WO2021230004A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2021230004A1
WO2021230004A1 PCT/JP2021/015771 JP2021015771W WO2021230004A1 WO 2021230004 A1 WO2021230004 A1 WO 2021230004A1 JP 2021015771 W JP2021015771 W JP 2021015771W WO 2021230004 A1 WO2021230004 A1 WO 2021230004A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
emitting element
hole
metal material
Prior art date
Application number
PCT/JP2021/015771
Other languages
French (fr)
Japanese (ja)
Inventor
義彦 高橋
裕司 古嶋
孝行 河角
智之 北村
重吾 御友
一郎 増本
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022521783A priority Critical patent/JPWO2021230004A1/ja
Publication of WO2021230004A1 publication Critical patent/WO2021230004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • This disclosure relates to a light emitting device.
  • the light emitting element When driven, the light emitting element causes self-heating by electric power that does not contribute to light emission.
  • heat is likely to be generated in the center of the array region, and the generated heat may reduce the output of the light emitting element.
  • output variation may occur depending on the heat distribution.
  • the driver element for driving the light emitting element and the light emitting element are laminated with each other, the driver element can function as a heat dissipation mechanism of the light emitting element.
  • the driver element does not have sufficient heat dissipation to flatten the heat distribution generated in the light emitting element.
  • Patent Document 1 A structure in which a light emitting element and a driver element are laminated on each other is disclosed in, for example, Patent Document 1.
  • the light emitting device includes a light emitting element and a driver element stacked on each other.
  • the driver element has a drive circuit for driving the light emitting element on the surface on the light emitting element side and in a region facing the light emitting element.
  • the driver element further has a heat dissipation hole having a depth that does not reach the drive circuit in a region on the back surface opposite to the light emitting element and facing the light emitting element.
  • a heat dissipation hole having a depth that does not reach the drive circuit is provided in a region on the back surface opposite to the light emitting element and facing the light emitting element. It is formed. As a result, the heat generated by the light emitting element is discharged to the outside through the heat dissipation hole.
  • FIG. 1 shows an example of the upper surface configuration of the surface emitting laser device 1.
  • FIG. 2 shows an example of cross-sectional configuration of the surface emitting laser device 1 of FIG. 1 on the AA line.
  • the surface emitting laser device 1 corresponds to a specific example of the "light emitting device" of the present disclosure.
  • the surface emitting laser device 1 is a back surface emitting type laser.
  • the surface emitting laser device 1 includes a laser chip 10 and a laser driver IC 20.
  • the laser chip 10 corresponds to a specific example of the "light emitting element" of the present disclosure.
  • the laser driver IC 20 corresponds to a specific example of the "driver element” of the present disclosure.
  • the laser chip 10 and the laser driver IC 20 are laminated on each other.
  • the laser chip 10 is arranged on the laser driver IC 20.
  • the laser chip 10 is electrically connected to the laser driver IC 20 via, for example, a plurality of solders 14. Metal bumps may be used instead of the solder 14. In this case, the laser chip 10 and the laser driver IC 20 are electrically connected via the metal bump. Examples of the material of the metal bump include Ni, Cu, SnAg, Au and the like.
  • the solder 14 and the metal bump correspond to a specific example of the "metal joint" of the present disclosure.
  • the laser chip 10 includes, for example, a substrate 13, an emitter array region 11 formed on the surface of the substrate 13 on the laser driver IC 20 side, and a plurality of solders 14 formed on the surface of the substrate 13 on the laser driver IC 20 side. have.
  • the surface of the substrate 13 opposite to the laser driver IC 20 is the light emitting surface 13A of the laser chip 10.
  • the emitter array region 11 is formed on a surface of the substrate 13 opposite to the light emitting surface 13A.
  • a plurality of emitters 12 are two-dimensionally arranged.
  • the emitter 12 corresponds to a specific example of the "light emitting unit" of the present disclosure.
  • the emitter 12 is a surface emitting laser that emits light in a direction parallel to the stacking direction of the laser chip 10 and the laser driver IC 20.
  • the plurality of emitters 12 are arranged on the substrate 13 at equal intervals in the row direction and at equal intervals in the column direction, for example.
  • the plurality of emitters 12 may be randomly arranged on the same substrate 13.
  • Each emitter 12 is composed of a surface-emitting semiconductor laser that emits laser light in the stacking direction of the laser chip 10 and the laser driver IC 20.
  • Each emitter 12 emits laser light to the side opposite to the laser driver IC 20 via the substrate 13.
  • the substrate 13 is composed of, for example, a semi-insulating semiconductor substrate (for example, a Si-doped GaAs substrate) that transmits light emitted from the emitter 12.
  • Each emitter 12 has a columnar vertical resonator structure (mesa) in which, for example, a first DBR layer, a first spacer layer, an active layer, a second spacer layer, a second DBR layer, and a contact layer are laminated in this order from the substrate 13 side. )have. In each mesa, the first DBR layer and the second DBR layer sandwich the active layer.
  • Each mesa is composed of, for example, a GaAs-based semiconductor.
  • the contact layer is composed of, for example, p-type Al x1 Ga 1-x1 As (0 ⁇ x1 ⁇ 1).
  • the second DBR layer is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown).
  • the low refractive index layer is composed of, for example, p-type Al x2 Ga 1-x2 As (0 ⁇ x2 ⁇ 1) having an optical thickness of ⁇ ⁇ 1/4 ( ⁇ 1 is an oscillation wavelength), and is a high refractive index layer.
  • the second spacer layer is made of, for example, p-type Al x4 Ga 1-x4 As (0 ⁇ x4 ⁇ 1).
  • the contact layer, the second DBR layer and the second spacer layer contain p-type impurities such as carbon (C). That is, the contact layer, the second DBR layer, and the second spacer layer are made of, for example, a p-type semiconductor.
  • the active layer comprises, for example, an undoped In x5 Ga 1-x5 As (0 ⁇ x5 ⁇ 1) well layer (not shown) and an undoped Al x6 Ga 1-x6 As (0 ⁇ x6 ⁇ 1). It has a multiple quantum well structure in which barrier layers (not shown) are alternately laminated.
  • the region of the active layer facing the current injection region (described later) is the light emitting region.
  • the first spacer layer is made of, for example, n-type Al x7 Ga 1-x7 As (0 ⁇ x7 ⁇ 1).
  • the first DBR layer is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown).
  • the low refractive index layer is composed of, for example, n-type Al x8 Ga 1-x8 As (0 ⁇ x8 ⁇ 1) having an optical thickness of ⁇ ⁇ 1/4
  • the high refractive index layer is, for example, having an optical thickness of ⁇ ⁇ 1/4. It is composed of ⁇ ⁇ 1/4 n-type Al x9 Ga 1-x9 As (0 ⁇ x9 ⁇ x8).
  • the first spacer layer 12F and the first DBR layer contain n-type impurities such as silicon (Si). That is, the first spacer layer 12F and the first DBR layer are composed of, for example, an n-type semiconductor.
  • a current constriction layer is provided in the second DBR layer.
  • the current constriction layer has a current injection region and a current constriction region.
  • the current constriction region is formed in the peripheral region of the current injection region.
  • the current injection region is composed of, for example, p-type Al x10 Ga 1-x10 As (0 ⁇ x10 ⁇ 1).
  • the current constriction region is composed of, for example, Al 2 O 3 (aluminum oxide), and is obtained, for example, by oxidizing a high concentration of Al contained in the oxidized layer from the side surface. Therefore, the current constriction layer has a function of constricting the current.
  • the laser driver IC 20 is provided so as to face the emitter array region 11.
  • the laser driver IC 20 is electrically connected to the electrodes of each emitter 12 via a plurality of solders 14 or metal bumps, and each emitter 12 is connected via a plurality of solders 14 or metal bumps and electrodes of each emitter 12. Controls the light emission and extinguishing of.
  • the laser driver IC 20 independently drives a plurality of emitters 12 provided on the laser chip 10 to cause a part or all of the plurality of emitters 12 to emit light.
  • the laser driver IC 20 has, for example, a Si substrate 21 and a wiring layer 22 formed on the Si substrate 21.
  • the Si substrate 21 corresponds to a specific example of the "semiconductor substrate" of the present disclosure.
  • the laser driver IC 20 has a drive circuit 23 that controls the voltage applied to the laser chip 10.
  • the drive circuit 23 is formed on the surface S1 of the Si substrate 21 on the light emitting element side and in a region facing the laser chip 10.
  • the drive circuit 23 is formed in a region facing the emitter array region 11.
  • the drive circuit 23 generates a drive pulse that emits light and quenches a plurality of emitters 12 provided on the laser chip 10.
  • the drive circuit 23 is electrically connected to the laser chip 10 via the wiring layer 22.
  • the wiring layer 22 is, for example, a layer in which a plurality of connection pads 24 are provided in the insulating layer.
  • the plurality of connection pads 24 electrically connect the drive circuit 23 in the Si substrate 21 and the plurality of solders 14 or metal bumps to each other.
  • the plurality of connection pads 24 are arranged in the wiring layer 22 at positions facing the laser chip 10, and are electrically connected to the electrodes of the emitters 12 provided on the laser chip 10.
  • the Si substrate 21 has a heat dissipation hole 25 on the back surface S2 on the opposite side of the laser chip 10 and having a depth that does not reach the drive circuit 23 in a region facing the laser chip 10.
  • the Si substrate 21 has a hole 21A having an opening on the back surface S2 side.
  • the hole 21A is the back surface S2 on the opposite side of the laser chip 10, and has a depth that does not reach the drive circuit 23 in the region facing the laser chip 10.
  • the hole 21A is formed in a region facing the emitter array region 11.
  • the heat dissipation hole 25 is provided in the hole 21A.
  • the heat dissipation hole 25 is formed in a region facing the emitter array region 11.
  • the heat dissipation hole 25 has a tip portion 25A having a dimension narrower than the dimension of the emitter array region 11.
  • the tip portion 25A is formed at a position facing the center of the emitter array region 11.
  • the heat radiating hole 25 has a tapered shape that narrows from the back surface S2 side of the Si substrate 21 toward the tip portion 25A side.
  • the heat dissipation hole 25 is made of a metal material that embeds the hole 21A.
  • the metal material constituting the heat dissipation hole 25 is preferably a metal material that can be plated.
  • the heat dissipation hole 25 is formed, for example, by performing a plating process and filling the hole 21A with a metal material that can be plated.
  • the metal material that can be plated is, for example, Ag, Cu, Au or Ni.
  • the metal material constituting the heat dissipation hole 25 is preferably a metal material having a thermal conductivity higher than that of the Si substrate 21 (168 W / mK).
  • Examples of the metal material having a thermal conductivity higher than the thermal conductivity (168W / mK) of the Si substrate 21 include Au (319W / mK), Ag (428W / mK), Cu (403W / mK) and the like. ..
  • the opening portion and the tip portion 25A of the heat radiating hole 25 have a rectangular shape, for example, as shown in FIG.
  • the opening portion and the tip portion 25A of the heat radiating hole 25 may have a circular shape, for example, as shown in FIG.
  • the opening portion of the heat radiating hole 25 may have a rectangular shape
  • the tip portion 25A of the heat radiating hole 25 may have a circular shape.
  • the opening portion of the heat radiating hole 25 may have a circular shape
  • the tip portion 25A of the heat radiating hole 25 may have a rectangular shape.
  • the cross-sectional shape of the heat dissipation hole 25 is trapezoidal, for example, as shown in FIG.
  • the cross-sectional shape of the heat radiating hole 25 may be triangular, for example, as shown in FIG.
  • the cross-sectional shape of the heat radiating hole 25 may be, for example, a semicircular shape as shown in FIG.
  • the cross-sectional shape of the heat radiating hole 25 may be, for example, a shape in which a plurality of semicircles having different diameters are laminated.
  • the surface emitting laser device 1 may include, for example, a heat radiating plate 30 having high thermal conductivity, which is in contact with the heat radiating hole 25 of the laser driver IC 20 and the back surface S2.
  • the heat sink 30 corresponds to a specific example of the "metal layer" of the present disclosure.
  • the heat radiating plate 30 is made of, for example, a metal material having a thermal conductivity higher than that of the Si substrate 21 (168 W / mK).
  • the heat radiating plate 30 is made of, for example, Au (319W / mK), Ag (428W / mK), Cu (403W / mK), or the like.
  • the heat radiating plate 30 discharges the heat of the heat radiating hole 25 and the Si substrate 21 to the outside.
  • a heat dissipation hole 25 having a depth that does not reach the drive circuit 23 is formed in a region facing the laser chip 10 on the back surface S2 on the opposite side of the laser chip 10. Has been done. As a result, the heat generated by the laser chip 10 is discharged to the outside through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
  • the heat dissipation hole 25 is formed in a region facing the emitter array region 11.
  • the heat dissipation hole 25 can be arranged close to the region that generates the most heat in the laser chip 10, so that the heat distribution in the emitter array region 11 can be flattened.
  • a tip portion 25A having a dimension narrower than the dimension of the emitter array region 11 is provided, and the tip portion 25A is formed at a position facing the center of the emitter array region 11. ing.
  • the tip portion 25A can be arranged close to the region that generates the most heat in the laser chip 10, so that heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10.
  • the heat distribution of the emitter array region 11 can be flattened.
  • the heat dissipation hole 25 has a tapered shape that narrows from the back surface S2 side of the Si substrate 21 toward the tip portion 25A side. As a result, heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
  • the heat dissipation hole 25 is made of a metal material that embeds a hole 21A having an opening on the back surface S2 side of the Si substrate 21.
  • the heat radiation hole 25 can be formed by embedding the hole 21A with a metal material that can be plated (for example, Ag, Cu, Au or Ni) by using a plating method.
  • the heat dissipation hole 25 is made of a metal material having a thermal conductivity higher than that of the Si substrate 21. Thereby, for example, heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
  • the plurality of emitters 12 provided in the emitter array region 11 of the laser chip 10 are surface emitting lasers that emit light in a direction parallel to the stacking direction of the laser chip 10 and the laser driver IC 20.
  • a large number of emitters 12 can be integrated and formed in the emitter array region 11.
  • heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25, so that the generated heat reduces the output of a large number of emitters 12 that are integrated and formed. It is possible to reduce the risk of this.
  • a plurality of solders 14 or metal bumps for joining the laser chip 10 and the laser driver IC 20 to each other are provided.
  • the heat generated by the laser chip 10 can be discharged to the heat dissipation hole 25 via the plurality of solders 14 or metal bumps.
  • the heat distribution of the emitter array region 11 can be flattened.
  • a heat radiating plate 30 having high thermal conductivity is provided in contact with the heat radiating hole 25 and the back surface S2 of the Si substrate 21.
  • the heat generated by the laser chip 10 can be discharged to the outside through the heat radiating hole 25 and the heat radiating plate 30.
  • the heat distribution of the emitter array region 11 can be flattened.
  • the present disclosure may have the following structure.
  • the driver element has a drive circuit for driving the light emitting element on the surface of the light emitting element and in a region facing the light emitting element, and is a back surface on the opposite side of the light emitting element.
  • the light emitting element has an array region in which a plurality of light emitting units are two-dimensionally arranged. The light emitting device according to (1), wherein the heat radiation hole is formed in a region facing the array region.
  • the heat dissipation hole has a tip having a dimension narrower than the dimension of the array region.
  • the driver element has a semiconductor substrate having the front surface and the back surface.
  • the semiconductor substrate has a hole having an opening on the back surface side, and the semiconductor substrate has a hole.
  • the light emitting device according to (5), wherein the metal material is a metal material that can be plated.
  • the light emitting device according to (6), wherein the metal material that can be plated is Ag, Cu, Au or Ni.
  • the semiconductor substrate is a Si substrate, and the semiconductor substrate is a Si substrate.
  • the light emitting device according to (8), wherein the metal material is Ag, Cu or Au.
  • the light emitting device according to any one of (2) to (9), wherein the light emitting unit is a surface light emitting laser that emits light in a direction parallel to the stacking direction of the light emitting element and the driver element.
  • the light emitting unit is a surface light emitting laser that emits light in a direction parallel to the stacking direction of the light emitting element and the driver element.
  • the light emitting device according to any one of (1) to (10), further comprising a metal joint portion for joining the light emitting element and the driver element to each other.
  • the driver element heat is dissipated having a depth that does not reach the drive circuit in the region on the back surface opposite to the light emitting element and facing the light emitting element. Since the holes are formed, the heat generated by the light emitting element can be discharged to the outside through the heat dissipation holes. As a result, the heat distribution can be flattened.
  • the effects of the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An embodiment of the present disclosure relates to a light-emitting device (1) comprising a light-emitting element (10) and a driver element (20) which are stacked on each other. The driver element (20) includes, on a front surface (S1) thereof on the light-emitting element (10) side and in a region opposing the light-emitting element (10), a drive circuit (23) for driving the light-emitting element (10). The driver element (20) further includes, on a back surface (S2) thereof opposite the light-emitting element (10) and in a region opposing the light-emitting element (10), a heat-dissipating hole (25) having such a depth as not to reach the drive circuit (23).

Description

発光装置Light emitting device
 本開示は、発光装置に関する。 This disclosure relates to a light emitting device.
 発光素子は、駆動時、発光に寄与しない電力により自己発熱を起こす。特に、複数の発光部を有するアレイ領域が設けられた発光素子においては、アレイ領域の中央で熱が発生しやすく、発生した熱によって、発光素子の出力が低下するおそれがある。アレイ領域に熱分布が生じた場合、熱分布に応じた出力ばらつきが生じるおそれがある。発光素子を駆動するドライバ素子と、発光素子とが互いに積層されている場合、ドライバ素子が、発光素子の放熱機構として機能し得る。しかし、ドライバ素子は、発光素子に生じた熱分布を平坦化できるほどの放熱性を備えていない。なお、発光素子とドライバ素子とが互いに積層された構造については、例えば、特許文献1に開示されている。 When driven, the light emitting element causes self-heating by electric power that does not contribute to light emission. In particular, in a light emitting element provided with an array region having a plurality of light emitting portions, heat is likely to be generated in the center of the array region, and the generated heat may reduce the output of the light emitting element. When heat distribution occurs in the array region, output variation may occur depending on the heat distribution. When the driver element for driving the light emitting element and the light emitting element are laminated with each other, the driver element can function as a heat dissipation mechanism of the light emitting element. However, the driver element does not have sufficient heat dissipation to flatten the heat distribution generated in the light emitting element. A structure in which a light emitting element and a driver element are laminated on each other is disclosed in, for example, Patent Document 1.
特開2016-021493号公報Japanese Unexamined Patent Publication No. 2016-021493
 ところで、発光素子とドライバ素子とが互いに積層された発光装置の分野では、発光素子に生じた熱分布を平坦化することが求められている。従って、熱分布を平坦化することの可能な発光装置を提供することが望ましい。 By the way, in the field of a light emitting device in which a light emitting element and a driver element are laminated with each other, it is required to flatten the heat distribution generated in the light emitting element. Therefore, it is desirable to provide a light emitting device capable of flattening the heat distribution.
 本開示の一実施の形態に係る発光装置は、互いに積層された発光素子およびドライバ素子を備えている。ドライバ素子は、発光素子側の表面であって、かつ発光素子と対向する領域に、発光素子を駆動する駆動回路を有している。ドライバ素子は、さらに、発光素子とは反対側の背面であって、かつ発光素子と対向する領域に、駆動回路に到達しない深さを有する放熱ホールを有している。 The light emitting device according to the embodiment of the present disclosure includes a light emitting element and a driver element stacked on each other. The driver element has a drive circuit for driving the light emitting element on the surface on the light emitting element side and in a region facing the light emitting element. The driver element further has a heat dissipation hole having a depth that does not reach the drive circuit in a region on the back surface opposite to the light emitting element and facing the light emitting element.
 本開示の一実施の形態に係る発光装置では、ドライバ素子において、発光素子とは反対側の背面であって、かつ発光素子と対向する領域に、駆動回路に到達しない深さを有する放熱ホールが形成されている。これにより、発光素子で発生した熱が放熱ホールを介して外部に排出される。 In the light emitting device according to the embodiment of the present disclosure, in the driver element, a heat dissipation hole having a depth that does not reach the drive circuit is provided in a region on the back surface opposite to the light emitting element and facing the light emitting element. It is formed. As a result, the heat generated by the light emitting element is discharged to the outside through the heat dissipation hole.
本開示の一実施の形態に係る面発光レーザ装置の上面構成例を表す図である。It is a figure which shows the top surface composition example of the surface emitting laser apparatus which concerns on one Embodiment of this disclosure. 図1のA-A線での断面構成例を表す図である。It is a figure which shows the example of the cross-sectional structure in line AA of FIG. 図1の上面構成例に放熱ホールの上面構成例を重ね合わせて表す図である。It is a figure which superimposes the top surface composition example of a heat dissipation hole on the top surface composition example of FIG. 図1の上面構成例に放熱ホールの上面構成の一変形例を重ね合わせて表す図である。It is a figure which superimposes the modification example of the upper surface structure of a heat dissipation hole on the upper surface structure example of FIG. 図1の上面構成例に放熱ホールの上面構成の一変形例を重ね合わせて表す図である。It is a figure which superimposes the modification example of the upper surface structure of a heat dissipation hole on the upper surface structure example of FIG. 図1の上面構成例に放熱ホールの上面構成の一変形例を重ね合わせて表す図である。It is a figure which superimposes the modification example of the upper surface structure of a heat dissipation hole on the upper surface structure example of FIG. 図2の断面構成の一変形例を表す図である。It is a figure which shows one modification of the cross-sectional structure of FIG. 図2の断面構成の一変形例を表す図である。It is a figure which shows one modification of the cross-sectional structure of FIG. 図2の断面構成の一変形例を表す図である。It is a figure which shows one modification of the cross-sectional structure of FIG.
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。 Hereinafter, the mode for carrying out the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure.
[構成]
 本開示の一実施の形態に係る面発光レーザ装置1について説明する。図1は、面発光レーザ装置1の上面構成例を表したものである。図2は、図1の面発光レーザ装置1のA-A線での断面構成例を表したものである。面発光レーザ装置1が、本開示の「発光装置」の一具体例に相当する。
[composition]
A surface emitting laser device 1 according to an embodiment of the present disclosure will be described. FIG. 1 shows an example of the upper surface configuration of the surface emitting laser device 1. FIG. 2 shows an example of cross-sectional configuration of the surface emitting laser device 1 of FIG. 1 on the AA line. The surface emitting laser device 1 corresponds to a specific example of the "light emitting device" of the present disclosure.
 面発光レーザ装置1は、裏面出射型のレーザである。面発光レーザ装置1は、レーザチップ10と、レーザドライバIC20とを備えている。レーザチップ10が、本開示の「発光素子」の一具体例に相当する。レーザドライバIC20が、本開示の「ドライバ素子」の一具体例に相当する。レーザチップ10およびレーザドライバIC20が互いに積層されている。レーザチップ10は、レーザドライバIC20上に配置されている。レーザチップ10は、例えば、複数の半田14を介して、レーザドライバIC20と電気的に接続されている。半田14の代わりに、金属バンプが用いられてもよい。この場合、金属バンプを介して、レーザチップ10とレーザドライバIC20とが電気的に接続される。金属バンプの材料としては、例えば、Ni,Cu,SnAg,Auなどが挙げられる。半田14および上記金属バンプが、本開示の「金属接合部」の一具体例に相当する。 The surface emitting laser device 1 is a back surface emitting type laser. The surface emitting laser device 1 includes a laser chip 10 and a laser driver IC 20. The laser chip 10 corresponds to a specific example of the "light emitting element" of the present disclosure. The laser driver IC 20 corresponds to a specific example of the "driver element" of the present disclosure. The laser chip 10 and the laser driver IC 20 are laminated on each other. The laser chip 10 is arranged on the laser driver IC 20. The laser chip 10 is electrically connected to the laser driver IC 20 via, for example, a plurality of solders 14. Metal bumps may be used instead of the solder 14. In this case, the laser chip 10 and the laser driver IC 20 are electrically connected via the metal bump. Examples of the material of the metal bump include Ni, Cu, SnAg, Au and the like. The solder 14 and the metal bump correspond to a specific example of the "metal joint" of the present disclosure.
 レーザチップ10は、例えば、基板13と、基板13の、レーザドライバIC20側の面に形成されたエミッタアレイ領域11と、基板13の、レーザドライバIC20側の面に形成された複数の半田14とを有している。基板13の、レーザドライバIC20とは反対側の面が、レーザチップ10の光出射面13Aとなっている。エミッタアレイ領域11は、基板13の光出射面13Aとは反対側の面に形成されている。 The laser chip 10 includes, for example, a substrate 13, an emitter array region 11 formed on the surface of the substrate 13 on the laser driver IC 20 side, and a plurality of solders 14 formed on the surface of the substrate 13 on the laser driver IC 20 side. have. The surface of the substrate 13 opposite to the laser driver IC 20 is the light emitting surface 13A of the laser chip 10. The emitter array region 11 is formed on a surface of the substrate 13 opposite to the light emitting surface 13A.
 エミッタアレイ領域11では、複数のエミッタ12が2次元配置されている。エミッタ12が、本開示の「発光部」の一具体例に相当する。エミッタ12は、レーザチップ10およびレーザドライバIC20の積層方向と平行な方向に光を出射する面発光レーザである。複数のエミッタ12は、例えば、基板13上に行方向に等間隔で配置されるとともに、列方向にも等間隔で配置されている。なお、複数のエミッタ12は、同一の基板13上にランダムに配置されていてもよい。各エミッタ12は、レーザチップ10およびレーザドライバIC20の積層方向にレーザ光を出射する面発光型の半導体レーザによって構成されている。各エミッタ12は、基板13を介して、レーザドライバIC20とは反対側にレーザ光を出射する。基板13は、例えば、エミッタ12から発せられる光を透過する半絶縁性の半導体基板(例えば、SiドープGaAs基板)によって構成されている。 In the emitter array region 11, a plurality of emitters 12 are two-dimensionally arranged. The emitter 12 corresponds to a specific example of the "light emitting unit" of the present disclosure. The emitter 12 is a surface emitting laser that emits light in a direction parallel to the stacking direction of the laser chip 10 and the laser driver IC 20. The plurality of emitters 12 are arranged on the substrate 13 at equal intervals in the row direction and at equal intervals in the column direction, for example. The plurality of emitters 12 may be randomly arranged on the same substrate 13. Each emitter 12 is composed of a surface-emitting semiconductor laser that emits laser light in the stacking direction of the laser chip 10 and the laser driver IC 20. Each emitter 12 emits laser light to the side opposite to the laser driver IC 20 via the substrate 13. The substrate 13 is composed of, for example, a semi-insulating semiconductor substrate (for example, a Si-doped GaAs substrate) that transmits light emitted from the emitter 12.
 各エミッタ12は、例えば、第1DBR層、第1スペーサ層、活性層、第2スペーサ層、第2DBR層およびコンタクト層を、基板13側からこの順に積層してなる柱状の垂直共振器構造(メサ)を有している。各メサにおいて、第1DBR層および第2DBR層は、活性層を挟み込んでいる。 Each emitter 12 has a columnar vertical resonator structure (mesa) in which, for example, a first DBR layer, a first spacer layer, an active layer, a second spacer layer, a second DBR layer, and a contact layer are laminated in this order from the substrate 13 side. )have. In each mesa, the first DBR layer and the second DBR layer sandwich the active layer.
 各メサは、例えば、GaAs系半導体によって構成されている。コンタクト層は、例えばp型Alx1Ga1-x1As(0≦x1<1)からなる。第2DBR層は、低屈折率層(図示せず)および高屈折率層(図示せず)を交互に積層して構成されたものである。第2DBR層において、低屈折率層は例えば光学厚さがλ×1/4(λ1は発振波長)のp型Alx2Ga1-x2As(0<x2<1)からなり、高屈折率層は例えば光学厚さがλ×1/4のp型Alx3Ga1-x3As(0≦x3<x2)からなる。第2スペーサ層は、例えばp型Alx4Ga1-x4As(0≦x4<1)からなる。コンタクト層、第2DBR層および第2スペーサ層には、例えばカーボン(C)などのp型不純物が含まれている。つまり、コンタクト層、第2DBR層および第2スペーサ層は、例えばp型半導体で構成されている。 Each mesa is composed of, for example, a GaAs-based semiconductor. The contact layer is composed of, for example, p-type Al x1 Ga 1-x1 As (0 ≦ x1 <1). The second DBR layer is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown). In the second DBR layer, the low refractive index layer is composed of, for example, p-type Al x2 Ga 1-x2 As (0 <x2 <1) having an optical thickness of λ × 1/4 (λ1 is an oscillation wavelength), and is a high refractive index layer. For example, is composed of p-type Al x3 Ga 1-x3 As (0 ≦ x3 <x2) having an optical thickness of λ × 1/4. The second spacer layer is made of, for example, p-type Al x4 Ga 1-x4 As (0 ≦ x4 <1). The contact layer, the second DBR layer and the second spacer layer contain p-type impurities such as carbon (C). That is, the contact layer, the second DBR layer, and the second spacer layer are made of, for example, a p-type semiconductor.
 活性層は、例えば、アンドープのInx5Ga1-x5As(0<x5<1)からなる井戸層(図示せず)およびアンドープのAlx6Ga1-x6As(0≦x6<1)からなる障壁層(図示せず)を交互に積層してなる多重量子井戸構造となっている。なお、活性層のうち電流注入領域(後述)との対向領域が発光領域となる。 The active layer comprises, for example, an undoped In x5 Ga 1-x5 As (0 <x5 <1) well layer (not shown) and an undoped Al x6 Ga 1-x6 As (0 ≦ x6 <1). It has a multiple quantum well structure in which barrier layers (not shown) are alternately laminated. The region of the active layer facing the current injection region (described later) is the light emitting region.
 第1スペーサ層は、例えばn型Alx7Ga1-x7As(0≦x7<1)からなる。第1DBR層は、低屈折率層(図示せず)および高屈折率層(図示せず)を交互に積層して構成されたものである。第1DBR層において、低屈折率層は例えば光学厚さがλ×1/4のn型Alx8Ga1-x8As(0<x8<1)からなり、高屈折率層は例えば光学厚さがλ×1/4のn型Alx9Ga1-x9As(0≦x9<x8)からなる。第1スペーサ層12Fおよび第1DBR層には、例えばケイ素(Si)などのn型不純物が含まれている。つまり、第1スペーサ層12Fおよび第1DBR層は、例えばn型半導体で構成されている。 The first spacer layer is made of, for example, n-type Al x7 Ga 1-x7 As (0 ≦ x7 <1). The first DBR layer is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown). In the first DBR layer, the low refractive index layer is composed of, for example, n-type Al x8 Ga 1-x8 As (0 <x8 <1) having an optical thickness of λ × 1/4, and the high refractive index layer is, for example, having an optical thickness of λ × 1/4. It is composed of λ × 1/4 n-type Al x9 Ga 1-x9 As (0 ≦ x9 <x8). The first spacer layer 12F and the first DBR layer contain n-type impurities such as silicon (Si). That is, the first spacer layer 12F and the first DBR layer are composed of, for example, an n-type semiconductor.
 第2DBR層内には、電流狭窄層が設けられている。電流狭窄層は、電流注入領域および電流狭窄領域を有している。電流狭窄領域は、電流注入領域の周辺領域に形成されている。電流注入領域は、例えばp型Alx10Ga1-x10As(0<x10≦1)からなる。電流狭窄領域は、例えば、Al23(酸化アルミニウム)を含んで構成されており、例えば、被酸化層に含まれる高濃度のAlを、側面から酸化することにより得られる。従って、電流狭窄層は電流を狭窄する機能を有している。 A current constriction layer is provided in the second DBR layer. The current constriction layer has a current injection region and a current constriction region. The current constriction region is formed in the peripheral region of the current injection region. The current injection region is composed of, for example, p-type Al x10 Ga 1-x10 As (0 <x10 ≦ 1). The current constriction region is composed of, for example, Al 2 O 3 (aluminum oxide), and is obtained, for example, by oxidizing a high concentration of Al contained in the oxidized layer from the side surface. Therefore, the current constriction layer has a function of constricting the current.
 レーザドライバIC20は、エミッタアレイ領域11と対向して設けられている。レーザドライバIC20は、複数の半田14もしくは金属バンプを介して、各エミッタ12の電極と電気的に接続されており、複数の半田14もしくは金属バンプおよび各エミッタ12の電極を介して、各エミッタ12の発光・消光を制御する。レーザドライバIC20は、レーザチップ10に設けられた複数のエミッタ12を独立駆動することにより、複数のエミッタ12のうちの一部、または全部を発光させる。レーザドライバIC20は、例えば、Si基板21と、Si基板21上に形成された配線層22とを有している。Si基板21が、本開示の「半導体基板」の一具体例に相当する。 The laser driver IC 20 is provided so as to face the emitter array region 11. The laser driver IC 20 is electrically connected to the electrodes of each emitter 12 via a plurality of solders 14 or metal bumps, and each emitter 12 is connected via a plurality of solders 14 or metal bumps and electrodes of each emitter 12. Controls the light emission and extinguishing of. The laser driver IC 20 independently drives a plurality of emitters 12 provided on the laser chip 10 to cause a part or all of the plurality of emitters 12 to emit light. The laser driver IC 20 has, for example, a Si substrate 21 and a wiring layer 22 formed on the Si substrate 21. The Si substrate 21 corresponds to a specific example of the "semiconductor substrate" of the present disclosure.
 レーザドライバIC20は、レーザチップ10に印加する電圧を制御する駆動回路23を有している。駆動回路23は、Si基板21の、発光素子側の表面S1であって、かつレーザチップ10と対向する領域に形成されている。駆動回路23は、エミッタアレイ領域11と対向する領域に形成されている。駆動回路23は、レーザチップ10に設けられた複数のエミッタ12の発光・消光を行う駆動パルスを生成する。駆動回路23は、配線層22を介して、レーザチップ10と電気的に接続されている。 The laser driver IC 20 has a drive circuit 23 that controls the voltage applied to the laser chip 10. The drive circuit 23 is formed on the surface S1 of the Si substrate 21 on the light emitting element side and in a region facing the laser chip 10. The drive circuit 23 is formed in a region facing the emitter array region 11. The drive circuit 23 generates a drive pulse that emits light and quenches a plurality of emitters 12 provided on the laser chip 10. The drive circuit 23 is electrically connected to the laser chip 10 via the wiring layer 22.
 配線層22は、例えば、絶縁層内に、複数の接続パッド24が設けられた層である。複数の接続パッド24は、Si基板21内の駆動回路23と、複数の半田14もしくは金属バンプとを互いに電気的に接続している。複数の接続パッド24は、配線層22のうち、レーザチップ10と対向する位置に配置されており、レーザチップ10に設けられた各エミッタ12の電極と電気的に接続されている。 The wiring layer 22 is, for example, a layer in which a plurality of connection pads 24 are provided in the insulating layer. The plurality of connection pads 24 electrically connect the drive circuit 23 in the Si substrate 21 and the plurality of solders 14 or metal bumps to each other. The plurality of connection pads 24 are arranged in the wiring layer 22 at positions facing the laser chip 10, and are electrically connected to the electrodes of the emitters 12 provided on the laser chip 10.
 Si基板21は、レーザチップ10とは反対側の背面S2であって、かつレーザチップ10と対向する領域に、駆動回路23に到達しない深さを有する放熱ホール25を有している。Si基板21は、背面S2側に開口を有する孔21Aを有している。孔21Aは、レーザチップ10とは反対側の背面S2であって、かつレーザチップ10と対向する領域に、駆動回路23に到達しない深さを有する。孔21Aは、エミッタアレイ領域11と対向する領域に形成されている。 The Si substrate 21 has a heat dissipation hole 25 on the back surface S2 on the opposite side of the laser chip 10 and having a depth that does not reach the drive circuit 23 in a region facing the laser chip 10. The Si substrate 21 has a hole 21A having an opening on the back surface S2 side. The hole 21A is the back surface S2 on the opposite side of the laser chip 10, and has a depth that does not reach the drive circuit 23 in the region facing the laser chip 10. The hole 21A is formed in a region facing the emitter array region 11.
 放熱ホール25は、孔21Aの中に設けられている。放熱ホール25は、エミッタアレイ領域11と対向する領域に形成されている。放熱ホール25は、エミッタアレイ領域11の寸法よりも狭い寸法を有する先端部25Aを有している。先端部25Aは、エミッタアレイ領域11の中央と対向する位置に形成されている。放熱ホール25は、Si基板21の背面S2側から先端部25A側に向かうにつれて狭まる先細り形状となっている。 The heat dissipation hole 25 is provided in the hole 21A. The heat dissipation hole 25 is formed in a region facing the emitter array region 11. The heat dissipation hole 25 has a tip portion 25A having a dimension narrower than the dimension of the emitter array region 11. The tip portion 25A is formed at a position facing the center of the emitter array region 11. The heat radiating hole 25 has a tapered shape that narrows from the back surface S2 side of the Si substrate 21 toward the tip portion 25A side.
 放熱ホール25は、孔21Aを埋め込む金属材料によって構成されている。放熱ホール25を構成する金属材料は、メッキ可能な金属材料であることが好ましい。放熱ホール25は、例えば、めっき処理を行い、メッキ可能な金属材料を孔21Aの中に充填することにより形成される。メッキ可能な金属材料は、例えば、Ag、Cu、AuまたはNiである。放熱ホール25を構成する金属材料は、Si基板21の熱伝導率(168W/mK)よりも高い熱伝導率の金属材料であることが好ましい。Si基板21の熱伝導率(168W/mK)よりも高い熱伝導率の金属材料としては、例えば、Au(319W/mK)、Ag(428W/mK)、Cu(403W/mK)などが挙げられる。 The heat dissipation hole 25 is made of a metal material that embeds the hole 21A. The metal material constituting the heat dissipation hole 25 is preferably a metal material that can be plated. The heat dissipation hole 25 is formed, for example, by performing a plating process and filling the hole 21A with a metal material that can be plated. The metal material that can be plated is, for example, Ag, Cu, Au or Ni. The metal material constituting the heat dissipation hole 25 is preferably a metal material having a thermal conductivity higher than that of the Si substrate 21 (168 W / mK). Examples of the metal material having a thermal conductivity higher than the thermal conductivity (168W / mK) of the Si substrate 21 include Au (319W / mK), Ag (428W / mK), Cu (403W / mK) and the like. ..
 放熱ホール25において、放熱ホール25の開口部分や先端部25Aは、例えば、図3に示したように、矩形状となっている。放熱ホール25において、放熱ホール25の開口部分や先端部25Aは、例えば、図4に示したように、円形状となっていてもよい。放熱ホール25において、例えば、図5に示したように、放熱ホール25の開口部分が矩形状となっており、放熱ホール25の先端部25Aが円形状となっていてもよい。放熱ホール25において、例えば、図6に示したように、放熱ホール25の開口部分が円形状となっており、放熱ホール25の先端部25Aが矩形状となっていてもよい。 In the heat radiating hole 25, the opening portion and the tip portion 25A of the heat radiating hole 25 have a rectangular shape, for example, as shown in FIG. In the heat radiating hole 25, the opening portion and the tip portion 25A of the heat radiating hole 25 may have a circular shape, for example, as shown in FIG. In the heat radiating hole 25, for example, as shown in FIG. 5, the opening portion of the heat radiating hole 25 may have a rectangular shape, and the tip portion 25A of the heat radiating hole 25 may have a circular shape. In the heat radiating hole 25, for example, as shown in FIG. 6, the opening portion of the heat radiating hole 25 may have a circular shape, and the tip portion 25A of the heat radiating hole 25 may have a rectangular shape.
 放熱ホール25の断面形状は、例えば、図2に示したように、台形状となっている。放熱ホール25の断面形状は、例えば、図7に示したように、三角形状となっていてもよい。放熱ホール25の断面形状は、例えば、図8に示したように、半円形状となっていてもよい。放熱ホール25の断面形状は、例えば、図9に示したように、径の大きさが互いに異なる複数の半円が積層された形状となっていてもよい。 The cross-sectional shape of the heat dissipation hole 25 is trapezoidal, for example, as shown in FIG. The cross-sectional shape of the heat radiating hole 25 may be triangular, for example, as shown in FIG. The cross-sectional shape of the heat radiating hole 25 may be, for example, a semicircular shape as shown in FIG. As shown in FIG. 9, the cross-sectional shape of the heat radiating hole 25 may be, for example, a shape in which a plurality of semicircles having different diameters are laminated.
 面発光レーザ装置1は、例えば、レーザドライバIC20の放熱ホール25および背面S2に接する、熱伝導性の高い放熱板30を備えていてもよい。放熱板30は、本開示の「金属層」の一具体例に相当する。放熱板30は、例えば、Si基板21の熱伝導率(168W/mK)よりも高い熱伝導率の金属材料によって構成されている。放熱板30は、例えば、Au(319W/mK)、Ag(428W/mK)、Cu(403W/mK)などによって構成されている。放熱板30は、放熱ホール25やSi基板21の熱を外部に排出する。 The surface emitting laser device 1 may include, for example, a heat radiating plate 30 having high thermal conductivity, which is in contact with the heat radiating hole 25 of the laser driver IC 20 and the back surface S2. The heat sink 30 corresponds to a specific example of the "metal layer" of the present disclosure. The heat radiating plate 30 is made of, for example, a metal material having a thermal conductivity higher than that of the Si substrate 21 (168 W / mK). The heat radiating plate 30 is made of, for example, Au (319W / mK), Ag (428W / mK), Cu (403W / mK), or the like. The heat radiating plate 30 discharges the heat of the heat radiating hole 25 and the Si substrate 21 to the outside.
[効果]
 次に、本実施の形態に係る面発光レーザ装置1の効果について説明する。
[effect]
Next, the effect of the surface emitting laser device 1 according to the present embodiment will be described.
 本実施の形態では、レーザドライバIC20において、レーザチップ10とは反対側の背面S2であって、かつレーザチップ10と対向する領域に、駆動回路23に到達しない深さを有する放熱ホール25が形成されている。これにより、レーザチップ10で発生した熱が放熱ホール25を介して外部に排出される。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In the present embodiment, in the laser driver IC 20, a heat dissipation hole 25 having a depth that does not reach the drive circuit 23 is formed in a region facing the laser chip 10 on the back surface S2 on the opposite side of the laser chip 10. Has been done. As a result, the heat generated by the laser chip 10 is discharged to the outside through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
 本実施の形態では、放熱ホール25が、エミッタアレイ領域11と対向する領域に形成されている。これにより、レーザチップ10において最も発熱する領域に近接して、放熱ホール25を配置することができるので、エミッタアレイ領域11の熱分布を平坦化することができる。 In the present embodiment, the heat dissipation hole 25 is formed in a region facing the emitter array region 11. As a result, the heat dissipation hole 25 can be arranged close to the region that generates the most heat in the laser chip 10, so that the heat distribution in the emitter array region 11 can be flattened.
 本実施の形態では、放熱ホール25において、エミッタアレイ領域11の寸法よりも狭い寸法を有する先端部25Aが設けられており、先端部25Aが、エミッタアレイ領域11の中央と対向する位置に形成されている。これにより、レーザチップ10において最も発熱する領域に近接して、先端部25Aを配置することができるので、レーザチップ10において最も発熱する領域からの排熱を効率よく行うことができる。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In the present embodiment, in the heat dissipation hole 25, a tip portion 25A having a dimension narrower than the dimension of the emitter array region 11 is provided, and the tip portion 25A is formed at a position facing the center of the emitter array region 11. ing. As a result, the tip portion 25A can be arranged close to the region that generates the most heat in the laser chip 10, so that heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10. As a result, the heat distribution of the emitter array region 11 can be flattened.
 本実施の形態では、放熱ホール25がSi基板21の背面S2側から先端部25A側に向かうにつれて狭まる先細り形状となっている。これにより、放熱ホール25を介して、レーザチップ10において最も発熱する領域からの排熱を効率良く行うことができる。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In the present embodiment, the heat dissipation hole 25 has a tapered shape that narrows from the back surface S2 side of the Si substrate 21 toward the tip portion 25A side. As a result, heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
 本実施の形態では、放熱ホール25が、Si基板21の背面S2側に開口を有する孔21Aを埋め込む金属材料によって構成されている。これにより、例えば、めっき法を用いて、メッキ可能な金属材料(例えばAg、Cu、AuまたはNi)で孔21Aを埋め込むことにより、放熱ホール25を形成することができる。 In the present embodiment, the heat dissipation hole 25 is made of a metal material that embeds a hole 21A having an opening on the back surface S2 side of the Si substrate 21. Thereby, for example, the heat radiation hole 25 can be formed by embedding the hole 21A with a metal material that can be plated (for example, Ag, Cu, Au or Ni) by using a plating method.
 本実施の形態では、放熱ホール25が、Si基板21の熱伝導率よりも高い熱伝導率の金属材料によって構成されている。これにより、例えば、放熱ホール25を介して、レーザチップ10において最も発熱する領域からの排熱を効率良く行うことができる。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In the present embodiment, the heat dissipation hole 25 is made of a metal material having a thermal conductivity higher than that of the Si substrate 21. Thereby, for example, heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25. As a result, the heat distribution of the emitter array region 11 can be flattened.
 本実施の形態では、レーザチップ10のエミッタアレイ領域11に設けた複数のエミッタ12は、レーザチップ10およびレーザドライバIC20の積層方向と平行な方向に光を出射する面発光レーザである。これにより、エミッタアレイ領域11に多数のエミッタ12を集積して形成することができる。このとき、放熱ホール25を介して、レーザチップ10において最も発熱する領域からの排熱を効率良く行うことができるので、発生した熱によって、集積して形成された多数のエミッタ12の出力が低下するおそれを低減することができる。 In the present embodiment, the plurality of emitters 12 provided in the emitter array region 11 of the laser chip 10 are surface emitting lasers that emit light in a direction parallel to the stacking direction of the laser chip 10 and the laser driver IC 20. As a result, a large number of emitters 12 can be integrated and formed in the emitter array region 11. At this time, heat can be efficiently exhausted from the region that generates the most heat in the laser chip 10 through the heat dissipation hole 25, so that the generated heat reduces the output of a large number of emitters 12 that are integrated and formed. It is possible to reduce the risk of this.
 本実施の形態では、レーザチップ10とレーザドライバIC20とを互いに接合する複数の半田14もしくは金属バンプが設けられている。これにより、レーザチップ10で発生した熱を複数の半田14もしくは金属バンプを介して放熱ホール25に排出することができる。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In this embodiment, a plurality of solders 14 or metal bumps for joining the laser chip 10 and the laser driver IC 20 to each other are provided. As a result, the heat generated by the laser chip 10 can be discharged to the heat dissipation hole 25 via the plurality of solders 14 or metal bumps. As a result, the heat distribution of the emitter array region 11 can be flattened.
 本実施の形態では、放熱ホール25およびSi基板21の背面S2に接する、熱伝導性の高い放熱板30が設けられている。これにより、レーザチップ10で発生した熱を、放熱ホール25および放熱板30を介して外部に排出することができる。その結果、エミッタアレイ領域11の熱分布を平坦化することができる。 In this embodiment, a heat radiating plate 30 having high thermal conductivity is provided in contact with the heat radiating hole 25 and the back surface S2 of the Si substrate 21. As a result, the heat generated by the laser chip 10 can be discharged to the outside through the heat radiating hole 25 and the heat radiating plate 30. As a result, the heat distribution of the emitter array region 11 can be flattened.
 以上、実施の形態を挙げて本開示を説明したが、本開示は上記実施の形態に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。 Although the present disclosure has been described above with reference to the embodiments, the present disclosure is not limited to the above embodiments and can be modified in various ways. The effects described in this specification are merely examples. The effects of the present disclosure are not limited to the effects described herein. The present disclosure may have effects other than those described herein.
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 互いに積層された発光素子およびドライバ素子を備え、
 前記ドライバ素子は、前記発光素子側の表面であって、かつ前記発光素子と対向する領域に、前記発光素子を駆動する駆動回路を有し、さらに、前記発光素子とは反対側の背面であって、かつ前記発光素子と対向する領域に、前記駆動回路に到達しない深さを有する放熱ホールを有する
 発光装置。
(2)
 前記発光素子は、複数の発光部が2次元配置されたアレイ領域を有し、
 前記放熱ホールは、前記アレイ領域と対向する領域に形成されている
 (1)に記載の発光装置。
(3)
 前記放熱ホールは、前記アレイ領域の寸法よりも狭い寸法を有する先端部を有し、
 前記先端部は、前記アレイ領域の中央と対向する位置に形成されている
 (2)に記載の発光装置。
(4)
 前記放熱ホールは、前記背面側から前記先端部側に向かうにつれて狭まる先細り形状となっている
 (3)に記載の発光装置。
(5)
 前記ドライバ素子は、前記表面および前記背面を有する半導体基板を有し、
 前記半導体基板は、前記背面側に開口を有する孔を有し、
 前記放熱ホールは、前記孔を埋め込む金属材料によって構成されている
 (2)ないし(4)のいずれか1つに記載の発光装置。
(6)
 前記金属材料は、メッキ可能な金属材料である
 (5)に記載の発光装置。
(7)
 前記メッキ可能な金属材料は、Ag、Cu、AuまたはNiである
 (6)に記載の発光装置。
(8)
 前記金属材料は、前記半導体基板の熱伝導率よりも高い熱伝導率の金属材料である
 (5)に記載の発光装置。
(9)
 前記半導体基板は、Si基板であり、
 前記金属材料は、Ag、CuまたはAuである
 (8)に記載の発光装置。
(10)
 前記発光部は、前記発光素子および前記ドライバ素子の積層方向と平行な方向に光を出射する面発光レーザである
 (2)ないし(9)のいずれか1つに記載の発光装置。
(11)
 前記発光素子と前記ドライバ素子とを互いに接合する金属接合部を更に備えた
 (1)ないし(10)のいずれか1つに記載の発光装置。
(12)
 前記放熱ホールおよび前記背面に接する、熱伝導性の高い金属層を更に備えた (1)ないし(10)のいずれか1つに記載の発光装置。
Further, for example, the present disclosure may have the following structure.
(1)
It has a light emitting element and a driver element laminated on each other.
The driver element has a drive circuit for driving the light emitting element on the surface of the light emitting element and in a region facing the light emitting element, and is a back surface on the opposite side of the light emitting element. A light emitting device having a heat radiation hole having a depth that does not reach the drive circuit in a region facing the light emitting element.
(2)
The light emitting element has an array region in which a plurality of light emitting units are two-dimensionally arranged.
The light emitting device according to (1), wherein the heat radiation hole is formed in a region facing the array region.
(3)
The heat dissipation hole has a tip having a dimension narrower than the dimension of the array region.
The light emitting device according to (2), wherein the tip portion is formed at a position facing the center of the array region.
(4)
The light emitting device according to (3), wherein the heat radiation hole has a tapered shape that narrows from the back surface side toward the tip portion side.
(5)
The driver element has a semiconductor substrate having the front surface and the back surface.
The semiconductor substrate has a hole having an opening on the back surface side, and the semiconductor substrate has a hole.
The light emitting device according to any one of (2) to (4), wherein the heat radiation hole is made of a metal material for embedding the hole.
(6)
The light emitting device according to (5), wherein the metal material is a metal material that can be plated.
(7)
The light emitting device according to (6), wherein the metal material that can be plated is Ag, Cu, Au or Ni.
(8)
The light emitting device according to (5), wherein the metal material is a metal material having a thermal conductivity higher than that of the semiconductor substrate.
(9)
The semiconductor substrate is a Si substrate, and the semiconductor substrate is a Si substrate.
The light emitting device according to (8), wherein the metal material is Ag, Cu or Au.
(10)
The light emitting device according to any one of (2) to (9), wherein the light emitting unit is a surface light emitting laser that emits light in a direction parallel to the stacking direction of the light emitting element and the driver element.
(11)
The light emitting device according to any one of (1) to (10), further comprising a metal joint portion for joining the light emitting element and the driver element to each other.
(12)
The light emitting device according to any one of (1) to (10), further comprising a metal layer having high thermal conductivity in contact with the heat dissipation hole and the back surface.
 本開示の一実施の形態に係る発光装置によれば、ドライバ素子において、発光素子とは反対側の背面であって、かつ発光素子と対向する領域に、駆動回路に到達しない深さを有する放熱ホールを形成するようにしたので、発光素子で発生した熱を、放熱ホールを介して外部に排出することができる。その結果、熱分布を平坦化することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the light emitting device according to the embodiment of the present disclosure, in the driver element, heat is dissipated having a depth that does not reach the drive circuit in the region on the back surface opposite to the light emitting element and facing the light emitting element. Since the holes are formed, the heat generated by the light emitting element can be discharged to the outside through the heat dissipation holes. As a result, the heat distribution can be flattened. The effects of the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described herein.
 本出願は、日本国特許庁において2020年5月13日に出願された日本特許出願番号第2020-084635を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2020-084635 filed on May 13, 2020 at the Japan Patent Office, and this application is made by reference to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art may conceive various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the claims and their equivalents. It is understood that it is a person skilled in the art.

Claims (12)

  1.  互いに積層された発光素子およびドライバ素子を備え、
     前記ドライバ素子は、前記発光素子側の表面であって、かつ前記発光素子と対向する領域に、前記発光素子を駆動する駆動回路を有し、さらに、前記発光素子とは反対側の背面であって、かつ前記発光素子と対向する領域に、前記駆動回路に到達しない深さを有する放熱ホールを有する
     発光装置。
    It has a light emitting element and a driver element laminated on each other.
    The driver element has a drive circuit for driving the light emitting element on the surface of the light emitting element and in a region facing the light emitting element, and is a back surface on the opposite side of the light emitting element. A light emitting device having a heat radiation hole having a depth that does not reach the drive circuit in a region facing the light emitting element.
  2.  前記発光素子は、複数の発光部が2次元配置されたアレイ領域を有し、
     前記放熱ホールは、前記アレイ領域と対向する領域に形成されている
     請求項1に記載の発光装置。
    The light emitting element has an array region in which a plurality of light emitting units are two-dimensionally arranged.
    The light emitting device according to claim 1, wherein the heat radiation hole is formed in a region facing the array region.
  3.  前記放熱ホールは、前記アレイ領域の寸法よりも狭い寸法を有する先端部を有し、
     前記先端部は、前記アレイ領域の中央と対向する位置に形成されている
     請求項2に記載の発光装置。
    The heat dissipation hole has a tip having a dimension narrower than the dimension of the array region.
    The light emitting device according to claim 2, wherein the tip portion is formed at a position facing the center of the array region.
  4.  前記放熱ホールは、前記背面側から前記先端部側に向かうにつれて狭まる先細り形状となっている
     請求項3に記載の発光装置。
    The light emitting device according to claim 3, wherein the heat radiation hole has a tapered shape that narrows from the back surface side toward the tip end portion side.
  5.  前記ドライバ素子は、前記表面および前記背面を有する半導体基板を有し、
     前記半導体基板は、前記背面側に開口を有する孔を有し、
     前記放熱ホールは、前記孔を埋め込む金属材料によって構成されている
     請求項2に記載の発光装置。
    The driver element has a semiconductor substrate having the front surface and the back surface.
    The semiconductor substrate has a hole having an opening on the back surface side, and the semiconductor substrate has a hole.
    The light emitting device according to claim 2, wherein the heat radiation hole is made of a metal material that embeds the hole.
  6.  前記金属材料は、メッキ可能な金属材料である
     請求項5に記載の発光装置。
    The light emitting device according to claim 5, wherein the metal material is a metal material that can be plated.
  7.  前記メッキ可能な金属材料は、Ag、Cu、AuまたはNiである
     請求項6に記載の発光装置。
    The light emitting device according to claim 6, wherein the metal material that can be plated is Ag, Cu, Au or Ni.
  8.  前記金属材料は、前記半導体基板の熱伝導率よりも高い熱伝導率の金属材料である
     請求項5に記載の発光装置。
    The light emitting device according to claim 5, wherein the metal material is a metal material having a thermal conductivity higher than that of the semiconductor substrate.
  9.  前記半導体基板は、Si基板であり、
     前記金属材料は、Ag、CuまたはAuである
     請求項8に記載の発光装置。
    The semiconductor substrate is a Si substrate, and the semiconductor substrate is a Si substrate.
    The light emitting device according to claim 8, wherein the metal material is Ag, Cu or Au.
  10.  前記発光部は、前記発光素子および前記ドライバ素子の積層方向と平行な方向に光を出射する面発光レーザである
     請求項2に記載の発光装置。
    The light emitting device according to claim 2, wherein the light emitting unit is a surface light emitting laser that emits light in a direction parallel to the stacking direction of the light emitting element and the driver element.
  11.  前記発光素子と前記ドライバ素子とを互いに接合する金属接合部を更に備えた
     請求項1に記載の発光装置。
    The light emitting device according to claim 1, further comprising a metal joint portion for joining the light emitting element and the driver element to each other.
  12.  前記放熱ホールおよび前記背面に接する、熱伝導性の高い金属層を更に備えた
     請求項1に記載の発光装置。
    The light emitting device according to claim 1, further comprising a metal layer having high thermal conductivity in contact with the heat dissipation hole and the back surface.
PCT/JP2021/015771 2020-05-13 2021-04-16 Light-emitting device WO2021230004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022521783A JPWO2021230004A1 (en) 2020-05-13 2021-04-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084635 2020-05-13
JP2020-084635 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021230004A1 true WO2021230004A1 (en) 2021-11-18

Family

ID=78525679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015771 WO2021230004A1 (en) 2020-05-13 2021-04-16 Light-emitting device

Country Status (2)

Country Link
JP (1) JPWO2021230004A1 (en)
WO (1) WO2021230004A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361435A (en) * 2003-05-30 2004-12-24 Fujikura Ltd Optical module, and optical transmission/reception system
JP2007059692A (en) * 2005-08-25 2007-03-08 Sumitomo Electric Ind Ltd Optical module
US20090226130A1 (en) * 2008-03-10 2009-09-10 International Business Machines Corporation Optical Transceiver Module with Optical Windows
JP2011166001A (en) * 2010-02-12 2011-08-25 Oki Data Corp Semiconductor device
JP2014038155A (en) * 2012-08-13 2014-02-27 Toshiba Corp Optoelectrical integrated package module
JP2016021493A (en) * 2014-07-14 2016-02-04 富士通株式会社 Optical transmission device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361435A (en) * 2003-05-30 2004-12-24 Fujikura Ltd Optical module, and optical transmission/reception system
JP2007059692A (en) * 2005-08-25 2007-03-08 Sumitomo Electric Ind Ltd Optical module
US20090226130A1 (en) * 2008-03-10 2009-09-10 International Business Machines Corporation Optical Transceiver Module with Optical Windows
JP2011166001A (en) * 2010-02-12 2011-08-25 Oki Data Corp Semiconductor device
JP2014038155A (en) * 2012-08-13 2014-02-27 Toshiba Corp Optoelectrical integrated package module
JP2016021493A (en) * 2014-07-14 2016-02-04 富士通株式会社 Optical transmission device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2021230004A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US9787062B2 (en) Vertical cavity surface emitting laser array and method for manufacturing vertical cavity surface emitting laser array
US7551659B2 (en) Semiconductor laser apparatus
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
JP6083194B2 (en) Surface emitting semiconductor laser array device, light source and light source module
JP2011254102A (en) Light emitting element
JPH11168262A (en) Planar optical device, manufacture thereof, and display device
TW200527724A (en) Semiconductor light emitting element and a fabrication method thereof
JP2013065692A (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device and information processing unit
JP2006313907A (en) Heat radiating structural body and light emitting assembly equipped therewith
JP2017204577A (en) Surface emitting laser device
JP6252222B2 (en) Surface emitting laser array and laser apparatus
JP2009141094A (en) Semiconductor laser device
WO2020105411A1 (en) Light emitting device and light emitting apparatus
US7095041B2 (en) High-efficiency light emitting diode
JP2007019265A (en) Light emitting device
WO2021230004A1 (en) Light-emitting device
JPH10308560A (en) Semiconductor light emitting element and light emitting device
JP5380135B2 (en) Multi-beam semiconductor laser device
JP6308319B2 (en) Surface emitting semiconductor laser array
JP2013179210A (en) Array type semiconductor laser device and manufacturing method thereof
US20070147458A1 (en) Cavity and packaging designs for arrays of vertical cavity surface emitting lasers with or without extended cavities
JP4543651B2 (en) Heat sink and light source device having heat sink
JP2007158008A (en) Semiconductor light emitting device
US20240128710A1 (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805231

Country of ref document: EP

Kind code of ref document: A1