WO2021230110A1 - Liquid supplying mechanism, substrate treatment device, and substrate treatment method - Google Patents

Liquid supplying mechanism, substrate treatment device, and substrate treatment method Download PDF

Info

Publication number
WO2021230110A1
WO2021230110A1 PCT/JP2021/017214 JP2021017214W WO2021230110A1 WO 2021230110 A1 WO2021230110 A1 WO 2021230110A1 JP 2021017214 W JP2021017214 W JP 2021017214W WO 2021230110 A1 WO2021230110 A1 WO 2021230110A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
liquid
flow path
substrate
supply mechanism
Prior art date
Application number
PCT/JP2021/017214
Other languages
French (fr)
Japanese (ja)
Inventor
博史 竹口
幹雄 中島
貴久 大塚
洋司 小宮
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202180033454.7A priority Critical patent/CN115516607A/en
Priority to KR1020227042753A priority patent/KR20230009921A/en
Priority to JP2022521846A priority patent/JP7462743B2/en
Publication of WO2021230110A1 publication Critical patent/WO2021230110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • This disclosure relates to a liquid supply mechanism, a substrate processing apparatus, and a substrate processing method.
  • Patent Document 1 discloses a technique for supplying a resist liquid to a substrate via a supply path and a nozzle.
  • An air operation valve which is an on-off valve, and a sackback valve are provided in this order from the upstream side to the downstream side in the supply path.
  • One aspect of the present disclosure provides a technique for preventing particles from adhering to a substrate caused by the operation of a valve.
  • the liquid supply mechanism includes a nozzle for discharging the treatment liquid to the substrate, a supply flow path for supplying the treatment liquid to the nozzle, and a valve for adjusting the flow of the supply flow path. It has a buffer portion for temporarily storing the treatment liquid in the internal space on the way from the valve to the nozzle.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing a substrate processing method according to an embodiment.
  • FIG. 3 is a timing chart showing a substrate processing method according to an embodiment.
  • 4A and 4B are diagrams showing the positions of particles according to an embodiment, FIG. 4A is a diagram showing a position at the start of step S2, FIG. 4B is a diagram showing a position at the end of step S2, and FIG. Is a diagram showing a position in the middle of step S5 in FIG. 5A and 5B are diagrams showing the state of the buffer unit according to the embodiment, FIG. 5A is a diagram showing the state in step S2, and FIG. 5B is a diagram showing the state in step S5.
  • FIG. 6A and 6B are views showing the state of the buffer portion according to the first modification
  • FIG. 6A is a diagram showing the state in step S2
  • FIG. 6B is a diagram showing the state in step S5.
  • 7A and 7B are diagrams showing the state of the buffer portion according to the second modification
  • FIG. 7A is a diagram showing the state in step S2
  • FIG. 7B is a diagram showing the state in step S5.
  • FIG. 8 is a diagram showing a buffer unit according to the third modification.
  • FIG. 9 is a diagram showing a buffer unit according to the fourth modification.
  • FIG. 10 is a diagram showing a recovery flow path and a return flow path according to an embodiment.
  • FIG. 11 is a diagram showing a buffer portion according to a modified example.
  • the substrate processing apparatus 1 processes the substrate W with the processing liquid L.
  • the substrate W includes, for example, a silicon wafer, a compound semiconductor wafer, or the like.
  • the substrate W may be a glass substrate.
  • the substrate processing device 1 includes a liquid processing unit 2 and a control unit 9.
  • the liquid processing unit 2 includes a processing container 21 for accommodating the substrate W, a chuck 22 for holding the substrate W inside the processing container 21, a rotation mechanism 23 for rotating the chuck 22, and a substrate W held by the chuck 22. It has a liquid supply mechanism 24 for supplying the treatment liquid L.
  • the chuck 22 holds the substrate W horizontally, for example, with the substrate surface Wa facing up.
  • the chuck 22 is a mechanical chuck in FIG. 1, it may be a vacuum chuck, an electrostatic chuck, or the like.
  • the rotation mechanism 23 rotates the chuck 22.
  • the rotation shaft 22a of the chuck 22 is arranged vertically.
  • the chuck 22 holds the substrate W so that the center of the substrate surface Wa coincides with the rotation center line of the chuck 22.
  • the liquid supply mechanism 24 has a nozzle 25 that discharges the processing liquid L to the substrate W.
  • the nozzle 25 discharges the processing liquid L to the substrate W held by the chuck 22.
  • the nozzle 25 is arranged above the chuck 22 and discharges the processing liquid L from above with respect to the substrate W.
  • the treatment liquid L is supplied to the center of the rotating substrate surface Wa and spreads in the entire radial direction of the substrate surface Wa by centrifugal force to form a liquid film.
  • one type of treatment liquid L is supplied to the substrate surface Wa, but a plurality of types of treatment liquid L may be supplied to the substrate W in a predetermined order.
  • the treatment liquid L the chemical liquid, the rinse liquid, and the dry liquid are supplied in this order.
  • a liquid film of the chemical liquid is formed on the surface Wa of the substrate, then the liquid film of the chemical liquid is replaced with the liquid film of the rinse liquid, and then the liquid film of the rinse liquid is replaced with the liquid film of the dry liquid.
  • the chemical solution is supplied to the center of the rotating substrate surface Wa, spreads in the entire radial direction of the substrate surface Wa by centrifugal force, and processes the entire substrate surface Wa.
  • the chemical solution is not particularly limited, but is, for example, DHF (dilute hydrofluoric acid), SC-1 (an aqueous solution containing ammonium hydroxide and hydrogen peroxide), SC-2 (an aqueous solution containing hydrogen chloride and hydrogen peroxide), and the like. Can be mentioned.
  • the chemical solution may be alkaline or acidic.
  • a plurality of types of chemicals may be supplied in order, and in that case, the formation of the rinse liquid film is also performed between the formation of the liquid film of the first chemical solution and the formation of the liquid film of the second chemical solution. ..
  • the rinse liquid is supplied to the center of the rotating substrate surface Wa, spreads in the entire radial direction of the substrate surface Wa by centrifugal force, washes away the chemical liquid remaining on the substrate surface Wa, and forms a liquid film of the rinse liquid on the substrate surface Wa.
  • pure water such as DIW (deionized water) is used.
  • the drying liquid is supplied to the center of the rotating substrate surface Wa, spreads over the entire radial direction of the substrate surface Wa by centrifugal force, washes away the rinse liquid remaining on the substrate surface Wa, and forms a liquid film of the drying liquid on the substrate surface Wa. ..
  • a liquid having a lower surface tension than the rinsing liquid is used. It is possible to suppress the collapse of the uneven pattern due to surface tension.
  • the dry liquid is an organic solvent such as IPA (isopropyl alcohol).
  • the supply position of the dry liquid may be moved from the center of the substrate surface Wa toward the peripheral edge.
  • An opening is formed in the center of the liquid film of the drying liquid, and the opening gradually expands from the center of the substrate surface Wa toward the peripheral edge.
  • the plurality of processing liquids L may be discharged by a plurality of nozzles 25, or may be discharged by the same nozzle 25.
  • the liquid supply mechanism 24 has a supply flow path 26 that supplies the processing liquid L to the nozzle 25.
  • a nozzle 25 is provided at the downstream end of the supply flow path 26.
  • the liquid supply mechanism 24 has, for example, an on-off valve 27 and a flow rate adjusting valve 28 as valves for adjusting the flow of the supply flow path 26.
  • the nozzle 25 discharges the processing liquid L.
  • the flow rate is controlled by the flow rate adjusting valve 28.
  • the nozzle 25 stops the discharge of the processing liquid L.
  • the flow rate adjusting valve 28 is, for example, a constant pressure valve.
  • the flow rate of the processing liquid passing through the constant pressure valve is controlled by the pressure supplied from the electropneumatic regulator to the operation port of the constant pressure valve.
  • a flow meter 29 is provided in the supply flow path 26, and the flow rate adjusting valve 28 is controlled so that the detected value of the flow meter 29 becomes a target value.
  • the on-off valve 27 and the flow rate adjusting valve 28 may be integrated. A plurality of integrated valves are called a valve unit.
  • the on-off valve 27 and the flow rate adjusting valve 28 may be provided separately. In this case, a flow meter 29 may be provided between the on-off valve 27 and the flow rate adjusting valve 28.
  • the order of the on-off valve 27, the flow rate adjusting valve 28, and the flow meter 29 is not particularly limited.
  • valves 27 and 28 are provided in the supply flow path 26.
  • the mechanical elements constituting the valves 27 and 28 slide with each other, and the particles P1 shown in FIG. 4A are generated.
  • the generated particles P1 are flown together with the processing liquid L and discharged from the nozzle 25.
  • the number of valves provided in the middle of the supply flow path 26 is not limited to two, and may be one or three or more. Further, the type of valve provided in the middle of the supply flow path 26 is not limited to the on-off valve and the flow rate adjusting valve. For example, a direction switching valve, a pressure adjusting valve, or the like may be provided. Any valve can be a source of particles P1.
  • the liquid supply mechanism 24 of the present embodiment has a buffer unit 30 that temporarily stores the processing liquid L on the way from the valves 27 and 28 to the nozzle 25.
  • the buffer unit 30 temporarily stores the processing liquid L in the internal space 31 to temporarily trap the particles P1 in the internal space 31 as shown in FIG. 4 (B). Therefore, the ejection of the processing liquid L to the substrate W can be completed before the particles P1 are ejected from the nozzle 25. Therefore, it is possible to suppress the adhesion of the particles P1 to the substrate W.
  • the buffer unit 30 When the number of valves is plurality, if the buffer unit 30 is provided downstream of at least one valve, it is possible to suppress the adhesion of the particles P1 to the substrate W. However, when the number of valves is a plurality, it is preferable that the buffer unit 30 is provided downstream of all the valves. The details of the buffer unit 30 will be described later.
  • the liquid treatment unit 2 has a cup 40 for recovering the treatment liquid L supplied to the substrate W.
  • the cup 40 accommodates the substrate W held by the chuck 22, and collects the processing liquid L shaken off from the substrate W.
  • a drainage pipe 41 and an exhaust pipe 42 are provided at the bottom of the cup 40.
  • the drainage pipe 41 drains the liquid accumulated inside the cup 40. Further, the exhaust pipe 42 discharges the gas inside the cup 40.
  • the liquid treatment unit 2 has a nozzle bath 45 in which the nozzle 25 stands by.
  • the nozzle bath 45 is provided outside the cup 40 and receives the processing liquid L discharged from the nozzle 25.
  • the particles P1 generated by the operation of the valves 27 and 28 are discharged from the nozzle 25 to the nozzle bath 45 together with the processing liquid L.
  • the liquid treatment unit 2 has a moving mechanism 46 for moving the nozzle 25.
  • the moving mechanism 46 moves the nozzle 25 in the radial direction of the substrate W.
  • the moving mechanism 46 has, for example, a swivel arm 46a for holding the nozzle 25 and a swivel mechanism (not shown) for swiveling the swivel arm 46a.
  • the swivel mechanism may also serve as a mechanism for raising and lowering the swivel arm 46a.
  • the swivel arm 46a is arranged horizontally, holds the nozzle 25 at one end in the longitudinal direction thereof, and is swiveled around a swivel shaft extending downward from the other end in the longitudinal direction thereof.
  • the moving mechanism 46 may have a guide rail and a linear motion mechanism instead of the swivel arm 46a and the swivel mechanism.
  • the guide rails are arranged horizontally and a linear motion mechanism moves the nozzle 25 along the guide rails.
  • the moving mechanism 46 has a processing position NP1 (for example, a position shown by a solid line in FIG. 1) for discharging the processing liquid L to the substrate W and a standby position NP0 (for example) for discharging the processing liquid to the nozzle bus 45. It suffices to move to and from the position shown by the alternate long and short dash line in FIG.
  • the control unit 9 controls the rotation mechanism 23, the liquid supply mechanism 24, the movement mechanism 46, and the like.
  • the control unit 9 is, for example, a computer, and as shown in FIG. 2, includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory.
  • the storage medium 92 stores programs that control various processes executed by the substrate processing device 1.
  • the control unit 9 controls the operation of the substrate processing device 1 by causing the CPU 91 to execute the program stored in the storage medium 92.
  • the substrate processing method shown in FIGS. 2 and 3 is carried out under the control of the control unit 9. Steps S1 to S5 shown in FIG. 2 are repeated. A series of processes including steps S1 to S5 is hereinafter referred to as a cycle.
  • a transport device (not shown) carries the substrate W into the processing container 21. After mounting the substrate W on the chuck 22, the transfer device exits from the inside of the processing container 21. The chuck 22 receives the substrate W from the transport device and holds the substrate W.
  • the rotation mechanism 23 rotates the substrate W together with the chuck 22, and the moving mechanism 46 moves the nozzle 25 from the standby position NP0 to the processing position NP1. During this time, the nozzle 25 does not discharge the processing liquid L.
  • step S2 the nozzle 25 supplies the treatment liquid L to the center of the rotating substrate surface Wa, and forms a liquid film of the treatment liquid L on the entire substrate surface Wa.
  • the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR1.
  • the operation of these valves 27 and 28 may generate particles P1 as shown in FIG. 4 (A).
  • the particles P1 may be generated at the end of step S5 of the previous cycle.
  • the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero.
  • Particles P1 are also generated by the operation of these valves 27 and 28. Particles P1 generated at the end of step S5 of the previous cycle do not move until the start of step S2 of the current cycle. This is because the treatment liquid L does not flow along the supply flow path 26 until then.
  • step S2 time t1
  • the processing liquid L starts to flow along the supply flow path 26.
  • the particles P1 are swept away by the treatment liquid L and begin to move from the valves 27 and 28 toward the nozzle 25.
  • a buffer portion 30 is provided on the way from the valves 27 and 28 to the nozzle 25.
  • the buffer unit 30 temporarily traps the particles P1 in the internal space 31 by temporarily storing the processing liquid L in the internal space 31. In this state, the processing liquid L can be discharged to the substrate W, and the ejection of the particles P1 to the substrate W can be suppressed. Therefore, it is possible to suppress the adhesion of the particles P1 to the substrate W.
  • step S2 time t2
  • the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero.
  • the particles P1 have not reached the nozzle 25 and are trapped in, for example, the internal space 31 of the buffer portion 30.
  • the volume of the internal space 31 is, for example, larger than the total amount of the processing liquid L discharged from the nozzle 25 in step S2 of one cycle. The total amount is obtained by integrating the flow rate over time.
  • the volume of the internal space 31 is large, and the substrate W can be treated with the clean processing liquid L stored in the internal space 31 before the start of step S2.
  • the particles P1 are located upstream of the buffer unit 30 as shown in FIG. 4A.
  • the internal space 31 of the buffer portion 30 is, for example, a cylinder.
  • the inner diameter of the buffer portion 30 is larger than the inner diameter of the supply flow path 26.
  • the volume per unit length can be increased as compared with the case where the inner diameter of the buffer portion 30 is the same as the inner diameter of the supply flow path 26. If the length of the buffer portion 30 is long, the inner diameter of the buffer portion 30 may be the same as the inner diameter of the supply flow path 26.
  • the buffer unit 30 may have a volume larger than the total volume of the processing liquid L discharged from the nozzle 25 in step S2 of one cycle.
  • step S3 the rotation mechanism 23 rotates the substrate W together with the chuck 22, and the treatment liquid L is shaken off from the substrate W by centrifugal force to dry the substrate W.
  • the rotation speed of step S3 is the same as the rotation speed of step S2 in FIG. 3, but it may be larger.
  • the rotation mechanism 23 stops the rotation of the chuck 22.
  • step S4 a transfer device (not shown) enters the inside of the processing container 21, receives the substrate W from the chuck 22, and carries out the received substrate W to the outside of the processing container 21. As a result, the processing of the substrate W is completed.
  • the following step S5 may be performed while the above steps S3 and S4 are performed. Throughput can be improved by performing multiple processes at the same time.
  • the following step S5 is performed after the moving mechanism 46 moves the nozzle 25 from the processing position NP1 to the standby position NP0. The nozzle 25 does not discharge the processing liquid L during movement.
  • step S5 the nozzle 25 discharges the processing liquid L to the nozzle bath 45.
  • the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR2.
  • the processing liquid L starts to flow along the supply flow path 26.
  • the particles P1 are swept away by the processing liquid L and begin to move from the buffer unit 30 toward the nozzle 25.
  • the particles P1 are ejected from the nozzle 25 to the nozzle bath 45.
  • step S5 not only the particles P1 but also the particles P2 are ejected from the nozzle 25 to the nozzle bath 45. As shown in FIG. 4B, the particles P2 are generated at the end of step S2 (time t2).
  • step S2 the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero.
  • Particles P2 are generated by the operation of these valves 27 and 28. Particles P2 generated at the end of step S2 do not move until the start of step S5. This is because the treatment liquid L does not flow along the supply flow path 26 until then.
  • the particles P2 may be generated at the start of step S5 (time t3).
  • the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR2.
  • Particles P2 are also generated by the operation of these valves 27 and 28.
  • step S5 When the on-off valve 27 opens the supply flow path 26 at the start of step S5 (time t3), the processing liquid L starts to flow along the supply flow path 26. As a result, the particles P2 are swept away by the treatment liquid L and begin to move from the valves 27 and 28 toward the nozzle 25. Then, by the end of step S5, the particles P2 are ejected from the nozzle 25 to the nozzle bath 45.
  • the total volume of the processing liquid L discharged from the nozzle 25 in step S5 of one cycle is larger than the volume from the outlet of the most upstream valve 28 to the outlet of the nozzle 25.
  • Particles P2 can be discharged from the nozzle 25 to the nozzle bath 45 by the end of step S5, and the clean processing liquid L can be stored in the buffer unit 30.
  • the clean processing liquid L stored here can be supplied to the substrate W in step S2 of the next cycle.
  • step S5 the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero.
  • next cycle is started after the end of this cycle, but the next cycle may be started before the end of this cycle.
  • Step S5 of this cycle and step S1 of the next cycle may be carried out at the same time. Both step S1 and step S5 are carried out with the nozzle 25 waiting in the nozzle bath 45. Throughput can be improved by performing part of this cycle and part of the next cycle at the same time.
  • control unit 9 may control the liquid supply mechanism 24 so that the flow rate FR2 in step S5 is larger than the flow rate FR1 in step S2.
  • the nozzle 25 discharges the processing liquid L to the substrate W, and in step S5, the nozzle 25 discharges the processing liquid L to the nozzle bath 45.
  • step S5 since the flow rate is larger in step S5 than in step S2, the flow velocity is large and the force for pushing the particles P1 of the processing liquid L is also large. Therefore, in step S5, the particles P1 can be efficiently washed away, and the inner wall surface of the buffer portion 30 can be efficiently cleaned. On the other hand, in step S2, the detachment of the particles P1 previously attached to the inner wall surface of the buffer portion 30 can be suppressed, and the adhesion of the particles P1 to the substrate W can be suppressed.
  • step S2 as shown in FIG. 5A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, the flow rate FR1 in step S2 may be set so that a laminar flow is generated inside the buffer unit 30 instead of a turbulent flow.
  • the flow velocity decreases from the center of the flow toward the periphery. Since the flow velocity is substantially zero on the inner wall surface of the buffer portion 30, it is possible to prevent the particles P1 adhering to the inner wall surface of the buffer portion 30 from peeling off.
  • step S5 as shown in FIG. 5B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, the flow rate FR2 in step S5 may be set so that a turbulent flow is generated inside the buffer unit 30 instead of a laminar flow. By generating turbulence, the particles P1 adhering to the inner wall surface of the buffer portion 30 can be peeled off, and the accumulation of the particles P1 can be suppressed.
  • the buffer unit 30 may have a gas introduction unit 32 that introduces a gas such as nitrogen gas into the internal space 31 thereof.
  • the gas introduction unit 32 includes, for example, a port 32a connected to a gas pipe. Bubbles B are formed by the introduction of the gas, and the bubbles B adsorb the particles P1. Particles P1 can be efficiently discharged together with bubbles B.
  • step S2 as shown in FIG. 6A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, in step S2, the gas introduction unit 32 does not introduce the gas into the internal space 31 of the buffer unit 30. Since the formation of the bubbles B is prohibited, it is possible to prevent the particles P1 adhering to the inner wall surface of the buffer portion 30 from peeling off.
  • step S5 as shown in FIG. 6B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, in step S5, the gas introduction unit 32 introduces the gas into the internal space 31 of the buffer unit 30. Since the bubbles B are formed, the particles P1 adhering to the inner wall surface of the buffer portion 30 can be peeled off, and the deposition of the particles P1 can be suppressed.
  • the flow rate of the treatment liquid L may be different between steps S2 and S5, as in the above embodiment.
  • the buffer unit 30 may have electrodes 33 and 34 that form an electric field E in its internal space 31.
  • the electrodes 33 and 34 form an electric field E in a direction orthogonal to or diagonally to the flow direction of the treatment liquid L.
  • the particles P1 When the particles P1 are charged, the particles P1 can be trapped by the electric field E.
  • the electrodes 33 and 34 may form an electric field E in the flow direction of the processing liquid L.
  • step S2 as shown in FIG. 7A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, in step S2, the electrodes 33 and 34 form an electric field E. The charged particles P1 can be trapped by the electric field E, and the particles P1 can be prevented from adhering to the substrate W.
  • step S5 as shown in FIG. 7B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, in step S5, the electrodes 33 and 34 do not form an electric field E. The charged particles P1 can be flushed out as they are, and can be efficiently discharged from the buffer unit 30.
  • the flow rate of the treatment liquid L may be different between steps S2 and S5, as in the above embodiment.
  • the electrodes 33 and 34 of the present modification may be used in combination with the gas introduction section 32 of the first modification.
  • the liquid supply mechanism 24 may have a static elimination unit 35 for removing the electric charge of the processing liquid L after passing through the buffer unit 30 and before discharging from the nozzle 25. ..
  • the static elimination unit 35 includes, for example, a wiring 35a for grounding the nozzle 25.
  • the wiring 35a may ground the pipe connecting the buffer portion 30 and the nozzle 25.
  • the processing liquid L from which the electric charge has been removed can be discharged to the substrate W, and damage to the substrate W can be suppressed. Further, the charging of the substrate W can be suppressed, and the adhesion of particles to the substrate W can be suppressed.
  • a plurality of buffer units 30 of this modification are prepared, and one buffer unit 30 and another buffer unit 30 can be connected to each other.
  • the number of the buffer units 30 can be increased and the volume of the internal space 31 of the buffer unit 30 can be expanded.
  • a joint 36 may be provided to connect two adjacent buffer portions 30.
  • the buffer portion 30 of this modification includes a flexible tube 37 forming an internal space 31 and a housing 38 forming a decompression chamber around the tube 37.
  • the pressure reducing chamber is depressurized by a vacuum pump 39 or the like, the tube 37 swells and the volume of the internal space 31 expands.
  • the volume of the internal space 31 of the buffer unit 30 can be expanded.
  • the substrate processing device 1 has a recovery flow path 5 for collecting the treatment liquid L discharged from the nozzle 25 to the nozzle bath 45, and a return flow for returning the treatment liquid L from the recovery flow path 5 to the supply flow path 26 of the liquid supply mechanism 24. It has a road 6.
  • a filter 61 is provided in the return flow path 6. Particles P1 and P2 generated by the operation of the valves 27 and 28 can be collected by the filter 61, the treatment liquid L can be reused, and the amount of waste of the treatment liquid L can be reduced.
  • the recovery flow path 5 and the return flow path 6 are connected via the tank 7.
  • the return flow path 6 is a circulation flow path 6 that sends the processing liquid L taken out from the tank 7 back to the tank 7.
  • the upstream end of the circulation flow path 6 is connected to the tank 7, and the downstream end of the circulation flow path 6 is also connected to the tank 7.
  • the upstream end of the supply flow path 26 of the liquid supply mechanism 24 is connected to the circulation flow path 6.
  • the treatment liquid L can be supplied from the circulation flow path 6 to the plurality of liquid treatment units 2.
  • thermometer 62 for detecting the temperature of the treatment liquid L, a pump 63 for sending out the treatment liquid L, and a temperature controller 64 for adjusting the temperature of the treatment liquid L are provided.
  • the temperature controller 64 includes a heater that heats the processing liquid L.
  • the temperature controller 64 heats the processing liquid L so that the detection temperature of the thermometer 62 becomes the set temperature under the control of the control unit 9.
  • the treatment liquid L is heated and treats the substrate W at a temperature higher than room temperature.
  • the temperature controller 64 may include a cooler for cooling the processing liquid L.
  • the treatment liquid L may treat the substrate W at room temperature. In this case, the thermometer 62 and the temperature controller 64 are unnecessary.
  • the recovery flow path 5 includes an individual flow path 51 provided for each liquid treatment unit 2 and a common flow path 52 common to the plurality of liquid treatment units 2.
  • the upstream end of the individual flow path 51 is connected to the nozzle bus 45, and the downstream end of the individual flow path 51 is connected to the common flow path 52.
  • the downstream end of the common flow path 52 is connected to the tank 7.
  • the liquid supply mechanism 24 of this modification has a temperature controller 65 that adjusts the temperature of the processing liquid L in the buffer unit 30. It takes time for the treatment liquid L to pass through the buffer unit 30, but the temperature controller 65 suppresses the treatment liquid L from being naturally cooled during that time. Therefore, the treatment liquid L having a desired temperature can be discharged to the substrate W.
  • the temperature controller 65 is, for example, a part of the circulation flow path 6 and is a pipe surrounding the buffer portion 30.
  • the outer diameter of the buffer portion 30 is smaller than the inner diameter of the circulation flow path 6, and the buffer portion 30 is arranged inside the circulation flow path 6.
  • the heat of the processing liquid L flowing through the circulation flow path 6 can suppress the cooling of the processing liquid L flowing through the buffer portion 30.
  • the inner diameter of the buffer portion 30 may be about the same as the inner diameter of the supply flow path 26 so that the buffer portion 30 can be easily arranged inside the circulation flow path 6.
  • the temperature controller 65 is not a part of the circulation flow path 6, and may be provided separately from the circulation flow path 6, and may include, for example, an electric heater. Further, the temperature controller 65 may be provided inside the buffer unit 30 instead of outside the buffer unit 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This liquid supplying mechanism has: a nozzle for discharging a treatment liquid to a substrate; a supplying flow passage for supplying the treatment liquid to the nozzle; a valve for adjusting the flow in the supplying flow passage; and a buffering part for temporally storing the treatment liquid within the inside space thereof on the way from the valve to the nozzle.

Description

液供給機構、基板処理装置、及び基板処理方法Liquid supply mechanism, substrate processing equipment, and substrate processing method
 本開示は、液供給機構、基板処理装置、及び基板処理方法に関する。 This disclosure relates to a liquid supply mechanism, a substrate processing apparatus, and a substrate processing method.
 特許文献1には、レジスト液を供給路及びノズルを介して基板に供給する技術が開示されている。供給路には、上流側から下流側に向けて、開閉バルブであるエアオペバルブと、サックバックバルブとがこの順で設けられる。 Patent Document 1 discloses a technique for supplying a resist liquid to a substrate via a supply path and a nozzle. An air operation valve, which is an on-off valve, and a sackback valve are provided in this order from the upstream side to the downstream side in the supply path.
日本国特開2016-139665号公報Japanese Patent Application Laid-Open No. 2016-139665
 本開示の一態様は、バルブの動作によって生じたパーティクルの基板への付着を防止する、技術を提供する。 One aspect of the present disclosure provides a technique for preventing particles from adhering to a substrate caused by the operation of a valve.
 本開示の一態様に係る液供給機構は、基板に対して処理液を吐出するノズルと、前記ノズルに前記処理液を供給する供給流路と、前記供給流路の流れを調整するバルブと、前記バルブから前記ノズルに向かう途中で前記処理液を一時的に内部空間に溜めるバッファ部と、を有する。 The liquid supply mechanism according to one aspect of the present disclosure includes a nozzle for discharging the treatment liquid to the substrate, a supply flow path for supplying the treatment liquid to the nozzle, and a valve for adjusting the flow of the supply flow path. It has a buffer portion for temporarily storing the treatment liquid in the internal space on the way from the valve to the nozzle.
 本開示の一態様によれば、バルブの動作によって生じたパーティクルの基板への付着を防止できる。 According to one aspect of the present disclosure, it is possible to prevent particles from adhering to the substrate caused by the operation of the valve.
図1は、一実施形態に係る基板処理装置を示す図である。FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment. 図2は、一実施形態に係る基板処理方法を示すフローチャートである。FIG. 2 is a flowchart showing a substrate processing method according to an embodiment. 図3は、一実施形態に係る基板処理方法を示すタイミングチャートである。FIG. 3 is a timing chart showing a substrate processing method according to an embodiment. 図4は一実施形態に係るパーティクルの位置を示す図であり、(A)はステップS2の開始時における位置を示す図、(B)はステップS2の終了時における位置を示す図、(C)は図3のステップS5の途中における位置を示す図である。4A and 4B are diagrams showing the positions of particles according to an embodiment, FIG. 4A is a diagram showing a position at the start of step S2, FIG. 4B is a diagram showing a position at the end of step S2, and FIG. Is a diagram showing a position in the middle of step S5 in FIG. 図5は一実施形態に係るバッファ部の状態を示す図であり、(A)はステップS2における状態を示す図、(B)はステップS5における状態を示す図である。5A and 5B are diagrams showing the state of the buffer unit according to the embodiment, FIG. 5A is a diagram showing the state in step S2, and FIG. 5B is a diagram showing the state in step S5. 図6は第1変形例に係るバッファ部の状態を示す図であり、(A)はステップS2における状態を示す図、(B)はステップS5における状態を示す図である。6A and 6B are views showing the state of the buffer portion according to the first modification, FIG. 6A is a diagram showing the state in step S2, and FIG. 6B is a diagram showing the state in step S5. 図7は第2変形例に係るバッファ部の状態を示す図であり、(A)はステップS2における状態を示す図、(B)はステップS5における状態を示す図である。7A and 7B are diagrams showing the state of the buffer portion according to the second modification, FIG. 7A is a diagram showing the state in step S2, and FIG. 7B is a diagram showing the state in step S5. 図8は、第3変形例に係るバッファ部を示す図である。FIG. 8 is a diagram showing a buffer unit according to the third modification. 図9は、第4変形例に係るバッファ部を示す図である。FIG. 9 is a diagram showing a buffer unit according to the fourth modification. 図10は、一実施形態に係る回収流路と戻し流路とを示す図である。FIG. 10 is a diagram showing a recovery flow path and a return flow path according to an embodiment. 図11は、変形例に係るバッファ部を示す図である。FIG. 11 is a diagram showing a buffer portion according to a modified example.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted.
 先ず、図1を参照して、基板処理装置1について説明する。基板処理装置1は、基板Wを処理液Lによって処理する。基板Wは、例えば、シリコンウェハ又は化合物半導体ウェハ等を含む。なお、基板Wは、ガラス基板であってもよい。基板処理装置1は、液処理ユニット2と、制御部9と、を備える。 First, the substrate processing apparatus 1 will be described with reference to FIG. The substrate processing apparatus 1 processes the substrate W with the processing liquid L. The substrate W includes, for example, a silicon wafer, a compound semiconductor wafer, or the like. The substrate W may be a glass substrate. The substrate processing device 1 includes a liquid processing unit 2 and a control unit 9.
 液処理ユニット2は、基板Wを収容する処理容器21と、処理容器21の内部にて基板Wを保持するチャック22と、チャック22を回転させる回転機構23と、チャック22で保持された基板Wに対して処理液Lを供給する液供給機構24と、を有する。 The liquid processing unit 2 includes a processing container 21 for accommodating the substrate W, a chuck 22 for holding the substrate W inside the processing container 21, a rotation mechanism 23 for rotating the chuck 22, and a substrate W held by the chuck 22. It has a liquid supply mechanism 24 for supplying the treatment liquid L.
 チャック22は、例えば、基板表面Waを上に向けて、基板Wを水平に保持する。チャック22は、図1ではメカニカルチャックであるが、真空チャック又は静電チャック等であってもよい。 The chuck 22 holds the substrate W horizontally, for example, with the substrate surface Wa facing up. Although the chuck 22 is a mechanical chuck in FIG. 1, it may be a vacuum chuck, an electrostatic chuck, or the like.
 回転機構23は、チャック22を回転させる。チャック22の回転軸22aは、鉛直に配置される。基板表面Waの中心とチャック22の回転中心線とが一致するように、チャック22が基板Wを保持する。 The rotation mechanism 23 rotates the chuck 22. The rotation shaft 22a of the chuck 22 is arranged vertically. The chuck 22 holds the substrate W so that the center of the substrate surface Wa coincides with the rotation center line of the chuck 22.
 液供給機構24は、基板Wに対して処理液Lを吐出するノズル25を有する。ノズル25は、チャック22で保持されている基板Wに対して処理液Lを吐出する。ノズル25は、チャック22の上方に配置され、基板Wに対して上方から処理液Lを吐出する。処理液Lは、回転する基板表面Waの中心に供給され、遠心力によって基板表面Waの径方向全体に広がり、液膜を形成する。 The liquid supply mechanism 24 has a nozzle 25 that discharges the processing liquid L to the substrate W. The nozzle 25 discharges the processing liquid L to the substrate W held by the chuck 22. The nozzle 25 is arranged above the chuck 22 and discharges the processing liquid L from above with respect to the substrate W. The treatment liquid L is supplied to the center of the rotating substrate surface Wa and spreads in the entire radial direction of the substrate surface Wa by centrifugal force to form a liquid film.
 なお、本実施形態では一種類の処理液Lが基板表面Waに供給されるが、複数種類の処理液Lが予め定められた順番で基板Wに対して供給されてもよい。例えば、処理液Lとして、薬液と、リンス液と、乾燥液とがこの順番で供給される。先ず、薬液の液膜が基板表面Waに形成され、次いで、薬液の液膜がリンス液の液膜に置換され、その後、リンス液の液膜が乾燥液の液膜に置換される。 In the present embodiment, one type of treatment liquid L is supplied to the substrate surface Wa, but a plurality of types of treatment liquid L may be supplied to the substrate W in a predetermined order. For example, as the treatment liquid L, the chemical liquid, the rinse liquid, and the dry liquid are supplied in this order. First, a liquid film of the chemical liquid is formed on the surface Wa of the substrate, then the liquid film of the chemical liquid is replaced with the liquid film of the rinse liquid, and then the liquid film of the rinse liquid is replaced with the liquid film of the dry liquid.
 薬液は、回転する基板表面Waの中心に供給され、遠心力によって基板表面Waの径方向全体に広がり、基板表面Waの全体を処理する。薬液としては、特に限定されないが、例えばDHF(希フッ酸)、SC-1(水酸化アンモニウムと過酸化水素とを含む水溶液)、SC-2(塩化水素と過酸化水素とを含む水溶液)等が挙げられる。薬液は、アルカリ性でもよいし、酸性でもよい。複数種類の薬液が順番に供給されてもよく、その場合、第1薬液の液膜の形成と、第2薬液の液膜の形成との間にも、リンス液の液膜の形成が行われる。 The chemical solution is supplied to the center of the rotating substrate surface Wa, spreads in the entire radial direction of the substrate surface Wa by centrifugal force, and processes the entire substrate surface Wa. The chemical solution is not particularly limited, but is, for example, DHF (dilute hydrofluoric acid), SC-1 (an aqueous solution containing ammonium hydroxide and hydrogen peroxide), SC-2 (an aqueous solution containing hydrogen chloride and hydrogen peroxide), and the like. Can be mentioned. The chemical solution may be alkaline or acidic. A plurality of types of chemicals may be supplied in order, and in that case, the formation of the rinse liquid film is also performed between the formation of the liquid film of the first chemical solution and the formation of the liquid film of the second chemical solution. ..
 リンス液は、回転する基板表面Waの中心に供給され、遠心力によって基板表面Waの径方向全体に広がり、基板表面Waに残る薬液を洗い流し、基板表面Waにリンス液の液膜を形成する。リンス液としては、例えばDIW(脱イオン水)等の純水が用いられる。 The rinse liquid is supplied to the center of the rotating substrate surface Wa, spreads in the entire radial direction of the substrate surface Wa by centrifugal force, washes away the chemical liquid remaining on the substrate surface Wa, and forms a liquid film of the rinse liquid on the substrate surface Wa. As the rinsing liquid, pure water such as DIW (deionized water) is used.
 乾燥液は、回転する基板表面Waの中心に供給され、遠心力によって基板表面Waの径方向全体に広がり、基板表面Waに残るリンス液を洗い流し、基板表面Waに乾燥液の液膜を形成する。乾燥液としては、リンス液よりも低い表面張力を有するものが用いられる。表面張力による凹凸パターンの倒壊を抑制できる。乾燥液は、例えばIPA(イソプロピルアルコール)等の有機溶剤である。 The drying liquid is supplied to the center of the rotating substrate surface Wa, spreads over the entire radial direction of the substrate surface Wa by centrifugal force, washes away the rinse liquid remaining on the substrate surface Wa, and forms a liquid film of the drying liquid on the substrate surface Wa. .. As the drying liquid, a liquid having a lower surface tension than the rinsing liquid is used. It is possible to suppress the collapse of the uneven pattern due to surface tension. The dry liquid is an organic solvent such as IPA (isopropyl alcohol).
 乾燥液の液膜の形成後、乾燥液の供給位置は、基板表面Waの中心から周縁に向けて移動させられてもよい。乾燥液の液膜の中心に開口が形成され、その開口が基板表面Waの中心から周縁に向けて徐々に広がる。 After forming the liquid film of the dry liquid, the supply position of the dry liquid may be moved from the center of the substrate surface Wa toward the peripheral edge. An opening is formed in the center of the liquid film of the drying liquid, and the opening gradually expands from the center of the substrate surface Wa toward the peripheral edge.
 複数の処理液Lは、複数のノズル25によって吐出されてもよいし、同一のノズル25によって吐出されてもよい。 The plurality of processing liquids L may be discharged by a plurality of nozzles 25, or may be discharged by the same nozzle 25.
 液供給機構24は、ノズル25に対して処理液Lを供給する供給流路26を有する。供給流路26の下流端にノズル25が設けられる。また、液供給機構24は、供給流路26の流れを調整するバルブとして、例えば開閉バルブ27と、流量調整バルブ28と、を有する。 The liquid supply mechanism 24 has a supply flow path 26 that supplies the processing liquid L to the nozzle 25. A nozzle 25 is provided at the downstream end of the supply flow path 26. Further, the liquid supply mechanism 24 has, for example, an on-off valve 27 and a flow rate adjusting valve 28 as valves for adjusting the flow of the supply flow path 26.
 開閉バルブ27が供給流路26を開放すると、ノズル25が処理液Lを吐出する。その流量は、流量調整バルブ28によって制御される。一方、開閉バルブ27が供給流路26を閉塞すると、ノズル25が処理液Lの吐出を停止する。 When the on-off valve 27 opens the supply flow path 26, the nozzle 25 discharges the processing liquid L. The flow rate is controlled by the flow rate adjusting valve 28. On the other hand, when the on-off valve 27 closes the supply flow path 26, the nozzle 25 stops the discharge of the processing liquid L.
 流量調整バルブ28は、例えば定圧弁である。定圧弁を通過する処理液の流量は、電空レギュレータから定圧弁の操作ポートに供給される圧力によって制御される。供給流路26には流量計29が設けられており、流量計29の検出値が目標値になるように、流量調整バルブ28が制御される。 The flow rate adjusting valve 28 is, for example, a constant pressure valve. The flow rate of the processing liquid passing through the constant pressure valve is controlled by the pressure supplied from the electropneumatic regulator to the operation port of the constant pressure valve. A flow meter 29 is provided in the supply flow path 26, and the flow rate adjusting valve 28 is controlled so that the detected value of the flow meter 29 becomes a target value.
 開閉バルブ27と、流量調整バルブ28とは、一体化されてもよい。一体化された複数のバルブを、バルブユニットと呼ぶ。なお、開閉バルブ27と、流量調整バルブ28とは別々に設けられてもよく、この場合、開閉バルブ27と流量調整バルブ28との間に流量計29が設けられてもよい。開閉バルブ27と流量調整バルブ28と流量計29との順番は、特に限定されない。 The on-off valve 27 and the flow rate adjusting valve 28 may be integrated. A plurality of integrated valves are called a valve unit. The on-off valve 27 and the flow rate adjusting valve 28 may be provided separately. In this case, a flow meter 29 may be provided between the on-off valve 27 and the flow rate adjusting valve 28. The order of the on-off valve 27, the flow rate adjusting valve 28, and the flow meter 29 is not particularly limited.
 供給流路26には、上記の通り、各種のバルブ27、28が設けられる。これらのバルブ27、28が動作する際に、バルブ27、28を構成する機械要素同士が摺動し、図4(A)に示すパーティクルP1が発生する。発生したパーティクルP1は、処理液Lと共に流され、ノズル25から吐出される。 As described above, various valves 27 and 28 are provided in the supply flow path 26. When these valves 27 and 28 operate, the mechanical elements constituting the valves 27 and 28 slide with each other, and the particles P1 shown in FIG. 4A are generated. The generated particles P1 are flown together with the processing liquid L and discharged from the nozzle 25.
 なお、供給流路26の途中に設けられるバルブの数は、2つには限定されず、1つでもよいし、3つ以上でもよい。また、供給流路26の途中に設けられるバルブの種類は、開閉バルブ及び流量調整バルブには限定されない。例えば、方向切替バルブ、又は圧力調整バルブ等が設けられてもよい。いずれのバルブも、パーティクルP1の発生源になりうる。 The number of valves provided in the middle of the supply flow path 26 is not limited to two, and may be one or three or more. Further, the type of valve provided in the middle of the supply flow path 26 is not limited to the on-off valve and the flow rate adjusting valve. For example, a direction switching valve, a pressure adjusting valve, or the like may be provided. Any valve can be a source of particles P1.
 そこで、本実施形態の液供給機構24は、バルブ27、28からノズル25に向かう途中で処理液Lを一時的に溜めるバッファ部30を有する。バッファ部30は、処理液Lを一時的に内部空間31に溜めることにより、図4(B)に示すようにパーティクルP1を一時的に内部空間31にトラップする。それゆえ、パーティクルP1がノズル25から吐出される前に、基板Wに対する処理液Lの吐出を終了できる。従って、基板Wに対するパーティクルP1の付着を抑制できる。 Therefore, the liquid supply mechanism 24 of the present embodiment has a buffer unit 30 that temporarily stores the processing liquid L on the way from the valves 27 and 28 to the nozzle 25. The buffer unit 30 temporarily stores the processing liquid L in the internal space 31 to temporarily trap the particles P1 in the internal space 31 as shown in FIG. 4 (B). Therefore, the ejection of the processing liquid L to the substrate W can be completed before the particles P1 are ejected from the nozzle 25. Therefore, it is possible to suppress the adhesion of the particles P1 to the substrate W.
 なお、バルブの数が複数である場合、少なくとも1つのバルブよりも下流にバッファ部30が設けられれば、基板Wに対するパーティクルP1の付着を抑制できる。但し、バルブの数が複数である場合、全てのバルブよりも下流にバッファ部30が設けられることが好ましい。バッファ部30の詳細は後述する。 When the number of valves is plurality, if the buffer unit 30 is provided downstream of at least one valve, it is possible to suppress the adhesion of the particles P1 to the substrate W. However, when the number of valves is a plurality, it is preferable that the buffer unit 30 is provided downstream of all the valves. The details of the buffer unit 30 will be described later.
 図1に示すように、液処理ユニット2は、基板Wに供給された処理液Lを回収するカップ40を有する。カップ40は、チャック22で保持されている基板Wを収容し、基板Wから振り切られる処理液Lを回収する。カップ40の底部には、排液管41と、排気管42とが設けられる。排液管41は、カップ40の内部に溜まる液体を排出する。また、排気管42は、カップ40の内部のガスを排出する。 As shown in FIG. 1, the liquid treatment unit 2 has a cup 40 for recovering the treatment liquid L supplied to the substrate W. The cup 40 accommodates the substrate W held by the chuck 22, and collects the processing liquid L shaken off from the substrate W. A drainage pipe 41 and an exhaust pipe 42 are provided at the bottom of the cup 40. The drainage pipe 41 drains the liquid accumulated inside the cup 40. Further, the exhaust pipe 42 discharges the gas inside the cup 40.
 また、液処理ユニット2は、ノズル25が待機するノズルバス45を有する。ノズルバス45は、カップ40の外部に設けられ、ノズル25から吐出される処理液Lを受ける。バルブ27、28の動作によって発生したパーティクルP1は、処理液Lと共に、ノズル25からノズルバス45に吐出される。 Further, the liquid treatment unit 2 has a nozzle bath 45 in which the nozzle 25 stands by. The nozzle bath 45 is provided outside the cup 40 and receives the processing liquid L discharged from the nozzle 25. The particles P1 generated by the operation of the valves 27 and 28 are discharged from the nozzle 25 to the nozzle bath 45 together with the processing liquid L.
 また、液処理ユニット2は、ノズル25を移動させる移動機構46を有する。移動機構46は、ノズル25を基板Wの径方向に移動させる。移動機構46は、例えば、ノズル25を保持する旋回アーム46aと、旋回アーム46aを旋回させる旋回機構(不図示)とを有する。旋回機構は、旋回アーム46aを昇降させる機構を兼ねてもよい。旋回アーム46aは、水平に配置され、その長手方向一端部にてノズル25を保持し、その長手方向他端部から下方に延びる旋回軸を中心に旋回させられる。なお、移動機構46は、旋回アーム46aと旋回機構との代わりに、ガイドレールと直動機構とを有してもよい。ガイドレールは水平に配置され、直動機構がガイドレールに沿ってノズル25を移動させる。移動機構46は、ノズル25を、基板Wに対して処理液Lを吐出する処理位置NP1(例えば図1に実線で示す位置)と、ノズルバス45に対して処理液を吐出する待機位置NP0(例えば図1に一点鎖線で示す位置)との間で移動すればよい。 Further, the liquid treatment unit 2 has a moving mechanism 46 for moving the nozzle 25. The moving mechanism 46 moves the nozzle 25 in the radial direction of the substrate W. The moving mechanism 46 has, for example, a swivel arm 46a for holding the nozzle 25 and a swivel mechanism (not shown) for swiveling the swivel arm 46a. The swivel mechanism may also serve as a mechanism for raising and lowering the swivel arm 46a. The swivel arm 46a is arranged horizontally, holds the nozzle 25 at one end in the longitudinal direction thereof, and is swiveled around a swivel shaft extending downward from the other end in the longitudinal direction thereof. The moving mechanism 46 may have a guide rail and a linear motion mechanism instead of the swivel arm 46a and the swivel mechanism. The guide rails are arranged horizontally and a linear motion mechanism moves the nozzle 25 along the guide rails. The moving mechanism 46 has a processing position NP1 (for example, a position shown by a solid line in FIG. 1) for discharging the processing liquid L to the substrate W and a standby position NP0 (for example) for discharging the processing liquid to the nozzle bus 45. It suffices to move to and from the position shown by the alternate long and short dash line in FIG.
 制御部9は、回転機構23、液供給機構24、移動機構46等を制御する。制御部9は、例えばコンピュータであり、図2に示すように、CPU(Central Processing Unit)91と、メモリ等の記憶媒体92とを備える。記憶媒体92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部9は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、基板処理装置1の動作を制御する。 The control unit 9 controls the rotation mechanism 23, the liquid supply mechanism 24, the movement mechanism 46, and the like. The control unit 9 is, for example, a computer, and as shown in FIG. 2, includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory. The storage medium 92 stores programs that control various processes executed by the substrate processing device 1. The control unit 9 controls the operation of the substrate processing device 1 by causing the CPU 91 to execute the program stored in the storage medium 92.
 次に、図2及び図3を参照して、基板処理方法について説明する。図2及び図3に示す基板処理方法は、制御部9による制御下で実施される。図2に示すステップS1~S5は、繰り返し実施される。ステップS1~S5からなる一連の処理を、以下サイクルと呼ぶ。 Next, the substrate processing method will be described with reference to FIGS. 2 and 3. The substrate processing method shown in FIGS. 2 and 3 is carried out under the control of the control unit 9. Steps S1 to S5 shown in FIG. 2 are repeated. A series of processes including steps S1 to S5 is hereinafter referred to as a cycle.
 先ず、ステップS1では、不図示の搬送装置が、基板Wを処理容器21の内部に搬入する。搬送装置は、チャック22に基板Wを載置した後、処理容器21の内部から退出する。チャック22は、基板Wを搬送装置から受け取り、基板Wを保持する。 First, in step S1, a transport device (not shown) carries the substrate W into the processing container 21. After mounting the substrate W on the chuck 22, the transfer device exits from the inside of the processing container 21. The chuck 22 receives the substrate W from the transport device and holds the substrate W.
 次に、回転機構23がチャック22と共に基板Wを回転させ、また、移動機構46がノズル25を待機位置NP0から処理位置NP1に移動させる。この間、ノズル25は、処理液Lを吐出しない。 Next, the rotation mechanism 23 rotates the substrate W together with the chuck 22, and the moving mechanism 46 moves the nozzle 25 from the standby position NP0 to the processing position NP1. During this time, the nozzle 25 does not discharge the processing liquid L.
 次に、ステップS2では、ノズル25が、回転する基板表面Waの中心に処理液Lを供給し、処理液Lの液膜を基板表面Waの全体に形成する。具体的には、図3の時刻t1で、開閉バルブ27が供給流路26を開放し、流量調整バルブ28がノズル25の吐出流量を予め設定された流量FR1に調整する。これらのバルブ27、28の動作によって、図4(A)に示すように、パーティクルP1が生じることがある。 Next, in step S2, the nozzle 25 supplies the treatment liquid L to the center of the rotating substrate surface Wa, and forms a liquid film of the treatment liquid L on the entire substrate surface Wa. Specifically, at time t1 in FIG. 3, the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR1. The operation of these valves 27 and 28 may generate particles P1 as shown in FIG. 4 (A).
 なお、パーティクルP1は、前回のサイクルのステップS5の終了時に生じたものであってもよい。ステップS5の終了時には、開閉バルブ27が供給流路26を閉塞し、流量調整バルブ28がノズル25の吐出流量をゼロに調整する。これらのバルブ27、28の動作によってもパーティクルP1が生じる。前回のサイクルのステップS5の終了時に生じたパーティクルP1は、今回のサイクルのステップS2の開始時まで移動しない。それまで、供給流路26に沿って処理液Lが流れないからである。 Note that the particles P1 may be generated at the end of step S5 of the previous cycle. At the end of step S5, the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero. Particles P1 are also generated by the operation of these valves 27 and 28. Particles P1 generated at the end of step S5 of the previous cycle do not move until the start of step S2 of the current cycle. This is because the treatment liquid L does not flow along the supply flow path 26 until then.
 ステップS2の開始時(時刻t1)に、開閉バルブ27が供給流路26を開放すると、処理液Lが供給流路26に沿って流れ始める。その結果、パーティクルP1が、処理液Lによって押し流され、バルブ27、28からノズル25に向けて移動し始める。バルブ27、28からノズル25に向かう途中には、バッファ部30が設けられている。 When the on-off valve 27 opens the supply flow path 26 at the start of step S2 (time t1), the processing liquid L starts to flow along the supply flow path 26. As a result, the particles P1 are swept away by the treatment liquid L and begin to move from the valves 27 and 28 toward the nozzle 25. A buffer portion 30 is provided on the way from the valves 27 and 28 to the nozzle 25.
 バッファ部30は、処理液Lを一時的に内部空間31に溜めることにより、パーティクルP1を一時的に内部空間31にトラップする。この状態で基板Wに対して処理液Lを吐出でき、基板Wに対するパーティクルP1の吐出を抑制できる。従って、基板Wに対するパーティクルP1の付着を抑制できる。 The buffer unit 30 temporarily traps the particles P1 in the internal space 31 by temporarily storing the processing liquid L in the internal space 31. In this state, the processing liquid L can be discharged to the substrate W, and the ejection of the particles P1 to the substrate W can be suppressed. Therefore, it is possible to suppress the adhesion of the particles P1 to the substrate W.
 ステップS2の終了時(時刻t2)に、開閉バルブ27が供給流路26を閉塞し、流量調整バルブ28がノズル25の吐出流量をゼロに調整する。その際、図4(B)に示すように、パーティクルP1は、ノズル25に達しておらず、例えばバッファ部30の内部空間31にトラップされている。 At the end of step S2 (time t2), the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero. At that time, as shown in FIG. 4B, the particles P1 have not reached the nozzle 25 and are trapped in, for example, the internal space 31 of the buffer portion 30.
 内部空間31の容積は、例えば、1回のサイクルのステップS2でノズル25から吐出される処理液Lの総量よりも大きい。総量は、流量を時間積分して求められる。内部空間31の容積が大きく、ステップS2の開始前に内部空間31に溜めた清浄な処理液Lで基板Wを処理できる。なお、ステップS2の開始時に、パーティクルP1は図4(A)に示すようにバッファ部30よりも上流に位置する。 The volume of the internal space 31 is, for example, larger than the total amount of the processing liquid L discharged from the nozzle 25 in step S2 of one cycle. The total amount is obtained by integrating the flow rate over time. The volume of the internal space 31 is large, and the substrate W can be treated with the clean processing liquid L stored in the internal space 31 before the start of step S2. At the start of step S2, the particles P1 are located upstream of the buffer unit 30 as shown in FIG. 4A.
 バッファ部30の内部空間31は、例えば円柱形である。バッファ部30の内径は、供給流路26の内径よりも大きい。バッファ部30の内径が供給流路26の内径と同じ場合よりも、単位長さ当たりの容積を大きくできる。なお、バッファ部30の長さが長ければ、バッファ部30の内径は供給流路26の内径と同じでもよい。バッファ部30は、1回のサイクルのステップS2でノズル25から吐出される処理液Lの総量よりも大きな容積を有していればよい。 The internal space 31 of the buffer portion 30 is, for example, a cylinder. The inner diameter of the buffer portion 30 is larger than the inner diameter of the supply flow path 26. The volume per unit length can be increased as compared with the case where the inner diameter of the buffer portion 30 is the same as the inner diameter of the supply flow path 26. If the length of the buffer portion 30 is long, the inner diameter of the buffer portion 30 may be the same as the inner diameter of the supply flow path 26. The buffer unit 30 may have a volume larger than the total volume of the processing liquid L discharged from the nozzle 25 in step S2 of one cycle.
 次に、ステップS3では、回転機構23がチャック22と共に基板Wを回転させ、遠心力によって基板Wから処理液Lを振り切り、基板Wを乾燥させる。ステップS3の回転数は、図3ではステップS2の回転数と同じであるが、大きくてもよい。ステップS3の終了時に、回転機構23がチャック22の回転を停止させる。 Next, in step S3, the rotation mechanism 23 rotates the substrate W together with the chuck 22, and the treatment liquid L is shaken off from the substrate W by centrifugal force to dry the substrate W. The rotation speed of step S3 is the same as the rotation speed of step S2 in FIG. 3, but it may be larger. At the end of step S3, the rotation mechanism 23 stops the rotation of the chuck 22.
 次に、ステップS4では、不図示の搬送装置が、処理容器21の内部に進入し、チャック22から基板Wを受け取り、受け取った基板Wを処理容器21の外部に搬出する。これにより、基板Wの処理が終了する。 Next, in step S4, a transfer device (not shown) enters the inside of the processing container 21, receives the substrate W from the chuck 22, and carries out the received substrate W to the outside of the processing container 21. As a result, the processing of the substrate W is completed.
 図3に示すように、上記ステップS3、S4が行われる間に、下記ステップS5が行われてもよい。複数の処理を同時に実施すれば、スループットを向上できる。下記ステップS5は、移動機構46がノズル25を処理位置NP1から待機位置NP0に移動させた後で行われる。ノズル25は、移動の間、処理液Lを吐出しない。 As shown in FIG. 3, the following step S5 may be performed while the above steps S3 and S4 are performed. Throughput can be improved by performing multiple processes at the same time. The following step S5 is performed after the moving mechanism 46 moves the nozzle 25 from the processing position NP1 to the standby position NP0. The nozzle 25 does not discharge the processing liquid L during movement.
 ステップS5では、ノズル25が、ノズルバス45に対して処理液Lを吐出する。具体的には、図3の時刻t3で開閉バルブ27が供給流路26を開放し、流量調整バルブ28がノズル25の吐出流量を予め設定された流量FR2に調整する。 In step S5, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Specifically, at time t3 in FIG. 3, the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR2.
 開閉バルブ27が供給流路26を開放すると、処理液Lが供給流路26に沿って流れ始める。その結果、パーティクルP1が、処理液Lによって押し流され、バッファ部30からノズル25に向けて移動し始める。そして、図4(C)に示すように、パーティクルP1は、ノズル25からノズルバス45に対して吐出される。 When the on-off valve 27 opens the supply flow path 26, the processing liquid L starts to flow along the supply flow path 26. As a result, the particles P1 are swept away by the processing liquid L and begin to move from the buffer unit 30 toward the nozzle 25. Then, as shown in FIG. 4C, the particles P1 are ejected from the nozzle 25 to the nozzle bath 45.
 ステップS5では、上記パーティクルP1のみならず、パーティクルP2も、ノズル25からノズルバス45に対して吐出される。パーティクルP2は、図4(B)に示すように、ステップS2の終了時(時刻t2)に生じたものである。 In step S5, not only the particles P1 but also the particles P2 are ejected from the nozzle 25 to the nozzle bath 45. As shown in FIG. 4B, the particles P2 are generated at the end of step S2 (time t2).
 ステップS2の終了時には、開閉バルブ27が供給流路26を閉塞し、流量調整バルブ28がノズル25の吐出流量をゼロに調整する。これらのバルブ27、28の動作によってパーティクルP2が生じる。ステップS2の終了時に生じたパーティクルP2は、ステップS5の開始時まで移動しない。それまで、供給流路26に沿って処理液Lが流れないからである。 At the end of step S2, the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero. Particles P2 are generated by the operation of these valves 27 and 28. Particles P2 generated at the end of step S2 do not move until the start of step S5. This is because the treatment liquid L does not flow along the supply flow path 26 until then.
 なお、パーティクルP2は、ステップS5の開始時(時刻t3)に生じたものであってもよい。ステップS5の開始時には、開閉バルブ27が供給流路26を開放し、流量調整バルブ28がノズル25の吐出流量を予め設定された流量FR2に調整する。これらのバルブ27、28の動作によってもパーティクルP2が生じる。 Note that the particles P2 may be generated at the start of step S5 (time t3). At the start of step S5, the on-off valve 27 opens the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to the preset flow rate FR2. Particles P2 are also generated by the operation of these valves 27 and 28.
 ステップS5の開始時(時刻t3)に、開閉バルブ27が供給流路26を開放すると、処理液Lが供給流路26に沿って流れ始める。その結果、パーティクルP2が、処理液Lによって押し流され、バルブ27、28からノズル25に向けて移動し始める。そして、ステップS5の終了時までに、パーティクルP2はノズル25からノズルバス45に吐出される。 When the on-off valve 27 opens the supply flow path 26 at the start of step S5 (time t3), the processing liquid L starts to flow along the supply flow path 26. As a result, the particles P2 are swept away by the treatment liquid L and begin to move from the valves 27 and 28 toward the nozzle 25. Then, by the end of step S5, the particles P2 are ejected from the nozzle 25 to the nozzle bath 45.
 1回のサイクルのステップS5でノズル25から吐出される処理液Lの総量は、最も上流のバルブ28の出口からノズル25の出口までの容積よりも大きい。ステップS5の終了時までにパーティクルP2をノズル25からノズルバス45に吐出でき、バッファ部30に清浄な処理液Lを溜めることができる。ここで溜めた清浄な処理液Lを、次回のサイクルのステップS2で基板Wに対して供給できる。 The total volume of the processing liquid L discharged from the nozzle 25 in step S5 of one cycle is larger than the volume from the outlet of the most upstream valve 28 to the outlet of the nozzle 25. Particles P2 can be discharged from the nozzle 25 to the nozzle bath 45 by the end of step S5, and the clean processing liquid L can be stored in the buffer unit 30. The clean processing liquid L stored here can be supplied to the substrate W in step S2 of the next cycle.
 ステップS5の終了時(時刻t4)に、開閉バルブ27が供給流路26を閉塞し、流量調整バルブ28がノズル25の吐出流量をゼロに調整する。 At the end of step S5 (time t4), the on-off valve 27 closes the supply flow path 26, and the flow rate adjusting valve 28 adjusts the discharge flow rate of the nozzle 25 to zero.
 なお、本実施形態では今回のサイクルの終了後に次回のサイクルが開始されるが、今回のサイクルの終了前に次回のサイクルが開始されてもよい。今回のサイクルのステップS5と、次回のサイクルのステップS1とは同時に実施されてもよい。ステップS1とステップS5とは、いずれも、ノズル25がノズルバス45に待機した状態で実施される。今回のサイクルの一部と、次回のサイクルの一部とを同時に実施すれば、スループットを向上できる。 In the present embodiment, the next cycle is started after the end of this cycle, but the next cycle may be started before the end of this cycle. Step S5 of this cycle and step S1 of the next cycle may be carried out at the same time. Both step S1 and step S5 are carried out with the nozzle 25 waiting in the nozzle bath 45. Throughput can be improved by performing part of this cycle and part of the next cycle at the same time.
 次に、図3及び図5を参照して、処理液Lの流量の設定について説明する。制御部9は、図3に示すように、ステップS5の流量FR2がステップS2の流量FR1よりも大きくなるように、液供給機構24を制御してもよい。ステップS2ではノズル25が基板Wに処理液Lを吐出し、ステップS5ではノズル25がノズルバス45に処理液Lを吐出する。 Next, the setting of the flow rate of the processing liquid L will be described with reference to FIGS. 3 and 5. As shown in FIG. 3, the control unit 9 may control the liquid supply mechanism 24 so that the flow rate FR2 in step S5 is larger than the flow rate FR1 in step S2. In step S2, the nozzle 25 discharges the processing liquid L to the substrate W, and in step S5, the nozzle 25 discharges the processing liquid L to the nozzle bath 45.
 本実施形態によれば、ステップS5ではステップS2に比べて、流量が大きいので、流速が大きく、処理液LのパーティクルP1を押す力も大きい。従って、ステップS5では、パーティクルP1を効率良く押し流し、バッファ部30の内壁面を効率良く洗浄できる。一方、ステップS2では、バッファ部30の内壁面に予め付着したパーティクルP1の剥離を抑制でき、基板Wに対するパーティクルP1の付着を抑制できる。 According to the present embodiment, since the flow rate is larger in step S5 than in step S2, the flow velocity is large and the force for pushing the particles P1 of the processing liquid L is also large. Therefore, in step S5, the particles P1 can be efficiently washed away, and the inner wall surface of the buffer portion 30 can be efficiently cleaned. On the other hand, in step S2, the detachment of the particles P1 previously attached to the inner wall surface of the buffer portion 30 can be suppressed, and the adhesion of the particles P1 to the substrate W can be suppressed.
 ステップS2では、図5(A)に示すように、ノズル25が基板Wに対して処理液Lを吐出する。そこで、ステップS2の流量FR1は、バッファ部30の内部に、乱流ではなく、層流が生じるように設定されてもよい。層流が生じる場合、流れの中心から周縁に向かうほど、流速が小さい。バッファ部30の内壁面では流速が略ゼロであるので、バッファ部30の内壁面に付着したパーティクルP1の剥離を防止できる。 In step S2, as shown in FIG. 5A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, the flow rate FR1 in step S2 may be set so that a laminar flow is generated inside the buffer unit 30 instead of a turbulent flow. When laminar flow occurs, the flow velocity decreases from the center of the flow toward the periphery. Since the flow velocity is substantially zero on the inner wall surface of the buffer portion 30, it is possible to prevent the particles P1 adhering to the inner wall surface of the buffer portion 30 from peeling off.
 一方、ステップS5では、図5(B)に示すように、ノズル25がノズルバス45に対して処理液Lを吐出する。そこで、ステップS5の流量FR2は、バッファ部30の内部に、層流ではなく、乱流が生じるように設定されてもよい。乱流が生じることで、バッファ部30の内壁面に付着したパーティクルP1を剥離でき、パーティクルP1の堆積を抑制できる。 On the other hand, in step S5, as shown in FIG. 5B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, the flow rate FR2 in step S5 may be set so that a turbulent flow is generated inside the buffer unit 30 instead of a laminar flow. By generating turbulence, the particles P1 adhering to the inner wall surface of the buffer portion 30 can be peeled off, and the accumulation of the particles P1 can be suppressed.
 次に、図6を参照して、第1変形例に係るバッファ部30について説明する。バッファ部30は、その内部空間31に窒素ガス等の気体を導入する気体導入部32を有してもよい。気体導入部32は、例えば気体の配管に接続されるポート32aを含む。気体の導入によって気泡Bが形成され、気泡BがパーティクルP1を吸着する。パーティクルP1を気泡Bと共に効率良く排出できる。 Next, the buffer unit 30 according to the first modification will be described with reference to FIG. The buffer unit 30 may have a gas introduction unit 32 that introduces a gas such as nitrogen gas into the internal space 31 thereof. The gas introduction unit 32 includes, for example, a port 32a connected to a gas pipe. Bubbles B are formed by the introduction of the gas, and the bubbles B adsorb the particles P1. Particles P1 can be efficiently discharged together with bubbles B.
 ステップS2では、図6(A)に示すように、ノズル25が基板Wに対して処理液Lを吐出する。そこで、ステップS2では、気体導入部32がバッファ部30の内部空間31に気体を導入しない。気泡Bの形成を禁止するので、バッファ部30の内壁面に付着したパーティクルP1の剥離を防止できる。 In step S2, as shown in FIG. 6A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, in step S2, the gas introduction unit 32 does not introduce the gas into the internal space 31 of the buffer unit 30. Since the formation of the bubbles B is prohibited, it is possible to prevent the particles P1 adhering to the inner wall surface of the buffer portion 30 from peeling off.
 一方、ステップS5では、図6(B)に示すように、ノズル25がノズルバス45に対して処理液Lを吐出する。そこで、ステップS5では、気体導入部32がバッファ部30の内部空間31に気体を導入する。気泡Bを形成するので、バッファ部30の内壁面に付着したパーティクルP1を剥離でき、パーティクルP1の堆積を抑制できる。 On the other hand, in step S5, as shown in FIG. 6B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, in step S5, the gas introduction unit 32 introduces the gas into the internal space 31 of the buffer unit 30. Since the bubbles B are formed, the particles P1 adhering to the inner wall surface of the buffer portion 30 can be peeled off, and the deposition of the particles P1 can be suppressed.
 なお、本変形例においても、上記実施形態と同様に、ステップS2とステップS5とで処理液Lの流量に差をつけてもよい。 In this modification as well, the flow rate of the treatment liquid L may be different between steps S2 and S5, as in the above embodiment.
 次に、図7を参照して、第2変形例に係るバッファ部30について説明する。バッファ部30は、その内部空間31に電界Eを形成する電極33、34を有してもよい。電極33、34は、処理液Lの流れ方向に対して直交方向、又は斜め方向に電界Eを形成する。パーティクルP1が帯電している場合、電界EによってパーティクルP1をトラップできる。なお、大部分のパーティクルP1が正負いずれかのみに帯電している場合、電極33、34は処理液Lの流れ方向に電界Eを形成してもよい。 Next, the buffer unit 30 according to the second modification will be described with reference to FIG. 7. The buffer unit 30 may have electrodes 33 and 34 that form an electric field E in its internal space 31. The electrodes 33 and 34 form an electric field E in a direction orthogonal to or diagonally to the flow direction of the treatment liquid L. When the particles P1 are charged, the particles P1 can be trapped by the electric field E. When most of the particles P1 are charged only in either positive or negative, the electrodes 33 and 34 may form an electric field E in the flow direction of the processing liquid L.
 ステップS2では、図7(A)に示すように、ノズル25が基板Wに対して処理液Lを吐出する。そこで、ステップS2では、電極33、34が電界Eを形成する。帯電したパーティクルP1を電界Eによってトラップでき、基板Wに対するパーティクルP1の付着を防止できる。 In step S2, as shown in FIG. 7A, the nozzle 25 discharges the processing liquid L to the substrate W. Therefore, in step S2, the electrodes 33 and 34 form an electric field E. The charged particles P1 can be trapped by the electric field E, and the particles P1 can be prevented from adhering to the substrate W.
 一方、ステップS5では、図7(B)に示すように、ノズル25がノズルバス45に対して処理液Lを吐出する。そこで、ステップS5では、電極33、34が電界Eを形成しない。帯電したパーティクルP1をそのまま押し流すことができ、バッファ部30から効率良く排出できる。 On the other hand, in step S5, as shown in FIG. 7B, the nozzle 25 discharges the processing liquid L to the nozzle bath 45. Therefore, in step S5, the electrodes 33 and 34 do not form an electric field E. The charged particles P1 can be flushed out as they are, and can be efficiently discharged from the buffer unit 30.
 なお、本変形例においても、上記実施形態と同様に、ステップS2とステップS5とで処理液Lの流量に差をつけてもよい。また、本変形例の電極33、34と、上記第1変形例の気体導入部32とが併用されてもよい。 In this modification as well, the flow rate of the treatment liquid L may be different between steps S2 and S5, as in the above embodiment. Further, the electrodes 33 and 34 of the present modification may be used in combination with the gas introduction section 32 of the first modification.
 バッファ部30が電極33、34を有する場合、バッファ部30を通過した後、ノズル25から吐出する前に、処理液Lの電荷を除去する除電部35を液供給機構24が有してもよい。除電部35は、例えばノズル25を接地する配線35aを含む。配線35aはバッファ部30とノズル25を接続する配管を接地してもよい。電荷の除去された処理液Lを基板Wに対して吐出でき、基板Wの損傷を抑制できる。また、基板Wの帯電を抑制でき、基板Wに対するパーティクルの付着を抑制できる。 When the buffer unit 30 has the electrodes 33 and 34, the liquid supply mechanism 24 may have a static elimination unit 35 for removing the electric charge of the processing liquid L after passing through the buffer unit 30 and before discharging from the nozzle 25. .. The static elimination unit 35 includes, for example, a wiring 35a for grounding the nozzle 25. The wiring 35a may ground the pipe connecting the buffer portion 30 and the nozzle 25. The processing liquid L from which the electric charge has been removed can be discharged to the substrate W, and damage to the substrate W can be suppressed. Further, the charging of the substrate W can be suppressed, and the adhesion of particles to the substrate W can be suppressed.
 次に、図8を参照して、第3変形例に係るバッファ部30について説明する。本変形例のバッファ部30は複数用意され、一のバッファ部30と別のバッファ部30とが連結可能である。処理液Lの種類が変更され、バッファ部30の容積が不足する場合に、バッファ部30の数を増やし、バッファ部30の内部空間31の容積を拡大できる。隣り合う2つのバッファ部30を接続する継ぎ手36が設けられてもよい。 Next, the buffer unit 30 according to the third modification will be described with reference to FIG. A plurality of buffer units 30 of this modification are prepared, and one buffer unit 30 and another buffer unit 30 can be connected to each other. When the type of the treatment liquid L is changed and the volume of the buffer unit 30 is insufficient, the number of the buffer units 30 can be increased and the volume of the internal space 31 of the buffer unit 30 can be expanded. A joint 36 may be provided to connect two adjacent buffer portions 30.
 次に、図9を参照して、第4変形例に係るバッファ部30について説明する。本変形例のバッファ部30は、内部空間31を形成する可撓性のチューブ37と、チューブ37の周囲に減圧室を形成する筐体38と、を含む。真空ポンプ39などで減圧室を減圧すると、チューブ37が膨らみ、内部空間31の容積が拡大する。本変形例においても、上記第3変形例と同様に、処理液Lの種類が変更され、バッファ部30の容積が不足する場合に、バッファ部30の内部空間31の容積を拡大できる。 Next, the buffer unit 30 according to the fourth modification will be described with reference to FIG. 9. The buffer portion 30 of this modification includes a flexible tube 37 forming an internal space 31 and a housing 38 forming a decompression chamber around the tube 37. When the pressure reducing chamber is depressurized by a vacuum pump 39 or the like, the tube 37 swells and the volume of the internal space 31 expands. Also in this modification, similarly to the third modification, when the type of the treatment liquid L is changed and the volume of the buffer unit 30 is insufficient, the volume of the internal space 31 of the buffer unit 30 can be expanded.
 次に、図10を参照して、液処理ユニット2の外部における処理液Lの流れについて説明する。基板処理装置1は、ノズル25からノズルバス45に吐出された処理液Lを回収する回収流路5と、回収流路5から、液供給機構24の供給流路26に処理液Lを戻す戻し流路6と、を有する。戻し流路6には、フィルタ61が設けられる。フィルタ61によってバルブ27、28の動作によって発生したパーティクルP1、P2を捕集でき、処理液Lを再利用でき、処理液Lの廃棄量を低減できる。 Next, with reference to FIG. 10, the flow of the treatment liquid L outside the liquid treatment unit 2 will be described. The substrate processing device 1 has a recovery flow path 5 for collecting the treatment liquid L discharged from the nozzle 25 to the nozzle bath 45, and a return flow for returning the treatment liquid L from the recovery flow path 5 to the supply flow path 26 of the liquid supply mechanism 24. It has a road 6. A filter 61 is provided in the return flow path 6. Particles P1 and P2 generated by the operation of the valves 27 and 28 can be collected by the filter 61, the treatment liquid L can be reused, and the amount of waste of the treatment liquid L can be reduced.
 回収流路5と戻し流路6とは、タンク7を介して接続される。戻し流路6は、タンク7から取り出した処理液Lをタンク7に送り返す循環流路6である。循環流路6の上流端はタンク7に接続され、循環流路6の下流端もタンク7に接続される。液供給機構24の供給流路26の上流端は、循環流路6に接続される。循環流路6から複数の液処理ユニット2に対して処理液Lを供給できる。 The recovery flow path 5 and the return flow path 6 are connected via the tank 7. The return flow path 6 is a circulation flow path 6 that sends the processing liquid L taken out from the tank 7 back to the tank 7. The upstream end of the circulation flow path 6 is connected to the tank 7, and the downstream end of the circulation flow path 6 is also connected to the tank 7. The upstream end of the supply flow path 26 of the liquid supply mechanism 24 is connected to the circulation flow path 6. The treatment liquid L can be supplied from the circulation flow path 6 to the plurality of liquid treatment units 2.
 循環流路6の途中には、処理液Lの温度を検出する温度計62と、処理液Lを送り出すポンプ63と、処理液Lの温度を調節する温調器64とが設けられる。温調器64は、処理液Lを加熱するヒータを含む。温調器64は、制御部9による制御下で、温度計62の検出温度が設定温度になるように処理液Lを加熱する。処理液Lは、加熱され、室温よりも高温で基板Wを処理する。温調器64は、処理液Lを冷却するクーラーを含んでもよい。なお、処理液Lは、室温で基板Wを処理してもよい。この場合、温度計62および温調器64は不要である。 In the middle of the circulation flow path 6, a thermometer 62 for detecting the temperature of the treatment liquid L, a pump 63 for sending out the treatment liquid L, and a temperature controller 64 for adjusting the temperature of the treatment liquid L are provided. The temperature controller 64 includes a heater that heats the processing liquid L. The temperature controller 64 heats the processing liquid L so that the detection temperature of the thermometer 62 becomes the set temperature under the control of the control unit 9. The treatment liquid L is heated and treats the substrate W at a temperature higher than room temperature. The temperature controller 64 may include a cooler for cooling the processing liquid L. The treatment liquid L may treat the substrate W at room temperature. In this case, the thermometer 62 and the temperature controller 64 are unnecessary.
 回収流路5は、液処理ユニット2毎に設けられる個別流路51と、複数の液処理ユニット2に共通の共通流路52と、を含む。個別流路51の上流端はノズルバス45に接続され、個別流路51の下流端は共通流路52に接続される。共通流路52の下流端は、タンク7に接続される。 The recovery flow path 5 includes an individual flow path 51 provided for each liquid treatment unit 2 and a common flow path 52 common to the plurality of liquid treatment units 2. The upstream end of the individual flow path 51 is connected to the nozzle bus 45, and the downstream end of the individual flow path 51 is connected to the common flow path 52. The downstream end of the common flow path 52 is connected to the tank 7.
 次に、図11を参照して、変形例に係る液供給機構24について説明する。本変形例の液供給機構24は、バッファ部30にて、処理液Lの温度を調節する温調器65を有する。処理液Lがバッファ部30を通過するのに時間がかかるが、その間に処理液Lが自然に冷却されてしまうのを温調器65が抑制する。それゆえ、所望の温度の処理液Lを基板Wに対して吐出できる。 Next, the liquid supply mechanism 24 according to the modified example will be described with reference to FIG. The liquid supply mechanism 24 of this modification has a temperature controller 65 that adjusts the temperature of the processing liquid L in the buffer unit 30. It takes time for the treatment liquid L to pass through the buffer unit 30, but the temperature controller 65 suppresses the treatment liquid L from being naturally cooled during that time. Therefore, the treatment liquid L having a desired temperature can be discharged to the substrate W.
 温調器65は、例えば循環流路6の一部であって、バッファ部30を囲む配管である。バッファ部30の外径は循環流路6の内径よりも小さく、循環流路6の内部にバッファ部30が配置される。循環流路6を流れる処理液Lの熱で、バッファ部30を流れる処理液Lの冷却を抑制できる。循環流路6の内部にバッファ部30を配置しやすいように、バッファ部30の内径は供給流路26の内径と同程度であってもよい。 The temperature controller 65 is, for example, a part of the circulation flow path 6 and is a pipe surrounding the buffer portion 30. The outer diameter of the buffer portion 30 is smaller than the inner diameter of the circulation flow path 6, and the buffer portion 30 is arranged inside the circulation flow path 6. The heat of the processing liquid L flowing through the circulation flow path 6 can suppress the cooling of the processing liquid L flowing through the buffer portion 30. The inner diameter of the buffer portion 30 may be about the same as the inner diameter of the supply flow path 26 so that the buffer portion 30 can be easily arranged inside the circulation flow path 6.
 なお、温調器65は、循環流路6の一部ではなく、循環流路6とは別に設けられてもよく、例えば電気ヒータ等を含んでもよい。また、温調器65は、バッファ部30の外部ではなく、バッファ部30の内部に設けられてもよい。 The temperature controller 65 is not a part of the circulation flow path 6, and may be provided separately from the circulation flow path 6, and may include, for example, an electric heater. Further, the temperature controller 65 may be provided inside the buffer unit 30 instead of outside the buffer unit 30.
 以上、本開示に係る液供給機構、基板処理装置、及び基板処理方法の実施形態等について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the liquid supply mechanism, the substrate processing apparatus, and the embodiment of the substrate processing method according to the present disclosure have been described above, the present disclosure is not limited to the above-described embodiment and the like. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. Of course, they also belong to the technical scope of the present disclosure.
 本出願は、2020年5月14日に日本国特許庁に出願した特願2020-085338号に基づく優先権を主張するものであり、特願2020-085338号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-085338 filed with the Japan Patent Office on May 14, 2020, and the entire contents of Japanese Patent Application No. 2020-085338 are incorporated in this application. ..
24 液供給機構
25 ノズル
26 供給流路
27 開閉バルブ(バルブ)
28 流量調整バルブ(バルブ)
30 バッファ部
31 内部空間
24 Liquid supply mechanism 25 Nozzle 26 Supply flow path 27 Open / close valve (valve)
28 Flow rate adjustment valve (valve)
30 Buffer section 31 Internal space

Claims (15)

  1.  基板に対して処理液を吐出するノズルと、
     前記ノズルに前記処理液を供給する供給流路と、
     前記供給流路の流れを調整するバルブと、
     前記バルブから前記ノズルに向かう途中で、前記処理液を一時的に内部空間に溜めるバッファ部と、を有する、液供給機構。
    A nozzle that discharges the processing liquid to the substrate and
    A supply flow path for supplying the treatment liquid to the nozzle, and
    A valve that adjusts the flow of the supply flow path and
    A liquid supply mechanism having a buffer portion for temporarily storing the treatment liquid in the internal space on the way from the valve to the nozzle.
  2.  前記バッファ部の前記内部空間は、円柱形であって、
     前記バッファ部の内径は、前記供給流路の内径よりも大きい、請求項1に記載の液供給機構。
    The internal space of the buffer portion is cylindrical and has a cylindrical shape.
    The liquid supply mechanism according to claim 1, wherein the inner diameter of the buffer portion is larger than the inner diameter of the supply flow path.
  3.  前記バッファ部は、前記内部空間に気体を導入する気体導入部を含む、請求項1又は2に記載の液供給機構。 The liquid supply mechanism according to claim 1 or 2, wherein the buffer unit includes a gas introduction unit that introduces a gas into the internal space.
  4.  前記バッファ部は、前記内部空間に電界を形成する電極を有する、請求項1~3のいずれか1項に記載の液供給機構。 The liquid supply mechanism according to any one of claims 1 to 3, wherein the buffer unit has an electrode that forms an electric field in the internal space.
  5.  前記バッファ部を通過した後、前記ノズルから吐出する前に、前記処理液の電荷を除去する除電部を有する、請求項4に記載の液供給機構。 The liquid supply mechanism according to claim 4, further comprising a static elimination unit that removes electric charges of the processing liquid after passing through the buffer unit and before discharging from the nozzle.
  6.  前記バッファ部は、前記内部空間の容積を拡大可能である、請求項1~5のいずれか1項に記載の液供給機構。 The liquid supply mechanism according to any one of claims 1 to 5, wherein the buffer unit can expand the volume of the internal space.
  7.  前記バッファ部が複数用意され、一の前記バッファ部と別の前記バッファ部とが連結可能である、請求項6に記載の液供給機構。 The liquid supply mechanism according to claim 6, wherein a plurality of the buffer units are prepared, and one buffer unit and another buffer unit can be connected to each other.
  8.  前記バッファ部は、前記内部空間を形成する可撓性のチューブと、前記チューブの周囲に減圧室を形成する筐体と、を含む、請求項6に記載の液供給機構。 The liquid supply mechanism according to claim 6, wherein the buffer portion includes a flexible tube forming the internal space and a housing forming a decompression chamber around the tube.
  9.  前記バッファ部にて、前記処理液の温度を調節する温調器を有する、請求項1~8のいずれか1項に記載の液供給機構。 The liquid supply mechanism according to any one of claims 1 to 8, further comprising a temperature controller for adjusting the temperature of the processing liquid in the buffer unit.
  10.  請求項1~9のいずれか1項に記載の液供給機構と、
     前記ノズルが待機するノズルバスと、
     前記ノズルから前記ノズルバスに吐出された前記処理液を回収する回収流路と、
     前記回収流路から、前記液供給機構の前記供給流路に前記処理液を戻す戻し流路と、
     前記戻し流路に設けられるフィルタと、を有する、基板処理装置。
    The liquid supply mechanism according to any one of claims 1 to 9, and the liquid supply mechanism.
    The nozzle bath where the nozzle stands by and
    A recovery flow path for collecting the treatment liquid discharged from the nozzle to the nozzle bath, and a recovery flow path.
    A return flow path for returning the treatment liquid from the recovery flow path to the supply flow path of the liquid supply mechanism, and
    A substrate processing apparatus having a filter provided in the return flow path.
  11.  前記回収流路と前記戻し流路とは、タンクを介して接続され、
     前記戻し流路は、前記タンクから取り出した前記処理液を前記タンクに送り返す循環流路であり、
     前記液供給機構の前記供給流路の上流端は、前記循環流路に接続される、請求項10に記載の基板処理装置。
    The recovery flow path and the return flow path are connected via a tank.
    The return flow path is a circulation flow path that sends the treatment liquid taken out from the tank back to the tank.
    The substrate processing apparatus according to claim 10, wherein the upstream end of the supply flow path of the liquid supply mechanism is connected to the circulation flow path.
  12.  前記液供給機構を制御する制御部を有し、
     前記制御部は、前記ノズルが前記ノズルバスに待機する間、前記ノズルから前記ノズルバスに前記処理液を吐出するように前記液供給機構を制御する、請求項10又は11に記載の基板処理装置。
    It has a control unit that controls the liquid supply mechanism, and has a control unit.
    The substrate processing apparatus according to claim 10 or 11, wherein the control unit controls the liquid supply mechanism so that the processing liquid is discharged from the nozzle to the nozzle bus while the nozzle waits in the nozzle bus.
  13.  前記制御部は、前記ノズルから前記ノズルバスに吐出する前記処理液の流量が前記ノズルから前記基板に吐出する前記処理液の流量よりも大きくなるように前記液供給機構を制御する、請求項12に記載の基板処理装置。 12. The control unit controls the liquid supply mechanism so that the flow rate of the processing liquid discharged from the nozzle to the nozzle bus is larger than the flow rate of the processing liquid discharged from the nozzle to the substrate. The substrate processing apparatus described.
  14.  ノズルから基板に処理液を吐出することと、
     前記ノズルに供給流路から前記処理液を供給することと、
     前記供給流路の流れをバルブで調整することと、
     前記バルブから前記ノズルに向かう途中に設けられるバッファ部の内部空間に、前記処理液を一時的に溜めることと、を有する、基板処理方法。
    Discharging the processing liquid from the nozzle to the substrate and
    Supplying the treatment liquid to the nozzle from the supply flow path and
    Adjusting the flow of the supply flow path with a valve and
    A substrate processing method comprising temporarily storing the processing liquid in an internal space of a buffer portion provided on the way from the valve to the nozzle.
  15.  前記ノズルをノズルバスに待機させることと、
     前記ノズルを前記ノズルバスに待機させる間、前記ノズルから前記ノズルバスに前記処理液を吐出することと、
     前記ノズルから前記ノズルバスに前記処理液を吐出する流量を、前記ノズルから前記基板に前記処理液を吐出する流量よりも大きく制御することと、を有する、請求項14に記載の基板処理方法。
    Making the nozzle stand by in the nozzle bath
    While the nozzle is kept on standby in the nozzle bath, the treatment liquid is discharged from the nozzle to the nozzle bath.
    The substrate processing method according to claim 14, wherein the flow rate of discharging the processing liquid from the nozzle to the nozzle bus is controlled to be larger than the flow rate of discharging the processing liquid from the nozzle to the substrate.
PCT/JP2021/017214 2020-05-14 2021-04-30 Liquid supplying mechanism, substrate treatment device, and substrate treatment method WO2021230110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180033454.7A CN115516607A (en) 2020-05-14 2021-04-30 Liquid supply mechanism, substrate processing apparatus, and substrate processing method
KR1020227042753A KR20230009921A (en) 2020-05-14 2021-04-30 Liquid supply mechanism, substrate processing apparatus, and substrate processing method
JP2022521846A JP7462743B2 (en) 2020-05-14 2021-04-30 LIQUID SUPPLY MECHANISM, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-085338 2020-05-14
JP2020085338 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230110A1 true WO2021230110A1 (en) 2021-11-18

Family

ID=78525766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017214 WO2021230110A1 (en) 2020-05-14 2021-04-30 Liquid supplying mechanism, substrate treatment device, and substrate treatment method

Country Status (4)

Country Link
JP (1) JP7462743B2 (en)
KR (1) KR20230009921A (en)
CN (1) CN115516607A (en)
WO (1) WO2021230110A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148747A (en) * 2016-02-25 2017-08-31 東芝メモリ株式会社 Dust collector and substrate processing system
JP2019087652A (en) * 2017-11-08 2019-06-06 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319117B2 (en) 2015-01-26 2018-05-09 東京エレクトロン株式会社 Treatment liquid supply apparatus, treatment liquid supply method, and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148747A (en) * 2016-02-25 2017-08-31 東芝メモリ株式会社 Dust collector and substrate processing system
JP2019087652A (en) * 2017-11-08 2019-06-06 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
CN115516607A (en) 2022-12-23
JP7462743B2 (en) 2024-04-05
JPWO2021230110A1 (en) 2021-11-18
KR20230009921A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP4676230B2 (en) Substrate processing apparatus and substrate processing method
JP4994501B2 (en) Semiconductor wafer cleaning method and apparatus
JP6331961B2 (en) Substrate liquid processing equipment
JP5694118B2 (en) Liquid processing apparatus and liquid processing method
CN109427627B (en) Liquid treatment apparatus and liquid treatment method
TW201738003A (en) Substrate cleaning device, substrate cleaning method, substrate processing device, and substrate drying device
TWI728346B (en) Substrate processing device and substrate processing method
KR20020006467A (en) Cleaning method and cleaning apparatus for substrate
KR102189980B1 (en) Substrate processing method and substrate processing apparatus
CN107086172B (en) Liquid processing method and substrate processing apparatus
KR102465644B1 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP6407829B2 (en) Substrate liquid processing apparatus and substrate liquid processing method
JP7391793B2 (en) Substrate processing equipment and substrate processing method
WO2021230110A1 (en) Liquid supplying mechanism, substrate treatment device, and substrate treatment method
KR102353775B1 (en) Substrate processing apparatus
JP6489524B2 (en) Substrate processing equipment
KR100871821B1 (en) Apparatus for treating substrate
JP5248633B2 (en) Liquid processing apparatus and liquid processing method
US9937520B2 (en) Substrate treating method
KR101570167B1 (en) Substrate processing apparatus
JP7302997B2 (en) SUBSTRATE PROCESSING APPARATUS AND PIPE CLEANING METHOD OF SUBSTRATE PROCESSING APPARATUS
JP2002270592A (en) Apparatus and method for treating substrate
US11806767B2 (en) Substrate processing apparatus and substrate processing method
JP2013004623A (en) Liquid processing apparatus and liquid processing method
KR20120077515A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227042753

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804313

Country of ref document: EP

Kind code of ref document: A1