WO2021229964A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2021229964A1
WO2021229964A1 PCT/JP2021/014952 JP2021014952W WO2021229964A1 WO 2021229964 A1 WO2021229964 A1 WO 2021229964A1 JP 2021014952 W JP2021014952 W JP 2021014952W WO 2021229964 A1 WO2021229964 A1 WO 2021229964A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
sleep
user
concentration
ventilation
Prior art date
Application number
PCT/JP2021/014952
Other languages
French (fr)
Japanese (ja)
Inventor
政之 佐々木
広法 栗林
歩 小西
大輔 橋野
列樹 中島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022522561A priority Critical patent/JPWO2021229964A1/ja
Publication of WO2021229964A1 publication Critical patent/WO2021229964A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • This disclosure relates to a ventilation system.
  • Patent Document 1 a ventilation system that controls the ventilation air volume of a ventilation device by the carbon dioxide concentration detected by the carbon dioxide detection unit in a room is known (for example, Patent Document 1).
  • FIG. 8 is a schematic connection diagram of the conventional ventilation system 1001.
  • the ventilation system 1001 includes a ventilation device 1002, a control unit 1003, and a carbon dioxide detection unit 1004.
  • the ventilation device 1002 is a device for replacing the air in the room.
  • the carbon dioxide detection unit 1004 detects the carbon dioxide concentration in the room.
  • the control unit 1003 controls the ventilation air volume of the ventilation device 1002 so that the carbon dioxide concentration in the room reaches the target value according to the carbon dioxide concentration in the room detected by the carbon dioxide detection unit 1004.
  • the ventilation system 1001 can reduce the carbon dioxide concentration in the room to a predetermined value or less, and realizes a comfortable environment in the room.
  • a ventilation device In the control of a conventional ventilation system such as the above-mentioned ventilation system 1001, ventilation by a ventilation device is performed when the carbon dioxide concentration is larger than a predetermined value. Therefore, even when the user enters the sleep preparation state, if the carbon dioxide concentration is higher than a predetermined value, ventilation is performed by the ventilation device, and the carbon dioxide concentration in the room is lowered. This can prevent the user from falling asleep in conventional ventilation systems. That is, the conventional ventilation system has a problem that it may not be possible to realize a space suitable for the user to fall asleep.
  • this disclosure provides a ventilation system that contributes to the realization of a space suitable for the user to fall asleep.
  • the ventilation system includes a ventilation device, a carbon dioxide measuring unit, a sleep preparation detection unit, and a control unit.
  • the ventilation device is for ventilating a predetermined space.
  • the carbon dioxide measuring unit measures the carbon dioxide concentration in a predetermined space.
  • the sleep preparation detection unit detects that the user in the predetermined space is in the sleep preparation state. Then, the control unit controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit and the carbon dioxide concentration measured by the carbon dioxide measurement unit.
  • the ventilation system according to the present disclosure can provide a ventilation system that contributes to the realization of a space suitable for the user to fall asleep.
  • FIG. 1 is a schematic connection diagram of the entire building air conditioning system according to the first embodiment, which is an example of the ventilation system according to the present disclosure.
  • FIG. 2 is a schematic functional block diagram of the system controller and peripheral devices according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a data structure of a carbon dioxide concentration table during sleep according to the first embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing ventilation control according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic functional block diagram of the system controller and peripheral devices according to the second embodiment of the present disclosure.
  • FIG. 6 is a diagram showing a data structure of a carbon dioxide concentration table during sleep according to the second embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing ventilation control according to the second embodiment of the present disclosure.
  • FIG. 8 is a schematic connection diagram of a conventional ventilation system.
  • FIG. 1 is a schematic connection diagram of the entire building air conditioning system 20 according to the present embodiment.
  • the whole building air conditioning system 20 includes an outside air introduction fan 4, an exhaust fan 5 (exhaust fans 5a, 5b, 5c, 5d), and a transfer fan 3 (conveyor fans 3a, 3b, 3c, 3d). , Circulation fan 6 (circulation fan 6a, 6b, 6c, 6d) and the like. Further, the whole building air conditioning system 20 includes a living room temperature sensor 11 (living room temperature sensor 11a, 11b, 11c, 11d), a living room humidity sensor 12 (living room humidity sensor 12a, 12b, 12c, 12d), and an air conditioning room temperature sensor 14. , The air-conditioning room humidity sensor 15, and the like.
  • the whole building air conditioning system 20 includes an air conditioner 9, a humidifier 16, a dehumidifier 17, an input / output terminal 19, a system controller 10, and a carbon dioxide measuring unit 101 (carbon dioxide measuring units 101a, 101b, 101c). And are configured to include.
  • the whole building air conditioning system 20 cooperates with the mobile terminal 100 (mobile terminals 100a, 100b, 100c) carried by the user.
  • the mobile terminal 100 includes the carbon dioxide measuring unit 101.
  • the entire building air conditioning system 20 is installed in a general house 1 which is an example of a building.
  • the general housing 1 includes a plurality of (four in the present embodiment) living rooms 2 (living rooms 2a, 2b, 2c, 2d), each of which is an example of the predetermined space according to the present disclosure, and at least one independent of the living room 2. It has two air conditioning chambers 18.
  • the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 includes a living room, a dining room, a bedroom, a private room, a children's room, and the like. Is done.
  • the living room 2 provided by the air conditioning system 20 in the entire building may include a toilet, a bathroom, a washroom, a dressing room, and the like.
  • the air conveyed from each living room 2 is mixed with each other. Further, the outside air is taken into the air conditioning chamber 18 by the outside air introduction fan 4, and is mixed with the air conveyed from each living room 2 by the circulation fan 6.
  • the temperature and humidity of the air in the air conditioning chamber 18 are controlled by the air conditioner 9, the humidifier 16 and the dehumidifier 17 provided in the air conditioning chamber 18. That is, in the air-conditioned room 18, air to be conveyed to the living room 2 in which the temperature and humidity are adjusted is generated.
  • the air whose temperature and humidity have been adjusted in the air-conditioning chamber 18 is conveyed to each living room 2 by the transfer fan 3.
  • the air conditioning room 18 is a space in which an air conditioner 9, other humidifier 16, a dehumidifier 17, etc. can be arranged and has a certain size for controlling the air conditioning of each living room 2, but it is a living space. It is not intended, and basically does not mean the room in which the resident stays.
  • the air in each living room 2 is conveyed to the air conditioning room 18 by the circulation fan 6, and is discharged as outside air from the inside of the living room 2 to the outside of the general house 1 by the exhaust fan 5.
  • the whole building air conditioning system 20 controls the exhaust air volume of the exhaust fan 5 to exhaust the outside air from the inside of the living room 2, and controls the supply air volume of the outside air introduction fan 4 while interlocking with the exhaust air volume of the exhaust fan 5. 2 Take in the outside air. As a result, the first-class ventilation system ventilation is performed.
  • the outside air introduction fan 4 is a fan that takes in outside air into the room of a general house 1, and corresponds to, for example, an air supply function of an air supply fan or a heat exchange air fan. As described above, the outside air taken in by the outside air introduction fan 4 is introduced into the air conditioning chamber 18.
  • the air supply air volume of the outside air introduction fan 4 can be set in a plurality of stages, and the air supply air volume is set according to the exhaust air volume of the exhaust fan 5 as described later.
  • the exhaust fan 5 is a fan that exhausts a part of the air in the installed living room 2 as outside air through, for example, an exhaust duct. Applies to.
  • the exhaust duct connected to the exhaust fan 5 is directly connected to the outside of the general house 1, but when the exhaust function of the heat exchange air fan is used, the exhaust duct is once connected to the heat exchange air fan. After that, it is connected to the outside of the general house 1. That is, the air passing through the exhaust duct is heat-exchanged with the air passing through the air supply air passage of the heat exchange air fan, and then is discharged to the outside of the general house 1.
  • the exhaust fan 5a is provided in the living room 2a
  • the exhaust fan 5b is provided in the living room 2b
  • the exhaust fan 5c is provided in the living room 2c
  • the exhaust fan 5d is provided in the living room 2d.
  • Each exhaust fan 5 is configured so that its exhaust air volume can be set in a plurality of stages. Normally, each exhaust fan 5 is controlled by the system controller 10 so that the exhaust air volume is set in advance. Then, the exhaust air volume is controlled for each of the exhaust fans 5a to 5d by the system controller 10 according to the setting by the user and the value acquired by various sensors, for example, the carbon dioxide measuring unit 101.
  • Each transport fan 3 is provided on, for example, a wall surface of the air conditioning chamber 18 corresponding to each living room 2. Specifically, the air in the air conditioning chamber 18 is conveyed to the living room 2a by the transport fan 3a via the transport duct, and is conveyed to the living room 2b via the transport duct by the transport fan 3b. Further, the air in the air conditioning chamber 18 is conveyed to the living room 2c by the transport fan 3c via the transport duct, and is conveyed to the living room 2d via the transport duct by the transport fan 3d.
  • the transfer ducts connecting each transfer fan 3 and each living room 2 are independently provided.
  • the circulation fan 6a is provided in the living room 2a
  • the circulation fan 6b is provided in the living room 2b
  • the circulation fan 6c is provided in the living room 2c
  • the circulation fan 6d is provided in the living room 2d.
  • a part of the air in each living room 2 is conveyed to the air conditioning room 18 through the circulation duct by the corresponding circulation fan 6.
  • the circulation ducts connecting the air conditioning chamber 18 and each living room 2 may be provided independently, but a plurality of tributary ducts that are a part of the circulation ducts are merged from the middle and integrated into one circulation duct. After that, one circulation duct after integration may be connected to the air conditioning chamber 18.
  • the air conditioner 9 is an air conditioner installed in the air conditioner room 18 and controls the air conditioning in the air conditioner room 18.
  • the air conditioner 9 cools or heats the air in the air conditioning chamber 18 so that the temperature of the air in the air conditioning chamber 18 becomes a set temperature (hereinafter, also referred to as “target temperature in the air conditioning chamber”).
  • the humidifier 16 is installed in the air-conditioning chamber 18, and when the humidity of the air in the air-conditioning chamber 18 is lower than the set humidity (hereinafter, also referred to as “target humidity in the air-conditioning room”), the humidity becomes the target humidity in the air-conditioning room. As described above, the air in the air conditioning chamber 18 is humidified. Although the humidifier 16 may be built in the air conditioner 9, the humidifier 16 is independent of the air conditioner 9 in order to obtain a humidifying capacity sufficient for a plurality of living rooms 2. It is desirable to have.
  • the dehumidifier 17 is installed in the air conditioning room 18 and dehumidifies the air in the air conditioning room 18 so that when the humidity of the air in the air conditioning room 18 is higher than the target humidity in the air conditioning room, the humidity becomes the target humidity in the air conditioning room 18.
  • the dehumidifier 17 may be built in the air conditioner 9, the dehumidifier 17 is independent of the air conditioner 9 in order to obtain a dehumidifying capacity sufficient for a plurality of living rooms 2. It is desirable to have.
  • Each room temperature sensor 11 is provided in the corresponding room 2.
  • the living room temperature sensor 11a is provided in the living room 2a
  • the living room temperature sensor 11b is provided in the living room 2b
  • the living room temperature sensor 11c is provided in the living room 2c
  • the living room temperature sensor 11d is provided in the living room 2d. It is provided.
  • the living room temperature sensor 11 is a sensor that acquires the room temperature of each of the corresponding living rooms 2a to 2d and transmits it to the system controller 10.
  • Each room humidity sensor 12 is provided in the corresponding room 2.
  • the living room humidity sensor 12a is provided in the living room 2a
  • the living room humidity sensor 12b is provided in the living room 2b
  • the living room humidity sensor 12c is provided in the living room 2c
  • the living room humidity sensor 12d is provided in the living room 2d. It is provided.
  • the living room humidity sensor 12 is a sensor that acquires the indoor humidity (living room humidity) of each of the corresponding living rooms 2a to 2d and transmits it to the system controller 10.
  • the air conditioning room temperature sensor 14 is a sensor that acquires the temperature of the air in the air conditioning room 18 and transmits it to the system controller 10.
  • the air conditioning chamber temperature sensor 14 may be built in the air conditioner 9, but when it is built in the air conditioner 9, only information around the air conditioner 9 (for example, near the air supply port) can be obtained. .. Since the air-conditioning chamber 18 mixes the outside air with the air conveyed from each living room 2 as described above, the air-conditioning chamber temperature sensor 14 together with the air-conditioning conditioner 9 so as to obtain information on the air-conditioning chamber 18 as a whole. It is desirable to prepare independently.
  • the air-conditioning room humidity sensor 15 is a sensor that acquires the humidity of the air in the air-conditioning room 18 and transmits it to the system controller 10. For the same reason as the air conditioning room temperature sensor 14, it is desirable that the air conditioning room humidity sensor 15 be provided independently of the air conditioner conditioner 9 so that information on the air conditioning room 18 as a whole can be obtained.
  • the mobile terminal 100 includes a carbon dioxide measuring unit 101. Specifically, the carbon dioxide measuring unit 101a is provided in the mobile terminal 100a, the carbon dioxide measuring unit 101b is provided in the mobile terminal 100b, and the carbon dioxide measuring unit 101c is provided in the mobile terminal 100c.
  • the mobile terminal 100 is a terminal carried by a user, and is an information terminal that can be moved along with the movement of the user by being carried by the user at all times. In the present embodiment, when there are a plurality of users, it is assumed that each user has one mobile terminal 100.
  • the mobile terminal 100 is, for example, a mobile phone, a smartphone, a wearable terminal, or the like.
  • the wearable terminal is a terminal of an electronic device worn and used, and corresponds to, for example, a wristwatch-type terminal.
  • the carbon dioxide measuring unit 101 measures the carbon dioxide concentration around the carbon dioxide measuring unit 101, and is, for example, a carbon dioxide sensor whose output voltage value changes according to the carbon dioxide concentration. That is, the whole building air conditioning system 20 includes a carbon dioxide measuring unit 101 that measures the carbon dioxide concentration of the living room 2. The carbon dioxide measuring unit 101 acquires the carbon dioxide concentration around the corresponding mobile terminal 100, that is, the carbon dioxide concentration in the living room 2 (living rooms 2c and 2d in the present embodiment) in which the mobile terminal 100 is present. Then, the carbon dioxide measuring unit 101 transmits the acquired carbon dioxide concentration to the system controller 10 via the corresponding mobile terminal 100.
  • the system controller 10 controls the air conditioning of the living room 2 provided in the general house 1, and is a controller that controls the entire air conditioning system 20 in the entire building.
  • the system controller 10 is communicably connected to each control target by wireless communication.
  • the control targets include an outside air introduction fan 4, an exhaust fan 5, a conveyor fan 3, a circulation fan 6, a living room temperature sensor 11, a living room humidity sensor 12, an air conditioning room temperature sensor 14, an air conditioning room humidity sensor 15, an air conditioner conditioner 9, and a humidifier. 16, the dehumidifier 17, and the portable terminal 100 can be mentioned.
  • the system controller 10 controls the outside air introduction fan 4 and the exhaust fan 5 in conjunction with each other, such as setting the supply air volume of the outside air introduction fan 4 so that the air volume corresponds to the exhaust air volume of the exhaust fan 5.
  • the general house 1 is ventilated by the first-class ventilation method.
  • the system controller 10 has an air conditioner 9, a humidifier 16, and a dehumidifier 17 as an air conditioner based on the temperature and humidity of the air in the air conditioner room 18 acquired by the air conditioner room temperature sensor 14 and the air conditioner room humidity sensor 15. To control. Specifically, the system controller 10 has an air conditioner 9, a humidifier 16, and a dehumidifier so that the temperature and humidity of the air conditioner room 18 become the target temperature of the air conditioner room and the target humidity of the air conditioner room set in the air conditioner room 18. 17 is controlled.
  • the system controller 10 sets the air volume of the transport fan 3 and the air volume of the circulation fan 6 based on the room temperature and the room humidity of each room 2 acquired by the room temperature sensor 11 and the room humidity sensor 12. Specifically, in the system controller 10, the room temperature and humidity of each room 2 are set for each room 2 (hereinafter, also referred to as “room target temperature”) and humidity (hereinafter, “room target humidity””. The air volume of the transport fan 3 and the air volume of the circulation fan 6 are set so as to be (also referred to as).
  • the air conditioned in the air-conditioned room 18 is transported to each living room 2 with the air volume set in each transport fan 3, and the air in each living room 2 is transported to each living room 2 with the air volume set in each circulation fan 6. It is transported to the air conditioning chamber 18. Therefore, the room temperature and the room humidity of each room 2 are controlled to be the room target temperature and the room target humidity.
  • both the temperature and the humidity of the air conditioning chamber 18 are controlled, but only one of the temperature and the humidity of the air conditioning chamber 18 may be controlled. Further, although the description has been made assuming that both the indoor temperature and the indoor humidity of each living room 2 are controlled, only one of the indoor temperature and the indoor humidity of each living room 2 may be controlled.
  • the system controller 10 controls the ventilation device based on the carbon dioxide concentration of the living room 2 (living rooms 2c and 2d in the present embodiment) in which the mobile terminal 100 is present, which is acquired by the carbon dioxide measuring unit 101.
  • the ventilation device according to the present embodiment includes a transfer fan 3 (conveyor fans 3a to 3d), a circulation fan 6 (circulation fans 6a to 6d), and an exhaust fan 5 (exhaust). It will be described as assuming that the fans 5a to 5d) and the outside air introduction fan 4. That is, the whole building air conditioning system 20 includes a transport fan 3, a circulation fan 6, an exhaust fan 5, and an outside air introduction fan 4 as ventilation devices for ventilating each living room 2.
  • the system controller 10 controls the ventilation device so that the carbon dioxide concentration in the living room 2 becomes the set carbon dioxide concentration (hereinafter, also referred to as “target carbon dioxide concentration”). The detailed control contents will be described later.
  • control targets may be configured to be communicable with the system controller 10 by wire communication.
  • the input / output terminal 19 is communicably connected to the system controller 10 by wireless communication, receives input of information necessary for constructing the whole building air conditioning system 20, and stores it in the system controller 10. Further, the input / output terminal 19 acquires the state of the entire building air conditioning system 20 from the system controller 10 and displays it. Examples of the input / output terminal 19 include mobile information terminals such as mobile phones, smartphones, and tablets.
  • the input / output terminal 19 does not necessarily have to be connected to the system controller 10 by wireless communication, and may be connected to the system controller 10 by wire communication.
  • the input / output terminal 19 may be realized by, for example, a wall-mounted remote controller. Further, the input / output terminal 19 and the system controller 10 may be integrated.
  • FIG. 2 is a schematic functional block diagram of the system controller 10 and peripheral devices.
  • the system controller 10 includes a concentration acquisition unit 310, a sleep preparation detection unit 320, a concentration storage unit 300, a control unit 200, a vital data acquisition unit 330, a sleep state determination unit 340, and a determination unit 350. ..
  • the concentration acquisition unit 310 acquires the carbon dioxide concentration measured by the carbon dioxide measurement unit 101.
  • the carbon dioxide measuring unit 101 is provided in the mobile terminal 100, and the concentration acquisition unit 310 can be said to acquire the carbon dioxide concentration in the living room 2 in which the mobile terminal 100 is located.
  • the vital data acquisition unit 330 acquires the user's vital data.
  • the vital data is basic information about the life of the user, and is defined as at least one or more data of the user's blood pressure, heart rate, respiration, and body movement in the present embodiment.
  • the breathing is the number of breaths performed per unit time, the depth of breathing, and the like.
  • the body movement is the magnitude of the movement of the body.
  • the vital data acquisition unit 330 acquires vital data via, for example, a vital sensor or the like.
  • the sleep state determination unit 340 acquires vital data from the vital data acquisition unit 330, and based on the acquired vital data, the user determines whether the user is in an active state, a sleep preparation state, a sleep onset state, a sleep state, or a wakefulness state. judge.
  • the active state means the state in which the user is awake and active, and one example is that the user is exercising, eating, working, studying, etc.
  • the sleep preparation state is a state in which the user is preparing to fall asleep from an active state, and one example is that the user enters a futon to fall asleep. In the sleep-ready state, the user is still awake and has not fallen asleep.
  • the sleep-onset state is a state in which the user falls asleep from the sleep-prepared state.
  • the sleep state is a state in which sleep continues from the state of falling asleep. That is, in the sleep state, the user loses consciousness and is dormant.
  • Wakefulness refers to the state of waking up from a sleeping state, and one example is when a user wakes up in the morning.
  • the user first shifts from the active state to the sleep ready state, then to the sleep onset state, then to the sleep state, and finally to the awake state.
  • the sleep preparation state can be determined based on the heart rate before entering the sleep onset state.
  • the above is an example of a determination method, and it is sufficient if the user's condition can be determined, such as determining the user's condition by a combination of these including blood pressure, respiration, body movement, and heart rate.
  • the sleep preparation detection unit 320 detects that the user in the living room 2 is in the sleep preparation state. That is, when the sleep state determination unit 340 determines that the user is in the sleep preparation state using the vital data acquired from the vital data acquisition unit 330, the sleep preparation detection unit 320 is in the sleep preparation state. Detect that. That is, the sleep preparation detection unit 320 detects that the user is in the sleep preparation state based on the vital data acquired from the vital data acquisition unit 330.
  • the concentration storage unit 300 is a so-called memory that stores information indicating the carbon dioxide concentration for concentration comparison, which is used by the control unit 200 when determining the carbon dioxide concentration in the living room 2.
  • the concentration storage unit 300 stores the first threshold value, the second threshold value, the third threshold value, the sleep onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user possessing the mobile terminal 100, and the like.
  • the first threshold value and the second threshold value exist in each living room 2 and are stored in the concentration storage unit 300, respectively.
  • the first threshold value of the living room 2c and the second threshold value of the living room 2c are simply described as the first threshold value and the second threshold value, respectively.
  • the first threshold value is a value indicating a carbon dioxide concentration suitable for the user to fall asleep, for example, a value indicating the carbon dioxide concentration when the user has fallen asleep in the past. Further, the first threshold value may be an experimentally acquired value as the carbon dioxide concentration expected to cause the user to fall asleep, and can be arbitrarily set. In general, it is said that a user is more likely to shift from a sleep-prepared state to a sleep-onset state when the carbon dioxide concentration is higher to some extent than the carbon dioxide concentration in the active state.
  • the second threshold value is a value larger than the first threshold value and lower than the carbon dioxide concentration considered to be harmful to the human body.
  • the carbon dioxide concentration considered to be harmful to the human body is, for example, a value obtained experimentally or a value published in a research paper. That is, the range of the carbon dioxide concentration indicated by the first threshold value and the second threshold value can be within the range of the carbon dioxide concentration considered to be suitable for falling asleep. That is, the second threshold value is a value within the range of the carbon dioxide concentration defined as suitable for falling asleep and a value lower than the carbon dioxide concentration considered to be harmful to the human body.
  • the third threshold value is a value smaller than the first threshold value and indicates a carbon dioxide concentration suitable for the activity state of the user.
  • the carbon dioxide concentration standard value is 1000 ppm, which is set for the purpose of ensuring a hygienic environment.
  • FIG. 3 is a diagram showing a data structure of the carbon dioxide concentration table 301 during sleep onset stored by the concentration storage unit 300. In this embodiment, it is assumed that the user A carries the mobile terminal 100a.
  • the sleep-onset carbon dioxide concentration table 301 stores the terminal information 302 and the sleep-onset concentration information 303 in association with each other for each user.
  • the terminal information 302 is information indicating the mobile terminal 100 possessed by the user
  • the sleep onset concentration information 303 is information indicating the carbon dioxide concentration when the user falls asleep.
  • the sleep-onset carbon dioxide concentration table 301 shows that the terminal information 302 is the “portable terminal 100a” and the sleep-onset concentration information 303 is “CO2a”. That is, in the example of the figure, it is shown that the carbon dioxide concentration at the time of falling asleep of the user A who possesses the "portable terminal 100a" is "CO2a".
  • Data is registered in the carbon dioxide concentration table 301 when falling asleep as follows. That is, the control unit 200 acquires the carbon dioxide concentration CO2a of the living room 2 measured by the carbon dioxide measurement unit 101a when the user A has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2a" is registered in the sleep-onset carbon dioxide concentration table 301 in association with the terminal information "portable terminal 100a" corresponding to the carbon dioxide measurement unit 101a. As a result, the concentration storage unit 300 stores the carbon dioxide concentration CO2a at the time of falling asleep corresponding to the mobile terminal 100a.
  • the concentration storage unit 300 stores the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user A.
  • the determination unit 350 determines the living room 2 in which the mobile terminal 100 is located. As a determination method, for example, the determination is made based on the radio wave intensity received from the mobile terminal 100 by the exhaust fans 5a to 5d. In the present embodiment, since the mobile terminal 100a exists in the living room 2c, the determination method thereof will be briefly described.
  • the exhaust fans 5a to 5d of each living room 2 acquire the radio wave strength generated from the mobile terminal 100a and transmit it to the system controller 10. Then, the determination unit 350 compares the radio wave strengths from the mobile terminals 100a acquired from the exhaust fans 5a to 5d of each living room 2, and the mobile terminal 100a is placed in the living room 2 where the exhaust fan 5 that has received the strongest radio wave strength exists. Determined to exist.
  • the exhaust fan 5c has the strongest radio wave intensity from the mobile terminals 100a acquired by the exhaust fans 5a to 5d, so it is determined that the mobile terminal 100a exists in the living room 2c. Further, the radio wave strength may be acquired by the transport fan 3 instead of the exhaust fan 5.
  • a camera may be provided in each living room 2, the user who carries the mobile terminal 100 may be recognized from the camera image, and the living room 2 in which the mobile terminal 100 exists may be determined. Further, the determination unit 350 may determine the living room 2 in which the mobile terminal 100 is present by notifying the system controller 10 which room 2 the user himself / herself is in via the mobile terminal 100.
  • the control unit 200 controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit 320 and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101.
  • the control unit 200 further includes a ventilation determination unit 220 and a ventilation control unit 210.
  • the ventilation determination unit 220 further has a concentration comparison unit 221.
  • the concentration comparison unit 221 compares the carbon dioxide concentration acquired by the concentration acquisition unit 310 with the first threshold value, the second threshold value, and the third threshold value stored in the concentration storage unit 300, and each of the acquired carbon dioxide concentrations. Compare the magnitude with respect to the threshold.
  • the ventilation determination unit 220 controls ventilation based on the result of comparison by the concentration comparison unit 221, the sleep preparation state of the user detected by the sleep preparation detection unit 320, and the living room 2 in which the mobile terminal 100 determined by the determination unit 350 exists.
  • the content of the ventilation instruction to the unit 210 is determined. The detailed determination method will be described later with reference to the flowchart of FIG.
  • the ventilation control unit 210 controls the ventilation device according to the instruction content determined by the ventilation determination unit 220.
  • the system controller 10 is composed of a microcomputer. That is, the system controller 10 has a computer system having a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the system controller 10 is connected to each part through a driver and an internal bus.
  • the CPU uses the RAM as a work area, executes a program stored in the ROM, controls each operation by exchanging data and instructions based on the execution result, and the computer system acts as the system controller 10. Function.
  • the program executed by the CPU is pre-recorded in the ROM here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. May be provided.
  • FIG. 4 is a flowchart showing ventilation control executed by the system controller 10.
  • numbers are assigned with S as an acronym.
  • S1 and the like refer to a processing step.
  • the magnitude of the numerical value indicating the processing step and the processing order do not matter.
  • the concentration acquisition unit 310 acquires the carbon dioxide concentration of the air in the living room 2 (step S1).
  • the carbon dioxide concentration of the air in the living room 2 acquired by the concentration acquisition unit 310 is measured by the carbon dioxide measuring unit 101 included in the mobile terminal 100 carried by the user in the living room 2.
  • the determination unit 350 determines in which living room (either 2a, 2b, 2c, or 2d in the present embodiment) the living room 2 in which the mobile terminal 100 is present exists. This makes it possible to know the carbon dioxide concentration of the living room 2 in which the user is present.
  • the determination unit 350 determines that the mobile terminal 100a carried by the user A exists in the living room 2c.
  • the sleep preparation detection unit 320 detects whether or not the user is in the sleep preparation state from the determination result of the sleep state determination unit 340 (step S2).
  • the concentration comparison unit 221 compares the carbon dioxide concentration of the living room 2 in which the user is present with the third threshold value (step S2: No). ⁇ Step S3).
  • the concentration comparison unit 221 compares the carbon dioxide concentration of the living room 2c with the third threshold value.
  • the ventilation determination unit 220 instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present.
  • the ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 in which the user is present.
  • the carbon dioxide concentration in the living room 2 becomes a concentration suitable for the active state, so that the user can maintain concentration during the active state.
  • the ventilation of the living room 2 in which the user exists in step S3 may be executed only when the user is determined to be in the active state by the sleep state determination unit 340.
  • the control unit 200 sets the first threshold value of the living room 2 in which the mobile terminal 100 exists stored in the concentration storage unit 300 as follows. Change to. That is, the control unit 200 changes the first threshold value to the same value as the carbon dioxide concentration stored in the concentration storage unit 300 and indicated by the user's sleep-onset concentration information corresponding to the mobile terminal 100 (step S2: Yes ⁇ Yes. Step S4).
  • the control unit 200 changes the first threshold value of the living room 2c to the carbon dioxide concentration CO2a indicated by the sleep-onset concentration information of the user A stored in the concentration storage unit 300.
  • the first threshold value of the living room 2c can be set to the carbon dioxide concentration suitable for the sleep onset of the user A.
  • the control unit 200 changes the first threshold value based on the carbon dioxide concentration at the time of falling asleep indicated by the concentration information at the time of falling asleep stored in the concentration storage unit 300. Then, as will be described later, the control unit 200 controls ventilation by the ventilation device based on the changed first threshold value.
  • the changed first threshold value of the living room 2 is suitable for the user. It can be the carbon dioxide concentration at the time of falling asleep.
  • the first threshold value of the changed living room 2a can be set to the carbon dioxide concentration at the time of falling asleep suitable for the user.
  • the settable range of the second threshold value changes with the change of the first threshold value, the second threshold value is changed as necessary. That is, it can be said that the second threshold value is a value that reflects the change in the first threshold value.
  • the concentration comparison unit 221 compares the carbon dioxide concentration in the living room 2 with the second threshold value (step S5).
  • the ventilation determination unit 220 instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present.
  • the ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 to be lowered (step S5: Yes ⁇ step S6). That is, when the sleep preparation detection unit 320 detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101 is equal to or higher than the second threshold value, the control unit 200 uses a ventilation device. Control to ventilate.
  • the living room 2 in which the user is present can maintain the range of carbon dioxide concentration that is considered to be suitable for falling asleep.
  • the ventilation determination unit 220 instructs the ventilation control unit 210 to stop ventilation in the living room 2 in which the user is present.
  • the ventilation control unit 210 stops the fan of the ventilation device (step S5: No ⁇ step S7). That is, when the sleep preparation detection unit 320 detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101 is smaller than the second threshold value, the control unit 200 uses the ventilation device. Control to stop ventilation. In other words, when the sleep preparation detection unit 320 detects that the sleep preparation detection unit 320 is in the sleep preparation state, the control unit 200 controls ventilation by the ventilation device as follows.
  • control unit 200 is a ventilation device so that the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 approaches the carbon dioxide concentration at the time of sleep onset indicated by the concentration information at sleep onset stored by the concentration storage unit 300. Control ventilation by. Further, in this control, the control unit 200 uses the sleep-onset concentration information corresponding to the terminal information indicating the mobile terminal 100 carried by the user in the living room 2 as the sleep-onset concentration information stored in the concentration storage unit 300.
  • the carbon dioxide concentration in the living room 2 in which the user exists can be further increased, so that the whole building air conditioning system 20 can easily shift the user to a sleep-onset state. That is, the whole building air conditioning system 20 can shorten the time from when the user enters the sleep preparation state to when the user falls asleep.
  • the sleep state determination unit 340 determines whether or not the user has fallen asleep (step S8).
  • step S5 the whole building air conditioning system 20 can make it easier for the user to shift from the sleep preparation state to the sleep onset state.
  • step S8 Yes.
  • the entire building air conditioning system 20 has been described above as an example of the ventilation system according to the present disclosure.
  • the whole building air conditioning system (20) is characterized by including a carbon dioxide measuring unit (101), a ventilation device, a sleep preparation detecting unit (320), and a control unit (200).
  • the carbon dioxide measuring unit (101) measures the carbon dioxide concentration of the living room (2), which is an example of the predetermined space of the present disclosure.
  • the ventilation device ventilates the living room (2) when the carbon dioxide concentration measured by the carbon dioxide measuring unit (101) is equal to or higher than a predetermined threshold value (third threshold value).
  • the sleep preparation detection unit (320) detects that the user in the living room (2) is in the sleep preparation state.
  • the sleep preparation detection unit (320) allows the user to be in a sleep preparation state. When it is detected, it is controlled to stop the ventilation by the ventilation device.
  • the whole building air conditioning system (20) is a ventilation device when the user is in a sleep ready state, even if the carbon dioxide concentration in the living room (2) in which the user is present is higher than a predetermined threshold (third threshold). Ventilation is not performed. Therefore, the whole building air conditioning system (20) contributes to the realization of a space suitable for the user to fall asleep without hindering the user from falling asleep.
  • Embodiment 2 In the present embodiment, a case where a plurality of mobile terminals 100 are present in the living room 2 will be described. That is, there are a plurality of users in this embodiment. Specifically, it is a case where the mobile terminal 100b and the mobile terminal 100c exist in the living room 2d shown in FIG. In the present embodiment, for the sake of simplicity, it is assumed that the mobile terminal 100 existing in the general house 1 is only the mobile terminal 100b and the mobile terminal 100c, and the mobile terminal 100a does not exist in the living room 2c.
  • FIG. 5 is a schematic functional block diagram of the system controller 10A and peripheral devices according to the present embodiment.
  • the basic configuration of the system controller 10A is the same as that of the system controller 10 according to the first embodiment, but the system controller 10A is different from the system controller 10 in that the control unit 200A is provided instead of the control unit 200 of the system controller 10. ..
  • the control unit 200A is different from the control unit 200 in that the ventilation determination unit 220A is provided in place of the ventilation determination unit 220 of the control unit 200 according to the first embodiment.
  • the system controller 10A includes a determination unit 350A instead of the determination unit 350 of the system controller 10.
  • the system controller 10A includes a concentration acquisition unit 310, a sleep preparation detection unit 320, a concentration storage unit 300, a control unit 200A, a vital data acquisition unit 330, a sleep state determination unit 340, and a determination unit 350A. ..
  • the concentration acquisition unit 310 the vital data acquisition unit 330, the sleep state determination unit 340, and the sleep preparation detection unit 320 are the same as those in the first embodiment, the description thereof will be omitted.
  • the first threshold value, the second threshold value, and the third threshold value stored in the concentration storage unit 300 are the same as those in the first embodiment, but the concentration storage unit 300 replaces the sleep-onset carbon dioxide concentration table 301 according to the first embodiment. Then, the carbon dioxide concentration table 304 at the time of falling asleep is stored.
  • the sleep-onset carbon dioxide concentration table 304 corresponding to the mobile terminal 100 will be described with reference to FIG.
  • FIG. 6 is a diagram showing a data structure of the carbon dioxide concentration table 304 during sleep onset stored by the concentration storage unit 300.
  • the mobile terminal 100 is carried by each user.
  • the user B carries the mobile terminal 100b
  • the user C carries the mobile terminal 100c.
  • the data configuration of the sleep-onset carbon dioxide concentration table 304 is the same as the data configuration of the sleep-onset carbon dioxide concentration table 301 according to the first embodiment, but in the sleep-onset carbon dioxide concentration table 304, the registered data is stored in the sleep-onset carbon dioxide concentration table 304. Different from the carbon dioxide concentration table 301. That is, the sleep-onset carbon dioxide concentration table 304 stores the user's terminal information 305 and the user's sleep-onset concentration information 306 in association with each other for each of the plurality of users. In the figure, as an example, the sleep-onset carbon dioxide concentration table 304 shows that the terminal information 305 is “portable terminal 100b” and the sleep-onset concentration information 306 is “CO2b”.
  • the sleep-onset carbon dioxide concentration table 304 shows that the terminal information 305 is "portable terminal 100c" and the sleep-onset concentration information 306 is "CO2c". That is, in the example of the figure, it is shown that the carbon dioxide concentration of the living room 2d at the time of falling asleep of the user B who possesses the "portable terminal 100b" is “CO2b". Further, in the example of the figure, it is shown that the carbon dioxide concentration of the living room 2d at the time of falling asleep of the user C possessing the "portable terminal 100c" is "CO2c".
  • the method of registering the data in the sleep-onset carbon dioxide concentration table 304 is the same as the data registration in the sleep-onset carbon dioxide concentration table 301 according to the first embodiment. That is, the control unit 200A acquires the carbon dioxide concentration CO2b of the living room 2 measured by the carbon dioxide measurement unit 101b when the user B has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2b" is registered in the sleep-onset carbon dioxide concentration table 304 in association with the terminal information "portable terminal 100b" corresponding to the carbon dioxide measurement unit 101b.
  • control unit 200A acquires the carbon dioxide concentration CO2c of the living room 2 measured by the carbon dioxide measurement unit 101c when the user C has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2c" is registered in the sleep-onset carbon dioxide concentration table 304 in association with the terminal information "portable terminal 100c" corresponding to the carbon dioxide measurement unit 101c.
  • the concentration storage unit 300 stores the carbon dioxide concentration CO2b at the time of falling asleep corresponding to the mobile terminal 100b and the carbon dioxide concentration CO2c at the time of falling asleep corresponding to the mobile terminal 100c. That is, in other words, the concentration storage unit 300 individually stores the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of all users.
  • the concentration storage unit 300 stores sleep-onset concentration information indicating the carbon dioxide concentration at sleep onset of all users who carry the mobile terminal 100.
  • the determination unit 350A determines the living room 2 in which the mobile terminal 100 exists as in the first embodiment, but also determines the number of mobile terminals 100 existing in each of the living rooms 2a to 2d.
  • the exhaust fans 5a to 5d are determined by the radio wave intensity received from the mobile terminal 100.
  • the exhaust fans 5a to 5d of each living room 2 acquire the radio wave strength generated from the mobile terminals 100b and 100c and transmit the radio wave strength to the system controller 10A. Then, the determination unit 350A compares the radio wave strengths from the mobile terminals 100b and 100c acquired from the exhaust fans 5a to 5d of each living room 2, and in the living room 2 where the exhaust fan 5 receiving the strongest radio wave strength exists. It is determined that the mobile terminal 100 exists.
  • the radio wave intensity from the mobile terminals 100b and 100c acquired by the exhaust fans 5a to 5d it is determined that the mobile terminals 100b and 100c exist in the living room 2d because the exhaust fan 5d has the strongest radio wave strength. Therefore, it is determined that there are two mobile terminals 100b and 100c in the living room 2d.
  • the case where two mobile terminals 100 are present is taken as an example, but when the number of mobile terminals 100 is three or more, the same determination is made so that the mobile terminal 100 existing in the living room 2 is present. And the number of mobile terminals 100 are determined.
  • the control unit 200A further includes a ventilation determination unit 220A and a ventilation control unit 210.
  • the ventilation determination unit 220A further has a concentration comparison unit 221A and a threshold value change unit 222.
  • the concentration comparison unit 221A is the same as the concentration comparison unit 221 according to the first embodiment in that the carbon dioxide concentration acquired by the concentration acquisition unit 310 is used to compare with each threshold value stored in the concentration storage unit 300. However, it differs from the concentration comparison unit 221 in the following points. That is, when a plurality of users exist in a certain living room 2, the concentration comparison unit 221A has the carbon dioxide concentration acquired by the concentration acquisition unit 310 via the carbon dioxide measurement unit 101 of the mobile terminal 100 possessed by each user. Make a comparison using the average value. The details of the comparison will be described later.
  • the threshold value change unit 222 changes the first threshold value based on the sleep-onset concentration information corresponding to the mobile terminal 100 stored in the concentration storage unit 300.
  • the details will be described later.
  • the ventilation determination unit 220A determines the comparison result of the concentration comparison unit 221A, the value of the first threshold value changed by the threshold value change unit 222, and the sleep preparation state of the user detected by the sleep preparation detection unit 320, by the determination unit 350A.
  • the content of the ventilation instruction to the ventilation control unit 210 is determined based on the number of mobile terminals 100 existing in the living room 2. The detailed control thereof will be described later with reference to the flowchart of FIG.
  • the ventilation control unit 210 is the same as that of the first embodiment, the description thereof will be omitted.
  • FIG. 7 is a flowchart showing ventilation control executed by the system controller 10A.
  • numbers are assigned with S as an acronym.
  • S11 and the like refer to a processing step.
  • the magnitude of the numerical value indicating the processing step and the processing order do not matter.
  • the concentration acquisition unit 310 acquires the carbon dioxide concentration of the living room 2 (step S11).
  • the determination unit 350A determines in which living room 2 the mobile terminal 100 exists and the number of mobile terminals 100 existing in the living room 2.
  • the mobile terminal 100b carried by the user B and the mobile terminal 100c carried by the user C exist in the living room 2d, and the number of the mobile terminals 100 existing in the living room 2d is 2. Is determined to be.
  • the sleep preparation detection unit 320 detects whether or not the user is in a sleep preparation state (step S12).
  • the sleep preparation detection unit 320 detects that the user is in the sleep preparation state when there is even one user in the sleep preparation state. It shall be. However, this is only an example, and when all the users are in the sleep preparation state, the sleep preparation detection unit 320 may detect that the users are in the sleep preparation state.
  • the concentration comparison unit 221A compares the carbon dioxide concentration of the room 2 in which the user is present with the third threshold value (the concentration comparison unit 221A). Step S12: No ⁇ Step S13).
  • the concentration comparison unit 221A calculates the average value of the carbon dioxide concentration acquired from the carbon dioxide measurement units 101b and 101c, and compares the calculated average value with the third threshold value.
  • the average value is used, but the carbon dioxide concentration may be higher than the average value, or may be arbitrarily set from between the minimum value and the maximum value. The same applies when there are three or more carbon dioxide measuring units 101.
  • the ventilation determination unit 220A instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present.
  • the ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 in which the user is present.
  • the threshold value change unit 222 is based on the user's sleep-onset concentration information stored in the concentration storage unit 300 and corresponding to the mobile terminal 100. Identify the threshold. Then, the control unit 200A changes the first threshold value stored in the concentration storage unit 300 to the threshold value specified by the threshold value changing unit 222 (step S12: Yes ⁇ step S14).
  • the sleep-onset concentration information "CO2b" of the user B existing in the living room 2d and the sleep-onset concentration information "CO2c" of the user C existing in the living room 2d are stored in the sleep-onset carbon dioxide concentration table 304 of the concentration storage unit 300.
  • the threshold value changing unit 222 specifies the higher carbon dioxide concentration of the carbon dioxide concentration CO2b when user B falls asleep and the carbon dioxide concentration CO2c when user C falls asleep as a threshold value, and sets the first threshold value to the specified threshold value. change.
  • the first threshold value of the living room 2d can be set to a carbon dioxide concentration suitable for falling asleep for both users B and C.
  • the first threshold value is changed to the higher carbon dioxide concentration of the carbon dioxide concentration CO2b when the user B falls asleep and the carbon dioxide concentration CO2c when the user C falls asleep.
  • it may be changed to the average of two carbon dioxide concentrations.
  • the threshold value changing unit 222 changes the first threshold value in the same manner. That is, the threshold value changing unit 222 specifies the maximum or average carbon dioxide concentration among the carbon dioxide concentrations at the time of sleep onset of the user corresponding to the mobile terminal 100 stored in the concentration storage unit 300 as the threshold value, and sets the specified threshold value. Change the first threshold. Further, since the settable range of the second threshold value changes with the change of the first threshold value, the second threshold value is changed as necessary. That is, it can be said that the second threshold value is a value that reflects the change in the first threshold value.
  • step S14 the control unit 200A changes the first threshold value based on the carbon dioxide concentration at the time of falling asleep indicated by the concentration information at the time of falling asleep stored in the concentration storage unit 300. Then, as will be described later, the control unit 200A controls ventilation by the ventilation device based on the second threshold value based on the changed first threshold value.
  • the concentration comparison unit 221A makes a comparison with the second threshold value using the carbon dioxide concentration in the living room 2 (step S15). Specifically, as in step S13, the concentration comparison unit 221A calculates the average value of the carbon dioxide concentration acquired from the concentration acquisition unit 310, and compares the calculated average value with the second threshold value.
  • the concentration comparison unit 221A compares the average value of the carbon dioxide concentration acquired from the carbon dioxide measurement units 101b and 101c with the second threshold value.
  • the average value is used, but the carbon dioxide concentration may be higher than the average value, or may be arbitrarily set from between the minimum value and the maximum value. The same applies when there are three or more carbon dioxide measuring units 101.
  • the ventilation determination unit 220A instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present.
  • the ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 to be lowered (step S15: Yes ⁇ step S16).
  • the ventilation determination unit 220A instructs the ventilation control unit 210 to stop ventilation of the living room 2 in which the user is present.
  • the ventilation control unit 210 stops the fan of the ventilation device (step S15: No ⁇ step S17). That is, when the sleep preparation detection unit 320 detects that the sleep preparation detection unit 320 is in the sleep preparation state, the control unit 200A controls as follows when the number of the mobile terminals 100 determined by the determination unit 350A is a plurality. That is, the control unit 200A acquires the sleep-onset concentration information corresponding to each of the plurality of terminal information indicating each of the plurality of mobile terminals 100 determined by the determination unit 350A, which is stored by the concentration storage unit 300.
  • the control unit 200A makes the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 approach the maximum carbon dioxide concentration among the carbon dioxide concentrations at sleep onset indicated by the acquired sleep-onset concentration information. Control ventilation with a ventilator. That is, the change of the first threshold is reflected in the second threshold. Based on this second threshold value, the control unit 200A determines that the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 is among the carbon dioxide concentrations at sleep onset indicated by the sleep onset concentration information corresponding to each of the plurality of terminal information. Control ventilation with a ventilator to approach the maximum carbon dioxide concentration in.
  • the sleep state determination unit 340 determines whether or not all the users in the sleep ready state existing in the living room 2 have fallen asleep (step S18).
  • the sleep state determination unit 340 determines whether or not the user B and the user C in the living room 2d have fallen asleep. When there are three or more users, the determination is made in the same manner.
  • step S15 If all the users who are in the sleep ready state existing in the living room 2 have not entered sleep, the process returns to the process of step S15 in order to further increase the carbon dioxide concentration in the living room 2 (step S18: No ⁇ step S15).
  • the whole building air-conditioning system according to the present embodiment can easily shift the user who has not yet entered the sleep-onset state to the sleep-onset state.
  • the whole building air conditioning system 20 and the system controller 10 according to the first embodiment and the whole building air conditioning system and the system controller 10A according to the second embodiment have been described.
  • the whole building air conditioning system according to the first and second embodiments is an example of the ventilation system according to the present disclosure, and the scope of the present disclosure is not limited to the contents of the first and second embodiments.
  • the whole building air-conditioning system according to the first and second embodiments may be modified so as not to store the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user in the concentration storage unit 300.
  • the whole building air-conditioning system related to this modification is a system in which the first threshold value and the second threshold value are fixed values, and can be a system that performs simpler control.
  • the carbon dioxide measuring unit 101 is provided in the mobile terminal 100, but it may be modified as follows. That is, the carbon dioxide measuring unit 101 may be provided in a ventilation device, a lighting device, an operation switch of the ventilation device, an operation switch of the lighting device, a power outlet, or the like installed in the living room 2. Further, the carbon dioxide measuring unit 101 may be modified so as to be provided in home appliances such as an air purifying device, a fan, a dehumidifying device, a humidifying device, and an air conditioning device installed in the living room 2. Further, the carbon dioxide measuring unit 101 may be changed so as to be provided independently somewhere in the living room 2. As a result, the whole building air-conditioning system related to these modifications can improve the degree of freedom of configuration.
  • the sleep preparation detection unit 320 may be modified to detect the sleep preparation state based on information other than the determination result of the sleep state determination unit 340.
  • the sleep preparation detection unit related to this modification may be configured to detect that the user is in the sleep preparation state, for example, by the bedtime set by the user.
  • the sleep preparation detection unit related to this deformation can relatively easily detect the sleep preparation state of the user, and the entire building air conditioning system related to this deformation can be constructed with a different configuration.
  • the whole building air conditioning system according to this modification may be modified so that the carbon dioxide concentration of the living room 2 in which the user is present approaches the first threshold value before the user's bedtime.
  • the whole building air-conditioning system controls, for example, not to ventilate even if the carbon dioxide concentration reaches the third threshold value or more, but to ventilate at the first threshold value or more, one hour before the user's bedtime.
  • the carbon dioxide concentration in the living room 2 becomes the first threshold value, so that the whole building air-conditioning system related to this deformation can shorten the time until the user falls asleep. can.
  • the sleep preparation detection unit 320 does not detect the user's sleep preparation state using vital data or the user's bedtime, but sleeps based on the user's input that the user is in the sleep preparation state. It may be modified to detect the ready state. For example, as an example, a reception unit that accepts the above input is provided in the mobile terminal 100, the user inputs that the user himself / herself is in a sleep preparation state via the mobile terminal 100, and the reception unit accepts this input, and the system controller 10 Notify to. As a result, the sleep preparation detection unit related to this deformation can more accurately detect that the user is in the sleep preparation state.
  • the sleep preparation detection unit related to this deformation can know the sleep preparation state of the user. Therefore, the sleep preparation detection unit related to this deformation can more accurately and easily detect the sleep preparation state of the user. That is, the whole building air-conditioning system according to this modification further includes a reception unit for receiving an input from the user to the effect that the user himself / herself is in a sleep ready state. Then, the sleep preparation detection unit related to this deformation detects that the user is in the sleep preparation state based on the input received by the reception unit.
  • the sleep preparation detection unit 320 is modified to detect that the user is in the sleep preparation state by another method, for example, by installing a camera in each room and detecting the user's sleep preparation state from the image. May be.
  • the entire building air conditioning system related to this modification can be constructed with various configurations.
  • the determination unit 350 according to the first embodiment may be modified so as not to determine the living room 2 in which the mobile terminal 100 exists.
  • the determination unit related to this modification can specify the living room 2 in which the user sleeps.
  • the control unit related to this deformation can perform ventilation control for the living room 2 registered by the user.
  • the carbon dioxide measuring unit 101 is provided in a device other than the mobile terminal 100 and the concentration storage unit 300 is modified to store the carbon dioxide concentration in the living room 2 measured by the carbon dioxide measuring unit 101 when the user has fallen asleep in the past. good.
  • the whole building air conditioning system according to this modification can perform the same control as the ventilation control according to the embodiment even if the mobile terminal 100 does not exist.
  • the entire building air conditioning system related to this modification can be constructed with various configurations.
  • the modification of the determination unit 350 may be applied to the determination unit 350A according to the second embodiment.
  • the ventilation device is controlled by the control unit 200 of the system controller 10 in the first embodiment and by the control unit 200A of the system controller 10A in the second embodiment, it may be modified to be performed by the mobile terminal 100. ..
  • the mobile terminal 100 may be used as a smartphone, software such as an application may be provided to the smartphone, and the ventilation device may be controlled by the smartphone.
  • the entire building air-conditioning system related to this modification can control the ventilation device with a smartphone carried by the user.
  • the whole building air-conditioning system according to the first and second embodiments may be modified so as to perform ventilation control by the smartphone by using a wearable terminal worn by the user, which is different from the above-mentioned smartphone.
  • the whole building air-conditioning system according to this modification includes, for example, a carbon dioxide measuring unit 101 and a vital data measuring unit in a wearable terminal. Then, the smartphone acquires the measurement data of the carbon dioxide measuring unit 101 and the vital data measuring unit, and the smartphone performs ventilation control. As a result, the smartphone related to this transformation can acquire vital data, and the smartphone related to this transformation can perform more complicated control.
  • the system controller 10 (or the system controller 10A) installed in the general house 1 controls the ventilation of the ventilation device, but the cloud is provided and the cloud ventilates. It may be modified to control the device. As a result, the whole building air conditioning system related to this modification can improve the degree of freedom of configuration.
  • the ventilation system is configured to include a ventilation device, a carbon dioxide measuring unit, a sleep preparation detection unit, and a control unit.
  • the ventilation device is for ventilating a predetermined space.
  • the carbon dioxide measuring unit measures the carbon dioxide concentration in a predetermined space.
  • the sleep preparation detection unit detects that the user in the predetermined space is in the sleep preparation state. Then, the control unit controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit and the carbon dioxide concentration measured by the carbon dioxide measurement unit.
  • the ventilation system according to the present disclosure controls the carbon dioxide concentration in the predetermined space by the ventilation device based on the detection result that the user is in the sleep preparation state. That is, since the ventilation system according to the present disclosure controls the ventilation by the ventilation device in consideration of the sleep preparation state of the user, the carbon dioxide concentration suitable for the sleep preparation state of the user can be set. Therefore, the ventilation system according to the present disclosure can be used to realize a space suitable for the user's sleep preparation state.
  • the ventilation system may further include a concentration storage unit that stores a first threshold value indicating a carbon dioxide concentration suitable for falling asleep and a second threshold value larger than the first threshold value. Then, the control unit stops ventilation by the ventilation device when the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is smaller than the second threshold value. It may be configured to control the operation.
  • the ventilation system according to the present disclosure can increase the carbon dioxide concentration in the space in which the user is present when the user is in a sleep ready state, so that a space in which the user can easily fall asleep can be realized. Therefore, the ventilation system according to the present disclosure can shorten the time from the user entering the sleep preparation state to falling asleep.
  • control unit performs ventilation by the ventilation device when the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is equal to or higher than the second threshold value. It may be configured to control such as.
  • the ventilation system can prevent the carbon dioxide concentration from increasing and the user's human body from becoming dangerous when the user is in a sleep ready state.
  • the second threshold value may be configured to be a value within the range of the carbon dioxide concentration defined as suitable for falling asleep and a value lower than the carbon dioxide concentration considered to be harmful to the human body.
  • the ventilation system according to the present disclosure can maintain the carbon dioxide concentration in the space where the user is present within the carbon dioxide concentration range which is considered to be suitable for the user to fall asleep.
  • the sleep preparation detection unit may be configured to detect that the user is in the sleep preparation state according to the bedtime set by the user.
  • the ventilation system according to the present disclosure can relatively easily detect the sleep preparation state of the user at the time set by the user.
  • the ventilation system may further include a vital data acquisition unit that acquires at least one data of the user's blood pressure, heart rate, respiration and body movement as vital data.
  • the sleep preparation detection unit may be configured to detect that the user is in the sleep preparation state based on the vital data acquired from the vital data acquisition unit.
  • the ventilation system according to the present disclosure can know the sleep preparation state of the user from the vital data. Therefore, it is possible to more accurately grasp the sleep preparation state of the user.
  • the ventilation system further includes a reception unit for receiving an input from the user to the effect that the user is in a sleep ready state, and the sleep preparation detection unit allows the user to sleep based on the input received by the reception unit. It may be configured to detect that it is in the ready state.
  • the ventilation system according to the present disclosure can detect that the user himself / herself is in a sleep ready state by the input from the user. Therefore, the ventilation system according to the present disclosure can more accurately detect the sleep preparation state of the user.
  • the ventilation system further includes a concentration acquisition unit that acquires the carbon dioxide concentration measured by the carbon dioxide measurement unit, and the concentration storage unit further indicates the carbon dioxide concentration at the time of sleep onset of the user. May be memorized. Then, when the control unit detects that the sleep preparation detection unit is in the sleep preparation state, the carbon dioxide concentration acquired by the concentration acquisition unit is the sleep onset concentration information stored in the concentration storage unit when the user falls asleep. It may be configured to control the ventilation by the ventilation device so as to approach the carbon dioxide concentration in.
  • the ventilation system according to the present disclosure can bring the carbon dioxide concentration of the space in which the user is present close to the carbon dioxide concentration at the time of falling asleep when the user enters the sleep preparation state, so that the user sleeps. It is possible to realize a space that is easy to get on. Therefore, the ventilation system according to the present disclosure can shorten the time from the user entering the sleep preparation state to falling asleep.
  • the carbon dioxide measuring unit is provided in at least one of a ventilation device, a lighting device, an operation switch of the ventilation device, an operation switch of the lighting device, a power outlet, a home electric appliance, and a portable terminal carried by the user, which are provided in a predetermined space. It may be configured to be possible.
  • the ventilation system according to the present disclosure can be constructed with various configurations.
  • the concentration storage unit stores the sleep-onset concentration information in association with the terminal information indicating the mobile terminal possessed by the user, and the control unit corresponds to the terminal information as the sleep-onset concentration information stored in the concentration storage unit. It may be configured to use the concentration information at the time of falling asleep.
  • the ventilation system according to the present disclosure for example, by providing a carbon dioxide measuring unit in a mobile terminal, it is possible to omit installing a carbon dioxide measuring unit in each space. Further, the ventilation system according to the present disclosure stores the carbon dioxide concentration when the user falls asleep in association with the mobile terminal carried by the user. Therefore, for example, when the ventilation device according to the present disclosure has a plurality of predetermined spaces for ventilation, even if the space in which the user exists changes, the carbon dioxide concentration in the space approaches the carbon dioxide concentration when the user falls asleep. It can be controlled as follows. Therefore, the ventilation system according to the present disclosure can have a carbon dioxide concentration suitable for the user's sleep preparation state regardless of the space in which the user sleeps.
  • the ventilation system further includes a determination unit for determining the number of mobile terminals existing in a predetermined space, and has a plurality of users. It may be stored in association with the user's terminal information. Then, when the control unit detects that the sleep preparation detection unit is in the sleep preparation state and the number of mobile terminals determined by the determination unit is a plurality, the control unit controls ventilation by the ventilation device as follows. Is also good. That is, in the control unit, the carbon dioxide concentration acquired by the concentration acquisition unit is stored in the concentration storage unit, and the sleep concentration information corresponding to each of the plurality of terminal information indicating each of the plurality of mobile terminals determined by the determination unit is indicated. Ventilation by a ventilation device may be controlled so as to approach the maximum or average carbon dioxide concentration among the carbon dioxide concentrations at the time of falling asleep.
  • the control unit controls the carbon dioxide concentration at the time of falling asleep, which is suitable for all users even when there are a plurality of users carrying mobile terminals in the same space. Therefore, the ventilation system according to the present disclosure can make the carbon dioxide concentration in the space where a plurality of users exist to be suitable for the sleep preparation state of all the users existing there.
  • control unit changes the first threshold value based on the carbon dioxide concentration at sleep onset indicated by the sleep-onset concentration information stored in the concentration storage unit, and controls ventilation by the ventilation device based on the changed first threshold value. It may be configured as.
  • the ventilation system according to the present disclosure changes the carbon dioxide concentration suitable for falling asleep in the predetermined space to the carbon dioxide concentration at the time of falling asleep of the user who sleeps in the predetermined space. Therefore, the ventilation system according to the present disclosure can set the carbon dioxide concentration when the user is in a sleep ready state in a predetermined space to a carbon dioxide concentration more suitable for the user's sleep prepared state.
  • This disclosure is useful as a ventilation system that ventilates a predetermined space.

Abstract

A central air conditioning system as an example of a ventilation system according to the present disclosure comprises ventilation devices (3-6), a carbon dioxide measurement unit (101a), a sleep preparation sensing unit (320), and a control unit (200). The ventilation devices (3-6) are provided to perform ventilation of a predetermined space. The carbon dioxide measurement unit (101a) measures the carbon dioxide concentration in the predetermined space. The sleep preparation sensing unit (320) senses that a user in the predetermined space is in a sleep preparation state. And, the control unit (200) controls ventilation provided by the ventilation devices (3-6) on the basis of the result of sensing by the sleep preparation sensing unit (320) and the carbon dioxide concentration measured by the carbon dioxide measurement unit (101a).

Description

換気システムVentilation system
 本開示は、換気システムに関するものである。 This disclosure relates to a ventilation system.
 従来、室内の二酸化炭素検出部で検出された二酸化炭素濃度によって、換気装置の換気風量を制御する換気システムが知られている(例えば特許文献1)。 Conventionally, a ventilation system that controls the ventilation air volume of a ventilation device by the carbon dioxide concentration detected by the carbon dioxide detection unit in a room is known (for example, Patent Document 1).
 以下、その換気システムについて図8を参照しながら説明する。図8は、従来の換気システム1001の接続概略図である。 Hereinafter, the ventilation system will be described with reference to FIG. FIG. 8 is a schematic connection diagram of the conventional ventilation system 1001.
 図8に示すように、換気システム1001は、換気装置1002と制御ユニット1003と二酸化炭素検出部1004とを備えている。換気装置1002は、室内の空気を入れ替えるための装置である。二酸化炭素検出部1004は、室内の二酸化炭素濃度を検出するものである。制御ユニット1003は、二酸化炭素検出部1004が検出した室内の二酸化炭素濃度によって、室内の二酸化炭素濃度が目標値に到達するように、換気装置1002の換気風量の制御動作を行う。 As shown in FIG. 8, the ventilation system 1001 includes a ventilation device 1002, a control unit 1003, and a carbon dioxide detection unit 1004. The ventilation device 1002 is a device for replacing the air in the room. The carbon dioxide detection unit 1004 detects the carbon dioxide concentration in the room. The control unit 1003 controls the ventilation air volume of the ventilation device 1002 so that the carbon dioxide concentration in the room reaches the target value according to the carbon dioxide concentration in the room detected by the carbon dioxide detection unit 1004.
 これにより、換気システム1001は、室内の二酸化炭素濃度を所定の値以下にすることができ、室内の快適な環境を実現できるとしている。 As a result, the ventilation system 1001 can reduce the carbon dioxide concentration in the room to a predetermined value or less, and realizes a comfortable environment in the room.
特開2013-124788号公報Japanese Unexamined Patent Publication No. 2013-124788
 ところで、ユーザーが起きて活動している状態から眠りに入ろうと準備している睡眠準備状態に入った場合には、二酸化炭素濃度がある程度高い方がユーザーは眠りにつきやすいことが知られている。 By the way, it is known that when the user goes from the state of being awake and active to the state of preparing to fall asleep, the user is more likely to fall asleep if the carbon dioxide concentration is high to some extent.
 上述の換気システム1001のような従来の換気システムの制御では、二酸化炭素濃度が所定の値より大きい場合に換気装置による換気が行われる。よって、ユーザーが睡眠準備状態に入った場合にも、二酸化炭素濃度が所定の値より大きい場合には換気装置による換気が行われてしまい、室内の二酸化炭素濃度が下がってしまう。これにより、従来の換気システムでは、ユーザーの入眠が妨げられるおそれがある。即ち、従来の換気システムは、ユーザーの入眠に適した空間を実現できないおそれがあるという課題を有している。 In the control of a conventional ventilation system such as the above-mentioned ventilation system 1001, ventilation by a ventilation device is performed when the carbon dioxide concentration is larger than a predetermined value. Therefore, even when the user enters the sleep preparation state, if the carbon dioxide concentration is higher than a predetermined value, ventilation is performed by the ventilation device, and the carbon dioxide concentration in the room is lowered. This can prevent the user from falling asleep in conventional ventilation systems. That is, the conventional ventilation system has a problem that it may not be possible to realize a space suitable for the user to fall asleep.
 そこで本開示は、ユーザーの入眠に適した空間の実現に資する換気システムを提供する。 Therefore, this disclosure provides a ventilation system that contributes to the realization of a space suitable for the user to fall asleep.
 そして、本開示に係る換気システムは、換気装置と二酸化炭素測定部と睡眠準備検知部と制御部とを備えるものである。換気装置は、所定空間の換気を行うためのものである。二酸化炭素測定部は、所定空間の二酸化炭素濃度を測定する。睡眠準備検知部は、所定空間内のユーザーが睡眠準備状態であることを検知する。そして、制御部は、睡眠準備検知部の検知結果と、二酸化炭素測定部が測定した二酸化炭素濃度とに基づいて、換気装置による換気を制御する。 The ventilation system according to the present disclosure includes a ventilation device, a carbon dioxide measuring unit, a sleep preparation detection unit, and a control unit. The ventilation device is for ventilating a predetermined space. The carbon dioxide measuring unit measures the carbon dioxide concentration in a predetermined space. The sleep preparation detection unit detects that the user in the predetermined space is in the sleep preparation state. Then, the control unit controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit and the carbon dioxide concentration measured by the carbon dioxide measurement unit.
 本開示に係る換気システムは、ユーザーの入眠に適した空間の実現に資する換気システムを提供することができる。 The ventilation system according to the present disclosure can provide a ventilation system that contributes to the realization of a space suitable for the user to fall asleep.
図1は、本開示に係る換気システムの一例である実施の形態1に係る全館空調システムの接続概略図である。FIG. 1 is a schematic connection diagram of the entire building air conditioning system according to the first embodiment, which is an example of the ventilation system according to the present disclosure. 図2は、本開示の実施の形態1に係るシステムコントローラ及び周辺装置の概略機能ブロック図である。FIG. 2 is a schematic functional block diagram of the system controller and peripheral devices according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1に係る入眠時二酸化炭素濃度テーブルのデータ構成を示す図である。FIG. 3 is a diagram showing a data structure of a carbon dioxide concentration table during sleep according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1に係る換気制御を示すフローチャートである。FIG. 4 is a flowchart showing ventilation control according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態2に係るシステムコントローラ及び周辺装置の概略機能ブロック図である。FIG. 5 is a schematic functional block diagram of the system controller and peripheral devices according to the second embodiment of the present disclosure. 図6は、本開示の実施の形態2に係る入眠時二酸化炭素濃度テーブルのデータ構成を示す図である。FIG. 6 is a diagram showing a data structure of a carbon dioxide concentration table during sleep according to the second embodiment of the present disclosure. 図7は、本開示の実施の形態2に係る換気制御を示すフローチャートである。FIG. 7 is a flowchart showing ventilation control according to the second embodiment of the present disclosure. 図8は、従来の換気システムの接続概略図である。FIG. 8 is a schematic connection diagram of a conventional ventilation system.
 以下、本開示を実施するための形態について図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。よって、以下の実施の形態で示される、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本開示を限定する主旨ではない。従って、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Hereinafter, the mode for carrying out the present disclosure will be described with reference to the drawings. It should be noted that all of the embodiments described below show a preferred specific example of the present disclosure. Therefore, the components, the arrangement positions and connection forms of the components, the steps (processes), the order of the steps, and the like shown in the following embodiments are examples and do not limit the present disclosure. Therefore, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present disclosure are described as arbitrary components. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate explanations will be omitted or simplified.
 (実施の形態1)
 本実施の形態においては、本開示に係る換気システムの一例として全館空調システム20を例に挙げて説明する。まず、全館空調システム20全体の構成について説明する。図1は、本実施の形態に係る全館空調システム20の接続概略図である。
(Embodiment 1)
In the present embodiment, the whole building air conditioning system 20 will be described as an example of the ventilation system according to the present disclosure. First, the configuration of the entire air conditioning system 20 in the entire building will be described. FIG. 1 is a schematic connection diagram of the entire building air conditioning system 20 according to the present embodiment.
 図1に示すように、全館空調システム20は、外気導入ファン4と、排気ファン5(排気ファン5a,5b,5c,5d)と、搬送ファン3(搬送ファン3a,3b,3c,3d)と、循環ファン6(循環ファン6a,6b,6c,6d)と、を含んで構成される。また、全館空調システム20は、居室温度センサー11(居室温度センサー11a,11b,11c,11d)と、居室湿度センサー12(居室湿度センサー12a,12b,12c,12d)と、空調室温度センサー14と、空調室湿度センサー15と、を含んで構成される。また、全館空調システム20は、エアコンディショナー9と、加湿器16と、除湿器17と、入出力端末19と、システムコントローラ10と、二酸化炭素測定部101(二酸化炭素測定部101a,101b,101c)と、を含んで構成される。 As shown in FIG. 1, the whole building air conditioning system 20 includes an outside air introduction fan 4, an exhaust fan 5 ( exhaust fans 5a, 5b, 5c, 5d), and a transfer fan 3 ( conveyor fans 3a, 3b, 3c, 3d). , Circulation fan 6 ( circulation fan 6a, 6b, 6c, 6d) and the like. Further, the whole building air conditioning system 20 includes a living room temperature sensor 11 (living room temperature sensor 11a, 11b, 11c, 11d), a living room humidity sensor 12 (living room humidity sensor 12a, 12b, 12c, 12d), and an air conditioning room temperature sensor 14. , The air-conditioning room humidity sensor 15, and the like. Further, the whole building air conditioning system 20 includes an air conditioner 9, a humidifier 16, a dehumidifier 17, an input / output terminal 19, a system controller 10, and a carbon dioxide measuring unit 101 (carbon dioxide measuring units 101a, 101b, 101c). And are configured to include.
 また、全館空調システム20は、ユーザーが携帯する携帯端末100(携帯端末100a,100b,100c)と連携を行う。なお、本実施の形態では、携帯端末100が二酸化炭素測定部101を備えているものとして説明を行う。 Further, the whole building air conditioning system 20 cooperates with the mobile terminal 100 ( mobile terminals 100a, 100b, 100c) carried by the user. In this embodiment, it is assumed that the mobile terminal 100 includes the carbon dioxide measuring unit 101.
 全館空調システム20は、建物の一例である一般住宅1内に設置される。一般住宅1は、それぞれが本開示に係る所定空間の一例である複数(本実施の形態では4つ)の居室2(居室2a,2b,2c,2d)に加え、居室2と独立した少なくとも1つの空調室18を有している。ここで一般住宅1(住宅)とは、居住者がプライベートな生活を営む場として提供された住居であり、一般的な構成として居室2にはリビング、ダイニング、寝室、個室、子供部屋等が含まれる。また全館空調システム20が提供する居室2にトイレ、浴室、洗面所、脱衣所等を含んでもよい。 The entire building air conditioning system 20 is installed in a general house 1 which is an example of a building. The general housing 1 includes a plurality of (four in the present embodiment) living rooms 2 ( living rooms 2a, 2b, 2c, 2d), each of which is an example of the predetermined space according to the present disclosure, and at least one independent of the living room 2. It has two air conditioning chambers 18. Here, the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 includes a living room, a dining room, a bedroom, a private room, a children's room, and the like. Is done. Further, the living room 2 provided by the air conditioning system 20 in the entire building may include a toilet, a bathroom, a washroom, a dressing room, and the like.
 空調室18では、各居室2より搬送された空気同士が混合される。また、外気導入ファン4により外気が空調室18内に取り込まれ、循環ファン6によって各居室2より搬送された空気と混合される。空調室18の空気は、空調室18内に設けられたエアコンディショナー9、加湿器16及び除湿器17によって温度及び湿度が制御される。すなわち空調室18では、温度及び湿度が調整された、居室2に搬送すべき空気が生成される。空調室18にて温度及び湿度が調整された空気は、搬送ファン3により各居室2に搬送される。ここで、空調室18は、エアコンディショナー9やその他加湿器16、除湿器17などを配置でき、各居室2の空調を制御するための一定の広さを備えた空間を意味するが、居住空間を意図するものではなく、基本的に居住者が滞在する部屋を意味するものではない。 In the air conditioning room 18, the air conveyed from each living room 2 is mixed with each other. Further, the outside air is taken into the air conditioning chamber 18 by the outside air introduction fan 4, and is mixed with the air conveyed from each living room 2 by the circulation fan 6. The temperature and humidity of the air in the air conditioning chamber 18 are controlled by the air conditioner 9, the humidifier 16 and the dehumidifier 17 provided in the air conditioning chamber 18. That is, in the air-conditioned room 18, air to be conveyed to the living room 2 in which the temperature and humidity are adjusted is generated. The air whose temperature and humidity have been adjusted in the air-conditioning chamber 18 is conveyed to each living room 2 by the transfer fan 3. Here, the air conditioning room 18 is a space in which an air conditioner 9, other humidifier 16, a dehumidifier 17, etc. can be arranged and has a certain size for controlling the air conditioning of each living room 2, but it is a living space. It is not intended, and basically does not mean the room in which the resident stays.
 各居室2の空気は、循環ファン6により空調室18へ搬送される他、排気ファン5によって居室2内から一般住宅1外へ外気として排出される。全館空調システム20は、排気ファン5の排気風量を制御して居室2内から外気を排出しつつ、その排気ファン5の排気風量と連動させながら外気導入ファン4の給気風量を制御して居室2内に外気を取り込む。これにより、第1種換気方式の換気が行われる。 The air in each living room 2 is conveyed to the air conditioning room 18 by the circulation fan 6, and is discharged as outside air from the inside of the living room 2 to the outside of the general house 1 by the exhaust fan 5. The whole building air conditioning system 20 controls the exhaust air volume of the exhaust fan 5 to exhaust the outside air from the inside of the living room 2, and controls the supply air volume of the outside air introduction fan 4 while interlocking with the exhaust air volume of the exhaust fan 5. 2 Take in the outside air. As a result, the first-class ventilation system ventilation is performed.
 外気導入ファン4は、一般住宅1の室内に外気を取り込むファンであり、例えば、給気ファンや熱交換気扇の給気機能等が該当する。上述した通り、外気導入ファン4により取り込まれた外気は、空調室18内に導入される。外気導入ファン4の給気風量は、複数段階で設定可能であり、その給気風量は、後述するように、排気ファン5の排気風量に応じて設定される。 The outside air introduction fan 4 is a fan that takes in outside air into the room of a general house 1, and corresponds to, for example, an air supply function of an air supply fan or a heat exchange air fan. As described above, the outside air taken in by the outside air introduction fan 4 is introduced into the air conditioning chamber 18. The air supply air volume of the outside air introduction fan 4 can be set in a plurality of stages, and the air supply air volume is set according to the exhaust air volume of the exhaust fan 5 as described later.
 排気ファン5は、設置されている居室2の空気の一部を例えば排気ダクトを介して外気として排出するファンであり、例えば、天埋換気扇、壁掛換気扇、レンジフード、熱交換気扇の排気機能等が該当する。なお、図1においては排気ファン5に接続された排気ダクトは直接一般住宅1外へ接続されているが、熱交換気扇の排気機能を利用する場合には、排気ダクトはいったん熱交換気扇に接続されてから一般住宅1外へ接続される。つまり排気ダクトを通る空気が熱交換気扇の給気風路を通る空気との間で熱交換されたのち、一般住宅1外へ排出される。図1に示すように、排気ファン5aは居室2aに、排気ファン5bは居室2bに、排気ファン5cは居室2cに、排気ファン5dは居室2dに、それぞれ設けられている。 The exhaust fan 5 is a fan that exhausts a part of the air in the installed living room 2 as outside air through, for example, an exhaust duct. Applies to. In FIG. 1, the exhaust duct connected to the exhaust fan 5 is directly connected to the outside of the general house 1, but when the exhaust function of the heat exchange air fan is used, the exhaust duct is once connected to the heat exchange air fan. After that, it is connected to the outside of the general house 1. That is, the air passing through the exhaust duct is heat-exchanged with the air passing through the air supply air passage of the heat exchange air fan, and then is discharged to the outside of the general house 1. As shown in FIG. 1, the exhaust fan 5a is provided in the living room 2a, the exhaust fan 5b is provided in the living room 2b, the exhaust fan 5c is provided in the living room 2c, and the exhaust fan 5d is provided in the living room 2d.
 各排気ファン5は、それぞれ、その排気風量が複数段階で設定可能に構成されている。通常時は、予め設定された排気風量となるように各排気ファン5はシステムコントローラ10により制御される。そして、ユーザーによる設定や、各種センサー、例えば二酸化炭素測定部101により取得された値に応じて、システムコントローラ10により排気ファン5a~5d毎に排気風量が制御される。 Each exhaust fan 5 is configured so that its exhaust air volume can be set in a plurality of stages. Normally, each exhaust fan 5 is controlled by the system controller 10 so that the exhaust air volume is set in advance. Then, the exhaust air volume is controlled for each of the exhaust fans 5a to 5d by the system controller 10 according to the setting by the user and the value acquired by various sensors, for example, the carbon dioxide measuring unit 101.
 各搬送ファン3は、各居室2に対応して空調室18の例えば壁面に設けられている。具体的には、空調室18の空気は、搬送ファン3aによって搬送ダクトを介して居室2aに搬送され、搬送ファン3bによって搬送ダクトを介して居室2bに搬送される。また、空調室18の空気は、搬送ファン3cによって搬送ダクトを介して居室2cに搬送され、搬送ファン3dによって搬送ダクトを介して居室2dに搬送される。なお、各搬送ファン3と各居室2とを接続する搬送ダクトはそれぞれ独立して設けられる。 Each transport fan 3 is provided on, for example, a wall surface of the air conditioning chamber 18 corresponding to each living room 2. Specifically, the air in the air conditioning chamber 18 is conveyed to the living room 2a by the transport fan 3a via the transport duct, and is conveyed to the living room 2b via the transport duct by the transport fan 3b. Further, the air in the air conditioning chamber 18 is conveyed to the living room 2c by the transport fan 3c via the transport duct, and is conveyed to the living room 2d via the transport duct by the transport fan 3d. The transfer ducts connecting each transfer fan 3 and each living room 2 are independently provided.
 循環ファン6aは居室2aに、循環ファン6bは居室2bに、循環ファン6cは居室2cに、循環ファン6dは居室2dに、それぞれ設けられている。各居室2の空気の一部は、対応する循環ファン6によって、循環ダクトを介して空調室18に搬送される。なお、空調室18と各居室2とを接続する循環ダクトはそれぞれ独立して設けられてもよいが、循環ダクトの一部である複数の支流ダクトを途中より合流させて1つの循環ダクトに統合した後、統合後の1つの循環ダクトを空調室18に接続してもよい。 The circulation fan 6a is provided in the living room 2a, the circulation fan 6b is provided in the living room 2b, the circulation fan 6c is provided in the living room 2c, and the circulation fan 6d is provided in the living room 2d. A part of the air in each living room 2 is conveyed to the air conditioning room 18 through the circulation duct by the corresponding circulation fan 6. The circulation ducts connecting the air conditioning chamber 18 and each living room 2 may be provided independently, but a plurality of tributary ducts that are a part of the circulation ducts are merged from the middle and integrated into one circulation duct. After that, one circulation duct after integration may be connected to the air conditioning chamber 18.
 エアコンディショナー9は、空調室18に設置された空調機であり、空調室18の空調を制御する。エアコンディショナー9は、空調室18の空気の温度が設定された温度(以下、「空調室目標温度」ともいう)となるように、空調室18の空気を冷却又は加熱する。 The air conditioner 9 is an air conditioner installed in the air conditioner room 18 and controls the air conditioning in the air conditioner room 18. The air conditioner 9 cools or heats the air in the air conditioning chamber 18 so that the temperature of the air in the air conditioning chamber 18 becomes a set temperature (hereinafter, also referred to as “target temperature in the air conditioning chamber”).
 加湿器16は、空調室18に設置され、空調室18の空気の湿度が設定された湿度(以下、「空調室目標湿度」ともいう)よりも低い場合にその湿度が空調室目標湿度となるように、空調室18の空気を加湿する。なお、加湿器16がエアコンディショナー9に内蔵されている場合もあるが、加湿器16は、複数の居室2に対応するだけの加湿能力を得るために、エアコンディショナー9とは独立した加湿器16を備えるのが望ましい。 The humidifier 16 is installed in the air-conditioning chamber 18, and when the humidity of the air in the air-conditioning chamber 18 is lower than the set humidity (hereinafter, also referred to as “target humidity in the air-conditioning room”), the humidity becomes the target humidity in the air-conditioning room. As described above, the air in the air conditioning chamber 18 is humidified. Although the humidifier 16 may be built in the air conditioner 9, the humidifier 16 is independent of the air conditioner 9 in order to obtain a humidifying capacity sufficient for a plurality of living rooms 2. It is desirable to have.
 除湿器17は、空調室18に設置され、空調室18の空気の湿度が空調室目標湿度よりも高い場合にその湿度が空調室目標湿度となるように、空調室18の空気を除湿する。なお、除湿器17がエアコンディショナー9に内蔵されている場合もあるが、除湿器17は、複数の居室2に対応するだけの除湿能力を得るために、エアコンディショナー9とは独立した除湿器17を備えるのが望ましい。 The dehumidifier 17 is installed in the air conditioning room 18 and dehumidifies the air in the air conditioning room 18 so that when the humidity of the air in the air conditioning room 18 is higher than the target humidity in the air conditioning room, the humidity becomes the target humidity in the air conditioning room 18. Although the dehumidifier 17 may be built in the air conditioner 9, the dehumidifier 17 is independent of the air conditioner 9 in order to obtain a dehumidifying capacity sufficient for a plurality of living rooms 2. It is desirable to have.
 各居室温度センサー11は、対応する居室2に設けられている。具体的には、居室温度センサー11aは、居室2aに設けられ、居室温度センサー11bは、居室2bに設けられ、居室温度センサー11cは、居室2cに設けられ、居室温度センサー11dは、居室2dに設けられている。居室温度センサー11は、対応する居室2a~2dそれぞれの室内温度を取得して、システムコントローラ10に送信するセンサーである。 Each room temperature sensor 11 is provided in the corresponding room 2. Specifically, the living room temperature sensor 11a is provided in the living room 2a, the living room temperature sensor 11b is provided in the living room 2b, the living room temperature sensor 11c is provided in the living room 2c, and the living room temperature sensor 11d is provided in the living room 2d. It is provided. The living room temperature sensor 11 is a sensor that acquires the room temperature of each of the corresponding living rooms 2a to 2d and transmits it to the system controller 10.
 各居室湿度センサー12は、対応する居室2に設けられている。具体的には、居室湿度センサー12aは、居室2aに設けられ、居室湿度センサー12bは、居室2bに設けられ、居室湿度センサー12cは、居室2cに設けられ、居室湿度センサー12dは、居室2dに設けられている。居室湿度センサー12は、対応する居室2a~2dそれぞれの室内湿度(居室湿度)を取得して、システムコントローラ10に送信するセンサーである。 Each room humidity sensor 12 is provided in the corresponding room 2. Specifically, the living room humidity sensor 12a is provided in the living room 2a, the living room humidity sensor 12b is provided in the living room 2b, the living room humidity sensor 12c is provided in the living room 2c, and the living room humidity sensor 12d is provided in the living room 2d. It is provided. The living room humidity sensor 12 is a sensor that acquires the indoor humidity (living room humidity) of each of the corresponding living rooms 2a to 2d and transmits it to the system controller 10.
 空調室温度センサー14は、空調室18の空気の温度を取得して、システムコントローラ10に送信するセンサーである。なお、空調室温度センサー14は、エアコンディショナー9に内蔵されている場合もあるが、エアコンディショナー9に内蔵されている場合にはエアコンディショナー9周囲(例えば給気口付近)の情報しか得られない。空調室18は、上述のように外気と各居室2から搬送された空気とが混合されるため、空調室温度センサー14は、空調室18全体としての情報が得られるように、エアコンディショナー9とは独立して備えるのが望ましい。 The air conditioning room temperature sensor 14 is a sensor that acquires the temperature of the air in the air conditioning room 18 and transmits it to the system controller 10. The air conditioning chamber temperature sensor 14 may be built in the air conditioner 9, but when it is built in the air conditioner 9, only information around the air conditioner 9 (for example, near the air supply port) can be obtained. .. Since the air-conditioning chamber 18 mixes the outside air with the air conveyed from each living room 2 as described above, the air-conditioning chamber temperature sensor 14 together with the air-conditioning conditioner 9 so as to obtain information on the air-conditioning chamber 18 as a whole. It is desirable to prepare independently.
 空調室湿度センサー15は、空調室18の空気の湿度を取得して、システムコントローラ10に送信するセンサーである。なお、空調室湿度センサー15も空調室温度センサー14と同様の理由で、空調室18全体としての情報が得られるように、エアコンディショナー9とは独立して備えるのが望ましい。 The air-conditioning room humidity sensor 15 is a sensor that acquires the humidity of the air in the air-conditioning room 18 and transmits it to the system controller 10. For the same reason as the air conditioning room temperature sensor 14, it is desirable that the air conditioning room humidity sensor 15 be provided independently of the air conditioner conditioner 9 so that information on the air conditioning room 18 as a whole can be obtained.
 携帯端末100は、二酸化炭素測定部101を備える。具体的には、二酸化炭素測定部101aは携帯端末100aに設けられ、二酸化炭素測定部101bは携帯端末100bに設けられ、二酸化炭素測定部101cは携帯端末100cに設けられている。携帯端末100は、ユーザーによって携帯される端末であり、ユーザーが常時携帯することでユーザーの移動とともに移動可能な情報端末である。本実施の形態では、複数のユーザーが存在する場合は、各々のユーザーが携帯端末100を1台ずつ所持しているものとして説明する。携帯端末100とは、例えば携帯電話、スマートフォン、ウェアラブル端末等である。またウェアラブル端末とは、身につけて用いる電子機器の端末であり、例えば腕時計型の端末等が該当する。 The mobile terminal 100 includes a carbon dioxide measuring unit 101. Specifically, the carbon dioxide measuring unit 101a is provided in the mobile terminal 100a, the carbon dioxide measuring unit 101b is provided in the mobile terminal 100b, and the carbon dioxide measuring unit 101c is provided in the mobile terminal 100c. The mobile terminal 100 is a terminal carried by a user, and is an information terminal that can be moved along with the movement of the user by being carried by the user at all times. In the present embodiment, when there are a plurality of users, it is assumed that each user has one mobile terminal 100. The mobile terminal 100 is, for example, a mobile phone, a smartphone, a wearable terminal, or the like. The wearable terminal is a terminal of an electronic device worn and used, and corresponds to, for example, a wristwatch-type terminal.
 二酸化炭素測定部101は、二酸化炭素測定部101の周囲の二酸化炭素濃度を測定するもので、例えば二酸化炭素濃度に応じて出力電圧値が変化する二酸化炭素センサーである。すなわち、全館空調システム20は、居室2の二酸化炭素濃度を測定する二酸化炭素測定部101を備える。二酸化炭素測定部101は、対応する携帯端末100の周囲の二酸化炭素濃度、すなわち携帯端末100が存在する居室2(本実施の形態では居室2c、2d)の二酸化炭素濃度を取得する。そして、二酸化炭素測定部101は、対応する携帯端末100を介してシステムコントローラ10に取得した二酸化炭素濃度を送信する。 The carbon dioxide measuring unit 101 measures the carbon dioxide concentration around the carbon dioxide measuring unit 101, and is, for example, a carbon dioxide sensor whose output voltage value changes according to the carbon dioxide concentration. That is, the whole building air conditioning system 20 includes a carbon dioxide measuring unit 101 that measures the carbon dioxide concentration of the living room 2. The carbon dioxide measuring unit 101 acquires the carbon dioxide concentration around the corresponding mobile terminal 100, that is, the carbon dioxide concentration in the living room 2 ( living rooms 2c and 2d in the present embodiment) in which the mobile terminal 100 is present. Then, the carbon dioxide measuring unit 101 transmits the acquired carbon dioxide concentration to the system controller 10 via the corresponding mobile terminal 100.
 システムコントローラ10は、一般住宅1に設けられた居室2の空調を制御するものであり、全館空調システム20全体を制御するコントローラである。システムコントローラ10は、各制御対象と無線通信により通信可能に接続される。制御対象には、外気導入ファン4、排気ファン5、搬送ファン3、循環ファン6、居室温度センサー11、居室湿度センサー12、空調室温度センサー14、空調室湿度センサー15、エアコンディショナー9、加湿器16、除湿器17及び携帯端末100が挙げられる。 The system controller 10 controls the air conditioning of the living room 2 provided in the general house 1, and is a controller that controls the entire air conditioning system 20 in the entire building. The system controller 10 is communicably connected to each control target by wireless communication. The control targets include an outside air introduction fan 4, an exhaust fan 5, a conveyor fan 3, a circulation fan 6, a living room temperature sensor 11, a living room humidity sensor 12, an air conditioning room temperature sensor 14, an air conditioning room humidity sensor 15, an air conditioner conditioner 9, and a humidifier. 16, the dehumidifier 17, and the portable terminal 100 can be mentioned.
 システムコントローラ10は、排気ファン5の排気風量に応じた風量となるように、外気導入ファン4の給気風量を設定する等、外気導入ファン4と排気ファン5とを連動させて制御する。これにより、一般住宅1に対して第1種換気方式による換気が行われる。 The system controller 10 controls the outside air introduction fan 4 and the exhaust fan 5 in conjunction with each other, such as setting the supply air volume of the outside air introduction fan 4 so that the air volume corresponds to the exhaust air volume of the exhaust fan 5. As a result, the general house 1 is ventilated by the first-class ventilation method.
 また、システムコントローラ10は、空調室温度センサー14及び空調室湿度センサー15により取得される空調室18の空気の温度及び湿度に基づいて、空調機としてのエアコンディショナー9、加湿器16、除湿器17を制御する。具体的には、システムコントローラ10は、空調室18の温度及び湿度が、空調室18に設定された空調室目標温度及び空調室目標湿度となるように、エアコンディショナー9、加湿器16、除湿器17を制御する。 Further, the system controller 10 has an air conditioner 9, a humidifier 16, and a dehumidifier 17 as an air conditioner based on the temperature and humidity of the air in the air conditioner room 18 acquired by the air conditioner room temperature sensor 14 and the air conditioner room humidity sensor 15. To control. Specifically, the system controller 10 has an air conditioner 9, a humidifier 16, and a dehumidifier so that the temperature and humidity of the air conditioner room 18 become the target temperature of the air conditioner room and the target humidity of the air conditioner room set in the air conditioner room 18. 17 is controlled.
 また、システムコントローラ10は、居室温度センサー11及び居室湿度センサー12により取得された各居室2それぞれの室内温度及び室内湿度に基づいて、搬送ファン3の風量や循環ファン6の風量を設定する。具体的には、システムコントローラ10は、各居室2それぞれの室内温度及び室内湿度が居室2毎に設定された温度(以下、「居室目標温度」ともいう)及び湿度(以下、「居室目標湿度」ともいう)となるように、搬送ファン3の風量や循環ファン6の風量を設定する。 Further, the system controller 10 sets the air volume of the transport fan 3 and the air volume of the circulation fan 6 based on the room temperature and the room humidity of each room 2 acquired by the room temperature sensor 11 and the room humidity sensor 12. Specifically, in the system controller 10, the room temperature and humidity of each room 2 are set for each room 2 (hereinafter, also referred to as “room target temperature”) and humidity (hereinafter, “room target humidity””. The air volume of the transport fan 3 and the air volume of the circulation fan 6 are set so as to be (also referred to as).
 これにより、空調室18にて空調された空気が、各搬送ファン3に設定された風量で各居室2に搬送され、また、各居室2の空気が、各循環ファン6に設定された風量で空調室18に搬送される。よって、各居室2の室内温度及び室内湿度が、居室目標温度及び居室目標湿度となるように制御される。 As a result, the air conditioned in the air-conditioned room 18 is transported to each living room 2 with the air volume set in each transport fan 3, and the air in each living room 2 is transported to each living room 2 with the air volume set in each circulation fan 6. It is transported to the air conditioning chamber 18. Therefore, the room temperature and the room humidity of each room 2 are controlled to be the room target temperature and the room target humidity.
 なお、本実施の形態では、空調室18の温度及び湿度の両方を制御するものとして説明したが、空調室18の温度及び湿度のいずれか一方のみを制御するものとしてもよい。また、各居室2の室内温度及び室内湿度の両方を制御するものとして説明したが、各居室2の室内温度及び室内湿度いずれか一方のみを制御するものとしてもよい。 In the present embodiment, both the temperature and the humidity of the air conditioning chamber 18 are controlled, but only one of the temperature and the humidity of the air conditioning chamber 18 may be controlled. Further, although the description has been made assuming that both the indoor temperature and the indoor humidity of each living room 2 are controlled, only one of the indoor temperature and the indoor humidity of each living room 2 may be controlled.
 また、システムコントローラ10は、二酸化炭素測定部101により取得される、携帯端末100が存在する居室2(本実施の形態では居室2c、2d)の二酸化炭素濃度に基づいて、換気装置を制御する。ここで、本開示に係る換気装置の一例として、本実施の形態に係る換気装置は、搬送ファン3(搬送ファン3a~3d)、循環ファン6(循環ファン6a~6d)、排気ファン5(排気ファン5a~5d)及び外気導入ファン4であるものとして説明する。すなわち、全館空調システム20は、各居室2の換気を行うための換気装置として、搬送ファン3、循環ファン6、排気ファン5及び外気導入ファン4を備える。システムコントローラ10は、居室2の二酸化炭素濃度が設定された二酸化炭素濃度(以下、「目標二酸化炭素濃度」ともいう)となるように、換気装置を制御する。詳細な制御内容については後述する。 Further, the system controller 10 controls the ventilation device based on the carbon dioxide concentration of the living room 2 ( living rooms 2c and 2d in the present embodiment) in which the mobile terminal 100 is present, which is acquired by the carbon dioxide measuring unit 101. Here, as an example of the ventilation device according to the present disclosure, the ventilation device according to the present embodiment includes a transfer fan 3 (conveyor fans 3a to 3d), a circulation fan 6 (circulation fans 6a to 6d), and an exhaust fan 5 (exhaust). It will be described as assuming that the fans 5a to 5d) and the outside air introduction fan 4. That is, the whole building air conditioning system 20 includes a transport fan 3, a circulation fan 6, an exhaust fan 5, and an outside air introduction fan 4 as ventilation devices for ventilating each living room 2. The system controller 10 controls the ventilation device so that the carbon dioxide concentration in the living room 2 becomes the set carbon dioxide concentration (hereinafter, also referred to as “target carbon dioxide concentration”). The detailed control contents will be described later.
 ここで、システムコントローラ10と、上述した制御対象とが、無線通信で接続されることにより、複雑な配線工事を不要とすることができる。ただし、これらの制御対象の少なくとも一部を、システムコントローラ10と有線通信により通信可能に構成してもよい。 Here, by connecting the system controller 10 and the above-mentioned control target by wireless communication, complicated wiring work can be eliminated. However, at least a part of these control targets may be configured to be communicable with the system controller 10 by wire communication.
 入出力端末19は、システムコントローラ10と無線通信により通信可能に接続され、全館空調システム20を構築するうえで必要な情報の入力を受け付けてシステムコントローラ10に記憶させる。また、入出力端末19は、全館空調システム20の状態をシステムコントローラ10から取得して表示する。入出力端末19は、携帯電話、スマートフォン、タブレットといった携帯情報端末が例として挙げられる。 The input / output terminal 19 is communicably connected to the system controller 10 by wireless communication, receives input of information necessary for constructing the whole building air conditioning system 20, and stores it in the system controller 10. Further, the input / output terminal 19 acquires the state of the entire building air conditioning system 20 from the system controller 10 and displays it. Examples of the input / output terminal 19 include mobile information terminals such as mobile phones, smartphones, and tablets.
 なお、入出力端末19は、必ずしも無線通信によりシステムコントローラ10と接続される必要はなく、有線通信により通信可能にシステムコントローラ10と接続されてもよい。この場合、入出力端末19は、例えば、壁掛のリモートコントローラにより実現されてもよい。また、入出力端末19とシステムコントローラ10が一体となった構成でも良い。 The input / output terminal 19 does not necessarily have to be connected to the system controller 10 by wireless communication, and may be connected to the system controller 10 by wire communication. In this case, the input / output terminal 19 may be realized by, for example, a wall-mounted remote controller. Further, the input / output terminal 19 and the system controller 10 may be integrated.
 本実施の形態では居室2に1台の携帯端末100のみが存在する場合について説明を行う。具体的には、図1に記載されている居室2cに携帯端末100aのみが存在している場合である。 In the present embodiment, a case where only one mobile terminal 100 exists in the living room 2 will be described. Specifically, it is a case where only the mobile terminal 100a is present in the living room 2c shown in FIG.
 次に、本実施の形態に係るシステムコントローラ10について詳細に説明する。まず、図2を参照して、本実施の形態に係るシステムコントローラ10の各機能について説明する。図2はシステムコントローラ10及び周辺装置の概略機能ブロック図である。 Next, the system controller 10 according to the present embodiment will be described in detail. First, with reference to FIG. 2, each function of the system controller 10 according to the present embodiment will be described. FIG. 2 is a schematic functional block diagram of the system controller 10 and peripheral devices.
 システムコントローラ10は、濃度取得部310と、睡眠準備検知部320と、濃度記憶部300と、制御部200と、バイタルデータ取得部330と、睡眠状態判定部340と、判定部350と、を備える。 The system controller 10 includes a concentration acquisition unit 310, a sleep preparation detection unit 320, a concentration storage unit 300, a control unit 200, a vital data acquisition unit 330, a sleep state determination unit 340, and a determination unit 350. ..
 濃度取得部310は、二酸化炭素測定部101が測定した二酸化炭素濃度を取得する。本実施の形態では、上述のように二酸化炭素測定部101は携帯端末100に設けられており、濃度取得部310は、携帯端末100が存在する居室2の二酸化炭素濃度を取得するともいえる。 The concentration acquisition unit 310 acquires the carbon dioxide concentration measured by the carbon dioxide measurement unit 101. In the present embodiment, as described above, the carbon dioxide measuring unit 101 is provided in the mobile terminal 100, and the concentration acquisition unit 310 can be said to acquire the carbon dioxide concentration in the living room 2 in which the mobile terminal 100 is located.
 バイタルデータ取得部330は、ユーザーのバイタルデータを取得する。ここでバイタルデータとは、ユーザーの生命に関する基本的な情報であり、本実施の形態ではユーザーの血圧、心拍数、呼吸及び体動のうち、少なくとも1つ以上のデータと定義する。ここで、呼吸とは単位時間あたりに行われる呼吸の数や呼吸の深さ等である。また、体動とは身体の動きの大きさである。バイタルデータ取得部330によるバイタルデータの取得は、例えばバイタルセンサー等を介して行う。 The vital data acquisition unit 330 acquires the user's vital data. Here, the vital data is basic information about the life of the user, and is defined as at least one or more data of the user's blood pressure, heart rate, respiration, and body movement in the present embodiment. Here, the breathing is the number of breaths performed per unit time, the depth of breathing, and the like. The body movement is the magnitude of the movement of the body. The vital data acquisition unit 330 acquires vital data via, for example, a vital sensor or the like.
 睡眠状態判定部340は、バイタルデータ取得部330からバイタルデータを取得し、取得したバイタルデータに基づいて、ユーザーが、活動状態、睡眠準備状態、入眠状態、睡眠状態及び覚醒状態のどの状態かを判定する。 The sleep state determination unit 340 acquires vital data from the vital data acquisition unit 330, and based on the acquired vital data, the user determines whether the user is in an active state, a sleep preparation state, a sleep onset state, a sleep state, or a wakefulness state. judge.
 ここで、ユーザーの各状態について説明する。 Here, each state of the user will be explained.
 活動状態とは、ユーザーが起きて活動している状態をいい、ユーザーが運動、食事、仕事、勉強などをしていることが一例として挙げられる。 The active state means the state in which the user is awake and active, and one example is that the user is exercising, eating, working, studying, etc.
 睡眠準備状態とは、ユーザーが活動状態から眠りに入ろうと準備している状態をいい、ユーザーが眠りに至るために布団に入ることが一例として挙げられる。睡眠準備状態では、ユーザーは、意識がまだ覚醒しており、眠りには至っていない。 The sleep preparation state is a state in which the user is preparing to fall asleep from an active state, and one example is that the user enters a futon to fall asleep. In the sleep-ready state, the user is still awake and has not fallen asleep.
 入眠状態とは、ユーザーが睡眠準備状態から眠りにつく状態をいう。 The sleep-onset state is a state in which the user falls asleep from the sleep-prepared state.
 睡眠状態とは、入眠状態から眠りが継続している状態をいう。つまり、睡眠状態では、ユーザーは意識を喪失して、活動を休止している。 The sleep state is a state in which sleep continues from the state of falling asleep. That is, in the sleep state, the user loses consciousness and is dormant.
 覚醒状態とは、睡眠状態から目覚めた状態をいい、ユーザーが朝起きることが一例として挙げられる。 Wakefulness refers to the state of waking up from a sleeping state, and one example is when a user wakes up in the morning.
 ユーザーは、まず活動状態から睡眠準備状態に移行し、その後入眠状態に移行し、さらに睡眠状態に移行し、最後に覚醒状態となる。 The user first shifts from the active state to the sleep ready state, then to the sleep onset state, then to the sleep state, and finally to the awake state.
 ユーザーの状態判定例としては、入眠時には心拍数が低くなることが知られており、これにより入眠状態が判定できる。また、睡眠準備状態は入眠状態に入る前の心拍数を元に判定することができる。上記は判定方法の一例であり、他にも血圧、呼吸、体動や心拍数も含めたこれらの組み合わせによってユーザーの状態を判定する等、ユーザーの状態が判定できれば良い。 As an example of the user's state determination, it is known that the heart rate becomes low when falling asleep, and the sleep onset state can be determined by this. In addition, the sleep preparation state can be determined based on the heart rate before entering the sleep onset state. The above is an example of a determination method, and it is sufficient if the user's condition can be determined, such as determining the user's condition by a combination of these including blood pressure, respiration, body movement, and heart rate.
 睡眠準備検知部320は、居室2内のユーザーが睡眠準備状態であることを検知する。つまり、睡眠状態判定部340が、バイタルデータ取得部330から取得したバイタルデータを用いて、ユーザーが睡眠準備状態であると判定した場合に、睡眠準備検知部320は、ユーザーが睡眠準備状態であることを検知する。すなわち、睡眠準備検知部320は、バイタルデータ取得部330から取得したバイタルデータに基づいて、ユーザーが睡眠準備状態であることを検知する。 The sleep preparation detection unit 320 detects that the user in the living room 2 is in the sleep preparation state. That is, when the sleep state determination unit 340 determines that the user is in the sleep preparation state using the vital data acquired from the vital data acquisition unit 330, the sleep preparation detection unit 320 is in the sleep preparation state. Detect that. That is, the sleep preparation detection unit 320 detects that the user is in the sleep preparation state based on the vital data acquired from the vital data acquisition unit 330.
 濃度記憶部300は、制御部200が居室2の二酸化炭素濃度がどの程度か判定する際に使われる、濃度比較のための二酸化炭素濃度を示す情報を記憶する、いわゆるメモリである。濃度記憶部300は、具体的には、本実施の形態では第一閾値と第二閾値と第三閾値と携帯端末100を所持するユーザーの入眠時における二酸化炭素濃度を示す入眠時濃度情報等を記憶する。なお、第一閾値及び第二閾値は、居室2毎に存在し、それぞれ濃度記憶部300に記憶されている。ただし、本実施の形態では、上述の通り居室2cに携帯端末100aのみが存在する場合を例に説明している。そのため、特に断りがない限り、本実施の形態では、居室2cの第一閾値、居室2cの第二閾値を、それぞれ単に第一閾値、第二閾値と記載している。 The concentration storage unit 300 is a so-called memory that stores information indicating the carbon dioxide concentration for concentration comparison, which is used by the control unit 200 when determining the carbon dioxide concentration in the living room 2. Specifically, in the present embodiment, the concentration storage unit 300 stores the first threshold value, the second threshold value, the third threshold value, the sleep onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user possessing the mobile terminal 100, and the like. Remember. The first threshold value and the second threshold value exist in each living room 2 and are stored in the concentration storage unit 300, respectively. However, in the present embodiment, as described above, the case where only the mobile terminal 100a is present in the living room 2c is described as an example. Therefore, unless otherwise specified, in the present embodiment, the first threshold value of the living room 2c and the second threshold value of the living room 2c are simply described as the first threshold value and the second threshold value, respectively.
 第一閾値は、ユーザーの入眠に適した二酸化炭素濃度を示す値であり、例えばユーザーが過去入眠した時の二酸化炭素濃度を示す値である。また、第一閾値は、ユーザーが入眠すると予想される二酸化炭素濃度として、実験的に取得した値であってもよく、任意に設定可能である。なお、一般的に活動状態時の二酸化炭素濃度よりもある程度高い二酸化炭素濃度の方が、ユーザーは睡眠準備状態から入眠状態に移行しやすいとされている。 The first threshold value is a value indicating a carbon dioxide concentration suitable for the user to fall asleep, for example, a value indicating the carbon dioxide concentration when the user has fallen asleep in the past. Further, the first threshold value may be an experimentally acquired value as the carbon dioxide concentration expected to cause the user to fall asleep, and can be arbitrarily set. In general, it is said that a user is more likely to shift from a sleep-prepared state to a sleep-onset state when the carbon dioxide concentration is higher to some extent than the carbon dioxide concentration in the active state.
 第二閾値は、第一閾値よりも大きい値であり、人体に有害とされる二酸化炭素濃度よりも低い値である。人体に有害とされる二酸化炭素濃度は、例えば実験的に取得した値や研究論文などで公表されている値である。つまり、第一閾値と第二閾値とで示される二酸化炭素濃度の範囲は、入眠に適しているとされる二酸化炭素濃度の範囲内とすることができる。すなわち、第二閾値は、入眠に適しているとされると定義される二酸化炭素濃度の範囲内の値かつ人体に有害とされる二酸化炭素濃度よりも低い値である。 The second threshold value is a value larger than the first threshold value and lower than the carbon dioxide concentration considered to be harmful to the human body. The carbon dioxide concentration considered to be harmful to the human body is, for example, a value obtained experimentally or a value published in a research paper. That is, the range of the carbon dioxide concentration indicated by the first threshold value and the second threshold value can be within the range of the carbon dioxide concentration considered to be suitable for falling asleep. That is, the second threshold value is a value within the range of the carbon dioxide concentration defined as suitable for falling asleep and a value lower than the carbon dioxide concentration considered to be harmful to the human body.
 第三閾値は、第一閾値よりも小さい値であり、ユーザーの活動状態に適した二酸化炭素濃度を示す値である。例えば、ビルや百貨店などの建築物において、衛生的な環境の確保を目的として定められた二酸化炭素濃度基準値である1000ppm等である。 The third threshold value is a value smaller than the first threshold value and indicates a carbon dioxide concentration suitable for the activity state of the user. For example, in buildings such as buildings and department stores, the carbon dioxide concentration standard value is 1000 ppm, which is set for the purpose of ensuring a hygienic environment.
 携帯端末100に対応する入眠時における二酸化炭素濃度について、図3を用いて説明する。図3は、濃度記憶部300が記憶する入眠時二酸化炭素濃度テーブル301のデータ構成を示す図である。なお、本実施の形態では、ユーザーAが、携帯端末100aを携帯しているものとする。 The carbon dioxide concentration at the time of falling asleep corresponding to the mobile terminal 100 will be described with reference to FIG. FIG. 3 is a diagram showing a data structure of the carbon dioxide concentration table 301 during sleep onset stored by the concentration storage unit 300. In this embodiment, it is assumed that the user A carries the mobile terminal 100a.
 図3に示すように、入眠時二酸化炭素濃度テーブル301は、ユーザー毎に、端末情報302と入眠時濃度情報303とを対応付けて記憶している。ここで、端末情報302は、ユーザーが所持する携帯端末100を示す情報であり、入眠時濃度情報303は、ユーザーの入眠時における二酸化炭素濃度を示す情報である。同図では、一例として、入眠時二酸化炭素濃度テーブル301は、端末情報302が「携帯端末100a」であり、入眠時濃度情報303が「CO2a」であることを示している。すなわち、同図の例では、「携帯端末100a」を所持するユーザーAの入眠時における二酸化炭素濃度は「CO2a」であることを示している。 As shown in FIG. 3, the sleep-onset carbon dioxide concentration table 301 stores the terminal information 302 and the sleep-onset concentration information 303 in association with each other for each user. Here, the terminal information 302 is information indicating the mobile terminal 100 possessed by the user, and the sleep onset concentration information 303 is information indicating the carbon dioxide concentration when the user falls asleep. In the figure, as an example, the sleep-onset carbon dioxide concentration table 301 shows that the terminal information 302 is the “portable terminal 100a” and the sleep-onset concentration information 303 is “CO2a”. That is, in the example of the figure, it is shown that the carbon dioxide concentration at the time of falling asleep of the user A who possesses the "portable terminal 100a" is "CO2a".
 入眠時二酸化炭素濃度テーブル301には、以下のようにしてデータが登録される。すなわち、制御部200は、ユーザーAが過去入眠した時に二酸化炭素測定部101aが測定した居室2の二酸化炭素濃度CO2aを濃度取得部310から取得し、濃度記憶部300に記憶する。即ち、二酸化炭素測定部101aに対応する端末情報「携帯端末100a」と対応付けて、入眠時濃度情報「CO2a」を入眠時二酸化炭素濃度テーブル301に登録する。これにより濃度記憶部300は、携帯端末100aに対応する入眠時における二酸化炭素濃度CO2aを記憶する。 Data is registered in the carbon dioxide concentration table 301 when falling asleep as follows. That is, the control unit 200 acquires the carbon dioxide concentration CO2a of the living room 2 measured by the carbon dioxide measurement unit 101a when the user A has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2a" is registered in the sleep-onset carbon dioxide concentration table 301 in association with the terminal information "portable terminal 100a" corresponding to the carbon dioxide measurement unit 101a. As a result, the concentration storage unit 300 stores the carbon dioxide concentration CO2a at the time of falling asleep corresponding to the mobile terminal 100a.
 つまり、言い換えると濃度記憶部300は、ユーザーAの入眠時における二酸化炭素濃度を示す入眠時濃度情報を記憶しているということである。 That is, in other words, the concentration storage unit 300 stores the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user A.
 判定部350は、携帯端末100が存在する居室2を判定する。判定方法としては、例えば、排気ファン5a~5dが携帯端末100から受信する電波強度で判定する。本実施の形態では居室2cに携帯端末100aが存在するので、その判定方法について簡単に説明する。 The determination unit 350 determines the living room 2 in which the mobile terminal 100 is located. As a determination method, for example, the determination is made based on the radio wave intensity received from the mobile terminal 100 by the exhaust fans 5a to 5d. In the present embodiment, since the mobile terminal 100a exists in the living room 2c, the determination method thereof will be briefly described.
 まず、各居室2の排気ファン5a~5dはそれぞれ携帯端末100aから発生する電波強度を取得してシステムコントローラ10に送信する。そして、判定部350は各居室2の排気ファン5a~5dから取得した携帯端末100aからの電波強度を比較し、一番強い電波強度を受信した排気ファン5が存在する居室2に携帯端末100aが存在すると判定する。 First, the exhaust fans 5a to 5d of each living room 2 acquire the radio wave strength generated from the mobile terminal 100a and transmit it to the system controller 10. Then, the determination unit 350 compares the radio wave strengths from the mobile terminals 100a acquired from the exhaust fans 5a to 5d of each living room 2, and the mobile terminal 100a is placed in the living room 2 where the exhaust fan 5 that has received the strongest radio wave strength exists. Determined to exist.
 本実施の形態では、排気ファン5a~5dが取得する携帯端末100aからの電波強度は、排気ファン5cが一番強くなるため、携帯端末100aは居室2cに存在すると判定される。また、排気ファン5ではなく搬送ファン3にて電波強度を取得しても良い。 In the present embodiment, the exhaust fan 5c has the strongest radio wave intensity from the mobile terminals 100a acquired by the exhaust fans 5a to 5d, so it is determined that the mobile terminal 100a exists in the living room 2c. Further, the radio wave strength may be acquired by the transport fan 3 instead of the exhaust fan 5.
 また、電波強度を用いた判定ではなく、各居室2にカメラを備えて、カメラ映像から携帯端末100を携帯するユーザーを認識して、携帯端末100が存在する居室2を判定する等でも良い。また、ユーザーが携帯端末100を介してユーザー自身がどの居室2に在室するかをシステムコントローラ10に通知することで、判定部350は携帯端末100が存在する居室2を判定しても良い。 Further, instead of the determination using the radio wave strength, a camera may be provided in each living room 2, the user who carries the mobile terminal 100 may be recognized from the camera image, and the living room 2 in which the mobile terminal 100 exists may be determined. Further, the determination unit 350 may determine the living room 2 in which the mobile terminal 100 is present by notifying the system controller 10 which room 2 the user himself / herself is in via the mobile terminal 100.
 制御部200は、睡眠準備検知部320の検知結果と、二酸化炭素測定部101が測定した二酸化炭素濃度とに基づいて、換気装置による換気を制御する。制御部200は、さらに換気決定部220と換気制御部210とを備える。換気決定部220は、さらに濃度比較部221を有する。 The control unit 200 controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit 320 and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101. The control unit 200 further includes a ventilation determination unit 220 and a ventilation control unit 210. The ventilation determination unit 220 further has a concentration comparison unit 221.
 濃度比較部221は、濃度取得部310が取得した二酸化炭素濃度と濃度記憶部300に記憶された第一閾値、第二閾値及び第三閾値とを比較することで、取得した二酸化炭素濃度の各閾値に対する大小を比較する。 The concentration comparison unit 221 compares the carbon dioxide concentration acquired by the concentration acquisition unit 310 with the first threshold value, the second threshold value, and the third threshold value stored in the concentration storage unit 300, and each of the acquired carbon dioxide concentrations. Compare the magnitude with respect to the threshold.
 換気決定部220は、濃度比較部221が比較した結果と、睡眠準備検知部320が検知するユーザーの睡眠準備状態と、判定部350が判定する携帯端末100の存在する居室2に基づき、換気制御部210への換気指示内容を決定する。その詳細な決定方法については図4のフローチャートを参照して後述する。 The ventilation determination unit 220 controls ventilation based on the result of comparison by the concentration comparison unit 221, the sleep preparation state of the user detected by the sleep preparation detection unit 320, and the living room 2 in which the mobile terminal 100 determined by the determination unit 350 exists. The content of the ventilation instruction to the unit 210 is determined. The detailed determination method will be described later with reference to the flowchart of FIG.
 換気制御部210は、換気決定部220が決定した指示内容に従って、換気装置を制御する。 The ventilation control unit 210 controls the ventilation device according to the instruction content determined by the ventilation determination unit 220.
 ここで、システムコントローラ10は、マイクロコンピュータにて構成される。つまりシステムコントローラ10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を有するコンピュータシステムを有している。システムコントローラ10はドライバや内部バスを通じて、各部と接続されている。CPUは、例えばRAMを作業領域として利用し、ROMに記憶されているプログラムを実行し、当該実行結果に基づいてデータや命令を授受することにより各動作を制御し、コンピュータシステムがシステムコントローラ10として機能する。なお、CPUが実行するプログラムは、ここではROMに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 Here, the system controller 10 is composed of a microcomputer. That is, the system controller 10 has a computer system having a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The system controller 10 is connected to each part through a driver and an internal bus. For example, the CPU uses the RAM as a work area, executes a program stored in the ROM, controls each operation by exchanging data and instructions based on the execution result, and the computer system acts as the system controller 10. Function. Although the program executed by the CPU is pre-recorded in the ROM here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. May be provided.
 上記構成において、本実施の形態に係るシステムコントローラ10により実行される換気制御を図3の入眠時二酸化炭素濃度テーブル301と図4のフローチャートを用いて説明する。図4は、システムコントローラ10により実行される換気制御を示すフローチャートである。ここで、フローチャートではSを頭文字にして番号を割り振った。例えばS1などは処理ステップを指す。但し、処理ステップを示す数値の大小と処理順序は関係しない。 In the above configuration, the ventilation control executed by the system controller 10 according to the present embodiment will be described with reference to the sleep-onset carbon dioxide concentration table 301 of FIG. 3 and the flowchart of FIG. FIG. 4 is a flowchart showing ventilation control executed by the system controller 10. Here, in the flowchart, numbers are assigned with S as an acronym. For example, S1 and the like refer to a processing step. However, the magnitude of the numerical value indicating the processing step and the processing order do not matter.
 まず、濃度取得部310は、居室2の空気の二酸化炭素濃度を取得する(ステップS1)。濃度取得部310が取得する居室2の空気の二酸化炭素濃度は、居室2に存在するユーザーが携帯する携帯端末100が備える二酸化炭素測定部101により測定される。また、判定部350は携帯端末100が存在する居室2がどの居室(本実施の形態では、2a、2b、2c、2dのいずれか)に存在するのかを判定する。これにより、ユーザーが存在する居室2の二酸化炭素濃度を知ることができる。本実施の形態で説明すると、判定部350は居室2cにユーザーAが携帯する携帯端末100aが存在すると判定する。 First, the concentration acquisition unit 310 acquires the carbon dioxide concentration of the air in the living room 2 (step S1). The carbon dioxide concentration of the air in the living room 2 acquired by the concentration acquisition unit 310 is measured by the carbon dioxide measuring unit 101 included in the mobile terminal 100 carried by the user in the living room 2. Further, the determination unit 350 determines in which living room (either 2a, 2b, 2c, or 2d in the present embodiment) the living room 2 in which the mobile terminal 100 is present exists. This makes it possible to know the carbon dioxide concentration of the living room 2 in which the user is present. Explaining in this embodiment, the determination unit 350 determines that the mobile terminal 100a carried by the user A exists in the living room 2c.
 次に、睡眠準備検知部320は、睡眠状態判定部340の判定結果から、ユーザーが睡眠準備状態かどうかを検知する(ステップS2)。 Next, the sleep preparation detection unit 320 detects whether or not the user is in the sleep preparation state from the determination result of the sleep state determination unit 340 (step S2).
 睡眠準備検知部320が、ユーザーが睡眠準備状態でないことを検知した場合は、濃度比較部221にてユーザーが存在する居室2の二酸化炭素濃度と第三閾値との比較を行う(ステップS2:No→ステップS3)。本実施の形態で説明すると、ユーザーAが睡眠準備状態でない場合に、濃度比較部221は、居室2cの二酸化炭素濃度と第三閾値とを比較する。 When the sleep preparation detection unit 320 detects that the user is not in the sleep preparation state, the concentration comparison unit 221 compares the carbon dioxide concentration of the living room 2 in which the user is present with the third threshold value (step S2: No). → Step S3). Explaining in this embodiment, when the user A is not in the sleep preparation state, the concentration comparison unit 221 compares the carbon dioxide concentration of the living room 2c with the third threshold value.
 ユーザーが存在する居室2の二酸化炭素濃度が第三閾値以上であれば、換気決定部220は、換気制御部210にユーザーが存在する居室2を換気するように指示する。換気制御部210は、換気装置のファンを動作させて、ユーザーが存在する居室2の二酸化炭素濃度を下げるよう制御する。これにより、居室2の二酸化炭素濃度は活動状態に適した濃度になるため、ユーザーは活動状態時に集中力を維持することができる。なお、ステップS3でのユーザーが存在する居室2の換気は、睡眠状態判定部340によりユーザーが活動状態と判定された場合に限り実行するようにしてもよい。 If the carbon dioxide concentration of the living room 2 in which the user is present is equal to or higher than the third threshold value, the ventilation determination unit 220 instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present. The ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 in which the user is present. As a result, the carbon dioxide concentration in the living room 2 becomes a concentration suitable for the active state, so that the user can maintain concentration during the active state. The ventilation of the living room 2 in which the user exists in step S3 may be executed only when the user is determined to be in the active state by the sleep state determination unit 340.
 睡眠準備検知部320が、ユーザーが睡眠準備状態であることを検知した場合に、制御部200は濃度記憶部300に記憶された、携帯端末100が存在する居室2の第一閾値を以下のように変更する。すなわち、制御部200は、第一閾値を、濃度記憶部300に記憶された、携帯端末100に対応するユーザーの入眠時濃度情報が示す二酸化炭素濃度と同じ値に変更する(ステップS2:Yes→ステップS4)。本実施の形態で説明すると、制御部200は、居室2cの第一閾値を濃度記憶部300に記憶されたユーザーAの入眠時濃度情報が示す二酸化炭素濃度CO2aに変更する。 When the sleep preparation detection unit 320 detects that the user is in the sleep preparation state, the control unit 200 sets the first threshold value of the living room 2 in which the mobile terminal 100 exists stored in the concentration storage unit 300 as follows. Change to. That is, the control unit 200 changes the first threshold value to the same value as the carbon dioxide concentration stored in the concentration storage unit 300 and indicated by the user's sleep-onset concentration information corresponding to the mobile terminal 100 (step S2: Yes → Yes. Step S4). Explaining in this embodiment, the control unit 200 changes the first threshold value of the living room 2c to the carbon dioxide concentration CO2a indicated by the sleep-onset concentration information of the user A stored in the concentration storage unit 300.
 これにより、居室2cの第一閾値はユーザーAの入眠に適した二酸化炭素濃度にすることができる。このように、ステップS4で、制御部200は、濃度記憶部300が記憶する入眠時濃度情報が示す入眠時における二酸化炭素濃度に基づいて第一閾値を変更する。そして、後述するように、制御部200は、変更した第一閾値に基づいて、換気装置による換気を制御する。 Thereby, the first threshold value of the living room 2c can be set to the carbon dioxide concentration suitable for the sleep onset of the user A. As described above, in step S4, the control unit 200 changes the first threshold value based on the carbon dioxide concentration at the time of falling asleep indicated by the concentration information at the time of falling asleep stored in the concentration storage unit 300. Then, as will be described later, the control unit 200 controls ventilation by the ventilation device based on the changed first threshold value.
 また、居室2に存在するユーザーの入眠時における二酸化炭素濃度が第一閾値になるため、ユーザーが睡眠準備を行う居室2を変更した場合でも、変更した居室2の第一閾値を、ユーザーに適した入眠時の二酸化炭素濃度にすることができる。例えば、ユーザーが睡眠準備を行う居室2を居室2cから居室2aに変更した場合でも、変更した居室2aの第一閾値を、ユーザーに適した入眠時の二酸化炭素濃度にすることができる。また、第一閾値の変更に伴い、第二閾値の設定可能範囲が変わるため、必要に応じて第二閾値を変更する。つまり、第二閾値は、第一閾値の変更が反映された値といえる。 Further, since the carbon dioxide concentration at the time of falling asleep of the user existing in the living room 2 becomes the first threshold value, even if the user changes the living room 2 in which the sleep preparation is performed, the changed first threshold value of the living room 2 is suitable for the user. It can be the carbon dioxide concentration at the time of falling asleep. For example, even when the living room 2 in which the user prepares for sleep is changed from the living room 2c to the living room 2a, the first threshold value of the changed living room 2a can be set to the carbon dioxide concentration at the time of falling asleep suitable for the user. Further, since the settable range of the second threshold value changes with the change of the first threshold value, the second threshold value is changed as necessary. That is, it can be said that the second threshold value is a value that reflects the change in the first threshold value.
 次に、濃度比較部221は居室2の二酸化炭素濃度と第二閾値との比較を行う(ステップS5)。 Next, the concentration comparison unit 221 compares the carbon dioxide concentration in the living room 2 with the second threshold value (step S5).
 睡眠準備状態のユーザーが存在する居室2の二酸化炭素濃度が第二閾値以上であれば、換気決定部220は、換気制御部210にユーザーが存在する居室2を換気するように指示する。換気制御部210は、換気装置のファンを動作させて、居室2の二酸化炭素濃度を下げるよう制御する(ステップS5:Yes→ステップS6)。すなわち、制御部200は、睡眠準備検知部320が、ユーザーが睡眠準備状態であることを検知した場合において、二酸化炭素測定部101が測定した二酸化炭素濃度が第二閾値以上のときには、換気装置による換気を行うよう制御する。 If the carbon dioxide concentration of the living room 2 in which the user in the sleep preparation state is present is equal to or higher than the second threshold value, the ventilation determination unit 220 instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present. The ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 to be lowered (step S5: Yes → step S6). That is, when the sleep preparation detection unit 320 detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101 is equal to or higher than the second threshold value, the control unit 200 uses a ventilation device. Control to ventilate.
 これにより、ユーザーが存在する居室2は入眠に適しているとされる二酸化炭素濃度の範囲を維持することができる。また、ユーザーが存在する居室2が、ユーザーの人体が危険になる二酸化炭素濃度になることも防ぐこともできる。 As a result, the living room 2 in which the user is present can maintain the range of carbon dioxide concentration that is considered to be suitable for falling asleep. In addition, it is possible to prevent the living room 2 in which the user is present from having a carbon dioxide concentration that poses a danger to the user's human body.
 一方、睡眠準備状態のユーザーが存在する居室2の二酸化炭素濃度が第二閾値より小さければ、換気決定部220は、換気制御部210にユーザーが存在する居室2を換気停止するように指示する。換気制御部210は、換気装置のファンを停止させる(ステップS5:No→ステップS7)。すなわち、制御部200は、睡眠準備検知部320が、ユーザーが睡眠準備状態であることを検知した場合において、二酸化炭素測定部101が測定した二酸化炭素濃度が第二閾値より小さいときには、換気装置による換気を停止するよう制御する。言い換えると、制御部200は、睡眠準備検知部320が睡眠準備状態であることを検知した場合に、以下のように換気装置による換気を制御する。すなわち、制御部200は、濃度取得部310が取得した居室2の二酸化炭素濃度が、濃度記憶部300が記憶する入眠時濃度情報が示すユーザーの入眠時における二酸化炭素濃度に近づくように、換気装置による換気を制御する。また、この制御で制御部200は、濃度記憶部300が記憶する入眠時濃度情報として、居室2に存在するユーザーが携帯する携帯端末100を示す端末情報に対応する入眠時濃度情報を用いる。 On the other hand, if the carbon dioxide concentration in the living room 2 in which the user in the sleep preparation state is present is smaller than the second threshold value, the ventilation determination unit 220 instructs the ventilation control unit 210 to stop ventilation in the living room 2 in which the user is present. The ventilation control unit 210 stops the fan of the ventilation device (step S5: No → step S7). That is, when the sleep preparation detection unit 320 detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit 101 is smaller than the second threshold value, the control unit 200 uses the ventilation device. Control to stop ventilation. In other words, when the sleep preparation detection unit 320 detects that the sleep preparation detection unit 320 is in the sleep preparation state, the control unit 200 controls ventilation by the ventilation device as follows. That is, the control unit 200 is a ventilation device so that the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 approaches the carbon dioxide concentration at the time of sleep onset indicated by the concentration information at sleep onset stored by the concentration storage unit 300. Control ventilation by. Further, in this control, the control unit 200 uses the sleep-onset concentration information corresponding to the terminal information indicating the mobile terminal 100 carried by the user in the living room 2 as the sleep-onset concentration information stored in the concentration storage unit 300.
 つまり、ユーザーが睡眠準備状態ではない場合は、上述のように、ユーザーが存在する居室2の二酸化炭素濃度が第三閾値を超えたら換気していた。これに対し、ユーザーが睡眠準備状態の場合は、居室2の二酸化炭素濃度が第三閾値や第一閾値を超えても換気せず、第二閾値を超えた場合に換気する。これにより、ユーザーが睡眠準備状態の場合には、第一閾値より大きくて第二閾値よりも小さい、居室2の二酸化炭素濃度を目指す。 That is, when the user is not in the sleep ready state, as described above, ventilation was performed when the carbon dioxide concentration in the living room 2 in which the user exists exceeds the third threshold value. On the other hand, when the user is in a sleep ready state, ventilation is not performed even if the carbon dioxide concentration in the living room 2 exceeds the third threshold value or the first threshold value, and ventilation is performed when the carbon dioxide concentration exceeds the second threshold value. As a result, when the user is in a sleep ready state, the carbon dioxide concentration in the living room 2, which is larger than the first threshold value and smaller than the second threshold value, is aimed at.
 これにより、ユーザーが存在する居室2の二酸化炭素濃度を、さらに大きくすることができるので、全館空調システム20は、ユーザーを入眠状態に移行しやすくすることができる。つまり、全館空調システム20は、ユーザーが睡眠準備状態に入ってから入眠状態になるまでの時間を短くすることができる。 As a result, the carbon dioxide concentration in the living room 2 in which the user exists can be further increased, so that the whole building air conditioning system 20 can easily shift the user to a sleep-onset state. That is, the whole building air conditioning system 20 can shorten the time from when the user enters the sleep preparation state to when the user falls asleep.
 次に、睡眠状態判定部340はユーザーが入眠したかどうかを判定する(ステップS8)。 Next, the sleep state determination unit 340 determines whether or not the user has fallen asleep (step S8).
 ユーザーが入眠状態に移行していない場合、居室2の二酸化炭素濃度をさらにあげるために、ステップS5の処理に戻る(ステップS8:No→ステップS5)。これにより、全館空調システム20は、ユーザーをさらに睡眠準備状態から入眠状態に移行しやすくすることができる。 If the user has not entered the sleep-onset state, the process returns to the process of step S5 in order to further increase the carbon dioxide concentration in the living room 2 (step S8: No → step S5). As a result, the whole building air conditioning system 20 can make it easier for the user to shift from the sleep preparation state to the sleep onset state.
 そして、ユーザーが入眠状態に移行した場合は、システムコントローラ10は換気制御処理を終了する(ステップS8:Yes)。 Then, when the user shifts to the sleep onset state, the system controller 10 ends the ventilation control process (step S8: Yes).
 以上、本開示に係る換気システムの一例として全館空調システム20を説明した。全館空調システム(20)は、二酸化炭素測定部(101)と、換気装置と、睡眠準備検知部(320)と、制御部(200)とを備えることを特徴とする。二酸化炭素測定部(101)は、本開示の所定空間の一例である居室(2)の二酸化炭素濃度を測定する。換気装置は、二酸化炭素測定部(101)が測定した二酸化炭素濃度が、所定の閾値(第三閾値)以上である場合に居室(2)の換気を行う。睡眠準備検知部(320)は、居室(2)内のユーザーが睡眠準備状態であることを検知する。制御部(200)は、二酸化炭素測定部(101)が測定した二酸化炭素濃度が所定の閾値(第三閾値)以上である場合でも、睡眠準備検知部(320)が、ユーザーが睡眠準備状態であることを検知したときには、換気装置による換気を停止させるよう制御する。これにより、全館空調システム(20)は、ユーザーが睡眠準備状態である場合には、ユーザーが存在する居室(2)の二酸化炭素濃度が所定の閾値(第三閾値)より高い場合でも、換気装置による換気が行われない。そのため、全館空調システム(20)は、ユーザーの入眠が妨げられることなく、ユーザーの入眠に適した空間の実現に資する。 The entire building air conditioning system 20 has been described above as an example of the ventilation system according to the present disclosure. The whole building air conditioning system (20) is characterized by including a carbon dioxide measuring unit (101), a ventilation device, a sleep preparation detecting unit (320), and a control unit (200). The carbon dioxide measuring unit (101) measures the carbon dioxide concentration of the living room (2), which is an example of the predetermined space of the present disclosure. The ventilation device ventilates the living room (2) when the carbon dioxide concentration measured by the carbon dioxide measuring unit (101) is equal to or higher than a predetermined threshold value (third threshold value). The sleep preparation detection unit (320) detects that the user in the living room (2) is in the sleep preparation state. In the control unit (200), even when the carbon dioxide concentration measured by the carbon dioxide measurement unit (101) is equal to or higher than a predetermined threshold value (third threshold value), the sleep preparation detection unit (320) allows the user to be in a sleep preparation state. When it is detected, it is controlled to stop the ventilation by the ventilation device. As a result, the whole building air conditioning system (20) is a ventilation device when the user is in a sleep ready state, even if the carbon dioxide concentration in the living room (2) in which the user is present is higher than a predetermined threshold (third threshold). Ventilation is not performed. Therefore, the whole building air conditioning system (20) contributes to the realization of a space suitable for the user to fall asleep without hindering the user from falling asleep.
 (実施の形態2)
 本実施の形態では居室2に複数の携帯端末100が存在する場合について説明を行う。すなわち、本実施の形態でのユーザーは複数である。具体的には、図1に記載されている居室2dに携帯端末100bと携帯端末100cとが存在している場合である。なお、本実施の形態では、説明を簡単にするために、一般住宅1に存在する携帯端末100は、携帯端末100b及び携帯端末100cのみで、居室2cに携帯端末100aは存在しないものとする。
(Embodiment 2)
In the present embodiment, a case where a plurality of mobile terminals 100 are present in the living room 2 will be described. That is, there are a plurality of users in this embodiment. Specifically, it is a case where the mobile terminal 100b and the mobile terminal 100c exist in the living room 2d shown in FIG. In the present embodiment, for the sake of simplicity, it is assumed that the mobile terminal 100 existing in the general house 1 is only the mobile terminal 100b and the mobile terminal 100c, and the mobile terminal 100a does not exist in the living room 2c.
 まず、図5を参照して、本実施の形態に係るシステムコントローラ10Aの各機能について説明する。図5は、本実施の形態におけるシステムコントローラ10A及び周辺装置の概略機能ブロック図である。システムコントローラ10Aの基本的な構成は実施の形態1に係るシステムコントローラ10と同じだが、システムコントローラ10Aは、システムコントローラ10の制御部200に代えて、制御部200Aを備える点でシステムコントローラ10と異なる。そして、制御部200Aは、実施の形態1に係る制御部200の換気決定部220に代えて、換気決定部220Aを備える点で制御部200と異なる。また、システムコントローラ10Aは、システムコントローラ10の判定部350に代えて、判定部350Aを備える。 First, with reference to FIG. 5, each function of the system controller 10A according to the present embodiment will be described. FIG. 5 is a schematic functional block diagram of the system controller 10A and peripheral devices according to the present embodiment. The basic configuration of the system controller 10A is the same as that of the system controller 10 according to the first embodiment, but the system controller 10A is different from the system controller 10 in that the control unit 200A is provided instead of the control unit 200 of the system controller 10. .. The control unit 200A is different from the control unit 200 in that the ventilation determination unit 220A is provided in place of the ventilation determination unit 220 of the control unit 200 according to the first embodiment. Further, the system controller 10A includes a determination unit 350A instead of the determination unit 350 of the system controller 10.
 システムコントローラ10Aは、濃度取得部310と、睡眠準備検知部320と、濃度記憶部300と、制御部200Aと、バイタルデータ取得部330と、睡眠状態判定部340と、判定部350Aと、を備える。 The system controller 10A includes a concentration acquisition unit 310, a sleep preparation detection unit 320, a concentration storage unit 300, a control unit 200A, a vital data acquisition unit 330, a sleep state determination unit 340, and a determination unit 350A. ..
 濃度取得部310、バイタルデータ取得部330、睡眠状態判定部340及び睡眠準備検知部320は、実施の形態1と同じであるため、説明を省略する。 Since the concentration acquisition unit 310, the vital data acquisition unit 330, the sleep state determination unit 340, and the sleep preparation detection unit 320 are the same as those in the first embodiment, the description thereof will be omitted.
 濃度記憶部300が記憶する第一閾値と第二閾値と第三閾値は実施の形態1と同じであるが、濃度記憶部300は、実施の形態1に係る入眠時二酸化炭素濃度テーブル301に代えて、入眠時二酸化炭素濃度テーブル304を記憶する。携帯端末100に対応する入眠時二酸化炭素濃度テーブル304については、図6を用いて説明する。 The first threshold value, the second threshold value, and the third threshold value stored in the concentration storage unit 300 are the same as those in the first embodiment, but the concentration storage unit 300 replaces the sleep-onset carbon dioxide concentration table 301 according to the first embodiment. Then, the carbon dioxide concentration table 304 at the time of falling asleep is stored. The sleep-onset carbon dioxide concentration table 304 corresponding to the mobile terminal 100 will be described with reference to FIG.
 図6は、濃度記憶部300が記憶する入眠時二酸化炭素濃度テーブル304のデータ構成を示す図である。 FIG. 6 is a diagram showing a data structure of the carbon dioxide concentration table 304 during sleep onset stored by the concentration storage unit 300.
 携帯端末100は、各ユーザーによって携帯されている。本実施の形態で説明すると、ユーザーBは携帯端末100bを携帯し、ユーザーCは携帯端末100cを携帯している。 The mobile terminal 100 is carried by each user. Explaining in this embodiment, the user B carries the mobile terminal 100b, and the user C carries the mobile terminal 100c.
 入眠時二酸化炭素濃度テーブル304のデータ構成は、実施の形態1に係る入眠時二酸化炭素濃度テーブル301のデータ構成と同様であるが、入眠時二酸化炭素濃度テーブル304は、登録されたデータが、入眠時二酸化炭素濃度テーブル301と異なる。すなわち、入眠時二酸化炭素濃度テーブル304は、複数のユーザーそれぞれについて、ユーザーの端末情報305とユーザーの入眠時濃度情報306とを対応付けて記憶している。同図では、一例として、入眠時二酸化炭素濃度テーブル304は、端末情報305が「携帯端末100b」であり、入眠時濃度情報306が「CO2b」であることを示している。また、同図では、一例として、入眠時二酸化炭素濃度テーブル304は、端末情報305が「携帯端末100c」であり、入眠時濃度情報306が「CO2c」であることを示している。すなわち、同図の例では、「携帯端末100b」を所持するユーザーBの入眠時における居室2dの二酸化炭素濃度は「CO2b」であることを示している。また、同図の例では、「携帯端末100c」を所持するユーザーCの入眠時における居室2dの二酸化炭素濃度は「CO2c」であることを示している。 The data configuration of the sleep-onset carbon dioxide concentration table 304 is the same as the data configuration of the sleep-onset carbon dioxide concentration table 301 according to the first embodiment, but in the sleep-onset carbon dioxide concentration table 304, the registered data is stored in the sleep-onset carbon dioxide concentration table 304. Different from the carbon dioxide concentration table 301. That is, the sleep-onset carbon dioxide concentration table 304 stores the user's terminal information 305 and the user's sleep-onset concentration information 306 in association with each other for each of the plurality of users. In the figure, as an example, the sleep-onset carbon dioxide concentration table 304 shows that the terminal information 305 is “portable terminal 100b” and the sleep-onset concentration information 306 is “CO2b”. Further, in the figure, as an example, the sleep-onset carbon dioxide concentration table 304 shows that the terminal information 305 is "portable terminal 100c" and the sleep-onset concentration information 306 is "CO2c". That is, in the example of the figure, it is shown that the carbon dioxide concentration of the living room 2d at the time of falling asleep of the user B who possesses the "portable terminal 100b" is "CO2b". Further, in the example of the figure, it is shown that the carbon dioxide concentration of the living room 2d at the time of falling asleep of the user C possessing the "portable terminal 100c" is "CO2c".
 入眠時二酸化炭素濃度テーブル304へのデータの登録方法は、実施の形態1に係る入眠時二酸化炭素濃度テーブル301へのデータ登録と同様である。すなわち、制御部200Aは、ユーザーBが過去入眠した時に二酸化炭素測定部101bが測定した居室2の二酸化炭素濃度CO2bを濃度取得部310から取得し、濃度記憶部300に記憶する。すなわち、二酸化炭素測定部101bに対応する端末情報「携帯端末100b」と対応付けて、入眠時濃度情報「CO2b」を入眠時二酸化炭素濃度テーブル304に登録する。同様に、制御部200Aは、ユーザーCが過去入眠した時に二酸化炭素測定部101cが測定した居室2の二酸化炭素濃度CO2cを濃度取得部310から取得し、濃度記憶部300に記憶する。すなわち、二酸化炭素測定部101cに対応する端末情報「携帯端末100c」と対応付けて、入眠時濃度情報「CO2c」を入眠時二酸化炭素濃度テーブル304に登録する。 The method of registering the data in the sleep-onset carbon dioxide concentration table 304 is the same as the data registration in the sleep-onset carbon dioxide concentration table 301 according to the first embodiment. That is, the control unit 200A acquires the carbon dioxide concentration CO2b of the living room 2 measured by the carbon dioxide measurement unit 101b when the user B has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2b" is registered in the sleep-onset carbon dioxide concentration table 304 in association with the terminal information "portable terminal 100b" corresponding to the carbon dioxide measurement unit 101b. Similarly, the control unit 200A acquires the carbon dioxide concentration CO2c of the living room 2 measured by the carbon dioxide measurement unit 101c when the user C has fallen asleep in the past from the concentration acquisition unit 310, and stores it in the concentration storage unit 300. That is, the sleep-onset concentration information "CO2c" is registered in the sleep-onset carbon dioxide concentration table 304 in association with the terminal information "portable terminal 100c" corresponding to the carbon dioxide measurement unit 101c.
 これにより濃度記憶部300は、携帯端末100bに対応する入眠時における二酸化炭素濃度CO2bと、携帯端末100cに対応する入眠時における二酸化炭素濃度CO2cを記憶する。つまり、言い換えると濃度記憶部300は、すべてのユーザーの入眠時における二酸化炭素濃度を示す入眠時濃度情報を個別に記憶しているということである。 As a result, the concentration storage unit 300 stores the carbon dioxide concentration CO2b at the time of falling asleep corresponding to the mobile terminal 100b and the carbon dioxide concentration CO2c at the time of falling asleep corresponding to the mobile terminal 100c. That is, in other words, the concentration storage unit 300 individually stores the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of all users.
 なお、本実施の形態では、本実施の形態に係る全館空調システムに携帯端末100が2つ存在する場合を例にしたが、携帯端末100の数はいくつであっても良い。濃度記憶部300は、携帯端末100を携帯するすべてのユーザーの入眠時における二酸化炭素濃度を示す入眠時濃度情報を記憶する。 In the present embodiment, the case where two mobile terminals 100 are present in the whole building air conditioning system according to the present embodiment is taken as an example, but the number of mobile terminals 100 may be any number. The concentration storage unit 300 stores sleep-onset concentration information indicating the carbon dioxide concentration at sleep onset of all users who carry the mobile terminal 100.
 判定部350Aは、実施の形態1と同じように携帯端末100が存在する居室2を判定するが、加えて各居室2a~2dに存在する携帯端末100の数も判定する。判定方法としては、例えば実施の形態1と同じように排気ファン5a~5dが携帯端末100から受信する電波強度で判定する。 The determination unit 350A determines the living room 2 in which the mobile terminal 100 exists as in the first embodiment, but also determines the number of mobile terminals 100 existing in each of the living rooms 2a to 2d. As a determination method, for example, as in the first embodiment, the exhaust fans 5a to 5d are determined by the radio wave intensity received from the mobile terminal 100.
 本実施の形態で説明すると、各居室2の排気ファン5a~5dは携帯端末100bと100cから発生する電波強度を取得してシステムコントローラ10Aに送信する。そして、判定部350Aは各居室2の排気ファン5a~5dから取得した、各携帯端末100bと100cからの電波強度を比較し、一番強い電波強度を受信した排気ファン5が存在する居室2に携帯端末100が存在すると判定する。 Explaining in this embodiment, the exhaust fans 5a to 5d of each living room 2 acquire the radio wave strength generated from the mobile terminals 100b and 100c and transmit the radio wave strength to the system controller 10A. Then, the determination unit 350A compares the radio wave strengths from the mobile terminals 100b and 100c acquired from the exhaust fans 5a to 5d of each living room 2, and in the living room 2 where the exhaust fan 5 receiving the strongest radio wave strength exists. It is determined that the mobile terminal 100 exists.
 排気ファン5a~5dが取得する携帯端末100bと100cからの電波強度は、排気ファン5dが一番強くなるため、携帯端末100bと100cは居室2dに存在すると判定される。よって、居室2dには、携帯端末100bと100cの2台が存在すると判定される。 As for the radio wave intensity from the mobile terminals 100b and 100c acquired by the exhaust fans 5a to 5d, it is determined that the mobile terminals 100b and 100c exist in the living room 2d because the exhaust fan 5d has the strongest radio wave strength. Therefore, it is determined that there are two mobile terminals 100b and 100c in the living room 2d.
 なお、本実施の形態では携帯端末100が2つ存在する場合を例にしたが、携帯端末100の数が3つ以上の場合も同様に判定を行うことで、居室2に存在する携帯端末100と携帯端末100の数を判定する。 In the present embodiment, the case where two mobile terminals 100 are present is taken as an example, but when the number of mobile terminals 100 is three or more, the same determination is made so that the mobile terminal 100 existing in the living room 2 is present. And the number of mobile terminals 100 are determined.
 制御部200Aは、さらに換気決定部220Aと換気制御部210とを備える。換気決定部220Aは、さらに濃度比較部221Aと閾値変更部222を有する。 The control unit 200A further includes a ventilation determination unit 220A and a ventilation control unit 210. The ventilation determination unit 220A further has a concentration comparison unit 221A and a threshold value change unit 222.
 濃度比較部221Aは、濃度取得部310が取得した二酸化炭素濃度を用いて、濃度記憶部300に記憶された各閾値と比較を行う点で実施の形態1に係る濃度比較部221と同様であるが、以下の点で濃度比較部221とは異なる。すなわち、濃度比較部221Aは、ある居室2に複数のユーザーが存在する場合に、それぞれのユーザーが所持する携帯端末100の二酸化炭素測定部101を介して濃度取得部310が取得した二酸化炭素濃度の平均値を用いて比較を行う。比較の詳細は後述する。 The concentration comparison unit 221A is the same as the concentration comparison unit 221 according to the first embodiment in that the carbon dioxide concentration acquired by the concentration acquisition unit 310 is used to compare with each threshold value stored in the concentration storage unit 300. However, it differs from the concentration comparison unit 221 in the following points. That is, when a plurality of users exist in a certain living room 2, the concentration comparison unit 221A has the carbon dioxide concentration acquired by the concentration acquisition unit 310 via the carbon dioxide measurement unit 101 of the mobile terminal 100 possessed by each user. Make a comparison using the average value. The details of the comparison will be described later.
 閾値変更部222は、睡眠準備検知部320がユーザーの睡眠準備状態を検知した場合に、濃度記憶部300に記憶された携帯端末100に対応する入眠時濃度情報に基づいて第一閾値を変更するが、詳細は後述する。 When the sleep preparation detection unit 320 detects the sleep preparation state of the user, the threshold value change unit 222 changes the first threshold value based on the sleep-onset concentration information corresponding to the mobile terminal 100 stored in the concentration storage unit 300. However, the details will be described later.
 換気決定部220Aは、濃度比較部221Aの比較結果と、閾値変更部222が変更した第一閾値の値と、睡眠準備検知部320が検知するユーザーの睡眠準備状態と、判定部350Aが判定する居室2に存在する携帯端末100の数とに基づき、換気制御部210への換気指示内容を決定する。その詳細な制御については図7のフローチャートを参照して後述する。 The ventilation determination unit 220A determines the comparison result of the concentration comparison unit 221A, the value of the first threshold value changed by the threshold value change unit 222, and the sleep preparation state of the user detected by the sleep preparation detection unit 320, by the determination unit 350A. The content of the ventilation instruction to the ventilation control unit 210 is determined based on the number of mobile terminals 100 existing in the living room 2. The detailed control thereof will be described later with reference to the flowchart of FIG.
 換気制御部210は、実施の形態1と同じであるため、説明を省略する。 Since the ventilation control unit 210 is the same as that of the first embodiment, the description thereof will be omitted.
 上記構成において、システムコントローラ10Aにより実行される換気制御を図7のフローチャートを用いて説明する。図7は、システムコントローラ10Aにより実行される換気制御を示すフローチャートである。ここで、フローチャートではSを頭文字にして番号を割り振った。例えばS11などは処理ステップを指す。但し、処理ステップを示す数値の大小と処理順序は関係しない。 In the above configuration, the ventilation control executed by the system controller 10A will be described with reference to the flowchart of FIG. FIG. 7 is a flowchart showing ventilation control executed by the system controller 10A. Here, in the flowchart, numbers are assigned with S as an acronym. For example, S11 and the like refer to a processing step. However, the magnitude of the numerical value indicating the processing step and the processing order do not matter.
 まず、濃度取得部310は、居室2の二酸化炭素濃度を取得する(ステップS11)。 First, the concentration acquisition unit 310 acquires the carbon dioxide concentration of the living room 2 (step S11).
 また、判定部350Aは、携帯端末100がどの居室2に存在するか及び居室2に存在する携帯端末100の数を判定する。本実施の形態で説明すると、判定部350Aは、居室2dにユーザーBが携帯する携帯端末100bとユーザーCが携帯する携帯端末100cとが存在し、居室2dに存在する携帯端末100の数は2であると判定する。 Further, the determination unit 350A determines in which living room 2 the mobile terminal 100 exists and the number of mobile terminals 100 existing in the living room 2. Explaining in this embodiment, in the determination unit 350A, the mobile terminal 100b carried by the user B and the mobile terminal 100c carried by the user C exist in the living room 2d, and the number of the mobile terminals 100 existing in the living room 2d is 2. Is determined to be.
 次に、睡眠準備検知部320は、ユーザーが睡眠準備状態かどうかを検知する(ステップS12)。なお、本実施の形態では、ある居室2に複数のユーザーが存在する場合、睡眠準備検知部320は、睡眠準備状態のユーザーが一人でもいる場合には、ユーザーが睡眠準備状態であることを検知するものとする。ただし、これは一例であり、全てのユーザーが睡眠準備状態である場合に、睡眠準備検知部320は、ユーザーが睡眠準備状態であることを検知するようにしてもよい。 Next, the sleep preparation detection unit 320 detects whether or not the user is in a sleep preparation state (step S12). In the present embodiment, when there are a plurality of users in a certain living room 2, the sleep preparation detection unit 320 detects that the user is in the sleep preparation state when there is even one user in the sleep preparation state. It shall be. However, this is only an example, and when all the users are in the sleep preparation state, the sleep preparation detection unit 320 may detect that the users are in the sleep preparation state.
 睡眠準備検知部320が、ユーザーが睡眠準備状態でないことを検知した場合は、濃度比較部221Aにて、ユーザーが存在する居室2の二酸化炭素濃度を用いて、第三閾値との比較を行う(ステップS12:No→ステップS13)。 When the sleep preparation detection unit 320 detects that the user is not in the sleep preparation state, the concentration comparison unit 221A compares the carbon dioxide concentration of the room 2 in which the user is present with the third threshold value (the concentration comparison unit 221A). Step S12: No → Step S13).
 本実施の形態で説明すると、居室2dには複数のユーザーが存在し、複数の二酸化炭素測定部101が存在する。この場合は、濃度比較部221Aは二酸化炭素測定部101b、101cより取得した二酸化炭素濃度の平均値を算出し、算出した平均値と第三閾値との比較を行う。なお、本実施の形態では、平均値としたが、平均値ではなく大きい方の二酸化炭素濃度でも良いし、最小値と最大値の間から任意に設定しても良い。二酸化炭素測定部101が3つ以上存在する場合も同様である。 Explaining in this embodiment, there are a plurality of users in the living room 2d, and there are a plurality of carbon dioxide measuring units 101. In this case, the concentration comparison unit 221A calculates the average value of the carbon dioxide concentration acquired from the carbon dioxide measurement units 101b and 101c, and compares the calculated average value with the third threshold value. In the present embodiment, the average value is used, but the carbon dioxide concentration may be higher than the average value, or may be arbitrarily set from between the minimum value and the maximum value. The same applies when there are three or more carbon dioxide measuring units 101.
 算出した二酸化炭素濃度の平均値が第三閾値以上であれば、換気決定部220Aは、換気制御部210にユーザーが存在する居室2を換気するように指示する。換気制御部210は、換気装置のファンを動作させて、ユーザーが存在する居室2の二酸化炭素濃度を下げるよう制御する。 If the average value of the calculated carbon dioxide concentration is equal to or higher than the third threshold value, the ventilation determination unit 220A instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present. The ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 in which the user is present.
 睡眠準備検知部320が、ユーザーが睡眠準備状態であることを検知した場合は、閾値変更部222は、濃度記憶部300に記憶された携帯端末100に対応するユーザーの入眠時濃度情報に基づいて閾値を特定する。そして、制御部200Aは濃度記憶部300に記憶された第一閾値を、閾値変更部222が特定した閾値に変更する(ステップS12:Yes→ステップS14)。 When the sleep preparation detection unit 320 detects that the user is in the sleep preparation state, the threshold value change unit 222 is based on the user's sleep-onset concentration information stored in the concentration storage unit 300 and corresponding to the mobile terminal 100. Identify the threshold. Then, the control unit 200A changes the first threshold value stored in the concentration storage unit 300 to the threshold value specified by the threshold value changing unit 222 (step S12: Yes → step S14).
 本実施の形態での具体的な説明を、図6の入眠時二酸化炭素濃度テーブル304を用いて説明する。居室2dにはユーザーBとユーザーCが存在している。居室2dに存在するユーザーBの入眠時濃度情報「CO2b」と、居室2dに存在するユーザーCの入眠時濃度情報「CO2c」は、濃度記憶部300の入眠時二酸化炭素濃度テーブル304に記憶されている。閾値変更部222は、ユーザーBの入眠時における二酸化炭素濃度CO2bとユーザーCの入眠時における二酸化炭素濃度CO2cのうち、高い方の二酸化炭素濃度を閾値に特定し、特定した閾値に第一閾値を変更する。 A specific description of the present embodiment will be described using the carbon dioxide concentration table 304 during sleep onset in FIG. User B and user C exist in the living room 2d. The sleep-onset concentration information "CO2b" of the user B existing in the living room 2d and the sleep-onset concentration information "CO2c" of the user C existing in the living room 2d are stored in the sleep-onset carbon dioxide concentration table 304 of the concentration storage unit 300. There is. The threshold value changing unit 222 specifies the higher carbon dioxide concentration of the carbon dioxide concentration CO2b when user B falls asleep and the carbon dioxide concentration CO2c when user C falls asleep as a threshold value, and sets the first threshold value to the specified threshold value. change.
 これにより、居室2dの第一閾値を、ユーザーBとユーザーCのどちらのユーザーにも入眠に適した二酸化炭素濃度にすることができる。 As a result, the first threshold value of the living room 2d can be set to a carbon dioxide concentration suitable for falling asleep for both users B and C.
 なお、本実施の形態では、第一閾値は、ユーザーBの入眠時における二酸化炭素濃度CO2bとユーザーCの入眠時における二酸化炭素濃度CO2cのうち、高い方の二酸化炭素濃度に変更するものとしたが、例えば、2つの二酸化炭素濃度の平均に変更しても良い。 In the present embodiment, the first threshold value is changed to the higher carbon dioxide concentration of the carbon dioxide concentration CO2b when the user B falls asleep and the carbon dioxide concentration CO2c when the user C falls asleep. For example, it may be changed to the average of two carbon dioxide concentrations.
 同じ居室2に携帯端末100を携帯した睡眠準備状態のユーザーが3人以上存在する場合も、閾値変更部222は、同様にして第一閾値を変更する。すなわち、閾値変更部222は、濃度記憶部300に記憶された携帯端末100に対応するユーザーの入眠時における二酸化炭素濃度の中で最大又は平均の二酸化炭素濃度を閾値に特定し、特定した閾値に第一閾値を変更する。また、第一閾値の変更に伴い、第二閾値の設定可能範囲が変わるため、必要に応じて第二閾値を変更する。つまり、第二閾値は、第一閾値の変更が反映された値といえる。このように、ステップS14で、制御部200Aは、濃度記憶部300が記憶する入眠時濃度情報が示す入眠時における二酸化炭素濃度に基づいて第一閾値を変更する。そして、後述するように、制御部200Aは、変更された第一閾値に基づく第二閾値に基づいて、換気装置による換気を制御する。 Even when there are three or more users in the sleep ready state who carry the mobile terminal 100 in the same living room 2, the threshold value changing unit 222 changes the first threshold value in the same manner. That is, the threshold value changing unit 222 specifies the maximum or average carbon dioxide concentration among the carbon dioxide concentrations at the time of sleep onset of the user corresponding to the mobile terminal 100 stored in the concentration storage unit 300 as the threshold value, and sets the specified threshold value. Change the first threshold. Further, since the settable range of the second threshold value changes with the change of the first threshold value, the second threshold value is changed as necessary. That is, it can be said that the second threshold value is a value that reflects the change in the first threshold value. As described above, in step S14, the control unit 200A changes the first threshold value based on the carbon dioxide concentration at the time of falling asleep indicated by the concentration information at the time of falling asleep stored in the concentration storage unit 300. Then, as will be described later, the control unit 200A controls ventilation by the ventilation device based on the second threshold value based on the changed first threshold value.
 次に、濃度比較部221Aは居室2の二酸化炭素濃度を用いて第二閾値との比較を行う(ステップS15)。具体的には、ステップS13と同様に、濃度比較部221Aは、濃度取得部310から取得した二酸化炭素濃度の平均値を算出し、算出した平均値と第二閾値との比較を行う。本実施の形態で説明すると、濃度比較部221Aは二酸化炭素測定部101b、101cより取得した二酸化炭素濃度の平均値と第二閾値との比較を行う。なお、ステップS13と同様に、本実施の形態では、平均値としたが、平均値ではなく大きい方の二酸化炭素濃度でも良いし、最小値と最大値の間から任意に設定しても良い。二酸化炭素測定部101が3つ以上存在する場合も同様である。 Next, the concentration comparison unit 221A makes a comparison with the second threshold value using the carbon dioxide concentration in the living room 2 (step S15). Specifically, as in step S13, the concentration comparison unit 221A calculates the average value of the carbon dioxide concentration acquired from the concentration acquisition unit 310, and compares the calculated average value with the second threshold value. Explaining in this embodiment, the concentration comparison unit 221A compares the average value of the carbon dioxide concentration acquired from the carbon dioxide measurement units 101b and 101c with the second threshold value. As in step S13, in the present embodiment, the average value is used, but the carbon dioxide concentration may be higher than the average value, or may be arbitrarily set from between the minimum value and the maximum value. The same applies when there are three or more carbon dioxide measuring units 101.
 算出した二酸化炭素濃度の平均値が第二閾値以上であれば、換気決定部220Aは、換気制御部210にユーザーが存在する居室2を換気するように指示する。換気制御部210は、換気装置のファンを動作させて、居室2の二酸化炭素濃度を下げるよう制御する(ステップS15:Yes→ステップS16)。 If the average value of the calculated carbon dioxide concentration is equal to or higher than the second threshold value, the ventilation determination unit 220A instructs the ventilation control unit 210 to ventilate the living room 2 in which the user is present. The ventilation control unit 210 operates a fan of the ventilation device to control the carbon dioxide concentration in the living room 2 to be lowered (step S15: Yes → step S16).
 算出した二酸化炭素濃度の平均値が第二閾値より小さければ、換気決定部220Aは、換気制御部210にユーザーが存在する居室2を換気停止するように指示する。換気制御部210は、換気装置のファンを停止させる(ステップS15:No→ステップS17)。つまり、制御部200Aは、睡眠準備検知部320が睡眠準備状態であることを検知した場合において、判定部350Aが判定した携帯端末100の数が複数であるときには、以下のように制御する。すなわち、制御部200Aは、濃度記憶部300が記憶する、判定部350Aが判定した複数の携帯端末100それぞれを示す複数の端末情報それぞれに対応する入眠時濃度情報を取得する。そして、制御部200Aは、濃度取得部310が取得した居室2の二酸化炭素濃度が、取得した入眠時濃度情報それぞれが示す入眠時における二酸化炭素濃度の中で最大の二酸化炭素濃度に近づくように、換気装置による換気を制御する。つまり、第二閾値には、第一閾値の変更が反映されている。制御部200Aは、この第二閾値に基づいて、濃度取得部310が取得した居室2の二酸化炭素濃度が、複数の端末情報それぞれに対応する入眠時濃度情報が示す入眠時における二酸化炭素濃度の中で最大の二酸化炭素濃度に近づくように、換気装置による換気を制御する。 If the average value of the calculated carbon dioxide concentration is smaller than the second threshold value, the ventilation determination unit 220A instructs the ventilation control unit 210 to stop ventilation of the living room 2 in which the user is present. The ventilation control unit 210 stops the fan of the ventilation device (step S15: No → step S17). That is, when the sleep preparation detection unit 320 detects that the sleep preparation detection unit 320 is in the sleep preparation state, the control unit 200A controls as follows when the number of the mobile terminals 100 determined by the determination unit 350A is a plurality. That is, the control unit 200A acquires the sleep-onset concentration information corresponding to each of the plurality of terminal information indicating each of the plurality of mobile terminals 100 determined by the determination unit 350A, which is stored by the concentration storage unit 300. Then, the control unit 200A makes the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 approach the maximum carbon dioxide concentration among the carbon dioxide concentrations at sleep onset indicated by the acquired sleep-onset concentration information. Control ventilation with a ventilator. That is, the change of the first threshold is reflected in the second threshold. Based on this second threshold value, the control unit 200A determines that the carbon dioxide concentration of the living room 2 acquired by the concentration acquisition unit 310 is among the carbon dioxide concentrations at sleep onset indicated by the sleep onset concentration information corresponding to each of the plurality of terminal information. Control ventilation with a ventilator to approach the maximum carbon dioxide concentration in.
 次に、睡眠状態判定部340は居室2に存在する睡眠準備状態のすべてのユーザーが入眠したかどうかを判定する(ステップS18)。 Next, the sleep state determination unit 340 determines whether or not all the users in the sleep ready state existing in the living room 2 have fallen asleep (step S18).
 本実施の形態で説明すると、睡眠状態判定部340は居室2dのユーザーBとユーザーCが入眠したかどうかを判定する。ユーザーが3人以上存在する場合も、同様に判定を行う。 Explaining in this embodiment, the sleep state determination unit 340 determines whether or not the user B and the user C in the living room 2d have fallen asleep. When there are three or more users, the determination is made in the same manner.
 居室2に存在する睡眠準備状態であるすべてのユーザーが入眠に移行していない場合、居室2の二酸化炭素濃度をさらにあげるために、ステップS15の処理に戻る(ステップS18:No→ステップS15)。 If all the users who are in the sleep ready state existing in the living room 2 have not entered sleep, the process returns to the process of step S15 in order to further increase the carbon dioxide concentration in the living room 2 (step S18: No → step S15).
 これにより、本実施の形態に係る全館空調システムは、まだ入眠状態に移行していないユーザーを入眠状態に移行しやすくすることができる。 Thereby, the whole building air-conditioning system according to the present embodiment can easily shift the user who has not yet entered the sleep-onset state to the sleep-onset state.
 そして、すべてのユーザーが入眠に移行した場合は、システムコントローラ10Aは、換気制御処理を終了する(ステップS18:Yes)。 Then, when all the users have fallen asleep, the system controller 10A ends the ventilation control process (step S18: Yes).
 以上、本開示に係る換気システムの一例として実施の形態1に係る全館空調システム20及びシステムコントローラ10と、実施の形態2に係る全館空調システム及びシステムコントローラ10Aについて説明を行った。 As described above, as an example of the ventilation system according to the present disclosure, the whole building air conditioning system 20 and the system controller 10 according to the first embodiment and the whole building air conditioning system and the system controller 10A according to the second embodiment have been described.
 (変形例)
 上述したように、上記実施の形態1、2に係る全館空調システムは本開示に係る換気システムの一例であり、本開示の範囲は実施の形態1、2の内容に限定されるものではない。
(Modification example)
As described above, the whole building air conditioning system according to the first and second embodiments is an example of the ventilation system according to the present disclosure, and the scope of the present disclosure is not limited to the contents of the first and second embodiments.
 例えば、実施の形態1、2に係る全館空調システムは、ユーザーの入眠時における二酸化炭素濃度を示す入眠時濃度情報を濃度記憶部300に記憶しないよう変形しても良い。この変形に係る全館空調システムは、第一閾値及び第二閾値を固定値としたシステムとなり、より簡易な制御を行うシステムとすることができる。 For example, the whole building air-conditioning system according to the first and second embodiments may be modified so as not to store the sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user in the concentration storage unit 300. The whole building air-conditioning system related to this modification is a system in which the first threshold value and the second threshold value are fixed values, and can be a system that performs simpler control.
 また、実施の形態1、2に係る全館空調システムでは、二酸化炭素測定部101は携帯端末100に備えられるとしたが、以下のように変形しても良い。すなわち、二酸化炭素測定部101は、居室2に設置される換気装置、照明機器、換気装置の操作スイッチ、照明機器の操作スイッチ又は電源コンセント等に備えられても良い。また、二酸化炭素測定部101は、居室2に設置される空気清浄装置、扇風機、除湿装置、加湿装置及び空気調和装置等の家電機器に備えられるよう変形しても良い。また、二酸化炭素測定部101は、居室2内のどこかに単独で備えられるよう変更しても良い。これにより、これらの変形に係る全館空調システムは、構成の自由度を向上させることができる。 Further, in the whole building air conditioning system according to the first and second embodiments, the carbon dioxide measuring unit 101 is provided in the mobile terminal 100, but it may be modified as follows. That is, the carbon dioxide measuring unit 101 may be provided in a ventilation device, a lighting device, an operation switch of the ventilation device, an operation switch of the lighting device, a power outlet, or the like installed in the living room 2. Further, the carbon dioxide measuring unit 101 may be modified so as to be provided in home appliances such as an air purifying device, a fan, a dehumidifying device, a humidifying device, and an air conditioning device installed in the living room 2. Further, the carbon dioxide measuring unit 101 may be changed so as to be provided independently somewhere in the living room 2. As a result, the whole building air-conditioning system related to these modifications can improve the degree of freedom of configuration.
 また、睡眠準備検知部320は、睡眠状態判定部340の判定結果以外の情報に基づいて睡眠準備状態を検知するよう変形しても良い。この変形に係る睡眠準備検知部は、例えば、ユーザーが設定した就寝時刻によって、ユーザーが睡眠準備状態であることを検知する構成としても良い。これにより、この変形に係る睡眠準備検知部は、ユーザーの睡眠準備状態を比較的容易に検知することができ、また、本変形に係る全館空調システムは、別の構成で構築することができる。さらに、本変形に係る全館空調システムは、ユーザーの就寝時刻前に、ユーザーが存在する居室2の二酸化炭素濃度を第一閾値に近づけるように変形しても良い。この変形に係る全館空調システムは、例えば、ユーザーの就寝時刻1時間前に、二酸化炭素濃度が第三閾値以上になっても換気せずに、第一閾値以上で換気するように制御する。これによりユーザーが就寝準備状態に入った時に、居室2の二酸化炭素濃度が第一閾値になっているため、この変形に係る全館空調システムは、より入眠状態に至るまでの時間を短くすることができる。 Further, the sleep preparation detection unit 320 may be modified to detect the sleep preparation state based on information other than the determination result of the sleep state determination unit 340. The sleep preparation detection unit related to this modification may be configured to detect that the user is in the sleep preparation state, for example, by the bedtime set by the user. As a result, the sleep preparation detection unit related to this deformation can relatively easily detect the sleep preparation state of the user, and the entire building air conditioning system related to this deformation can be constructed with a different configuration. Further, the whole building air conditioning system according to this modification may be modified so that the carbon dioxide concentration of the living room 2 in which the user is present approaches the first threshold value before the user's bedtime. The whole building air-conditioning system according to this modification controls, for example, not to ventilate even if the carbon dioxide concentration reaches the third threshold value or more, but to ventilate at the first threshold value or more, one hour before the user's bedtime. As a result, when the user enters the bed-ready state, the carbon dioxide concentration in the living room 2 becomes the first threshold value, so that the whole building air-conditioning system related to this deformation can shorten the time until the user falls asleep. can.
 また、睡眠準備検知部320は、バイタルデータやユーザーの就寝時刻を用いてユーザーの睡眠準備状態を検知するのではなく、ユーザーによる、ユーザー自身が睡眠準備状態である旨の入力に基づいて、睡眠準備状態を検知するよう変形しても良い。例えば一例として、上記入力を受け付ける受付部は携帯端末100に設けられ、ユーザーが携帯端末100を介してユーザー自身が睡眠準備状態であることを入力し、この入力を受付部が受け付け、システムコントローラ10に通知を行う。これにより、この変形に係る睡眠準備検知部は、ユーザーが睡眠準備状態であることをより正確に検知することができる。つまり、受付部にてユーザー自身が睡眠準備状態であることの入力を受け付けることで、この変形に係る睡眠準備検知部は、ユーザーの睡眠準備状態を知ることができる。よって、この変形に係る睡眠準備検知部は、ユーザーの睡眠準備状態をより正確に、かつ容易に検知することができる。すなわち、この変形に係る全館空調システムは、さらにユーザーによる、ユーザー自身が睡眠準備状態である旨の入力を受け付ける受付部を備える。そして、この変形に係る睡眠準備検知部は、受付部が受け付ける入力に基づいて、ユーザーが睡眠準備状態であることを検知する。 Further, the sleep preparation detection unit 320 does not detect the user's sleep preparation state using vital data or the user's bedtime, but sleeps based on the user's input that the user is in the sleep preparation state. It may be modified to detect the ready state. For example, as an example, a reception unit that accepts the above input is provided in the mobile terminal 100, the user inputs that the user himself / herself is in a sleep preparation state via the mobile terminal 100, and the reception unit accepts this input, and the system controller 10 Notify to. As a result, the sleep preparation detection unit related to this deformation can more accurately detect that the user is in the sleep preparation state. That is, by receiving the input that the user himself / herself is in the sleep preparation state at the reception unit, the sleep preparation detection unit related to this deformation can know the sleep preparation state of the user. Therefore, the sleep preparation detection unit related to this deformation can more accurately and easily detect the sleep preparation state of the user. That is, the whole building air-conditioning system according to this modification further includes a reception unit for receiving an input from the user to the effect that the user himself / herself is in a sleep ready state. Then, the sleep preparation detection unit related to this deformation detects that the user is in the sleep preparation state based on the input received by the reception unit.
 また、睡眠準備検知部320は、例えば、各部屋にカメラを設置して、映像からユーザーの就寝準備状態を検知する等、他の方法によりユーザーが睡眠準備状態であることを検知するよう変形しても良い。これにより、この変形に係る全館空調システムは、様々な構成で構築することができる。 Further, the sleep preparation detection unit 320 is modified to detect that the user is in the sleep preparation state by another method, for example, by installing a camera in each room and detecting the user's sleep preparation state from the image. May be. As a result, the entire building air conditioning system related to this modification can be constructed with various configurations.
 また、実施の形態1に係る判定部350は携帯端末100が存在する居室2を判定しないよう変形しても良い。この場合、例えば事前にユーザーによってユーザー自身が就寝する居室2の情報がシステムコントローラ10に登録されることで、この変形に係る判定部はユーザーが就寝する居室2を特定することができる。そして、この変形に係る制御部はユーザーによって登録された居室2に対して換気制御を行うことができる。さらに、二酸化炭素測定部101を携帯端末100以外に備えさせて、濃度記憶部300にユーザーが過去入眠した時に二酸化炭素測定部101が測定した居室2の二酸化炭素濃度に記憶させるよう変形しても良い。これにより、この変形に係る全館空調システムは、携帯端末100が存在しなくも実施の形態に係る換気制御と同様の制御を行うことができる。これにより、この変形に係る全館空調システムは、様々な構成で構築成することができる。なお、この判定部350についての変形は、実施の形態2に係る判定部350Aに適用しても良い。 Further, the determination unit 350 according to the first embodiment may be modified so as not to determine the living room 2 in which the mobile terminal 100 exists. In this case, for example, by registering the information of the living room 2 in which the user himself / herself sleeps in the system controller 10 in advance, the determination unit related to this modification can specify the living room 2 in which the user sleeps. Then, the control unit related to this deformation can perform ventilation control for the living room 2 registered by the user. Further, even if the carbon dioxide measuring unit 101 is provided in a device other than the mobile terminal 100 and the concentration storage unit 300 is modified to store the carbon dioxide concentration in the living room 2 measured by the carbon dioxide measuring unit 101 when the user has fallen asleep in the past. good. As a result, the whole building air conditioning system according to this modification can perform the same control as the ventilation control according to the embodiment even if the mobile terminal 100 does not exist. As a result, the entire building air conditioning system related to this modification can be constructed with various configurations. The modification of the determination unit 350 may be applied to the determination unit 350A according to the second embodiment.
 また、実施の形態1ではシステムコントローラ10の制御部200により、実施の形態2では、システムコントローラ10Aの制御部200Aにより換気装置の制御を行ったが、携帯端末100で行うよう変形しても良い。この変形に係る全館空調システムは、例えば、携帯端末100をスマートフォンとして、スマートフォンにアプリなどのソフトウェアを提供して、スマートフォンにて換気装置の制御を行っても良い。これにより、この変形に係る全館空調システムは、ユーザーが携帯するスマートフォンにて換気装置を制御することができる。 Further, although the ventilation device is controlled by the control unit 200 of the system controller 10 in the first embodiment and by the control unit 200A of the system controller 10A in the second embodiment, it may be modified to be performed by the mobile terminal 100. .. In the whole building air-conditioning system related to this modification, for example, the mobile terminal 100 may be used as a smartphone, software such as an application may be provided to the smartphone, and the ventilation device may be controlled by the smartphone. As a result, the entire building air-conditioning system related to this modification can control the ventilation device with a smartphone carried by the user.
 さらに、実施の形態1、2に係る全館空調システムは、上述のスマートフォンとは別であるユーザーが装着するウェアラブル端末を利用して、スマートフォンによって換気制御を行うよう変形してもよい。この変形に係る全館空調システムは、例えば、ウェアラブル端末に、二酸化炭素測定部101とバイタルデータ測定部を備える。そして、二酸化炭素測定部101とバイタルデータ測定部の測定データをスマートフォンが取得し、スマートフォンが換気制御を行う。これにより、本変形に係るスマートフォンは、バイタルデータを取得することができ、より複雑な制御を本変形に係るスマートフォンが行うことができる。 Further, the whole building air-conditioning system according to the first and second embodiments may be modified so as to perform ventilation control by the smartphone by using a wearable terminal worn by the user, which is different from the above-mentioned smartphone. The whole building air-conditioning system according to this modification includes, for example, a carbon dioxide measuring unit 101 and a vital data measuring unit in a wearable terminal. Then, the smartphone acquires the measurement data of the carbon dioxide measuring unit 101 and the vital data measuring unit, and the smartphone performs ventilation control. As a result, the smartphone related to this transformation can acquire vital data, and the smartphone related to this transformation can perform more complicated control.
 また、実施の形態1、2に係る全館空調システムでは、一般住宅1に設置されたシステムコントローラ10(又はシステムコントローラ10A)が換気装置の換気制御を行ったが、クラウドを備えて、クラウドが換気装置の制御を行うよう変形してもよい。これにより、本変形に係る全館空調システムは、構成の自由度を向上できる。 Further, in the whole building air conditioning system according to the first and second embodiments, the system controller 10 (or the system controller 10A) installed in the general house 1 controls the ventilation of the ventilation device, but the cloud is provided and the cloud ventilates. It may be modified to control the device. As a result, the whole building air conditioning system related to this modification can improve the degree of freedom of configuration.
 (本開示の概要)
 本開示に係る換気システムは、換気装置と二酸化炭素測定部と睡眠準備検知部と制御部とを備えた構成にしたものである。換気装置は、所定空間の換気を行うためのものである。二酸化炭素測定部は、所定空間の二酸化炭素濃度を測定する。睡眠準備検知部は、所定空間内のユーザーが睡眠準備状態であることを検知する。そして、制御部は、睡眠準備検知部の検知結果と、二酸化炭素測定部が測定した二酸化炭素濃度とに基づいて、換気装置による換気を制御する。
(Summary of this disclosure)
The ventilation system according to the present disclosure is configured to include a ventilation device, a carbon dioxide measuring unit, a sleep preparation detection unit, and a control unit. The ventilation device is for ventilating a predetermined space. The carbon dioxide measuring unit measures the carbon dioxide concentration in a predetermined space. The sleep preparation detection unit detects that the user in the predetermined space is in the sleep preparation state. Then, the control unit controls ventilation by the ventilation device based on the detection result of the sleep preparation detection unit and the carbon dioxide concentration measured by the carbon dioxide measurement unit.
 このように、本開示に係る換気システムは、ユーザーが睡眠準備状態であることの検知結果に基づいて、所定空間の二酸化炭素濃度を換気装置によって制御する。つまり、本開示に係る換気システムは、ユーザーの睡眠準備状態を考慮して換気装置による換気を制御するため、ユーザーの睡眠準備状態に適した二酸化炭素濃度にし得る。よって、本開示に係る換気システムは、ユーザーの睡眠準備状態に適した空間の実現に利用し得る。 As described above, the ventilation system according to the present disclosure controls the carbon dioxide concentration in the predetermined space by the ventilation device based on the detection result that the user is in the sleep preparation state. That is, since the ventilation system according to the present disclosure controls the ventilation by the ventilation device in consideration of the sleep preparation state of the user, the carbon dioxide concentration suitable for the sleep preparation state of the user can be set. Therefore, the ventilation system according to the present disclosure can be used to realize a space suitable for the user's sleep preparation state.
 また、本開示に係る換気システムは、さらに入眠に適した二酸化炭素濃度を示す第一閾値と、第一閾値よりも大きい第二閾値とを記憶する濃度記憶部を備えても良い。そして、制御部は、睡眠準備検知部が、ユーザーが睡眠準備状態であることを検知した場合において、二酸化炭素測定部が測定した二酸化炭素濃度が第二閾値より小さいときには、換気装置による換気を停止するよう制御するという構成にしても良い。 Further, the ventilation system according to the present disclosure may further include a concentration storage unit that stores a first threshold value indicating a carbon dioxide concentration suitable for falling asleep and a second threshold value larger than the first threshold value. Then, the control unit stops ventilation by the ventilation device when the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is smaller than the second threshold value. It may be configured to control the operation.
 これにより、本開示に係る換気システムは、ユーザーが睡眠準備状態である場合に、ユーザーが存在する空間の二酸化炭素濃度を上げることができるため、ユーザーが眠りにつきやすい空間を実現することができる。よって、本開示に係る換気システムは、ユーザーが睡眠準備状態に入ってから入眠するまでの時間をより短くすることができる。 As a result, the ventilation system according to the present disclosure can increase the carbon dioxide concentration in the space in which the user is present when the user is in a sleep ready state, so that a space in which the user can easily fall asleep can be realized. Therefore, the ventilation system according to the present disclosure can shorten the time from the user entering the sleep preparation state to falling asleep.
 また、制御部は、睡眠準備検知部が、ユーザーが睡眠準備状態であることを検知した場合において、二酸化炭素測定部が測定した二酸化炭素濃度が第二閾値以上のときには、換気装置による換気を行うよう制御するという構成にしても良い。 Further, the control unit performs ventilation by the ventilation device when the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is equal to or higher than the second threshold value. It may be configured to control such as.
 これにより、本開示に係る換気システムは、ユーザーが睡眠準備状態である場合に、二酸化炭素濃度が上昇して、ユーザーの人体が危険になることを防ぐことができる。 Thereby, the ventilation system according to the present disclosure can prevent the carbon dioxide concentration from increasing and the user's human body from becoming dangerous when the user is in a sleep ready state.
 また、第二閾値は、入眠に適していると定義される二酸化炭素濃度の範囲内の値かつ人体に有害とされる二酸化炭素濃度よりも低い値であるという構成にしても良い。 Further, the second threshold value may be configured to be a value within the range of the carbon dioxide concentration defined as suitable for falling asleep and a value lower than the carbon dioxide concentration considered to be harmful to the human body.
 これにより、本開示に係る換気システムは、ユーザーが存在する空間の二酸化炭素濃度を、ユーザーが入眠に適しているとされる二酸化炭素の濃度範囲に維持することができる。 Thereby, the ventilation system according to the present disclosure can maintain the carbon dioxide concentration in the space where the user is present within the carbon dioxide concentration range which is considered to be suitable for the user to fall asleep.
 また、睡眠準備検知部は、ユーザーが設定した就寝時刻によって、ユーザーが睡眠準備状態であることを検知するという構成にしても良い。 Further, the sleep preparation detection unit may be configured to detect that the user is in the sleep preparation state according to the bedtime set by the user.
 これにより、本開示に係る換気システムは、ユーザーの睡眠準備状態をユーザーの設定した時刻によって、比較的容易に検知することができる。 Thereby, the ventilation system according to the present disclosure can relatively easily detect the sleep preparation state of the user at the time set by the user.
 また、本開示に係る換気システムは、さらにユーザーの血圧、心拍数、呼吸及び体動のうち少なくとも1つのデータをバイタルデータとして取得するバイタルデータ取得部を備えても良い。そして、睡眠準備検知部は、バイタルデータ取得部から取得したバイタルデータに基づいて、ユーザーが睡眠準備状態であることを検知するという構成にしても良い。 Further, the ventilation system according to the present disclosure may further include a vital data acquisition unit that acquires at least one data of the user's blood pressure, heart rate, respiration and body movement as vital data. Then, the sleep preparation detection unit may be configured to detect that the user is in the sleep preparation state based on the vital data acquired from the vital data acquisition unit.
 これにより、本開示に係る換気システムは、ユーザーの睡眠準備状態をバイタルデータより知ることができる。よって、ユーザーの睡眠準備状態をより正確に把握することができる。 Thereby, the ventilation system according to the present disclosure can know the sleep preparation state of the user from the vital data. Therefore, it is possible to more accurately grasp the sleep preparation state of the user.
 また、本開示に係る換気システムは、さらにユーザーによる、ユーザー自身が睡眠準備状態である旨の入力を受け付ける受付部を備え、睡眠準備検知部は、受付部が受け付ける入力に基づいて、ユーザーが睡眠準備状態であることを検知するという構成にしても良い。 Further, the ventilation system according to the present disclosure further includes a reception unit for receiving an input from the user to the effect that the user is in a sleep ready state, and the sleep preparation detection unit allows the user to sleep based on the input received by the reception unit. It may be configured to detect that it is in the ready state.
 これにより、本開示に係る換気システムは、ユーザーからの入力によってユーザー自身が睡眠準備状態であることを検知することができる。よって、本開示に係る換気システムは、ユーザーの睡眠準備状態をより正確に検知することができる。 Thereby, the ventilation system according to the present disclosure can detect that the user himself / herself is in a sleep ready state by the input from the user. Therefore, the ventilation system according to the present disclosure can more accurately detect the sleep preparation state of the user.
 また、本開示に係る換気システムは、さらに二酸化炭素測定部が測定した二酸化炭素濃度を取得する濃度取得部を備え、濃度記憶部は、さらにユーザーの入眠時における二酸化炭素濃度を示す入眠時濃度情報を記憶してもよい。そして、制御部は、睡眠準備検知部が睡眠準備状態であることを検知した場合に、濃度取得部が取得した二酸化炭素濃度が、濃度記憶部が記憶する入眠時濃度情報が示すユーザーの入眠時における二酸化炭素濃度に近づくように、換気装置による換気を制御するという構成にしても良い。 Further, the ventilation system according to the present disclosure further includes a concentration acquisition unit that acquires the carbon dioxide concentration measured by the carbon dioxide measurement unit, and the concentration storage unit further indicates the carbon dioxide concentration at the time of sleep onset of the user. May be memorized. Then, when the control unit detects that the sleep preparation detection unit is in the sleep preparation state, the carbon dioxide concentration acquired by the concentration acquisition unit is the sleep onset concentration information stored in the concentration storage unit when the user falls asleep. It may be configured to control the ventilation by the ventilation device so as to approach the carbon dioxide concentration in.
 これにより、本開示に係る換気システムは、ユーザーが睡眠準備状態に入った場合、ユーザーが存在する空間の二酸化炭素濃度を、ユーザーの入眠時における二酸化炭素濃度に近づけることができるので、ユーザーが眠りにつきやすい空間を実現することができる。よって、本開示に係る換気システムは、ユーザーが睡眠準備状態に入ってから入眠するまでの時間をより短くすることができる。 Thereby, the ventilation system according to the present disclosure can bring the carbon dioxide concentration of the space in which the user is present close to the carbon dioxide concentration at the time of falling asleep when the user enters the sleep preparation state, so that the user sleeps. It is possible to realize a space that is easy to get on. Therefore, the ventilation system according to the present disclosure can shorten the time from the user entering the sleep preparation state to falling asleep.
 また、二酸化炭素測定部は、所定空間に設けられた換気装置、照明機器、換気装置の操作スイッチ、照明機器の操作スイッチ、電源コンセント、家電機器及びユーザーが携帯する携帯端末の少なくとも1つに備えられるという構成にしても良い。 In addition, the carbon dioxide measuring unit is provided in at least one of a ventilation device, a lighting device, an operation switch of the ventilation device, an operation switch of the lighting device, a power outlet, a home electric appliance, and a portable terminal carried by the user, which are provided in a predetermined space. It may be configured to be possible.
 これにより、本開示に係る換気システムは、様々な構成で構築することができる。 Thereby, the ventilation system according to the present disclosure can be constructed with various configurations.
 また、濃度記憶部は、入眠時濃度情報とユーザーが所持する携帯端末を示す端末情報とを対応付けて記憶し、制御部は、濃度記憶部が記憶する入眠時濃度情報として、端末情報に対応する入眠時濃度情報を用いるという構成にしても良い。 Further, the concentration storage unit stores the sleep-onset concentration information in association with the terminal information indicating the mobile terminal possessed by the user, and the control unit corresponds to the terminal information as the sleep-onset concentration information stored in the concentration storage unit. It may be configured to use the concentration information at the time of falling asleep.
 これにより、本開示に係る換気システムは、例えば、携帯端末に二酸化炭素測定部を設けることで、各空間に二酸化炭素測定部を設置することを省略することができる。また、本開示に係る換気システムは、ユーザーの入眠時における二酸化炭素濃度をユーザーが携帯する携帯端末に関連付けて記憶している。従って、例えば、本開示に係る換気装置が換気を行う所定空間が複数ある場合に、ユーザーが存在する空間が変わっても、その空間の二酸化炭素濃度を、ユーザーの入眠時における二酸化炭素濃度に近づくように制御を行うことができる。よって、本開示に係る換気システムは、ユーザーがどの空間で睡眠する場合でも、ユーザーの睡眠準備状態に適した二酸化炭素濃度にすることができる。 Thereby, in the ventilation system according to the present disclosure, for example, by providing a carbon dioxide measuring unit in a mobile terminal, it is possible to omit installing a carbon dioxide measuring unit in each space. Further, the ventilation system according to the present disclosure stores the carbon dioxide concentration when the user falls asleep in association with the mobile terminal carried by the user. Therefore, for example, when the ventilation device according to the present disclosure has a plurality of predetermined spaces for ventilation, even if the space in which the user exists changes, the carbon dioxide concentration in the space approaches the carbon dioxide concentration when the user falls asleep. It can be controlled as follows. Therefore, the ventilation system according to the present disclosure can have a carbon dioxide concentration suitable for the user's sleep preparation state regardless of the space in which the user sleeps.
 本開示に係る換気システムは、さらに所定空間に存在する携帯端末の数を判定する判定部を備え、ユーザーは複数であり、濃度記憶部は、複数のユーザーそれぞれについて、ユーザーの入眠時濃度情報とユーザーの端末情報とを対応付けて記憶してもよい。そして、制御部は、睡眠準備検知部が睡眠準備状態であることを検知した場合において、判定部が判定した携帯端末の数が複数であるときには、以下のように換気装置による換気を制御しても良い。すなわち、制御部は、濃度取得部が取得した二酸化炭素濃度が、濃度記憶部が記憶する、判定部が判定した複数の携帯端末それぞれを示す複数の端末情報それぞれに対応する入眠時濃度情報が示す入眠時における二酸化炭素濃度の中で最大又は平均の二酸化炭素濃度に近づくように、換気装置による換気を制御するという構成にしても良い。 The ventilation system according to the present disclosure further includes a determination unit for determining the number of mobile terminals existing in a predetermined space, and has a plurality of users. It may be stored in association with the user's terminal information. Then, when the control unit detects that the sleep preparation detection unit is in the sleep preparation state and the number of mobile terminals determined by the determination unit is a plurality, the control unit controls ventilation by the ventilation device as follows. Is also good. That is, in the control unit, the carbon dioxide concentration acquired by the concentration acquisition unit is stored in the concentration storage unit, and the sleep concentration information corresponding to each of the plurality of terminal information indicating each of the plurality of mobile terminals determined by the determination unit is indicated. Ventilation by a ventilation device may be controlled so as to approach the maximum or average carbon dioxide concentration among the carbon dioxide concentrations at the time of falling asleep.
 これにより、制御部は、同じ空間に携帯端末を携帯する複数のユーザーが存在する場合でも、すべてのユーザーに適した入眠時における二酸化炭素濃度に近づくように制御する。そのため、本開示に係る換気システムは、複数のユーザーが存在する空間の二酸化炭素濃度を、そこに存在するすべてのユーザーの睡眠準備状態に適した二酸化炭素濃度にすることができる。 As a result, the control unit controls the carbon dioxide concentration at the time of falling asleep, which is suitable for all users even when there are a plurality of users carrying mobile terminals in the same space. Therefore, the ventilation system according to the present disclosure can make the carbon dioxide concentration in the space where a plurality of users exist to be suitable for the sleep preparation state of all the users existing there.
 また、制御部は、濃度記憶部が記憶する入眠時濃度情報が示す入眠時における二酸化炭素濃度に基づいて第一閾値を変更し、変更した第一閾値に基づいて、換気装置による換気を制御するという構成にしても良い。 Further, the control unit changes the first threshold value based on the carbon dioxide concentration at sleep onset indicated by the sleep-onset concentration information stored in the concentration storage unit, and controls ventilation by the ventilation device based on the changed first threshold value. It may be configured as.
 これにより、本開示に係る換気システムは、所定空間の入眠に適した二酸化炭素濃度を、所定空間で睡眠するユーザーの入眠時の二酸化炭素濃度に変更する。そのため、本開示に係る換気システムは、所定空間でユーザーが睡眠準備状態のときの二酸化炭素濃度をよりユーザーの睡眠準備状態に適した二酸化炭素濃度にすることができる。 Thereby, the ventilation system according to the present disclosure changes the carbon dioxide concentration suitable for falling asleep in the predetermined space to the carbon dioxide concentration at the time of falling asleep of the user who sleeps in the predetermined space. Therefore, the ventilation system according to the present disclosure can set the carbon dioxide concentration when the user is in a sleep ready state in a predetermined space to a carbon dioxide concentration more suitable for the user's sleep prepared state.
 本開示は、所定空間の換気を行う換気システムとして有用である。 This disclosure is useful as a ventilation system that ventilates a predetermined space.
 1    一般住宅
 2    居室
 2a   居室
 2b   居室
 2c   居室
 2d   居室
 3    搬送ファン
 3a   搬送ファン
 3b   搬送ファン
 3c   搬送ファン
 3d   搬送ファン
 4    外気導入ファン
 5    排気ファン
 5a   排気ファン
 5b   排気ファン
 5c   排気ファン
 5d   排気ファン
 6    循環ファン
 6a   循環ファン
 6b   循環ファン
 6c   循環ファン
 6d   循環ファン
 9    エアコンディショナー
 10   システムコントローラ
 10A  システムコントローラ
 11   居室温度センサー
 11a  居室温度センサー
 11b  居室温度センサー
 11c  居室温度センサー
 11d  居室温度センサー
 12   居室湿度センサー
 12a  居室湿度センサー
 12b  居室湿度センサー
 12c  居室湿度センサー
 12d  居室湿度センサー
 14   空調室温度センサー
 15   空調室湿度センサー
 16   加湿器
 17   除湿器
 18   空調室
 19   入出力端末
 20   全館空調システム
 100  携帯端末
 100a 携帯端末
 100b 携帯端末
 100c 携帯端末
 101  二酸化炭素測定部
 101a 二酸化炭素測定部
 101b 二酸化炭素測定部
 101c 二酸化炭素測定部
 200  制御部
 200A 制御部
 210  換気制御部
 220  換気決定部
 220A 換気決定部
 221  濃度比較部
 221A 濃度比較部
 222  閾値変更部
 300  濃度記憶部
 301  入眠時二酸化炭素濃度テーブル
 302  端末情報
 303  入眠時濃度情報
 304  入眠時二酸化炭素濃度テーブル
 305  端末情報
 306  入眠時濃度情報
 310  濃度取得部
 320  睡眠準備検知部
 330  バイタルデータ取得部
 340  睡眠状態判定部
 350  判定部
 350A 判定部
 1001 換気システム
 1002 換気装置
 1003 制御ユニット
 1004 二酸化炭素検出部
 A    ユーザー
 B    ユーザー
 C    ユーザー
 CO2a 二酸化炭素濃度
 CO2b 二酸化炭素濃度
 CO2c 二酸化炭素濃度
1 General house 2 Living room 2a Living room 2b Living room 2c Living room 2d Living room 3 Conveying fan 3a Conveying fan 3b Conveying fan 3c Conveying fan 3d Conveying fan 4 Outside air introduction fan 5 Exhaust fan 5a Exhaust fan 5b Exhaust fan 5c Exhaust fan 5d Exhaust fan 6 6a Circulation fan 6b Circulation fan 6c Circulation fan 6d Circulation fan 9 Air conditioner 10 System controller 10A System controller 11 Living room temperature sensor 11a Living room temperature sensor 11b Living room temperature sensor 11c Living room temperature sensor 11d Living room temperature sensor 12 Living room humidity sensor 12a Living room humidity sensor 12c Living room humidity sensor 12d Living room humidity sensor 14 Air conditioning room temperature sensor 15 Air conditioning room humidity sensor 16 Humidifier 17 Dehumidifier 18 Air conditioning room 19 Input / output terminal 20 Whole building air conditioning system 100 Mobile terminal 100a Mobile terminal 100b Mobile terminal 100c Mobile terminal 101 carbon dioxide measurement unit 101a carbon dioxide measurement unit 101b carbon dioxide measurement unit 101c carbon dioxide measurement unit 200 control unit 200A control unit 210 ventilation control unit 220 ventilation determination unit 220A ventilation determination unit 221 concentration comparison unit 221A concentration comparison unit 222 threshold change unit 300 Concentration storage unit 301 Sleeping carbon dioxide concentration table 302 Terminal information 303 Sleeping concentration information 304 Sleeping carbon dioxide concentration table 305 Terminal information 306 Sleeping concentration information 310 Concentration acquisition unit 320 Sleep preparation detection unit 330 Ventilation data acquisition unit 340 Sleep Status judgment unit 350 Judgment unit 350A Judgment unit 1001 Ventilation system 1002 Ventilation device 1003 Control unit 1004 Carbon dioxide detector A User B User C User CO2a Carbon dioxide concentration CO2b Carbon dioxide concentration CO2c Carbon dioxide concentration

Claims (12)

  1.  所定空間の換気を行うための換気装置と、
     前記所定空間の二酸化炭素濃度を測定する二酸化炭素測定部と、
     前記所定空間内のユーザーが睡眠準備状態であることを検知する睡眠準備検知部と、
     前記睡眠準備検知部の検知結果と、前記二酸化炭素測定部が測定した前記二酸化炭素濃度とに基づいて、前記換気装置による前記換気を制御する制御部と、を備える
     ことを特徴とする換気システム。
    A ventilation device for ventilating a predetermined space,
    A carbon dioxide measuring unit that measures the carbon dioxide concentration in the predetermined space,
    A sleep preparation detection unit that detects that the user in the predetermined space is in a sleep preparation state,
    A ventilation system comprising: a control unit for controlling the ventilation by the ventilation device based on the detection result of the sleep preparation detection unit and the carbon dioxide concentration measured by the carbon dioxide measurement unit.
  2.  前記換気システムは、さらに
     入眠に適した前記二酸化炭素濃度を示す第一閾値と、前記第一閾値よりも大きい第二閾値とを記憶する濃度記憶部を備え、
     前記制御部は、
     前記睡眠準備検知部が、前記ユーザーが睡眠準備状態であることを検知した場合において、前記二酸化炭素測定部が測定した前記二酸化炭素濃度が前記第二閾値より小さいときには、前記換気装置による前記換気を停止するよう制御する
     ことを特徴とする請求項1に記載の換気システム。
    The ventilation system further includes a concentration storage unit that stores a first threshold value indicating the carbon dioxide concentration suitable for falling asleep and a second threshold value larger than the first threshold value.
    The control unit
    When the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is smaller than the second threshold value, the ventilation by the ventilation device is performed. The ventilation system according to claim 1, wherein the ventilation system is controlled to stop.
  3.  前記制御部は、
     前記睡眠準備検知部が、前記ユーザーが睡眠準備状態であることを検知した場合において、前記二酸化炭素測定部が測定した前記二酸化炭素濃度が前記第二閾値以上のときには、前記換気装置による前記換気を行うよう制御する
     ことを特徴とする請求項2に記載の換気システム。
    The control unit
    When the sleep preparation detection unit detects that the user is in the sleep preparation state and the carbon dioxide concentration measured by the carbon dioxide measurement unit is equal to or higher than the second threshold value, the ventilation by the ventilation device is performed. The ventilation system according to claim 2, wherein the ventilation system is controlled to perform.
  4.  前記第二閾値は、
     入眠に適していると定義される前記二酸化炭素濃度の範囲内の値かつ人体に有害とされる前記二酸化炭素濃度よりも低い値である
     ことを特徴とする請求項2又は3に記載の換気システム。
    The second threshold is
    The ventilation system according to claim 2 or 3, wherein the value is within the range of the carbon dioxide concentration defined as suitable for falling asleep and is lower than the carbon dioxide concentration which is harmful to the human body. ..
  5.  前記睡眠準備検知部は、
     前記ユーザーが設定した就寝時刻によって、前記ユーザーが前記睡眠準備状態であることを検知する
     ことを特徴とする請求項1から4のいずれか一項に記載の換気システム。
    The sleep preparation detection unit is
    The ventilation system according to any one of claims 1 to 4, wherein the user detects that the user is in the sleep ready state according to the bedtime set by the user.
  6.  前記換気システムは、さらに
     前記ユーザーの血圧、心拍数、呼吸及び体動のうち少なくとも1つのデータをバイタルデータとして取得するバイタルデータ取得部を備え、
     前記睡眠準備検知部は、
     前記バイタルデータ取得部から取得した前記バイタルデータに基づいて、前記ユーザーが前記睡眠準備状態であることを検知する
     ことを特徴とする請求項1から4のいずれか一項に記載の換気システム。
    The ventilation system further includes a vital data acquisition unit that acquires at least one data of the user's blood pressure, heart rate, respiration, and body movement as vital data.
    The sleep preparation detection unit is
    The ventilation system according to any one of claims 1 to 4, wherein the user is detected to be in the sleep preparation state based on the vital data acquired from the vital data acquisition unit.
  7.  前記換気システムは、さらに
     前記ユーザーによる、前記ユーザー自身が前記睡眠準備状態である旨の入力を受け付ける受付部を備え、
     前記睡眠準備検知部は、
     前記受付部が受け付ける前記入力に基づいて、前記ユーザーが前記睡眠準備状態であることを検知する
    ことを特徴とする請求項1から4のいずれか一項に記載の換気システム。
    The ventilation system further includes a reception unit that receives an input from the user that the user himself / herself is in the sleep ready state.
    The sleep preparation detection unit is
    The ventilation system according to any one of claims 1 to 4, wherein the user detects that the user is in the sleep preparation state based on the input received by the reception unit.
  8.  前記換気システムは、さらに
     前記二酸化炭素測定部が測定した前記二酸化炭素濃度を取得する濃度取得部を備え、
     前記濃度記憶部は、さらに
     前記ユーザーの入眠時における前記二酸化炭素濃度を示す入眠時濃度情報を記憶し、
     前記制御部は、
     前記睡眠準備検知部が前記睡眠準備状態であることを検知した場合に、前記濃度取得部が取得した前記二酸化炭素濃度が、前記濃度記憶部が記憶する前記入眠時濃度情報が示す前記ユーザーの入眠時における前記二酸化炭素濃度に近づくように、前記換気装置による前記換気を制御する
     ことを特徴とする請求項2から4のいずれか一項に記載の換気システム。
    The ventilation system further includes a concentration acquisition unit that acquires the carbon dioxide concentration measured by the carbon dioxide measurement unit.
    The concentration storage unit further stores sleep-onset concentration information indicating the carbon dioxide concentration at the time of sleep onset of the user.
    The control unit
    When the sleep preparation detection unit detects that it is in the sleep preparation state, the carbon dioxide concentration acquired by the concentration acquisition unit is the sleep onset of the user indicated by the sleep onset concentration information stored in the concentration storage unit. The ventilation system according to any one of claims 2 to 4, wherein the ventilation by the ventilation device is controlled so as to approach the carbon dioxide concentration at the time.
  9.  前記二酸化炭素測定部は、
     前記所定空間に設けられた前記換気装置、照明機器、前記換気装置の操作スイッチ、前記照明機器の操作スイッチ、電源コンセント、家電機器及び前記ユーザーが携帯する携帯端末の少なくとも1つに備えられる
     ことを特徴とする請求項8記載の換気システム。
    The carbon dioxide measuring unit is
    It is provided in at least one of the ventilation device, the lighting device, the operation switch of the ventilation device, the operation switch of the lighting device, the power outlet, the home electric appliance, and the portable terminal carried by the user, which are provided in the predetermined space. The ventilation system according to claim 8.
  10.  前記濃度記憶部は、
     前記入眠時濃度情報と前記ユーザーが所持する携帯端末を示す端末情報とを対応付けて記憶し、
     前記制御部は、
     前記濃度記憶部が記憶する前記入眠時濃度情報として、前記端末情報に対応する前記入眠時濃度情報を用いる
     ことを特徴とする請求項8に記載の換気システム。
    The concentration storage unit is
    The sleep-onset concentration information and the terminal information indicating the mobile terminal possessed by the user are stored in association with each other.
    The control unit
    The ventilation system according to claim 8, wherein the sleep-onset concentration information corresponding to the terminal information is used as the sleep-onset concentration information stored in the concentration storage unit.
  11.  前記換気システムは、さらに
     前記所定空間に存在する前記携帯端末の数を判定する判定部を備え、
     前記ユーザーは複数であり、
     前記濃度記憶部は、
     複数の前記ユーザーそれぞれについて、前記ユーザーの前記入眠時濃度情報と前記ユーザーの前記端末情報とを対応付けて記憶し、
     前記制御部は、
     前記睡眠準備検知部が前記睡眠準備状態であることを検知した場合において、前記判定部が判定した前記携帯端末の数が複数であるときには、前記濃度取得部が取得した前記二酸化炭素濃度が、前記濃度記憶部が記憶する、前記判定部が判定した複数の前記携帯端末それぞれを示す複数の前記端末情報それぞれに対応する前記入眠時濃度情報が示す入眠時における前記二酸化炭素濃度の中で最大又は平均の前記二酸化炭素濃度に近づくように、前記換気装置による前記換気を制御する
     ことを特徴とする請求項10に記載の換気システム。
    The ventilation system further includes a determination unit for determining the number of the mobile terminals existing in the predetermined space.
    There are multiple users
    The concentration storage unit is
    For each of the plurality of users, the sleep-onset concentration information of the user and the terminal information of the user are stored in association with each other.
    The control unit
    When the sleep preparation detection unit detects that the sleep preparation state is in the sleep preparation state, and the number of the mobile terminals determined by the determination unit is a plurality, the carbon dioxide concentration acquired by the concentration acquisition unit is the carbon dioxide concentration. The maximum or average of the carbon dioxide concentrations at sleep onset indicated by the sleep-onset concentration information corresponding to each of the plurality of terminal information indicating each of the plurality of mobile terminals determined by the determination unit, which is stored by the concentration storage unit. 10. The ventilation system according to claim 10, wherein the ventilation by the ventilation device is controlled so as to approach the carbon dioxide concentration of the above.
  12.  前記制御部は、
     前記濃度記憶部が記憶する前記入眠時濃度情報が示す前記入眠時における前記二酸化炭素濃度に基づいて前記第一閾値を変更し、変更した前記第一閾値に基づいて、前記換気装置による前記換気を制御する
     ことを特徴とする請求項8から11のいずれか一項に記載の換気システム。
    The control unit
    The first threshold value is changed based on the carbon dioxide concentration at the time of falling asleep indicated by the concentration information at the time of falling asleep stored in the concentration storage unit, and the ventilation by the ventilation device is performed based on the changed first threshold value. The ventilation system according to any one of claims 8 to 11, characterized in that it is controlled.
PCT/JP2021/014952 2020-05-14 2021-04-08 Ventilation system WO2021229964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522561A JPWO2021229964A1 (en) 2020-05-14 2021-04-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084832 2020-05-14
JP2020-084832 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021229964A1 true WO2021229964A1 (en) 2021-11-18

Family

ID=78525780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014952 WO2021229964A1 (en) 2020-05-14 2021-04-08 Ventilation system

Country Status (2)

Country Link
JP (1) JPWO2021229964A1 (en)
WO (1) WO2021229964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294808A (en) * 2022-01-12 2022-04-08 清华大学 Fresh air control system and method adapting to personnel working efficiency requirement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186840A (en) * 1998-12-22 2000-07-04 Matsushita Electric Works Ltd Air conditioning device
JP2007098138A (en) * 2005-10-07 2007-04-19 Samsung Electronics Co Ltd Deep sleep and awakening guide system, method and program
CN202631975U (en) * 2012-04-13 2012-12-26 南通普瑞特机械有限公司 Wall clock with carbon dioxide detector
CN104545448A (en) * 2013-10-23 2015-04-29 西安敏海电子科技有限公司 Water dispenser with carbon dioxide monitor and humidifier
CN108958047A (en) * 2018-07-09 2018-12-07 西安交通大学 A kind of intelligent sleep system and its working method
CN109044272A (en) * 2018-07-20 2018-12-21 渝新智能科技(上海)有限公司 Sleep state monitoring and sleep environment parameter regulation method, system and terminal device
CN109386940A (en) * 2018-09-30 2019-02-26 珠海格力电器股份有限公司 Improve device, method and the air-conditioning of sleep comfort level
WO2020075854A1 (en) * 2018-10-12 2020-04-16 ダイキン工業株式会社 Air flow discharging device, sleeper supporting device, and time notification device
JP2020071621A (en) * 2018-10-30 2020-05-07 カマルク特定技術研究所株式会社 Monitoring method, program and information processor
JP2020159672A (en) * 2019-03-28 2020-10-01 株式会社Nttドコモ Co2 concentration adjusting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186840A (en) * 1998-12-22 2000-07-04 Matsushita Electric Works Ltd Air conditioning device
JP2007098138A (en) * 2005-10-07 2007-04-19 Samsung Electronics Co Ltd Deep sleep and awakening guide system, method and program
CN202631975U (en) * 2012-04-13 2012-12-26 南通普瑞特机械有限公司 Wall clock with carbon dioxide detector
CN104545448A (en) * 2013-10-23 2015-04-29 西安敏海电子科技有限公司 Water dispenser with carbon dioxide monitor and humidifier
CN108958047A (en) * 2018-07-09 2018-12-07 西安交通大学 A kind of intelligent sleep system and its working method
CN109044272A (en) * 2018-07-20 2018-12-21 渝新智能科技(上海)有限公司 Sleep state monitoring and sleep environment parameter regulation method, system and terminal device
CN109386940A (en) * 2018-09-30 2019-02-26 珠海格力电器股份有限公司 Improve device, method and the air-conditioning of sleep comfort level
WO2020075854A1 (en) * 2018-10-12 2020-04-16 ダイキン工業株式会社 Air flow discharging device, sleeper supporting device, and time notification device
JP2020071621A (en) * 2018-10-30 2020-05-07 カマルク特定技術研究所株式会社 Monitoring method, program and information processor
JP2020159672A (en) * 2019-03-28 2020-10-01 株式会社Nttドコモ Co2 concentration adjusting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294808A (en) * 2022-01-12 2022-04-08 清华大学 Fresh air control system and method adapting to personnel working efficiency requirement
CN114294808B (en) * 2022-01-12 2022-07-22 清华大学 Fresh air control system and method adapting to personnel working efficiency requirements

Also Published As

Publication number Publication date
JPWO2021229964A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6941772B2 (en) Air conditioning system, air conditioning system controller
JP5132334B2 (en) Air conditioning control device and air conditioning control system using the same
CN109458710B (en) Control method and device of air conditioner, storage medium and air conditioner
US20090065596A1 (en) Systems and methods for increasing building space comfort using wireless devices
CN108618461B (en) Air conditioning control method and air conditioning control system
KR102359867B1 (en) Control method of air conditioner and air conditioner
CN208720447U (en) A kind of air-conditioner control system
JP2021099203A (en) Air conditioning system, server, method for controlling air conditioner, and air conditioner
WO2021229964A1 (en) Ventilation system
JP2020200998A (en) Ventilator and ventilation system
JP6941938B2 (en) Humidifier and environmental control system
JP7434874B2 (en) ventilation system
JP7216370B2 (en) Sleep conditioning systems and programs
JP6765059B2 (en) Air conditioning control system and air conditioning control method
JP6552711B2 (en) Air conditioner and air conditioning system
JP2002013788A (en) Sensor device and air-conditioning system
KR20170124423A (en) HOME DEVICE CONTROL APPARATUS AND SYSTEM USING IoT BED
EP3926246B1 (en) A dynamic air supply system and a method for providing dynamic air flow in a clean room
JP2020143825A (en) Air distribution system
CN220355529U (en) Indoor unit of air conditioner and air conditioner
JP7325653B2 (en) air conditioning system
WO2023105564A1 (en) Air conditioner
WO2020195337A1 (en) Air conditioning system
CN214469214U (en) Indoor environment control device
US20220364753A1 (en) Air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803011

Country of ref document: EP

Kind code of ref document: A1