WO2021228030A1 - 一种主信息块的确定方法及装置 - Google Patents

一种主信息块的确定方法及装置 Download PDF

Info

Publication number
WO2021228030A1
WO2021228030A1 PCT/CN2021/092682 CN2021092682W WO2021228030A1 WO 2021228030 A1 WO2021228030 A1 WO 2021228030A1 CN 2021092682 W CN2021092682 W CN 2021092682W WO 2021228030 A1 WO2021228030 A1 WO 2021228030A1
Authority
WO
WIPO (PCT)
Prior art keywords
mib
frequency band
information block
synchronization information
ofdm symbol
Prior art date
Application number
PCT/CN2021/092682
Other languages
English (en)
French (fr)
Inventor
乔梁
张佳胤
贾琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110183216.6A external-priority patent/CN113676429A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21804815.5A priority Critical patent/EP4135432A4/en
Priority to CA3178058A priority patent/CA3178058A1/en
Publication of WO2021228030A1 publication Critical patent/WO2021228030A1/zh
Priority to US18/055,378 priority patent/US20230188402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and device for determining a master information block (MIB).
  • MIB master information block
  • FR1 frequency range 1
  • FR2 mainly refers to the bandwidth of 24.25GHz to 52.6GHz.
  • the frequency band between 6425MHz and 7125MHz (U6GHz) is used as a shared frequency band, which belongs to the FR1 category.
  • the technologies deployed in shared frequency bands are collectively called wireless unlicensed band technologies (new radio unlicensed, NRU).
  • NRU new radio unlicensed
  • the system working on the shared frequency band needs to support all or some of the following key technologies: listen before talk (LBT), transmit power control (TPC) and dynamic frequency selection (DFS) .
  • LBT listen before talk
  • TPC transmit power control
  • DFS dynamic frequency selection
  • the terminal device After the terminal device scans the frequency points in each band, it will blindly detect the signal information block pattern (synchronization signal block pattern, SS/PBCH block pattern) sent by the base station.
  • the synchronization information block (SS/PBCH block) is the primary information demodulated by the terminal device during the initial access process. It is mainly composed of the primary synchronization signal (PSS), the secondary synchronization signal (SSS) and the physical
  • the broadcast channel (physical broadcast channel, PBCH) consists of 4 orthogonal frequency division multiplexing symbols (OFDM) in the time and frequency domain and 20 resource blocks (RBs) in the frequency domain.
  • OFDM orthogonal frequency division multiplexing symbols
  • RBs resource blocks
  • This application provides a method and device for determining the MIB of the master information block, which is used to solve the problem that the terminal device in the prior art cannot determine whether the received MIB belongs to the authorized frequency band or the unlicensed frequency band, which causes the terminal device to fail to demodulate the MIB. , And unable to access the cell on the designated frequency band.
  • this application provides a method for determining MIB.
  • the method includes: a network device sends a synchronization information block to a terminal device, and at least one field included in the synchronization information block is used to indicate whether the MIB is used for unauthorized use.
  • the MIB of the frequency band after the terminal device receives the synchronization information block from the network device, it determines whether the MIB is an MIB applied to an unlicensed frequency band according to at least one field contained in the synchronization information block, the at least One field is located in the MIB.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the MIB field in the synchronization information block.
  • the at least one field is a spare field, and the spare field includes one bit; when the one bit is 0, the MIB is a MIB applied to an unlicensed frequency band, Otherwise, the MIB is the MIB applied to the licensed frequency band; or, when the one bit is 1, the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band .
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the detected spare field.
  • the at least one field is a demodulation reference signal type A position field
  • the demodulation reference signal type A position field includes one bit; when the one bit is 0, the MIB Is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; when the one bit is 1, the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB It is the MIB applied to the licensed frequency band.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the detected demodulation reference signal type A location field.
  • the at least one field is a synchronization signal subcarrier offset field
  • the synchronization signal subcarrier offset field includes four bits; the least significant bit of the four bits is used to indicate the Whether the MIB is an MIB applied to an unlicensed frequency band; or, the most significant bit of the four bits is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band; or, any one of the four bits Bits are used to indicate whether the MIB is an MIB applied to an unlicensed frequency band; or, at least two of the four bits jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the MIB when the least significant bit, the most significant bit, or any one of the bits is 0, the MIB is an MIB applied to an unlicensed frequency band; otherwise, the MIB is MIB applied to a licensed frequency band; or, when the least significant bit, the most significant bit, or any one of the bits is 1, the MIB is an MIB applied to an unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band.
  • the at least one field includes at least two of a spare field, a demodulation reference signal type A position field, or a synchronization signal subcarrier offset field; the bit joint indication included in the at least two fields Whether the MIB is an MIB applied to an unlicensed frequency band.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to at least one field of the MIB in the synchronization information block.
  • this application provides a method for determining MIB.
  • the method may include: a network device sends a synchronization information block to a terminal device.
  • the synchronization information block contains at least one of the PSS, SSS, and PBCH information.
  • the domain position is used to indicate whether the MIB contained in the synchronization information block is an MIB applied to an unlicensed frequency band; after the terminal device receives the synchronization information block from the network device, it is based on the PSS, SSS and SSS contained in the synchronization information block.
  • the time domain location of at least one item in the PBCH information determines whether the MIB is an MIB applied to an unlicensed frequency band.
  • the terminal device can determine whether the received MIB is the MIB applied to the unlicensed frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block, so as to enable accurate subsequent access The corresponding cell.
  • the time domain position of at least one of the PSS and the SSS is used to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band, which may specifically be: In the case where the PSS is located on the first orthogonal frequency division multiplexing OFDM symbol of the synchronization information block, the MIB is an MIB applied to an unlicensed frequency band; otherwise, the MIB is an MIB applied to a licensed frequency band; Or, when the PSS is located on the third OFDM symbol of the synchronization information block, the MIB is an MIB applied to an unlicensed frequency band, otherwise, the MIB is an MIB applied to a licensed frequency band; or, In the case where the SSS is located on the third OFDM symbol of the synchronization information block, the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; or In the case where the SSS is located on the first OFDM symbol of the synchronization information block
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the detected time domain position of at least one of the PSS and the SSS.
  • the time-domain position of the PBCH information is used to indicate whether the MIB contained in the synchronization information block is an MIB applied to an unlicensed frequency band, which may specifically be: the first PBCH information is located in the synchronization information The first frequency domain position on the first OFDM symbol of the block, and/or the second PBCH information is located at the second frequency domain position on the first OFDM symbol of the synchronization information block, the MIB is The MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; or, in the first frequency domain position where the first PBCH information is located on the third OFDM symbol of the synchronization information block, And, in the case that the second PBCH information is located at the second frequency domain position on the third OFDM symbol of the synchronization information block, the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the application MIB in a licensed frequency band; or, when the first demodulation reference signal DMRS is
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the time domain position of the detected PCBH information, or according to the position of the DMRS included in the detected PBCH information.
  • the first frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block
  • the second frequency domain position includes the synchronization
  • the subcarrier sequence number of the information block is ⁇ 192,193,...,239 ⁇ ; or, the first frequency domain position includes the subcarrier sequence number ⁇ 192,193,...,239 ⁇ of the synchronization information block
  • the second frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block.
  • the third frequency domain position includes subcarriers whose subcarrier sequence numbers of the synchronization information block are ⁇ 0+v, 4+v, ..., 44+v ⁇
  • the fourth frequency The domain position includes the subcarriers of the synchronization information block whose subcarrier sequence numbers are ⁇ 192+v, 196+v, ..., 236+v ⁇ ; or, the first frequency domain position includes the subcarriers of the synchronization information block.
  • the carrier sequence number is ⁇ 192+v, 196+v, ..., 236+v ⁇ subcarriers
  • the second frequency domain position includes the subcarrier sequence number of the synchronization information block is ⁇ 0+v, 4+v, administrat, 44+v ⁇ sub-carriers; among them, Is the cell identifier.
  • the subcarrier sequence number ⁇ 0,1,...,55,183,184,...,191 ⁇ on the first OFDM symbol of the synchronization information block, and the first OFDM symbol of the synchronization information block The subcarriers with subcarrier sequence numbers ⁇ 48,49,...,55,183,184,...,239 ⁇ on the three OFDM symbols do not contain information; or, the subcarriers on the first OFDM symbol of the synchronization information block
  • the subcarrier whose subcarrier sequence number is does not contain information; or, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48,49,...,55 ⁇ and the subcarrier sequence number is ⁇
  • the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 0,1,...,55 ⁇ and the subcarrier sequence number is ⁇ 183,184,...,239 ⁇ Does not contain information;
  • the sub-carrier sequence number on the third OFDM symbol of the synchronization information block is ⁇ 48,49,...,55 ⁇ and the subcarrier sequence number is ⁇ 183,184,...,192 ⁇ The above does not contain information.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band, and the synchronization information block does not contain any information position.
  • the present application provides a method for determining MIB, the method includes: a network device sends a synchronization information block to a terminal device, and at least one field included in the synchronization information block is used to indicate that the MIB is of the first type.
  • the terminal device receives the synchronization information block from the network device, it determines that the MIB is the first type MIB or the second type according to at least one field contained in the synchronization information block Type MIB; wherein the at least one field is located in the MIB; the first type MIB corresponds to a licensed frequency band, the second type MIB corresponds to an unlicensed frequency band, or the first type MIB corresponds to an unlicensed frequency band, The second type of MIB corresponds to an authorized frequency band.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to at least one field in the synchronization information block, and then accurately access the corresponding cell subsequently.
  • the at least one field is a spare field, and the spare field includes one bit; when the one bit is 0, the MIB is a first type MIB; when the one bit is In the case of 1, the MIB is the second type of MIB.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the specific value of the detected spare field.
  • the at least one field is a demodulation reference signal type A position field, and the demodulation reference signal type A position field includes one bit; when the one bit is 0, the MIB The MIB is the first type of MIB; when the one bit is 1, the MIB is the second type of MIB.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the specific value of the detected demodulation reference signal type A location field.
  • the at least one field is a synchronization signal subcarrier offset field
  • the synchronization signal subcarrier offset field includes four bits; the least significant bit of the four bits is used to indicate the The MIB is the first type MIB or the second type MIB; or, the most significant bit of the four bits is used to indicate that the MIB is the first type MIB or the second type MIB; or, among the four bits, Any bit is used to indicate that the MIB is a first-type MIB or a second-type MIB; or, at least two of the four bits jointly indicate that the MIB is a first-type MIB or a second-type MIB.
  • the MIB when the least significant bit, the most significant bit, or any one of the bits is 0, the MIB is the first type of MIB; When the most significant bit or any one of the bits is 1, the MIB is the second type of MIB.
  • the at least one field includes at least two of a spare field, a demodulation reference signal type A position field, or a synchronization signal subcarrier offset field; the bit joint indication included in the at least two fields
  • the MIB is a first type MIB or a second type MIB.
  • the present application provides a method for determining MIB.
  • the method may include: a network device sends a synchronization information block to a terminal device.
  • the synchronization information block includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and physical broadcast
  • the time domain position of at least one item in the channel PBCH information is used to indicate that the MIB contained in the synchronization information block is a first type MIB or a second type MIB; after the terminal device receives the synchronization information block from the network device ,
  • the terminal device receives the synchronization information block from the network device ,
  • the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block determine that the MIB is the first type of MIB or the second type of MIB; wherein, the first type of MIB corresponds to authorization Frequency band, the second type MIB corresponds to an unlicensed frequency band, or the first type MIB corresponds to an unlicensed
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the time domain position of at least one of the PSS, SSS and PBCH information contained in the synchronization information block , So that subsequent accurate access to the corresponding cell.
  • the time domain position of at least one of the PSS and the SSS is used to indicate that the MIB contained in the synchronization information block is the first type of MIB or the second type of MIB, which may specifically be: In the case where the PSS is located on the first orthogonal frequency division multiplexing OFDM symbol of the synchronization information block, the MIB is the first type of MIB; when the PSS is located on the third OFDM symbol of the synchronization information block In the case of a symbol, the MIB is a second type MIB; and/or, in a case where the SSS is located on the third OFDM symbol of the synchronization information block, the MIB is a first type MIB; in In the case where the SSS is located on the first OFDM symbol of the synchronization information block, the MIB is a second type MIB.
  • the terminal device can determine whether the received MIB is applied to the unlicensed frequency band or the authorized frequency band according to the detected time domain position of at least one of the PSS and SSS.
  • the time domain position of the PBCH information is used to indicate that the MIB contained in the synchronization information block is the first type of MIB or the second type of MIB, which may specifically be: when the first PBCH information is located in the synchronization The first frequency domain position on the first OFDM symbol of the information block, and/or the second PBCH information is located at the second frequency domain position on the first OFDM symbol of the synchronization information block, the MIB MIB of the first type; the first PBCH information is located in the first frequency domain position on the third OFDM symbol of the synchronization information block, and the second PBCH information is located in the third frequency domain of the synchronization information block.
  • the MIB is a second type MIB; or, when the first demodulation reference signal DMRS is located at the third frequency on the first OFDM symbol of the synchronization information block Domain position, and/or, in the case where the second DMRS is located at the fourth frequency domain position on the first OFDM symbol of the synchronization information block, the MIB is a first type MIB; In the case that the third frequency domain position on the third OFDM symbol of the synchronization information block, and the second DMRS is located at the fourth frequency domain position on the third OFDM symbol of the synchronization information block, the MIB is a second type of MIB; wherein, the first DMRS is included in the first PBCH information, and the second DMRS is included in the second PBCH information.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or not according to the time domain position of the detected PCBH information, or according to the position of the DMRS included in the detected PBCH information. MIB applied to licensed frequency bands.
  • the first frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block
  • the second frequency domain position includes the synchronization
  • the subcarrier sequence number of the information block is ⁇ 192,193,...,239 ⁇ ; or, the first frequency domain position includes the subcarrier sequence number ⁇ 192,193,...,239 ⁇ of the synchronization information block
  • the second frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block.
  • the third frequency domain position includes subcarriers whose subcarrier sequence numbers of the synchronization information block are ⁇ 0+v, 4+v, ..., 44+v ⁇
  • the fourth frequency The domain position includes the subcarriers of the synchronization information block whose subcarrier sequence numbers are ⁇ 192+v, 196+v, ..., 236+v ⁇ ; or, the first frequency domain position includes the subcarriers of the synchronization information block.
  • the carrier sequence number is ⁇ 192+v, 196+v, ..., 236+v ⁇ subcarriers
  • the second frequency domain position includes the subcarrier sequence number of the synchronization information block is ⁇ 0+v, 4+v, administrat, 44+v ⁇ sub-carriers; among them, Is the cell identifier.
  • the subcarrier sequence number ⁇ 0,1,...,55,183,184,...,191 ⁇ on the first OFDM symbol of the synchronization information block, and the first OFDM symbol of the synchronization information block The subcarriers with subcarrier sequence numbers ⁇ 48,49,...,55,183,184,...,239 ⁇ on the three OFDM symbols do not contain information; or, the subcarriers on the first OFDM symbol of the synchronization information block
  • the subcarrier sequence number of the subcarrier does not contain information; or, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48,49, whil,55 ⁇ and the subcarrier sequence number is ⁇
  • the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 0,1,...,55 ⁇ and the subcarrier sequence number is ⁇ 183,184,...,239 ⁇ Does not contain information;
  • the sub-carrier sequence number on the third OFDM symbol of the synchronization information block is ⁇ 48,49,...,55 ⁇ and the subcarrier sequence number is ⁇ 183,184,...,192 ⁇ The above does not contain information.
  • the terminal device can determine that the received MIB is a MIB applied to an unlicensed frequency band, and the synchronization information block does not contain any information position, or it can determine that the received MIB is a licensed MIB. In the case of the MIB of the frequency band, the synchronization information block does not contain any information position.
  • the present application also provides an MIB determining device.
  • the MIB determining device may be a terminal device, and the MIB determining device has implementation of the first aspect or each possible design example of the first aspect, The function of the terminal device in each possible design example of the second aspect or the second aspect, each possible design example of the third aspect or the third aspect, or each possible design example of the fourth aspect or the fourth aspect.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the MIB determining device includes a transceiver unit and a processing unit, and these units can execute the above-mentioned first aspect or each possible design example of the first aspect, the second aspect or the second aspect
  • the corresponding function of the terminal device in each possible design example of the fourth aspect or the fourth aspect please refer to the details in the method example for details Description, I won’t repeat it here.
  • the structure of the MIB determining device includes a transceiver, a processor, and optionally a memory.
  • the transceiver is used to send and receive data, and to communicate with other devices in the communication system.
  • the processor is configured to support the MIB determining device to execute the above-mentioned first aspect or each possible design example of the first aspect, the second aspect or each possible design example of the second aspect, and the third Corresponding functions of the terminal device in each possible design example of the aspect or the third aspect, and each possible design example of the fourth aspect or the fourth aspect.
  • the memory is coupled with the processor, and it stores program instructions and data necessary for the MIB determining device.
  • the present application also provides an MIB determining device, the MIB determining device may be a network device, and the MIB determining device has implementation of the above-mentioned first aspect or each possible design example of the first aspect,
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the MIB determining device includes a transceiver unit and a processing unit, and these units can execute the above-mentioned first aspect or each possible design example of the first aspect, the second aspect or the second aspect
  • the corresponding function of the network device in each possible design example of the fourth aspect or the fourth aspect please refer to the details in the method example for details Description, I won’t repeat it here.
  • the structure of the MIB determining device includes a transceiver, a processor, and optionally a memory.
  • the transceiver is used to send and receive data, and to communicate with other devices in the communication system.
  • the processor is configured to support the MIB determining device to execute the foregoing first aspect or each possible design example of the first aspect, the second aspect or each possible design example of the second aspect, and the third Corresponding functions of the network device in each possible design example of the aspect or the third aspect, and each possible design example of the fourth aspect or the fourth aspect.
  • the memory is coupled with the processor, and it stores program instructions and data necessary for the device.
  • an embodiment of the present application provides a communication system, which may include the aforementioned terminal device and network device.
  • a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are run on a computer, the computer executes the first aspect of the embodiments of the present application and its Any possible design, or the second aspect and any possible design, or the third aspect and any possible design, or the fourth aspect and any possible design.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (RAM), read-only memory (ROM), and electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable
  • CD-ROM or other optical disk storage magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer.
  • the embodiments of the present application provide a computer program product including computer program code or instructions, which, when run on a computer, enables the computer to implement the method described in any of the foregoing aspects.
  • the present application also provides a chip, which is coupled with a memory, and is configured to read and execute program instructions stored in the memory to implement any of the above methods.
  • Figure 1 is a schematic structural diagram of a synchronization information block provided by this application.
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by this application.
  • FIG. 3 is a flowchart of a method for determining MIB provided by this application.
  • FIG. 4 is a flowchart of another MIB determination method provided by this application.
  • FIG. 5 is a schematic structural diagram of another synchronization information block provided by this application.
  • Figure 6 is a schematic structural diagram of another synchronization information block provided by this application.
  • FIG. 7 is a schematic structural diagram of another synchronization information block provided by this application.
  • FIG. 8 is a flowchart of another MIB determination method provided by this application.
  • FIG. 9 is a flowchart of another MIB determination method provided by this application.
  • FIG. 10 is a schematic structural diagram of a MIB determining device provided by this application.
  • FIG. 11 is a structural diagram of a MIB determining device provided by this application.
  • FIG. 12 is a flowchart of another MIB determination method provided by this application.
  • FIG. 13 is a schematic diagram of sending a synchronization information block provided by this application.
  • FIG. 14 is a schematic diagram of sending another synchronization information block provided by this application.
  • the embodiments of the present application provide a method and device for MIB determination to solve the problem that the terminal device in the prior art cannot determine whether the received MIB belongs to a licensed frequency band or an unlicensed frequency band, which causes the terminal device to fail to demodulate the MIB.
  • the method and device described in the present application are based on the same technical concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the synchronization information block SS/PBCH block from the network equipment to the terminal equipment can be as shown in the structure shown in Figure 1.
  • the synchronization information block includes PSS, SSS and PBCH, and consists of 4 OFDM in the time and frequency domain and frequency domain.
  • the upper 20 RBs are composed of a two-dimensional area.
  • the synchronization information block may also be referred to as a synchronization signal block.
  • terminal equipment can complete cell synchronization and rough symbol-level timing synchronization by demodulating PSS and SSS;
  • PBCH carries MIB information from high-level configuration, and terminal equipment can complete system frame-level timing synchronization by demodulating MIB information to obtain system Information block 1/remaining minimum system information (system information block/remaining minimum system information, SIB1/RMSI) location information facilitates further demodulation of the information in SIB1/RMSI, that is, demodulation of SIB1/RMSI through parameters (pdcch-ConfigSIB1) Type 0-physical downlink control channel (physical downlink control channel, type 0-PDCCH) and physical downlink shared channel (physical downlink shared channel, PDSCH) channels.
  • SIB1/RMSI system information block/remaining minimum system information
  • the terminal equipment obtains the specific time domain position of the type0-PDCCH according to the correspondence table stipulated in the agreement.
  • the table used by the terminal equipment working in the licensed frequency band to obtain the specific time domain position of the type0-PDCCH is different from the table used by the terminal equipment working in the unlicensed frequency band to obtain the specific time domain position of the type0-PDCCH.
  • the content of MIBs operating in licensed frequency bands and unlicensed frequency bands are different, which is mainly reflected in the difference between the parameter common subcarrier spacing (subCarrierSpacingCommon) and synchronization signal subcarrier offset (ssb-SubcarrierOffset) in the MIB.
  • subCarrierSpacingCommon parameter common subcarrier spacing
  • ssb-SubcarrierOffset synchronization signal subcarrier offset
  • the parameter "subCarrierSpacingCommon” indicates the subcarrier spacing used by SIB1, Msg2/4, paging, and other system information (open system interconnect reference model (OSI));
  • the parameter "ssb” -SubcarrierOffset” means the subcarrier offset between the SS/PBCH Block and the overlapping common resource block (CRB), that is, Kssb, the subcarrier numbered 0 among the lowest RB numbers occupied by the SS/PBCH Block and the CRB The middle number is the interval between 0 subcarriers.
  • the sub-carrier spacing (SCS) of the terminal device demodulating SIB1 is the same as the SCS of the SS/PBCH Block with quasi co-location (QCL) relationship, so the parameter "subCarrierSpacingCommon "Will be used for other purposes.
  • the MIB applied to the licensed frequency band is different from the MIB applied to the unlicensed frequency band.
  • this frequency band may exist Part of the licensed frequency band and part of the unlicensed frequency band, in other regions, such a frequency band is a licensed frequency band. Therefore, for the terminal device, it is impossible to determine whether the received MIB is applied to the licensed frequency band or the unlicensed frequency band, which causes the terminal device to fail to demodulate the MIB and cannot access the cell on the designated frequency band.
  • this application proposes a MIB determination method to solve the above-mentioned problem, so that the terminal device can determine whether the received MIB is applied to a licensed frequency band or an unlicensed frequency band.
  • the MIB corresponding to the authorized frequency band can be distinguished from the MIB used in the unlicensed frequency band.
  • the MIB corresponding to the authorized frequency band can be called the first type MIB, and the MIB corresponding to the unlicensed frequency band is called the MIB
  • the MIB corresponding to the licensed frequency band may be called the new MIB, and the MIB corresponding to the unlicensed frequency band may be called the old MIB; or the MIB corresponding to the licensed frequency band may be called the old MIB, and the MIB corresponding to the unlicensed frequency band may be called the new MIB. MIB.
  • MIB MIB.
  • At least one item refers to one or more items
  • multiple item refers to two or more items.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • FIG. 2 shows the architecture of a possible communication system to which the MIB determination method provided in the embodiment of the present application is applicable.
  • the communication system works in the shared frequency bands of U6GHz (6425MHz-7125MHz) and 52.6GHz-71GHz.
  • the architecture of the communication system may include one network device and multiple terminal devices, where the multiple terminal devices are shown in FIG. 2 by taking user equipment (UE) 1-UE5 as an example.
  • the network device can communicate with UE1 to UE5, the communication link includes uplink, downlink, and side-link transmission (side-link, SL), and the information transmitted in the communication link includes the data information actually transmitted. And control information used to indicate or schedule actual data.
  • UE3 to UE5 can also form a sub-communication system, and UE3 and UE4 can perform side link transmission based on D2D technology.
  • the network device is a device with a wireless transceiver function or a chip that can be installed in the network device.
  • the network device includes, but is not limited to: a base station (gNB), a radio network controller (RNC), and a node B (Node B).
  • gNB base station
  • RNC radio network controller
  • Node B node B
  • B B, NB
  • base station controller BSC
  • base transceiver station base transceiver station, BTS
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit, BBU
  • the access point AP
  • wireless relay node wireless backhaul node
  • transmission point transmission and reception point, TRP or transmission point, TP
  • WIFI wireless fidelity
  • It can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU).
  • BBU baseband unit
  • DU distributed unit
  • the terminal device may also be referred to as a UE, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • terminal devices with wireless transceiver functions and chips that can be set in the aforementioned terminal devices are collectively referred to as terminal devices.
  • FIG. 1 is only a schematic diagram, and this application does not specifically limit the type of the communication system, and the number and type of devices included in the communication system.
  • the method for determining MIB provided by the embodiment of the present application is applicable to the communication system shown in FIG. Referring to Figure 3, the specific process of the method may include:
  • Step 301 The network device determines a synchronization information block, where at least one field included in the synchronization information block is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band, and the at least one field is located in the MIB.
  • Step 302 The network device sends the synchronization information block to the terminal device.
  • Step 303 The terminal device determines whether the MIB is an MIB applied to an unlicensed frequency band according to the at least one field included in the synchronization information block.
  • whether the MIB is a MIB applied to an unlicensed frequency band can be interpreted in the following three ways: it only indicates whether the MIB is applied to an unlicensed band MIB; it only indicates whether the MIB is applied to an unlicensed band.
  • the MIB of the licensed frequency band indicates whether the MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to at least one field in the synchronization information block.
  • an existing unused field spare field in the MIB may be used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the spare field when the spare field is empty, it means that the MIB is applied to a licensed frequency band; when the spare field is not empty, it means that the MIB is applied to a licensed frequency band.
  • the spare field includes a bit, which can be indicated by bit mapping. The specific method can be:
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, when the one bit is 1, In the case, or in the case where the one bit is empty, the MIB is an MIB applied to a licensed frequency band. or
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, when the one bit is 0 In the case, or in the case where the one bit is empty, the MIB is an MIB applied to a licensed frequency band.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to whether the detected spare field is empty, or according to the specific value of the detected spare field.
  • an existing field demodulation reference signal type A position (dmrs-TypeA-Position) field in the MIB may be used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • This field indicates the time domain position of the first DMRS on the downlink or uplink.
  • "Pos2" indicates that the first DMRS in the slot is located on the third OFDM symbol (OFDM symbol #2), and "pos3" indicates that the first DMRS in the slot is located on the fourth OFDM symbol (OFDM symbol #2). #3)
  • the default time domain position of the first DMRS is "pos2" or "pos3".
  • the field dmrs-TypeA-Position can be omitted, so dmrs can be used at this time -TypeA-Position field to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the dmrs-TypeA-Position field when the dmrs-TypeA-Position field is empty, it means that the MIB is an MIB applied to a licensed frequency band; when the dmrs-TypeA-Position field is not empty, it means The MIB is an MIB applied to a licensed frequency band.
  • the dmrs-TypeA-Position field includes 1 bit, which can be indicated by bit-mapping, and the specific method can be:
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, in the one When the bit is 1, or when the one bit is empty, the MIB is an MIB applied to a licensed frequency band. or
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, in the one When the bit is 0, or when the one bit is empty, the MIB is an MIB applied to a licensed frequency band.
  • the terminal device can determine whether the received MIB is applicable according to whether the dmrs-TypeA-Position field is detected to be empty, or according to the specific value of the detected dmrs-TypeA-Position field. MIB of unlicensed frequency band.
  • an existing field synchronization signal subcarrier offset (ssb-SubcarrierOffset) field in the MIB may be used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • This field indicates the offset of the sub-carrier between the SS/PBCH Block and the overlapping CRB, that is, Kssb.
  • Kssb value demodulated by the terminal device is greater than 24, it means that the current SS/PBCH Block detected by the terminal device does not have RMSI information that has a QCL relationship with it. But at the same time, this value may not be provided to the terminal device.
  • the terminal device will derive Kssb based on the frequency domain position between SS/PBCH Block and PointA, where PointA corresponds to the carrier of CRB#0 (that is, CRB numbered 0). #0 (ie, the center point of the carrier with carrier number 0). Therefore, for systems operating on U6GHZ and 52.6GHz ⁇ 71GHz, the ssb-SubcarrierOffset field in the MIB can be used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the ssb-SubcarrierOffset field when the ssb-SubcarrierOffset field is empty, it means that the MIB is applied to a licensed frequency band; when the ssb-SubcarrierOffset field is not empty, it means that the MIB is MIB applied to licensed frequency bands.
  • the ssb-SubcarrierOffset field includes 4 bits. Specifically, the ssb-SubcarrierOffset field can be implemented in the following four ways to indicate whether the MIB is an MIB applied to an unlicensed frequency band:
  • Manner a1 The least significant bit (1-bit LSB) of the four bits included in the ssb-SubcarrierOffset field is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • Manner a2 The most significant bit (1-bit MSB) of the four bits included in the ssb-SubcarrierOffset field is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • Manner a3 Any one of the four bits included in the ssb-SubcarrierOffset field is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • Manner a4 At least two of the four bits included in the ssb-SubcarrierOffset field jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the MIB when the least significant bit, the most significant bit, or any one of the bits is 0, the MIB is the MIB applied to the unlicensed frequency band, otherwise , The MIB is the MIB applied to the licensed frequency band; at this time, when the least significant bit, the most significant bit, or any one of the bits is 1, or when the least significant bit, the least significant bit, or the When the most significant bit or any one of the bits is empty, the MIB is an MIB applied to a licensed frequency band. or
  • the MIB When the least significant bit, the most significant bit, or any one of the bits is 1, the MIB is an MIB applied to an unlicensed frequency band; otherwise, the MIB is an MIB applied to a licensed frequency band; At this time, when the least significant bit, the most significant bit, or any one of the bits is 0, or when the least significant bit, the most significant bit, or any one of the bits is empty In the case of, the MIB is an MIB applied to a licensed frequency band.
  • At least two of the four bits included in the ssb-SubcarrierOffset field jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the specific method may be: Different values composed of at least two bits in the ssb-SubcarrierOffset field indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise the MIB is the MIB applied to the licensed frequency band; in this case, the two When the bits is "00", “10” or "11", or when the two bits are empty, the MIB is an MIB applied to a licensed frequency band.
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise the MIB is the MIB applied to the licensed frequency band; in this case, the MIB
  • the MIB When the two bits are "01”, "00” or "11", or when the two bits are empty, the MIB is an MIB applied to a licensed frequency band.
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; in this case, the three When the bits are "010", “000”, “111”, etc., or when the three bits are empty, the MIB is an MIB applied to a licensed frequency band.
  • the above two bits or three bits may be consecutive bits among the four bits included in the ssb-SubcarrierOffset field, or may be non-consecutive bits, which is not limited in this application.
  • the received MIB is an MIB applied to an unlicensed frequency band according to whether the detected ssb-SubcarrierOffset field is empty, or according to the specific value of the detected ssb-SubcarrierOffset field.
  • the at least one field may include at least two of the spare field, the dmrs-TypeA-Position field, or the ssb-SubcarrierOffset field; in an embodiment If the at least two fields are empty, it means that the MIB is an MIB applied to a licensed frequency band; if the at least two fields are not empty, it means that the MIB is an MIB applied to a licensed frequency band. MIB. In another embodiment, the bits included in the at least two fields jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the bits included in the at least two fields jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band
  • it may specifically be: by combining the spare field and the dmrs-TypeA-Position
  • the 2 bits of the field indicate whether the MIB is applied to an unlicensed band; or, by combining at least 2 bits of the spare field and the ssb-SubcarrierOffset field to indicate whether the MIB is applied to unlicensed bands.
  • the MIB of the licensed frequency band or, by combining at least 2 bits of the dmrs-TypeA-Position field and the ssb-SubcarrierOffset field to indicate whether the MIB is an MIB applied to an unlicensed frequency band; or by combining the spare At least 3 bits in the field, the dmrs-TypeA-Position field, and the ssb-SubcarrierOffset field indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the specific value of the combined bit is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the spare field and the 2 bits of the dmrs-TypeA-Position field are combined to indicate whether the MIB is an MIB applied to an unlicensed frequency band
  • the two bits are "01”
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise the MIB is the MIB applied to the licensed frequency band; at this time, when the two bits are "01", "00" or "11", or in the case of When the two bits are empty, the MIB is an MIB applied to a licensed frequency band.
  • the terminal device can determine whether the received MIB is an MIB applied to an unlicensed frequency band according to the fields in the synchronization information block.
  • the MIB determination method provided by the embodiments of the present application is suitable for the communication system shown in FIG. Communication system.
  • the specific process of the method may include:
  • Step 401 The network device determines a synchronization information block, and the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block is used to indicate whether the MIB contained in the synchronization information block is applied to an unlicensed frequency band MIB.
  • Step 402 The network device sends the synchronization information block to the terminal device.
  • Step 403 The terminal device determines whether the MIB is an MIB applied to an unlicensed frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information included in the synchronization information block.
  • the terminal device determines whether the received MIB is an MIB applied to an unlicensed frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block.
  • the time domain position of at least one of the PSS and the SSS may be used to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band.
  • the synchronization information block is composed of PSS, SSS, and PBCH.
  • the subcarrier sequence numbers occupying the synchronization information block are ⁇ 56,57,...182 ⁇ (that is, the subcarrier sequence numbers #56 ⁇ #182) among the 127 subcarriers. Carrier.
  • the subcarrier sequence number may also be referred to as the subcarrier number, which is not limited in this application.
  • PSS uses an M sequence modulated by binary phase shift keying (BPSK) with a length of 127.
  • BPSK binary phase shift keying
  • PSS is generated through 3 cyclic shifts of the BPSK M sequence.
  • the formula for generating the PSS sequence is as follows:
  • x(i+7) (x(i+4)+x(i))mod2,
  • d PSS (n) is the PSS sequence
  • x(i) represents the base sequence
  • i represents the number
  • i is greater than or equal to 1.
  • x 0 (i+7) (x 0 (i+4)+x 0 (i))mod2,
  • x 1 (i+7) (x 1 (i+4)+x 1 (i))mod2,
  • d SSS (n) is the SSS sequence
  • x 0 (i) and x 1 (i) respectively represent the base sequence
  • i represents the number.
  • the PSS and SSS sequences are not the same. Therefore, in this first optional implementation manner, this can be achieved by swapping the positions (or relative positions) of the PSS and SSS in the synchronization information block in the time domain.
  • the structure of the synchronization information block may be as shown in FIG. 5. Among them, by comparing the synchronization information block shown in FIG. 5 with the synchronization information block shown in FIG.
  • the time domain position of the PSS is the third OFDM symbol of the synchronization information block (that is, OFDM symbol #0), and the time domain position of the SSS is the first OFDM symbol of the synchronization information block (that is, OFDM symbol #0). OFDM symbol #2).
  • the frequency domain positions of the PSS and SSS after the swap have not changed, and they are still subcarriers with subcarrier sequence numbers ⁇ 56,57,...,182 ⁇ in the synchronization information block.
  • some of the parameters in table 7.4.3.1-1 in TS 38.211 corresponding to the synchronization information block shown in Fig. 5 can be as shown in Table 1 below:
  • the data in bold italics in Table 1 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1. That is, the modification of the time domain position of PSS and SSS.
  • the time domain position of at least one of the PSS and the SSS is used to indicate whether the MIB included in the synchronization information block is applied to an unlicensed frequency band.
  • MIB can specifically include the following situations:
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; In the case where the PSS is located on the third OFDM symbol of the synchronization information block, the MIB is an MIB applied to a licensed frequency band; or
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; In the case where the PSS is located on the first OFDM symbol of the synchronization information block, the MIB is an MIB applied to a licensed frequency band; or
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; In the case where the SSS is located on the first OFDM symbol of the synchronization information block, the MIB is an MIB applied to a licensed frequency band; or
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; In the case where the SSS is located on the third OFDM symbol of the synchronization information block, the MIB is an MIB applied to a licensed frequency band; or
  • the MIB is an MIB applied to an unlicensed frequency band
  • the MIB is the MIB applied to the licensed frequency band
  • the PSS is located on the first OFDM symbol of the synchronization information block
  • the SSS is located on the first OFDM symbol of the synchronization information block
  • the MIB is the MIB applied to the licensed frequency band
  • the MIB is an MIB applied to an unlicensed frequency band
  • the MIB is the MIB applied to the licensed frequency band
  • the PSS is located on the third OFDM symbol of the synchronization information block
  • the SSS is located on the third OFDM symbol of the synchronization information block
  • the MIB is an MIB applied to a licensed frequency band.
  • the terminal device may detect any one of the above situations in the process of demodulating the synchronization information block (for example, an autocorrelation processing method). Whether the received MIB is the MIB applied to the unlicensed frequency band. Exemplarily, when the terminal device determines the MIB at the designated location by comparison and demodulation, it may be:
  • the terminal device uses the PSS sequence on the OFDM symbol #0 to compare or demodulate the subcarrier sequence numbers #56 ⁇ #182. If the PSS signal is demodulated, it means that the MIB is the MIB applied to the licensed frequency band, Otherwise, it means that the MIB is an MIB applied to an unlicensed frequency band; or if the PSS signal is demodulated, it means that the MIB is an MIB applied to an unlicensed frequency band; otherwise, it indicates that the MIB is an MIB applied to a licensed frequency band;
  • the terminal device uses the SSS sequence on the OFDM symbol #2 to compare or demodulate the subcarrier numbers #56 ⁇ #182. If the SSS signal is demodulated, it means that the MIB is applied to the licensed frequency band. MIB, otherwise it means that the MIB is a MIB applied to an unlicensed frequency band; or if the SSS signal is demodulated, it means that the MIB is a MIB applied to an unlicensed frequency band, otherwise it means that the MIB is a MIB applied to a licensed frequency band ;
  • the terminal device uses the PSS sequence and the SSS sequence on the OFDM symbol #0 and OFDM symbol #2 to compare or demodulate the subcarrier sequence numbers #56 ⁇ #182 respectively, if the PSS signal and the SSS signal are demodulated separately Signal, it means that the MIB is a MIB applied to a licensed frequency band; otherwise, it means that the MIB is a MIB applied to an unlicensed frequency band; or if a PSS signal and an SSS signal are demodulated separately, it means that the MIB is a The MIB of the authorized frequency band, otherwise it means that the MIB is the MIB applied to the authorized frequency band.
  • the time domain position of the PBCH information may be used to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band.
  • the time domain position of the PBCH in the synchronization information block is in the second OFDM symbol (that is, OFDM symbol #1) and the fourth OFDM symbol of the synchronization information block.
  • the symbol (ie OFDM symbol #3) occupies 240 sub-carriers each, and the third OFDM symbol (ie OFDM symbol #2) occupies a total of 96 sub-carriers (including sub-carrier sequence numbers #0 ⁇ #47 and sub-carrier sequence numbers). #192 ⁇ #239 corresponding subcarriers).
  • this can be achieved by changing the time domain position of the PBCH on the third OFDM symbol of the synchronization information block.
  • the structure of the synchronization information block after the PBCH time domain position is changed may be as shown in FIG. 6.
  • Figure 6 includes three possible situations. Comparing the synchronization information block shown in Figure 6 (a) with the synchronization information block shown in Figure 1, it can be seen that the subcarrier sequence number on the first OFDM symbol of the synchronization information block in Figure 6 (a) is ⁇ 192,193, ..., 239 ⁇ contains part of the PBCH information, and the third OFDM symbol of the synchronization information block contains part of the PBCH information on the subcarrier whose sequence number is ⁇ 0,1,...,47 ⁇ .
  • some of the parameters in table 7.4.3.1-1 in TS 38.211 corresponding to the synchronization information block shown in Figure 6 (a) can be as shown in Table 2 below:
  • the data in bold italics in Table 2 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • Table 2 it can be seen from Table 2 that the PBCH information on the first OFDM symbol and the third OFDM symbol of the synchronization information block has changed, that is, after the change, the first OFDM symbol of the synchronization information block
  • the upper subcarrier sequence number ⁇ 192,193,...,239 ⁇ contains part of the PBCH information, and the subcarrier sequence number ⁇ 0,1,...,47 ⁇ on the third OFDM symbol of the synchronization information block
  • the carrier contains part of the PBCH information. Since the PDCH contains the DMRS, the time domain position of the DMRS in the corresponding modified PBCH is also changed.
  • the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 192+v,196 +v,...,236+v ⁇ subcarriers contain part of the DMRS
  • the subcarrier sequence number on the third OFDM symbol of the synchronization information block is ⁇ 0+v,4+v,...,44+v ⁇ Part of the DMRS is included on the sub-carriers.
  • the position that does not contain any information will also change accordingly. The specific changes are shown in the data corresponding to Setto 0 in Table 2.
  • the first synchronization information block The subcarrier sequence number on the OFDM symbol is ⁇ 0,1,...,55,183,184,...,191 ⁇ , and the subcarrier sequence number on the third OFDM symbol of the synchronization information block is ⁇ 48,49,... , 55, 183, 184, ..., 239 ⁇ does not contain any information.
  • the data in bold italics in Table 3 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • Table 3 it can be seen from Table 3 that the PBCH information on the first OFDM symbol and the third OFDM symbol of the synchronization information block has changed, that is, after the change, the first OFDM symbol of the synchronization information block has changed.
  • the subcarrier sequence number ⁇ 0,1,...,47 ⁇ on the symbol contains part of the PBCH information
  • the subcarrier sequence number on the third OFDM symbol of the synchronization information block is ⁇ 192,193,...,239 ⁇
  • the subcarrier contains part of the PBCH information.
  • the time domain position of the DMRS in the corresponding modified PBCH is also changed, that is, after the change, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 0+
  • the sub-carriers of v, 4+v, ..., 44+v ⁇ contain part of the DMRS
  • the sub-carrier sequence numbers on the third OFDM symbol of the synchronization information block are ⁇ 192+v, 196+v, ..., 236 +v ⁇ contains part of the DMRS on the subcarriers.
  • the position that does not contain any information will also change accordingly.
  • the specific changes are shown in the data corresponding to Setto 0 in Table 3. That is, after the change, the first synchronization information block The sub-carriers with sub-carrier sequence numbers ⁇ 48,49,...,55,183,184,...,239 ⁇ on the OFDM symbol, and ⁇ 0,1,... on the third OFDM symbol of the synchronization information block , 55, 183, 184, ..., 191 ⁇ The sub-carrier with the sub-carrier sequence number does not contain information.
  • the data in bold italics in Table 4 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • the PBCH information on the first OFDM symbol of the synchronization information block has changed, that is, after the change, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇
  • the subcarriers of 0,1,...,47 ⁇ contain part of PBCH information
  • the subcarriers with subcarrier sequence numbers ⁇ 192,193,...,239 ⁇ on the first OFDM symbol of the synchronization information block contain part of PBCH information.
  • the time domain position of the DMRS in the corresponding modified PBCH is also changed, that is, after the change, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 0+ v,4+v,...,44+v ⁇ subcarriers contain part of the DMRS, and the subcarrier sequence numbers on the first OFDM symbol of the synchronization information block are ⁇ 192+v,196+v,...,236 +v ⁇ contains part of the DMRS on the subcarriers.
  • the position that does not contain any information will also change accordingly. The specific changes are shown in the data corresponding to Setto 0 in Table 4.
  • the first synchronization information block The sub-carrier sequence number ⁇ 48,49,...,55 ⁇ and the sub-carrier sequence number ⁇ 183,184,...,192 ⁇ on the OFDM symbol contain no information; the third OFDM symbol of the synchronization information block contains sub-carriers The subcarriers with the carrier sequence number ⁇ 0,1,...,55 ⁇ and the subcarrier sequence numbers ⁇ 183,184,...,239 ⁇ do not contain information.
  • the time domain position of the PBCH information is used to indicate whether the MIB contained in the synchronization information block is MIB applied to unlicensed frequency bands can specifically include the following four methods:
  • Method b1 When the first PBCH information is located at the first frequency domain position on the first OFDM symbol of the synchronization information block, and/or, the second PBCH information is located on the first OFDM symbol of the synchronization information block
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, the first PBCH information is located in the synchronization information block
  • the MIB is an application MIB in the licensed frequency band.
  • Method b2 when the first PBCH information is located at the first frequency domain position on the third OFDM symbol of the synchronization information block, and the second PBCH information is located at the third OFDM symbol of the synchronization information block
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, the first PBCH information is located in the synchronization information block
  • the first frequency domain position on the first OFDM symbol of the synchronization information block, and/or the second PBCH information is located at the second frequency domain position on the first OFDM symbol of the synchronization information block, the MIB is an application MIB in the licensed frequency band.
  • Method b3 the first DMRS is located at the third frequency domain position on the first OFDM symbol of the synchronization information block, and/or the second DMRS is located at the fourth frequency domain position on the first OFDM symbol of the synchronization information block
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, the first DMRS is located in the third synchronization information block.
  • the MIB is applied to the licensed frequency band in the case that MIB.
  • Method b4 when the first DMRS is located at the third frequency domain position on the third OFDM symbol of the synchronization information block, and the second DMRS is located on the third OFDM symbol of the synchronization information block
  • the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is the MIB applied to the licensed frequency band; at this time, the first DMRS is located in the first synchronization information block.
  • the third frequency domain position on the OFDM symbol, and/or the second DMRS is located at the fourth frequency domain position on the first OFDM symbol of the synchronization information block, the MIB is applied to the licensed frequency band MIB.
  • the first DMRS is included in the first PBCH information
  • the second DMRS is included in the second PBCH information.
  • the first frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block
  • the second frequency domain position includes the synchronization information block
  • the subcarrier sequence number is ⁇ 192,193,...,239 ⁇ ; or, the first frequency domain position includes the subcarrier sequence number ⁇ 192,193,...,239 ⁇ of the synchronization information block
  • the The second frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block.
  • the third frequency domain position includes subcarriers whose subcarrier sequence numbers of the synchronization information block are ⁇ 0+v, 4+v, ..., 44+v ⁇
  • the fourth frequency domain position includes The subcarrier sequence number of the synchronization information block is ⁇ 192+v, 196+v, ..., 236+v ⁇ ; or, the first frequency domain position includes the subcarrier sequence number of the synchronization information block as ⁇ 192+v, 196+v,...,236+v ⁇ , the second frequency domain position includes the subcarrier sequence number of the synchronization information block ⁇ 0+v, 4+v,..., 44+v ⁇ sub-carriers.
  • the terminal device can be implemented by blindly detecting the PBCH. Specifically, the terminal device can perform the detection through the PBCH channel at a designated location. Energy detection determines whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band.
  • the terminal equipment can be implemented by blindly detecting DMRS. Specifically, the terminal equipment can perform energy detection or DMRS sequence comparison on the PBCH channel at a designated position to determine the Whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band.
  • the terminal device may perform energy detection on a PBCH channel at a designated location to determine whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band, which may specifically be:
  • the terminal device performs energy detection on subcarriers #1 ⁇ #47 of OFDM symbol #0 and/or subcarriers #192 ⁇ #239 of OFDM symbol #0. If PBCH information is detected, it means that the MIB is an application MIB in a licensed frequency band, otherwise it means that the MIB is a MIB applied to an unlicensed frequency band; or if PBCH information is detected, it means that the MIB is a MIB applied to an unlicensed frequency band, otherwise it means that the MIB is applied to a licensed frequency band. MIB of the frequency band;
  • the terminal device performs energy detection on subcarriers #1 ⁇ #47 of OFDM symbol #2 and subcarriers #192 ⁇ #239 of OFDM symbol #2 at the same time, and if PBCH information is detected at the same time, it means the MIB Is the MIB applied to the licensed frequency band, otherwise it means that the MIB is the MIB applied to the unlicensed frequency band; or if the PBCH information is detected at the same time, it means that the MIB is the MIB applied to the unlicensed frequency band, otherwise it means that the MIB is MIB applied to licensed frequency bands.
  • the terminal device may determine whether the MIB included in the synchronization information block is a MIB applied to an unlicensed frequency band by performing energy detection or DMRS sequence comparison on a DMRS on a PBCH channel at a designated location. for:
  • the terminal equipment is in the sub-carrier ⁇ 0+v, 4+v, ..., 44+v ⁇ of the OFDM symbol #0 and/or the sub-carrier ⁇ 192+v, 196+v, ..., of the OFDM symbol #0, Energy detection is performed on 236+v ⁇ . If a DMRS is detected, it means that the MIB is a MIB applied to a licensed frequency band; otherwise, it means that the MIB is a MIB applied to an unlicensed frequency band; or if a DMRS is detected, it means all The MIB is an MIB applied to an unlicensed frequency band, otherwise it means that the MIB is an MIB applied to a licensed frequency band;
  • the terminal equipment is on the subcarrier ⁇ 0+v, 4+v, ..., 44+v ⁇ of OFDM symbol #2 and the subcarrier ⁇ 192+v, 196+v, ..., of OFDM symbol #2, Energy detection is performed on 236+v ⁇ at the same time. If a DMRS is detected at the same time, it means that the MIB is a MIB applied to a licensed frequency band; otherwise, it means that the MIB is a MIB applied to an unlicensed frequency band; or if a DMRS is detected at the same time, It means that the MIB is an MIB applied to an unlicensed frequency band; otherwise, it means that the MIB is an MIB applied to a licensed frequency band.
  • the time domain position of the PSS and/or SSS and the time domain position of the PBCH information may be combined to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band. That is, it is implemented by combining the foregoing first optional implementation manner and the second optional implementation manner. That is to say, both the positions of the PSS and the SSS in the synchronization information block in the time domain are swapped, and the time domain position of the PBCH on the third OFDM symbol of the synchronization information block is also changed.
  • the structure of the synchronization information block after the change may be as shown in FIG. 7.
  • Figure 7 includes three possible situations.
  • Fig. 7(a) is the combination of the above-mentioned first optional implementation and the method in Fig. 6(a).
  • some of the parameters in table 7.4.3.1-1 in TS 38.211 corresponding to the synchronization information block shown in Figure 7 (a) can be as shown in Table 5 below:
  • the data in bold italics in Table 5 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • the parameter modification in Table 5 is a superposition of the parameter modification in Table 1 and Table 2.
  • Table 1 and Table 2 For details, please refer to the related description of Table 1 and Table 2, which will not be described in detail here.
  • (b) in FIG. 7 is a combination of the above-mentioned first optional implementation and the method in (b) in FIG. 6.
  • some of the parameters in table 7.4.3.1-1 in TS 38.211 corresponding to the synchronization information block shown in Figure 7 (b) can be as shown in Table 6 below:
  • the data in bold italics in Table 6 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • the parameter modification in Table 6 is a superposition of the modification of the parameters in Table 1 and Table 3.
  • Table 1 and Table 3 For details, please refer to the related description of Table 1 and Table 3, which will not be described in detail here.
  • (c) in FIG. 7 is a combination of the above-mentioned first optional implementation and the method in (c) in FIG. 6 above.
  • some of the parameters in table 7.4.3.1-1 in TS 38.211 corresponding to the synchronization information block shown in Figure 7 (c) can be as shown in Table 7 below:
  • Table 7 represents the modification of the parameters corresponding to the synchronization information block shown in FIG. 1.
  • the parameter modification in Table 7 is a superposition of the parameter modification in Table 1 and Table 4.
  • Table 1 and Table 4 For details, refer to the related description of Table 1 and Table 4, which will not be described in detail here.
  • the time domain position of the PSS and/or SSS and the time domain position of the PBCH information are combined to indicate whether the MIB included in the synchronization information block is the MIB applied to the unlicensed frequency band, that is, In the case of satisfying the determinations in the foregoing first optional implementation manner and the foregoing second optional implementation manner at the same time, it can be determined whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band.
  • the method in the third optional implementation manner may be a combination of all the methods in the second optional implementation manner. For details, please refer to the related descriptions mentioned above. List them one by one.
  • the terminal device can determine whether the received MIB is applied to an unlicensed frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block. MIB.
  • the method for determining MIB provided by the embodiment of the present application is applicable to the communication system shown in FIG. Referring to Figure 8, the specific process of the method may include:
  • Step 801 The network device determines a synchronization information block, where at least one field included in the synchronization information block is used to indicate that the MIB is a first type MIB or a second type MIB, and the at least one field is located in the MIB.
  • Step 802 The network device sends the synchronization information block to the terminal device.
  • Step 803 The terminal device determines that the MIB is the first type MIB or the second type MIB according to the at least one field included in the synchronization information block.
  • the first type of MIB corresponds to a licensed frequency band
  • the second type of MIB corresponds to an unlicensed frequency band
  • the first type of MIB corresponds to an unlicensed frequency band
  • the second type of MIB corresponds to a licensed frequency band.
  • MIB is the MIB applied to the unlicensed frequency band or the MIB applied to the licensed frequency band. That is, the at least one field included in the synchronization information block is used to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to at least one field in the synchronization information block.
  • an existing unused field spare field in the MIB may be used to indicate whether the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the spare field includes a bit, which can be indicated by bit mapping, and the specific method can be:
  • the MIB is an MIB applied to an unlicensed frequency band, that is, the synchronization information block containing the MIB is located in an unlicensed frequency band; in one of the spare fields When the bit is 1, the MIB is an MIB applied to a licensed frequency band, that is, the synchronization information block containing the MIB is located in the licensed frequency band; or
  • the MIB is the MIB applied to the licensed frequency band, that is, the synchronization information block containing the MIB is located in the licensed frequency band; one bit in the spare field is In the case of 1, the MIB is an MIB applied to an unlicensed frequency band, that is, the synchronization information block containing the MIB is located in an unlicensed frequency band.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the specific value of the detected spare field.
  • the existing field demodulation reference signal type A position (dmrs-TypeA-Position) field in the MIB can be used to indicate whether the MIB is applied to an unlicensed frequency band or is applied MIB in the licensed frequency band.
  • the dmrs-TypeA-Position field includes 1 bit, which can be indicated by bit-mapping, and the specific method can be:
  • the MIB is an MIB applied to an unlicensed frequency band, that is, the synchronization information block containing the MIB is located in an unlicensed frequency band;
  • the MIB is the MIB applied to the licensed frequency band, that is, the synchronization information block containing the MIB is located in the licensed frequency band;
  • the MIB is the MIB applied to the authorized frequency band, that is, the synchronization information block containing the MIB is located in the authorized frequency band;
  • the MIB is an MIB applied to an unlicensed frequency band, that is, the synchronization information block containing the MIB is located in an unlicensed frequency band.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the specific value of the detected dmrs-TypeA-Position field.
  • the existing field synchronization signal subcarrier offset (ssb-SubcarrierOffset) field in the MIB may be used to indicate whether the MIB is applied to an unlicensed band or a licensed band.
  • MIB field synchronization signal subcarrier offset
  • the ssb-SubcarrierOffset field includes 4 bits.
  • the ssb-SubcarrierOffset field can be implemented in the following four ways to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band:
  • Manner c1 The least significant bit (1-bit LSB) of the four bits included in the ssb-SubcarrierOffset field is used to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • Manner c2 The most significant bit (1-bit MSB) of the four bits included in the ssb-SubcarrierOffset field is used to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • Manner c3 Any one of the four bits included in the ssb-SubcarrierOffset field is used to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • Manner c4 At least two of the four bits included in the ssb-SubcarrierOffset field jointly indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the MIB when the least significant bit, the most significant bit, or any one of the bits is 0, the MIB is an MIB applied to an unlicensed frequency band; When the least significant bit, the most significant bit, or any one of the bits is 1, the MIB is an MIB applied to a licensed frequency band; or
  • the MIB is the MIB applied to the licensed frequency band; In the case where any one of the bits is 1, the MIB is an MIB applied to an unlicensed frequency band.
  • At least two of the four bits included in the ssb-SubcarrierOffset field jointly indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the specific method may be: indicating that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band through different values composed of at least two bits in the ssb-SubcarrierOffset field.
  • the MIB is an MIB applied to an unlicensed frequency band, or an MIB applied to a licensed frequency band; for another example, the ssb-SubcarrierOffset field
  • the MIB is the MIB applied to the unlicensed band, or the MIB applied to the licensed band
  • the three bits in the ssb-SubcarrierOffset field are "001"
  • the MIB is an MIB applied to an unlicensed frequency band, or an MIB applied to a licensed frequency band.
  • the above two bits or three bits may be consecutive bits among the four bits included in the ssb-SubcarrierOffset field, or may be non-consecutive bits, which is not limited in this application.
  • the above two bits or three bits may be consecutive bits among the four bits included in the ssb-SubcarrierOffset field, or may be non-consecutive bits, which is not limited in this application.
  • the at least one field may include at least two of the spare field, the dmrs-TypeA-Position field, or the ssb-SubcarrierOffset field; the at least two fields
  • the bits included in the field jointly indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the specific field association manner is the same as that shown in FIG. 3
  • the field combination manners involved in the embodiments are similar, which can be referred to each other, and will not be described in detail here.
  • the specific value of the combined bit is used to indicate that the MIB is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the two bits In the case of "01”, the MIB is an MIB applied to an unlicensed frequency band, or an MIB applied to a licensed frequency band.
  • the two bits In the case of "01”, the MIB is an MIB applied to an unlicensed frequency band, or an MIB applied to a licensed frequency band.
  • it can also be other examples, which will not be listed here.
  • the terminal device can determine whether the received MIB is applied to an unlicensed frequency band or a licensed frequency band according to at least one field in the synchronization information block.
  • the MIB determination method provided by the embodiments of the present application is suitable for the communication system shown in FIG. Communication system.
  • the specific process of the method may include:
  • Step 901 The network device determines a synchronization information block, and the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block is used to indicate that the MIB contained in the synchronization information block is the first type of MIB or the first type of MIB. Type II MIB.
  • Step 902 The network device sends the synchronization information block to the terminal device.
  • Step 903 The terminal device determines whether the MIB is the first type MIB or the second type MIB according to the time domain position of at least one of the PSS, SSS, and PBCH information included in the synchronization information block.
  • the terminal equipment determines whether the received MIB is applied to the MIB of the unlicensed frequency band or the authorized frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block MIB.
  • the time domain position of at least one of the PSS and the SSS may be used to indicate that the MIB included in the synchronization information block is a MIB applied to an unlicensed frequency band, or is an application MIB in the licensed frequency band.
  • the time domain position of at least one of the PSS and the SSS indicates that the MIB included in the synchronization information block is the MIB applied to the unlicensed frequency band, or is a specific implementation method of the MIB applied to the licensed frequency band It is similar to the specific implementation method involved in the first optional implementation manner in the embodiment shown in FIG. 4, which can be referred to each other, and will not be described in detail here.
  • the time domain position of the PBCH information may be used to indicate that the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band or an MIB applied to a licensed frequency band.
  • the time domain position of the PBCH information indicates that the MIB included in the synchronization information block is the MIB applied to the unlicensed frequency band, or is the specific implementation method of the MIB applied to the licensed frequency band, which is similar to the implementation shown in FIG. 4
  • the specific implementation methods in the second optional implementation manner in the example are similar, and reference may be made to each other, and the detailed description is omitted here.
  • the time domain position of the PSS and/or SSS and the time domain position of the PBCH information can be combined to indicate that the MIB contained in the synchronization information block is the MIB applied to the unlicensed frequency band, or MIB applied to licensed frequency bands. That is, it is implemented by combining the foregoing first optional implementation manner and the second optional implementation manner. Specifically, the time domain position of the PSS and/or SSS and the time domain position of the PBCH information are combined to indicate that the MIB contained in the synchronization information block is the MIB applied to the unlicensed frequency band, or is the specific MIB applied to the licensed frequency band.
  • the implementation method is similar to the specific implementation method in the third optional implementation manner in the embodiment shown in FIG.
  • the terminal device can determine that the received MIB is the MIB applied to the unlicensed frequency band according to the time domain position of at least one of the PSS, SSS, and PBCH information contained in the synchronization information block. , Still applied to the MIB of the licensed frequency band.
  • an embodiment of the present application also provides a method for determining MIB, which is applicable to the communication system shown in FIG. 2, and can be applied to scenarios of authorized frequency bands or unlicensed frequency bands.
  • the process of this method can include:
  • S1200 The network device determines the synchronization information block
  • the network device sends the synchronization information block to the terminal device.
  • the time domain location of the synchronization information block when the network device is working in the authorized frequency band is different from the time domain location of the synchronization information block when the network device is working in the unlicensed frequency band, which can indicate that the MIB carried in it is applied to the authorized frequency band. It is still applied to the unlicensed frequency band, that is, according to the time domain position of the synchronization information block, the MIB can be distinguished as the first type of MIB or the second type of MIB.
  • the synchronization information block carrying the MIB of the first type and the synchronization information block carrying the MIB of the second type may be carried at different time domain positions within a radio frame for transmission.
  • the network device may send the synchronization information block in the form of a synchronization information block group, and the synchronization information block group may be understood as a synchronization signal burst set (synchronization signal burst set, SS burst set).
  • the network device sends a group of synchronization information blocks at a time, and the starting position of the synchronization information block transmission below can also be understood as the starting position of the first synchronization information block transmission in a group of synchronization information blocks.
  • the synchronization information block is sent on the authorized frequency band, the synchronization information block is sent from the first symbol of the first time slot of the first half of the radio frame, that is, from the first symbol of the first time slot of the radio frame.
  • One symbol starts to be sent; if the synchronization information block is sent on an unlicensed frequency band, the synchronization information block starts to be sent from the first symbol of the first time slot in the second half of the radio frame.
  • the synchronization information block can only be sent when the channel is idle.
  • the synchronization information block can be from the first time slot of the second half of the radio frame.
  • the third symbol starts to be sent.
  • the synchronization information block is sent on the licensed frequency band
  • the synchronization information block is sent from the first symbol of the first time slot in the second half of the radio frame
  • the synchronization information block is sent on the unlicensed frequency band
  • the synchronization information block is sent from the first symbol of the first time slot in the first half of the radio frame.
  • the synchronization information block can be sent from the third symbol of the first slot in the first half of the radio frame.
  • the transmission period of the synchronization information block may be one of ⁇ 1ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ .
  • a sending period of 10 ms it means that a group of synchronization information blocks are sent in a period of 10 ms.
  • the sending position of the synchronization information block can be flexibly configured.
  • the terminal device receives the synchronization information block from the network device. Among them, according to the time domain position of the synchronization information block, the terminal device can determine whether the MIB carried in it is applied to the licensed frequency band or the unlicensed frequency band, that is, the terminal device can determine whether the MIB is the first type of MIB or the second type of MIB MIB.
  • the terminal device assumes that the synchronization information block starts to be sent at the first symbol in the first time slot of the first half of the wireless frame, that is, from the first symbol of the wireless frame.
  • the terminal device When the first symbol of a time slot starts to be sent, the terminal device starts to receive the synchronization information block at the corresponding position; if the synchronization information block is sent on the unlicensed frequency band, it is in the discovery burst transmission window (DBTW) , The terminal equipment assumes that the synchronization information block starts to be transmitted at the first symbol position in the first time slot of the second half of the frame in the radio frame, and the terminal equipment starts to receive the synchronization information block at the corresponding position.
  • DBTW discovery burst transmission window
  • the terminal device if the synchronization information block is sent on the authorized frequency band, the terminal device assumes that the synchronization information block starts to be sent at the first symbol position in the first time slot of the second half of the frame in the wireless frame, and the terminal The device starts to receive the synchronization information block at the corresponding position; if the synchronization information block is sent on an unlicensed frequency band, in the discovery burst transmission window (DBTW), the terminal device assumes that the synchronization information block is in the first half of the wireless frame Start sending the first symbol in the first time slot of the wireless frame, that is, start sending from the first symbol of the first time slot of the wireless frame, and the terminal equipment starts to receive the synchronization information block at the corresponding position.
  • DBTW discovery burst transmission window
  • the duration of the radio frame is 10ms
  • the first half of the radio frame is 5ms, including 5 subframes, namely the 1st to 5th subframes.
  • the corresponding subframe numbers are #0 ⁇ #4
  • the second half frame is 5ms, including 5 subframes, that is, the 6th to 10th subframes, and the corresponding subframe numbers are #5 to #9.
  • the synchronization information block is located in the first half of the wireless frame, that is, the synchronization information block is sent in the first half of the wireless frame, and the synchronization information block is not sent in the second half of the wireless frame.
  • the synchronization information block is located in the second half of the wireless frame.
  • the synchronization information block is sent in the second half of the wireless frame, and the synchronization information block is not sent in the first half of the wireless frame.
  • the synchronization information block needs to be sent when the channel is idle. Therefore, in the scenario of an unlicensed frequency band, the network device starts to send after a few symbols interval from the start position of the second half of the wireless frame. Synchronization information.
  • a radio frame is 10ms
  • a radio frame includes 10 subframes
  • a subframe is 1ms.
  • the first half of the radio frame includes the first 5 subframes, that is, the 1st to 5th subframes, and the corresponding subframe numbers are #0 ⁇ #4;
  • the second half of the radio frame includes the last 5 subframes, that is, the 6th to 10th subframes,
  • the corresponding subframe numbers are #5 ⁇ #9.
  • a subframe includes 64 slots, the first half of the subframe is 0.5ms and includes the first 32 slots, that is, the 1st to 32nd slots, and the corresponding slot numbers are #0 ⁇ #31;
  • the second half of the subframe is 0.5ms and includes the last 32 slots, that is, the 33rd to 64th slots, and the corresponding slot numbers are #32 ⁇ #61;
  • a slot contains 14 symbols, corresponding to the symbol numbers It is #0 ⁇ #13.
  • a group of synchronization information blocks may be sent in the first half subframe of a subframe in the first half of a radio frame, for example, starting from the first symbol of the first half subframe.
  • the network device can transmit in the first half of each subframe in the first half of a radio frame, or the network device can transmit in the first half of some subframes in the first half of a radio frame. Subframe transmission.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the first half of a subframe in the first half of a radio frame.
  • the predetermined symbol may be the first symbol.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a group of synchronization information blocks to be sent may be sent in the second half of a subframe of a first half of a radio frame. It is understandable that in the scenario of an unlicensed frequency band, the network device listens to the channel before sending the synchronization information block, and sends the synchronization information block after the interception is successful, and the start symbol of the network device to send the synchronization information block may not be It is the first symbol of the second half subframe, for example, it may be the third symbol of the second half subframe.
  • the network device can send the synchronization information block in the second half of each subframe in the first half of a radio frame, or the network device can transmit the synchronization information block in the first half of a radio frame.
  • the synchronization information block is sent in the second half of the subframe.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the second half of a subframe in the first half of a radio frame, for example, the predetermined symbol position
  • the symbol can be the first symbol, the third symbol, etc.
  • This application does not specifically limit the position of the predetermined symbol.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a group of synchronization information blocks starts to be transmitted at the first symbol of the first time slot of the first subframe of the first half of the radio frame; in the unlicensed frequency band
  • a group of synchronization information blocks starts to be sent at the third symbol of the first slot of the first half of the first subframe of the second half of the radio frame.
  • a group of synchronization information blocks to be sent can be sent in the second half of a subframe of the first half of a radio frame, for example, from the first half of the second half of a radio frame. Symbols begin to be sent.
  • the network device can transmit in the second half of each subframe in the first half of a radio frame, or the network device can transmit in the second half of each subframe in the first half of a radio frame. The second half of the subframe is sent.
  • the terminal device defaults that the synchronization information block is sent from the first symbol position of the second half of a subframe in the first half of a radio frame.
  • the terminal device can determine that the received synchronization information block is located in the time domain position of the wireless frame, or it can be understood as determining/obtaining timing information of the received synchronization information block.
  • a group of synchronization information blocks to be sent may be sent in the first half of a subframe of a radio frame. It is understandable that in the scenario of an unlicensed frequency band, the network device listens to the channel before sending the synchronization information block, and sends the synchronization information block after the interception is successful, and the start symbol of the network device to send the synchronization information block may not be It is the first symbol of the first half subframe, for example, it may be the third symbol of the first half subframe.
  • the network device can send the synchronization information block in the first half of each subframe in the first half of a radio frame, or the network device can send the synchronization information block in the first half of the first half of a radio frame.
  • the synchronization information block is sent in the first half subframe of the frame.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the first half of a subframe in the first half of a radio frame, for example, the predetermined symbol It can be the first symbol, the third symbol, etc.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a group of synchronization information blocks to be sent can be sent in the first half of a subframe in the second half of a radio frame, for example, from the first half of the first half of a radio frame.
  • the symbol starts to be sent.
  • the network device can transmit in the first half of each subframe in the second half of a radio frame, or the network device can transmit in some subframes of the second half of a radio frame The first half of the subframe is sent.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the first half of a subframe in the second half of a radio frame.
  • the predetermined symbol may be the first symbol.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a group of synchronization information blocks to be sent may be sent in the second half of one subframe of the second half of a radio frame. It is understandable that in the scenario of an unlicensed frequency band, the network device listens to the channel before sending the synchronization information block, and sends the synchronization information block after the interception is successful, and the start symbol of the network device to send the synchronization information block may not be It is the first symbol of the second half subframe, for example, it may be the third symbol of the second half subframe.
  • the network device can send the synchronization information block in the second half of each subframe in the second half of a radio frame, or the network device can transmit the synchronization information block in the second half of a radio frame.
  • Synchronization information block is sent in the second half of the partial subframe.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the second half of a subframe in the second half of a radio frame, for example,
  • the predetermined symbol can be the first symbol, the third symbol, and so on.
  • This application does not specifically limit the position of the predetermined symbol.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a set of synchronization information blocks can be sent in the second half of a subframe in the second half of a radio frame, for example, from the first symbol of the second half of the subframe.
  • the network device can transmit in the second half of each subframe in the second half of a radio frame, or the network device can transmit in the second half of the second half of a radio frame.
  • the second half of the frame is sent.
  • the terminal device defaults that the synchronization information block is sent from the first symbol position of the second half of a subframe in the second half of a radio frame.
  • the terminal device can determine that the received synchronization information block is located in the time domain position of the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • a group of synchronization information blocks to be sent may be sent in the first half of a subframe of a second half of a radio frame. It is understandable that in the scenario of an unlicensed frequency band, the network device listens to the channel before sending the synchronization information block, and sends the synchronization information block after the interception is successful, and the start symbol of the network device to send the synchronization information block may not be It is the first symbol of the first half subframe, for example, it may be the third symbol of the first half subframe.
  • the network device can send the synchronization information block in the first half of each subframe in the second half of a radio frame, or the network device can transmit the synchronization information block in the second half of a radio frame.
  • the synchronization information block is sent in the first half of the partial subframe.
  • the terminal device defaults that the synchronization information block is sent from a predetermined symbol position in the first half of a subframe in the second half of a radio frame, for example, the predetermined symbol position.
  • the symbol can be the first symbol, the third symbol, etc.
  • This application does not specifically limit the position of the predetermined symbol.
  • the terminal device can know where the synchronization information block starts to be sent. After receiving the synchronization information block, the terminal device can determine the position of the received synchronization information block in the wireless frame, or it can be understood as determining/obtaining the timing information of the received synchronization information block.
  • the terminal device can determine whether the received MIB is applied to the MIB of the unlicensed frequency band or the MIB of the licensed frequency band according to the time domain position of the synchronization information block, which saves signaling overhead and improves access efficiency.
  • the embodiment of the present application also provides an MIB determining apparatus.
  • the MIB determining apparatus 1000 may include a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit 1001 is used for the MIB determining device 1000 to receive data (message, signal or information, etc.) or send data (message, signal or information, etc.), and the processing unit 1002 is used for processing the MIB
  • the operation of the device 1000 is determined for control and management.
  • the processing unit 1002 may also control the steps performed by the transceiver unit 1001.
  • the MIB determining apparatus 1000 may be the terminal device in the foregoing embodiment, the processor in the terminal device, or a chip or chip system, or a functional module, etc.; or, the MIB determining apparatus 1000 It may be the network device in the foregoing embodiment, the processor of the network device, or a chip or a chip system, or a functional module.
  • the MIB determining apparatus 1000 when used to implement the function of the network device in the embodiment shown in FIG. 3, it may specifically include:
  • the processing unit 1002 is configured to determine a synchronization information block, at least one field included in the synchronization information block is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band, and the at least one field is located in the MIB;
  • the transceiver unit 1001 is used to send a synchronization information block to a terminal device.
  • the MIB determining apparatus 1000 when used to implement the function of the terminal device in the embodiment shown in FIG. 3, it may specifically further include:
  • the transceiving unit 1001 is configured to receive a synchronization information block from a network device, where at least one field included in the synchronization information block is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band, and the at least one field is located in the MIB; the processing unit 1002 is configured to determine whether the MIB is an MIB applied to an unlicensed frequency band according to the at least one field included in the synchronization information block.
  • the at least one field is a free spare field, and the spare field includes one bit; in a case where the one bit is 0, the MIB is a MIB applied to an unlicensed frequency band, Otherwise, the MIB is the MIB applied to the licensed frequency band; or, when the one bit is 1, the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band .
  • the at least one field is a demodulation reference signal type A position field
  • the demodulation reference signal type A position field includes one bit; in a case where the one bit is 0,
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; when the one bit is 1, the MIB is the MIB applied to the unlicensed frequency band, otherwise, The MIB is an MIB applied to a licensed frequency band.
  • the at least one field is a synchronization signal subcarrier offset field
  • the synchronization signal subcarrier offset field includes four bits; the least significant bit of the four bits is used for Indicate whether the MIB is an MIB applied to an unlicensed frequency band; or, the most significant bit of the four bits is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band; or, among the four bits Any bit of is used to indicate whether the MIB is an MIB applied to an unlicensed frequency band; or, at least two of the four bits jointly indicate whether the MIB is an MIB applied to an unlicensed frequency band.
  • the MIB is an MIB applied to an unlicensed frequency band, otherwise, the MIB is an MIB applied to a licensed frequency band
  • the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the The MIB of the licensed frequency band.
  • the at least one field includes at least two of a spare field, a demodulation reference signal type A location field, or a synchronization signal subcarrier offset field; the at least two fields include The bit joint indicates whether the MIB is an MIB applied to an unlicensed frequency band.
  • the MIB determining apparatus 1000 when used to implement the function of the network device in the embodiment shown in FIG. 4, it may specifically include:
  • the processing unit 1002 is configured to determine a synchronization information block, and the time domain position of at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH information contained in the synchronization information block is used to indicate the synchronization information Whether the MIB contained in the block is an MIB applied to an unlicensed frequency band; the transceiver unit 1001 is used to send a synchronization information block to a terminal device.
  • the MIB determining apparatus 1000 when used to implement the function of the terminal device in the embodiment shown in FIG. 4, it may specifically include:
  • the transceiver unit 1001 is configured to receive a synchronization information block from a network device, and the time domain position of at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH information contained in the synchronization information block is used to indicate all Whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band; the processing unit 1002 is configured to determine the time domain position of at least one of the PSS, SSS, and PBCH information included in the synchronization information block; Whether the MIB is a MIB applied to an unlicensed frequency band.
  • the time domain position of at least one of the PSS and the SSS is used to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band, including: In the case where the PSS is located on the first orthogonal frequency division multiplexing OFDM symbol of the synchronization information block, the MIB is an MIB applied to an unlicensed frequency band; otherwise, the MIB is an MIB applied to a licensed frequency band; Or, in the case where the PSS is located on the third OFDM symbol of the synchronization information block, the MIB is an MIB applied to an unlicensed frequency band, otherwise, the MIB is an MIB applied to a licensed frequency band; or, In the case where the SSS is located on the third OFDM symbol of the synchronization information block, the MIB is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; or In the case where the SSS is located on the first OFDM symbol of the synchronization information block
  • the time domain position of the PBCH information is used to indicate whether the MIB included in the synchronization information block is an MIB applied to an unlicensed frequency band, including: The first frequency domain position on the first OFDM symbol of the information block, and/or the second PBCH information is located at the second frequency domain position on the first OFDM symbol of the synchronization information block, the MIB Is the MIB applied to the unlicensed frequency band, otherwise, the MIB is the MIB applied to the licensed frequency band; or, in the first frequency domain position where the first PBCH information is located on the third OFDM symbol of the synchronization information block And, in the case that the second PBCH information is located at the second frequency domain position on the third OFDM symbol of the synchronization information block, the MIB is the MIB applied to the unlicensed frequency band; otherwise, the MIB is MIB applied to the licensed frequency band; or, when the first demodulation reference signal DMRS is located at the third frequency domain position on the first OFDM symbol of the synchronization information
  • the first frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block
  • the second frequency domain position includes subcarriers of the synchronization information block.
  • the subcarrier sequence number is ⁇ 192,193,...,239 ⁇ ; or, the first frequency domain position includes the subcarrier sequence number ⁇ 192,193,...,239 ⁇ of the synchronization information block
  • the The second frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block.
  • the third frequency domain position includes subcarriers whose subcarrier sequence numbers of the synchronization information block are ⁇ 0+v, 4+v, ..., 44+v ⁇
  • the fourth frequency domain position includes The subcarrier sequence number of the synchronization information block is ⁇ 192+v, 196+v, ..., 236+v ⁇ ; or, the first frequency domain position includes the subcarrier sequence number of the synchronization information block as ⁇ 192+v, 196+v,...,236+v ⁇ , the second frequency domain position includes the subcarrier sequence number of the synchronization information block ⁇ 0+v, 4+v,..., 44+v ⁇ sub-carriers; among them, Is the cell identifier.
  • the subcarriers with subcarrier sequence numbers ⁇ 0,1,...,55,183,184,...,191 ⁇ on the first OFDM symbol of the synchronization information block, and the third OFDM symbol of the synchronization information block The upper subcarrier sequence number ⁇ 48,49,...,55,183,184,...,239 ⁇ does not contain information; or, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48 ,49,...,55,183,184,...,239 ⁇ , and ⁇ 0,1,...,55,183,184,...,191 on the third OFDM symbol of the synchronization information block ⁇
  • the sub-carrier sequence number of the sub-carrier does not contain information; or, the sub-carrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48,49,...,55 ⁇ and the sub-carrier sequence number is ⁇ 183,184,...
  • the third OFDM symbol of the synchronization information block has a subcarrier sequence number ⁇ 0,1,...,55 ⁇ and a subcarrier sequence number ⁇ 183,184,...,239 ⁇
  • the subcarrier does not contain information; or, the subcarrier sequence number ⁇ 0,1,...,55 ⁇ and the subcarrier sequence number ⁇ 183,184,...,239 ⁇ on the first OFDM symbol of the synchronization information block
  • the third OFDM symbol of the synchronization information block does not contain information on the subcarrier sequence number ⁇ 48,49,...,55 ⁇ and the subcarrier sequence number ⁇ 183,184, whil,192 ⁇ .
  • the MIB determining apparatus 1000 when used to implement the function of the network device in the embodiment described in FIG. 8, it may specifically include:
  • the processing unit 1002 is configured to determine a synchronization information block, and at least one field included in the synchronization information block is used to indicate that the MIB is a first type MIB or a second type MIB; wherein, the at least one field is located in the MIB
  • the first type of MIB corresponds to an authorized frequency band
  • the second type of MIB corresponds to an unlicensed frequency band
  • the first type of MIB corresponds to an unlicensed frequency band
  • the second type of MIB corresponds to an authorized frequency band
  • the transceiver unit 1001 Used to send synchronization information blocks to terminal devices.
  • the MIB determining apparatus 1000 when used to implement the function of the terminal device in the embodiment described in FIG. 8, it may specifically include:
  • the transceiving unit 1001 is configured to receive a synchronization information block from a network device, and at least one field included in the synchronization information block is used to indicate that the MIB is a first type MIB or a second type MIB; wherein, the at least one field Located in the MIB; the first type of MIB corresponds to a licensed frequency band, the second type of MIB corresponds to an unlicensed frequency band, or the first type of MIB corresponds to an unlicensed frequency band, and the second type of MIB corresponds to a licensed frequency band;
  • the processing unit 1002 is configured to determine whether the MIB is a first type MIB or a second type MIB according to the at least one field included in the synchronization information block.
  • the at least one field is a spare field, and the spare field includes one bit; when the one bit is 0, the MIB is a first type MIB; When one bit is 1, the MIB is the second type of MIB.
  • the at least one field is a demodulation reference signal type A position field
  • the demodulation reference signal type A position field includes one bit; in a case where the one bit is 0
  • the MIB is a MIB of the first type; when the one bit is 1, the MIB is a MIB of the second type.
  • the at least one field is a synchronization signal subcarrier offset field
  • the synchronization signal subcarrier offset field includes four bits; the least significant bit of the four bits is used for To indicate that the MIB is a first-type MIB or a second-type MIB; or, the most significant bit of the four bits is used to indicate that the MIB is a first-type MIB or a second-type MIB; or, the four Any one of the two bits is used to indicate that the MIB is a first-type MIB or a second-type MIB; or, at least two of the four bits jointly indicate that the MIB is a first-type MIB or a second-type MIB.
  • Type II MIB Type II MIB.
  • the MIB is the first type of MIB; When any one of the bits is 1, the MIB is the second type of MIB.
  • the at least one field includes at least two of a spare field, a demodulation reference signal type A location field, or a synchronization signal subcarrier offset field; the at least two fields include The bits of indicates that the MIB is a first-type MIB or a second-type MIB.
  • the MIB determining apparatus 1000 when used to implement the function of the network device in the embodiment described in FIG. 9, it may specifically include:
  • the processing unit 1002 is configured to determine a synchronization information block, and the time domain position of at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH information contained in the synchronization information block is used to indicate the synchronization information
  • the MIB contained in the block is either the first type of MIB or the second type of MIB; wherein, the first type of MIB corresponds to a licensed frequency band, the second type of MIB corresponds to an unlicensed frequency band, or the first type of MIB corresponds to an unlicensed frequency band , The second type of MIB corresponds to a licensed frequency band; the transceiving unit 1001 is configured to send the synchronization information block to a terminal device.
  • the MIB determining apparatus 1000 when used to implement the function of the terminal device in the embodiment described in FIG. 9, it may specifically include:
  • the transceiver unit 1001 is configured to receive a synchronization information block from a network device, and the time domain position of at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH information contained in the synchronization information block is used to indicate all
  • the MIB included in the synchronization information block is a first type MIB or a second type MIB; wherein, the first type MIB corresponds to a licensed frequency band, the second type MIB corresponds to an unlicensed frequency band, or the first type MIB corresponds to The unlicensed frequency band, the second type of MIB corresponds to the licensed frequency band;
  • the processing unit 1002 is configured to determine at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH information contained in the synchronization information block The time domain location determines that the MIB is the first type MIB or the second type MIB.
  • the time domain position of at least one of the PSS and the SSS is used to indicate that the MIB included in the synchronization information block is a first-type MIB or a second-type MIB, including: In the case where the PSS is located on the first orthogonal frequency division multiplexing OFDM symbol of the synchronization information block, the MIB is a first type MIB; when the PSS is located on the third OFDM symbol of the synchronization information block, In the case of an OFDM symbol, the MIB is a second type MIB; and/or, in a case where the SSS is located on the third OFDM symbol of the synchronization information block, the MIB is a first type MIB; In the case where the SSS is located on the first OFDM symbol of the synchronization information block, the MIB is a second type MIB.
  • the time domain position of the PBCH information is used to indicate that the MIB contained in the synchronization information block is the first type of MIB or the second type of MIB, including: The first frequency domain position on the first OFDM symbol of the synchronization information block, and/or the second PBCH information is located at the second frequency domain position on the first OFDM symbol of the synchronization information block,
  • the MIB is a first type MIB; the first PBCH information is located at the first frequency domain position on the third OFDM symbol of the synchronization information block, and the second PBCH information is located at the synchronization information block In the case of the second frequency domain position on the third OFDM symbol, the MIB is a second type MIB; or, when the first demodulation reference signal DMRS is located on the first OFDM symbol of the synchronization information block, Three frequency domain positions, and/or in the case where the second DMRS is located at the fourth frequency domain position on the first OFDM symbol of the synchronization information block, the MIB is a
  • the first frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block
  • the second frequency domain position includes subcarriers of the synchronization information block.
  • the subcarrier sequence number is ⁇ 192,193,...,239 ⁇ ; or, the first frequency domain position includes the subcarrier sequence number ⁇ 192,193,...,239 ⁇ of the synchronization information block
  • the The second frequency domain position includes subcarriers with subcarrier sequence numbers ⁇ 0,1,...,47 ⁇ of the synchronization information block.
  • the third frequency domain position includes subcarriers whose subcarrier sequence numbers of the synchronization information block are ⁇ 0+v, 4+v, ..., 44+v ⁇
  • the fourth frequency domain position includes The subcarrier sequence number of the synchronization information block is ⁇ 192+v, 196+v, ..., 236+v ⁇ ; or, the first frequency domain position includes the subcarrier sequence number of the synchronization information block as ⁇ 192+v, 196+v,...,236+v ⁇ , the second frequency domain position includes the subcarrier sequence number of the synchronization information block ⁇ 0+v, 4+v,..., 44+v ⁇ sub-carriers; among them, Is the cell identifier.
  • the subcarriers with subcarrier sequence numbers ⁇ 0,1,...,55,183,184,...,191 ⁇ on the first OFDM symbol of the synchronization information block, and the third OFDM symbol of the synchronization information block The upper subcarrier sequence number ⁇ 48,49,...,55,183,184,...,239 ⁇ does not contain information; or, the subcarrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48 ,49,...,55,183,184,...,239 ⁇ , and ⁇ 0,1,...,55,183,184,...,191 on the third OFDM symbol of the synchronization information block ⁇
  • the sub-carrier sequence number of the sub-carrier does not contain information; or, the sub-carrier sequence number on the first OFDM symbol of the synchronization information block is ⁇ 48,49,...,55 ⁇ and the sub-carrier sequence number is ⁇ 183,184,...
  • the third OFDM symbol of the synchronization information block has the subcarrier sequence number ⁇ 0,1,...,55 ⁇ and the subcarrier sequence number ⁇ 183,184,...,239 ⁇
  • the subcarrier does not contain information; or, the subcarrier sequence number ⁇ 0,1,...,55 ⁇ and the subcarrier sequence number ⁇ 183,184,...,239 ⁇ on the first OFDM symbol of the synchronization information block
  • the third OFDM symbol of the synchronization information block does not contain information on the subcarrier sequence number ⁇ 48,49,...,55 ⁇ and the subcarrier sequence number ⁇ 183,184, whil,192 ⁇ .
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiment of the present application also provides a MIB determining apparatus.
  • the MIB determining apparatus 1100 may include a transceiver 1101 and a processor 1102.
  • the device 1100 for determining MIB may further include a memory 1103.
  • the memory 1103 may be provided inside the MIB determining apparatus 1100, and may also be provided outside the MIB determining apparatus 1100.
  • the processor 1102 can control the transceiver 1101 to receive and send data.
  • the processor 1102 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 1102 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the transceiver 1101, the processor 1102, and the memory 1103 are connected to each other.
  • the transceiver 1101, the processor 1102, and the memory 1103 are connected to each other through a bus 1104;
  • the bus 1104 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the memory 1103 is used to store programs and the like.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 1103 may include RAM, or may also include non-volatile memory, such as one or more disk memories.
  • the processor 1102 executes the application program stored in the memory 1103 to realize the above-mentioned functions, thereby realizing the function of the MIB determining apparatus 1100.
  • the MIB determining apparatus 1100 may be the terminal device in the foregoing embodiment, or may also be the network device in the foregoing embodiment.
  • the transceiver 1101 can implement the transceiving operation performed by the network device in the embodiment shown in FIG. 3 ;
  • the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 3 except for the transceiving operation.
  • the transceiver 1101 can implement the transceiving performed by the terminal device in the embodiment shown in FIG. Operation; the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 3 except for the transceiving operation.
  • the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 3 except for the transceiving operation.
  • the transceiver 1101 when the MIB determining apparatus 1100 implements the function of the network device in the embodiment shown in FIG. 4, the transceiver 1101 can implement the transceiver 1101 performed by the network device in the embodiment shown in FIG. 4 Operation; the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 4 other than the transceiving operation.
  • the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 4 other than the transceiving operation.
  • the transceiver 1101 can implement the transceiving performed by the terminal device in the embodiment shown in FIG. Operation; the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 4 other than the transceiving operation.
  • the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 4 other than the transceiving operation.
  • the transceiver 1101 when the MIB determining apparatus 1100 implements the function of the network device in the embodiment shown in FIG. 8, the transceiver 1101 can implement the transceiving operation performed by the network device in the embodiment shown in FIG. 8.
  • the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 8 except for the transceiving operation. For specific related descriptions, reference may be made to related descriptions in the embodiment shown in FIG. 8, which will not be described in detail here.
  • the transceiver 1101 can implement the transceiving performed by the terminal device in the embodiment shown in FIG. Operation; the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 8 except for the transceiving operation.
  • the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 8 except for the transceiving operation.
  • the transceiver 1101 when the MIB determining device 1100 implements the function of the network device in the embodiment shown in FIG. 9, the transceiver 1101 can implement the transceiver 1101 performed by the network device in the embodiment shown in FIG. Operation; the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the transceiver 1101 can implement the transceiving performed by the terminal device in the embodiment shown in FIG. Operation; the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the processor 1102 can implement other operations performed by the terminal device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the embodiments of the present application provide a communication system, and the communication system may include the terminal devices and network devices involved in the above embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the MIB determination method provided in the above method embodiment. .
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the MIB determination method provided in the foregoing method embodiment.
  • An embodiment of the present application also provides a chip, which is coupled with a memory, and the chip is configured to implement the MIB determination method provided in the foregoing method embodiment.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • a method to distinguish between the new and the old MIB For a system working in a licensed frequency band, a group of SSB burst sets are sent in the first half of a radio frame, and a system working in an unlicensed frequency band is a group of SSB burst sets in a radio frame. The second half of the frame is sent.
  • the UE For a system working in a licensed frequency band, the UE defaults that the SSB starts at the first symbol position in the first slot of the first half of a radio frame; a system working in an unlicensed frequency band is in Discovery Burst Transmission Window (DBTW) , The SSB transmitted by the UE by default starts at the first symbol position in the first slot in the second half of a radio frame.
  • DBTW Discovery Burst Transmission Window
  • the UE defaults that the SSB starts at the first symbol position in the first slot in the second half of a radio frame; a system working in an unlicensed frequency band starts at the discovery burst transmission window( In DBTW), the SSB transmitted by the UE by default starts at the first symbol position in the first slot in the first half of a radio frame.
  • a group of SSB burst sets in a licensed band system are sent in the first half of each radio frame, and SSBs in an unlicensed band system are sent in the second half of each radio frame.
  • a group of SSB burst sets are sent in the first half subframe of each subframe in the first half frame of a radio frame, while working in the unlicensed frequency band
  • a group of SSB burst sets can be sent in the second half of each subframe in the first half of a radio frame, or a group of SSB bursts can be sent in each of the second half of a radio frame
  • the first half of the subframe in the subframe is sent, and a group of SSB burst sets can be sent in the second half of each subframe in the second half of a radio frame;
  • a group of SSB burst sets are sent in the second half of each subframe in the first half of a radio frame, and work in the unlicensed
  • a group of SSB burst sets can be sent in the first half of each subframe in the first half of a radio frame, or a group of SSB burst sets can be sent in each of the second half of a radio frame.
  • the first half of the subframe in the subframe is sent, and a group of SSB burst sets can be sent in the second half of each subframe in the second half of a radio frame;
  • a group of SSB burst sets are sent in the first half of each subframe in the second half of a radio frame, and work in the unlicensed
  • a group of SSB burst sets can be sent in the first half of each subframe in the first half of a radio frame, or a group of SSB bursts can be sent in each subframe of the first half of a radio frame.
  • the second half of the subframe in the frame is sent, and a group of SSB burst sets can be sent in the second half of each subframe in the second half of a radio frame;
  • a group of SSB burst sets are sent in the second half of each subframe in the second half of a radio frame, and work in the non- For systems with licensed frequency bands, a group of SSB burst sets can be sent in the first half of each subframe in the first half of a radio frame, or a group of SSB burst sets can be sent in each of the first half of a radio frame The second half of a subframe is sent, and a group of SSB burst sets can be sent in the first half of each subframe in the second half of a radio frame.
  • the UE defaults that the SSB starts from the first symbol position of the first half subframe in each subframe in the first half of a radio frame; a system working in an unlicensed frequency band is in the discovery burst transmission window.
  • DBTW the UE defaults that the SSB starts from the first symbol position in the second half of each subframe in the first half of a radio frame, or the UE defaults that the SSB starts from the second half of a radio frame Start at the first symbol position of the first half subframe in each subframe, or the UE defaults SSB from the first symbol position of the second half subframe in each subframe in the second half of a radio frame Start on
  • the UE defaults that the SSB starts from the first symbol position in the second half of each subframe in the first half of a radio frame;
  • a system working in an unlicensed frequency band is in Discovery In burst transmission window (DBTW)
  • DBTW Discovery In burst transmission window
  • the UE defaults that the SSB starts from the first symbol position in the first half of each subframe in the first half of a radio frame, or the UE defaults that the SSB starts from the second half of a radio frame Start at the first symbol position of the first half subframe in each subframe in the frame, or the UE defaults SSB from the first symbol position of the second half subframe in each subframe in the second half of a radio frame Start at the symbol position;
  • the UE defaults that the SSB starts from the first symbol position in the first half of each subframe in the second half of a radio frame;
  • a system working in an unlicensed frequency band is in Discovery In burst transmission window (DBTW)
  • DBTW Discovery In burst transmission window
  • the UE defaults that the SSB starts from the first symbol position in the first half of each subframe in the first half of a radio frame, or the UE defaults that the SSB starts from the first half of the first half of a radio frame Start at the first symbol position of the second half subframe in each subframe in the radio frame, or the UE defaults SSB from the first symbol position of the second half subframe in each subframe in the second half frame of a radio frame Start at the symbol position;
  • DBTW Discovery In burst transmission window
  • the UE defaults that the SSB starts from the first symbol position in the second half of each subframe in the second half of a radio frame;
  • a system working in an unlicensed frequency band is In discovery burst transmission window (DBTW)
  • DBTW discovery burst transmission window
  • the UE defaults that the SSB starts from the first symbol position in the first half of each subframe in the first half of a radio frame, or the UE defaults that the SSB starts from the first half of a radio frame Start at the first symbol position of the second half of each subframe in the frame, or the UE defaults SSB from the first symbol of the first half of each subframe in the second half of a radio frame Start at the symbol position.
  • DBTW discovery burst transmission window
  • a group of SSB burst sets in a licensed band system are sent in the first half of each subframe in the first half of a radio frame, and SSBs in an unlicensed band system are sent after a radio frame.
  • the first half of each subframe in the half frame is sent.
  • the period of the SSB is ⁇ 1ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ .

Abstract

一种主信息块MIB的确定方法及装置,用以解决现有技术中终端设备无法确定接收到的MIB是属于授权频段上的还是非授权频段上的,导致终端设备解调MIB失败,而无法接入指定频段上的小区的问题。该方法为:网络设备向终端设备发送同步信息块,所述同步信息块中包含的MIB中的至少一个字段用于指示所述MIB是否为应用于非授权频段的MIB;所述终端设备从网络设备接收到所述同步信息块后,根据所述同步信息块中包含的MIB中的字段,确定所述MIB为应用于非授权频段的MIB。这样所述终端设备可以根据同步信息块中MIB的至少一个字段来明确接收到的MIB是否为应用于非授权频段的MIB,进而后续准确接入对应的小区。

Description

一种主信息块的确定方法及装置
相关申请的交叉引用
本申请要求在2020年05月15日提交中国专利局、申请号为202010414749.6、申请名称为“一种主信息块的确定方法及装置”,以及2021年2月10日提交中国专利局、申请号为202110183216.6、申请名称为“一种主信息块的确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种主信息块(master information block,MIB)的确定方法及装置。
背景技术
随着通信技术的演进,可使用的频段不断提高。新无线(new radio,NR)系统对频段的划分,主要分成频段范围1(frequency range 1,FR1)和FR2两部分,FR1主要指450MHz~6GHz带宽,FR2主要指24.25GHz~52.6GHz带宽。其中,6425MHz~7125MHz(U6GHz)之间的频段作为一个共享频段,其属于FR1范畴。
作为授权频段的辅助,将系统部署到共享频段上,不但可以提升系统的吞吐量,还可以解决频谱资源紧缺的问题。在第五代移动通信技术背景框架下,将部署在共享频段的技术统一叫做无线非授权频段技术(new radio unlicensed,NRU)。工作在共享频段上的系统需要支持如下所有或者部分关键技术:先听后说机制(listen before talk,LBT)、发送功率控制(transmit power control,TPC)和动态频谱选择(dynamic frequency selection,DFS)。
终端设备在对每个波段(band)中的频点扫描之后,将会盲检基站发送信号信息块图样(synchronization signal block pattern,SS/PBCH block pattern)。同步信息块(SS/PBCH block)是终端设备在初始接入过程中首要解调的信息,其主要由主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)组成,由时频域上4个正交频分复用符号(orthogonal frequency division multiplexing,OFDM)以及频域上20个资源块(resource blocks,RBs)的二维区域构成。终端设备通过解调PSS和SSS可以完成小区同步和粗略的符号级定时同步;PBCH携带了来自高层配置的MIB,终端设备通过解调MIB可以完成系统帧级别的定时同步等。
目前,工作在授权频段和非授权频段上的基站,发送的MIB携带的信息并不相同。而对于U6GHz这一频段,在一些地域,这一频段中可能存在部分授权频段和部分非授权频段,在另一些地域这样一频段均为授权频段。因此,对于终端设备来说,因无法确定接收到的MIB是属于授权频段上的还是非授权频段上的,导致终端设备解调MIB失败,而无法接入指定频段上的小区。
发明内容
本申请提供一种主信息块MIB的确定方法及装置,用以解决现有技术中终端设备无法确定接收到的MIB是属于授权频段上的还是非授权频段上的,导致终端设备解调MIB失败,而无法接入指定频段上的小区的问题。
第一方面,本申请提供了一种MIB的确定方法,该方法包括:网络设备向终端设备发送同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB;所述终端设备从网络设备接收到所述同步信息块后,根据所述同步信息块中包含的至少一个字段,确定所述MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中。
通过上述方法,所述终端设备可以根据同步信息块中MIB的字段来明确接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,所述至少一个字段为空闲(spare)字段,所述spare字段包括一个比特;在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
通过上述方法,终端设备可以根据检测到的所述spare字段来确定接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
通过上述方法,所述终端设备可以根据检测到的解调参考信号类型A位置字段来确定接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;所述四个比特中的最低位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的最高位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的任一位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB。
通过上述方法,所述可以灵活根据检测到的所述同步信号子载波偏移字段来确定接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
通过上述方法,所述可以根据检测到的所述同步信号子载波偏移字段中某个比特来确定接收到的MIB是否为应用于非授权频段的MIB,实现比较简单。
在一个可能的设计中,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;所述至少两个字段包括的比特联合指 示所述MIB是否为应用于非授权频段的MIB。这样所述终端设备可以根据同步信息块中MIB的至少一个字段来明确接收到的MIB是否为应用于非授权频段的MIB。
第二方面,本申请提供了一种MIB的确定方法,该方法可以包括:网络设备向终端设备发送同步信息块,所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB;所述终端设备从网络设备接收到同步信息块后,根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB是否为应用于非授权频段的MIB。
通过上述方法,终端设备可以根据同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是否为应用于非授权频段的MIB,以使后续准确接入对应的小区。
在一个可能的设计中,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,具体可以为:在所述PSS位于所述同步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
通过上述方法,所述终端设备可以根据检测到的PSS、SSS中的至少一项的时域位置来明确接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,具体可以为:在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;其中,所述第一DMRS包含 于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
通过上述方法,所述终端设备可以根据检测到的PCBH信息的时域位置,或者根据检测到的PBCH信息中包括的DMRS的位置来明确接收到的MIB是否为应用于非授权频段的MIB。
在一个可能的设计中,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
在一个可能的设计中,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;其中,
Figure PCTCN2021092682-appb-000001
Figure PCTCN2021092682-appb-000002
为小区标识。
在一个可能的设计中,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
通过上述方法,所述终端设备可以确定接收到的MIB是否为应用于非授权频段的MIB的情况下,所述同步信息块中不包含任何信息的位置。
第三方面,本申请提供了一种MIB的确定方法,该方法包括:网络设备向终端设备发送同步信息块,所述同步信息块中包含的至少一个字段用于指示所述MIB为第一类MIB或第二类MIB;所述终端设备从所述网络设备接收到所述同步信息块后,根据所述同步信息块中包含的至少一个字段,确定所述MIB为第一类MIB或第二类MIB;其中,所述至少一个字段位于所述MIB中;所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段。
通过上述方法,所述终端设备可以根据同步信息块中至少一个字段来明确接收到的MIB是应用于非授权频段的MIB还是应用于授权频段的MIB,进而后续准确接入对应的小区。
在一个可能的设计中,所述至少一个字段为spare字段,所述spare字段包括一个比特; 在所述一个比特为0的情况下,所述MIB为第一类MIB;在所述一个比特为1的情况下,所述MIB为第二类MIB。
通过上述方法,终端设备可以根据检测到的所述spare字段的具体值来确定接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一个可能的设计中,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;在所述一个比特为0的情况下,所述MIB为第一类MIB;在所述一个比特为1的情况下,所述MIB为第二类MIB。
通过上述方法,所述终端设备可以根据检测到的解调参考信号类型A位置字段的具体值来确定接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一个可能的设计中,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;所述四个比特中的最低位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的最高位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的任一位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的至少两个比特联合指示所述MIB为第一类MIB或第二类MIB。
通过上述方法,所述可以灵活根据检测到的所述同步信号子载波偏移字段的具体值来确定接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一个可能的设计中,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为第一类MIB;在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为第二类MIB。
通过上述方法,所述可以根据检测到的所述同步信号子载波偏移字段中某个比特的具体值来确定接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB,实现比较简单。
在一个可能的设计中,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;所述至少两个字段包括的比特联合指示所述MIB为第一类MIB或第二类MIB。这样所述终端设备可以根据同步信息块中MIB的至少一个字段来明确接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
第四方面,本申请提供了一种MIB的确定方法,该方法可以包括:网络设备向终端设备发送同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB;所述终端设备从所述网络设备接收到所述同步信息块后,根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB为第一类MIB或第二类MIB;其中,所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段。
通过上述方法,终端设备可以根据同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB,以使后续准确接入对应的小区。
在一个可能的设计中,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB,具体可以为:在所述PSS位于所述同 步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为第一类MIB;在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为第二类MIB;和/或,在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为第一类MIB;在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为第二类MIB。
通过上述方法,所述终端设备可以根据检测到的PSS、SSS中的至少一项的时域位置来明确接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一个可能的设计中,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB,具体可以为:在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为第一类MIB;在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为第二类MIB;或者,在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为第一类MIB;在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为第二类MIB;其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
通过上述方法,所述终端设备可以根据检测到的PCBH信息的时域位置,或者根据检测到的PBCH信息中包括的DMRS的位置来明确接收到的MIB,是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一个可能的设计中,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
在一个可能的设计中,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;其中,
Figure PCTCN2021092682-appb-000003
Figure PCTCN2021092682-appb-000004
为小区标识。
在一个可能的设计中,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191} 子载波序号为的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
通过上述方法,所述终端设备可以确定接收到的MIB为应用于非授权频段的MIB的情况下,所述同步信息块中不包含任何信息的位置,或者可以确定接收到的MIB为应用于授权频段的MIB的情况下,所述同步信息块中不包含任何信息的位置。
第五方面,本申请还提供了一种MIB的确定装置,所述MIB的确定装置可以是终端设备,该MIB的确定装置具有实现上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述MIB的确定装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述MIB的确定装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述MIB的确定装置执行上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述MIB的确定装置必要的程序指令和数据。
第六方面,本申请还提供了一种MIB的确定装置,所述MIB的确定装置可以是网络设备,该MIB的确定装置具有实现上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述MIB的确定装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述MIB的确定装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互, 所述处理器被配置为支持所述MIB的确定装置执行上述第一方面或第一方面的各个可能的设计示例中、第二方面或第二方面的各个可能的设计示例中、第三方面或第三方面的各个可能的设计示例中、第四方面或第四方面的各个可能的设计示例中网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述装置必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第八方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计,或第二方面及其任一可能的设计,或第三方面及其任一可能的设计,或第四方面及其任一可能的设计。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第九方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述任一方面所述的方法。
第十方面,本申请还提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述任一种方法。
上述第五方面至第十方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面至第四方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种同步信息块的结构示意图;
图2为本申请提供的一种通信系统的架构示意图;
图3为本申请提供的一种MIB的确定方法的流程图;
图4为本申请提供的另一种MIB的确定方法的流程图;
图5为本申请提供的另一种同步信息块的结构示意图;
图6为本申请提供的另一种同步信息块的结构示意图;
图7为本申请提供的另一种同步信息块的结构示意图;
图8为本申请提供的另一种MIB的确定方法的流程图;
图9为本申请提供的另一种MIB的确定方法的流程图;
图10为本申请提供的一种MIB的确定装置的结构示意图;
图11为本申请提供的一种MIB的确定装置的结构图;
图12为本申请提供的另一种MIB的确定方法的流程图;
图13为本申请提供的一种同步信息块的发送示意图;
图14为本申请提供的另一种同步信息块的发送示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种MIB确定的方法及装置,用以解决现有技术中终端设备无法确定接收到的MIB是属于授权频段上的还是非授权频段上的,导致终端设备解调MIB失败,而无法接入指定频段上的小区的问题。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
目前,网络设备向终端设备的同步信息块SS/PBCH block可以如图1所示的结构所示,所述同步信息块包括PSS,SSS和PBCH组成,由时频域上4个OFDM以及频域上20个RB的二维区域构成。在一些实施方式中,同步信息块还可以被称为同步信号块。其中,终端设备通过解调PSS和SSS可以完成小区同步和粗略的符号级定时同步;PBCH携带了来自高层配置的MIB信息,终端设备通过解调MIB信息可以完成系统帧级别的定时同步,获取系统信息块1/剩余最小系统信息(system information block/remaining minimum system information,SIB1/RMSI)的位置信息便于进一步解调SIB1/RMSI中的信息,即通过参数(pdcch-ConfigSIB1)解调SIB1/RMSI的类型0-物理下行控制信道(physical downlink control channel,type0-PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH)信道。
根据最新的标准R16,终端设备根据协议规定好的对应表来获取type0-PDCCH的具体时域位置。但是,工作在授权频段的终端设备获取type0-PDCCH的具体时域位置采用的表格,和工作在非授权频段的终端设备获取type0-PDCCH的具体时域位置采用的表格不相同。并且,工作在授权频段和非授权频段的MIB的内容也不相同,主要体现在MIB中的参数公共子载波间隔(subCarrierSpacingCommon)和同步信号子载波偏移(ssb-SubcarrierOffset)不同。具体的:针对授权频段,参数“subCarrierSpacingCommon”表示SIB1,Msg2/4,寻呼以及其它系统信息(开放式系统互联参考模型(open system interconnect reference model,OSI))使用的子载波间隔;参数“ssb-SubcarrierOffset”表示SS/PBCH Block与重叠公共资源块(Common resource block,CRB)之间子载波的偏移,即Kssb,SS/PBCH Block所占的RB编号最低中编号为0的子载波与CRB中编号为0子载波之间的间隔。而针对非授权频道,终端设备解调SIB1的子载波间隔(sub-carrier spacing,SCS)和具有准共址(quasi co-location,QCL)关系的SS/PBCH Block的SCS相同,因此参数“subCarrierSpacingCommon”将被另作它用。
通过上述可知,应用于授权频段上的MIB和应用于非授权频段上的MIB不一样,而对于U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz这一频段,在一些地域,这一频段中可能存在部分授权频段和部分非授权频段,在另一些地域这样一频段均为授权频段。因此,对于终端设备来说,因无法确定接收到的MIB是应用于授权频段上的还是应用于非授权频段上的,导致终端设备解调MIB失败,而无法接入指定频段上的小区。基于此,本申请提出一种MIB的确定方法,来解决上述问题,用以实现终端设备可以确定接收到的MIB是应用于授权频段上的还是应用于非授权频段上的。
在本申请中,可以对应用于授权频段的MIB和应用于非授权频段的MIB进行名称区分,具体的可以将对应授权频段的MIB称为第一类MIB,将对应非授权频段的MIB称为 第二类MIB;或者,将对应授权频段的MIB称为第二类MIB,将对应非授权频段的MIB称为第一类MIB。或者,还可以将对应授权频段的MIB称为新MIB,将对应非授权频段的MIB称为旧MIB;或者,将对应授权频段的MIB称为旧MIB,将对应非授权频段的MIB称为新MIB。当然,还可以有其它名称,本申请对此不作限定。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的MIB的确定方法及装置进行详细说明。
图2示出了本申请实施例提供的MIB的确定方法适用的一种可能的通信系统的架构,该通信系统工作在U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz的共享频段。所述通信系统的架构中可以包括一个网络设备和多个终端设备,其中,所述多个终端设备在图2中以用户设备(user equipment,UE)1-UE5为例示出。具体的,所述网络设备可以和UE1~UE5进行通信,通信链路包括了上行、下行以及边路传输(side-link,SL),通信链路中传输的信息包括了实际传输的数据信息,以及用于指示或调度实际数据的控制信息。此外,UE3~UE5也可以组成一个子通信系统,UE3和UE4可以基于D2D技术进行边链路传输。
所述网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
所述终端设备也可以称为UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1仅是一种示意图,本申请并不对通信系统的类型,以及通信系统 内包括的设备的数量、类型等进行具体限定。
本申请实施例提供的一种MIB的确定方法,适用于如图2所示的通信系统,也即应用在工作在U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz的共享频段的通信系统。参阅图3所示,该方法的具体流程可以包括:
步骤301:网络设备确定同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中。
步骤302:所述网络设备向终端设备发送所述同步信息块。
步骤303:所述终端设备根据所述同步信息块中包含的所述至少一个字段,确定所述MIB是否为应用于非授权频段的MIB。
其中,在本申请中,所述MIB是否为应用于非授权频段的MIB可以有如下三种解释:仅表示所述MIB是不是应用于非授权频段的MIB;仅表示所述MIB是不是应用于授权频段的MIB;表示所述MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB。
通过上述方法,终端设备可以根据同步信息块中的至少一个字段来明确接收到的MIB是否为应用于非授权频段的MIB。
在一种可选的实施方式中,可以应用MIB中现有的未使用的字段空闲(spare)字段来指示所述MIB是否为应用于非授权频段的MIB。一种实施例中,在所述spare字段为空的情况下则表示所述MIB为应用于授权频段的MIB;在所述spare字段不为空的情况下则表示所述MIB为应用于授权频段的MIB。另一种实施例中,所述spare字段包括一个比特(bit),可以通过比特位(bit mapping)的方式指示,具体方法可以为:
在所述spare字段的一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述一个比特为1的情况下,或者在所述一个比特为空的情况下,所述MIB为应用于授权频段的MIB。或者
在所述spare字段的一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述一个比特为0的情况下,或者在所述一个比特为空的情况下,所述MIB为应用于授权频段的MIB。
通过上述方法,终端设备可以根据检测到的所述spare字段是否为空,或者根据检测到的所述spare字段的具体值来确定接收到的MIB是否为应用于非授权频段的MIB。
在另一种可选的实施方式中,可以应用MIB中现有的字段解调参考信号类型A位置(dmrs-TypeA-Position)字段来指示所述MIB是否为应用于非授权频段的MIB。该字段表示下行(downlink)或者上行(uplink)上第一个DMRS的时域位置。“pos2”表示所在时隙(slot)内第一个DMRS位于第3个OFDM符号(OFDM符号#2)上,“pos3”表示位于所在slot内第一个DMRS位于第4个OFDM符号(OFDM符号#3)上。而对于工作在U6GHz上的终端设备来说,其默认第一个DMRS的时域位置为“pos2”或“pos3”,此时该字段dmrs-TypeA-Position可省略,因此,此时可以使用dmrs-TypeA-Position字段来指示所述MIB是否为应用于非授权频段的MIB。
一种实施例中,在所述dmrs-TypeA-Position字段为空的情况下则表示所述MIB为应用于授权频段的MIB;在所述dmrs-TypeA-Position字段不为空的情况下则表示所述MIB为应用于授权频段的MIB。另一种实施例中,所述dmrs-TypeA-Position字段包括1个比特,可以通过bit-mapping的方式指示,具体方法可以为:
在所述dmrs-TypeA-Position字段的一个比特为0的情况下,所述MIB为应用于非授 权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述一个比特为1的情况下,或者在所述一个比特为空的情况下,所述MIB为应用于授权频段的MIB。或者
在所述dmrs-TypeA-Position字段的一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述一个比特为0的情况下,或者在所述一个比特为空的情况下,所述MIB为应用于授权频段的MIB。
通过上述方法,所述终端设备可以根据检测到所述dmrs-TypeA-Position字段是否为空,或者根据检测到的所述dmrs-TypeA-Position字段的具体值来确定接收到的MIB是否为应用于非授权频段的MIB。
在又一种可选的实施方式中,可以应用MIB中现有的字段同步信号子载波偏移(ssb-SubcarrierOffset)字段来指示所述MIB是否为应用于非授权频段的MIB。该字段表示SS/PBCH Block与重叠CRB之间子载波的偏移,即Kssb。针对FR1,当终端设备解调出的Kssb值大于24时,表示终端设备检测到的当前SS/PBCH Block中并不存在与其具有QCL关系的RMSI信息。但同时,该值也可以不给终端设备提供,终端设备将根据SS/PBCH Block和PointA之间的频域位置推导出Kssb,其中,PointA对应CRB#0(即编号为0的CRB)的载波#0(即载波编号为0的载波)的中心点。因此,对于工作在U6GHZ和52.6GHz~71GHz上的系统,可以应用MIB中ssb-SubcarrierOffset字段来指示所述MIB是否为应用于非授权频段的MIB。
一种实施例中,在所述ssb-SubcarrierOffset字段为空的情况下则表示所述MIB为应用于授权频段的MIB;在所述ssb-SubcarrierOffset字段不为空的情况下则表示所述MIB为应用于授权频段的MIB。另一种实施例中,所述ssb-SubcarrierOffset字段包括4个比特,具体可以通过以下四种方式实现所述ssb-SubcarrierOffset字段指示所述MIB是否为应用于非授权频段的MIB:
方式a1:所述ssb-SubcarrierOffset字段包括的四个比特中的最低位比特(1-bit LSB)用于指示所述MIB是否为应用于非授权频段的MIB。
方式a2:所述ssb-SubcarrierOffset字段包括的四个比特中的最高位比特(1-bit MSB)用于指示所述MIB是否为应用于非授权频段的MIB。
方式a3:所述ssb-SubcarrierOffset字段包括的四个比特中的任一位比特用于指示所述MIB是否为应用于非授权频段的MIB。
方式a4:所述ssb-SubcarrierOffset字段包括的四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB。
示例性的,在上述方式a1-a3中,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,或者在所述最低位比特、所述最高位比特或所述任一位比特为空的情况下,所述MIB为应用于授权频段的MIB。或者
在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,或者在所述最低位比特、所述最高位比特或所述任一位比特为空的情况下,所述MIB为应用于授权频段的MIB。
示例性的,在上述方式a4中,所述ssb-SubcarrierOffset字段包括的四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB,具体方法可以为:通过所述ssb-SubcarrierOffset字段中至少两个比特组成的不同值来指示所述MIB是否为应用于非授权频段的MIB。例如,所述ssb-SubcarrierOffset字段中两个比特为“01”的情况下,所述MIB为应用于非授权频段的MIB,否则所述MIB为应用于授权频段的MIB;此时,所述两个比特为“00”、“10”或“11”的情况下,或者在所述两个比特为空的情况下,所述MIB为应用于授权频段的MIB。又例如,所述ssb-SubcarrierOffset字段中两个比特为“10”的情况下,所述MIB为应用于非授权频段的MIB,否则所述MIB为应用于授权频段的MIB;此时,所述两个比特为“01”、“00”或“11”的情况下,或者在所述两个比特为空的情况下,所述MIB为应用于授权频段的MIB。又例如,所述ssb-SubcarrierOffset字段中三个比特为“001”的情况下,所述MIB为应用于非授权频段的MIB否则所述MIB为应用于授权频段的MIB;此时,所述三个比特为“010”、“000”、“111”等等的情况下,或者在所述三个比特为空的情况下,所述MIB为应用于授权频段的MIB。其中,上述两个比特或者三个比特可以是所述ssb-SubcarrierOffset字段包括的四个比特中连续的比特,也可以是非连续的比特,本申请对此不作限定。当然除上述举例外,还可以有多种其他指示方法,此处不再一一列举。
通过上述方法,所述可以根据检测到的所述ssb-SubcarrierOffset字段是否为空,或者根据检测到所述ssb-SubcarrierOffset字段的具体值来确定接收到的MIB是否为应用于非授权频段的MIB。
在又一种可选的实施方式中,所述至少一个字段可以包括所述spare字段、所述dmrs-TypeA-Position字段或所述ssb-SubcarrierOffset字段中的至少两个字段;一种实施例中,在所述至少两个字段为空的情况下则表示所述MIB为应用于授权频段的MIB;在所述至少两个字段不为空的情况下则表示所述MIB为应用于授权频段的MIB。另一种实施例中,所述至少两个字段包括的比特联合指示所述MIB是否为应用于非授权频段的MIB。
示例性的,在所述至少两个字段包括的比特联合指示所述MIB是否为应用于非授权频段的MIB的情况下,具体可以为:通过联合所述spare字段和所述dmrs-TypeA-Position字段的2个bits来指示所述MIB是否为应用于非授权频段的MIB;或者,通过联合所述spare字段和所述ssb-SubcarrierOffset字段的至少2个bits来指示所述MIB是否为应用于非授权频段的MIB;或者,通过联合所述dmrs-TypeA-Position字段和所述ssb-SubcarrierOffset字段的至少2个bits来表示所述MIB是否为应用于非授权频段的MIB;或者通过联合所述spare字段、所述dmrs-TypeA-Position字段和所述ssb-SubcarrierOffset字段中至少3个比特来指示所述MIB是否为应用于非授权频段的MIB。具体的,上述任一种联合指示方法中,通过联合后的比特的具体值来指示所述MIB是否为应用于非授权频段的MIB。例如,通过联合所述spare字段和所述dmrs-TypeA-Position字段的2个bits来指示所述MIB是否为应用于非授权频段的MIB的情况下,两个比特为“01”的情况下,所述MIB为应用于非授权频段的MIB,否则所述MIB为应用于授权频段的MIB;此时,所述两个比特为“01”、“00”或“11”的情况下,或者在所述两个比特为空的情况下,所述MIB为应用于授权频段的MIB。当然还可以为其他多种示例,此处不再一一列举。
采用本申请实施例提供的MIB的确定方法,终端设备可以根据同步信息块中的字段来明确接收到的MIB是否为应用于非授权频段的MIB。
基于以上实施例,本申请实施例还提供的一种MIB的确定方法,适用于如图2所示的通信系统,也即应用在工作在U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz的共享频段的通信系统。参阅图4所示,该方法的具体流程可以包括:
步骤401:网络设备确定同步信息块,所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。
步骤402:所述网络设备向终端设备发送所述同步信息块。
步骤403:所述终端设备根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB是否为应用于非授权频段的MIB。
通过上述方法,终端设备根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是否为应用于非授权频段的MIB。
在第一种可选的实施方式中,可以通过所述PSS、所述SSS中的至少一项的时域位置指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。
根据图1所示的同步信息块的结构可知,目前,同步信息块由PSS、SSS、PBCH组成,PSS和SSS分别位于所述同步信息块的第一个OFDM符号(OFDM符号#0)和第三个OFDM符号(OFDM符号#2)上,共占用所述同步信息块的子载波序号为{56,57,……182}(也即子载波序号#56~#182)之间的127个子载波。当然,子载波序号也可以称为子载波编号,本申请不作限定。
目前,PSS和SSS都采用了长度为127的采用二进制相移键控(binary phase shift keying,BPSK)调制的M序列。其中,PSS通过BPSK M序列3个循环移位产生。具体的,PSS序列的生成公式如下:
d PSS(n)=1-2x(m)
其中,
Figure PCTCN2021092682-appb-000005
0≤n<127,
x(i+7)=(x(i+4)+x(i))mod2,
[x(6) x(5) x(4) x(3) x(2) x(1)]=[1 1 1 0 1 1 0],
d PSS(n)为PSS序列,
Figure PCTCN2021092682-appb-000006
x(i)表示基序列,i表示编号,i大于或者等于1。
SSS序列的生成公式如下:
d SSS(n)=[1-2x 0((n+m 0)mod127)][1-2x 1((n+m 1)mod127)]
其中,
Figure PCTCN2021092682-appb-000007
Figure PCTCN2021092682-appb-000008
0≤n<127,
x 0(i+7)=(x 0(i+4)+x 0(i))mod2,
x 1(i+7)=(x 1(i+4)+x 1(i))mod2,
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1)]=[0 0 0 0 0 0 1],
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1)]=[0 0 0 0 0 0 1],
d SSS(n)为SSS序列,
Figure PCTCN2021092682-appb-000009
x 0(i)和x 1(i)分别表示基序列,i表示编号。
由上述PSS和SSS序列的生成可知,PSS和SSS序列并不相同。因此,在该第一种可 选的实施方式中,可以通过对换所述同步信息块中的PSS和SSS在时域上的位置(或相对位置)来实现。具体的,在该第一种可选的实施方式中,所述同步信息块的结构可以如图5所示。其中,通过图5所示的同步信息块与图1所示的同步信息块对比可知,图5中PSS和SSS的在时域上的位置相对于图1进行了对换。对换后,PSS的时域位置为所述同步信息块的第三个OFDM符号(也即OFDM符号#0),SSS的时域位置为所述同步信息块的第一个OFDM符号(也即OFDM符号#2)。同时可以看出对换后的PSS和SSS的频域位置没有改变,仍为所述同步信息块中子载波序号为{56,57,……,182}的子载波。相应地,图5所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表1所示:
表1
Figure PCTCN2021092682-appb-000010
其中,表1中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。也即PSS和SSS时域位置的修改。
具体的,在该第一种可选的实施方式中,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,具体可以包括以下情况:
在所述PSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB;或者
在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述PSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB;或者
在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB;或者
在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述SSS位 于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB;或者
在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB;或者
在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于授权频段的MIB。
在该第一种可选的实施方式中,所述终端设备可以通过对所述同步信息块解调(例如自相关处理的方法)的过程中,检测到上述情况中的任一种即可以确定接收到的MIB是否为应用于非授权频段的MIB。示例性的,所述终端设备在指定位置上通过比对、解调的方式进行对MIB的确定时,可以为:
所述终端设备在OFDM符号#0上使用PSS序列在子载波序号#56~#182之间进行对比或者解调,如果解调出PSS信号,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果解调出PSS信号,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB;
或者,所述终端设备在OFDM符号#2上使用SSS序列在子载波序号#56~#182之间进行对比或者解调,如果解调出SSS信号,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果解调出SSS信号,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB;
或者,所述终端设备分别在OFDM符号#0和OFDM符号#2上使用PSS序列和SSS序列在子载波序号#56~#182之间进行对比或者解调,如果分别解调出PSS信号和SSS信号,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果分别解调出PSS信号和SSS信号,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB。
在第二种可选的实施方式中,可以通过所述PBCH信息的时域位置指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。
根据图1所示的同步信息块的结构可知,目前,同步信息块中PBCH的时域位置,在所述同步信息块的第二个OFDM符号(也即OFDM符号#1)和第四个OFDM符号(也即OFDM符号#3)上各占用240个子载波,在第三个OFDM符号(也即OFDM符号#2)上,共占用96个子载波(包括子载波序号#0~#47和子载波序号#192~#239对应的子载波)。在该第二种可选的实施方式中,可以通过改变所述同步信息块第三个OFDM符号上的PBCH的时域位置来实现。具体的,PBCH时域位置改变后的同步信息块的结构可以如图6所示。
其中,图6中包括了三种可能的情况。图6中(a)所示的同步信息块与图1所示的同步信息块对比可知,图6中(a)的所述同步信息块的第一个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息,所述同步信息块的第三个OFDM 符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息。相应地,图6中(a)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表2所示:
表2
Figure PCTCN2021092682-appb-000011
其中,表2中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,从表2中可以看出所述同步信息块的第一个OFDM符号和第三个OFDM符号上PBCH信息有所改变,也即改变后,所述同步信息块的第一个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息,所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息。由于PDCH中包含了DMRS,因此相应的修改了的PBCH中的DMRS的时域位置也有所改变,改变后,所述同步信息块的第一个OFDM符号上子载波序号为{192+v,196+v,……,236+v}的子载波上包含部分DMRS,所述同步信息块的第三个OFDM符号上子载波序号为{0+v,4+v,……,44+v}的子载波上包含部分DMRS。相应地,PBCH的位置改变后,不包含任何信息的位置也会相应改变,具体改变如表2中Set to 0对应的数据所示,也即,改变后,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含任何信息。
图6中(b)所示的同步信息块与图1所示的同步信息块对比可知,图6中(b)的所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息,所述同步信息块的第三个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息。相应地,图6中(b)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表3所示:
表3
Figure PCTCN2021092682-appb-000012
Figure PCTCN2021092682-appb-000013
其中,表3中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,从表3中可以看出所述同步信息块的第一个OFDM符号和第三个OFDM符号上PBCH信息有所改变,也即,改变后,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息,所述同步信息块的第三个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息。同样由于PDCH中包含了DMRS,因此相应的修改了的PBCH中的DMRS的时域位置也有所改变,也即改变后,所述同步信息块的第一个OFDM符号上子载波序号为{0+v,4+v,……,44+v}的子载波上包含部分DMRS,所述同步信息块的第三个OFDM符号上子载波序号为{192+v,196+v,……,236+v}的子载波上包含部分DMRS。相应地,PBCH的位置改变后,不包含任何信息的位置也会相应改变,具体改变如表3中Set to 0对应的数据所示,也即,改变后,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息。
图6中(c)所示的同步信息块与图1所示的同步信息块对比可知,图6中(c)的所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息,所述同步信息块的第一个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息。相应地,图6中(c)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表4所示:
表4
Figure PCTCN2021092682-appb-000014
其中,表4中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,从表4中可以看出所述同步信息块的第一个OFDM符号上PBCH信息有所改变,也即改变后,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,47}的子载波上包含部分PBCH信息,所述同步信息块的第一个OFDM符号上子载波序号为{192,193,……,239}的子载波上包含部分PBCH信息。同样由于PDCH中包含了DMRS,因此相应的修改了的PBCH中的DMRS的时域位置也有所改变,也即改变后,所述同步信息块的第一个OFDM符号上子载波序号为{0+v,4+v,……,44+v}的子载波上包含部分DMRS,所述同步信息块的第一个OFDM符号上子载波序号为{192+v,196+v,……,236+v}的子载波上包含部分DMRS。相应地,PBCH的位置改变后,不包含任何信息的位置也会 相应改变,具体改变如表4中Set to 0对应的数据所示,也即,改变后,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息。
其中,在上述表2-表4涉及的
Figure PCTCN2021092682-appb-000015
Figure PCTCN2021092682-appb-000016
为小区标识。
具体的,在该第二种可选的实施方式中,依据对上述图6以及表2到表4的描述,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,具体可以包括以下四种方法:
方法b1:在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于授权频段的MIB。
方法b2:在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于授权频段的MIB。
方法b3:在第一DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于授权频段的MIB。
方法b4:在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;此时,在第一DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于授权频段的MIB。
其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
示例性的,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
示例性的,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……, 44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波。
在该第二种可选的实施方式中,在上述方法b1和b2中,所述终端设备可以通过盲检PBCH的方式实现,具体的,所述终端设备可以通过在指定位置上的PBCH信道进行能量检测判断所述同步信息块包含的所述MIB是否为应用于非授权频段的MIB。在上述方法b3和b4中,所述终端设备可以通过盲检DMRS的方式实现,具体的,所述终端设备可以通过在指定位置PBCH信道上的DMRS进行能量检测或者DMRS序列对比的方式判断所述同步信息块包含的所述MIB是否为应用于非授权频段的MIB。
示例性的,所述终端设备可以通过在指定位置上的PBCH信道进行能量检测判断所述同步信息块包含的所述MIB是否为应用于非授权频段的MIB,具体可以为:
所述终端设备在OFDM符号#0的子载波#1~#47和/或OFDM符号#0的子载波#192~#239上进行能量检测,如果检测出PBCH信息,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果检测出PBCH信息,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB;
或者,所述终端设备在OFDM符号#2的子载波#1~#47和OFDM符号#2的子载波#192~#239上同时进行能量检测,如果同时检测出PBCH信息,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果同时检测出PBCH信息,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB。
示例性的,所述终端设备可以通过在指定位置PBCH信道上的DMRS进行能量检测或者DMRS序列对比的方式判断所述同步信息块包含的所述MIB是否为应用于非授权频段的MIB,具体可以为:
所述终端设备在OFDM符号#0的子载波{0+v,4+v,……,44+v}和/或OFDM符号#0的子载波{192+v,196+v,……,236+v}上进行能量检测,如果检测出DMRS,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果检测出DMRS,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB;
或者,所述终端设备在OFDM符号#2的子载波{0+v,4+v,……,44+v}和OFDM符号#2的子载波{192+v,196+v,……,236+v}上同时进行能量检测,如果同时检测出DMRS,则表示所述MIB为应用于授权频段的MIB,否则表示所述MIB为应用于非授权频段的MIB;或者如果同时检测出DMRS,则表示所述MIB为应用于非授权频段的MIB,否则表示所述MIB为应用于授权频段的MIB。
在第三种可选的实施方式中,可以联合PSS和/或SSS的时域位置以及PBCH信息的时域位置共同指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。也即,结合上述第一种可选的实施方式和第二种可选的实施方式共同实现。也就是说既对换所述同步信息块中的PSS和SSS在时域上的位置,也改变所述同步信息块第三个OFDM符号上的PBCH的时域位置。具体的,改变后的所述同步信息块的结构可以如图7所示。
其中,图7中包括了三种可能的情况。图7中(a)即为上述第一种可选的实施方式与上述图6中(a)中的方法的联合。此时,图7中(a)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表5所示:
表5
Figure PCTCN2021092682-appb-000017
其中,表5中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,表5中的参数修改是表1和表2中参数的修改的叠加,具体的参见表1和表2的相关描述,此处不再详细描述。
其中,图7中(b)即为上述第一种可选的实施方式与上述图6中(b)中的方法的联合。此时,图7中(b)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表6所示:
表6
Figure PCTCN2021092682-appb-000018
其中,表6中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,表6中的参数修改是表1和表3中参数的修改的叠加,具体的参见表1和表3的相关描述,此处不再详细描述。
其中,图7中(c)即为上述第一种可选的实施方式与上述图6中(c)中的方法的联合。此时,图7中(c)所示的同步信息块对应的TS 38.211中table 7.4.3.1-1中部分参数可以如下表7所示:
表7
Figure PCTCN2021092682-appb-000019
Figure PCTCN2021092682-appb-000020
其中,表7中加粗斜体的数据表示相对于图1所示的同步信息块对应的参数的修改。具体的,表7中的参数修改是表1和表4中参数的修改的叠加,具体的参见表1和表4的相关描述,此处不再详细描述。
在该第三种可选的实施方式中,联合PSS和/或SSS的时域位置以及PBCH信息的时域位置共同指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,即同时满足上述第一种可选的实施方式与上述第二种可选的实施方式中的判定的情况下,则可以确定出所述同步信息块包含的MIB是否为应用于非授权频段的MIB。具体的,可以理解的是,该第三种可选的实施方式中的方法可以是上述第二种可选的实施方式中的所有方法的组合,具体参见上述涉及的相关描述,此处不再一一列举。
采用本申请实施例提供的MIB的确定方法,终端设备可以根据同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是否为应用于非授权频段的MIB。
本申请实施例提供的一种MIB的确定方法,适用于如图2所示的通信系统,也即应用在工作在U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz的共享频段的通信系统。参阅图8所示,该方法的具体流程可以包括:
步骤801:网络设备确定同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB为第一类MIB或第二类MIB,所述至少一个字段位于所述MIB中。
步骤802:所述网络设备向终端设备发送所述同步信息块。
步骤803:所述终端设备根据所述同步信息块中包含的所述至少一个字段,确定所述MIB为第一类MIB或第二类MIB。
其中,所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段。为了便于理解,下边的描述中,以MIB为应用于非授权频段的MIB或者为应用于授权频段的MIB来说明。也即,所述同步信息块中包含的所述至少一个字段用于指示所述MIB为应用于非授权频段的MIB或者为应用于授权频段的MIB。
通过上述方法,终端设备可以根据同步信息块中的至少一个字段来明确接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在一种可选的实施方式中,可以应用MIB中现有的未使用的字段空闲(spare)字段来指示所述MIB为应用于非授权频段的MIB,还是应用于授权频段的MIB。其中,所述spare字段包括一个比特(bit),可以通过比特位(bit mapping)的方式指示,具体方法可以为:
在所述spare字段的一个比特为0的情况下,所述MIB为应用于非授权频段的MIB, 也即包含所述MIB的所述同步信息块位于非授权频段;在所述spare字段的一个比特为1的情况下,所述MIB为应用于授权频段的MIB,也即包含所述MIB的所述同步信息块位于授权频段;或者
在所述spare字段的一个比特为0的情况下,所述MIB为应用于授权频段的MIB,也即包含所述MIB的所述同步信息块位于授权频段;在所述spare字段的一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,也即包含所述MIB的所述同步信息块位于非授权频段。
通过上述方法,终端设备可以根据检测到的所述spare字段的具体值来确定接收到的MIB是应用于非授权频段的MIB还是应用于授权频段的MIB。
在另一种可选的实施方式中,可以应用MIB中现有的字段解调参考信号类型A位置(dmrs-TypeA-Position)字段来指示所述MIB为应用于非授权频段的MIB,还是应用于授权频段的MIB。具体的对所述dmrs-TypeA-Position字段的说明可以参见图3所示的实施例中的相关描述,此处不再重复描述。其中,所述dmrs-TypeA-Position字段包括1个比特,可以通过bit-mapping的方式指示,具体方法可以为:
在所述dmrs-TypeA-Position字段的一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,也即包含所述MIB的所述同步信息块位于非授权频段;在所述dmrs-TypeA-Position字段的一个比特为1的情况下,所述MIB为应用于授权频段的MIB,也即包含所述MIB的所述同步信息块位于授权频段;或者
在所述dmrs-TypeA-Position字段的一个比特为0的情况下,所述MIB为应用于授权频段的MIB,也即包含所述MIB的所述同步信息块位于授权频段;在所述dmrs-TypeA-Position字段的一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,也即包含所述MIB的所述同步信息块位于非授权频段。
通过上述方法,所述终端设备可以根据检测到的所述dmrs-TypeA-Position字段的具体值来确定接收到的MIB是应用于非授权频段的MIB还是应用于授权频段的MIB。
在又一种可选的实施方式中,可以应用MIB中现有的字段同步信号子载波偏移(ssb-SubcarrierOffset)字段来指示所述MIB为应用于非授权频段的MIB,还是应用于授权频段的MIB。具体的,对所述ssb-SubcarrierOffset字段的描述可以参见图3所示的实施例中的相关描述,此处不再重复描述。其中,所述ssb-SubcarrierOffset字段包括4个比特,具体可以通过以下四种方式实现所述ssb-SubcarrierOffset字段指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB:
方式c1:所述ssb-SubcarrierOffset字段包括的四个比特中的最低位比特(1-bit LSB)用于指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。
方式c2:所述ssb-SubcarrierOffset字段包括的四个比特中的最高位比特(1-bit MSB)用于指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。
方式c3:所述ssb-SubcarrierOffset字段包括的四个比特中的任一位比特用于指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。
方式c4:所述ssb-SubcarrierOffset字段包括的四个比特中的至少两个比特联合指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。
示例性的,在上述方式c1-c3中,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB;在所述最低位比特、所述最 高位比特或所述任一位比特为1的情况下,所述MIB为应用于授权频段的MIB;或者
在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于授权频段的MIB;在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为应用于非授权频段的MIB。
示例性的,在上述方式c4中,所述ssb-SubcarrierOffset字段包括的四个比特中的至少两个比特联合指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB的具体方法可以为:通过所述ssb-SubcarrierOffset字段中至少两个比特组成的不同值来指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。例如,所述ssb-SubcarrierOffset字段中两个比特为“01”的情况下,所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB;又例如,所述ssb-SubcarrierOffset字段中两个比特为“10”的情况下,所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB;又例如,所述ssb-SubcarrierOffset字段中三个比特为“001”的情况下,所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。其中,上述两个比特或者三个比特可以是所述ssb-SubcarrierOffset字段包括的四个比特中连续的比特,也可以是非连续的比特,本申请对此不作限定。当然除上述举例外,还可以有多种其他指示方法,此处不再一一列举。
通过上述方法,所述可以根据检测到的所述ssb-SubcarrierOffset字段的具体值来确定接收到的MIB是应用于非授权频段的MIB还是应用于授权频段的MIB。
在又一种可选的实施方式中,所述至少一个字段可以包括所述spare字段、所述dmrs-TypeA-Position字段或所述ssb-SubcarrierOffset字段中的至少两个字段;所述至少两个字段包括的比特联合指示所述MIB为应用于非授权频段的MIB或者为应用于授权频段的MIB。
示例性的,在所述至少两个字段包括的比特联合指示所述MIB为应用于非授权频段的MIB或者为应用于授权频段的MIB的情况下,具体的字段联合方式与图3所示的实施例中涉及的字段联合方式类似,可以相互参见,此处不再详细描述。具体的,在任一种联合指示方法中,通过联合后的比特的具体值来指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。例如,通过联合所述spare字段和所述dmrs-TypeA-Position字段的2个bits来指示所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB的情况下,两个比特为“01”的情况下,所述MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。当然还可以为其他示例,此处不再一一列举。
采用本申请实施例提供的MIB的确定方法,终端设备可以根据同步信息块中的至少一个字段来明确接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB。
基于以上实施例,本申请实施例还提供的一种MIB的确定方法,适用于如图2所示的通信系统,也即应用在工作在U6GHz(6425MHz~7125MHz)和52.6GHz~71GHz的共享频段的通信系统。参阅图9所示,该方法的具体流程可以包括:
步骤901:网络设备确定同步信息块,所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB。
步骤902:所述网络设备向终端设备发送所述同步信息块。
步骤903:所述终端设备根据所述同步信息块中包含的PSS、SSS和PBCH信息中至 少一项的时域位置,确定所述MIB为第一类MIB或第二类MIB。
通过上述方法,终端设备根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB。
在第一种可选的实施方式中,可以通过所述PSS、所述SSS中的至少一项的时域位置指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。具体的,通过所述PSS、所述SSS中的至少一项的时域位置指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB的具体实现方法,与图4所示的实施例中的第一种可选的实施方式中的涉及的具体实施方法类似,可以相互参见,此处不再详细描述。
在第二种可选的实施方式中,可以通过所述PBCH信息的时域位置指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。具体的,通过所述PBCH信息的时域位置指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB的具体实现方法,与图4所示的实施例中的第二种可选的实施方式中的具体实施方法类似,可以相互参见,此处不再详细描述。
在第三种可选的实施方式中,可以联合PSS和/或SSS的时域位置以及PBCH信息的时域位置共同指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB。也即,结合上述第一种可选的实施方式和第二种可选的实施方式共同实现。具体的,通过联合PSS和/或SSS的时域位置以及PBCH信息的时域位置共同指示所述同步信息块包含的MIB为应用于非授权频段的MIB,或者为应用于授权频段的MIB的具体实现方法,与图4所示的实施例中的第三种可选的实施方式中的具体实施方法类似,可以相互参见,此处不再详细描述。
采用本申请实施例提供的MIB的确定方法,终端设备可以根据同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置来明确接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB。
请参照图12,本申请实施例还提供一种MIB的确定方法,适用于如图2所示的通信系统,可以应用于授权频段或者非授权频段的场景。该方法的流程可以包括:
S1200:网络设备确定同步信息块;
S1201:网络设备向终端设备发送同步信息块。其中,当网络设备工作在授权频段时发送同步信息块的时域位置和网络设备工作在非授权频段时发送同步信息块的时域位置不同,从而可以指示携带于其中的MIB是应用于授权频段还是应用于非授权频段,也就是说,根据同步信息块的时域位置可以区分MIB为第一类MIB还是第二类MIB。
示例性地,携带第一类MIB的同步信息块和携带第二类MIB的同步信息块可以承载于一个无线帧内的不同时域位置发送。网络设备可以以同步信息块组的形式发送同步信息块,该同步信息块组可以理解为同步信号突发集合(synchronization signal burst set,SS burst set)。网络设备一次发送一组同步信息块,以下同步信息块发送的起始位置也可以理解为一组同步信息块中首个同步信息块发送的起始位置。
例如,方式一,若同步信息块在授权频段上发送,同步信息块从无线帧的前半帧的第一个时隙的第一个符号开始发送,即从无线帧的第一个时隙的第一个符号开始发送;若同步信息块在非授权频段上发送,则同步信息块从无线帧的后半帧的第一个时隙的第一个符 号开始发送。在非授权频段的场景下,考虑到LBT机制的影响,由于LBT机制的影响,需要在信道空闲时才能发送同步信息块,同步信息块可以从无线帧的后半帧的第一个时隙的第三个符号开始发送。
例如,方式二,若同步信息块在授权频段上发送,则同步信息块从无线帧的后半帧的第一个时隙的第一个符号开始发送;若同步信息块在非授权频段上发送,则同步信息块从无线帧的前半帧的第一个时隙的第一个符号开始发送。在非授权频段的场景下,考虑到LBT机制的影响,同步信息块可以从无线帧的前半帧的第一个时隙的第三个符号开始发送。
示例性地,同步信息块的发送周期可以为{1ms,10ms,20ms,40ms,80ms,160ms}中的一个。以发送周期为10ms为例,表示以10ms为周期发送一组同步信息块,在10ms内,同步信息块的发送位置可以灵活地配置。
S1202:终端设备接收来自网络设备的同步信息块。其中,根据同步信息块的时域位置,终端设备可以确定携带于其中的MIB是应用于授权频段还是应用于非授权频段,也就是说,终端设备可以确定MIB为第一类MIB还是第二类MIB。
对应S1201的方式一,若同步信息块在授权频段上发送,则终端设备假设同步信息块在无线帧的前半帧的第一个时隙中的第一个符号开始发送,即从无线帧的第一个时隙的第一个符号开始发送,则终端设备在相应的位置开始接收同步信息块;若同步信息块在非授权频段上发送,在发现突发传输窗口(discovery burst transmission window,DBTW)中,终端设备假设同步信息块在无线帧中的后半帧的第一个时隙中的第一个符号位置上开始发送,则终端设备在相应的位置上开始接收同步信息块。
对应S1201的方式二,若同步信息块在授权频段上发送,则终端设备假设同步信息块在无线帧中的后半帧的第一个时隙中的第一个符号位置上开始发送,则终端设备在相应的位置开始接收同步信息块;若同步信息块在非授权频段上发送,在发现突发传输窗口(discovery burst transmission window,DBTW)中,终端设备假设同步信息块在无线帧的前半帧的第一个时隙中的第一个符号开始发送,即从无线帧的第一个时隙的第一个符号开始发送,则终端设备在相应的位置上开始接收同步信息块。
请参照图13,以方式一为例进行说明。如图13所示,无线帧的时长为10ms,其中无线帧的前半帧为5ms,包括5个子帧,即第1至5个子帧,对应子帧编号为#0~#4;后半帧为5ms,包括5个子帧,即第6至10个子帧,对应子帧编号为#5~#9。在授权频段的场景下,同步信息块位于无线帧的前半帧,即在无线帧的前半帧发送同步信息块,无线帧的后半帧不发送同步信息块。在非授权频段的场景下,同步信息块位于无线帧的后半帧,例如在无线帧的后半帧发送同步信息块,无线帧的前半帧不发送同步信息块。可以理解的是,由于LBT机制的影响,需要在信道空闲时才能发送同步信息块,因此在非授权频段的场景下,网络设备在无线帧的后半帧的起始位置间隔若干符号后开始发送同步信息。
以同步信息块的子载波间隔为960kHz为例,即用于承载同步信息块的频域资源的子载波间隔为960kHz。请参照图14,一个无线帧为10ms,一个无线帧包括10个子帧,一个子帧为1ms。无线帧的前半帧包括前5个子帧,即第1至5个子帧,对应子帧编号为#0~#4;无线帧的后半帧包括后5个子帧,即第6至10个子帧,对应子帧编号为#5~#9。一个子帧包含64个时隙(slot),该子帧的前半子帧为0.5ms且包括前32个时隙,即第1至32个时隙,对应时隙编号为#0~#31;该子帧的后半子帧为0.5ms且包括后32个时隙,即第33至64个时隙,对应时隙编号为#32~#61;一个时隙包含14个符号,对应符号编号为#0~#13。 以下示例性地给出了一些配置:
配置1:
在授权频段的场景下,对于网络设备而言,一组同步信息块可以在一个无线帧的前半帧的一个子帧的前半子帧发送,例如从该前半子帧的第一个符号开始发送。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的前半帧中的每一个子帧的前半子帧发送,或者网络设备可以在一个无线帧的前半帧中的部分子帧的前半子帧发送。
相应地,对于终端设备而言,终端设备默认同步信息块从一个无线帧中前半帧内的一个子帧的前半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
在非授权频段的场景下,待发送的一组同步信息块可以在一个无线帧的前半帧的一个子帧的后半子帧发送。可以理解的是,在非授权频段的场景下,网络设备在发送同步信息块之前对信道进行侦听,在侦听成功之后发送同步信息块,则网络设备发送同步信息块的起始符号不一定为后半子帧的第一个符号,例如可以是后半子帧的第三个符号。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的前半帧中的每一个子帧的后半子帧发送同步信息块,或者网络设备可以在一个无线帧的前半帧中的部分子帧的后半子帧发送同步信息块。
相应地,在非授权频段的场景下,对于终端设备而言,终端设备默认同步信息块从一个无线帧中前半帧内的一个子帧的后半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号,第三个符号等。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
请参照图14,在授权频段的场景下,一组同步信息块在无线帧的前半帧的第一个子帧的前半帧的第一个时隙的第一个符号开始发送;在非授权频段的场景下,由于LBT占用了一定的时域资源,一组同步信息块在无线帧的后半帧的第一个子帧的前半帧的第一个时隙的第三个符号开始发送。
配置2:
在授权频段的场景下,对于网络设备而言,待发送的一组同步信息块可以在一个无线帧的前半帧的一个子帧的后半子帧发送,例如从该后半子帧的第一个符号开始发送。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的前半帧中的每一个子帧的后半子帧发送,或者网络设备可以在一个无线帧的前半帧中的部分子帧的后半子帧发送。
相应地,对于终端设备而言,终端设备默认同步信息块从一个无线帧中前半帧内的一个子帧的后半子帧的第一个符号位置开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块位于无线帧的时域位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
在非授权频段的场景下,待发送的一组同步信息块可以在一个无线帧的前半帧的一个子帧的前半子帧发送。可以理解的是,在非授权频段的场景下,网络设备在发送同步信息块之前对信道进行侦听,在侦听成功之后发送同步信息块,则网络设备发送同步信息块的 起始符号不一定为前半子帧的第一个符号,例如可以是前半子帧的第三个符号。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的前半帧中的每一个子帧的前半子帧发送同步信息块,或者网络设备可以在一个无线帧的前半帧中的部分子帧的前半子帧发送同步信息块。
相应地,在非授权频段的场景下,对于终端设备而言,终端设备默认同步信息块从一个无线帧中前半帧内的一个子帧的前半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号,第三个符号等。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
配置3:
在授权频段的场景下,对于网络设备而言,待发送的一组同步信息块可以在一个无线帧的后半帧的一个子帧的前半子帧发送,例如从该前半子帧的第一个符号开始发送。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的后半帧中的每一个子帧的前半子帧发送,或者网络设备可以在一个无线帧的后半帧中的部分子帧的前半子帧发送。
相应地,对于终端设备而言,终端设备默认同步信息块从一个无线帧中后半帧内的一个子帧的前半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
在非授权频段的场景下,待发送的一组同步信息块可以在一个无线帧的后半帧的一个子帧的后半子帧发送。可以理解的是,在非授权频段的场景下,网络设备在发送同步信息块之前对信道进行侦听,在侦听成功之后发送同步信息块,则网络设备发送同步信息块的起始符号不一定为后半子帧的第一个符号,例如可以是后半子帧的第三个符号。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的后半帧中的每一个子帧的后半子帧发送同步信息块,或者网络设备可以在一个无线帧的后半帧中的部分子帧的后半子帧发送同步信息块。
相应地,在非授权频段的场景下,对于终端设备而言,终端设备默认同步信息块从一个无线帧中后半帧内的一个子帧的后半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号,第三个符号等。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
配置4:
在授权频段的场景下,对于网络设备而言,一组同步信息块可以在一个无线帧的后半帧的一个子帧的后半子帧发送,例如从该后半子帧的第一个符号开始发送。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的后半帧中的每一个子帧的后半子帧发送,或者网络设备可以在一个无线帧的后半帧中的部分子帧的后半子帧发送。
相应地,对于终端设备而言,终端设备默认同步信息块从一个无线帧中后半帧内的一个子帧的后半子帧的第一个符号位置开始发送。终端设备在接收到同步信息块后,可以确 定所接收到的同步信息块位于无线帧的时域位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
在非授权频段的场景下,待发送的一组同步信息块可以在一个无线帧的后半帧的一个子帧的前半子帧发送。可以理解的是,在非授权频段的场景下,网络设备在发送同步信息块之前对信道进行侦听,在侦听成功之后发送同步信息块,则网络设备发送同步信息块的起始符号不一定为前半子帧的第一个符号,例如可以是前半子帧的第三个符号。根据待发送的同步信息块的数量,网络设备可以在一个无线帧的后半帧中的每一个子帧的前半子帧发送同步信息块,或者网络设备可以在一个无线帧的后半帧中的部分子帧的前半子帧发送同步信息块。
相应地,在非授权频段的场景下,对于终端设备而言,终端设备默认同步信息块从一个无线帧中后半帧内的一个子帧的前半子帧的预定符号位置开始发送,例如该预定符号可以为第一个符号,第三个符号等。本申请对该预定符号位置并不做具体的限定,总之,终端设备可以了解同步信息块从哪里开始发送。终端设备在接收到同步信息块后,可以确定所接收到的同步信息块在无线帧中的位置,或者可以理解为确定/获取所接收到的同步信息块的定时信息。
通过上述方法,终端设备可以根据同步信息块的时域位置,可以确定接收到的MIB是应用于非授权频段的MIB,还是应用于授权频段的MIB,节省信令开销,提高接入效率。
基于以上实施例,本申请实施例还提供了一种MIB的确定装置,参阅图10所示,所述MIB的确定装置1000可以包括收发单元1001和处理单元1002。其中,所述收发单元1001用于所述MIB的确定装置1000接收数据(消息、信号或信息等)或发送数据(消息、信号或信息等),所述处理单元1002用于对所述MIB的确定装置1000的动作进行控制管理。所述处理单元1002还可以控制所述收发单元1001执行的步骤。
示例性的,该MIB的确定装置1000可以是上述实施例中的终端设备、所述终端设备中的处理器,或者芯片或者芯片系统,或者是一个功能模块等;或者,该MIB的确定装置1000可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述MIB确定的装置1000用于实现上述图3所示的实施例中网络设备的功能时,具体还可以包括:
所述处理单元1002用于确定同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中;所述收发单元1001用于向终端设备发送同步信息块。
在一个实施例中,所述MIB确定的装置1000用于实现上述图3所示的实施例中终端设备的功能时,具体还可以包括:
所述收发单元1001用于从网络设备接收同步信息块,所述同步信息块中包含的至少一个字段用于指示所述MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中;所述处理单元1002用于根据所述同步信息块中包含的所述至少一个字段,确定所述MIB是否为应用于非授权频段的MIB。
在一个可选的实施方式中,所述至少一个字段为空闲spare字段,所述spare字段包括一个比特;在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述一个比特为1的情况下,所述MIB为 应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
在另一个可选的实施方式中,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
在又一个可选的实施方式中,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;所述四个比特中的最低位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的最高位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的任一位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者,所述四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB。
具体的,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
在又一个可选的实施方式中,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;所述至少两个字段包括的比特联合指示所述MIB是否为应用于非授权频段的MIB。
在一个实施例中,所述MIB确定的装置1000用于实现上述图4所示的实施例中网络设备的功能时,具体还可以包括:
所述处理单元1002用于确定同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB;所述收发单元1001用于向终端设备发送同步信息块。
在一个实施例中,所述MIB确定的装置1000用于实现上述图4所示的实施例中终端设备的功能时,具体还可以包括:
所述收发单元1001用于从网络设备接收同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB;所述处理单元1002用于根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB是否为应用于非授权频段的MIB。
在一个可选的实施方式中,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,包括:在所述PSS位于所述同步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述SSS位于所述同步信息块的第一个OFDM符号上的情 况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
在另一个可选的实施方式中,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,包括:在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者,在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
示例性的,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
示例性的,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;其中,
Figure PCTCN2021092682-appb-000021
Figure PCTCN2021092682-appb-000022
为小区标识。
具体的,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息; 所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
在一个实施例中,所述MIB的确定装置1000用于实现上述图8所述的实施例中网络设备的功能时,具体可以包括:
处理单元1002用于确定同步信息块,所述同步信息块中包含的至少一个字段用于指示所述MIB为第一类MIB或第二类MIB;其中,所述至少一个字段位于所述MIB中;所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段;所述收发单元1001用于向终端设备发送同步信息块。
在一个实施例中,所述MIB的确定装置1000用于实现上述图8所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1001用于从网络设备接收同步信息块,所述同步信息块中包含的至少一个字段用于指示所述MIB为第一类MIB或第二类MIB;其中,所述至少一个字段位于所述MIB中;所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段;所述处理单元1002用于根据所述同步信息块中包含的所述至少一个字段,确定所述MIB为第一类MIB或第二类MIB。
在一种可选的实施方式中,所述至少一个字段为spare字段,所述spare字段包括一个比特;在所述一个比特为0的情况下,所述MIB为第一类MIB;在所述一个比特为1的情况下,所述MIB为第二类MIB。
在另一种可选的实施方式中,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;在所述一个比特为0的情况下,所述MIB为第一类MIB;在所述一个比特为1的情况下,所述MIB为第二类MIB。
在又一种可选的实施方式中,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;所述四个比特中的最低位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的最高位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的任一位比特用于指示所述MIB为第一类MIB或第二类MIB;或者,所述四个比特中的至少两个比特联合指示所述MIB为第一类MIB或第二类MIB。
具体的,在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,述MIB为第一类MIB;在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为第二类MIB。
在又一种可选的实施方式中,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;所述至少两个字段包括的比特联合指示所述MIB为第一类MIB或第二类MIB。
在一个实施例中,所述MIB的确定装置1000用于实现上述图9所述的实施例中网络设备的功能时,具体可以包括:
所述处理单元1002用于确定同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB;其中,所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段;所述收发单元1001用于向终端设备发送所述同步信息块。
在一个实施例中,所述MIB的确定装置1000用于实现上述图9所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1001用于从网络设备接收同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB;其中,所述第一类MIB对应授权频段,所述第二类MIB对应非授权频段,或者,所述第一类MIB对应非授权频段,所述第二类MIB对应授权频段;所述处理单元1002用于根据所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置,确定所述MIB为第一类MIB或第二类MIB。
在一种可选的实施方式中,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB,包括:在所述PSS位于所述同步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为第一类MIB;在所述PSS位于所述同步信息块的第三个OFDM符号上情况下,所述MIB为第二类MIB;和/或,在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为第一类MIB;在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为第二类MIB。
在另一种可选的实施方式中,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB为第一类MIB或第二类MIB,包括:在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为第一类MIB;在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为第二类MIB;或者,在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置情况下,所述MIB为第一类MIB;在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为第二类MIB;其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
示例性的,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
示例性的,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v, 196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;其中,
Figure PCTCN2021092682-appb-000023
Figure PCTCN2021092682-appb-000024
为小区标识。
具体的,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者,所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种MIB的确定装置,参阅图11所示,MIB的确定装置1100可以包括收发器1101和处理器1102。可选的,所述MIB的确定装置1100中还可以包括存储器1103。其中,所述存储器1103可以设置于所述MIB的确定装置1100内部,还可以设置于所述MIB的确定装置1100外部。其中,所述处理器1102可以控制所述收发器1101接收和发送数据。
具体的,所述处理器1102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1101、所述处理器1102和所述存储器1103之间相互连接。可选的,所述收发器1101、所述处理器1102和所述存储器1103通过总线1104相互连接;所述总线1104可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1103,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1103可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1102执行所述存储器1103所存放的应用程序,实现上述功能,从而实现MIB的确定装置1100的功能。
示例性的,该MIB的确定装置1100可以是上述实施例中的终端设备,还可以是上述实施例中的网络设备。
在一个实施例中,所述MIB的确定装置1100在实现图3所示的实施例中网络设备的功能时,收发器1101可以实现图3所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图3所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图3所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述MIB的确定装置1100在实现图3所示的实施例中终端设备的功能时,收发器1101可以实现图3所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图3所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图3所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述MIB的确定装置1100在实现图4所示的实施例中网络设备的功能时,收发器1101可以实现图4所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图4所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图4所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述MIB的确定装置1100在实现图4所示的实施例中终端设备的功能时,收发器1101可以实现图4所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图4所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图4所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述MIB的确定装置1100在实现图8所示的实施例中网络设备的功能时,收发器1101可以实现图8所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图8所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图8所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述MIB的确定装置1100在实现图8所示的实施例中终端设备的功能时,收发器1101可以实现图8所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图8所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图8所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述MIB的确定装置1100在实现图9所示的实施例中网络设备的功能时,收发器1101可以实现图9所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图9所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体 的相关具体描述可以参见上述图9所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述MIB的确定装置1100在实现图9所示的实施例中终端设备的功能时,收发器1101可以实现图9所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图9所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图9所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的MIB的确定方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的MIB的确定方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的MIB的确定方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
一种区分新旧MIB的方法,对于工作在授权频段的系统,一组SSB burst set在一个无线帧中的前半帧发送,工作在非授权频段的系统,一组SSB burst set在一个无线帧中的后 半帧发送。
工作在授权频段的系统,UE默认SSB在一个无线帧中的前半帧的第一个slot中的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认所传输的SSB在一个无线帧中的后半帧的第一个slot中的第一个symbol位置上开始。或者,工作在授权频段的系统,UE默认SSB在一个无线帧中的后半帧的第一个slot中的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认所传输的SSB在一个无线帧中的前半帧的第一个slot中的第一个symbol位置上开始。
示例性的,如图13所示,授权频段系统中的一组SSB burst set位于每个无线帧中的前半帧发送,非授权频段系统中的SSB位于每个无线帧中的后半帧发送。
或者,当SSB的子载波间隔为960kHz时,工作在授权频段的系统,一组SSB burst set在一个无线帧中的前半帧中每一个子帧中的前半子帧发送,而工作在非授权频段的系统,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的后半子帧发送,或者,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的前半子帧发送,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的后半子帧发送;
或者,当SSB的子载波间隔为960kHz时,工作在授权频段的系统,一组SSB burst set在一个无线帧中的前半帧中每一个子帧中的后半子帧发送,而工作在非授权频段的系统,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的前半子帧发送,或者,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的前半子帧发送,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的后半子帧发送;
或者,当SSB的子载波间隔为960kHz时,工作在授权频段的系统,一组SSB burst set在一个无线帧中的后半帧中每一个子帧中的前半子帧发送,而工作在非授权频段的系统,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的前半子帧发送,或者,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的后半子帧发送,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的后半子帧发送;
或者,当SSB的子载波间隔为960kHz时,工作在授权频段的系统,一组SSB burst set在一个无线帧中的后半帧中每一个子帧中的后半子帧发送,而工作在非授权频段的系统,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的前半子帧发送,或者,一组SSB burst set可以在一个无线帧中的前半帧中每一个子帧中的后半子帧发送,一组SSB burst set可以在一个无线帧中的后半帧中每一个子帧中的前半子帧发送。
工作在授权频段的系统,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始;
或者,工作在授权频段的系统,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认SSB从一个无线帧中前半帧内的每一个子帧中 的前半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始;
或者,工作在授权频段的系统,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始;
或者,工作在授权频段的系统,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始;工作在非授权频段的系统,在discovery burst transmission window(DBTW)中,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中前半帧内的每一个子帧中的后半子帧的第一个symbol位置上开始,或者,UE默认SSB从一个无线帧中后半帧内的每一个子帧中的前半子帧的第一个symbol位置上开始。
示例性的,如图14所示,授权频段系统中的一组SSB burst set位于一个无线帧中前半帧中每个子帧的前半子帧发送,非授权频段系统中的SSB位于一个无线帧中后半帧中每个子帧的前半子帧发送。
此时,SSB的周期为{1ms,10ms,20ms,40ms,80ms,160ms}。

Claims (29)

  1. 一种主信息块MIB的确定方法,其特征在于,包括:
    网络设备向终端设备发送同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中。
  2. 一种主信息块MIB的确定方法,其特征在于,包括:
    终端设备从网络设备接收同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中;
    所述终端设备根据所述同步信息块中包含的所述至少一个字段,确定所述MIB是否为应用于非授权频段的MIB。
  3. 如权利要求1或2所述的方法,其特征在于,所述至少一个字段为空闲spare字段,所述spare字段包括一个比特;
    在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  4. 如权利要求1或2所述的方法,其特征在于,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;
    在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;
    在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  5. 如权利要求1或2所述的方法,其特征在于,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;
    所述四个比特中的最低位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的最高位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的任一位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB。
  6. 如权利要求5所述的方法,其特征在于,
    在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述最低位比特、所述最高位比特或所述任一位比特为1时,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  7. 如权利要求1或2所述的方法,其特征在于,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;
    所述至少两个字段包括的比特联合指示所述MIB是否为应用于非授权频段的MIB。
  8. 一种主信息块MIB的确定方法,其特征在于,包括:
    网络设备向终端设备发送同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。
  9. 一种主信息块MIB的确定方法,其特征在于,包括:
    终端设备从网络设备接收同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB;
    所述终端设备根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB是否为应用于非授权频段的MIB。
  10. 如权利要求8或9所述的方法,其特征在于,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,包括:
    在所述PSS位于所述同步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB,包括:
    在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且, 所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;
    其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
  13. 如权利要求11所述的方法,其特征在于,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;
    其中,
    Figure PCTCN2021092682-appb-100001
    为小区标识。
  14. 如权利要求11-13任一项所述的方法,其特征在于,
    所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
  15. 一种主信息块MIB的确定装置,其特征在于,包括:
    收发单元,用于向终端设备发送同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中。
  16. 一种主信息块MIB的确定装置,其特征在于,包括:
    收发单元,用于从网络设备接收同步信息块,所述同步信息块中包含的至少一个字段用于指示MIB是否为应用于非授权频段的MIB,所述至少一个字段位于所述MIB中;
    处理单元,用于根据所述同步信息块中包含的所述至少一个字段,确定所述MIB是否为应用于非授权频段的MIB。
  17. 如权利要求15或16所述的装置,其特征在于,所述至少一个字段为空闲spare字 段,所述spare字段包括一个比特;
    在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  18. 如权利要求15或16所述的装置,其特征在于,所述至少一个字段为解调参考信号类型A位置字段,所述解调参考信号类型A位置字段包括一个比特;
    在所述一个比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;
    在所述一个比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  19. 如权利要求15或16所述的装置,其特征在于,所述至少一个字段为同步信号子载波偏移字段,所述同步信号子载波偏移字段包括四个比特;
    所述四个比特中的最低位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的最高位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的任一位比特用于指示所述MIB是否为应用于非授权频段的MIB;或者
    所述四个比特中的至少两个比特联合指示所述MIB是否为应用于非授权频段的MIB。
  20. 如权利要求19所述的装置,其特征在于,
    在所述最低位比特、所述最高位比特或所述任一位比特为0的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述最低位比特、所述最高位比特或所述任一位比特为1的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  21. 如权利要求15或16所述的装置,其特征在于,所述至少一个字段包括spare字段、解调参考信号类型A位置字段或同步信号子载波偏移字段中的至少两个字段;
    所述至少两个字段包括的比特联合指示所述MIB是否为应用于非授权频段的MIB。
  22. 一种主信息块MIB的确定装置,其特征在于,包括:
    收发单元,用于向终端设备发送同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB。
  23. 一种主信息块MIB的确定装置,其特征在于,包括:
    收发单元,用于从网络设备接收同步信息块,所述同步信息块中包含的主同步信号PSS、辅同步信号SSS和物理广播信道PBCH信息中至少一项的时域位置用于指示所述同步信息块包含的MIB是否为应用于非授权频段的MIB;
    处理单元,用于根据所述同步信息块中包含的PSS、SSS和PBCH信息中至少一项的时域位置,确定所述MIB是否为应用于非授权频段的MIB。
  24. 如权利要求22或23所述的装置,其特征在于,所述PSS、所述SSS中的至少一项的时域位置用于指示所述同步信息块包含的MIB为应用于非授权频段的MIB,包括:
    在所述PSS位于所述同步信息块的第一个正交频分复用OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第一个OFDM符号上,所述SSS位于所述同步信息块的第三个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述PSS位于所述同步信息块的第三个OFDM符号上,所述SSS位于所述同步信息块的第一个OFDM符号上的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB。
  25. 如权利要求22-24任一项所述的装置,其特征在于,所述PBCH信息的时域位置用于指示所述同步信息块包含的MIB为应用于非授权频段的MIB,包括:
    在第一PBCH信息位于所述同步信息块的第一个OFDM符号上的第一频域位置,和/或,第二PBCH信息位于所述同步信息块的第一个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述第一PBCH信息位于所述同步信息块的第三个OFDM符号上的第一频域位置,且,所述第二PBCH信息位于所述同步信息块的第三个OFDM符号上的第二频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在第一解调参考信号DMRS位于所述同步信息块的第一个OFDM符号上的第三频域位置,和/或,第二DMRS位于所述同步信息块的第一个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;或者
    在所述第一DMRS位于所述同步信息块的第三个OFDM符号上的第三频域位置,且,所述第二DMRS位于所述同步信息块的第三个OFDM符号上的第四频域位置的情况下,所述MIB为应用于非授权频段的MIB,否则,所述MIB为应用于授权频段的MIB;
    其中,所述第一DMRS包含于所述第一PBCH信息中,所述第二DMRS包含于所述第二PBCH信息。
  26. 如权利要求25所述的装置,其特征在于,所述第一频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192,193,……,239}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0,1,……,47}的子载波。
  27. 如权利要求25所述的装置,其特征在于,所述第三频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波,所述第四频域位置包括所述同步信息 块的子载波序号为{192+v,196+v,……,236+v}的子载波;或者,所述第一频域位置包括所述同步信息块的子载波序号为{192+v,196+v,……,236+v}的子载波,所述第二频域位置包括所述同步信息块的子载波序号为{0+v,4+v,……,44+v}的子载波;
    其中,
    Figure PCTCN2021092682-appb-100002
    为小区标识。
  28. 如权利要求25-27任一项所述的装置,其特征在于,
    所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55,183,184,……,191}的子载波,以及所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55,183,184,……,239}的子载波,以及所述同步信息块的第三个OFDM符号上{0,1,……,55,183,184,……,191}子载波序号为的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;或者
    所述同步信息块的第一个OFDM符号上子载波序号为{0,1,……,55}和子载波序号为{183,184,……,239}的子载波上不包含信息;所述同步信息块的第三个OFDM符号上子载波序号为{48,49,……,55}和子载波序号为{183,184,……,192}的子载波上不包含信息。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-7中任一项所述的方法,或者执行权利要求8-14中任一项所述的方法。
PCT/CN2021/092682 2020-05-15 2021-05-10 一种主信息块的确定方法及装置 WO2021228030A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21804815.5A EP4135432A4 (en) 2020-05-15 2021-05-10 METHOD AND APPARATUS FOR DETERMINING A MASTER INFORMATION BLOCK
CA3178058A CA3178058A1 (en) 2020-05-15 2021-05-10 Master information block determining method and apparatus
US18/055,378 US20230188402A1 (en) 2020-05-15 2022-11-14 Master information block determining method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010414749 2020-05-15
CN202010414749.6 2020-05-15
CN202110183216.6 2021-02-10
CN202110183216.6A CN113676429A (zh) 2020-05-15 2021-02-10 一种主信息块的确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/055,378 Continuation US20230188402A1 (en) 2020-05-15 2022-11-14 Master information block determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2021228030A1 true WO2021228030A1 (zh) 2021-11-18

Family

ID=78525247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092682 WO2021228030A1 (zh) 2020-05-15 2021-05-10 一种主信息块的确定方法及装置

Country Status (4)

Country Link
US (1) US20230188402A1 (zh)
EP (1) EP4135432A4 (zh)
CA (1) CA3178058A1 (zh)
WO (1) WO2021228030A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018573A (zh) * 2016-01-28 2017-08-04 中兴通讯股份有限公司 主信息块mib信息的通知方法及装置
US20190007896A1 (en) * 2016-01-19 2019-01-03 Intel IP Corporation Transmitter and receiver for master information block over physical broadcast channel
US20190342826A1 (en) * 2018-07-20 2019-11-07 Salvatore Talarico Pbch content for nr unlicensed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10148369B2 (en) * 2014-05-01 2018-12-04 Samsung Electronics Co., Ltd. System and method for timing alignment of LTE cells and inter-operator co-existence on unlicensed spectrum
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
WO2020014857A1 (en) * 2018-07-17 2020-01-23 Zte Corporation Methods, apparatus and systems for transmitting signal and channel information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007896A1 (en) * 2016-01-19 2019-01-03 Intel IP Corporation Transmitter and receiver for master information block over physical broadcast channel
CN107018573A (zh) * 2016-01-28 2017-08-04 中兴通讯股份有限公司 主信息块mib信息的通知方法及装置
US20190342826A1 (en) * 2018-07-20 2019-11-07 Salvatore Talarico Pbch content for nr unlicensed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on Frame Structure for NR-U", 3GPP DRAFT; R1-1806459 DISCUSSION ON FRAME STRUCTURE FOR NR-U, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 5, XP051462530 *

Also Published As

Publication number Publication date
US20230188402A1 (en) 2023-06-15
EP4135432A1 (en) 2023-02-15
EP4135432A4 (en) 2023-09-27
CA3178058A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US10959253B2 (en) Transmission method and apparatus using numerology and scheduling method and apparatus using numerology
CN106664684B (zh) 用于d2d通信的d2d数据资源的决定方法和装置
US9204461B2 (en) Method for random access to uplink in multi-carrier aggregation environment
CN104904298A (zh) 非许可频带中的无线电通信
WO2019237832A1 (zh) 一种请求信号的发送、接收方法及设备、装置
CN110234164B (zh) 一种确定控制信道位置方法设备和处理器可读存储介质
US20210378031A1 (en) Random access method, device, and system
US20220061105A1 (en) Random access method and device
CN105532065A (zh) 用于OFDMA PS-Poll传输的系统和方法
EP3337269A1 (en) Data transmission method, access point and station
WO2021036949A1 (zh) 一种数据的传输方法及装置
CN108886811A (zh) 发送物理随机接入信道prach的方法、设备及系统
TW202008828A (zh) 資源配置的方法和終端設備
EP3923652A1 (en) Random access method, device, and system
WO2020063577A1 (en) Transmission medium sharing in a wireless communications network
US20200137725A1 (en) Channel transmission method, base station, and terminal device
WO2017166254A1 (zh) 发送信号的方法、终端设备和网络设备
CN113661760B (zh) 数据传输方法及相关设备
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
CN107277920B (zh) 一种信息传输方法及装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2021228030A1 (zh) 一种主信息块的确定方法及装置
EP3780796A1 (en) Clear channel listening method and apparatus, and device
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置
WO2022141276A1 (zh) 信息确定方法、信息传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3178058

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021804815

Country of ref document: EP

Effective date: 20221107

NENP Non-entry into the national phase

Ref country code: DE