosity control agent, and an inorganic compound.
  • the modified cellulose fiber is one or more selected from the group consisting of the following (1) and (2), and is a thickener composition.
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • ⁇ 2> The composition according to ⁇ 1> above, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more and 5 or less.
  • ⁇ 3> The composition according to ⁇ 1> or ⁇ 2>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
  • ⁇ 4> The composition according to any one of ⁇ 1> to ⁇ 3>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.6 or more and 5 or less.
  • ⁇ 5> The composition according to any one of ⁇ 1> to ⁇ 4>, wherein the viscosity ratio at 125 ° C./25 ° C.
  • the modifying group is bonded to the anionic group of the anionic-modified cellulose fiber via an ionic bond and / or a covalent bond.
  • the non-aqueous solvent contains a hydrocarbon solvent, an alcohol solvent, an ether solvent, an ester solvent, a glycol ether solvent (including a glycol ether ester solvent), a fatty acid, an animal / vegetable oil, or a silicone oil.
  • non-aqueous solvent contains a hydrocarbon solvent or a glycol ether solvent.
  • the non-aqueous solvent is a hydrocarbon solvent, a silicone oil or a glycol ether solvent.
  • the non-aqueous solvent is a hydrocarbon solvent or a glycol ether solvent (including a glycol ether ester solvent).
  • the non-aqueous solvent is a glycol ether solvent (including a glycol ether ester solvent), any of the above ⁇ 1> to ⁇ 11>.
  • the composition according to one. ⁇ 13> In one or more (co) polymerization sections in which the alkylene oxide chain is selected from the group consisting of an ethylene oxide (EO) polymerization section, a propylene oxide (PO) polymerization section, and a (EO / PO) copolymer section.
  • EO ethylene oxide
  • PO propylene oxide
  • PO EO / PO
  • the average fiber length of the modified cellulose fiber is 100 nm or more and 10,000 nm or less, preferably 200 nm or more and 5000 nm or less.
  • the mass ratio of the inorganic compound / modified cellulose fiber is 1/100 or more and 500/1 or less, preferably 1/10 or more and 300/1 or less, and more preferably 1/1 or more and 100/1 or less.
  • the content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less.
  • the content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose.
  • the content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent.
  • composition according to any one of ⁇ 1> to ⁇ 19> wherein the composition is 0.05 parts by mass or more and 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less.
  • the content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less.
  • the composition according to any one of. ⁇ 22> The composition according to any one of ⁇ 1> to ⁇ 21>, which is used at 60 ° C. or higher, more preferably 80 ° C. or higher.
  • ⁇ 23> The composition according to any one of ⁇ 1> to ⁇ 22>, which is used in a temperature range of 50 ° C.
  • composition according to any one of ⁇ 1> to ⁇ 23> which is used after removing a non-aqueous solvent.
  • composition according to any one of ⁇ 1> to ⁇ 24> above which is for an electronic material, an optical material, or a structural material.
  • a modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • ⁇ 28> The use according to the above ⁇ 26> or ⁇ 27>, which is used at 80 ° C. or higher.
  • ⁇ 29> The use according to any one of ⁇ 26> to ⁇ 28> above, which is used in a temperature range of 50 ° C. or higher.
  • ⁇ 30> The use according to any one of ⁇ 26> to ⁇ 29> above, which is used in a temperature range of 100 ° C. or higher.
  • ⁇ 31> The use according to any one of ⁇ 26> to ⁇ 30> above, which removes a non-aqueous solvent.
  • ⁇ 32> The use according to any one of ⁇ 26> to ⁇ 31> above, wherein the thickener composition has a viscosity ratio of 80 ° C./25 ° C. of 0.6 or more and 5 or less.
  • ⁇ 33> The use according to any one of ⁇ 26> to ⁇ 32> above, wherein the viscosity ratio of the thickener composition at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
  • ⁇ 34> The use according to any one of ⁇ 26> to ⁇ 33> above, wherein the thickener composition has a viscosity ratio of 125 ° C./25 ° C. of 0.6 or more and 5 or less.
  • ⁇ 35> The composition according to any one of ⁇ 26> to ⁇ 34>, wherein the thickener composition has a viscosity ratio of 125 ° C./25 ° C. of 0.7 or more and 3 or less.
  • ⁇ 36> The use according to any one of ⁇ 26> to ⁇ 35>, wherein the cellulose fiber in (1) is an anion-modified cellulose fiber.
  • the non-aqueous solvent contains a hydrocarbon solvent, an alcohol solvent, an ether solvent, an ester solvent, a glycol ether solvent (including a glycol ether ester solvent), a fatty acid, an animal / vegetable oil, or a silicone oil.
  • the non-aqueous solvent contains a hydrocarbon solvent or a glycol ether solvent.
  • the non-aqueous solvent is a hydrocarbon solvent, a silicone oil or a glycol ether solvent.
  • the non-aqueous solvent is a hydrocarbon solvent or a glycol ether solvent (including a glycol ether ester solvent). Use described in any one of ⁇ 40>.
  • the non-aqueous solvent is a glycol ether solvent (including a glycol ether ester solvent), any of the above ⁇ 26> to ⁇ 41>.
  • the alkylene oxide chain is selected from the group consisting of an ethylene oxide (EO) polymerization section, a propylene oxide (PO) polymerization section, and a (EO / PO) copolymer section.
  • EO ethylene oxide
  • PO propylene oxide
  • PO EO / PO
  • ⁇ 44> The use according to any one of ⁇ 26> to ⁇ 43>, wherein the average fiber diameter of the modified cellulose fiber is 1 nm or more and 300 nm or less, preferably 2 nm or more and 200 nm or less.
  • ⁇ 45> The use according to any one of ⁇ 26> to ⁇ 44>, wherein the average fiber length of the modified cellulose fiber is 100 nm or more and 10,000 nm or less, preferably 200 nm or more and 5000 nm or less.
  • ⁇ 46> The use according to any one of ⁇ 26> to ⁇ 45> above, wherein the thickener composition further contains an inorganic compound.
  • the mass ratio of the inorganic compound / modified cellulose fiber in the thickener composition is 0.1/100 or more and 10000/1 or less, preferably 1/100 or more and 1000/1 or less, and more preferably 1/10 or more.
  • the content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less.
  • the content of the modified cellulose fiber (excluding modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose.
  • the content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent.
  • any one of ⁇ 26> to ⁇ 49> above which is 0.05 part by mass or more and 10 parts by mass or less, more preferably 0.1 part by mass or more and 5 parts by mass or less.
  • the content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less.
  • Use described in any one of. ⁇ 52> The use according to any one of ⁇ 26> to ⁇ 51> above, wherein the thickener composition is a composition for an electronic material, an optical material, or a structural material.
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • a modifying group is bonded to a cellulose fiber
  • the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • Acid-type anion-modified cellulose fibers having an I-type crystal structure ⁇ 54>
  • the viscosity control agent according to ⁇ 53> which further contains an inorganic compound.
  • ⁇ 55> The viscosity control agent according to ⁇ 53> or ⁇ 54>, which is used at 50 ° C. or higher.
  • ⁇ 56> The viscosity control agent according to any one of ⁇ 53> to ⁇ 55>, which is used at 60 ° C. or higher.
  • ⁇ 57> The viscosity control agent according to any one of ⁇ 53> to ⁇ 56>, which is used at 80 ° C. or higher.
  • ⁇ 58> The viscosity control agent according to any one of ⁇ 53> to ⁇ 57>, which is used in a temperature range of 50 ° C. or higher.
  • ⁇ 59> The viscosity control agent according to any one of ⁇ 53> to ⁇ 58>, which is used in a temperature range of 100 ° C. or higher.
  • ⁇ 60> The viscosity control agent according to any one of ⁇ 53> to ⁇ 59>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more and 5 or less.
  • ⁇ 61> The viscosity control agent according to any one of ⁇ 53> to ⁇ 60>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
  • ⁇ 62> The viscosity control agent according to any one of ⁇ 53> to ⁇ 61>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.6 or more and 5 or less.
  • ⁇ 63> The viscosity control agent according to any one of ⁇ 53> to ⁇ 62>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.7 or more and 3 or less.
  • a composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2), a non-aqueous solvent and an inorganic compound is heated to 100 ° C. or higher to be non-processed.
  • a method for applying an inorganic compound which comprises a step of removing an aqueous solvent.
  • (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • a modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain.
  • Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure ⁇ 65>
  • the coating method according to ⁇ 64>, wherein the coating method is preferably heated to 150 ° C. or higher, more preferably 200 ° C. or higher.
  • the content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less.
  • the content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose.
  • the content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent.
  • the content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less.
  • the measurement target is a finely divided anion-modified cellulose fiber, add water, or if the measurement target is a modified cellulose fiber, add the same solvent as that used when preparing the thickener composition, and add the content thereof. Prepare a dispersion of 0.0005% by mass. If the solvent is squalane or TGME, IPA is used.
  • AFM Atomic force microscope
  • Example 10 Only in Example 10, it was difficult to confirm the modified cellulose fiber by the measurement using the above AFM. Therefore, only in Example 10, the obtained thickener composition was diluted with IPA to 0.02% by mass, and one drop of the solution sonicated for 5 minutes was dropped onto mica. After air-drying, observe the sample gold-spattered with MSP-1S (manufactured by Vacuum Device Co., Ltd.) using an electron microscope VE-8800 (manufactured by KEYENCE) under the measurement conditions of an acceleration voltage of 5 kV and a spot diameter of 8. The average fiber diameter, average fiber length and average aspect ratio of the modified cellulose fibers were determined by the same method as described above.
  • MSP-1S manufactured by Vacuum Device Co., Ltd.
  • VE-8800 manufactured by KEYENCE
  • Anionic group content [Sodium hydroxide aqueous solution droplet quantification (mL) ⁇ Sodium hydroxide aqueous solution concentration (0.05 M)] / [Mass of cellulose fiber to be measured (0.5 g)]
  • the carboxy group content of the oxidized cellulose fiber to be measured is measured by the above-mentioned method for measuring the anionic group content.
  • 100 g of an aqueous dispersion of the oxidized cellulose fiber to be measured (solid content content 1.0% by mass), 100 g of an acetate buffer (pH 4.8), 2-methyl-2-butene. 0.33 g and 0.45 g of sodium chlorite are added and stirred at 25 ° C. for 16 hours to oxidize the aldehyde group remaining on the oxidized cellulose fiber.
  • the cellulose fibers are washed with deionized water to obtain cellulose fibers obtained by oxidizing an aldehyde group.
  • the carboxy group content of the dried product obtained by freeze-drying treatment is measured by the above-mentioned method for measuring the anionic group content, and the "carboxy group content of the oxidized cellulose fiber" is calculated.
  • the aldehyde group content of the oxidized cellulose fiber to be measured is calculated by the formula 1.
  • Alaldehyde group content (mmol / g) (carboxy group content of oxidized cellulose fiber)-(carboxy group content of oxidized cellulose fiber to be measured) ... Equation 1
  • Solid content in gel or dispersion Measure using a halogen moisture meter (manufactured by Shimadzu Corporation; trade name "MOC-120H”). Measurement is performed every 30 seconds at a constant temperature of 150 ° C. for 1 g of the sample, and the value at which the mass loss is 0.1% or less of the initial amount of the sample is defined as the solid content. If it is difficult to analyze the solid content concentration by the above analysis method because an organic solvent having a high boiling point is used, a known alternative method such as a phenol sulfuric acid method may be used separately.
  • the binding amount of the modifying group is obtained by the following IR measurement method, and the binding amount and the introduction rate are calculated by the following formula. Specifically, the IR measurement is performed by measuring the infrared absorption spectrum of the dried modified cellulose fiber by the ATR method using an infrared absorption spectroscope (IR) (Nicolet 6700 manufactured by Thermo Fisher Scientific Co., Ltd.). , The amount of binding of the modifying group and the introduction rate are calculated by the formulas A and B.
  • the following shows the case where the anionic group is a carboxy group, that is, the case of an oxidized cellulose fiber.
  • the following " peak intensity of 1720 cm -1 " is the peak intensity derived from the carbonyl group.
  • the wavenumber value may be appropriately changed to calculate the bond amount and introduction rate of the modifying group.
  • the crystal structure of the modified cellulose fiber is confirmed by measuring under the following conditions using an X-ray diffractometer (MiniFlexII manufactured by Rigaku Co., Ltd.).
  • the cellulose fiber to be measured is compressed into pellets having an area of 320 mm 2 ⁇ thickness of 1 mm.
  • the crystallinity of the cellulose type I crystal structure is calculated by calculating the obtained X-ray diffraction intensity based on the following formula C.
  • the amount of cellulose (converted amount) in the modified cellulose fiber is the amount of cellulose in the modified cellulose fiber excluding the modifying group.
  • the formula amount of the modifying group may be considerably larger (for example, than the molecular weight of glucose).
  • the amount of cellulose constituting the modified cellulose fiber (converted amount) is displayed instead of the amount of the modified cellulose fiber.
  • the cellulose fiber (converted amount) in the modified cellulose fiber is measured by the following method.
  • a pH stat titration with an automatic titrator (manufactured by DKK-TOA Corporation, trade name: AUT-701)
  • a 0.5 M sodium hydroxide aqueous solution was added dropwise to maintain the pH at 10.5.
  • the dropping of the aqueous sodium hydroxide solution was stopped, and a suspension of anionic-modified cellulose fibers (that is, oxidized cellulose fibers) in which the anionic group was a carboxy group was prepared. Obtained.
  • Preparation Example 2 (Production of Micronized Anion-Modified Cellulose Fiber) Deionized water was added to the anion-modified cellulose fiber finally obtained in Preparation Example 1 to prepare 100 g of a suspension (solid content content: 2.0% by mass). A 0.5 M aqueous sodium hydroxide solution was added to adjust the pH to 8, and then deionized water was added to bring the total amount to 200 g. This suspension was subjected to a micronization treatment at 150 MPa three times using a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) three times, and a miniaturized anion-modified cellulose fiber dispersion liquid (solid content content 1. 0% by mass) was obtained. The counter ion of the carboxy group of this miniaturized anion-modified cellulose fiber was sodium ion.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name:
  • Preparation Example 3 (Production of Micronized Anion-Modified Cellulose Fiber with Reduction Treatment of Aldehyde Group) 182 g of the finely divided anion-modified cellulose fiber dispersion (solid content content 1.0% by mass) obtained in Preparation Example 2 was weighed, and deionized water was added to make a total of 400 g. 1.2 mL of 0.1 M aqueous sodium hydroxide solution and 120 mg of sodium borohydride were added thereto, and the mixture was stirred at 25 ° C. for 4 hours. Next, 9 mL of 1M hydrochloric acid was added for protonation.
  • the finely divided anion-modified cellulose fiber dispersion liquid (solid content content 0. 9% by mass) was obtained.
  • the obtained cellulose fiber had a carboxy group content of 1.50 mmol / g and an aldehyde group content of 0.02 mmol / g.
  • the carboxy group of this miniaturized anion-modified cellulose fiber is a free acid type (COOH) and is abbreviated as "TCNF (acid type)".
  • the average fiber diameter of the finely divided anion-modified cellulose fibers was 3.3 nm, and the average fiber length was 600 nm.
  • Preparation of anion-modified cellulose fiber 2 Preparation Example 4 After sufficiently stirring 10 g of coniferous bleached kraft pulp (manufactured by West Freder Co., Ltd., trade name: Hinton) as natural cellulose with 990 g of ion-exchanged water, TEMPO (manufactured by ALDRICH, Free radical, 98) per 10 g of the pulp. (% by mass) 0.13 g, 1.3 g of sodium bromide, and 27 g of a 10.5 mass% sodium hypochlorite aqueous solution (10.5 mass% aqueous solution) were added in this order.
  • coniferous bleached kraft pulp manufactured by West Freder Co., Ltd., trade name: Hinton
  • ALDRICH Free radical, 98
  • anion-modified cellulose fibers 0.01 M hydrochloric acid was added to the obtained suspension of anion-modified cellulose fibers to adjust the pH to 2, and then the conductivity was measured using a compact electric conductivity meter (LAQUAtwin EC-33B, manufactured by HORIBA, Ltd.).
  • the anion-modified cellulose fibers were thoroughly washed with ion-exchanged water until the filtrate became 200 ⁇ s / cm or less, and then dehydrated to obtain cake-shaped anion-modified cellulose fibers.
  • the obtained anion-modified cellulose fibers had an average fiber length of 594 ⁇ m, an average fiber diameter of 2.7 ⁇ m, an aspect ratio of 220, and a carboxy group content of 1.5 mmol / g.
  • This anion-modified cellulose fiber was TCNF (acid type).
  • Preparation of anion-modified cellulose fibers 3 Preparation Example 5 (Preparation of Shortened Anion-Modified Cellulose Fiber)
  • the anion-modified cellulose fiber obtained in Preparation Example 4 was charged with an absolute dry mass of 1.8 g, and ion-exchanged water was added until the mass of the contents became 36 g. The mixture was then treated at 95 ° C. for 3 hours with stirring to give an aqueous suspension of the shortened anion-modified cellulose fibers.
  • the obtained anion-modified cellulose fibers had an average fiber length of 210 ⁇ m, an average fiber diameter of 3.3 ⁇ m, an aspect ratio of 64, and a carboxy group content of 1.5 mmol / g.
  • This anion-modified cellulose fiber was TCNF (acid type).
  • anion-modified cellulose fibers After adding 0.01 M hydrochloric acid to the obtained suspension of anionic-modified cellulose fibers to adjust the pH to 2, a compact electric conductivity meter (LAQUAtwin EC-33B, manufactured by HORIBA, Ltd.) using ion-exchanged water.
  • the anion-modified cellulose fibers were sufficiently washed until the electric conductivity of the filtrate was measured to 200 ⁇ s / cm or less, and then dehydration treatment was performed to obtain cake-shaped anion-modified cellulose fibers.
  • the carboxy group content of the obtained anion-modified cellulose fiber was 1.3 mmol / g.
  • This anion-modified cellulose fiber was TCNF (acid type).
  • Example 1 The micronized anion-modified cellulose fiber dispersion obtained in Preparation Example 3 was washed 3 times with isopropyl alcohol (IPA) and then washed 3 times with Squalane to replace the solvent. The obtained gel was placed in a beaker at 66.7 g (solid content: 0.9% by mass) and 1.53 g of amino-modified silicone (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed. Squalane was added to the total amount to 120 g.
  • IPA isopropyl alcohol
  • This mixture is stirred with a mechanical stirrer for 5 minutes at room temperature, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 10 passes to make anionic-modified cellulose fibers amino-modified.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • a squalane dispersion of modified cellulose fibers in which silicone was linked via ionic bonds was obtained. This dispersion was used as a thickener composition.
  • Example 2 A toluene dispersion of modified cellulose fibers was obtained in the same manner as in Example 1 except that IPA in Example 1 was replaced with acetone, squalane was replaced with toluene, and amino-modified silicone was replaced with monoamine EOPOamine. This dispersion was used as a thickener composition.
  • Example 3 The anion-modified cellulose fiber dispersion obtained in Preparation Example 4 was washed 3 times with 1-methoxy-2-propanol (PGME) and subjected to solvent substitution. The obtained gel was placed in a beaker in 7.0 g (solid content 14.6% by mass) and 3.1 g of EOPO amine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed. 33.0 g of PGME was added to the total to 43 g.
  • PGME 1-methoxy-2-propanol
  • This solution is stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to give EOPO amine to anionic-modified cellulose fibers. Obtained a 1-methoxy-2-propanol dispersion of modified cellulose fibers linked via ionic bonds. This dispersion was used as a thickener composition.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • Example 4 Methyl ethyl ketone (MEK) was used in place of the PGME of Example 3, and the cells were washed three times to replace the solvent.
  • the obtained gel was placed in a beaker in 5.3 g (solid content content: 3.77% by mass) and 0.086 g of oleylamine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed therein. 20.0 g of MEK and 40.0 g of squalane were added to make a total of 65 g.
  • This solution was stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes. Solvents other than squalane were removed by drying the dispersion at 80 ° C. under reduced pressure to obtain a squalane dispersion of modified cellulose fibers in which oleylamine was linked to anion-modified cellulose fibers via ionic bonds. This dispersion was used as a thickener composition.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • Example 5 A DMF dispersion of anion-modified cellulose fibers was obtained in the same manner as in Example 3 except that DMF was used instead of PGME in Example 3 and no modifying compound was used. This dispersion was used as a thickener composition.
  • Example 6 The anion-modified cellulose fiber dispersion obtained in Preparation Example 5 was washed with triethylene glycol monobutyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as "TGME") three times to replace the solvent. 11.2 g of the obtained gel (solid content content 13.4% by mass) and 2.0 g of a tetrabutylammonium hydroxide aqueous solution having a concentration of 25% by mass (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber). The mixture was placed in a beaker and mixed, and 16.8 g of triethylene glycol monobutyl ether was added thereto to make a total of 30 g.
  • TGME triethylene glycol monobutyl ether
  • This solution is stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to give tetrabutyl to anionic-modified cellulose fibers.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • a triethylene glycol monobutyl ether dispersion of modified cellulose fibers in which ammonium was linked via an ionic bond was obtained. This dispersion was used as a thickener composition.
  • Example 7 The modifying compound used in Example 6 was mixed with 1.0 g of a tetrabutylammonium hydroxide aqueous solution having a concentration of 25% by mass (corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and 2.0 g of EOPO amine (corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber).
  • a tetrabutylammonium hydroxide aqueous solution having a concentration of 25% by mass corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber
  • EOPO amine corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber
  • Example 8 By performing the same operation as in Example 7 except that the modifying compound used in Example 7 was changed to EOPO amine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber), the anion-modified cellulose was performed. A TGME dispersion of modified cellulose fibers in which EOPO amines were linked to the fibers via ionic bonds was obtained. This dispersion was used as a thickening composition.
  • Example 9 A TGME dispersion of modified cellulose fibers was obtained in the same manner as in Example 3 except that the PGME of the solvent used in Example 3 was replaced with TGME. This dispersion was used as a thickening composition. The concentration of the modified cellulose fiber (that is, the solid content) in the thickening composition was set to the value shown in Table 1-1.
  • Example 10 1.38 g (solid content content 18.5% by mass) of the cake-shaped anion-modified cellulose fiber obtained in Preparation Example 6 was put into a beaker, and 50 g of ion-exchanged water and 0.66 g of EOPO amine (anion-modified) were added thereto. (Equivalent to 1 equivalent to the carboxy group of the cellulose fiber) was added and mixed to make a total of 52 g. This solution was stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 100 MPa for 1 pass.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • TGME modified cellulose fibers in which EOPOamine was linked to anion-modified cellulose fibers via ionic bonds. This dispersion was used as a thickener composition.
  • the modifying compounds used in the above examples and the like are as follows.
  • Amino-modified silicone manufactured by Toray Dow Corning Co., Ltd., BY16-209
  • Oleylamine manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • 25% by mass tetrabutylammonium hydroxide solution manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Amino-modified silicone has a silicone chain as a modifying group
  • EOPOamine has an alkylene oxide chain ((EO / PO) copolymer) as a modifying group
  • oleylamine and tetrabutylammonium hydroxide have a hydrocarbon group as a modifying group.
  • Comparative Example 2 Fatty acid Amide S (manufactured by Kao Corporation) is added to a vial as a thickener by adding 1.0 g (5% by mass) to 20 g of TGME, and the thickener is heated and stirred in a block heater heated to 90 ° C. Was dissolved. This was allowed to cool at room temperature to obtain a small molecule thickening composition of Comparative Example 2.
  • Comparative Example 3 A 2% by mass aqueous dispersion of unmodified cellulose fibers (Sugino Machine Limited, BiNFi-s, WFo-10002 (average fiber diameter 10 to 50 nm)) was washed once with 1-methoxy-2-propanol (PGME). After that, it was washed with methyl ethyl ketone (MEK) three times to replace the solvent. 3.3 g (solid content content 4.6% by mass), 5 g of PGME and 30 g of MEK were added to the beaker of the obtained mixture, and 40.0 g of squalane was further added to make a total of 78 g.
  • PGME 1-methoxy-2-propanol
  • This solution was stirred with a mechanical stirrer for 1 hour and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to obtain an unmodified cellulose fiber dispersion.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • PGME / MEK was removed from the dispersion using an evaporator (80 ° C., 2 hours) to obtain a squalane dispersion containing unmodified cellulose fibers.
  • the unmodified cellulose fibers aggregated and separated into a liquid and an aggregate. Therefore, evaluation such as viscosity measurement could not be performed.
  • Comparative Example 4 Solvent substitution was performed in the same manner as in Comparative Example 3 except that DMF was used instead of PGME / MEK in Comparative Example 3. The obtained mixture was added to a beaker in an amount of 7.6 g (solid content: 2.7% by mass) and 40.0 g of DMF to make a total of 48 g. This solution is stirred with a mechanical stirrer for 1 hour and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to obtain a DMF dispersion of unmodified cellulose fibers. rice field. Although it was possible to measure the viscosity of this dispersion at 25 ° C, it was not possible to measure the viscosity at 80 ° C because the liquid and agglomerates were separated.
  • a high-pressure homogenizer manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES
  • Comparative Example 5 After sufficiently stirring 20 g of the cake-like anion-modified cellulose fiber (solid content content 26.1% by mass) obtained in Preparation Example 4 with 250 g of ion-exchanged water, a compact pH meter (Co., Ltd.) In the pH measurement of the filtrate by HORIBA, Ltd. (LAQUATWIN-PH-11B), an aqueous sodium hydroxide solution was added until the pH reached 7.0 to obtain anion-modified cellulose fibers having Na-substituted carboxy group terminals. The obtained Na-substituted anionic-modified cellulose fiber aqueous dispersion was washed with DMF three times to perform solvent substitution.
  • the viscosity of the thickener composition was evaluated by measuring the viscosity using a rheometer (Physica MCR300, manufactured by Anton Paar).
  • the measuring jig uses a cone type jig CP50-1 (rotation axis compliance is 4.5 x 10-7 m / N), and the measurement conditions are the shear rate of 0.001 to 1000 s -1 for the first time and 1000 to 1000 for the second time. Measurements were made under the conditions of 0.001s -1 and 0.001 to 1000s -1 for the third time, and the viscosity at each temperature at a shear rate of 1.0s -1 was compared at the time of the third measurement from the viewpoint of viscosity stability. bottom.
  • the viscosity of each non-aqueous solvent itself was also measured by the same method.
  • composition and results of each example are shown in Table 1-1, Table 1-2, Table 2-1 and Table 2-2.
  • FIGS. 1 and 2 [Rheometer chart of thickening composition] Rheometer charts for the thickener compositions of Example 1, Comparative Example 1 and Examples 8-10 are shown in FIGS. 1 and 2. The rheometer charts of FIGS. 1 and 2 were carried out under the measurement conditions shown in Table 3 using the above rheometer and measuring jig.
  • Example 11 2.5 g of the TGME dispersion prepared in Example 8 and 10 g of the inorganic powder were added to the vial, and the mixture was stirred with a spatula for 2 minutes. Then, the mixture was stirred at 2200 rpm for 10 minutes using Awatori Rentaro (ARE-310, manufactured by Shinky Co., Ltd.). Then, the paste was stirred with a spatula to prepare an inorganic powder-containing paste. The prepared inorganic powder-containing paste was added dropwise (25 ° C.) on a slide glass using a micropipette. The slide glass was placed on a hot plate heated to 120 ° C. and 200 ° C. and heated for 1 minute.
  • Awatori Rentaro ARE-310, manufactured by Shinky Co., Ltd.
  • Comparative Example 6 To the vial, 10 g of the inorganic powder was added to 2.5 g of the TGME dispersion (fatty acid amide S) prepared in Comparative Example 2. Then, the thickener was dissolved by heating and stirring for 5 minutes in a block heater heated to 90 ° C. Then, the mixture was allowed to cool and stirred with a spatula to obtain an inorganic powder-containing paste. Then, the same evaluation as in Example 11 was performed. The results are shown in Table 4.
  • Example 6 An inorganic powder-containing paste was prepared in the same manner as in Example 11 except that the TGME dispersion used in Example 11 was changed to TGME. Then, the same evaluation as in Example 11 was performed. The results are shown in Table 4.
  • the inorganic powders used in the above examples and the like are as follows.
  • Cu powder manufactured by Mitsui Mining & Smelting Co., Ltd., product number: wet copper powder 1100Y, average particle size 1.1 ⁇ m
  • Example 11 containing the inorganic compound did not reduce the viscosity even at a high temperature because of the high-temperature thickening of the non-aqueous solvent, that is, the inorganic compound did not spread. From these results, it can be seen that the composition of the present invention is useful as a composition for applications involving processing at 50 ° C. or higher, for example, for electronic materials, optical materials, or structural materials.
  • the thickener composition of the present invention can be used in fields such as home appliance parts, electronic materials (electronics), packaging materials, aerospace, civil engineering and construction, automobiles, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention pertains to a thickener composition that contains modified cellulose fibers and a nonaqueous solvent and is used at a temperature of 50℃ or higher, wherein the modified cellulose fibers are at least one type of modified cellulose fiber selected from the group consisting of (1) and (2) mentioned hereafter. (1) Modified cellulose fibers having a type I crystal structure obtained as a result of a modifying group being bonded to cellulose fiber, wherein the modifying group includes one or more substances selected from the group consisting of (a) hydrocarbon groups, (b) silicone chains, and (c) alkylene oxide chains; (2) acid-type anionic modified cellulose fibers having a type I crystal structure. The thickener composition, containing a nonaqueous solvent, according to the present invention is such that a decrease in viscosity can be suppressed even at high temperatures of 50℃ or higher.

Description

増粘剤組成物Thickener composition
 本発明は増粘剤組成物、非水系溶媒の粘度制御剤及び増粘剤組成物の使用及び無機化合物の塗布方法に関する。 The present invention relates to a thickener composition, a viscosity control agent for a non-aqueous solvent, a thickener composition, and a method for applying an inorganic compound.
 近年、環境に対する負荷の少ない技術が脚光を浴びるようになり、かかる技術背景の下、天然に多量に存在するバイオマスであるセルロース繊維を用いた材料が注目されている。
 例えば、特許文献1には、アニオン性基を含むアニオン変性セルロース繊維のアニオン性基にアミンがイオン結合を介して結合されてなる微細セルロース繊維複合体、分散剤、及び有機性の液体化合物を含む、微細セルロース繊維複合体分散液が開示されている。
 また、特許文献2には、セルロースI型結晶構造を有するセルロースを水に分散させた後、そのセルロースの水酸基を、カルボキシル基を有する置換基に変換する工程と、上記セルロースの分散媒である水を有機溶剤に置換する工程と、上記分散媒置換後のセルロースを疎水化する工程と、上記疎水化後のセルロースをナノ解繊し、有機溶剤中にセルロースナノファイバーが分散されたゲル状組成物を得る工程と、を備えたゲル状組成物の製法において、上記セルロースの疎水化を、ポリエーテルアミンによる中和反応により行うことを特徴とするゲル状組成物の製法が開示されている。
In recent years, technologies that have less impact on the environment have come into the limelight, and under such technological background, materials using cellulose fibers, which are biomass that exists in large quantities in nature, are attracting attention.
For example, Patent Document 1 includes a fine cellulose fiber composite in which an amine is bonded to an anionic group of an anionic modified cellulose fiber containing an anionic group via an ionic bond, a dispersant, and an organic liquid compound. , A fine cellulose fiber composite dispersion is disclosed.
Further, Patent Document 2 describes a step of dispersing cellulose having a cellulose type I crystal structure in water and then converting a hydroxyl group of the cellulose into a substituent having a carboxyl group, and water as a dispersion medium of the cellulose. A gel-like composition in which the cellulose nanofibers are dispersed in an organic solvent by nano-defibrating the cellulose after the hydrophobicization, the step of replacing the cellulose with an organic solvent, and the step of making the cellulose after the dispersion medium substitution hydrophobic. In the method for producing a gel-like composition comprising the step of obtaining the above-mentioned, a method for producing a gel-like composition is disclosed, wherein the hydrophobicity of the cellulose is carried out by a neutralization reaction with a polyether amine.
 特許文献1では、有機性の液体化合物に対するセルロース繊維の分散性について記載されており、また、特許文献2では、有機溶剤中へのセルロース繊維が分散したゲル状組成物の製造方法が記載されているものの、これらの文献では、高温での粘度物性の変化に関して一切記載されていない。 Patent Document 1 describes the dispersibility of cellulose fibers in an organic liquid compound, and Patent Document 2 describes a method for producing a gel-like composition in which cellulose fibers are dispersed in an organic solvent. However, these documents do not describe any change in viscosity physical properties at high temperatures.
特開2019-119867号公報Japanese Unexamined Patent Publication No. 2019-119867 特開2017-19896号公報Japanese Unexamined Patent Publication No. 2017-1996
 本発明は、下記〔1〕~〔7〕に関する。
〔1〕 改質セルロース繊維及び非水系溶媒を含有し、50℃以上で使用される増粘剤組成物であって、
 前記改質セルロース繊維は、下記(1)及び(2)からなる群より選択される1種以上のものである、増粘剤組成物。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
〔2〕 電子材料用、光学材料用又は構造材料用である、前記〔1〕に記載の増粘剤組成物。
〔3〕 さらに無機化合物を含んでなる前記〔1〕又は〔2〕に記載の増粘剤組成物。
〔4〕 下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維を含有する、非水系溶媒の粘度制御剤。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
〔5〕 さらに無機化合物を含んでなる前記〔4〕に記載の粘度制御剤。
〔6〕 下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維と非水系溶媒とを含有する増粘剤組成物の50℃以上での使用。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
〔7〕 下記(1)及び(2)からなる群より選択される1種以上である改質セルロース繊維、非水系溶媒及び無機化合物を含有する組成物を、100℃以上に加熱して、非水系溶媒を除去する工程を有する、無機化合物の塗布方法。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
The present invention relates to the following [1] to [7].
[1] A thickener composition containing a modified cellulose fiber and a non-aqueous solvent and used at 50 ° C. or higher.
The modified cellulose fiber is one or more selected from the group consisting of the following (1) and (2), and is a thickener composition.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure [2] For electronic materials, optical materials or structural materials, as described above [1]. ] The thickener composition according to.
[3] The thickener composition according to the above [1] or [2], which further contains an inorganic compound.
[4] A viscosity control agent for a non-aqueous solvent containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2).
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. The viscosity control agent according to the above [4], which contains one or more selected from the group consisting of (2) acid-type anion-modified cellulose fibers having an I-type crystal structure [5] and further containing an inorganic compound. ..
[6] Use of a thickener composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2) and a non-aqueous solvent at 50 ° C. or higher.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure [7] One selected from the groups consisting of (1) and (2) below. The method for applying an inorganic compound, which comprises a step of heating the composition containing the modified cellulose fiber, the non-aqueous solvent and the inorganic compound to 100 ° C. or higher to remove the non-aqueous solvent.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
図1は、実施例1及び比較例1における増粘剤組成物のレオメーターチャートである。FIG. 1 is a rheometer chart of the thickener composition in Example 1 and Comparative Example 1. 図2は、実施例8~10における増粘剤組成物のレオメーターチャートである。FIG. 2 is a rheometer chart of the thickener composition in Examples 8-10.
発明の詳細な説明Detailed description of the invention
 本発明は、高温においても粘度の低下が抑制されているため、50℃以上で使用するのに適した、非水系溶媒の増粘剤組成物に関する。 The present invention relates to a non-aqueous solvent thickener composition suitable for use at 50 ° C. or higher because the decrease in viscosity is suppressed even at high temperatures.
 本発明の非水系溶媒の増粘剤組成物は、50℃以上の高温においても粘度の低下を抑制することができる。 The non-aqueous solvent thickener composition of the present invention can suppress a decrease in viscosity even at a high temperature of 50 ° C. or higher.
 本発明の増粘剤組成物は、詳細なメカニズムについては不明だが、疎水的な改質基が導入されたセルロース繊維が非水系溶媒中で均一に分散し、緩いネットワーク構造を形成することで、高温時での粘性維持効果が発現していると推測される。 Although the detailed mechanism of the thickener composition of the present invention is unknown, the cellulose fibers into which the hydrophobic modifying group has been introduced are uniformly dispersed in a non-aqueous solvent to form a loose network structure. It is presumed that the viscosity maintaining effect at high temperature is exhibited.
<増粘剤組成物>
 本発明の増粘剤組成物は改質セルロース繊維及び非水系溶媒を含有し、50℃以上で使用される。
<Thickener composition>
The thickener composition of the present invention contains a modified cellulose fiber and a non-aqueous solvent, and is used at 50 ° C. or higher.
〔改質セルロース繊維〕
 本発明における改質セルロース繊維とは、下記(1)及び(2)からなる群より選択される1種以上のものである。
[Modified cellulose fiber]
The modified cellulose fiber in the present invention is one or more selected from the group consisting of the following (1) and (2).
 (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの。
 (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維。
 なお、本明細書において、区別して説明する必要がある場合、前記(1)の改質セルロース繊維を「改質セルロース繊維(1)」と称し、前記(2)の改質セルロース繊維を「改質セルロース繊維(2)」と称する。
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of.
(2) An acid-type anion-modified cellulose fiber having an I-type crystal structure.
In the present specification, when it is necessary to explain separately, the modified cellulose fiber of (1) is referred to as "modified cellulose fiber (1)", and the modified cellulose fiber of (2) is "modified". Quality Cellulose Fiber (2) ”.
・改質セルロース繊維(1)
 改質セルロース繊維(1)はセルロース繊維に修飾基が結合されてなるものである。セルロース繊維としては、修飾基の結合の容易性の観点から、アニオン変性セルロース繊維が好ましい。
-Modified cellulose fiber (1)
The modified cellulose fiber (1) is formed by binding a modifying group to the cellulose fiber. As the cellulose fiber, an anion-modified cellulose fiber is preferable from the viewpoint of easiness of binding of a modifying group.
(アニオン変性セルロース繊維)
 アニオン変性セルロース繊維とは、アニオン性基、例えばカルボキシ基、(亜)リン酸基及びスルホン酸基からなる群より選択される1種以上の基を分子内に有するセルロース繊維である。セルロース繊維へのアニオン性基の導入は後述の方法により達成できる。入手容易性及び効果の観点から、アニオン性基としてカルボキシ基を有するアニオン変性セルロース繊維が好ましく、セルロース繊維を構成するグルコースユニットのC6位の基(-CHOH)が選択的にカルボキシ基に変換されたアニオン変性セルロース繊維(「酸化セルロース繊維」と称する。)がより好ましい。なお、アニオン性基の対となるイオン(カウンターイオン)は、好ましくはプロトンである。
(Anion-modified cellulose fiber)
The anion-modified cellulose fiber is a cellulose fiber having one or more groups selected from the group consisting of an anionic group, for example, a carboxy group, a (sub) phosphate group and a sulfonic acid group in the molecule. The introduction of anionic groups into cellulose fibers can be achieved by the method described below. From the viewpoint of availability and effect, anion-modified cellulose fiber having a carboxy group as an anionic group is preferable, and the group at the C6 position (-CH 2 OH) of the glucose unit constituting the cellulose fiber is selectively converted into a carboxy group. The anion-modified cellulose fiber (referred to as "oxidized cellulose fiber") is more preferable. The ion (counter ion) paired with the anionic group is preferably a proton.
 アニオン変性セルロース繊維におけるアニオン性基含有量としては、安定な修飾基導入の観点から、好ましくは0.1mmol/g以上、より好ましくは0.4mmol/g以上、更に好ましくは0.6mmol/g以上、更に好ましくは0.7mmol/g以上、更に好ましくは0.8mmol/g以上である。また、取り扱い性を向上させる観点から、好ましくは3mmol/g以下、より好ましくは2.5mmol/g以下、更に好ましくは2.3mmol/g以下、更に好ましくは2.1mmol/g以下、更に好ましくは2.0mmol/g以下、更に好ましくは1.9mmol/g以下である。なお、「アニオン性基含有量」とは、セルロース繊維を構成するグルコース中のアニオン性基の総量を意味し、具体的には後述の実施例に記載の方法により測定される。 The content of anionic groups in the anion-modified cellulose fiber is preferably 0.1 mmol / g or more, more preferably 0.4 mmol / g or more, still more preferably 0.6 mmol / g or more, from the viewpoint of stable introduction of modifying groups. , More preferably 0.7 mmol / g or more, still more preferably 0.8 mmol / g or more. Further, from the viewpoint of improving handleability, it is preferably 3 mmol / g or less, more preferably 2.5 mmol / g or less, still more preferably 2.3 mmol / g or less, still more preferably 2.1 mmol / g or less, still more preferably. It is 2.0 mmol / g or less, more preferably 1.9 mmol / g or less. The "anionic group content" means the total amount of anionic groups in glucose constituting the cellulose fiber, and is specifically measured by the method described in Examples described later.
 アニオン変性セルロース繊維の平均繊維径、平均繊維長の好適範囲は、製造工程の順序にもよるが、原料のセルロース繊維のものと同等が好ましい。 The preferable range of the average fiber diameter and the average fiber length of the anion-modified cellulose fiber depends on the order of the manufacturing process, but is preferably the same as that of the raw material cellulose fiber.
 アニオン変性セルロース繊維のアニオン性基に修飾基が結合するとは、アニオン変性セルロース繊維が有するアニオン性基、好ましくはカルボキシ基に修飾基が結合することを意味する。修飾基とアニオン性基との結合様式としては、イオン結合及び/又は共有結合が挙げられる。共有結合としては、例えば、アミド結合、エステル結合、ウレタン結合が挙げられ、好ましくはアミド結合である。 The binding of the modifying group to the anionic group of the anion-modified cellulose fiber means that the modifying group is bound to the anionic group, preferably the carboxy group of the anion-modified cellulose fiber. Examples of the bonding mode between the modifying group and the anionic group include an ionic bond and / or a covalent bond. Examples of the covalent bond include an amide bond, an ester bond, and a urethane bond, and an amide bond is preferable.
(修飾基)
 修飾基としては、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖が挙げられる。これらの修飾基は1種類が単独で又は2種以上が組み合わさって、セルロース繊維に結合(導入)されてもよい。
(Modifying group)
Examples of the modifying group include (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. These modifying groups may be bonded (introduced) to the cellulose fiber by one type alone or in combination of two or more types.
(a)炭化水素基
 炭化水素基としては、一価の炭化水素基、例えば、鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基、及び芳香族炭化水素基が挙げられる。
(a) Hydrocarbon groups Examples of the hydrocarbon groups include monovalent hydrocarbon groups, for example, chain-type saturated hydrocarbon groups, chain-type unsaturated hydrocarbon groups, cyclic-type saturated hydrocarbon groups, and aromatic hydrocarbon groups. Can be mentioned.
 炭化水素基の炭素数は、非水系溶媒中でセルロースの分散性を向上させる観点及び50℃以上の高温(以下、単に高温ともいう)においても粘度の低下を抑制する観点から、1以上であり、好ましくは3以上、より好ましくは8以上、更に好ましくは10以上であり、同様の観点から、好ましくは30以下、より好ましくは22以下、更に好ましくは20以下である。炭化水素基は後述の置換基をさらに有していても良く、炭化水素基の一部が窒化水素基に置換されていてもよい。 The number of carbon atoms of the hydrocarbon group is 1 or more from the viewpoint of improving the dispersibility of cellulose in a non-aqueous solvent and from the viewpoint of suppressing the decrease in viscosity even at a high temperature of 50 ° C. or higher (hereinafter, also simply referred to as high temperature). It is preferably 3 or more, more preferably 8 or more, still more preferably 10 or more, and from the same viewpoint, preferably 30 or less, more preferably 22 or less, still more preferably 20 or less. The hydrocarbon group may further have a substituent described later, and a part of the hydrocarbon group may be substituted with a hydrogen nitride group.
 鎖式飽和炭化水素基としては、炭素数3以上30以下のものが好ましく、具体例としては、例えば、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、ペンチル基、tert-ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラエチル基、テトラブチル基、テトラプロピル基、テトラデシル基、オクタデシル基、ドコシル基、オクタコサニル基等が挙げられる。 The chain saturated hydrocarbon group preferably has 3 or more carbon atoms and 30 or less carbon atoms, and specific examples thereof include a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, and a pentyl group. Group, tert-pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetraethyl group, tetrabutyl group, tetrapropyl group, tetradecyl Examples thereof include a group, an octadecyl group, a docosyl group, an octacosanyl group and the like.
 鎖式不飽和炭化水素基としては、炭素数3以上30以下のものが好ましく、具体例としては、例えば、プロペニル基、ブテニル基、イソブテニル基、イソプレニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、オクタデセニル基が挙げられる。 The chain unsaturated hydrocarbon group preferably has 3 or more and 30 or less carbon atoms, and specific examples thereof include a propenyl group, a butenyl group, an isobutenyl group, an isoprenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group. Examples thereof include a group, a nonenyl group, a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group and an octadecenyl group.
 環式飽和炭化水素基としては、炭素数3以上20以下のものが好ましく、具体例としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロオクタデシル基等が挙げられる。 The cyclic saturated hydrocarbon group preferably has 3 or more and 20 or less carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclononyl group. , Cyclodecyl group, cyclododecyl group, cyclotridecyl group, cyclotetradecyl group, cyclooctadecyl group and the like.
 芳香族炭化水素基としては、例えば、アリール基及びアラルキル基等が挙げられる。アリール基及びアラルキル基としては、芳香族環そのものが置換されたものでも非置換のものであってもよい。
 複素環式芳香族炭化水素基としては、イミダゾール基が挙げられる。
Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group. As the aryl group and the aralkyl group, the aromatic ring itself may be substituted or unsubstituted.
Examples of the heterocyclic aromatic hydrocarbon group include an imidazole group.
 アリール基の総炭素数は、好ましくは6以上、24以下であり、アリール基の具体例としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基、トリフェニル基、ターフェニル基、及びこれらの基が置換基で置換された基が挙げられる。 The total number of carbon atoms of the aryl group is preferably 6 or more and 24 or less, and specific examples of the aryl group include, for example, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, a triphenyl group and a terphenyl group. , And groups in which these groups are substituted with substituents.
 アラルキル基の総炭素数は、好ましくは7以上、24以下であり、アラルキル基の具体例としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基、及びこれらの基の芳香族基が置換基で置換された基などが挙げられる。
 イミダゾール基の総炭素数は、好ましくは3以上、24以下であり、イミダゾール基の具体例としては、例えば、イミダゾール基、メチルイミダゾール基、エチルイミダゾール基、プロピルイミダゾール基、2-フェニルイミダゾール基、ベンゾイミダゾール基及びこれらの基が置換基で置換された基などが挙げられる。
The total number of carbon atoms of the aralkyl group is preferably 7 or more and 24 or less, and specific examples of the aralkyl group include, for example, a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, a phenylhexyl group and a phenylheptyl group. Examples thereof include a phenyloctyl group and a group in which the aromatic group of these groups is substituted with a substituent.
The total carbon number of the imidazole group is preferably 3 or more and 24 or less, and specific examples of the imidazole group include, for example, an imidazole group, a methylimidazole group, an ethylimidazole group, a propylimidazole group, a 2-phenylimidazole group, and a benzo. Examples thereof include an imidazole group and a group in which these groups are substituted with a substituent.
(b)シリコーン鎖
 シリコーン鎖とはシロキサン結合を主鎖とする一価の基であり、更にアルキレン基が伴っていてもよい。シリコーン鎖は後述の置換基をさらに有していても良い。
(b) Silicone chain The silicone chain is a monovalent group having a siloxane bond as a main chain, and may be further accompanied by an alkylene group. The silicone chain may further have a substituent described later.
(c)アルキレンオキサイド鎖
 アルキレンオキサイド鎖とは、エチレンオキサイド(EO)やプロピレンオキサイド(PO)の(共)重合体を含有する構造であり、好ましくは、EOの重合体を含有する構造(EO重合部)、POの重合体を含有する構造(PO重合部)及び、EO及びPOがランダム又はブロック状に重合した共重合体を含有する構造((EO/PO)共重合部)からなる群より選択される1種以上の(共)重合部である。アルキレンオキサイド鎖は後述の置換基をさらに有していても良い。
(c) alkylene oxide chain The alkylene oxide chain is a structure containing a (co) polymer of ethylene oxide (EO) or propylene oxide (PO), and is preferably a structure containing a polymer of EO (EO polymerization). Part), a structure containing a polymer of PO (PO polymerization part), and a structure containing a copolymer in which EO and PO are polymerized randomly or in a block shape ((EO / PO) copolymer part). One or more (co) polymerized portions to be selected. The alkylene oxide chain may further have a substituent described later.
 アルキレンオキサイド鎖としては、例えば、下記式: As the alkylene oxide chain, for example, the following formula:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、炭素数1以上6以下の炭化水素基、又は-CHCH(CH)NH基を示す。EO及びPOはランダム又はブロック状に存在し、aはEOの平均付加モル数を示す0又は正の数、bはPOの平均付加モル数を示す0又は正の数である。ただし、a及びbが共に0である場合を除く。)で示される一価の基が挙げられる。 (In the formula, R 1 represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or -CH 2 CH (CH 3 ) NH 2 groups. EO and PO exist in a random or block form, and a is. 0 or a positive number indicating the average number of added moles of EO, b is 0 or a positive number indicating the average number of added moles of PO, except when both a and b are 0). There is a monovalent group.
 前記式におけるaはEOの平均付加モル数を示し、入手性および非水系溶媒との親和性の観点から、好ましくは0以上、より好ましくは1以上、更に好ましくは2以上であり、同様の観点から、好ましくは100以下、より好ましくは70以下である。 In the above formula, a indicates the average number of moles of EO added, and is preferably 0 or more, more preferably 1 or more, still more preferably 2 or more from the viewpoint of availability and affinity with a non-aqueous solvent, and the same viewpoint. Therefore, it is preferably 100 or less, more preferably 70 or less.
 前記式におけるbはPOの平均付加モル数を示し、非水系溶媒との親和性の観点から、好ましくは0以上、より好ましくは1以上、更に好ましくは3以上であり、入手性の観点から、好ましくは50以下、より好ましくは40以下である。 In the above formula, b indicates the average number of moles of PO added, and is preferably 0 or more, more preferably 1 or more, still more preferably 3 or more from the viewpoint of affinity with a non-aqueous solvent, and from the viewpoint of availability. It is preferably 50 or less, more preferably 40 or less.
 前記式におけるRの炭素数1以上6以下の炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、ペンチル基、tert-ペンチル基、イソペンチル基、ヘキシル基及びイソヘキシル基等が挙げられる。 Specific examples of the above hydrocarbon group having 1 to 6 carbon atoms of R 1 in the formula is a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, sec- butyl group, tert- butyl group, an isobutyl group, Examples thereof include a pentyl group, a tert-pentyl group, an isopentyl group, a hexyl group and an isohexyl group.
 アルキレンオキサイド鎖の式量(分子量)は、高温(例えば50℃以上)においても粘度の低下を抑制する観点から、好ましくは500以上、より好ましくは1,000以上であり、同様の観点から、好ましくは10,000以下、より好ましくは7,000以下である。アルキレンオキサイド鎖の式量は、後述のアルキレンオキサイド鎖を有するアミン化合物を製造する際の平均付加モル数から計算して求めることができる。 The formula weight (molecular weight) of the alkylene oxide chain is preferably 500 or more, more preferably 1,000 or more, from the viewpoint of suppressing a decrease in viscosity even at a high temperature (for example, 50 ° C. or higher), and is preferable from the same viewpoint. Is 10,000 or less, more preferably 7,000 or less. The formula amount of the alkylene oxide chain can be calculated from the average number of moles added when producing the amine compound having the alkylene oxide chain described later.
 (EO/PO)共重合部におけるPOの含有率(モル%)は、高温においても粘度の低下を抑制する観点から、好ましくは1モル%以上、より好ましくは5モル%以上であり、同様の観点から、好ましくは100モル%以下、より好ましくは95モル%以下、更に好ましくは90モル%以下である。(EO/PO)共重合部中のPOの含有率は、後述のアルキレンオキサイド鎖を有するアミン化合物を製造する際の平均付加モル数から計算して求めることができる。 The PO content (mol%) in the (EO / PO) copolymer is preferably 1 mol% or more, more preferably 5 mol% or more, and is similar from the viewpoint of suppressing the decrease in viscosity even at high temperatures. From the viewpoint, it is preferably 100 mol% or less, more preferably 95 mol% or less, still more preferably 90 mol% or less. The content of PO in the (EO / PO) copolymer can be calculated from the average number of moles added when producing an amine compound having an alkylene oxide chain, which will be described later.
(d)更なる置換基
 なお、修飾基はさらに置換基を有するものであってもよい。置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基等の炭素数1~6のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基等のアルコキシ基の炭素数が1~6のアルコキシ-カルボニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;アセチル基、プロピオニル基等の炭素数1~6のアシル基;アラルキル基;アラルキルオキシ基;炭素数1~6のアルキルアミノ基;アルキル基の炭素数が1~6のジアルキルアミノ基;ヒドロキシ基が挙げられる。
(d) Further substituents The modifying group may further have a substituent. Examples of the substituent include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, an isopentyloxy group, a hexyloxy group and the like. An alkoxy group having 1 to 6 carbon atoms; a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group. An alkoxy-carbonyl group having 1 to 6 carbon atoms in an alkoxy group such as a group and an isopentyloxycarbonyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; and a carbon number 1 such as an acetyl group and a propionyl group. Examples thereof include an acyl group of up to 6; an aralkyl group; an aralkyloxy group; an alkylamino group having 1 to 6 carbon atoms; a dialkylamino group having 1 to 6 carbon atoms of the alkyl group; a hydroxy group.
〔改質セルロース繊維(1)の製造方法〕
 改質セルロース繊維(1)は、例えば、原料のセルロース繊維にアニオン性基を導入してアニオン変性セルロース繊維を製造し(工程1)、次いで、アニオン変性セルロース繊維のアニオン性基に修飾基を結合させること(工程2)によって、製造することができる。
[Manufacturing method of modified cellulose fiber (1)]
In the modified cellulose fiber (1), for example, an anionic group is introduced into the raw material cellulose fiber to produce an anion-modified cellulose fiber (step 1), and then a modifying group is bonded to the anionic group of the anion-modified cellulose fiber. It can be manufactured by making it (step 2).
(工程1)
原料のセルロース繊維
 アニオン変性セルロース繊維の原料であるセルロース繊維としては、環境面から天然セルロースが好ましく、例えば、針葉樹系パルプ、広葉樹系パルプ等の木材パルプ;コットンリンター、コットンリントのような綿系パルプ;麦わらパルプ、バガスパルプ等の非木材系パルプ;バクテリアセルロース等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
(Step 1)
Cellulose fiber as a raw material As the cellulosic fiber which is a raw material of anion-modified cellulose fiber, natural cellulose is preferable from the environmental point of view. For example, wood pulp such as coniferous pulp and broadleaf pulp; cotton pulp such as cotton linter and cotton lint. Non-wood pulp such as straw pulp and bagus pulp; bacterial cellulose and the like can be mentioned, and one of these can be used alone or in combination of two or more.
 原料のセルロース繊維の平均繊維径は特に限定されないが、取扱い性及びコストの観点から、好ましくは5μm以上、より好ましくは7μm以上であり、同様の観点から、好ましくは500μm以下、より好ましくは300μm以下である。原料のセルロース繊維の平均繊維径は後述の実施例に記載の方法で求められる。 The average fiber diameter of the raw material cellulose fiber is not particularly limited, but is preferably 5 μm or more, more preferably 7 μm or more from the viewpoint of handleability and cost, and preferably 500 μm or less, more preferably 300 μm or less from the same viewpoint. Is. The average fiber diameter of the raw material cellulose fiber is obtained by the method described in Examples described later.
 また、原料のセルロース繊維の平均繊維長は特に限定されないが、入手性及びコストの観点から、好ましくは5μm以上、より好ましくは25μm以上であり、同様の観点から、好ましくは5,000μm以下、より好ましくは3,000μm以下である。原料のセルロース繊維の平均繊維長は、後述の実施例に記載の方法に従って測定することができる。 The average fiber length of the raw material cellulose fiber is not particularly limited, but is preferably 5 μm or more, more preferably 25 μm or more, and preferably 5,000 μm or less, from the viewpoint of availability and cost. It is preferably 3,000 μm or less. The average fiber length of the raw material cellulose fiber can be measured according to the method described in Examples described later.
処理方法
(1)セルロース繊維にアニオン性基としてカルボキシ基を導入する場合
 セルロース繊維にカルボキシ基を導入する方法としては、例えばセルロース繊維のヒドロキシ基を酸化してカルボキシ基に変換する方法や、セルロース繊維のヒドロキシ基に、カルボキシ基を有する化合物、カルボキシ基を有する化合物の酸無水物及びそれらの誘導体からなる群から選ばれる少なくとも1種を反応させる方法が挙げられる。
Processing method
(1) When introducing a carboxy group as an anionic group into a cellulose fiber As a method for introducing a carboxy group into a cellulose fiber, for example, a method of oxidizing a hydroxy group of a cellulose fiber to convert it into a carboxy group, or a method of converting a hydroxy group of a cellulose fiber into a carboxy group. Examples of the group include a method of reacting at least one selected from the group consisting of a compound having a carboxy group, an acid anhydride of the compound having a carboxy group and a derivative thereof.
 セルロース繊維のヒドロキシ基を酸化処理する方法としては、例えば、特開2015-143336号公報又は特開2015-143337号公報に記載の、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル(TEMPO)を触媒として、次亜塩素酸ナトリウム等の酸化剤及び臭化ナトリウム等の臭化物を原料のセルロース繊維と反応させる方法が挙げられる。TEMPOを触媒としてセルロース繊維の酸化を行うことにより、セルロース繊維構成単位のグルコースのC6位の基が選択的にカルボキシ基に変換され、前述の酸化セルロース繊維を得ることができる。 As a method for oxidizing the hydroxy group of the cellulose fiber, for example, 2,2,6,6-tetramethyl-1-piperidin-N described in JP-A-2015-143336 or JP-A-2015-143337. -Examples include a method in which an oxidizing agent such as sodium hypochlorite and a bromide such as sodium bromide are reacted with the raw material cellulose fiber using oxyl (TEMPO) as a catalyst. By oxidizing the cellulose fiber using TEMPO as a catalyst, the group at the C6 position of glucose, which is a constituent unit of the cellulose fiber, is selectively converted into a carboxy group, and the above-mentioned oxidized cellulose fiber can be obtained.
 セルロース繊維へのカルボキシ基の導入に使用するための、カルボキシ基を有する化合物は特に限定されないが、具体的にはハロゲン化酢酸が挙げられる。ハロゲン化酢酸としては、クロロ酢酸等が挙げられる。 The compound having a carboxy group for use in introducing a carboxy group into a cellulose fiber is not particularly limited, and specific examples thereof include acetic acid halide. Examples of the halogenated acetic acid include chloroacetic acid and the like.
 セルロース繊維へのカルボキシ基の導入に使用するための、カルボキシ基を有する化合物の酸無水物及びそれらの誘導体は特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸及び無水アジピン酸等のジカルボン酸化合物の酸無水物やカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。これらの化合物は疎水基で置換されていてもよい。 The acid anhydrides of the compounds having a carboxy group and their derivatives for use in introducing the carboxy group into the cellulose fiber are not particularly limited, but are not particularly limited, such as maleic anhydride, succinic anhydride, phthalic anhydride and adipic acid anhydride. Examples thereof include an acid anhydride of a dicarboxylic acid compound, an imide product of an acid anhydride of a compound having a carboxy group, and a derivative of an acid anhydride of a compound having a carboxyl group. These compounds may be substituted with hydrophobic groups.
(2)セルロース繊維にアニオン性基としてスルホン酸基又は(亜)リン酸基を導入する場合
 セルロース繊維へスルホン酸基を導入する方法としては、セルロース繊維に硫酸を添加し加熱する方法等が挙げられる。
(2) When introducing a sulfonic acid group or a (sub) phosphoric acid group as an anionic group into a cellulose fiber As a method for introducing a sulfonic acid group into a cellulose fiber, a method of adding sulfuric acid to the cellulose fiber and heating it can be mentioned. Be done.
 セルロース繊維へ(亜)リン酸基を導入する方法としては、乾燥状態又は湿潤状態のセルロース繊維に、(亜)リン酸又は(亜)リン酸誘導体の粉末や水溶液を混合する方法や、セルロース繊維の分散液に(亜)リン酸又は(亜)リン酸誘導体の水溶液を添加する方法等が挙げられる。これらの方法を採用した場合、一般的に、(亜)リン酸又は(亜)リン酸誘導体の粉末や水溶液を混合または添加した後に、脱水処理及び加熱処理等を行う。 As a method for introducing a (sub) phosphoric acid group into a cellulose fiber, a method of mixing a powder or an aqueous solution of (sub) phosphoric acid or a (sub) phosphoric acid derivative with a dry or wet state cellulose fiber, or a method of mixing a cellulose fiber. Examples thereof include a method of adding an aqueous solution of (sub) phosphoric acid or a (sub) phosphoric acid derivative to the dispersion liquid of. When these methods are adopted, in general, dehydration treatment, heat treatment and the like are performed after mixing or adding powder or aqueous solution of (sub) phosphorous acid or (sub) phosphorous acid derivative.
(工程2)
 アニオン変性セルロース繊維のアニオン性基への修飾基の導入は、アニオン性基に修飾基を導入するための化合物(「修飾用化合物」と称する。)とアニオン変性セルロース繊維とを反応させることで達成される。修飾基を導入する方法としては、(1)イオン結合を介して導入する場合は特開2015-143336号公報を参考にすることができ、(2)アミド結合を介して導入する場合は特開2015-143337号公報を参考にすることができる。
 工程2の終了後、未反応の化合物等を除去するために、後処理を適宜行ってもよい。後処理の方法としては、例えば、ろ過、遠心分離、透析等を用いることができる。
(Step 2)
The introduction of the modifying group into the anionic group of the anionic modified cellulose fiber is achieved by reacting the compound for introducing the modifying group into the anionic group (referred to as "modifying compound") with the anionic modified cellulose fiber. Will be done. As a method for introducing a modifying group, (1) Japanese Patent Application Laid-Open No. 2015-143336 can be referred to when introducing via an ionic bond, and (2) when introducing via an amide bond, Japanese Patent Application Laid-Open No. 2015-143336 can be referred to. 2015-143337 can be referred to.
After the completion of step 2, post-treatment may be appropriately performed in order to remove unreacted compounds and the like. As the post-treatment method, for example, filtration, centrifugation, dialysis and the like can be used.
(1)イオン結合を介して導入する態様
 イオン結合を介して修飾基を導入する場合は、アニオン変性セルロース繊維と修飾用化合物を混合すればよく、これにより、アニオン変性セルロース繊維に含有されるアニオン性基と、修飾用化合物のアミノ基との間でイオン結合が形成される。
 具体的には、アニオン変性セルロース繊維として酸化セルロース繊維を使用し、修飾用化合物として前述の修飾基を有する第1級アミンを使用する場合、下式に示されるように、セルロース繊維を構成するグルコースのC6位のカルボキシ基に、イオン結合を介して、前述の修飾基を導入することができる(式中、Cはセルロース繊維を構成するグルコースの6位の炭素原子であり、Rは修飾基である。)。
(1) Mode of introduction via ionic bond When introducing a modifying group via an ionic bond, the anion-modified cellulose fiber and the modifying compound may be mixed, whereby the anion contained in the anion-modified cellulose fiber may be mixed. An ionic bond is formed between the sex group and the amino group of the modifying compound.
Specifically, when the oxidized cellulose fiber is used as the anion-modified cellulose fiber and the primary amine having the above-mentioned modifying group is used as the modifying compound, glucose constituting the cellulose fiber is as shown in the following formula. the C6 position carboxy group of, via ionic bonds, in can be introduced modifying group of the above (formula, C 6 is a carbon atom of 6 position of the glucose constituting the cellulose fibers, R represents a modifying group It is.).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
修飾用化合物
 本態様で用いられる修飾用化合物としては、所望の修飾基を導入可能なものであればよく、好ましくは、前述の炭化水素基、アルキレンオキサイド鎖、又はシリコーン鎖を有するアミン化合物、ホスホニウム化合物やグアニジノ基含有化合物等が挙げられる。
Modification Compound The modifying compound used in this embodiment may be any compound capable of introducing a desired modifying group, preferably an amine compound having the above-mentioned hydrocarbon group, alkylene oxide chain, or silicone chain, phosphonium. Examples thereof include compounds and compounds containing a guanidino group.
アミン化合物
 アミン化合物は、例えば、修飾基として前述の炭化水素基、前述のアルキレンオキサイド鎖、又は前述のシリコーン鎖を有するアミン化合物であり、かかる炭化水素基等がイオン結合を介してアニオン変性セルロース繊維に導入されて、改質セルロース繊維における修飾基となる。
Amine compound The amine compound is, for example, an amine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and the hydrocarbon group or the like is an anion-modified cellulose fiber via an ionic bond. Introduced into a modifying group in a modified cellulose fiber.
 アミン化合物としては、第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム化合物のいずれでもよい。第4級アンモニウム化合物の陰イオン成分としては、反応性の観点から、好ましくは、塩素イオンや臭素イオンなどのハロゲンイオン、硫酸水素イオン、過塩素酸イオン、テトラフルオロボレートイオン、ヘキサフルオロフォスフェイトイオン、トリフルオロメタンスルホン酸イオン、ヒドロキシイオンが挙げられる。 The amine compound may be any of a primary amine, a secondary amine, a tertiary amine and a quaternary ammonium compound. As the anion component of the quaternary ammonium compound, from the viewpoint of reactivity, halogen ions such as chlorine ion and bromine ion, hydrogen sulfate ion, perchlorate ion, tetrafluoroborate ion and hexafluorophosphate ion are preferable. , Trifluoromethanesulfonate ion, hydroxy ion and the like.
炭化水素基を有するアミン化合物
 炭化水素基を有するアミン化合物の具体例としては、第1~3級アミンとしては、例えば、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジブチルアミン、ヘキシルアミン、2-エチルヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、オクチルアミン、ジオクチルアミン、トリオクチルアミン、ドデシルアミン、ジドデシルアミン、ステアリルアミン、ジステアリルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、オレイルアミン、アニリン、オクタデシルアミン、ジメチルベヘニルアミン、ベンジルアミン、ナフチルアミン、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-(3-アミノプロピル)イミダゾール等が挙げられる。第4級アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド(TEAH)、テトラエチルアンモニウムクロライド、テトラプロピルアンモニウムヒドロキシド(TPAH)、テトラブチルアンモニウムヒドロキシド(TBAH)、テトラブチルアンモニウムクロライド、ラウリルトリメチルアンモニウムクロライド、ジラウリルジメチルクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライドが挙げられる。
Amine compounds having a hydrocarbon group Specific examples of amine compounds having a hydrocarbon group include ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, dibutylamine and hexyl as primary to tertiary amines. Amine, 2-ethylhexylamine, dihexylamine, trihexylamine, octylamine, dioctylamine, trioctylamine, dodecylamine, diddecylamine, stearylamine, distearylamine, monoethanolamine, diethanolamine, triethanolamine, oleylamine, Aniline, octadecylamine, dimethylbehenylamine, benzylamine, naphthylamine, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1 -(3-Aminopropyl) imidazole and the like can be mentioned. Examples of the quaternary ammonium compound include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetraethylammonium chloride, tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), and tetra. Examples thereof include butylammonium chloride, lauryltrimethylammonium chloride, dilauryldimethylchloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, and alkylbenzyldimethylammonium chloride.
 炭化水素基を有するアミン化合物は、市販品を用いるか、公知の方法に従って調製することができる。 The amine compound having a hydrocarbon group can be prepared by using a commercially available product or by a known method.
アルキレンオキサイド鎖を有するアミン化合物
 アミン化合物における、アルキレンオキサイド鎖と該アミン化合物の窒素原子とは、直接に又は連結基を介して結合していることが好ましい。連結基としては炭化水素基が好ましく、炭素数が好ましくは1以上6以下、より好ましくは1以上3以下のアルキレン基が挙げられる。かかるアルキレン基としては、例えば、エチレン基、プロピレン基が好ましい。
Amine compound having an alkylene oxide chain In an amine compound, the alkylene oxide chain and the nitrogen atom of the amine compound are preferably bonded directly or via a linking group. As the linking group, a hydrocarbon group is preferable, and an alkylene group having a carbon number of preferably 1 or more and 6 or less, more preferably 1 or more and 3 or less can be mentioned. As such an alkylene group, for example, an ethylene group and a propylene group are preferable.
 アルキレンオキサイド鎖を有するアミンとしては、例えば、下記式(i): Examples of the amine having an alkylene oxide chain include the following formula (i):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で示される化合物が挙げられる。式(i)中のR、a及びbは、前述のアルキレンオキサイド鎖の一例を示す式中のR、a及びbと同じである。 Examples thereof include the compounds indicated by. R 1, a and b in the formula (i) is the same as R 1, a and b in the formula of an example of the aforementioned alkylene oxide chain.
 アルキレンオキサイド鎖を有するアミン化合物は、公知の方法に従って調製することができる。例えば、プロピレングリコールアルキルエーテルにエチレンオキサイド、プロピレンオキサイドを所望量付加させた後、ヒドロキシ基末端をアミノ化すればよい。必要により、アルキルエーテルを酸で開裂することで末端を水素原子とすることができる。これらの製造方法は、特開平3-181448号を参照することができ、かかるアミン化合物の詳細は、例えば特許第6105139号に記載されている。 The amine compound having an alkylene oxide chain can be prepared according to a known method. For example, ethylene oxide and propylene oxide may be added in a desired amount to the propylene glycol alkyl ether, and then the hydroxy group terminal may be aminated. If necessary, the alkyl ether can be cleaved with an acid to form a hydrogen atom at the end. For these production methods, Japanese Patent Application Laid-Open No. 3-181448 can be referred to, and details of such amine compounds are described in, for example, Japanese Patent No. 6105139.
 アルキレンオキサイド鎖を有するアミン化合物は、例えば、市販品を好適に用いることができ、具体例としては、HUNTSMAN社製のJeffamine M-2070、Jeffamine M-2005、Jeffamine M-2095、Jeffamine M-1000、Jeffamine M-600、Surfoamine B200、Surfoamine L100、Surfoamine L200、Surfoamine L207、Surfoamine L300、Surfoamine B-100、XTJ-501、XTJ-506、XTJ-507、XTJ-508、M3000、Jeffamine ED-900、Jeffamine ED-2003、Jeffamine D-2000、Jeffamine D-4000、XTJ-510、Jeffamine T-3000、Jeffamine T-5000、XTJ-502、XTJ-509、XTJ-510等、及び日油株式会社製のSUNBRIGHT MEPA-10H、SUNBRIGHT MEPA-20H、SUNBRIGHT MEPA-50H、SUNBRIGHT MEPA-10T、SUNBRIGHT MEPA-12T、SUNBRIGHT MEPA-20T、SUNBRIGHT MEPA-30T、SUNBRIGHT MEPA-40T等が挙げられる。これらは、単独で又は2種以上を組み合わせてもよい。 As the amine compound having an alkylene oxide chain, for example, a commercially available product can be preferably used, and specific examples thereof include Jeffamine M-2070, Jeffamine M-2005, Jeffamine M-2095, and Jeffamine M-1000 manufactured by HUNTSMAN. Jeffamine M-600, Surfoamine B200, Surfoamine L100, Surfoamine L200, Surfoamine L207, Surfoamine L300, Surfoamine B-100, XTJ-501, XTJ-506, XTJ-507, XTJ-508, M3000, Jeffamine ED-900, Jeffamine ED -2003, Jeffamine D-2000, Jeffamine D-4000, XTJ-510, Jeffamine T-3000, Jeffamine T-5000, XTJ-502, XTJ-509, XTJ-510, etc., and SUNBRIGHT MEPA-manufactured by NOF CORPORATION. 10H, SUNBRIGHT MEPA-20H, SUNBRIGHT MEPA-50H, SUNBRIGHT MEPA-10T, SUNBRIGHT MEPA-12T, SUNBRIGHT MEPA-20T, SUNBRIGHT MEPA-30T, SUNBRIGHT MEPA-40T and the like. These may be used alone or in combination of two or more.
シリコーン鎖を有するアミン化合物
 かかるアミン化合物は、例えば、シリコーン鎖の骨格に、アミノ基がアルキレン基等を介して結合した構造を有するものが挙げられる。本明細書において、かかるアミン化合物を「アミノ変性シリコーン」と称する場合がある。アミノ変性シリコーンは、市販品を用いるか、公知の方法に従って調製することができる。アミノ変性シリコーンは1種のみを用いてもよいし、2種以上を用いてもよい。
Amine Compounds with Silicone Chains Examples of such amine compounds include those having a structure in which an amino group is bonded to the skeleton of a silicone chain via an alkylene group or the like. As used herein, such amine compounds may be referred to as "amino-modified silicones". The amino-modified silicone can be prepared by using a commercially available product or by a known method. Only one kind of amino-modified silicone may be used, or two or more kinds may be used.
 アミノ変性シリコーンとしては、性能の点から、モメンティブ・パフォーマンス・マテリアルズ社製のTSF4703(動粘度:1000、アミノ当量:1600)、TSF4708(動粘度:1000、アミノ当量:2800)、東レ・ダウコーニング・シリコーン(株)製のSS-3551(動粘度:1000、アミノ当量:1600)、SF8457C(動粘度:1200、アミノ当量:1800)、SF8417(動粘度:1200、アミノ当量:1700)、BY16-209(動粘度:500、アミノ当量:1800)、BY16-892(動粘度:1500、アミノ当量:2000)、BY16-898(動粘度:2000、アミノ当量:2900)、FZ-3760(動粘度:220、アミノ当量:1600)、信越化学工業(株)製のKF8002(動粘度:1100、アミノ当量:1700)、KF867(動粘度:1300、アミノ当量:1700)、KF-864(動粘度:1700、アミノ当量:3800)、BY16-213(動粘度:55、アミノ当量:2700)、BY16-853U(動粘度:14、アミノ当量:450)が好ましい。(  )内において、動粘度は25℃での測定値(単位:mm/s)を示し、アミノ当量の単位はg/molである。 As amino-modified silicones, from the viewpoint of performance, TSF4703 (kinematic viscosity: 1000, amino equivalent: 1600), TSF4708 (kinematic viscosity: 1000, amino equivalent: 2800), Toray Dow Corning manufactured by Momentive Performance Materials Co., Ltd. SS-3551 (Dynamic Viscosity: 1000, Amino Equivalent: 1600), SF8457C (Dynamic Viscosity: 1200, Amino Equivalent: 1800), SF8417 (Dynamic Viscosity: 1200, Amino Equivalent: 1700), BY16- 209 (Dynamic Viscosity: 500, Amino Equivalent: 1800), BY16-892 (Dynamic Viscosity: 1500, Amino Equivalent: 2000), BY16-898 (Dynamic Viscosity: 2000, Amino Equivalent: 2900), FZ-3760 (Dynamic Viscosity: 220, Amino Equivalent: 1600), KF8002 (Dynamic Viscosity: 1100, Amino Equivalent: 1700), KF867 (Dynamic Viscosity: 1300, Amino Equivalent: 1700), KF-864 (Dynamic Viscosity: 1700) manufactured by Shin-Etsu Chemical Industry Co., Ltd. , Amino equivalent: 3800), BY16-213 (kinematic viscosity: 55, amino equivalent: 2700), BY16-853U (kinematic viscosity: 14, amino equivalent: 450) are preferable. In (), the kinematic viscosity shows a measured value (unit: mm 2 / s) at 25 ° C., and the unit of amino equivalent is g / mol.
グアニジノ基含有化合物
 グアニジノ基含有化合物は、例えば、修飾基として前述の炭化水素基、前述のアルキレンオキサイド鎖、又は前述のシリコーン鎖を有するグアニジン化合物であり、かかる炭化水素基等がイオン結合を介してアニオン変性セルロース繊維に導入されて、改質セルロース繊維における修飾基となる。グアニジノ基含有化合物としては、ジフェニルグアニジン、ジトリルグアニジン、1,2,3-トリフェニルグアニジン、アミノグアニジン、アルギニンが挙げられる。
Guanidine group-containing compound The guanidine group-containing compound is, for example, a guanidine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and such a hydrocarbon group or the like is mediated by an ionic bond. It is introduced into anion-modified cellulose fibers and becomes a modifying group in modified cellulose fibers. Examples of the guanidine group-containing compound include diphenylguanidine, ditrilguanidine, 1,2,3-triphenylguanidine, aminoguanidine, and arginine.
反応条件等
 修飾用化合物の使用量は、反応性の観点から、酸化セルロース繊維が有するカルボキシ基1molに対して、修飾用化合物におけるアミノ基が、好ましくは0.01mol以上となる量、より好ましくは0.1mol以上となる量、更に好ましくは0.5mol以上となる量、更に好ましくは0.7mol以上となる量、更に好ましくは1mol以上となる量であり、製品純度の観点から、好ましくは50mol以下となる量、より好ましくは20mol以下となる量、更に好ましくは10mol以下となる量である。修飾用化合物がアミノ基を複数個有する場合、アミノ基のモル数の合計が、上記モル数となるように使用する。
Reaction conditions, etc. From the viewpoint of reactivity, the amount of the modifying compound used is preferably such that the amino group in the modifying compound is 0.01 mol or more, more preferably 0.01 mol or more, with respect to 1 mol of the carboxy group of the oxidized cellulose fiber. The amount is 0.1 mol or more, more preferably 0.5 mol or more, further preferably 0.7 mol or more, still more preferably 1 mol or more, and preferably 50 mol from the viewpoint of product purity. The amount is as follows, more preferably 20 mol or less, still more preferably 10 mol or less. When the modifying compound has a plurality of amino groups, it is used so that the total number of moles of the amino groups is the above-mentioned number of moles.
 混合に際しては溶媒を用いることが好ましい。溶媒としては、用いる化合物が溶解する溶媒を選択することが好ましく、例えば、メタノール、エタノール、イソプロパノール(IPA)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N,N-ジメチルアセトアミド、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、酢酸エチル、アセトニトリル、ジクロロメタン、クロロホルム、トルエン、酢酸、1-メトキシ-2-プロパノール(PGME)、水等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。 It is preferable to use a solvent for mixing. As the solvent, it is preferable to select a solvent in which the compound to be used is dissolved, and for example, methanol, ethanol, isopropanol (IPA), N, N-dimethylformamide (DMF), dimethylsulfonate (DMSO), N, N-dimethylacetamide. , Tetrahydrofuran (THF), acetone, methylethylketone (MEK), cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, chloroform, toluene, acetic acid, 1-methoxy-2-propanol (PGME), water and the like. It can be used alone or in combination of two or more.
 混合時の温度は、化合物の反応性の観点から、好ましくは0℃以上、より好ましくは5℃以上、更に好ましくは10℃以上である。また、改質セルロース繊維の着色抑制の観点から、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは30℃以下である。混合時間は、用いる化合物及び溶媒の種類に応じて適宜設定することができるが、化合物の反応性の観点から、好ましくは0.01時間以上、より好ましくは0.1時間以上であり、生産性の観点から、好ましくは48時間以下、より好ましくは24時間以下である。 The temperature at the time of mixing is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, from the viewpoint of compound reactivity. Further, from the viewpoint of suppressing coloration of the modified cellulose fiber, the temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 30 ° C. or lower. The mixing time can be appropriately set depending on the type of the compound and the solvent used, but from the viewpoint of the reactivity of the compound, it is preferably 0.01 hours or more, more preferably 0.1 hours or more, and the productivity. From the viewpoint of the above, it is preferably 48 hours or less, more preferably 24 hours or less.
(2)アミド結合を介して導入する態様
 アミド結合を介して修飾基を導入する場合は、公知の縮合剤の存在下で、アニオン変性セルロース繊維と修飾用化合物の混合を行えばよく、これにより、アニオン変性セルロース繊維に含有されるアニオン性基と、修飾用化合物のアミノ基との間でアミド結合が形成される。
(2) Mode of introduction via amide bond When introducing a modifying group via an amide bond, the anion-modified cellulose fiber and the modifying compound may be mixed in the presence of a known condensing agent, whereby the modifying compound may be mixed. , An amide bond is formed between the anionic group contained in the anion-modified cellulose fiber and the amino group of the modifying compound.
 具体的には、アニオン変性セルロース繊維として酸化セルロース繊維を使用し、修飾用化合物として、前述の修飾基を有する第1級アミンを使用する場合、下式に示されるように、セルロース繊維を構成するグルコースのC6位のカルボキシ基に、アミド結合を介して、前述の修飾基を導入することができる(式中、Cはセルロース繊維を構成するグルコースの6位の炭素原子であり、Rは修飾基である。)。 Specifically, when the oxidized cellulose fiber is used as the anion-modified cellulose fiber and the primary amine having the above-mentioned modifying group is used as the modifying compound, the cellulose fiber is constituted as shown in the following formula. the C6 position carboxy group of glucose, via an amide bond, in can be introduced modifying group of the above (formula, C 6 is a carbon atom of 6 position of the glucose constituting the cellulose fibers, R represents modified It is the basis.).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
修飾用化合物
 本態様で用いられる修飾用化合物としては、所望の修飾基を導入可能なものであればよく、好ましくは、前述の炭化水素基、アルキレンオキサイド鎖、又はシリコーン鎖を有するアミン化合物が挙げられる。
Modification Compound The modifying compound used in this embodiment may be any compound capable of introducing a desired modifying group, and preferably includes the above-mentioned amine compounds having a hydrocarbon group, an alkylene oxide chain, or a silicone chain. Be done.
アミン化合物
 アミン化合物は、例えば、修飾基として前述の炭化水素基、前述のアルキレンオキサイド鎖、又は前述のシリコーン鎖を有するアミン化合物であり、かかる炭化水素基等がアミド結合を介してアニオン変性セルロース繊維に導入されて、改質セルロース繊維における修飾基となる。
Amine compound The amine compound is, for example, an amine compound having the above-mentioned hydrocarbon group, the above-mentioned alkylene oxide chain, or the above-mentioned silicone chain as a modifying group, and the hydrocarbon group or the like is an anion-modified cellulose fiber via an amide bond. Introduced into, it becomes a modifying group in modified cellulose fibers.
 アミン化合物としては、第1級アミン及び第2級アミンが挙げられる。アミン化合物の具体例としては、前述の「(1)イオン結合を介して導入する態様」に例示された、炭化水素基を有するアミン化合物、アルキレンオキサイド鎖を有するアミン化合物及びシリコーン鎖を有するアミン化合物のうちの第1級アミン及び第2級アミンが挙げられる。 Examples of the amine compound include primary amines and secondary amines. Specific examples of the amine compound include an amine compound having a hydrocarbon group, an amine compound having an alkylene oxide chain, and an amine compound having a silicone chain, which are exemplified in the above-mentioned "(1) Aspects of introduction via an ion bond". Of these, primary amines and secondary amines are mentioned.
反応条件
 修飾用化合物の使用量は、反応性の観点から、酸化セルロース繊維が有するカルボキシ基1molに対して、修飾用化合物におけるアミノ基が、好ましくは0.05mol以上、より好ましくは0.1mol以上、更に好ましくは0.2mol以上、更に好ましくは0.3mol以上、更に好ましくは0.5mol以上となる量であり、製品純度の観点から、好ましくは50mol以下となる量、より好ましくは20mol以下となる量、更に好ましくは10mol以下となる量である。修飾用化合物がアミノ基を複数個有する場合、アミノ基のモル数の合計が、上記モル数となるように使用する。
Reaction conditions From the viewpoint of reactivity, the amount of the modifying compound used is such that the amino group in the modifying compound is preferably 0.05 mol or more, more preferably 0.1 mol or more, with respect to 1 mol of the carboxy group of the oxidized cellulose fiber. The amount is more preferably 0.2 mol or more, further preferably 0.3 mol or more, still more preferably 0.5 mol or more, and from the viewpoint of product purity, preferably 50 mol or less, more preferably 20 mol or less. The amount is, more preferably 10 mol or less. When the modifying compound has a plurality of amino groups, it is used so that the total number of moles of the amino groups is the above-mentioned number of moles.
 縮合剤としては、特には限定されないが、合成化学シリーズ ペプチド合成(丸善社)P116記載、又はTetrahedron, 57, 1551 (2001)記載の縮合剤などが挙げられ、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロライド(以下、「DMT-MM」と称する場合がある。)等が挙げられる。また、縮合剤を使用せずに加熱処理だけで反応を行うことも可能である。 The condensing agent is not particularly limited, and examples thereof include the condensing agent described in Synthetic Chemistry Series Peptide Synthesis (Maruzen Co., Ltd.) P116 or Tetrahedron, 57, 1551 (2001), and examples thereof include 4- (4,6-). Examples thereof include dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (hereinafter, may be referred to as "DMT-MM") and the like. It is also possible to carry out the reaction only by heat treatment without using a condensing agent.
 アミド化反応においては溶媒は使用してもしなくても良い。溶媒を使用する場合は、用いる化合物が溶解する溶媒を選択することが好ましく、溶媒の具体例としては、前述の「(1)イオン結合を介して導入する態様」で例示した溶媒が挙げられる。 The solvent may or may not be used in the amidation reaction. When a solvent is used, it is preferable to select a solvent in which the compound to be used dissolves, and specific examples of the solvent include the solvent exemplified in the above-mentioned "(1) Aspects of introduction via an ionic bond".
 アミド化反応における反応時間及び反応温度は、用いる化合物及び溶媒の種類等に応じて適宜選択することができるが、反応率の観点から、好ましくは1~24時間、より好ましくは10~20時間である。また、反応温度は、反応性の観点から、好ましくは0℃以上、より好ましくは5℃以上、更に好ましくは10℃以上である。また、着色等の製品品質の観点から、好ましくは200℃以下、より好ましくは80℃以下、更に好ましくは30℃以下である。 The reaction time and reaction temperature in the amidation reaction can be appropriately selected depending on the type of compound and solvent used, but are preferably 1 to 24 hours, more preferably 10 to 20 hours from the viewpoint of the reaction rate. be. The reaction temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, from the viewpoint of reactivity. Further, from the viewpoint of product quality such as coloring, it is preferably 200 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 30 ° C. or lower.
(微細化工程)
 改質セルロース繊維の製造方法のいずれかの段階(例えば、工程1の前、工程2の前及び工程2の後)においてセルロース繊維を微細化することにより、マイクロメータースケールのセルロース繊維をナノメータースケールに微細化することができる。平均繊維径をナノメートルサイズにまで小さくすることによって、樹脂中での分散性が向上するため、好ましい。
(Miniaturization process)
By refining the cellulose fibers at any stage of the method for producing the modified cellulose fibers (for example, before step 1, before step 2 and after step 2), the cellulose fibers on the micrometer scale can be made into nanometer scale. Can be made finer. It is preferable to reduce the average fiber diameter to the nanometer size because the dispersibility in the resin is improved.
 微細化処理は公知の微細化処理方法を採用することができる。例えば、平均繊維径がナノメートルサイズの改質セルロース繊維を得る場合は、マスコロイダー等の磨砕機を用いた処理方法や、媒体中で高圧ホモジナイザー等を用いた処理方法を実施すればよい。 A known miniaturization treatment method can be adopted for the miniaturization treatment. For example, in the case of obtaining a modified cellulose fiber having an average fiber diameter of nanometer size, a treatment method using a grinder such as a mass colloider or a treatment method using a high-pressure homogenizer or the like in a medium may be carried out.
 媒体としては、例えば水、メタノール、エタノール、プロパノール、1-メトキシ-2-プロパノール(PGME)等の炭素数1~6、好ましくは炭素数1~4のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン等の炭素数3~6のケトン;酢酸エチル、酢酸ブチル等の炭素数2~4のケトン;炭素数1~6の飽和炭化水素又は不飽和炭化水素;ベンゼン、トルエン等の芳香族炭化水素;塩化メチレン、クロロホルム等のハロゲン化炭化水素;炭素数2~5の低級アルキルエーテル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の極性溶媒等が例示される。これらは、単独で又は2種以上を混合して用いることができる。媒体の使用量は、改質セルロース繊維を分散できる有効量であればよく、改質セルロース繊維に対して、好ましくは1質量倍以上、より好ましくは2質量倍以上、好ましくは500質量倍以下、より好ましくは200質量倍以下使用することがより好ましい。 Examples of the medium include water, methanol, ethanol, propanol, 1-methoxy-2-propanol (PGME) and other alcohols having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like. Ketones with 3 to 6 carbon atoms; Ketones with 2 to 4 carbon atoms such as ethyl acetate and butyl acetate; Saturated or unsaturated hydrocarbons with 1 to 6 carbon atoms; Aromatic hydrocarbons such as benzene and toluene; Methylene chloride , Hydrocarbons such as chloroform; lower alkyl ethers having 2 to 5 carbon atoms; polar solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, dimethylsulfoxide and the like are exemplified. These can be used alone or in admixture of two or more. The amount of the medium used may be an effective amount capable of dispersing the modified cellulose fiber, and is preferably 1 mass times or more, more preferably 2 mass times or more, preferably 500 mass times or less, based on the modified cellulose fiber. It is more preferable to use 200% by mass or less.
 微細化処理で使用する装置としては、高圧ホモジナイザー以外にも、公知の分散機が好適に使用される。例えば、離解機、叩解機、低圧ホモジナイザー、グラインダー、マスコロイダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波撹拌機、家庭用ジューサーミキサー等を用いることができる。また、微細化処理における改質セルロース繊維の固形分含有量は50質量%以下が好ましい。 As a device used in the miniaturization process, a known disperser is preferably used in addition to the high-pressure homogenizer. For example, a breaker, a beater, a low-pressure homogenizer, a grinder, a mascot, a cutter mill, a ball mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic stirrer, a household juicer mixer and the like can be used. The solid content of the modified cellulose fiber in the miniaturization treatment is preferably 50% by mass or less.
(短繊維化処理)
 改質セルロース繊維(1)の製造方法のいずれかの段階において、セルロース繊維の短繊維化処理、即ち、繊維長を短くする処理が更に実施されてもよい。短繊維化処理は、対象のセルロース繊維をアルカリ処理、酸処理、熱処理、紫外線処理、電子線処理、機械処理及び酵素処理からなる群より選択される1種以上の処理方法を実施することによって達成され得る。
(Shortened fiber treatment)
At any stage of the method for producing the modified cellulose fiber (1), a treatment for shortening the cellulose fiber, that is, a treatment for shortening the fiber length may be further carried out. The shortening fiber treatment is achieved by carrying out one or more treatment methods selected from the group consisting of alkali treatment, acid treatment, heat treatment, ultraviolet treatment, electron beam treatment, mechanical treatment and enzyme treatment on the target cellulose fiber. Can be done.
・改質セルロース繊維(2)
 改質セルロース繊維(2)は所定の平均繊維径を有する酸型のアニオン変性セルロース繊維である。酸型のアニオン変性セルロース繊維とは、改質セルロース繊維(1)の説明中の「アニオン変性セルロース繊維」において、アニオン性基のカウンターイオンがプロトンであるものであり、好ましくは、酸化セルロース繊維であって、カルボキシ基のカウンターイオンがプロトンであるものである。
-Modified cellulose fiber (2)
The modified cellulose fiber (2) is an acid-type anion-modified cellulose fiber having a predetermined average fiber diameter. The acid-type anion-modified cellulose fiber is the "anion-modified cellulose fiber" described in the modified cellulose fiber (1) in which the counter ion of the anionic group is a proton, and is preferably an oxidized cellulose fiber. Therefore, the counter ion of the carboxy group is a proton.
 改質セルロース繊維(2)におけるアニオン性基含有量の好ましい範囲は、改質セルロース繊維(1)の説明中の「アニオン変性セルロース繊維」におけるそれと同じである。
 改質セルロース繊維(2)は、「改質セルロース繊維(1)の製造方法」における工程1、次いで、上記の「微細化工程」を経ることによって製造することができる。
 改質セルロース繊維(2)の製造方法のいずれかの段階において、セルロース繊維の短繊維化処理が行われてもよい。
The preferred range of the anionic group content in the modified cellulose fiber (2) is the same as that in the "anionic modified cellulose fiber" in the description of the modified cellulose fiber (1).
The modified cellulose fiber (2) can be produced by going through step 1 in the "method for producing the modified cellulose fiber (1)" and then the above-mentioned "miniaturization step".
At any stage of the method for producing the modified cellulose fiber (2), the cellulose fiber may be shortened.
〔改質セルロース繊維の性質〕
 本発明における改質セルロース繊維の主な性質は以下の通りである。
[Properties of modified cellulose fiber]
The main properties of the modified cellulose fiber in the present invention are as follows.
(平均繊維径、平均繊維長)
 改質セルロース繊維は、ナノメートルサイズになるように微細化処理を受けたものが好ましい。この場合の改質セルロース繊維の平均繊維径は、取扱い性、入手性、コスト、及び高温においても粘度の低下を抑制する観点から、好ましくは1nm以上、より好ましくは2nm以上であり、取扱い性及び溶媒分散性の観点から、好ましくは300nm以下、より好ましくは200nm以下、更に好ましくは150nm以下、更に好ましくは120nm以下である。微細化処理を受けた改質セルロース繊維の平均繊維径は後述の実施例に記載の方法によって求められる。
(Average fiber diameter, average fiber length)
The modified cellulose fiber is preferably one that has been subjected to a miniaturization treatment so as to have a nanometer size. The average fiber diameter of the modified cellulose fiber in this case is preferably 1 nm or more, more preferably 2 nm or more, and is easy to handle and is easy to obtain, cost, and suppresses a decrease in viscosity even at high temperatures. From the viewpoint of solvent dispersibility, it is preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm or less, still more preferably 120 nm or less. The average fiber diameter of the modified cellulose fiber that has undergone the micronization treatment is determined by the method described in Examples described later.
 改質セルロース繊維の平均繊維長は、取扱い性、入手性、コスト、及び高温においても粘度の低下を抑制する観点から、好ましくは100nm以上、より好ましくは200nm以上であり、取扱い性及び80℃/25℃の粘度比を1に近づける観点から、好ましくは10000nm以下、更に好ましくは5000nm以下である。改質セルロース繊維の平均繊維長は後述の実施例に記載の方法によって求められる。 The average fiber length of the modified cellulose fiber is preferably 100 nm or more, more preferably 200 nm or more, and the handleability and 80 ° C./ From the viewpoint of bringing the viscosity ratio at 25 ° C. closer to 1, it is preferably 10,000 nm or less, more preferably 5000 nm or less. The average fiber length of the modified cellulose fiber is determined by the method described in Examples described later.
(平均アスペクト比)
 本発明においては、改質セルロース繊維は短繊維化処理されたものであってもよい。改質セルロース繊維の平均アスペクト比としては、特に限定されないが、増粘剤としての効果発現の観点から、好ましくは5以上、より好ましくは10以上、更に好ましくは20以上であり、一方、入手性およびハンドリング性の観点から、好ましくは300以下、より好ましくは200以下、更に好ましくは100以下である。改質セルロース繊維の平均アスペクト比は、後述の実施例に記載の方法によって求められる。
 平均アスペクト比の小さい改質セルロース繊維を用いることで、80℃/25℃の粘度比を1に近づけることができ、ハンドリング性を高めることができる。
(Average aspect ratio)
In the present invention, the modified cellulose fiber may be a short fiber-treated one. The average aspect ratio of the modified cellulose fiber is not particularly limited, but is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more, while availability, from the viewpoint of exhibiting the effect as a thickener. And from the viewpoint of handleability, it is preferably 300 or less, more preferably 200 or less, still more preferably 100 or less. The average aspect ratio of the modified cellulose fiber is determined by the method described in Examples described later.
By using the modified cellulose fiber having a small average aspect ratio, the viscosity ratio of 80 ° C./25 ° C. can be brought close to 1, and the handleability can be improved.
(修飾基の結合量及び導入率)
 改質セルロース繊維における修飾基の結合量は、分散性及び高温においても粘度の低下を抑制する観点から、好ましくは0.01mmol/g以上、より好ましくは0.1mmol/g以上であり、同様の観点から、好ましくは3.0mmol/g以下、より好ましくは2.5mmol/g以下である。修飾基として任意の2種以上の修飾基が同時に改質セルロース繊維に導入されている場合、修飾基の結合量は、前記範囲内であることが好ましい。
(Amount of binding of modifying group and introduction rate)
The amount of the modifying group bonded to the modified cellulose fiber is preferably 0.01 mmol / g or more, more preferably 0.1 mmol / g or more, and is similar from the viewpoint of suppressing the decrease in viscosity even at high temperature and dispersibility. From the viewpoint, it is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less. When any two or more kinds of modifying groups are simultaneously introduced into the modified cellulose fiber as modifying groups, the amount of the modifying group bonded is preferably within the above range.
 改質セルロース繊維における修飾基の導入率は、分散性及び高温においても粘度の低下を抑制する観点から、好ましくは10mol%以上であり、高ければ高いほど好ましく、好ましくは100mol%である。修飾基として任意の2種以上の修飾基が同時に導入されている場合には、導入率の合計が上限の100mol%を超えない範囲において、前記範囲内となることが好ましい。 The introduction rate of the modifying group in the modified cellulose fiber is preferably 10 mol% or more, preferably higher, preferably 100 mol%, from the viewpoint of dispersibility and suppressing the decrease in viscosity even at high temperature. When any two or more kinds of modifying groups are introduced at the same time as the modifying group, it is preferable that the total introduction rate is within the above range within the range not exceeding the upper limit of 100 mol%.
 修飾基の結合量及び導入率は、修飾用化合物の種類や添加量、反応温度、反応時間、溶媒の種類等によって調整することができる。修飾基の結合量(mmol/g)及び導入率(mol%)とは、改質セルロース繊維において、アニオン性基に修飾基が導入された(結合した)量及び割合のことである。改質セルロース繊維における修飾基の結合量及び導入率は、例えば、アニオン性基がカルボキシ基の場合には、後述の実施例に記載の方法で算出される。 The binding amount and introduction rate of the modifying group can be adjusted according to the type and addition amount of the modifying compound, reaction temperature, reaction time, type of solvent and the like. The binding amount (mmol / g) and introduction rate (mol%) of the modifying group are the amount and ratio of the modifying group introduced (bonded) to the anionic group in the modified cellulose fiber. The binding amount and introduction rate of the modifying group in the modified cellulose fiber are calculated by the method described in Examples described later, for example, when the anionic group is a carboxy group.
(結晶構造)
 改質セルロース繊維は高温においても粘度の低下を抑制する観点から、セルロースI型結晶構造を有することが好ましく、改質セルロース繊維の結晶化度は、樹脂組成物の成形体の強度発現の観点から、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上である。また、原料入手性の観点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、更に好ましくは75%以下である。なお、本明細書において、セルロース繊維の結晶化度は、X線回折法による回折強度値から算出したセルロースI型結晶化度であり、後述の実施例に記載の方法に従って測定することができる。なお、セルロースI型とは天然セルロースの結晶形のことであり、セルロースI型結晶化度とは、セルロース繊維全体のうち結晶領域量の占める割合のことを意味する。セルロースI型結晶構造の有無は、X線回折測定において、2θ=22.6°にピークがあることで判定することができる。
(Crystal structure)
The modified cellulose fiber preferably has a cellulose I-type crystal structure from the viewpoint of suppressing a decrease in viscosity even at a high temperature, and the crystallinity of the modified cellulose fiber is determined from the viewpoint of developing the strength of the molded product of the resin composition. It is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more. Further, from the viewpoint of raw material availability, it is preferably 90% or less, more preferably 85% or less, still more preferably 80% or less, still more preferably 75% or less. In the present specification, the crystallinity of the cellulose fiber is the cellulose I-type crystallinity calculated from the diffraction intensity value by the X-ray diffraction method, and can be measured according to the method described in Examples described later. The cellulose type I is the crystal form of natural cellulose, and the cellulose type I crystallization degree means the ratio of the amount of the crystal region to the whole cellulose fiber. The presence or absence of the cellulose I-type crystal structure can be determined by the peak at 2θ = 22.6 ° in the X-ray diffraction measurement.
 本発明の組成物における改質セルロース繊維の含有量は、(修飾基等を含まない)セルロース換算で、組成物に増粘性を付与し、高温においても粘度の低下を抑制する観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、一方、組成物のハンドリングの観点から、好ましくは50質量%以下、より好ましくは30質量%以下、より好ましくは20質量%以下、より好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。以下、改質セルロース繊維の量は、修飾基を含まないセルロース換算値である。 The content of the modified cellulose fiber in the composition of the present invention is preferably in terms of cellulose (not including modifying groups) from the viewpoint of imparting viscosity to the composition and suppressing a decrease in viscosity even at high temperatures. It is 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, and on the other hand, from the viewpoint of handling the composition, it is preferably 50% by mass or less, more preferably 30% by mass or more. It is mass% or less, more preferably 20% by mass or less, more preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less. Hereinafter, the amount of the modified cellulose fiber is a cellulose equivalent value containing no modifying group.
〔非水系溶媒〕
 非水系溶媒は、本発明の増粘剤組成物を50℃以上で使用する観点から、融点が、好ましくは100℃以下、より好ましくは50℃以下であり、さらに好ましくは20℃以下であり、同様の観点から、沸点が、好ましくは80℃以上、より好ましくは100℃以上である。非水系溶媒は、使用する温度で液体であることが好ましい。
[Non-aqueous solvent]
The non-aqueous solvent has a melting point of preferably 100 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 20 ° C. or lower, from the viewpoint of using the thickener composition of the present invention at 50 ° C. or higher. From the same viewpoint, the boiling point is preferably 80 ° C. or higher, more preferably 100 ° C. or higher. The non-aqueous solvent is preferably liquid at the temperature at which it is used.
 非水系溶媒は、無機化合物と共に用いる等の作業性の観点から、疎水性溶媒であることが好ましい。疎水性溶媒は、水100gの溶解量(20℃、1気圧)が、好ましくは100g以下、より好ましくは50g以下、更に好ましくは30g以下、より更に好ましくは10g以下である。 The non-aqueous solvent is preferably a hydrophobic solvent from the viewpoint of workability such as being used together with an inorganic compound. The hydrophobic solvent has a dissolved amount (20 ° C., 1 atm) of 100 g of water, preferably 100 g or less, more preferably 50 g or less, still more preferably 30 g or less, still more preferably 10 g or less.
 具体的には、メタノール、ノルマル及びイソプロパノール、t-ブタノール、1-ブタノール、1-ヘキサノール、ヘキサナール、グリセリン等のアルコール系溶媒;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、メチルへキシルケトン、ジイソブチルケトン、ジアセトンアルコール、イソホロン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、多価カルボン酸エステル(例えば、フタル酸エステル、コハク酸エステル、アジピン酸エステル等)、グリセリン等脂肪族ポリオールの脂肪酸エステル等のエステル系溶媒;N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、エチレンカーボネート、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン等の高極性溶媒;塩化メチレン、ジクロロメタン、クロロホルム、トリクロロエチレン、パークロロエチレン、クロルベンゼン等のハロゲン系溶媒;ヘキサン、石油エーテル、流動パラフィン、スクアラン、スクアレン等の非芳香族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトニトリル等のニトリル系溶媒;t-ブチルグリコール、メチルジグリコール、エチルジグリコール、ブチルジグリコール、1-メトキシ-2-プロパノール、メチルジプロピレングリコール、3-メトキシブタノール、3-メチル-3-メトキシブタノール、(モノ、ジ、トリ、ポリ)エチレングリコールメチルエーテル、エチレングリコールモノフェニルエーテル、(モノ、ジ、トリ、ポリ)エチレングリコールジメチル(エチル)エーテル、(モノ、ジ、トリ、ポリ)エチレングリコールモノブチルエーテル、ポリエチレングリコール、メトキシポリエチレングリコール、ポリオキシエチレンビスフェノールA、ポリオキシプロピレンビスフェノールA等のグリコールエーテル系溶媒(グリコールエーテル系溶媒は、以下のグリコールエーテル(エステル)系溶媒を含む:ブチルセロソルブアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、メトキシブチルアセテート、メチルメトキシブチルアセテート、エチル-3-エトキシプロピオネート、プロピレングリコールモノメチルエーテルプロピオネート、ジメチルカーボネートのグリコールエーテルエステル系溶媒);重合性化合物、例えば、[エポキシプレポリマー(例えば、ビスフェノール型、ノボラック型、ビフェニル型、ビフェニルアラルキル型、アリールアルキレン型、テトラフェニロールエタン型、ナフタレン型、アントラセン型、フェノキシ型、ジシクロペンタジエン型、ノルボルネン型、アダマンタン型、フルオレン型、グリシジルメタアクリレート共重合系等);イソシアネート(例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系やヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族系等);アクリルプレポリマー(例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸n-へキシル、メタクリル酸n-へキシル、アクリル酸2-エチルヘキシル、メタアクリル酸2-エチルヘキシル、ノナンジオールジアクリレート、フェノキシエチルアクリレート、ビスフェノールA-アルキレンオキサイド付加体の(メタ)アクリレート、エポキシ(メタ)アクリレート(ビスフェノールA型エポキシ(メタ)アクリレート、ノボラック型エポキシ(メタ)アクリレートなど);ポリエステル(メタ)アクリレート(例えば、脂肪族ポリエステル型(メタ)アクリレート、芳香族ポリエステル型(メタ)アクリレートなど);ウレタン(メタ)アクリレート(ポリエステル型ウレタン(メタ)アクリレート、ポリエーテル型ウレタン(メタ)アクリレートなど);シリコーン(メタ)アクリレート、シアノアクリレートのモノ(メタ)アクリレート等]およびこれら重合性化合物のオリゴマー等;オレイン酸、パルミチン酸、ステアリン酸等の脂肪酸;オリーブ油、ホホバ油、ひまし油などの動・植物油;シリコーンオイル、フッ素系不活性液体、プロセスオイル等が挙げられる。本明細書において、非芳香族炭化水素系溶媒及び芳香族炭化水素系溶媒を総称して炭化水素系溶媒という。 Specifically, alcohol-based solvents such as methanol, normal and isopropanol, t-butanol, 1-butanol, 1-hexanol, hexanal, and glycerin; to acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone, and methyl. Ketone solvents such as xylketone, diisobutylketone, diacetone alcohol, isophorone; ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane; methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, polyvalent carboxylic acid esters (eg) , Phtalic acid ester, succinic acid ester, adipic acid ester, etc.), ester solvent such as fatty acid ester of aliphatic polyol such as glycerin; N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethylene carbonate, N, Highly polar solvents such as N-dimethylacetamide (DMAc) and N-methylpyrrolidone; halogen-based solvents such as methylene chloride, dichloromethane, chloroform, trichloroethylene, perchloroethylene and chlorbenzene; hexane, petroleum ether, liquid paraffin, squalane, squalane Non-aromatic hydrocarbon solvents such as; aromatic hydrocarbon solvents such as benzene, toluene, xylene; nitrile solvents such as acetonitrile; t-butyl glycol, methyl diglycol, ethyl diglycol, butyl diglycol, 1- Methoxy-2-propanol, methyldipropylene glycol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, (mono, di, tri, poly) ethylene glycol methyl ether, ethylene glycol monophenyl ether, (mono, di, poly) Glycol ether solvent such as tri, poly) ethylene glycol dimethyl (ethyl) ether, (mono, di, tri, poly) ethylene glycol monobutyl ether, polyethylene glycol, methoxypolyethylene glycol, polyoxyethylene bisphenol A, polyoxypropylene bisphenol A, etc. (Glycol ether solvent includes the following glycol ether (ester) solvents: butyl cellosolve acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, methoxy butyl acetate, methyl methoxy butyl acetate, ethyl-3. -Ethoxypropionate, propire Nglycol monomethyl ether propionate, glycol ether ester-based solvent of dimethyl carbonate); polymerizable compounds, for example, [epoxy prepolymer (eg, bisphenol type, novolak type, biphenyl type, biphenyl aralkyl type, arylalkylene type, tetrapheni). Roll ethane type, naphthalene type, anthracene type, phenoxy type, dicyclopentadiene type, norbornen type, adamantan type, fluorene type, glycidyl methacrylate copolymer type, etc.); Acrylate prepolymers (eg, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid, etc.); or aliphatic systems such as hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, tetramethylxylylene diisocyanate, etc. Butyl, butyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylic acid, nonanediol diacrylate, phenoxyethyl acrylate, bisphenol A-alkylene oxide adduct (Meta) acrylates, epoxy (meth) acrylates (bisphenol A type epoxy (meth) acrylates, novolak type epoxy (meth) acrylates, etc.); polyester (meth) acrylates (eg, aliphatic polyester type (meth) acrylates, aromatic polyesters) Type (meth) acrylate, etc.); Urethane (meth) acrylate (polyester type urethane (meth) acrylate, polyether type urethane (meth) acrylate, etc.); Silicone (meth) acrylate, cyanoacrylate mono (meth) acrylate, etc.] and Oligomers of these polymerizable compounds; fatty acids such as oleic acid, palmitic acid, and stearic acid; animal and vegetable oils such as olive oil, jojoba oil, and castor oil; silicone oils, fluorine-based inert liquids, process oils, and the like. In the present specification, the non-aromatic hydrocarbon solvent and the aromatic hydrocarbon solvent are collectively referred to as a hydrocarbon solvent.
 非水系溶媒としては、炭化水素系溶媒又はグリコールエーテル系溶媒を含有することが好ましいが、これらの中では、前記修飾基が、(a)炭化水素基、及び(b)シリコーン鎖の場合、炭化水素系溶媒、シリコーンオイル又はグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)が好ましく、(c)アルキレンオキサイド鎖の場合、炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、グリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)、脂肪酸、動・植物油、シリコーンオイル、フッ素系不活性液体、プロセスオイル等が好ましく、(c)アルキレンオキサイド鎖の場合、炭化水素系溶媒又はグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)がより好ましく、グリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)が更に好まししい。
 また、酸型のアニオン変性セルロース繊維の場合、高極性溶媒が好ましい。
The non-aqueous solvent preferably contains a hydrocarbon solvent or a glycol ether solvent, and among these, when the modifying group is (a) a hydrocarbon group and (b) a silicone chain, it is carbonized. Hydrogen-based solvents, silicone oils or glycol ether-based solvents (including glycol ether ester-based solvents) are preferable, and (c) in the case of alkylene oxide chains, hydrocarbon-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, glycols. Aether-based solvent (including glycol ether ester-based solvent), fatty acid, animal / vegetable oil, silicone oil, fluorine-based inert liquid, process oil, etc. are preferable, and (c) in the case of an alkylene oxide chain, a hydrocarbon-based solvent or glycol ether A system solvent (including a glycol ether ester solvent) is more preferable, and a glycol ether solvent (including a glycol ether ester solvent) is further preferable.
In the case of acid-type anion-modified cellulose fibers, a highly polar solvent is preferable.
 本発明の組成物における非水系溶媒の含有量は、無機化合物の有無に依存するが、一般に、好ましくは15質量%以上、より好ましくは20質量%以上であり、好ましくは50質量%以上、より好ましくは75質量%以上、更に好ましくは85質量%以上であり、一方、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98質量%以下であり、好ましくは15質量%以上99.5質量%以下、より好ましくは20質量%以上99質量%以下である。なお、必要に応じて、本発明の組成物から非水系溶媒の一部又は全部を除去しても構わない。従って、本発明の組成物は、溶液又は分散液の状態であり得、あるいは、乾燥した粉末状の状態でもあり得る。 The content of the non-aqueous solvent in the composition of the present invention depends on the presence or absence of the inorganic compound, but is generally preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or more. It is preferably 75% by mass or more, more preferably 85% by mass or more, while preferably 99.5% by mass or less, more preferably 99% by mass or less, still more preferably 98% by mass or less, and preferably 15% by mass. % Or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less. If necessary, a part or all of the non-aqueous solvent may be removed from the composition of the present invention. Therefore, the composition of the present invention may be in the form of a solution or dispersion, or may be in the form of a dry powder.
 また、本発明の組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、高温においても粘度の低下を抑制する観点から、非水系溶媒100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、同様の観点から、好ましくは20質量部以下、より好ましくは10質量部以下更に好ましくは5質量部以下であり、非水系溶媒100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.05質量部以上10質量部以下、更に好ましくは0.1質量部以上5質量部以下である。 Further, in the composition of the present invention, the content of the modified cellulose fiber (not including a modifying group or the like) is preferably 100 parts by mass with respect to 100 parts by mass of the non-aqueous solvent from the viewpoint of suppressing a decrease in viscosity even at a high temperature. It is 0.01 part by mass or more, more preferably 0.05 part by mass or more, further preferably 0.1 part by mass or more, and from the same viewpoint, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferable. Is 5 parts by mass or less, preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.05 parts by mass or more and 10 parts by mass or less, still more preferably 0. It is 1 part by mass or more and 5 parts by mass or less.
 本発明の組成物中、水の含有量は、好ましくは20質量%以下、より好ましくは10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.1質量%以下であり、実質的に0質量%であってもよい。水の含有量は、非水系溶媒からの水の持ち込み量を含む。 In the composition of the present invention, the content of water is preferably 20% by mass or less, more preferably 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass. % Or less, and may be substantially 0% by mass. The water content includes the amount of water brought in from a non-aqueous solvent.
〔無機化合物〕
 本発明の効果を損なわない範囲で、本発明の組成物は、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等の金属酸化物;金、銀、銅、鉄、スズ、鉛、亜鉛、アルミニウムなどの金属粉末;炭酸カルシウム、水酸化アルミニウム、臭化アンモニウムなどの無機塩;セラミックス、ゼオライト、カーボンブラック、フラーレン、カーボンナノチューブ、炭素繊維、グラフェン、炭化ケイ素、窒化ホウ素、窒化アルミニウム、シリカ、タルク、クレイ等の無機固体に例示される無機化合物を含んでも良い。
 無機化合物の形状に特に限定はないが、ハンドリング性の観点から粉末状、粒状、繊維状、フレーク状、ペレット状、塊状、ペースト状が好ましい。
[Inorganic compounds]
To the extent that the effects of the present invention are not impaired, the composition of the present invention comprises metal oxides such as titanium oxide, zinc oxide, aluminum oxide and zirconium oxide; gold, silver, copper, iron, tin, lead, zinc, aluminum and the like. Metal powders; inorganic salts such as calcium carbonate, aluminum hydroxide, ammonium bromide; ceramics, zeolite, carbon black, fullerene, carbon nanotubes, carbon fibers, graphene, silicon carbide, boron nitride, aluminum hydroxide, silica, talc, clay Inorganic compounds exemplified for inorganic solids such as may be contained.
The shape of the inorganic compound is not particularly limited, but powder, granular, fibrous, flake, pellet, lump, and paste are preferable from the viewpoint of handleability.
 本発明の組成物における無機化合物の含有量は、用途によって様々であり特に制限はないが、無機化合物の50℃以上の高温での分散安定性の観点及び無機化合物の添加効果発現の観点から、改質セルロース繊維100質量部に対して好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上、更に好ましくは2質量部以上、更に好ましくは3質量部以上、更に好ましくは10質量部以上、更に好ましくは100質量部以上であり、一方、本発明の効果発現の観点から、好ましくは1,000,000質量部以下、より好ましくは500,000質量部以下、更に好ましくは300,000質量部以下、更に好ましくは100,000質量部以下、更に好ましくは50,000質量部以下、更に好ましくは30,000質量部以下、更に好ましくは10,000質量部以下である。
 従って、本発明の組成物中、無機化合物/改質セルロース繊維の質量比は、無機化合物を非水系溶媒中で分散させる観点から、好ましくは0.1/100以上10000/1以下、より好ましくは1/100以上1000/1以下、更に好ましくは1/10以上300/1以下、更に好ましくは1/1以上100/1以下である。
The content of the inorganic compound in the composition of the present invention varies depending on the intended use and is not particularly limited, but from the viewpoint of the dispersion stability of the inorganic compound at a high temperature of 50 ° C. or higher and the expression of the effect of adding the inorganic compound. With respect to 100 parts by mass of the modified cellulose fiber, preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, still more preferably 2 parts by mass or more, still more preferably 3 parts by mass. More than parts, more preferably 10 parts by mass or more, still more preferably 100 parts by mass or more, while, from the viewpoint of exhibiting the effect of the present invention, preferably 1,000,000 parts by mass or less, more preferably 500,000 parts by mass. Parts or less, more preferably 300,000 parts by mass or less, still more preferably 100,000 parts by mass or less, still more preferably 50,000 parts by mass or less, still more preferably 30,000 parts by mass or less, still more preferably 10,000 parts by mass. It is less than a part.
Therefore, in the composition of the present invention, the mass ratio of the inorganic compound / modified cellulose fiber is preferably 0.1/100 or more and 10000/1 or less, more preferably, from the viewpoint of dispersing the inorganic compound in a non-aqueous solvent. It is 1/100 or more and 1000/1 or less, more preferably 1/10 or more and 300/1 or less, and further preferably 1/1 or more and 100/1 or less.
 また、組成物中、無機化合物の含有量は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは10質量%以上であり、一方、好ましくは99質量%以下、より好ましくは95質量%以下、より好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
 組成物中、無機化合物/非水系溶媒の質量比は、無機化合物を非水系溶媒中で分散させる観点から、好ましくは1/100以上、より好ましくは1/10以上、更に好ましくは1/1以上であり、50℃以上の非水系溶媒中の分散安定性の観点から、好ましくは500/1以下、より好ましくは300/1以下、更に好ましくは100/1以下である。
The content of the inorganic compound in the composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 10% by mass or more, while preferably 99% by mass or less. It is preferably 95% by mass or less, more preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
In the composition, the mass ratio of the inorganic compound / non-aqueous solvent is preferably 1/100 or more, more preferably 1/10 or more, still more preferably 1/1 or more, from the viewpoint of dispersing the inorganic compound in the non-aqueous solvent. From the viewpoint of dispersion stability in a non-aqueous solvent at 50 ° C. or higher, it is preferably 500/1 or less, more preferably 300/1 or less, still more preferably 100/1 or less.
〔その他の成分〕
 本発明の効果を損なわない範囲で、その他の成分、例えば、可塑剤、結晶核剤、充填剤(無機充填剤、有機充填剤)、加水分解抑制剤、難燃剤、酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤である滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤、界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、;香料;流動調整剤;レベリング剤;導電剤;紫外線分散剤;消臭剤等が、本発明の組成物に含まれていても構わない。さらに、本発明の効果を阻害しない範囲内で、他の高分子材料や他の組成物を添加することも可能である。尚、その他の成分は、前述の無機化合物であってもよい。
[Other ingredients]
Other components such as plasticizers, crystal nucleating agents, fillers (inorganic fillers, organic fillers), hydrolysis inhibitors, flame retardants, antioxidants, hydrocarbons, as long as the effects of the present invention are not impaired. Waxes and anionic surfactants such as gelatin, UV absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, surfactants; starches, alginic acid, etc. Polysaccharides; natural proteins such as gelatin, gelatin, casein; tannins; fragrances; flow regulators; leveling agents; conductive agents; UV dispersants; deodorants and the like may be contained in the composition of the present invention. No. Furthermore, other polymer materials and other compositions can be added as long as the effects of the present invention are not impaired. The other component may be the above-mentioned inorganic compound.
〔増粘剤組成物の製造方法〕
 本発明の増粘剤組成物は、例えば、前記改質セルロース繊維と前記非水系溶媒等を混合することにより製造することができる。
 例えば、前述の各成分を、密閉式ニーダー、1軸もしくは2軸の押出機、ロールミル、オープンロール型混練機等の公知の混練機を用いて混練することにより、あるいは、溶媒キャスト法により、あるいは、高せん断加工機といったせん断装置でせん断することによって実施することができる。
[Method for producing thickener composition]
The thickener composition of the present invention can be produced, for example, by mixing the modified cellulose fiber with the non-aqueous solvent or the like.
For example, each of the above-mentioned components is kneaded using a known kneader such as a closed kneader, a single-screw extruder, a roll mill, or an open-roll kneader, or by a solvent casting method, or. It can be carried out by shearing with a shearing device such as a high shearing machine.
〔増粘剤組成物の性質〕
 一般的に、液状の物体は、温度が高くなるほど粘度が低下する傾向にあるが、本発明の組成物は、その傾向がより小さいという特徴を有する。具体的には、本発明の組成物の[80℃の粘度]/[25℃の粘度]の値(80℃/25℃の粘度比)が、高温においても粘度低下を抑制する観点から、好ましくは0.6以上、より好ましくは0.7以上、更に好ましくは0.8以上、更に好ましくは0.9以上であり、また、温度依存性を低下させる観点から、好ましくは5以下、更に好ましくは3以下、更に好ましくは2以下、更に好ましくは1.5以下である。さらに、本発明の組成物の[125℃の粘度]/[25℃の粘度]の値(125℃/25℃の粘度比)が、高温においても粘度低下を抑制する観点から、好ましくは0.6以上、より好ましくは0.7以上、更に好ましくは0.8以上、更に好ましくは0.9以上であり、また、温度依存性を低下させる観点から、好ましくは5以下、更に好ましくは3以下、更に好ましくは2以下、更に好ましくは1.5以下である。
[Characteristics of thickener composition]
In general, the viscosity of a liquid object tends to decrease as the temperature increases, but the composition of the present invention is characterized in that the tendency is smaller. Specifically, the value of [viscosity at 80 ° C.] / [viscosity at 25 ° C.] (viscosity ratio at 80 ° C./25 ° C.) of the composition of the present invention is preferable from the viewpoint of suppressing the decrease in viscosity even at high temperatures. Is 0.6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably 0.9 or more, and preferably 5 or less, still more preferably, from the viewpoint of reducing the temperature dependence. Is 3 or less, more preferably 2 or less, still more preferably 1.5 or less. Further, the value of [viscosity at 125 ° C.] / [viscosity at 25 ° C.] (viscosity ratio at 125 ° C./25 ° C.) of the composition of the present invention is preferably 0. 6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably 0.9 or more, and from the viewpoint of reducing the temperature dependence, preferably 5 or less, still more preferably 3 or less. , More preferably 2 or less, still more preferably 1.5 or less.
 本発明の組成物の25℃の粘度(mPa・s)は、せん断速度1.0s-1を条件として、組成物のハンドリングの観点から、好ましくは100以上、より好ましくは500以上、更に好ましくは1000以上であり、一方、増粘剤組成物として用いる作業性の観点から、好ましくは500000以下、より好ましくは300000以下、更に好ましくは200000以下、更に好ましくは10万以下、更に好ましくは3万以下である。 The viscosity (mPa · s) of the composition of the present invention at 25 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1. On the other hand, from the viewpoint of workability when used as a thickener composition, it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less. Is.
 本発明の組成物の80℃の粘度(mPa・s)は、せん断速度1.0s-1を条件として、組成物のハンドリングの観点から、好ましくは100以上、より好ましくは500以上、更に好ましくは1000以上であり、一方、増粘剤組成物として用いる作業性の観点から、好ましくは500000以下、より好ましくは300000以下、更に好ましくは200000以下、更に好ましくは10万以下、更に好ましくは3万以下である。 The viscosity (mPa · s) of the composition of the present invention at 80 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1. On the other hand, from the viewpoint of workability when used as a thickener composition, it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less. Is.
 本発明の組成物の125℃の粘度(mPa・s)は、せん断速度1.0s-1を条件として、組成物のハンドリングの観点から、好ましくは100以上、より好ましくは500以上、更に好ましくは1000以上であり、一方、増粘剤組成物として用いる作業性の観点から、好ましくは500000以下、より好ましくは300000以下、更に好ましくは200000以下、更に好ましくは10万以下、更に好ましくは3万以下である。
 本発明の増粘剤組成物は、上記のように流動性を有することで、作業性を高めることができる。
The viscosity (mPa · s) of the composition of the present invention at 125 ° C. is preferably 100 or more, more preferably 500 or more, still more preferably 500 or more, from the viewpoint of handling the composition, provided that the shear rate is 1.0 s-1. On the other hand, from the viewpoint of workability when used as a thickener composition, it is preferably 500,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, still more preferably 100,000 or less, still more preferably 30,000 or less. Is.
The thickener composition of the present invention has fluidity as described above, so that workability can be improved.
 なお、本明細書における粘度の測定方法は、レオメーターを用いた後述の実施例記載の方法で行うことが出来る。 The method for measuring the viscosity in the present specification can be carried out by the method described in Examples described later using a rheometer.
〔増粘剤組成物の用途〕
 本発明の増粘剤組成物は、特に制限なく様々な製品に用いることができる。本発明の増粘剤組成物が適用できる製品の具体例としては、例えば、飲食品、化粧品、医薬部外品、医薬品、日用品、飼料、雑貨、農薬及び化学工業品等が挙げられる。より具体的には、家電部品、電子材料(エレクトロニクス)、包装容器、航空宇宙、土木建築、自動車、車載向け等の分野において、樹脂成形材料、電気絶縁材料、塗料、インキ、コーティング剤、接着剤、補修材、粘着剤、潤滑剤、シーリング材、断熱材、吸音材、人工皮革材料、電子材、半導体材料、タイヤ、自動車部品、繊維複合材料等が挙げられる。これらの中で好ましいのは、電子材料用、光学材料用又は構造材料用である。
[Use of thickener composition]
The thickener composition of the present invention can be used in various products without particular limitation. Specific examples of products to which the thickener composition of the present invention can be applied include foods and drinks, cosmetics, quasi-drugs, pharmaceuticals, daily necessities, feeds, miscellaneous goods, pesticides and chemical industry products. More specifically, in the fields of home appliance parts, electronic materials (electronics), packaging containers, aerospace, civil engineering, automobiles, automobiles, etc., resin molding materials, electrical insulation materials, paints, inks, coating agents, adhesives, etc. , Repair materials, adhesives, lubricants, sealing materials, heat insulating materials, sound absorbing materials, artificial leather materials, electronic materials, semiconductor materials, tires, automobile parts, fiber composite materials and the like. Of these, preferred are for electronic materials, optical materials or structural materials.
 これらの製品に配合される増粘剤組成物の配合量は特に限定されないが、製品(又は製品を構成する各成分の総量)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、一方、好ましくは1000質量部以下、より好ましくは800質量部以下、更に好ましくは500質量部以下である。 The blending amount of the thickener composition blended in these products is not particularly limited, but is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass, based on 100 parts by mass of the product (or the total amount of each component constituting the product). It is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, while preferably 1000 parts by mass or less, more preferably 800 parts by mass or less, still more preferably 500 parts by mass or less.
<増粘剤組成物の使用>
 本発明の増粘剤組成物は、前記改質セルロース繊維及び非水系溶媒を含有し、50℃以上、好ましくは60℃以上、より好ましくは80℃以上で使用されるためのものである。使用できる温度の上限値としては、増粘性発現の観点から好ましくは300℃、より好ましくは280℃、更に好ましくは250℃、更に好ましくは200℃である。
 また、本発明の増粘剤組成物は、好ましくは50℃以上の温度幅、より好ましくは100℃以上の温度幅、好ましくは250℃以下の温度幅で、増粘性を維持して用いる使用方法が好ましい。
 ここで50℃以上の温度幅とは、例えば50℃から100℃(50℃の温度幅)、40℃から150℃(110℃の温度幅)、70℃から200℃(130℃の温度幅)である。
<Use of thickener composition>
The thickener composition of the present invention contains the modified cellulose fiber and a non-aqueous solvent, and is intended for use at 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher. The upper limit of the usable temperature is preferably 300 ° C., more preferably 280 ° C., still more preferably 250 ° C., still more preferably 200 ° C. from the viewpoint of developing thickening.
Further, the thickener composition of the present invention is preferably used in a temperature range of 50 ° C. or higher, more preferably 100 ° C. or higher, preferably 250 ° C. or lower, while maintaining thickening. Is preferable.
Here, the temperature range of 50 ° C. or higher is, for example, 50 ° C. to 100 ° C. (50 ° C. temperature range), 40 ° C. to 150 ° C. (110 ° C. temperature range), 70 ° C. to 200 ° C. (130 ° C. temperature range). Is.
 本明細書において、増粘剤組成物の規定の温度(又は温度範囲)での使用とは、規定の温度(又は温度範囲)の増粘剤組成物を増粘させる対象に添加することや、増粘剤組成物を増粘させる対象に添加した後で、規定の温度(又は温度範囲)に調整すること等が挙げられる。
 本発明の増粘剤組成物は50℃以上で使用されるため、非水系溶媒の一部又は全部が揮散することがあるが、問題なく使用することが出来る。また、用途によっては、一定の温度まで粘度を保った後、更なる加熱により溶媒成分を完全に蒸発させて固化する様態も存在するが、このような様態であっても、本発明の増粘剤組成物の使用を好適に達成し得たということができる。増粘剤組成物の使用においては、前記増粘剤組成物がさらに上述の無機化合物を含むことが好ましい。
 50℃以上の温度幅に渡って使用する具体的態様としては、例えば潤滑剤やグリース油等である。
 50℃以上の温度幅に渡って使用し、結果的に非水系溶媒を除去する具体的態様としては、例えば塗料やインクである。
As used herein, the use of a thickener composition at a specified temperature (or temperature range) means adding the thickening agent composition at a specified temperature (or temperature range) to an object to be thickened. After adding the thickener composition to the object to be thickened, the temperature may be adjusted to a specified temperature (or temperature range).
Since the thickener composition of the present invention is used at 50 ° C. or higher, a part or all of the non-aqueous solvent may volatilize, but it can be used without any problem. Further, depending on the application, there is a mode in which the solvent component is completely evaporated and solidified by further heating after maintaining the viscosity up to a certain temperature. Even in such a mode, the thickening of the present invention is performed. It can be said that the use of the agent composition was suitably achieved. In the use of the thickener composition, it is preferable that the thickener composition further contains the above-mentioned inorganic compound.
Specific embodiments used over a temperature range of 50 ° C. or higher include, for example, a lubricant, grease oil, and the like.
Specific embodiments of use over a temperature range of 50 ° C. or higher to remove a non-aqueous solvent as a result are, for example, paints and inks.
<非水系溶媒の粘度制御剤>
 本発明の粘度制御剤は、前記改質セルロース繊維を含有するものである。本発明の粘度制御剤は非水系溶媒用であり、該粘度制御剤を非水系溶媒に適用することにより、非水系溶媒の粘度制御、例えば50℃以上の高温の粘度低下を抑制することができる、高温粘度制御剤である。前述のように、本発明の粘度制御剤は好ましくは50℃以上、好ましくは60℃以上、より好ましくは80℃以上で使用され、一方、好ましくは300℃以下、より好ましくは280℃、更に好ましくは200℃以下、より更に好ましくは150℃以下で使用される。非水系溶媒としては、前述のものが挙げられる。
<Viscosity control agent for non-aqueous solvent>
The viscosity control agent of the present invention contains the modified cellulose fiber. The viscosity control agent of the present invention is for a non-aqueous solvent, and by applying the viscosity control agent to a non-aqueous solvent, it is possible to control the viscosity of the non-aqueous solvent, for example, to suppress a decrease in viscosity at a high temperature of 50 ° C. or higher. , A high temperature viscosity control agent. As described above, the viscosity control agent of the present invention is preferably used at 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, while preferably 300 ° C. or lower, more preferably 280 ° C. or higher, still more preferable. Is used at 200 ° C. or lower, more preferably 150 ° C. or lower. Examples of the non-aqueous solvent include those mentioned above.
 本発明の粘度制御剤は、非水系溶媒100質量部に対して、改質セルロース繊維の含有量(修飾基等を含まない)は、非水系溶媒の粘度を制御する観点から、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、同様の観点から、好ましくは20質量部以下、より好ましくは10質量部以下更に好ましくは5質量部以下配合される。すなわち、改質セルロース繊維の含有量(修飾基等を含まない)は、非水系溶媒100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.05質量部以上10質量部以下、更に好ましくは0.1質量部以上5質量部以下である、 In the viscosity control agent of the present invention, the content of the modified cellulose fiber (not including modifying groups) is preferably 0. From the viewpoint of controlling the viscosity of the non-aqueous solvent with respect to 100 parts by mass of the non-aqueous solvent. It is 01 parts by mass or more, more preferably 0.05 parts by mass or more, further preferably 0.1 part by mass or more, and from the same viewpoint, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 5. It is blended in parts by mass or less. That is, the content of the modified cellulose fiber (not including modifying groups) is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 0.05 part by mass with respect to 100 parts by mass of the non-aqueous solvent. 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less.
〔無機化合物〕
 本発明の効果を損なわない範囲で、本発明の粘度制御剤は、前述の増粘剤組成物において使用され得る無機化合物を含んでも良い。無機化合物の形状に特に限定はないが、ハンドリング性の観点から粉末状、粒状、繊維状、フレーク状、ペレット状、塊状、ペースト状が好ましい。
[Inorganic compounds]
The viscosity control agent of the present invention may contain an inorganic compound that can be used in the above-mentioned thickener composition as long as the effect of the present invention is not impaired. The shape of the inorganic compound is not particularly limited, but powder, granular, fibrous, flake, pellet, lump, and paste are preferable from the viewpoint of handleability.
 本発明の粘度制御剤における、改質セルロース繊維に対する無機化合物の量は、前述の増粘剤組成物に記載されているとおりであり、好ましい範囲は同じである。
 本発明の粘度制御剤は、非水系溶媒を、前述の増粘剤組成物の性質に記載されているとおり、25℃、80℃、120℃の粘度、80℃/25℃の粘度比、及び120℃/25℃の粘度比の好ましい値に制御することができる。
The amount of the inorganic compound with respect to the modified cellulose fiber in the viscosity control agent of the present invention is as described in the above-mentioned thickener composition, and the preferable range is the same.
The viscosity control agent of the present invention uses a non-aqueous solvent as described in the above-mentioned properties of the thickener composition, having a viscosity of 25 ° C., 80 ° C., 120 ° C., a viscosity ratio of 80 ° C./25 ° C., and a viscosity ratio of 80 ° C./25 ° C. The viscosity ratio of 120 ° C./25 ° C. can be controlled to a preferable value.
<無機化合物の塗布方法>
 本発明は、下記(1)及び(2)からなる群より選択される1種以上である改質セルロース繊維、非水系溶媒及び無機化合物を含有する組成物を、100℃以上に加熱して、非水系溶媒を除去する工程を有する、無機化合物の塗布方法である。
 (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
 (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
 非水系溶媒、無機化合物については前述のとおりである。
<How to apply inorganic compounds>
In the present invention, a composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2), a non-aqueous solvent and an inorganic compound is heated to 100 ° C. or higher. A method for applying an inorganic compound, which comprises a step of removing a non-aqueous solvent.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anionic-modified cellulose fibers having an I-type crystal structure Non-aqueous solvents and inorganic compounds are as described above.
 加熱温度は、用いる非水系溶媒によるが、好ましくは150℃以上、より好ましくは200℃以上である。非水系溶媒は、ほぼ完全に除去することが好ましい。
該組成物は、50℃以上の高い温度であっても、粘度の低下が抑制されるため、無機化合物の拡散を抑制して、塗布することができる。塗布する対象としては、金属表面、プラスチック表面、紙等が挙げられ、例えば塗料やインクに用いることができる。塗布方法における組成物の各成分の好ましい化合物、好ましい含有量、好ましい含有量比などは、前述の組成物に記載されているとおりである。
The heating temperature depends on the non-aqueous solvent used, but is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. It is preferable to remove the non-aqueous solvent almost completely.
Since the composition is suppressed from decreasing in viscosity even at a high temperature of 50 ° C. or higher, it can be applied by suppressing the diffusion of the inorganic compound. Examples of the object to be applied include a metal surface, a plastic surface, paper and the like, and can be used, for example, for paints and inks. Preferred compounds, preferred contents, preferred content ratios, etc. of each component of the composition in the coating method are as described in the above-mentioned composition.
 上述した実施形態に関し、本発明は、さらに以下の、増粘剤組成物、増粘剤組成物の使用、粘度制御剤、無機化合物の塗布方法を開示する。
<1> 改質セルロース繊維及び非水系溶媒を含有し、50℃以上で使用される増粘剤組成物であって、
 前記改質セルロース繊維は、下記(1)及び(2)からなる群より選択される1種以上のものである、増粘剤組成物。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
With respect to the above-described embodiments, the present invention further discloses the following methods for applying a thickener composition, a thickener composition, a viscosity control agent, and an inorganic compound.
<1> A thickener composition containing a modified cellulose fiber and a non-aqueous solvent and used at 50 ° C. or higher.
The modified cellulose fiber is one or more selected from the group consisting of the following (1) and (2), and is a thickener composition.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
<2> 80℃/25℃の粘度比が0.6以上5以下である、前記<1>に記載の組成物。
<3> 80℃/25℃の粘度比が0.7以上3以下である、前記<1>又は<2>に記載の組成物。
<4> 125℃/25℃の粘度比が0.6以上5以下である、前記<1>~<3>のいずれか一つに記載の組成物。
<5> 125℃/25℃の粘度比が0.7以上3以下である、前記<1>~<4>のいずれか一つに記載の組成物。
<6> 前記(1)におけるセルロース繊維がアニオン変性セルロース繊維である、前記<1>~<5>のいずれか一つに記載の組成物。
<7> 修飾基がイオン結合及び/又は共有結合を介してアニオン変性セルロース繊維のアニオン性基に結合したものである、前記<1>~<6>のいずれか一つに記載の組成物。
<8> 非水系溶媒が炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、グリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)、脂肪酸、動・植物油、又はシリコーンオイルを含有する、前記<1>~<7>のいずれか一つに記載の組成物。
<9> 非水系溶媒が炭化水素系溶媒又はグリコールエーテル系溶媒を含有する、前記<1>~<8>のいずれか一つに記載の組成物。
<10> 改質セルロース繊維が、(a)炭化水素基又は(b)シリコーン鎖を含有する場合、非水系溶媒が炭化水素系溶媒、シリコーンオイル又はグリコールエーテル系溶媒である、前記<1>~<9>のいずれか一つに記載の組成物。
<11> 改質セルロース繊維が、(c)アルキレンオキサイド鎖を含有する場合、非水系溶媒が炭化水素系溶媒又はグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)である、前記<1>~<10>のいずれか一つに記載の組成物。
<12> 改質セルロース繊維が、(c)アルキレンオキサイド鎖を含有する場合、非水系溶媒がグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)である、前記<1>~<11>のいずれか一つに記載の組成物。
<13> アルキレンオキサイド鎖が、エチレンオキサイド(EO)重合部、プロピレンオキサイド(PO)重合部、及び(EO/PO)共重合部からなる群より選択される1種以上の(共)重合部である、前記<1>~<12>のいずれか一つに記載の組成物。
<14> 改質セルロース繊維の平均繊維径が1nm以上300nm以下、好ましくは2nm以上200nm以下である、前記<1>~<13>のいずれか一つに記載の組成物。
<15> 改質セルロース繊維の平均繊維長は、100nm以上10000nm以下、好ましくは200nm以上5000nm以下である前記<1>~<14>のいずれか一つに記載の組成物。
<16> さらに無機化合物を含んでなる、前記<1>~<15>のいずれか一つに記載の組成物。
<17> 無機化合物/改質セルロース繊維の質量比は、1/100以上500/1以下、好ましくは1/10以上300/1以下、更に好ましくは1/1以上100/1以下である、前記<16>に記載の組成物。
<18> 組成物中、無機化合物の含有量は、好ましくは0.1質量%以上90質量%以下、より好ましくは1質量%以上85質量%以下、更に好ましくは10質量%以上80質量%以下である、前記<16>又は<17>のいずれか一つに記載の組成物。
<19> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、セルロース換算で、好ましくは0.01質量%以上50質量%以下、より好ましくは0.05質量%以上20質量%以下、更に好ましくは0.1質量%以上10質量%以下である、前記<1>~<18>のいずれか一つに記載の組成物。
<20> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、非水系溶媒100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.05質量部以上10質量部以下、更に好ましくは0.1質量部以上5質量部以下である、前記<1>~<19>のいずれか一つに記載の組成物。
<21> 組成物中、非水系溶媒の含有量は、好ましくは15質量%以上99.5質量%以下、より好ましくは20質量%以上99質量%以下である、前記<1>~<20>のいずれか一つに記載の組成物。
<22> 60℃以上、より好ましくは80℃以上で使用される、前記<1>~<21>のいずれか一つに記載の組成物。
<23> 50℃以上の温度幅、好ましくは100℃以上の温度幅で使用される、前記<1>~<22>のいずれか一つに記載の組成物。
<24> 非水系溶媒を除去されて用いられる、前記<1>~<23>のいずれか一つに記載の組成物。
<25> 電子材料用、光学材料用又は構造材料用である、前記<1>~<24>のいずれか一つに記載の組成物。
<26> 下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維と非水系溶媒とを含有する増粘剤組成物の50℃以上での使用。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
<27> 60℃以上で用いる、前記<26>に記載の使用。
<28> 80℃以上で用いる、前記<26>又は<27>に記載の使用。
<29> 50℃以上の温度幅で用いる、前記<26>~<28>のいずれか一つに記載の使用。
<30> 100℃以上の温度幅で用いる、前記<26>~<29>のいずれか一つに記載の使用。
<31> 非水系溶媒を除去する、前記<26>~<30>のいずれか一つに記載の使用。
<32> 増粘剤組成物の80℃/25℃の粘度比が0.6以上5以下である、前記<26>~<31>のいずれか一つに記載の使用。
<33> 増粘剤組成物の80℃/25℃の粘度比が0.7以上3以下である、前記<26>~<32>のいずれか一つに記載の使用。
<34> 増粘剤組成物の125℃/25℃の粘度比が0.6以上5以下である、前記<26>~<33>のいずれか一つに記載の使用。
<35> 増粘剤組成物の125℃/25℃の粘度比が0.7以上3以下である、前記<26>~<34>のいずれか一つに記載の組成物。
<36> 前記(1)におけるセルロース繊維がアニオン変性セルロース繊維である、前記<26>~<35>のいずれか一つに記載の使用。
<37> 修飾基がイオン結合及び/又は共有結合を介してアニオン変性セルロース繊維のアニオン性基に結合したものである、前記<26>~<36>のいずれか一つに記載の使用。
<38> 非水系溶媒が炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、グリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)、脂肪酸、動・植物油、又はシリコーンオイルを含有する、前記<26>~<37>のいずれか一つに記載の使用。
<39> 非水系溶媒が炭化水素系溶媒又はグリコールエーテル系溶媒を含有する、前記<26>~<38>のいずれか一つに記載の使用。
<40> 改質セルロース繊維が、(a)炭化水素基又は(b)シリコーン鎖を含有する場合、非水系溶媒が炭化水素系溶媒、シリコーンオイル又はグリコールエーテル系溶媒である、前記<26>~<39>のいずれか一つに記載の使用。
<41> 改質セルロース繊維が、(c)アルキレンオキサイド鎖を含有する場合、非水系溶媒が炭化水素系溶媒又はグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)である、前記<26>~<40>のいずれか一つに記載の使用。
<42> 改質セルロース繊維が、(c)アルキレンオキサイド鎖を含有する場合、非水系溶媒がグリコールエーテル系溶媒(グリコールエーテルエステル系溶媒を含む)である、前記<26>~<41>のいずれか一つに記載の使用。
<43> アルキレンオキサイド鎖が、エチレンオキサイド(EO)重合部、プロピレンオキサイド(PO)重合部、及び(EO/PO)共重合部からなる群より選択される1種以上の(共)重合部である、前記<26>~<42>のいずれか一つに記載の使用。
<44> 改質セルロース繊維の平均繊維径が1nm以上300nm以下、好ましくは2nm以上200nm以下である、前記<26>~<43>のいずれか一つに記載の使用。
<45> 改質セルロース繊維の平均繊維長は、100nm以上10000nm以下、好ましくは200nm以上5000nm以下である、前記<26>~<44>のいずれか一つに記載の使用。
<46> 増粘剤組成物がさらに無機化合物を含んでなる、前記<26>~<45>のいずれか一つに記載の使用。
<47> 増粘剤組成物における無機化合物/改質セルロース繊維の質量比は、0.1/100以上10000/1以下、好ましくは1/100以上1000/1以下、より好ましくは1/10以上300/1以下、更に好ましくは1/1以上100/1以下であるである、前記<26>~<46>のいずれか一つに記載の使用。
<48> 組成物中、無機化合物の含有量は、好ましくは0.1質量%以上90質量%以下、より好ましくは1質量%以上85質量%以下、更に好ましくは10質量%以上80質量%以下である、前記<26>~<47>のいずれか一つに記載の使用。
<49> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、セルロース換算で、好ましくは0.01質量%以上50質量%以下、より好ましくは0.05質量%以上20質量%以下、更に好ましくは0.1質量%以上10質量%以下である、前記<26>~<48>のいずれか一つに記載の使用。
<50> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、非水系溶媒100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.05質量部以上10質量部以下、更に好ましくは0.1質量部以上5質量部以下である、前記<26>~<49>のいずれか一つに記載の使用。
<51> 組成物中、非水系溶媒の含有量は、好ましくは15質量%以上99.5質量%以下、より好ましくは20質量%以上99質量%以下である、前記<26>~<50>のいずれか一つに記載の使用。
<52> 増粘剤組成物が電子材料用、光学材料用又は構造材料用組成物である、前記<26>~<51>のいずれか一つに記載の使用。
<53>下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維を含有する、非水系溶媒の粘度制御剤。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
<54> さらに無機化合物を含んでなる、前記<53>に記載の粘度制御剤。
<55> 50℃以上で使用される、前記<53>又は<54>に記載の粘度制御剤。
<56> 60℃以上で使用される、前記<53>~<55>のいずれか一つに記載の粘度制御剤。
<57> 80℃以上で使用される、前記<53>~<56>のいずれか一つに記載の粘度制御剤
<58> 50℃以上の温度幅で使用される、前記<53>~<57>のいずれか一つに記載の粘度制御剤。
<59> 100℃以上の温度幅で使用される、前記<53>~<58>のいずれか一つに記載の粘度制御剤。
<60> 80℃/25℃の粘度比が0.6以上5以下である、前記<53>~<59>のいずれか一つに記載の粘度制御剤。
<61> 80℃/25℃の粘度比が0.7以上3以下である、前記<53>~<60>のいずれか一つに記載の粘度制御剤。
<62> 125℃/25℃の粘度比が0.6以上5以下である、前記<53>~<61>のいずれか一つに記載の粘度制御剤。
<63> 125℃/25℃の粘度比が0.7以上3以下である、前記<53>~<62>のいずれか一つに記載の粘度制御剤。
<64>下記(1)及び(2)からなる群より選択される1種以上である改質セルロース繊維、非水系溶媒及び無機化合物を含有する組成物を、100℃以上に加熱して、非水系溶媒を除去する工程を有する、無機化合物の塗布方法。
  (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
  (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
<65>好ましくは150℃以上、より好ましくは200℃以上に加熱する、前記<64>に記載の塗布方法。
<66> 組成物中、無機化合物の含有量は、好ましくは0.1質量%以上90質量%以下、より好ましくは1質量%以上85質量%以下、更に好ましくは10質量%以上80質量%以下である、前記<64>又は<65>に記載の塗布方法。
<67> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、セルロース換算で、好ましくは0.01質量%以上50質量%以下、より好ましくは0.05質量%以上20質量%以下、更に好ましくは0.1質量%以上10質量%以下である、前記<64>~<66>のいずれか一つに記載の塗布方法。
<68> 組成物中、改質セルロース繊維の含有量(修飾基等を含まない)は、非水系溶媒100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.05質量部以上10質量部以下、更に好ましくは0.1質量部以上5質量部以下である、前記<64>~<67>のいずれか一つに記載の塗布方法。
<69> 組成物中、非水系溶媒の含有量は、好ましくは15質量%以上99.5質量%以下、より好ましくは20質量%以上99質量%以下である、前記<64>~<68>のいずれか一つに記載の塗布方法。
<2> The composition according to <1> above, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more and 5 or less.
<3> The composition according to <1> or <2>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
<4> The composition according to any one of <1> to <3>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.6 or more and 5 or less.
<5> The composition according to any one of <1> to <4>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.7 or more and 3 or less.
<6> The composition according to any one of <1> to <5>, wherein the cellulose fiber in (1) is an anion-modified cellulose fiber.
<7> The composition according to any one of <1> to <6> above, wherein the modifying group is bonded to the anionic group of the anionic-modified cellulose fiber via an ionic bond and / or a covalent bond.
<8> The non-aqueous solvent contains a hydrocarbon solvent, an alcohol solvent, an ether solvent, an ester solvent, a glycol ether solvent (including a glycol ether ester solvent), a fatty acid, an animal / vegetable oil, or a silicone oil. , The composition according to any one of <1> to <7>.
<9> The composition according to any one of <1> to <8> above, wherein the non-aqueous solvent contains a hydrocarbon solvent or a glycol ether solvent.
<10> When the modified cellulose fiber contains (a) a hydrocarbon group or (b) a silicone chain, the non-aqueous solvent is a hydrocarbon solvent, a silicone oil or a glycol ether solvent. The composition according to any one of <9>.
<11> When the modified cellulose fiber contains (c) an alkylene oxide chain, the non-aqueous solvent is a hydrocarbon solvent or a glycol ether solvent (including a glycol ether ester solvent). The composition according to any one of <10>.
<12> When the modified cellulose fiber contains (c) an alkylene oxide chain, the non-aqueous solvent is a glycol ether solvent (including a glycol ether ester solvent), any of the above <1> to <11>. The composition according to one.
<13> In one or more (co) polymerization sections in which the alkylene oxide chain is selected from the group consisting of an ethylene oxide (EO) polymerization section, a propylene oxide (PO) polymerization section, and a (EO / PO) copolymer section. The composition according to any one of the above <1> to <12>.
<14> The composition according to any one of <1> to <13>, wherein the average fiber diameter of the modified cellulose fiber is 1 nm or more and 300 nm or less, preferably 2 nm or more and 200 nm or less.
<15> The composition according to any one of <1> to <14>, wherein the average fiber length of the modified cellulose fiber is 100 nm or more and 10,000 nm or less, preferably 200 nm or more and 5000 nm or less.
<16> The composition according to any one of <1> to <15>, which further comprises an inorganic compound.
<17> The mass ratio of the inorganic compound / modified cellulose fiber is 1/100 or more and 500/1 or less, preferably 1/10 or more and 300/1 or less, and more preferably 1/1 or more and 100/1 or less. The composition according to <16>.
<18> The content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less. The composition according to any one of the above <16> or <17>.
<19> The content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose. The composition according to any one of <1> to <18>, which is 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less.
<20> The content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent. The composition according to any one of <1> to <19>, wherein the composition is 0.05 parts by mass or more and 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less.
<21> The content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less. The composition according to any one of.
<22> The composition according to any one of <1> to <21>, which is used at 60 ° C. or higher, more preferably 80 ° C. or higher.
<23> The composition according to any one of <1> to <22>, which is used in a temperature range of 50 ° C. or higher, preferably 100 ° C. or higher.
<24> The composition according to any one of <1> to <23>, which is used after removing a non-aqueous solvent.
<25> The composition according to any one of <1> to <24> above, which is for an electronic material, an optical material, or a structural material.
<26> Use of a thickener composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2) and a non-aqueous solvent at 50 ° C. or higher.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
<27> The use according to <26> above, which is used at 60 ° C. or higher.
<28> The use according to the above <26> or <27>, which is used at 80 ° C. or higher.
<29> The use according to any one of <26> to <28> above, which is used in a temperature range of 50 ° C. or higher.
<30> The use according to any one of <26> to <29> above, which is used in a temperature range of 100 ° C. or higher.
<31> The use according to any one of <26> to <30> above, which removes a non-aqueous solvent.
<32> The use according to any one of <26> to <31> above, wherein the thickener composition has a viscosity ratio of 80 ° C./25 ° C. of 0.6 or more and 5 or less.
<33> The use according to any one of <26> to <32> above, wherein the viscosity ratio of the thickener composition at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
<34> The use according to any one of <26> to <33> above, wherein the thickener composition has a viscosity ratio of 125 ° C./25 ° C. of 0.6 or more and 5 or less.
<35> The composition according to any one of <26> to <34>, wherein the thickener composition has a viscosity ratio of 125 ° C./25 ° C. of 0.7 or more and 3 or less.
<36> The use according to any one of <26> to <35>, wherein the cellulose fiber in (1) is an anion-modified cellulose fiber.
<37> The use according to any one of <26> to <36> above, wherein the modifying group is bonded to the anionic group of the anionic-modified cellulose fiber via an ionic bond and / or a covalent bond.
<38> The non-aqueous solvent contains a hydrocarbon solvent, an alcohol solvent, an ether solvent, an ester solvent, a glycol ether solvent (including a glycol ether ester solvent), a fatty acid, an animal / vegetable oil, or a silicone oil. , The use according to any one of <26> to <37> above.
<39> The use according to any one of <26> to <38> above, wherein the non-aqueous solvent contains a hydrocarbon solvent or a glycol ether solvent.
<40> When the modified cellulose fiber contains (a) a hydrocarbon group or (b) a silicone chain, the non-aqueous solvent is a hydrocarbon solvent, a silicone oil or a glycol ether solvent. Use described in any one of <39>.
<41> When the modified cellulose fiber contains (c) an alkylene oxide chain, the non-aqueous solvent is a hydrocarbon solvent or a glycol ether solvent (including a glycol ether ester solvent). Use described in any one of <40>.
<42> When the modified cellulose fiber contains (c) an alkylene oxide chain, the non-aqueous solvent is a glycol ether solvent (including a glycol ether ester solvent), any of the above <26> to <41>. Use as described in one.
<43> In one or more (co) polymerization sections in which the alkylene oxide chain is selected from the group consisting of an ethylene oxide (EO) polymerization section, a propylene oxide (PO) polymerization section, and a (EO / PO) copolymer section. The use according to any one of the above <26> to <42>.
<44> The use according to any one of <26> to <43>, wherein the average fiber diameter of the modified cellulose fiber is 1 nm or more and 300 nm or less, preferably 2 nm or more and 200 nm or less.
<45> The use according to any one of <26> to <44>, wherein the average fiber length of the modified cellulose fiber is 100 nm or more and 10,000 nm or less, preferably 200 nm or more and 5000 nm or less.
<46> The use according to any one of <26> to <45> above, wherein the thickener composition further contains an inorganic compound.
<47> The mass ratio of the inorganic compound / modified cellulose fiber in the thickener composition is 0.1/100 or more and 10000/1 or less, preferably 1/100 or more and 1000/1 or less, and more preferably 1/10 or more. The use according to any one of the above <26> to <46>, which is 300/1 or less, more preferably 1/1 or more and 100/1 or less.
<48> The content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less. The use according to any one of the above <26> to <47>.
<49> The content of the modified cellulose fiber (excluding modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose. The use according to any one of the above <26> to <48>, which is 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less.
<50> The content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent. The use according to any one of <26> to <49> above, which is 0.05 part by mass or more and 10 parts by mass or less, more preferably 0.1 part by mass or more and 5 parts by mass or less.
<51> The content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less. Use described in any one of.
<52> The use according to any one of <26> to <51> above, wherein the thickener composition is a composition for an electronic material, an optical material, or a structural material.
<53> A viscosity control agent for a non-aqueous solvent containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2).
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
<54> The viscosity control agent according to <53>, which further contains an inorganic compound.
<55> The viscosity control agent according to <53> or <54>, which is used at 50 ° C. or higher.
<56> The viscosity control agent according to any one of <53> to <55>, which is used at 60 ° C. or higher.
<57> The viscosity control agent according to any one of <53> to <56>, which is used at 80 ° C. or higher.
<58> The viscosity control agent according to any one of <53> to <57>, which is used in a temperature range of 50 ° C. or higher.
<59> The viscosity control agent according to any one of <53> to <58>, which is used in a temperature range of 100 ° C. or higher.
<60> The viscosity control agent according to any one of <53> to <59>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more and 5 or less.
<61> The viscosity control agent according to any one of <53> to <60>, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.7 or more and 3 or less.
<62> The viscosity control agent according to any one of <53> to <61>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.6 or more and 5 or less.
<63> The viscosity control agent according to any one of <53> to <62>, wherein the viscosity ratio at 125 ° C./25 ° C. is 0.7 or more and 3 or less.
<64> A composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2), a non-aqueous solvent and an inorganic compound is heated to 100 ° C. or higher to be non-processed. A method for applying an inorganic compound, which comprises a step of removing an aqueous solvent.
(1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
<65> The coating method according to <64>, wherein the coating method is preferably heated to 150 ° C. or higher, more preferably 200 ° C. or higher.
<66> The content of the inorganic compound in the composition is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 85% by mass or less, and further preferably 10% by mass or more and 80% by mass or less. The coating method according to the above <64> or <65>.
<67> The content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01% by mass or more and 50% by mass or less, more preferably 0.05% by mass or more in terms of cellulose. The coating method according to any one of <64> to <66>, wherein the coating method is 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less.
<68> The content of the modified cellulose fiber (not including modifying groups) in the composition is preferably 0.01 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the non-aqueous solvent. The coating method according to any one of <64> to <67>, wherein the coating method is 0.05 parts by mass or more and 10 parts by mass or less, more preferably 0.1 parts by mass or more and 5 parts by mass or less.
<69> The content of the non-aqueous solvent in the composition is preferably 15% by mass or more and 99.5% by mass or less, more preferably 20% by mass or more and 99% by mass or less. The coating method according to any one of the above.
 以下、実施例等を示して本発明を具体的に説明する。なお、下記の実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。なお、「常圧」とは101.3kPaを、「常温」とは25℃を示す。 Hereinafter, the present invention will be specifically described with reference to Examples and the like. It should be noted that the following examples are merely examples of the present invention and do not mean any limitation. The "normal pressure" indicates 101.3 kPa, and the "normal temperature" indicates 25 ° C.
〔微細化アニオン変性セルロース繊維及び改質セルロース繊維の平均繊維径、平均繊維長及び平均アスペクト比〕
 測定対象が微細化アニオン変性セルロース繊維の場合は水を加えて、あるいは測定対象が改質セルロース繊維の場合は、増粘剤組成物の調製時に使用した溶媒と同じ溶媒を加えて、その含有量が0.0005質量%の分散液を調製する。なお、溶媒がスクアラン又はTGMEの場合は、IPAを使用する。該分散液をマイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM)(Digital instrument社製、Nanoscope II Tappingmode AFM;プローブはナノセンサーズ社製、Point Probe(NCH)を使用)を用いて、該観察試料中のセルロース繊維の繊維高さ(繊維のあるところとないところの高さの差)を測定する。その際、該セルロース繊維が確認できる顕微鏡画像において、セルロース繊維を100本以上抽出し、それらの繊維高さから平均繊維径を算出する。繊維方向の距離より、平均繊維長を算出する。平均アスペクト比は平均繊維長/平均繊維径より算出する。AFMによる画像で分析される高さを繊維径とみなすことができる。
[Average fiber diameter, average fiber length and average aspect ratio of miniaturized anion-modified cellulose fiber and modified cellulose fiber]
If the measurement target is a finely divided anion-modified cellulose fiber, add water, or if the measurement target is a modified cellulose fiber, add the same solvent as that used when preparing the thickener composition, and add the content thereof. Prepare a dispersion of 0.0005% by mass. If the solvent is squalane or TGME, IPA is used. Atomic force microscope (AFM) (Nanoscope II Tappingmode AFM, manufactured by Digital instrument, Nanoscope II Tappingmode AFM; probe manufactured by Nanosensors, Point Probe (AFM) Using NCH)), the fiber height (difference in height between the presence and absence of fibers) of the cellulose fibers in the observation sample is measured. At that time, in a microscope image in which the cellulose fibers can be confirmed, 100 or more cellulose fibers are extracted, and the average fiber diameter is calculated from the fiber heights thereof. The average fiber length is calculated from the distance in the fiber direction. The average aspect ratio is calculated from the average fiber length / average fiber diameter. The height analyzed in the image by AFM can be regarded as the fiber diameter.
 実施例10のみ、上記AFMを使用した測定で改質セルロース繊維を確認することが困難であった。そのため実施例10のみ、得られた増粘剤組成物を0.02質量%までIPAで希釈し、5分間超音波処理した溶液をマイカ上に1滴滴下した。自然乾燥後、MSP-1S((株)真空デバイス社製)で金スパッタ処理したサンプルを電子顕微鏡VE-8800(KEYENCE社製)を用いて加速電圧5kV、スポット径8の測定条件で観察して、上記と同様の方法で改質セルロース繊維の平均繊維径、平均繊維長及び平均アスペクト比を求めた。 Only in Example 10, it was difficult to confirm the modified cellulose fiber by the measurement using the above AFM. Therefore, only in Example 10, the obtained thickener composition was diluted with IPA to 0.02% by mass, and one drop of the solution sonicated for 5 minutes was dropped onto mica. After air-drying, observe the sample gold-spattered with MSP-1S (manufactured by Vacuum Device Co., Ltd.) using an electron microscope VE-8800 (manufactured by KEYENCE) under the measurement conditions of an acceleration voltage of 5 kV and a spot diameter of 8. The average fiber diameter, average fiber length and average aspect ratio of the modified cellulose fibers were determined by the same method as described above.
〔原料のセルロース繊維及びアニオン変性セルロース繊維の平均繊維径及び平均繊維長〕
 測定対象のセルロース繊維に脱イオン水を加えて、その含有量が0.01質量%の分散液を調製する。該分散液を湿式分散タイプ画像解析粒度分布計(ジャスコインターナショナル社製、商品名:IF-3200)を用いて、フロントレンズ:2倍、テレセントリックズームレンズ:1倍、画像分解能:0.835μm/ピクセル、シリンジ内径:6515μm、スペーサー厚み:500μm、画像認識モード:ゴースト、閾値:8、分析サンプル量:1mL、サンプリング:15%の条件で測定する。セルロース繊維を100本以上測定し、それらの平均ISO繊維径を平均繊維径をとして、平均ISO繊維長を平均繊維長として算出する。
[Average fiber diameter and average fiber length of raw material cellulose fiber and anion-modified cellulose fiber]
Deionized water is added to the cellulose fibers to be measured to prepare a dispersion having a content of 0.01% by mass. Using a wet dispersion type image analysis particle size distribution meter (manufactured by Jasco International, trade name: IF-3200), the dispersion is used for front lens: 2x, telecentric zoom lens: 1x, image resolution: 0.835 μm / pixel. , Syringe inner diameter: 6515 μm, spacer thickness: 500 μm, image recognition mode: ghost, threshold: 8, analytical sample volume: 1 mL, sampling: 15%. 100 or more cellulose fibers are measured, and the average ISO fiber diameter thereof is taken as the average fiber diameter, and the average ISO fiber length is calculated as the average fiber length.
〔アニオン変性セルロース繊維及び改質セルロース繊維のアニオン性基含有量〕
 乾燥質量0.5gの測定対象のセルロース繊維をビーカーにとり、脱イオン水又はメタノール/水=2/1(体積比)の混合溶媒を加えて全体で55mLとし、ここに0.01M塩化ナトリウム水溶液5mLを加えて分散液を調製する。測定対象のセルロース繊維が十分に分散するまで該分散液を撹拌する。この分散液に0.1M塩酸を加えてpHを2.5~3に調整し、自動滴定装置(東亜ディーケーケー社製、商品名「AUT-701」)を用い、0.05M水酸化ナトリウム水溶液を、待ち時間60秒の条件で該分散液に滴下し、1分ごとの電導度及びpHの値を測定する。pH11程度になるまで測定を続け、電導度曲線を得る。この電導度曲線から、水酸化ナトリウム滴定量を求め、次式により、測定対象のセルロース繊維のアニオン性基含有量を算出する。
 アニオン性基含有量(mmol/g)=[水酸化ナトリウム水溶液滴定量(mL)×水酸化ナトリウム水溶液濃度(0.05M)]/[測定対象のセルロース繊維の質量(0.5g)]
[Anionic group content of anionic-modified cellulose fibers and modified cellulose fibers]
Take the cellulose fiber to be measured with a dry mass of 0.5 g in a beaker, add deionized water or a mixed solvent of methanol / water = 2/1 (volume ratio) to make a total of 55 mL, and add 5 mL of 0.01 M sodium chloride aqueous solution to this. To prepare a dispersion. The dispersion is stirred until the cellulose fibers to be measured are sufficiently dispersed. Add 0.1 M hydrochloric acid to this dispersion to adjust the pH to 2.5 to 3, and use an automatic titrator (manufactured by Toa DKK, trade name "AUT-701") to add a 0.05 M aqueous sodium hydroxide solution. Then, the solution is added dropwise to the dispersion under the condition of a waiting time of 60 seconds, and the electric conductivity and pH values are measured every minute. Continue the measurement until the pH reaches about 11, and obtain a conductivity curve. From this conductivity curve, the quantification of sodium hydroxide titration is obtained, and the anionic group content of the cellulose fiber to be measured is calculated by the following formula.
Anionic group content (mmol / g) = [Sodium hydroxide aqueous solution droplet quantification (mL) × Sodium hydroxide aqueous solution concentration (0.05 M)] / [Mass of cellulose fiber to be measured (0.5 g)]
〔酸化セルロース繊維のアルデヒド基含有量〕
 測定対象の酸化セルロース繊維のカルボキシ基含有量を、上記アニオン性基含有量の測定方法によって測定する。
 一方、これとは別に、ビーカーに、測定対象の酸化セルロース繊維の水分散液100g(固形分含有量1.0質量%)、酢酸緩衝液(pH4.8)100g、2-メチル-2-ブテン0.33g、亜塩素酸ナトリウム0.45gを加え25℃で16時間撹拌して、酸化セルロース繊維に残存するアルデヒド基の酸化処理を行う。反応終了後、脱イオン水にてセルロース繊維の洗浄を行い、アルデヒド基を酸化処理したセルロース繊維を得る。凍結乾燥処理して得られた乾燥品のカルボキシ基含有量を上記アニオン性基含有量の測定方法で測定し、「酸化処理した酸化セルロース繊維のカルボキシ基含有量」を算出する。続いて、式1にて測定対象の酸化セルロース繊維のアルデヒド基含有量を算出する。
[Aldehyde group content of oxidized cellulose fiber]
The carboxy group content of the oxidized cellulose fiber to be measured is measured by the above-mentioned method for measuring the anionic group content.
On the other hand, separately from this, in a beaker, 100 g of an aqueous dispersion of the oxidized cellulose fiber to be measured (solid content content 1.0% by mass), 100 g of an acetate buffer (pH 4.8), 2-methyl-2-butene. 0.33 g and 0.45 g of sodium chlorite are added and stirred at 25 ° C. for 16 hours to oxidize the aldehyde group remaining on the oxidized cellulose fiber. After completion of the reaction, the cellulose fibers are washed with deionized water to obtain cellulose fibers obtained by oxidizing an aldehyde group. The carboxy group content of the dried product obtained by freeze-drying treatment is measured by the above-mentioned method for measuring the anionic group content, and the "carboxy group content of the oxidized cellulose fiber" is calculated. Subsequently, the aldehyde group content of the oxidized cellulose fiber to be measured is calculated by the formula 1.
 アルデヒド基含有量(mmol/g)=(酸化処理した酸化セルロース繊維のカルボキシ基含有量)-(測定対象の酸化セルロース繊維のカルボキシ基含有量)・・・式1 Alaldehyde group content (mmol / g) = (carboxy group content of oxidized cellulose fiber)-(carboxy group content of oxidized cellulose fiber to be measured) ... Equation 1
〔ゲル又は分散液中の固形分含有量〕
 ハロゲン水分計(島津製作所社製;商品名「MOC-120H」)を用いて測定する。サンプル1gに対して150℃恒温で30秒ごとの測定を行い、質量減少がサンプルの初期量の0.1%以下となった値を固形分含有量とする。なお、高沸点な有機溶媒を使用したため上記分析法で固形分濃度を分析することが困難な場合は、別途フェノール硫酸法などの既知の代替手法を用いても良い。
[Solid content in gel or dispersion]
Measure using a halogen moisture meter (manufactured by Shimadzu Corporation; trade name "MOC-120H"). Measurement is performed every 30 seconds at a constant temperature of 150 ° C. for 1 g of the sample, and the value at which the mass loss is 0.1% or less of the initial amount of the sample is defined as the solid content. If it is difficult to analyze the solid content concentration by the above analysis method because an organic solvent having a high boiling point is used, a known alternative method such as a phenol sulfuric acid method may be used separately.
〔改質セルロース繊維の修飾基の結合量及び導入率〕
 修飾基の結合量を次のIR測定方法により求め、下記式によりその結合量及び導入率を算出する。IR測定は、具体的には、乾燥させた改質セルロース繊維の赤外吸収スペクトルを赤外吸収分光装置(IR)(サーモフィッシャーサイエンティフィック社製、Nicolet 6700)を用いATR法にて測定し、式AおよびBにより、修飾基の結合量及び導入率を算出する。以下はアニオン性基がカルボキシ基の場合、即ち、酸化セルロース繊維の場合を示す。以下の「1720cm-1のピーク強度」は、カルボニル基に由来するピーク強度である。なお、カルボキシ基以外のアニオン性基の場合は波数の値を適宜変更し、修飾基の結合量及び導入率を算出すればよい。
[Amount of binding of modifying group and introduction rate of modified cellulose fiber]
The binding amount of the modifying group is obtained by the following IR measurement method, and the binding amount and the introduction rate are calculated by the following formula. Specifically, the IR measurement is performed by measuring the infrared absorption spectrum of the dried modified cellulose fiber by the ATR method using an infrared absorption spectroscope (IR) (Nicolet 6700 manufactured by Thermo Fisher Scientific Co., Ltd.). , The amount of binding of the modifying group and the introduction rate are calculated by the formulas A and B. The following shows the case where the anionic group is a carboxy group, that is, the case of an oxidized cellulose fiber. The following " peak intensity of 1720 cm -1 " is the peak intensity derived from the carbonyl group. In the case of an anionic group other than the carboxy group, the wavenumber value may be appropriately changed to calculate the bond amount and introduction rate of the modifying group.
<式A-1(イオン結合の場合)>
  修飾基の結合量(mmol/g)=a×(b-c)÷b
a:酸化セルロース繊維のカルボキシ基含有量(mmol/g)
b:酸化セルロース繊維の1720cm-1のピーク強度
c:改質セルロース繊維の1720cm-1のピーク強度
<式A-2(アミド結合の場合)>
  修飾基の結合量(mmol/g)=d-e
d:酸化セルロース繊維のカルボキシ基含有量(mmol/g)
e:改質セルロース繊維のカルボキシ基含有量(mmol/g)
<式B>
  修飾基の導入率(mol%)=100×f/g
f:修飾基の結合量(mmol/g)
g:酸化セルロース繊維のカルボキシ基含有量(mmol/g)
<Formula A-1 (in the case of ionic bond)>
Bonding amount of modifying group (mmol / g) = a × (bc) ÷ b
a: Carboxy group content of cellulose oxide fiber (mmol / g)
b: the peak intensity of the oxidized cellulose fibers 1720cm -1 c: <(For amide bond) Formula A-2> reforming peak intensity of 1720 cm -1 of the cellulose fibers
Modulating group binding amount (mmol / g) = de
d: Carboxy group content of cellulose oxide fiber (mmol / g)
e: Carboxy group content of modified cellulose fiber (mmol / g)
<Equation B>
Introductory rate of modifying group (mol%) = 100 × f / g
f: Bonding amount of modifying group (mmol / g)
g: Carboxy group content of cellulose oxide fiber (mmol / g)
〔改質セルロース繊維における結晶構造の確認〕
 改質セルロース繊維の結晶構造は、X線回折計(リガク社製、MiniFlexII)を用いて以下の条件で測定することにより確認する。
 測定条件は、X線源:Cu/Kα-radiation、管電圧:30kv、管電流:15mA、測定範囲:回折角2θ=5~45°、X線のスキャンスピード:10°/minとする。測定用サンプルとしては、測定対象のセルロース繊維を面積320mm×厚さ1mmのペレットに圧縮して作製する。また、セルロースI型結晶構造の結晶化度は得られたX線回折強度を、以下の式Cに基づいて算出する。
[Confirmation of crystal structure in modified cellulose fiber]
The crystal structure of the modified cellulose fiber is confirmed by measuring under the following conditions using an X-ray diffractometer (MiniFlexII manufactured by Rigaku Co., Ltd.).
The measurement conditions are X-ray source: Cu / Kα-radiation, tube voltage: 30 kv, tube current: 15 mA, measurement range: diffraction angle 2 θ = 5 to 45 °, and X-ray scan speed: 10 ° / min. As a sample for measurement, the cellulose fiber to be measured is compressed into pellets having an area of 320 mm 2 × thickness of 1 mm. Further, the crystallinity of the cellulose type I crystal structure is calculated by calculating the obtained X-ray diffraction intensity based on the following formula C.
<式C>
 セルロースI型結晶化度(%)=[(I22.6-I18.5)/I22.6]×100
 〔式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
<Formula C>
Cellulose Type I Crystallinity (%) = [(I 22.6- I 18.5 ) / I 22.6 ] x 100
[In the formula, I 22.6 is the diffraction intensity of the lattice plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the amorphous portion (diffraction angle 2θ = 18.5). °) Diffraction intensity]
 一方、上記式Cで得られる結晶化度が35%以下の場合には、算出精度の向上の観点から、「木質科学実験マニュアル」(日本木材学会編;2000年4月発行)のP199-200の記載に則り、以下の式Dに基づいて算出することが好ましい。
 したがって、上記式Cで得られる結晶化度が35%以下の場合には、以下の式Dに基づいて算出した値を結晶化度として用いることができる。
On the other hand, when the crystallinity obtained by the above formula C is 35% or less, from the viewpoint of improving the calculation accuracy, P199-200 of "Wood Science Experiment Manual" (edited by Japan Wood Society; published in April 2000). It is preferable to calculate based on the following formula D according to the description of.
Therefore, when the crystallinity obtained by the above formula C is 35% or less, the value calculated based on the following formula D can be used as the crystallinity.
<式D>
 セルロースI型結晶化度(%)=[A/(A+A)]×100
 〔式中、Aは、X線回折における格子面(002面)(回折角2θ=22.6°)、(011面)(回折角2θ=15.1°)および(0-11面)(回折角2θ=16.2°)のピーク面積の総和、Aは,アモルファス部(回折角2θ=18.5°)のピーク面積を示し、各ピーク面積は得られたX線回折チャートをガウス関数でフィッティングすることで求める〕
<Equation D>
Cellulose type I crystallinity (%) = [ Ac / ( Ac + A a )] × 100
[In the equation, Ac is a lattice plane (002 plane) (diffraction angle 2θ = 22.6 °), (011 plane) (diffraction angle 2θ = 15.1 °) and (0-11 plane) in X-ray diffraction. sum of the peak areas of (the diffraction angle 2θ = 16.2 °), a a represents a peak area of an amorphous portion (angle of diffraction 2θ = 18.5 °), the X-ray diffraction chart each peak area is obtained Obtained by fitting with a Gaussian function]
〔改質セルロース繊維におけるセルロース繊維(換算量)〕
 改質セルロース繊維におけるセルロース量(換算量)とは、改質セルロース繊維中の、修飾基を除いたセルロースの量である。本発明における改質セルロース繊維は、修飾基の式量が相当程度(例えばグルコースの分子量よりも)大きい場合があるので、本明細書において、修飾基の式量の違いを排除して説明した方が妥当である場合、改質セルロース繊維の量ではなく、改質セルロース繊維を構成するセルロースの量(換算量)で表示する。
 改質セルロース繊維におけるセルロース繊維(換算量)は、以下の方法によって測定する。
[Cellulose fiber in modified cellulose fiber (converted amount)]
The amount of cellulose (converted amount) in the modified cellulose fiber is the amount of cellulose in the modified cellulose fiber excluding the modifying group. In the modified cellulose fiber in the present invention, the formula amount of the modifying group may be considerably larger (for example, than the molecular weight of glucose). When is appropriate, the amount of cellulose constituting the modified cellulose fiber (converted amount) is displayed instead of the amount of the modified cellulose fiber.
The cellulose fiber (converted amount) in the modified cellulose fiber is measured by the following method.
(1)添加される「修飾用化合物」が1種類の場合
 セルロース繊維量(換算量)を下記式Eによって算出する。
<式E>
セルロース繊維量(換算量)(g)=改質セルロース繊維の質量(g)/〔1+修飾用化合物の分子量(g/mol)×修飾基の結合量(mmol/g)×0.001〕
(2)添加される「修飾用化合物」が2種類以上の場合
 各化合物のモル比率(即ち、添加される化合物の合計モル量を1とした時のモル比率)を考慮して、セルロース繊維量(換算量)を算出する。
(1) When one kind of "modifying compound" is added The amount of cellulose fibers (converted amount) is calculated by the following formula E.
<Formula E>
Cellulose fiber amount (converted amount) (g) = mass of modified cellulose fiber (g) / [1 + molecular weight of modifying compound (g / mol) × bonding amount of modifying group (mmol / g) × 0.001]
(2) When there are two or more types of "modifying compounds" to be added The amount of cellulose fibers in consideration of the molar ratio of each compound (that is, the molar ratio when the total molar amount of the added compounds is 1) Calculate (converted amount).
〔アニオン変性セルロース繊維の調製1〕
調製例1
 針葉樹の漂白クラフトパルプ(ウエストフレザー社製、商品名:ヒントン)を原料の天然セルロース繊維として用いた。TEMPOとしては、市販品(ALDRICH社製、Free radical、98質量%)を用いた。次亜塩素酸ナトリウム、臭化ナトリウム及び水酸化ナトリウムとしては市販品を用いた。
[Preparation of anion-modified cellulose fiber 1]
Preparation Example 1
Softwood bleached kraft pulp (manufactured by West Freather, trade name: Hinton) was used as the raw material of natural cellulose fiber. As the TEMPO, a commercially available product (ALDRICH, Free radical, 98% by mass) was used. Commercially available products were used as sodium hypochlorite, sodium bromide and sodium hydroxide.
 まず、メカニカルスターラー、撹拌翼を備えた2LのPP製ビーカーに、前記漂白クラフトパルプ繊維10g、脱イオン水990gをはかり取り、25℃、100rpmで30分撹拌した。次いで、該パルプ繊維10gに対し、TEMPO 0.13g、臭化ナトリウム1.3g、10.5質量%次亜塩素酸ナトリウム水溶液35.5gをこの順で添加した。自動滴定装置(東亜ディーケーケー社製、商品名:AUT-701)でpHスタット滴定を用い、0.5M水酸化ナトリウム水溶液を滴下してpHを10.5に保持した。撹拌速度100rpmにて反応を25℃で120分行った後、水酸化ナトリウム水溶液の滴下を停止し、アニオン性基がカルボキシ基であるアニオン変性セルロース繊維(即ち、酸化セルロース繊維)の懸濁液を得た。 First, 10 g of the bleached kraft pulp fiber and 990 g of deionized water were weighed in a 2 L PP beaker equipped with a mechanical stirrer and a stirring blade, and the mixture was stirred at 25 ° C. and 100 rpm for 30 minutes. Next, 0.13 g of TEMPO, 1.3 g of sodium bromide, and 35.5 g of a 10.5 mass% sodium hypochlorite aqueous solution were added to 10 g of the pulp fiber in this order. Using a pH stat titration with an automatic titrator (manufactured by DKK-TOA Corporation, trade name: AUT-701), a 0.5 M sodium hydroxide aqueous solution was added dropwise to maintain the pH at 10.5. After the reaction was carried out at a stirring speed of 100 rpm at 25 ° C. for 120 minutes, the dropping of the aqueous sodium hydroxide solution was stopped, and a suspension of anionic-modified cellulose fibers (that is, oxidized cellulose fibers) in which the anionic group was a carboxy group was prepared. Obtained.
 得られたアニオン変性セルロース繊維の懸濁液に0.01Mの塩酸を加えてpH=2とした後に、コンパクト電気伝導率計(堀場製作所製、LAQUAtwin EC-33B)を用いた電導度測定によってろ液が200μs/cm以下になるまで、脱イオン水を用いてセルロース繊維を十分に洗浄、次いで脱水処理を行って、アニオン変性セルロース繊維を得た。また、このアニオン変性セルロース繊維のカルボキシ基含有量は1.50mmol/g、アルデヒド基含有量は0.23mmol/gであった。 After adding 0.01 M hydrochloric acid to the obtained suspension of anionic-modified cellulose fibers to adjust the pH to 2, filter by measuring the conductivity using a compact electric conductivity meter (LAQUAtwin EC-33B, manufactured by HORIBA, Ltd.). Cellulose fibers were thoroughly washed with deionized water until the liquid became 200 μs / cm or less, and then dehydrated to obtain anion-modified cellulose fibers. The carboxy group content of the anion-modified cellulose fiber was 1.50 mmol / g, and the aldehyde group content was 0.23 mmol / g.
調製例2(微細化アニオン変性セルロース繊維の製造)
 調製例1で最終的に得られたアニオン変性セルロース繊維に脱イオン水を添加して懸濁液(固形分含有量2.0質量%)100gを調製した。これに0.5M水酸化ナトリウム水溶液を添加してpH=8に調整後、脱イオン水を加えて合計200gとした。この懸濁液に、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)を用いて150MPaで微細化処理を3回行い、微細化アニオン変性セルロース繊維分散液(固形分含有量1.0質量%)を得た。この微細化アニオン変性セルロース繊維が有するカルボキシ基のカウンターイオンはナトリウムイオンであった。
Preparation Example 2 (Production of Micronized Anion-Modified Cellulose Fiber)
Deionized water was added to the anion-modified cellulose fiber finally obtained in Preparation Example 1 to prepare 100 g of a suspension (solid content content: 2.0% by mass). A 0.5 M aqueous sodium hydroxide solution was added to adjust the pH to 8, and then deionized water was added to bring the total amount to 200 g. This suspension was subjected to a micronization treatment at 150 MPa three times using a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) three times, and a miniaturized anion-modified cellulose fiber dispersion liquid (solid content content 1. 0% by mass) was obtained. The counter ion of the carboxy group of this miniaturized anion-modified cellulose fiber was sodium ion.
調製例3(アルデヒド基を還元処理した微細化アニオン変性セルロース繊維の製造)
 調製例2で得られた微細化アニオン変性セルロース繊維分散液(固形分含有量1.0質量%)182gをはかり取り、脱イオン水を加えて合計400gとした。そこに0.1M水酸化ナトリウム水溶液1.2mL、水素化ホウ素ナトリウム120mgを加え、25℃で4時間撹拌した。次に、1M塩酸9mLを加えてプロトン化を行った。反応終了後ろ過し、得られたケークを脱イオン水で6回洗浄して塩および塩酸を除去し、アルデヒド基が還元処理された、微細化アニオン変性セルロース繊維分散液(固形分含有量0.9質量%)を得た。得られたセルロース繊維のカルボキシ基含有量は1.50mmol/g、アルデヒド基含有量は0.02mmol/gであった。この微細化アニオン変性セルロース繊維が有するカルボキシ基は遊離酸型(COOH)となっており、「TCNF(酸型)」と略記する。この微細化アニオン変性セルロース繊維の平均繊維径は3.3nm、平均繊維長は600nmであった。
Preparation Example 3 (Production of Micronized Anion-Modified Cellulose Fiber with Reduction Treatment of Aldehyde Group)
182 g of the finely divided anion-modified cellulose fiber dispersion (solid content content 1.0% by mass) obtained in Preparation Example 2 was weighed, and deionized water was added to make a total of 400 g. 1.2 mL of 0.1 M aqueous sodium hydroxide solution and 120 mg of sodium borohydride were added thereto, and the mixture was stirred at 25 ° C. for 4 hours. Next, 9 mL of 1M hydrochloric acid was added for protonation. After completion of the reaction, the cake was filtered and washed with deionized water 6 times to remove salts and hydrochloric acid, and the aldehyde group was reduced. The finely divided anion-modified cellulose fiber dispersion liquid (solid content content 0. 9% by mass) was obtained. The obtained cellulose fiber had a carboxy group content of 1.50 mmol / g and an aldehyde group content of 0.02 mmol / g. The carboxy group of this miniaturized anion-modified cellulose fiber is a free acid type (COOH) and is abbreviated as "TCNF (acid type)". The average fiber diameter of the finely divided anion-modified cellulose fibers was 3.3 nm, and the average fiber length was 600 nm.
〔アニオン変性セルロース繊維の調製2〕
調製例4
 天然セルロースとして針葉樹の漂白クラフトパルプ(ウエストフレザー社製、商品名:ヒントン)10gを990gのイオン交換水で十分に撹拌した後、該パルプ10gに対し、TEMPO(ALDRICH社製、Free radical、98質量%)0.13g、臭化ナトリウム1.3g、10.5質量%次亜塩素酸ナトリウム水溶液(10.5質量%水溶液)27gをこの順で添加した。自動滴定装置(東亜ディーケーケー株式会社製、AUT-701)でpHスタット滴定を用い、0.5M水酸化ナトリウム水溶液を滴下してpHを10.5に保持した。撹拌速度200rpmにて反応を120分(20℃)行った後、水酸化ナトリウムの滴下を停止し、アニオン性基がカルボキシ基であるアニオン変性セルロース繊維(即ち、酸化セルロース繊維)の懸濁液を得た。
[Preparation of anion-modified cellulose fiber 2]
Preparation Example 4
After sufficiently stirring 10 g of coniferous bleached kraft pulp (manufactured by West Freder Co., Ltd., trade name: Hinton) as natural cellulose with 990 g of ion-exchanged water, TEMPO (manufactured by ALDRICH, Free radical, 98) per 10 g of the pulp. (% by mass) 0.13 g, 1.3 g of sodium bromide, and 27 g of a 10.5 mass% sodium hypochlorite aqueous solution (10.5 mass% aqueous solution) were added in this order. Using a pH stat titration with an automatic titrator (AUT-701, manufactured by DKK-TOA CORPORATION), a 0.5 M aqueous sodium hydroxide solution was added dropwise to maintain the pH at 10.5. After the reaction was carried out at a stirring speed of 200 rpm for 120 minutes (20 ° C.), the dropping of sodium hydroxide was stopped, and a suspension of anionic-modified cellulose fibers (that is, oxidized cellulose fibers) in which the anionic group was a carboxy group was prepared. Obtained.
 得られたアニオン変性セルロース繊維の懸濁液に0.01Mの塩酸を加えてpHを2とした後、コンパクト電気伝導率計(株式会社堀場製作所製、LAQUAtwin EC-33B)を用いた電導度測定によってろ液が200μs/cm以下になるまで、前記アニオン変性セルロース繊維をイオン交換水で十分に洗浄し、次いで脱水処理を行って、ケーク状のアニオン変性セルロース繊維を得た。得られたアニオン変性セルロース繊維の平均繊維長は594μm、平均繊維径は2.7μm、アスペクト比は220、カルボキシ基含有量は1.5mmol/gであった。このアニオン変性セルロース繊維はTCNF(酸型)であった。 0.01 M hydrochloric acid was added to the obtained suspension of anion-modified cellulose fibers to adjust the pH to 2, and then the conductivity was measured using a compact electric conductivity meter (LAQUAtwin EC-33B, manufactured by HORIBA, Ltd.). The anion-modified cellulose fibers were thoroughly washed with ion-exchanged water until the filtrate became 200 μs / cm or less, and then dehydrated to obtain cake-shaped anion-modified cellulose fibers. The obtained anion-modified cellulose fibers had an average fiber length of 594 μm, an average fiber diameter of 2.7 μm, an aspect ratio of 220, and a carboxy group content of 1.5 mmol / g. This anion-modified cellulose fiber was TCNF (acid type).
〔アニオン変性セルロース繊維の調製3〕
調製例5(短繊維化アニオン変性セルロース繊維の調製)
 調製例4で得られたアニオン変性セルロース繊維を絶乾質量で絶乾質量で1.8g仕込み、内容物の質量が36gとなるまで、イオン交換水を添加した。次いで、撹拌しながらこの混合物を95℃で3時間処理することで、短繊維化アニオン変性セルロース繊維の水懸濁液を得た。得られたアニオン変性セルロース繊維の平均繊維長は210μm、平均繊維径は3.3μm、アスペクト比は64、カルボキシ基含有量は1.5mmol/gであった。このアニオン変性セルロース繊維はTCNF(酸型)であった。
[Preparation of anion-modified cellulose fibers 3]
Preparation Example 5 (Preparation of Shortened Anion-Modified Cellulose Fiber)
The anion-modified cellulose fiber obtained in Preparation Example 4 was charged with an absolute dry mass of 1.8 g, and ion-exchanged water was added until the mass of the contents became 36 g. The mixture was then treated at 95 ° C. for 3 hours with stirring to give an aqueous suspension of the shortened anion-modified cellulose fibers. The obtained anion-modified cellulose fibers had an average fiber length of 210 μm, an average fiber diameter of 3.3 μm, an aspect ratio of 64, and a carboxy group content of 1.5 mmol / g. This anion-modified cellulose fiber was TCNF (acid type).
〔アニオン変性セルロース繊維の調製4〕
調製例6
 天然セルロースとして針葉樹の漂白クラフトパルプ(ウエストフレザー社製、商品名:ヒントン)8gを760gのイオン交換水で十分に撹拌した後、該パルプ8gに対し、TEMPO(ALDRICH社製、Free radical、98質量%)0.09g、臭化ナトリウム1.0g、5.0質量%次亜塩素酸ナトリウム水溶液21g(パルプ1gに対して3.8mmol/g)をこの順で添加した。自動滴定装置(東亜ディーケーケー株式会社製、AUT-701)でpHスタット滴定を用い、0.5M水酸化ナトリウム水溶液を滴下してpHを10.5に保持した。撹拌速度200rpmにて反応を120分(20℃)行った後、水酸化ナトリウムの滴下を停止し、アニオン性基がカルボキシ基であるアニオン変性セルロース繊維(即ち、酸化セルロース繊維)の懸濁液を得た。
[Preparation of anion-modified cellulose fibers 4]
Preparation Example 6
After sufficiently stirring 8 g of coniferous bleached kraft pulp (manufactured by West Freder Co., Ltd., trade name: Hinton) as natural cellulose with 760 g of ion-exchanged water, TEMPO (manufactured by ALDRICH Co., Ltd., Free radical, 98) is added to the pulp 8 g. (% by mass) 0.09 g, 1.0 g of sodium bromide, and 21 g of a 5.0 mass% sodium hypochlorite aqueous solution (3.8 mmol / g with respect to 1 g of pulp) were added in this order. Using a pH stat titration with an automatic titrator (AUT-701, manufactured by DKK-TOA CORPORATION), a 0.5 M aqueous sodium hydroxide solution was added dropwise to maintain the pH at 10.5. After the reaction was carried out at a stirring speed of 200 rpm for 120 minutes (20 ° C.), the dropping of sodium hydroxide was stopped, and a suspension of anionic-modified cellulose fibers (that is, oxidized cellulose fibers) in which the anionic group was a carboxy group was prepared. Obtained.
 得られたアニオン変性セルロース繊維の懸濁液に0.01Mの塩酸を加えてpHを2とした後、イオン交換水を用いてコンパクト電気伝導率計(株式会社堀場製作所製、LAQUAtwin EC-33B)による、ろ液の電導度測定において200μs/cm以下になるまで前記アニオン変性セルロース繊維を十分に洗浄し、次いで脱水処理を行って、ケーク状のアニオン変性セルロース繊維を得た。得られたアニオン変性セルロース繊維のカルボキシ基含有量は1.3mmol/gであった。このアニオン変性セルロース繊維はTCNF(酸型)であった。 After adding 0.01 M hydrochloric acid to the obtained suspension of anionic-modified cellulose fibers to adjust the pH to 2, a compact electric conductivity meter (LAQUAtwin EC-33B, manufactured by HORIBA, Ltd.) using ion-exchanged water. The anion-modified cellulose fibers were sufficiently washed until the electric conductivity of the filtrate was measured to 200 μs / cm or less, and then dehydration treatment was performed to obtain cake-shaped anion-modified cellulose fibers. The carboxy group content of the obtained anion-modified cellulose fiber was 1.3 mmol / g. This anion-modified cellulose fiber was TCNF (acid type).
〔増粘剤組成物の作製〕
実施例1
 調製例3で得られた微細化アニオン変性セルロース繊維分散液をイソプロピルアルコール(IPA)で3回洗浄後、スクアランで3回洗浄して溶媒置換を行った。得られたゲルをビーカーに66.7g(固形分含有量0.9質量%)、アミノ変性シリコーン1.53g(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)入れて混合し、そこにスクアランを加えて合計120gとした。この混合物をメカニカルスターラーで5分間、常温で撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで10パス処理させることで、アニオン変性セルロース繊維に、アミノ変性シリコーンがイオン結合を介して連結した改質セルロース繊維のスクアラン分散液を得た。この分散液を増粘剤組成物とした。
[Preparation of thickener composition]
Example 1
The micronized anion-modified cellulose fiber dispersion obtained in Preparation Example 3 was washed 3 times with isopropyl alcohol (IPA) and then washed 3 times with Squalane to replace the solvent. The obtained gel was placed in a beaker at 66.7 g (solid content: 0.9% by mass) and 1.53 g of amino-modified silicone (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed. Squalane was added to the total amount to 120 g. This mixture is stirred with a mechanical stirrer for 5 minutes at room temperature, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 10 passes to make anionic-modified cellulose fibers amino-modified. A squalane dispersion of modified cellulose fibers in which silicone was linked via ionic bonds was obtained. This dispersion was used as a thickener composition.
実施例2
 実施例1におけるIPAをアセトンに、スクアランをトルエンに、アミノ変性シリコーンをモノアミンEOPOアミンに替えたこと以外は実施例1と同様にして、改質セルロース繊維のトルエン分散液を得た。この分散液を増粘剤組成物とした。
Example 2
A toluene dispersion of modified cellulose fibers was obtained in the same manner as in Example 1 except that IPA in Example 1 was replaced with acetone, squalane was replaced with toluene, and amino-modified silicone was replaced with monoamine EOPOamine. This dispersion was used as a thickener composition.
実施例3
 調製例4で得られたアニオン変性セルロース繊維分散液を1-メトキシ-2-プロパノール(PGME)で3回洗浄して溶媒置換を行った。得られたゲルをビーカーに7.0g(固形分含有量14.6質量%)、EOPOアミン3.1g(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)に入れて混合し、そこにPGMEを33.0g加えて合計43gとした。この溶液をメカニカルスターラーで1時間、常温で撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させることで、アニオン変性セルロース繊維に、EOPOアミンがイオン結合を介して連結した改質セルロース繊維の1-メトキシ-2-プロパノール分散液を得た。この分散液を増粘剤組成物とした。
Example 3
The anion-modified cellulose fiber dispersion obtained in Preparation Example 4 was washed 3 times with 1-methoxy-2-propanol (PGME) and subjected to solvent substitution. The obtained gel was placed in a beaker in 7.0 g (solid content 14.6% by mass) and 3.1 g of EOPO amine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed. 33.0 g of PGME was added to the total to 43 g. This solution is stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to give EOPO amine to anionic-modified cellulose fibers. Obtained a 1-methoxy-2-propanol dispersion of modified cellulose fibers linked via ionic bonds. This dispersion was used as a thickener composition.
実施例4
 実施例3のPGMEに替えてメチルエチルケトン(MEK)を用い、3回洗浄して溶媒置換を行った。得られたゲルをビーカーに5.3g(固形分含有量3.77質量%)、オレイルアミン0.086g(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)に入れて混合し、そこにMEKを20.0gとスクアラン40.0g加えて合計65gとした。この溶液をメカニカルスターラーで1時間、常温で撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させた。その分散液を80℃で減圧乾燥することでスクアラン以外の溶媒を除去し、アニオン変性セルロース繊維にオレイルアミンがイオン結合を介して連結した改質セルロース繊維のスクアラン分散液を得た。この分散液を増粘剤組成物とした。
Example 4
Methyl ethyl ketone (MEK) was used in place of the PGME of Example 3, and the cells were washed three times to replace the solvent. The obtained gel was placed in a beaker in 5.3 g (solid content content: 3.77% by mass) and 0.086 g of oleylamine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and mixed therein. 20.0 g of MEK and 40.0 g of squalane were added to make a total of 65 g. This solution was stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes. Solvents other than squalane were removed by drying the dispersion at 80 ° C. under reduced pressure to obtain a squalane dispersion of modified cellulose fibers in which oleylamine was linked to anion-modified cellulose fibers via ionic bonds. This dispersion was used as a thickener composition.
実施例5
 実施例3のPGMEに替えてDMFを用い、修飾用化合物を用いなかったことを除いては、実施例3と同様にして、アニオン変性セルロース繊維のDMF分散液を得た。この分散液を増粘剤組成物とした。
Example 5
A DMF dispersion of anion-modified cellulose fibers was obtained in the same manner as in Example 3 except that DMF was used instead of PGME in Example 3 and no modifying compound was used. This dispersion was used as a thickener composition.
実施例6
 調製例5で得られたアニオン変性セルロース繊維分散液を、トリエチレングリコールモノブチルエーテル(東京化成工業株式会社製、「TGME」と略記する。)で3回洗浄して溶媒置換を行った。得られたゲル11.2g(固形分含有量13.4質量%)及び濃度25質量%のテトラブチルアンモニウムヒドロキシド水溶液2.0g(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)をビーカーに入れて混合し、そこにトリエチレングリコールモノブチルエーテルを16.8g加えて合計30gとした。この溶液をメカニカルスターラーで1時間、常温で撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させることで、アニオン変性セルロース繊維に、テトラブチルアンモニウムがイオン結合を介して連結した改質セルロース繊維のトリエチレングリコールモノブチルエーテル分散液を得た。この分散液を増粘剤組成物とした。
Example 6
The anion-modified cellulose fiber dispersion obtained in Preparation Example 5 was washed with triethylene glycol monobutyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as "TGME") three times to replace the solvent. 11.2 g of the obtained gel (solid content content 13.4% by mass) and 2.0 g of a tetrabutylammonium hydroxide aqueous solution having a concentration of 25% by mass (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber). The mixture was placed in a beaker and mixed, and 16.8 g of triethylene glycol monobutyl ether was added thereto to make a total of 30 g. This solution is stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to give tetrabutyl to anionic-modified cellulose fibers. A triethylene glycol monobutyl ether dispersion of modified cellulose fibers in which ammonium was linked via an ionic bond was obtained. This dispersion was used as a thickener composition.
実施例7
 実施例6で使用した修飾用化合物を、濃度25質量%のテトラブチルアンモニウムヒドロキシド水溶液1.0g(アニオン変性セルロース繊維のカルボキシ基に対して0.5当量に相当)及びEOPOアミン2.0g(アニオン変性セルロース繊維のカルボキシ基に対して0.5当量に相当)に変更した以外は、実施例6と同様の作業を行うことで、アニオン変性セルロース繊維に、テトラブチルアンモニウムおよびEOPOアミンがイオン結合を介して連結した改質セルロース繊維のトリエチレングリコールモノブチルエーテル分散液を得た。この分散液を増粘剤組成物とした。
Example 7
The modifying compound used in Example 6 was mixed with 1.0 g of a tetrabutylammonium hydroxide aqueous solution having a concentration of 25% by mass (corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber) and 2.0 g of EOPO amine (corresponding to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber). By performing the same operation as in Example 6 except that the amount was changed to 0.5 equivalent with respect to the carboxy group of the anion-modified cellulose fiber, tetrabutylammonium and EOPOamine were ionically bonded to the anion-modified cellulose fiber. A triethylene glycol monobutyl ether dispersion of modified cellulose fibers linked via the above was obtained. This dispersion was used as a thickener composition.
実施例8
 実施例7で使用した修飾用化合物を、EOPOアミン(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)に変更した以外は、実施例7と同様の作業を行うことで、アニオン変性セルロース繊維にEOPOアミンがイオン結合を介して連結した改質セルロース繊維のTGME分散液を得た。この分散液を増粘性組成物とした。
Example 8
By performing the same operation as in Example 7 except that the modifying compound used in Example 7 was changed to EOPO amine (corresponding to 1 equivalent with respect to the carboxy group of the anion-modified cellulose fiber), the anion-modified cellulose was performed. A TGME dispersion of modified cellulose fibers in which EOPO amines were linked to the fibers via ionic bonds was obtained. This dispersion was used as a thickening composition.
実施例9
 実施例3で使用した溶媒のPGMEをTGMEに替えたこと以外は実施例3と同様にして、改質セルロース繊維のTGME分散液を得た。この分散液を増粘性組成物とした。なお、増粘性組成物中の改質セルロース繊維の濃度(即ち、固形物含有量)は、表1-1に記載の値とした。
Example 9
A TGME dispersion of modified cellulose fibers was obtained in the same manner as in Example 3 except that the PGME of the solvent used in Example 3 was replaced with TGME. This dispersion was used as a thickening composition. The concentration of the modified cellulose fiber (that is, the solid content) in the thickening composition was set to the value shown in Table 1-1.
実施例10
 調製例6で得られたケーク状のアニオン変性セルロース繊維をビーカーに1.38g(固形分含有量18.5質量%)投入し、ここにイオン交換水を50g、EOPOアミン0.66g(アニオン変性セルロース繊維のカルボキシ基に対して1当量に相当)入れて混合し、合計52gとした。この溶液をメカニカルスターラーで1時間、常温で撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて100MPaで1パス処理させた。その後TGMEを50g添加し撹拌後、さらに100MPaで1パス処理させた。この分散液を80℃で減圧乾燥することでTGME以外の溶媒を除去し、アニオン変性セルロース繊維にEOPOアミンがイオン結合を介して連結した改質セルロース繊維のTGME分散液を得た。この分散液を増粘剤組成物とした。
Example 10
1.38 g (solid content content 18.5% by mass) of the cake-shaped anion-modified cellulose fiber obtained in Preparation Example 6 was put into a beaker, and 50 g of ion-exchanged water and 0.66 g of EOPO amine (anion-modified) were added thereto. (Equivalent to 1 equivalent to the carboxy group of the cellulose fiber) was added and mixed to make a total of 52 g. This solution was stirred with a mechanical stirrer at room temperature for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 100 MPa for 1 pass. Then, 50 g of TGME was added, and the mixture was further stirred at 100 MPa for 1 pass treatment. Solvents other than TGME were removed by drying this dispersion at 80 ° C. under reduced pressure to obtain a TGME dispersion of modified cellulose fibers in which EOPOamine was linked to anion-modified cellulose fibers via ionic bonds. This dispersion was used as a thickener composition.
 上記実施例等で使用した修飾用化合物は次の通りである。
アミノ変性シリコーン(東レ・ダウコーニング株式会社製、BY16-209)
EOPOアミン(米国ハンツマン(Huntsman)社製、ジェファーミン(Jeffamine)M2070、PO/EO(モル比)=10/31)
オレイルアミン(富士フイルム和光純薬株式会社製)
25質量%テトラブチルアンモニウムヒドロキシド溶液(富士フイルム和光純薬株式会社製)
 アミノ変性シリコーンは修飾基としてシリコーン鎖を、EOPOアミンは修飾基としてアルキレンオキサイド鎖((EO/PO)共重合体)を、オレイルアミン及びテトラブチルアンモニウムヒドロキシドは修飾基として炭化水素基を、それぞれセルロース繊維に提供する。
The modifying compounds used in the above examples and the like are as follows.
Amino-modified silicone (manufactured by Toray Dow Corning Co., Ltd., BY16-209)
EOPO Amine (Made by Huntsman, USA, Jeffamine M2070, PO / EO (molar ratio) = 10/31)
Oleylamine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
25% by mass tetrabutylammonium hydroxide solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Amino-modified silicone has a silicone chain as a modifying group, EOPOamine has an alkylene oxide chain ((EO / PO) copolymer) as a modifying group, and oleylamine and tetrabutylammonium hydroxide have a hydrocarbon group as a modifying group. Provide to the fiber.
〔低分子増粘剤組成物の作製〕
比較例1
 バイアル瓶に増粘剤として12-ヒドロキシステアリン酸リチウム(勝田化工株式会社製)をスクアラン10gに対して、0.05g(0.5質量%)添加し、205℃に熱したブロックヒーター中で加熱・撹拌することで増粘剤を溶解させた。これを常温で放冷し、比較例1の低分子増粘剤組成物を得た。
[Preparation of Small Molecule Thickener Composition]
Comparative Example 1
To a vial, add 0.05 g (0.5% by mass) of lithium 12-hydroxystearate (manufactured by Katsuta Kako Co., Ltd.) as a thickener to 10 g of squalane and heat in a block heater heated to 205 ° C. -The thickener was dissolved by stirring. This was allowed to cool at room temperature to obtain a small molecule thickener composition of Comparative Example 1.
比較例2
 バイアル瓶に増粘剤として脂肪酸アマイドS(花王株式会社製)をTGME20gに対して1.0g(5質量%)添加し、90℃に熱したブロックヒーター中で加熱・撹拌することで増粘剤を溶解させた。これを常温で放冷し、比較例2の低分子増粘性組成物を得た。
Comparative Example 2
Fatty acid Amide S (manufactured by Kao Corporation) is added to a vial as a thickener by adding 1.0 g (5% by mass) to 20 g of TGME, and the thickener is heated and stirred in a block heater heated to 90 ° C. Was dissolved. This was allowed to cool at room temperature to obtain a small molecule thickening composition of Comparative Example 2.
比較例3
 未改質セルロース繊維(スギノマシン社製、BiNFi-s、WFo-10002(平均繊維径10~50nm))の2質量%水分散体を1-メトキシ-2-プロパノール(PGME)で1回洗浄した後、メチルエチルケトン(MEK)で3回洗浄して溶媒置換を行った。得られた混合物をビーカーに3.3g(固形分含有量4.6質量%)、PGME 5g、MEK 30g投入し、さらにスクアラン40.0g加えて合計78gとした。この溶液をメカニカルスターラーで1時間撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させることで、未改質セルロース繊維分散液を得た。
Comparative Example 3
A 2% by mass aqueous dispersion of unmodified cellulose fibers (Sugino Machine Limited, BiNFi-s, WFo-10002 (average fiber diameter 10 to 50 nm)) was washed once with 1-methoxy-2-propanol (PGME). After that, it was washed with methyl ethyl ketone (MEK) three times to replace the solvent. 3.3 g (solid content content 4.6% by mass), 5 g of PGME and 30 g of MEK were added to the beaker of the obtained mixture, and 40.0 g of squalane was further added to make a total of 78 g. This solution was stirred with a mechanical stirrer for 1 hour and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to obtain an unmodified cellulose fiber dispersion.
 その分散液をエバポレーターを用いてPGME/MEKを除去し(80℃、2時間)、未改質セルロース繊維を含有するスクアラン分散液を得た。PGME/MEKを除去する工程で未改質セルロース繊維が凝集し、液体と凝集物とに分離した。そのため、粘度測定等の評価ができなかった。 PGME / MEK was removed from the dispersion using an evaporator (80 ° C., 2 hours) to obtain a squalane dispersion containing unmodified cellulose fibers. In the step of removing PGME / MEK, the unmodified cellulose fibers aggregated and separated into a liquid and an aggregate. Therefore, evaluation such as viscosity measurement could not be performed.
比較例4
 比較例3のPGME/MEKに替えてDMFを用いたこと以外は比較例3と同様に溶媒置換を行った。得られた混合物をビーカーに7.6g(固形分含有量2.7質量%)、DMF 40.0g加えて合計48gとした。この溶液をメカニカルスターラーで1時間撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させることで、未改質セルロース繊維のDMF分散液を得た。この分散液の25℃での粘度測定を実施することができたものの、80℃では液体と凝集物とに分離してしまい、粘度測定を実施できなかった。
Comparative Example 4
Solvent substitution was performed in the same manner as in Comparative Example 3 except that DMF was used instead of PGME / MEK in Comparative Example 3. The obtained mixture was added to a beaker in an amount of 7.6 g (solid content: 2.7% by mass) and 40.0 g of DMF to make a total of 48 g. This solution is stirred with a mechanical stirrer for 1 hour and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to obtain a DMF dispersion of unmodified cellulose fibers. rice field. Although it was possible to measure the viscosity of this dispersion at 25 ° C, it was not possible to measure the viscosity at 80 ° C because the liquid and agglomerates were separated.
比較例5
 調製例4で得られた、脱水処理後のケーク状のアニオン変性セルロース繊維(固形分含有量26.1質量%)20gを250gのイオン交換水で十分に撹拌した後、コンパクトpHメーター(株式会社堀場製作所製、LAQUATWIN-PH-11B)によるろ液のpH測定においてpHが7.0になるまで水酸化ナトリウム水溶液を添加し、カルボキシ基末端がNa置換されたアニオン変性セルロース繊維を得た。得られたNa置換されたアニオン変性セルロース繊維水分散液をDMFで3回洗浄して溶媒置換を行った。
Comparative Example 5
After sufficiently stirring 20 g of the cake-like anion-modified cellulose fiber (solid content content 26.1% by mass) obtained in Preparation Example 4 with 250 g of ion-exchanged water, a compact pH meter (Co., Ltd.) In the pH measurement of the filtrate by HORIBA, Ltd. (LAQUATWIN-PH-11B), an aqueous sodium hydroxide solution was added until the pH reached 7.0 to obtain anion-modified cellulose fibers having Na-substituted carboxy group terminals. The obtained Na-substituted anionic-modified cellulose fiber aqueous dispersion was washed with DMF three times to perform solvent substitution.
 得られた組成物をビーカーに5.0g(固形分含有量3.0質量%)、DMF 25.0g加えて合計30gとした。この溶液をメカニカルスターラーで1時間撹拌した後、高圧ホモジナイザー(吉田機械社製、商品名:ナノヴェイタL-ES)にて150MPaで5パス処理させることで、Na型アニオン変性セルロース繊維のDMF分散液を得た。この分散液の25℃での粘度測定を実施することができたものの、80℃では液体と凝集物とに分離してしまい、粘度測定を実施できなかった。 5.0 g (solid content content: 3.0% by mass) and 25.0 g of DMF were added to the beaker to make a total of 30 g of the obtained composition. This solution is stirred with a mechanical stirrer for 1 hour, and then treated with a high-pressure homogenizer (manufactured by Yoshida Machinery Co., Ltd., trade name: NanoVeta L-ES) at 150 MPa for 5 passes to obtain a DMF dispersion of Na-type anion-modified cellulose fibers. Obtained. Although it was possible to measure the viscosity of this dispersion at 25 ° C, it was not possible to measure the viscosity at 80 ° C because the liquid and agglomerates were separated.
〔増粘剤組成物のレオメーター評価〕
 増粘剤組成物の粘性評価は、レオメーター(Anton Paar社製、Physica MCR300)を用いて粘度測定を実施した。測定治具はコーン型治具CP50-1を使用(回転軸コンプライアンスは4.5×10-7m/N)、測定条件はせん断速度を1回目0.001~1000s-1、2回目1000~0.001s-1、3回目0.001~1000s-1の条件で測定を行い、粘度の安定性の観点から3回目測定時、各温度でせん断速度1.0s-1の際の粘性を比較した。
 なお、参考例として、各非水系溶媒そのものの粘度も同様の方法で測定した。
[Rheometer evaluation of thickener composition]
The viscosity of the thickener composition was evaluated by measuring the viscosity using a rheometer (Physica MCR300, manufactured by Anton Paar). The measuring jig uses a cone type jig CP50-1 (rotation axis compliance is 4.5 x 10-7 m / N), and the measurement conditions are the shear rate of 0.001 to 1000 s -1 for the first time and 1000 to 1000 for the second time. Measurements were made under the conditions of 0.001s -1 and 0.001 to 1000s -1 for the third time, and the viscosity at each temperature at a shear rate of 1.0s -1 was compared at the time of the third measurement from the viewpoint of viscosity stability. bottom.
As a reference example, the viscosity of each non-aqueous solvent itself was also measured by the same method.
 各例の組成及び結果を表1-1、表1-2、表2-1及び表2-2に示す。 The composition and results of each example are shown in Table 1-1, Table 1-2, Table 2-1 and Table 2-2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔増粘性組成物のレオメーターチャート〕
 実施例1、比較例1及び実施例8~10における増粘剤組成物についてのレオメーターチャートを図1及び図2に示す。図1及び図2のレオメーターチャートは、上記レオメーターおよび測定治具を使用し、表3の測定条件にて実施した。
[Rheometer chart of thickening composition]
Rheometer charts for the thickener compositions of Example 1, Comparative Example 1 and Examples 8-10 are shown in FIGS. 1 and 2. The rheometer charts of FIGS. 1 and 2 were carried out under the measurement conditions shown in Table 3 using the above rheometer and measuring jig.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例11
 バイアル瓶に実施例8で調製したTGME分散液2.5gと無機粉10gを添加し、2分間スパチュラを用いて撹拌した。その後、泡とり練太郎(ARE-310、株式会社 シンキー製)を用いて2200rpm、10分間撹拌した。その後、スパチュラで撹拌し無機粉含有ペーストを調製した。
 調製した無機粉含有ペーストを、マイクロピペットを使用してスライドガラス上に10μL滴下(25℃)した。このスライドガラスを120℃および200℃に加熱したホットプレート上に載せ、1分間加熱した。その後、各ペーストの無機粉の広がりの直径を光学顕微鏡観察より計測し、加熱前後の無機粉含有ペーストの面積比の評価を行った。尚、200℃の測定時、TGMEが揮発によりほぼ完全に除去されていた。結果を表4に記載する。
Example 11
2.5 g of the TGME dispersion prepared in Example 8 and 10 g of the inorganic powder were added to the vial, and the mixture was stirred with a spatula for 2 minutes. Then, the mixture was stirred at 2200 rpm for 10 minutes using Awatori Rentaro (ARE-310, manufactured by Shinky Co., Ltd.). Then, the paste was stirred with a spatula to prepare an inorganic powder-containing paste.
The prepared inorganic powder-containing paste was added dropwise (25 ° C.) on a slide glass using a micropipette. The slide glass was placed on a hot plate heated to 120 ° C. and 200 ° C. and heated for 1 minute. Then, the diameter of the spread of the inorganic powder of each paste was measured by observation with an optical microscope, and the area ratio of the inorganic powder-containing paste before and after heating was evaluated. At the time of measurement at 200 ° C., TGME was almost completely removed by volatilization. The results are shown in Table 4.
比較例6
 バイアル瓶に比較例2で調製したTGME分散液(脂肪酸アマイドS)2.5gに対して無機粉10gを添加した。その後、90℃に熱したブロックヒーター中で5分間加熱・撹拌することで増粘剤を溶解させた。その後、放冷し、スパチュラで撹拌することで無機粉含有ペーストを得た。その後、実施例11と同様の評価を行った。結果を表4に記載する。
Comparative Example 6
To the vial, 10 g of the inorganic powder was added to 2.5 g of the TGME dispersion (fatty acid amide S) prepared in Comparative Example 2. Then, the thickener was dissolved by heating and stirring for 5 minutes in a block heater heated to 90 ° C. Then, the mixture was allowed to cool and stirred with a spatula to obtain an inorganic powder-containing paste. Then, the same evaluation as in Example 11 was performed. The results are shown in Table 4.
参考例6
 実施例11で使用したTGME分散液をTGMEに変更した以外は実施例11と同様に無機粉含有ペーストを調製した。その後、実施例11と同様の評価を行った。結果を表4に記載する。
Reference example 6
An inorganic powder-containing paste was prepared in the same manner as in Example 11 except that the TGME dispersion used in Example 11 was changed to TGME. Then, the same evaluation as in Example 11 was performed. The results are shown in Table 4.
 上記実施例等で使用した無機粉は次の通りである。
 Cu粉末(三井金属鉱業株式会社製、品番:湿式銅粉 1100Y、平均粒径1.1μm)
The inorganic powders used in the above examples and the like are as follows.
Cu powder (manufactured by Mitsui Mining & Smelting Co., Ltd., product number: wet copper powder 1100Y, average particle size 1.1 μm)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1~表2より、実施例1~4及び8~10では、25℃における粘度と比較して、80℃における粘度の低下が抑制されていることが分かった。図1、2より、本願の実施例の組成物は、比較例の組成物と比較して、幅広い温度幅で安定した増粘効果を示すことが分かった。
 改質セルロース繊維が短繊維化されたもの(実施例5~7)も同様の効果が確認できた。このような結果から、本発明の増粘剤組成物は50℃を超える温度で使用できる増粘剤組成物であることが分かった。
 表4より、無機化合物を含有する実施例11は、非水系溶媒の高温増粘性があることから、高い温度であっても減粘しないこと、即ち、無機化合物が広がらないことがわかった。
 これらの結果から、本発明の組成物は、50℃以上での加工を伴う用途、例えば、電子材料用、光学材料用又は構造材料用の組成物として有用であることが分かる。
From Tables 1 to 2, it was found that in Examples 1 to 4 and 8 to 10, the decrease in viscosity at 80 ° C. was suppressed as compared with the viscosity at 25 ° C. From FIGS. 1 and 2, it was found that the composition of the example of the present application exhibited a stable thickening effect in a wide temperature range as compared with the composition of the comparative example.
The same effect was confirmed in the modified cellulose fibers in which the fibers were shortened (Examples 5 to 7). From these results, it was found that the thickener composition of the present invention is a thickener composition that can be used at a temperature exceeding 50 ° C.
From Table 4, it was found that Example 11 containing the inorganic compound did not reduce the viscosity even at a high temperature because of the high-temperature thickening of the non-aqueous solvent, that is, the inorganic compound did not spread.
From these results, it can be seen that the composition of the present invention is useful as a composition for applications involving processing at 50 ° C. or higher, for example, for electronic materials, optical materials, or structural materials.
 本発明の増粘剤組成物は、家電部品、電子材料(エレクトロニクス)、包装材料、航空宇宙、土木建築、自動車、車載向けなどの分野に利用することができる。 The thickener composition of the present invention can be used in fields such as home appliance parts, electronic materials (electronics), packaging materials, aerospace, civil engineering and construction, automobiles, and automobiles.

Claims (23)

  1.  改質セルロース繊維及び非水系溶媒を含有し、50℃以上で使用される増粘剤組成物であって、
     前記改質セルロース繊維は、下記(1)及び(2)からなる群より選択される1種以上のものである、増粘剤組成物。
      (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
      (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
    A thickener composition containing modified cellulose fibers and a non-aqueous solvent and used at 50 ° C. or higher.
    The modified cellulose fiber is one or more selected from the group consisting of the following (1) and (2), and is a thickener composition.
    (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
  2.  80℃/25℃の粘度比が0.6以上である、請求項1に記載の増粘剤組成物。 The thickener composition according to claim 1, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more.
  3.  前記(1)におけるセルロース繊維がアニオン変性セルロース繊維である、請求項1又は2に記載の増粘剤組成物。 The thickener composition according to claim 1 or 2, wherein the cellulose fiber in the above (1) is an anion-modified cellulose fiber.
  4.  修飾基がイオン結合及び/又は共有結合を介してアニオン変性セルロース繊維のアニオン性基に結合したものである、請求項3に記載の増粘剤組成物。 The thickener composition according to claim 3, wherein the modifying group is bonded to the anionic group of the anionic-modified cellulose fiber via an ionic bond and / or a covalent bond.
  5.  アルキレンオキサイド鎖が、エチレンオキサイド(EO)重合部、プロピレンオキサイド(PO)重合部、及び(EO/PO)共重合部からなる群より選択される1種以上の(共)重合部である、請求項1~4のいずれか1項に記載の増粘剤組成物。 Claimed that the alkylene oxide chain is one or more (co) polymerized parts selected from the group consisting of an ethylene oxide (EO) polymerized part, a propylene oxide (PO) polymerized part, and a (EO / PO) copolymerized part. Item 3. The thickener composition according to any one of Items 1 to 4.
  6.  非水系溶媒が炭化水素系溶媒又はグリコールエーテル系溶媒を含有する、請求項1~5のいずれか1項に記載の増粘剤組成物。 The thickener composition according to any one of claims 1 to 5, wherein the non-aqueous solvent contains a hydrocarbon solvent or a glycol ether solvent.
  7.  改質セルロース繊維における修飾基が(c)アルキレンオキサイド鎖を含有し、非水系溶媒がグリコールエーテル系溶媒を含む、請求項1~6のいずれか1項に記載の増粘剤組成物。 The thickener composition according to any one of claims 1 to 6, wherein the modifying group in the modified cellulose fiber contains (c) an alkylene oxide chain and the non-aqueous solvent contains a glycol ether solvent.
  8.  改質セルロース繊維の平均繊維径が1nm以上300nm以下である、請求項1~7のいずれか1項に記載の増粘剤組成物。 The thickener composition according to any one of claims 1 to 7, wherein the average fiber diameter of the modified cellulose fiber is 1 nm or more and 300 nm or less.
  9.  電子材料用、光学材料用又は構造材料用である、請求項1~8のいずれか1項に記載の増粘剤組成物。 The thickener composition according to any one of claims 1 to 8, which is for electronic materials, optical materials, or structural materials.
  10.  さらに無機化合物を含んでなる請求項1~9のいずれか1項に記載の増粘剤組成物。 The thickener composition according to any one of claims 1 to 9, further comprising an inorganic compound.
  11.  下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維を含有する、非水系溶媒の粘度制御剤。
      (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
      (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
    A viscosity control agent for a non-aqueous solvent containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2).
    (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
  12.  さらに無機化合物を含んでなる、請求項11に記載の粘度制御剤。 The viscosity control agent according to claim 11, further comprising an inorganic compound.
  13.  50℃以上で使用される、請求項11又は12に記載の粘度制御剤。 The viscosity control agent according to claim 11 or 12, which is used at 50 ° C. or higher.
  14.  80℃/25℃の粘度比が0.6以上である、請求項11~13のいずれか1項に記載の粘度制御剤。 The viscosity control agent according to any one of claims 11 to 13, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more.
  15.  120℃/25℃の粘度比が0.6以上である、請求項11~14のいずれか1項に記載の粘度制御剤。 The viscosity control agent according to any one of claims 11 to 14, wherein the viscosity ratio at 120 ° C./25 ° C. is 0.6 or more.
  16.  下記(1)及び(2)からなる群より選択される1種以上の改質セルロース繊維と非水系溶媒とを含有する増粘剤組成物の50℃以上での使用。
      (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
      (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
    Use of a thickener composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2) and a non-aqueous solvent at 50 ° C. or higher.
    (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
  17.  80℃/25℃の粘度比が0.6以上である、請求項16に記載の使用。 The use according to claim 16, wherein the viscosity ratio at 80 ° C./25 ° C. is 0.6 or more.
  18.  120℃/25℃の粘度比が0.6以上である、請求項16又は17に記載の使用。 The use according to claim 16 or 17, wherein the viscosity ratio at 120 ° C./25 ° C. is 0.6 or more.
  19.  50℃以上の温度幅で用いる、請求項16~18のいずれか1項に記載の使用。 The use according to any one of claims 16 to 18, which is used in a temperature range of 50 ° C. or higher.
  20.  100℃以上の温度幅で用いる、請求項16~19のいずれか1項に記載の使用。 The use according to any one of claims 16 to 19, which is used in a temperature range of 100 ° C. or higher.
  21.  非水系溶媒を除去する、請求項16~20のいずれか1項に記載の使用。 The use according to any one of claims 16 to 20, which removes a non-aqueous solvent.
  22.  前記増粘剤組成物が、さらに無機化合物を含む、請求項16~21のいずれか1項に記載の使用。 The use according to any one of claims 16 to 21, wherein the thickener composition further contains an inorganic compound.
  23.  下記(1)及び(2)からなる群より選択される1種以上である改質セルロース繊維、非水系溶媒及び無機化合物を含有する組成物を、100℃以上に加熱して、非水系溶媒を除去する工程を有する、無機化合物の塗布方法。
      (1)セルロース繊維に修飾基が結合されてなる、I型結晶構造を有するものであって、前記修飾基は、(a)炭化水素基、(b)シリコーン鎖、及び(c)アルキレンオキサイド鎖からなる群より選択される1種以上を含有するもの
      (2)I型結晶構造を有する酸型のアニオン変性セルロース繊維
    A composition containing one or more modified cellulose fibers selected from the group consisting of the following (1) and (2), a non-aqueous solvent and an inorganic compound is heated to 100 ° C. or higher to obtain a non-aqueous solvent. A method of applying an inorganic compound, which comprises a step of removing.
    (1) It has an I-type crystal structure in which a modifying group is bonded to a cellulose fiber, and the modifying group is (a) a hydrocarbon group, (b) a silicone chain, and (c) an alkylene oxide chain. Those containing one or more selected from the group consisting of (2) Acid-type anion-modified cellulose fibers having an I-type crystal structure
PCT/JP2021/017676 2020-05-12 2021-05-10 Thickener composition WO2021230191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180024633.4A CN115335445B (en) 2020-05-12 2021-05-10 Tackifier composition
KR1020227036542A KR20230009880A (en) 2020-05-12 2021-05-10 thickener composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020083878 2020-05-12
JP2020-083878 2020-05-12
JP2020109117 2020-06-24
JP2020-109117 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021230191A1 true WO2021230191A1 (en) 2021-11-18

Family

ID=78524380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017676 WO2021230191A1 (en) 2020-05-12 2021-05-10 Thickener composition

Country Status (5)

Country Link
JP (1) JP2022001634A (en)
KR (1) KR20230009880A (en)
CN (1) CN115335445B (en)
TW (1) TW202202569A (en)
WO (1) WO2021230191A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037348A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2013216998A (en) * 2012-04-11 2013-10-24 Kao Corp Surface-modified cellulose microfiber
JP5939695B1 (en) * 2015-12-16 2016-06-22 第一工業製薬株式会社 Viscous aqueous composition and method for producing the same
JP2017019896A (en) * 2015-07-08 2017-01-26 第一工業製薬株式会社 Manufacturing method of gelatinous composition and gelatinous composition obtained therefrom
JP2018145426A (en) * 2017-03-07 2018-09-20 花王株式会社 Film comprising hydrophobized cellulose fiber and oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823599B2 (en) * 2013-12-26 2015-11-25 花王株式会社 Fine cellulose fiber composite
JP2018024967A (en) * 2016-08-09 2018-02-15 花王株式会社 Fine cellulose fiber complex
JP2019119867A (en) 2017-12-27 2019-07-22 花王株式会社 Fine cellulose fiber composite dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037348A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2013216998A (en) * 2012-04-11 2013-10-24 Kao Corp Surface-modified cellulose microfiber
JP2017019896A (en) * 2015-07-08 2017-01-26 第一工業製薬株式会社 Manufacturing method of gelatinous composition and gelatinous composition obtained therefrom
JP5939695B1 (en) * 2015-12-16 2016-06-22 第一工業製薬株式会社 Viscous aqueous composition and method for producing the same
JP2018145426A (en) * 2017-03-07 2018-09-20 花王株式会社 Film comprising hydrophobized cellulose fiber and oil

Also Published As

Publication number Publication date
TW202202569A (en) 2022-01-16
KR20230009880A (en) 2023-01-17
CN115335445A (en) 2022-11-11
CN115335445B (en) 2024-05-03
JP2022001634A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP7074509B2 (en) Membrane with hydrophobic modified cellulose fibers and oil
JP2022103166A (en) Method for producing fine cellulose fiber
JP2022001649A (en) Adhesion composition
JP2019119867A (en) Fine cellulose fiber composite dispersion
JP7395472B2 (en) Method for producing short anion-modified cellulose fibers
KR20190095491A (en) Resin composition
JP7203916B2 (en) gel membrane
WO2017043451A1 (en) Modified cellulose fibers
WO2017043450A1 (en) Modified cellulose fiber
WO2021230191A1 (en) Thickener composition
JP2019119881A (en) Coating composition
JP6916031B2 (en) Cellulose fiber complex
WO2021246419A1 (en) Adhesive composition
JP2022059588A (en) Method for producing modified cellulose fiber
JP2022092606A (en) Method for producing modified cellulose fibers
JP2022059589A (en) Method for producing modified cellulose fiber
JP2022069428A (en) Method for producing modified cellulose fiber
JP2022092607A (en) Method for producing modified cellulose fibers
JP2022069427A (en) Method for producing modified cellulose fiber
WO2020138291A1 (en) Modified cellulose fiber powder
JP7042148B2 (en) Membrane containing hydrophobically modified cellulose fiber and oil
JP2021050327A (en) Heat-dissipating resin composition
JP2022053536A (en) Polyol composition
JP2021178905A (en) Non-aqueous composition
JP2022053537A (en) Thiol compound-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21802944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21802944

Country of ref document: EP

Kind code of ref document: A1