WO2021227848A1 - 基于多信号的用户健康状态检测方法、可穿戴设备和介质 - Google Patents

基于多信号的用户健康状态检测方法、可穿戴设备和介质 Download PDF

Info

Publication number
WO2021227848A1
WO2021227848A1 PCT/CN2021/089691 CN2021089691W WO2021227848A1 WO 2021227848 A1 WO2021227848 A1 WO 2021227848A1 CN 2021089691 W CN2021089691 W CN 2021089691W WO 2021227848 A1 WO2021227848 A1 WO 2021227848A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
preset
qualified
duration
collection
Prior art date
Application number
PCT/CN2021/089691
Other languages
English (en)
French (fr)
Inventor
潘骏
黄曦
邱凌志
吴宙真
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021227848A1 publication Critical patent/WO2021227848A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This application relates to the field of sports and health, and in particular to a multi-signal-based user health status detection method, wearable device and medium.
  • the embodiments of the present application provide a multi-signal-based user health status detection method, wearable device, device, and medium to solve the problem that the current wearable device frequently fails to detect when the user health status is detected. .
  • an embodiment of the present application provides a multi-signal-based user health status detection method, including:
  • a first preset algorithm is used to determine the signal quality of the signal collected within the preset collection time period, and the signals whose signal quality is qualified are retained;
  • the second preset is used. It is assumed that the signal analysis result is calculated by the algorithm, and the user's health status is output according to the signal analysis result.
  • the signal includes an electrocardiogram signal or a photoplethysmographic signal.
  • every preset collection time period is determined by using a first preset algorithm to determine the preset collection time period.
  • the signal quality of the signal collected internally, and retaining the signal with qualified signal quality includes:
  • the first preset algorithm is used to determine the signal quality of the electrocardiogram signal collected within the preset collection period, and The electrocardiogram signal whose signal quality is qualified is retained;
  • the first preset algorithm is used to determine the value of the photoplethysmographic signal collected within the preset collection period Signal quality, retaining the photoplethysmogram signal with qualified signal quality.
  • the qualified signal duration includes the qualified signal duration of a single signal, or is composed of a single qualified signal of the signal quality. Qualified signal duration of the sync signal.
  • an implementation manner is further provided, wherein the qualified signal duration is determined according to the signal quality, and the preset total acquisition duration of the signal is adjusted according to the qualified signal duration, wherein ,
  • the qualified signal duration is the duration of the qualified signal quality, including:
  • the preset total acquisition duration is shortened or extended.
  • the preset collection total is shortened or extended. Duration, including:
  • the qualified signal duration of a single signal is divided by the current total acquisition time to obtain the current qualified ratio. If the current total acquisition time is less than the first Preset a threshold to stop the collection of the signal;
  • the current qualified ratio is greater than or equal to the preset comparison threshold, it is determined whether the qualified signal duration of the synchronization signal is greater than or equal to the second preset threshold. Perform a numerical comparison of the current qualified ratio, and if the current qualified ratio is not greater than or equal to a preset comparison threshold, stop the collection of the signal;
  • an implementation manner is further provided, and the method further includes:
  • the qualified signal duration of the synchronization signal is less than the second preset threshold, determine whether the current total collection duration is greater than or equal to a third preset threshold, and if so, prompt the user whether to continue to collect the signal;
  • the synchronization signal based on the different types of the signals and/or the synchronization signal composed of a single signal is calculated by using a second preset algorithm
  • Obtaining the signal analysis result and outputting the user's health status according to the signal analysis result includes:
  • the user health status is output according to the health reference value and a preset mapping table, wherein the preset mapping table stores a mapping relationship between the health reference value and the user health status.
  • an implementation manner is further provided, and the method further includes:
  • the different types of the signal and/or the synchronization signal composed of a single signal are respectively compared with the historical signal with qualified signal quality. And after the data is merged, a second preset algorithm is used to calculate a signal analysis result, and the user's health status is output according to the signal analysis result.
  • an implementation manner is further provided. If the signal analysis result is calculated by using the data combination, the signal analysis result is displayed on the screen of the wearable device Contains descriptive information of the historical signal whose signal quality is qualified.
  • an implementation manner is further provided.
  • the qualified signal duration is displayed and updated in real time on the screen of the wearable device.
  • an implementation manner is further provided, and the method further includes:
  • an embodiment of the present application provides a wearable device, including a collection module that collects a signal, wherein the signal is used to detect a user's health status, the type of the signal is more than one, and the wearable device It also includes a memory, a processor, and a computer program that is stored in the memory and can run on the processor, and is characterized in that, when the processor executes the computer program, the following steps are implemented:
  • a first preset algorithm is used to determine the signal quality of the signal collected within the preset collection time period, and the signals whose signal quality is qualified are retained;
  • the second preset is used. It is assumed that the signal analysis result is calculated by the algorithm, and the user's health status is output according to the signal analysis result.
  • the signal includes an electrocardiogram signal or a photoplethysmographic signal.
  • the processor executes the computer program to realize that when the signal is collected, every preset collection time length is adopted, A preset algorithm judges the signal quality of the signal collected within the preset collection time period, and when the signal with the qualified signal quality is retained, it includes:
  • the first preset algorithm is used to determine the signal quality of the electrocardiogram signal collected within the preset collection period, and The electrocardiogram signal whose signal quality is qualified is retained;
  • the first preset algorithm is used to determine the value of the photoplethysmographic signal collected within the preset collection period Signal quality, retaining the photoplethysmogram signal with qualified signal quality.
  • the qualified signal duration includes the qualified signal duration of a single signal, or is composed of a single signal whose signal quality is all qualified. Qualified signal duration of the sync signal.
  • the processor executes the computer program to implement the determination of the qualified signal duration according to the signal quality, and the adjustment according to the qualified signal duration
  • the preset total time length of signal acquisition, where the qualified signal time length is the time length when the signal quality is qualified includes:
  • the preset total acquisition duration is shortened or extended.
  • the processor executes the computer program to implement the qualified signal duration according to the single said signal or the qualified signal of the synchronization signal. Duration, shortening or extending the preset total duration of collection, includes:
  • the qualified signal duration of a single signal is divided by the current total acquisition time to obtain the current qualified ratio. If the current total acquisition time is less than the first Preset a threshold to stop the collection of the signal;
  • the current qualified ratio is greater than or equal to the preset comparison threshold, it is determined whether the qualified signal duration of the synchronization signal is greater than or equal to the second preset threshold. Perform a numerical comparison of the current qualified ratio, and if the current qualified ratio is not greater than or equal to a preset comparison threshold, stop the collection of the signal;
  • an implementation manner is further provided.
  • the processor executes the computer program, it further includes the following steps:
  • the qualified signal duration of the synchronization signal is less than the second preset threshold, determine whether the current total collection duration is greater than or equal to a third preset threshold, and if so, prompt the user whether to continue to collect the signal;
  • an implementation manner is further provided.
  • the processor executes the computer program to implement the signal based on different types, and/or is composed of a single signal
  • the synchronization signal is calculated by using a second preset algorithm to obtain a signal analysis result, and when the user's health status is output according to the signal analysis result, the method further includes:
  • the user health status is output according to the health reference value and a preset mapping table, wherein the preset mapping table stores a mapping relationship between the health reference value and the user health status.
  • an implementation manner is further provided.
  • the processor executes the computer program, it further includes the following steps:
  • the data volume of the signal with qualified signal quality does not meet the preset condition, it is checked whether there is a historical signal with qualified signal quality within a preset time period, wherein the preset time period Is the historical time period;
  • the different types of the signal and/or the synchronization signal composed of a single signal are respectively compared with the historical signal with qualified signal quality. And after the data is merged, a second preset algorithm is used to calculate a signal analysis result, and the user's health status is output according to the signal analysis result.
  • an implementation manner is further provided. If the signal analysis result is calculated by using the data combination, the signal analysis result is displayed on the screen of the wearable device Contains descriptive information of the historical signal whose signal quality is qualified.
  • an implementation manner is further provided.
  • the qualified signal duration is displayed and updated in real time on the screen of the wearable device.
  • an implementation manner is further provided.
  • the processor executes the computer program, it further includes the following steps:
  • an embodiment of the present application provides a multi-signal-based user health status detection device, including:
  • the first processing module is configured to acquire a signal collection instruction, and collect a signal according to the signal collection instruction, wherein the signal is used to detect a user's health status, and the type of the signal is more than one;
  • the second processing module is configured to use a first preset algorithm to determine the signal quality of the signal collected within the preset collection time at intervals of a preset collection time when collecting the signal, and calculate the signal quality The qualified signal remains;
  • the third processing module is configured to determine the qualified signal duration according to the signal quality, and adjust the preset total acquisition duration of the signal according to the qualified signal duration, wherein the qualified signal duration is the duration of the qualified signal quality;
  • the fourth processing module is configured to, after the signal acquisition is completed, if the data volume of the signal with qualified signal quality meets a preset condition, it is based on different types of the signal, and/or composed of a single signal
  • the synchronization signal is calculated by using a second preset algorithm to obtain a signal analysis result, and the user's health status is output according to the signal analysis result.
  • the signal includes an electrocardiogram signal or a photoplethysmographic signal.
  • the second processing module is also specifically configured to:
  • the first preset algorithm is used to determine the signal quality of the electrocardiogram signal collected within the preset collection period, and The electrocardiogram signal whose signal quality is qualified is retained;
  • the first preset algorithm is used to determine the value of the photoplethysmographic signal collected within the preset collection period Signal quality, retaining the photoplethysmogram signal with qualified signal quality.
  • the qualified signal duration includes the qualified signal duration of a single said signal, or the qualified signal duration of a synchronization signal composed of a single said signal whose signal quality is both qualified.
  • the third processing module is also specifically configured to:
  • the preset total acquisition duration is shortened or extended.
  • the third processing module is also specifically configured to:
  • the qualified signal duration of a single signal is divided by the current total acquisition time to obtain the current qualified ratio. If the current total acquisition time is less than the first Preset a threshold to stop the collection of the signal;
  • the current qualified ratio is greater than or equal to the preset comparison threshold, it is determined whether the qualified signal duration of the synchronization signal is greater than or equal to the second preset threshold. Perform a numerical comparison of the current qualified ratio, and if the current qualified ratio is not greater than or equal to a preset comparison threshold, stop the collection of the signal;
  • the device is also used for:
  • the qualified signal duration of the synchronization signal is less than the second preset threshold, determine whether the current total collection duration is greater than or equal to a third preset threshold, and if so, prompt the user whether to continue to collect the signal;
  • fourth processing module is also specifically used for:
  • the user health status is output according to the health reference value and a preset mapping table, wherein the preset mapping table stores a mapping relationship between the health reference value and the user health status.
  • the device is also used for:
  • the data volume of the signal with qualified signal quality does not meet the preset condition, it is checked whether there is a historical signal with qualified signal quality within a preset time period, wherein the preset time period Is the historical time period;
  • the different types of the signal and/or the synchronization signal composed of a single signal are respectively compared with the historical signal with qualified signal quality. And after the data is merged, a second preset algorithm is used to calculate a signal analysis result, and the user's health status is output according to the signal analysis result.
  • the signal analysis result is calculated by using the data merging method, it is displayed on the screen of the wearable device that the signal analysis result includes the descriptive information of the historical signal whose signal quality is qualified.
  • the qualified signal duration is displayed and updated in real time on the screen of the wearable device.
  • the device is also used for:
  • an embodiment of the present application provides a computer-readable storage medium, including: a computer program and a processor, and when the computer program is executed by the processor, the steps of the method described in the first aspect are implemented.
  • the signal acquisition instruction is first acquired, and the signal is acquired according to the signal acquisition instruction. Then, when the signal is acquired, the first predetermined algorithm is used to determine the value of the signal collected within the predetermined acquisition time period every other preset acquisition period.
  • Signal quality keep the signals with qualified signal quality, by detecting the signal quality of the signal in time periods, the information of the signal quality can be obtained in real time, which provides the technical basis for the realization of the subsequent adjustment of the duration according to the signal quality;
  • the signal quality determines the qualified signal duration, and adjusts the preset total acquisition time of the signal according to the qualified signal duration.
  • the qualified signal duration is the duration of the qualified signal. Understandably, the qualified signal duration can accurately reflect the collected signal quality and the current acquisition.
  • the relationship of duration when a shorter acquisition duration is used to obtain more signals with qualified signal quality, it can be considered that the signal acquisition is relatively sufficient, and the acquisition can be stopped and directly enter the next step of user health-related calculations, which effectively improves the acquisition efficiency; Finally, after the signal acquisition is completed, if the data volume of the signal with qualified signal quality meets the preset conditions, the second preset algorithm is used to calculate the signal analysis result based on different types of signals and/or synchronization signals composed of a single signal. The user's health status is output according to the signal analysis result, and multiple signals can be integrated for analysis, and the user's health status can be output smoothly and more accurately.
  • FIG. 1 is a flowchart of adaptively adjusting signal detection duration according to an embodiment of the present application
  • FIG. 2 is a flowchart of calculating a health state by using a second preset algorithm according to an embodiment of the present application
  • FIG. 3 is a flowchart of using historical signals to compensate signals according to an embodiment of the present application
  • Fig. 4 is a flowchart of a method for detecting a user's health status based on multiple signals according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “plurality” means two or more.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the functions related to user health status detection have gradually evolved from early single PPG signal detection to multi-signal detection.
  • the existing technology can achieve simultaneous detection of ECG+PPG.
  • the signal detection logic of the existing wearable device is still relatively simple, that is, data collection of a fixed duration must be completed, which cannot handle many problems in the multi-signal synchronization detection of the wearable device, and the user experience is poor.
  • the quality of the entire signal needs to be tested. When the signal quality is qualified, the analysis result is fed back; when the signal quality is unqualified, a message like "bad signal quality" is prompted, and subsequent analysis is not performed.
  • the embodiment of the present application provides a multi-signal-based user health status detection method, which includes the following steps:
  • S10 Obtain a signal collection instruction, and collect the signal according to the signal collection instruction, where the signal is used to detect the health state of the user, and the type of the signal is more than one.
  • the signal may specifically include a signal such as an electrocardiogram signal or a photoplethysmogram signal that can be used to detect the health state of the user.
  • a signal such as an electrocardiogram signal or a photoplethysmogram signal that can be used to detect the health state of the user.
  • the photoplethysmogram signal can be used to detect blood oxygen saturation
  • the electrocardiogram signal can be used to detect arrhythmia
  • the user's health status can be detected through signals such as the electrocardiogram signal or the photoplethysmographic signal.
  • the wearable device when a user wears a wearable device such as a wristband or a watch, the wearable device can initiate signal collection through the wearable device, and trigger the signal collection instruction through a button or a button displayed on the screen.
  • the wearable device will collect multiple signals at the same time after acquiring the signal collection instruction. Understandably, for wearable devices that detect a single signal, the user health status detection failure is less likely to occur, and the embodiment of the present application effectively solves the problem of high-frequency failures in the user health status detection under the condition of multiple signal detection.
  • S20 When collecting signals, use the first preset algorithm to determine the signal quality of the signals collected within the preset collection time every other preset collection time length, and retain signals with qualified signal quality.
  • the signal quality of the signal is judged by time periods, instead of uniformly judging the signal quality of all signals after a fixed collection period. It is understandable that, in this embodiment, the quality of the signal collected in this period of time is tested every other preset collection time, that is, every short period of time. If the signal quality of the signal is qualified, the signal can be retained for Follow-up for the analysis of the user's health status.
  • the first preset algorithm is an algorithm used to detect signal quality.
  • respective corresponding algorithms are used for signal detection.
  • the signal quality information of the signal can be obtained in real time by segmented detection of the signal quality, which provides a technical basis for the subsequent adjustment of the duration according to the signal quality.
  • step S20 when collecting signals, at intervals of a preset collection duration, the first preset algorithm is used to determine the signal quality of the signals collected within the preset collection duration, and the signals with qualified signal quality are retained, including:
  • S21 When collecting electrocardiogram signals or photoplethysmographic signals, use the first preset algorithm to determine the signal quality of the electrocardiogram signals collected within the preset collection time at every preset collection time period, and classify the ECG signals with qualified signal quality Reserve.
  • S22 When collecting electrocardiogram signals or photoplethysmogram signals, use the first preset algorithm to determine the signal quality of the photoplethysmogram signals collected within the preset collection time at every preset collection time period, and then compare the signal quality The qualified photoplethysmographic signal is retained.
  • the specifically collected signals may be PPG signals and ECG signals, and the collection of the two signals may be synchronized collection.
  • the quality of the PPG signal or the ECG signal will be tested in time periods, and the signals with qualified signal quality will be retained.
  • the qualified signal duration is displayed and updated in real time on the screen of the wearable device. Understandably, the user can actively reduce the detection interference according to the qualified signal duration displayed on the screen of the wearable device in real time.
  • the qualified signal duration increases at a slower rate, it can be considered that there is interference in signal collection (such as motion interference), and the user can actively adjust the behavior of signal collection or the detection environment based on the reminder information on the screen display interface.
  • the multi-signal-based user health status detection method further includes:
  • the modification instruction input by the user, and modify the preset value according to the modification instruction, where the preset value includes preset values such as preset collection duration, preset collection total duration, or preset conditions. It is understandable that the preset values can be interacted through the interface, and various preset values can be adjusted within a certain range by inputting modification instructions on the interface.
  • S30 Determine the duration of the qualified signal according to the signal quality, and adjust the preset total acquisition duration of the signal according to the duration of the qualified signal, where the duration of the qualified signal is the duration of the qualified signal.
  • the qualified signal duration may specifically include the qualified signal duration of a single signal, or the qualified signal duration of a synchronization signal composed of a single signal with both qualified signal quality.
  • the qualified signal duration of a single signal is such as the ECG signal quality qualified data segment duration T B or the PGG signal quality qualified data segment duration T C , and the ECG signal quality and the PGG signal quality qualified data segment duration are synchronized Duration T A.
  • the ECG signal, the PGG signal, and the synchronization signal composed of the ECG signal and the PGG signal can be analyzed and calculated separately to obtain feedback results of the user's health status in different dimensions.
  • the qualified signal duration may be determined according to whether the signal quality is qualified, including the qualified duration of a single signal and the qualified signal duration of a synchronization signal composed of a single signal of both qualified signal quality. Understandably, the qualified signal duration can accurately reflect the relationship between the collected signal quality and the current acquisition duration. When a shorter acquisition duration is used to obtain more signals with qualified signal quality, it can be considered that the signal acquisition is relatively sufficient and can be stopped. Collecting and directly entering the next step of the calculation related to the user's health status can effectively improve the collection efficiency.
  • step S30 the qualified signal duration is determined according to the signal quality, and the preset total acquisition duration of the signal is adjusted according to the qualified signal duration, where the qualified signal duration is the duration of the qualified signal, including:
  • S31 Determine the qualified signal duration of a single signal or the qualified signal duration of a synchronization signal according to whether the signal quality is qualified.
  • S32 According to the qualified signal duration of a single signal or the qualified signal duration of a synchronization signal, shorten or extend the preset total acquisition duration.
  • the preset total acquisition time can be shortened or extended according to the signal quality.
  • the preset total acquisition time can be shortened appropriately; when the signal quality is poor, the preset acquisition time can be appropriately extended according to the user's choice.
  • Set the total time of collection For example, when a user has an action that interferes with an arm swing, a wrist flip, etc., it is understandable that the quality of the signal collected during the action is generally poor. The user can choose to continue to collect the signal after avoiding the action interference, thereby effectively improving User experience.
  • step S30 according to the qualified signal duration of the single signal or the qualified signal duration of the synchronization signal, shortening or extending the preset total acquisition duration includes:
  • S321 Determine whether the current total collection time is greater than or equal to a first preset threshold.
  • the total current collection time is greater than or equal to the first preset threshold, it can be considered that the data volume of the currently collected signal is likely to end signal detection early on the premise that the signal quality is high.
  • the current qualified ratio can reflect the proportional relationship between the qualified signal duration of a single signal and the current total acquisition duration, and can be used to determine the number ratio of signals that meet the signal quality in a unit time and provide a reference for whether to end signal acquisition.
  • the current qualified ratio is less than the preset comparison threshold, it indicates that the number of signals that meet the signal quality per unit time is too small, and the signal collection needs to be stopped.
  • the qualified signal duration of the synchronization signal is greater than or equal to the second preset threshold, it indicates that the qualified signal quality duration of the synchronization signal has reached the expectation. It can be considered that the collected signal quality is high and the data is sufficient, and the signal collection can be stopped.
  • the multi-signal-based user health status detection method further includes:
  • S325 If the qualified signal duration of the synchronization signal is less than the second preset threshold, determine whether the current total collection duration is greater than or equal to the third preset threshold, and if so, prompt the user whether to continue to collect the signal.
  • the current total acquisition time is greater than or equal to the third preset threshold, it can be considered that there is not enough signal collected for signal data analysis in the expected acquisition time, and the user can be notified through the display interface whether to continue the detection.
  • signal interference such as motion interference, the efficiency of signal acquisition is improved, and it is not necessary to restart signal acquisition every time.
  • Fig. 1 shows a flow chart of adaptively adjusting the signal detection duration in an embodiment of the present application. It can be seen from Figure 1 that according to the collected ECG signal and PPG signal, the current acquisition duration T0 is obtained, and the data segment duration T A where both the ECG signal quality and the PGG signal quality are qualified, the ECG signal quality qualified data segment duration T B , PGG The length of the data segment with qualified signal quality T C.
  • W0 corresponds to the first preset threshold in the embodiment
  • W B and W C correspond to the preset comparison threshold in the embodiment
  • W A corresponds to the second preset threshold in the embodiment
  • W1 corresponds to the first preset threshold in the embodiment.
  • the second preset algorithm is used to calculate the signal analysis result based on different types of signals and/or the synchronization signal composed of a single signal.
  • the user's health status is output according to the signal analysis result.
  • the signal quality of the synchronization signal is determined by the intersection of the qualified individual signal quality.
  • the signal quality of the synchronization signal does not necessarily meet the preset condition.
  • the second preset algorithm is used to calculate different types of signals and synchronization signals to obtain respective signal analysis results, and then the user's health status is output according to the signal analysis results.
  • this embodiment can integrate multiple signals for analysis, and smoothly and accurately output the user's health status in most detection scenarios without allowing Wearable devices frequently fail to detect user health status.
  • step S40 based on different types of signals and/or synchronization signals composed of a single signal, the second preset algorithm is used to calculate the signal analysis result, and the user's health status is output according to the signal analysis result, including:
  • S41 Determine a preset corresponding signal analysis sub-algorithm in the second preset algorithm according to different types of signals and/or synchronization signals.
  • S42 Use the signal analysis sub-algorithm to respectively calculate and obtain signal analysis results corresponding to different types of signals and/or synchronization signals.
  • the second preset algorithm includes multiple signal analysis sub-algorithms, which have a corresponding relationship with different types of signals such as PPG signals, ECG signals, and synchronization signals composed of PPG signals and ECG signals, that is, a single
  • the signal and synchronization signal will be calculated according to their corresponding signal analysis sub-algorithms.
  • S44 Output the user's health status according to the health reference value and a preset mapping table, where the preset mapping table stores a mapping relationship between the health reference value and the user's health status.
  • a weighting method is used to obtain the health reference value.
  • different types of single signals such as PPG signals can be assigned a weight of 0.3
  • ECG signals can be assigned a weight of 0.3
  • the synchronization information composed of PPG signals and ECG signals can be assigned a weight of 0.4, so that according to the importance of the signal
  • the health reference value is calculated comprehensively. Even if there are signal quality problems such as signal loss in the PPG signal, ECG signal or synchronization signal, the health reference value can also be output, and the user's health status can be output according to the health reference value and the preset mapping table.
  • FIG. 2 shows a flowchart of calculating the health status by using a second preset algorithm in an embodiment of the present application. It can be seen from Figure 2 that according to the signal analysis sub-algorithm A, the signal analysis sub-algorithm B and the signal analysis sub-algorithm C, the synchronization signal, PPG signal and ECG signal are calculated respectively to obtain the signal analysis result A1, the signal analysis result A2 and the signal analysis As a result A3, the health status is calculated by weighted synthesis. Even if there are signal quality problems such as signal loss in a single signal or synchronization signal, the health status can also be output.
  • the multi-signal-based user health status detection method further includes:
  • the data volume of the signal with qualified signal quality does not meet the preset condition, it is checked whether there is a historical signal with qualified signal quality within the preset time period, where the preset time period is the historical time period.
  • the signal collected within a certain period of time is similar to the currently collected signal, and the data of the historical signal in a short period of time can be used to compensate for the demand for the amount of data.
  • the signal analysis result is calculated by data merging, it can be displayed on the screen of the wearable device that the signal analysis result contains descriptive information of historical signals with qualified signal quality.
  • the display interface displays the explanation message "This test result refers to historical data, which is for reference only; if you want to obtain more accurate test results, please perform signal collection under the condition of eliminating interference".
  • FIG. 3 shows a flow chart of using historical signals to compensate signals in an embodiment of the present application.
  • T A long ECG signal quality is the signal quality PGG are qualified data segment.
  • T B is the duration of the data segment with qualified ECG signal quality
  • T C is the duration of the data segment with qualified PGG signal quality.
  • T2 represents the preset time period.
  • I A is the preset condition for whether T A meets the signal analysis requirements.
  • T A ′ is the collection time length corresponding to T A (segment collection) and the time length in which the signal quality in the preset time period of T2 is both qualified.
  • the process of historical signal compensation can be triggered.
  • data merging is performed when there are historical signals with acceptable signal quality in T2. Understandably, all actively collected signals can be input to the signal analysis module, and the health status analysis is performed according to the second preset algorithm to output the health status.
  • FIG. 4 shows a flowchart of a method for detecting a user's health status based on multiple signals in an embodiment of the present application.
  • the wearable device will use the first preset algorithm to analyze the signal in segments, and support the display of real-time signals on the display interface.
  • the preset total acquisition time can be adjusted adaptively.
  • the second preset algorithm is used to analyze the collected signals (if the signal quality is unqualified, the analysis is not performed), and the health status is directly obtained when the amount of data is sufficient, and when the amount of data is insufficient, the user is waiting for the user to decide whether Continue signal acquisition.
  • the signal acquisition instruction is first acquired, and the signal is acquired according to the signal acquisition instruction. Then, when the signal is acquired, the first predetermined algorithm is used to determine the value of the signal collected within the predetermined acquisition time period every other preset acquisition period.
  • Signal quality keep the signals with qualified signal quality, by detecting the signal quality of the signal in time periods, the information of the signal quality can be obtained in real time, which provides the technical basis for the realization of the subsequent adjustment of the duration according to the signal quality;
  • the signal quality determines the qualified signal duration, and adjusts the preset total acquisition time of the signal according to the qualified signal duration.
  • the qualified signal duration is the duration of the qualified signal. Understandably, the qualified signal duration can accurately reflect the collected signal quality and the current acquisition.
  • the relationship of duration when a shorter acquisition duration is used to obtain more signals with qualified signal quality, it can be considered that the signal acquisition is relatively sufficient, and the acquisition can be stopped and directly enter the next step of user health-related calculations, which effectively improves the acquisition efficiency; Finally, after the signal acquisition is completed, if the data volume of the signal with qualified signal quality meets the preset conditions, the second preset algorithm is used to calculate the signal analysis result based on different types of signals and/or synchronization signals composed of a single signal. The user's health status is output according to the signal analysis result, and multiple signals can be integrated for analysis, and the user's health status can be output smoothly and more accurately.
  • the embodiment of the present application also provides a wearable device, including an acquisition module that collects signals, where the signal is used to detect the user's health status, and the type of the signal is more than one.
  • the wearable device also includes a memory, a processor, and a memory stored in the memory.
  • a computer program that can be run on a processor, characterized in that the processor implements the following steps when the processor executes the computer program:
  • the first preset algorithm is used to determine the signal quality of the signals collected during the preset collection time every other preset collection time length, and the signals with qualified signal quality are retained.
  • the qualified signal duration is determined according to the signal quality, and the preset total acquisition duration of the signal is adjusted according to the qualified signal duration, where the qualified signal duration is the duration of the qualified signal.
  • the second preset algorithm is used to calculate the signal analysis result, and the signal analysis result is calculated according to the signal
  • the analysis result outputs the user's health status.
  • the signal includes an electrocardiogram signal or a photoplethysmographic signal.
  • the processor executes a computer program to realize that when signals are collected, every preset collection time period, the first preset algorithm is used to determine the signal quality of the signals collected during the preset collection time period, and the signals with qualified signal quality are retained.
  • the first preset algorithm is used to determine the signal quality of the electrocardiogram signals collected during the preset collection time period, and the ECG signals with qualified signal quality are retained.
  • the first preset algorithm is used to determine the signal quality of the photoplethysmogram signals collected within the preset acquisition time at every preset acquisition time period, and the signal quality is qualified The photoplethysmogram signal is retained.
  • the qualified signal duration includes the qualified signal duration of a single signal, or the qualified signal duration of a synchronization signal composed of a single signal whose signal quality is both qualified.
  • the processor executes a computer program to determine the duration of the qualified signal according to the signal quality, and adjust the preset total acquisition duration of the signal according to the duration of the qualified signal, where the duration of the qualified signal is the duration of the qualified signal, including:
  • the qualified signal duration of a single signal or the qualified signal duration of a synchronization signal is determined.
  • the preset total acquisition duration is shortened or extended.
  • the processor executes a computer program to shorten or extend the preset total time of acquisition according to the qualified signal duration of a single signal or the qualified signal duration of a synchronization signal, including:
  • the current total acquisition time is greater than or equal to the first preset threshold, divide the qualified signal duration of a single signal by the current total acquisition time to get the current qualified ratio. If the current acquisition total time is less than the first preset threshold, stop the signal acquisition .
  • the preset comparison threshold determines whether the qualified signal duration of the synchronization signal is greater than or equal to the second preset threshold, where the preset comparison threshold is used for numerical comparison with different current qualified ratios If there is no current qualified ratio greater than or equal to the preset comparison threshold, stop signal collection.
  • the signal collection is stopped.
  • processor executes the computer program, it further includes the following steps.
  • the qualified signal duration of the synchronization signal is less than the second preset threshold, it is determined whether the current total collection duration is greater than or equal to the third preset threshold, and if so, the user is prompted whether to continue to collect the signal.
  • the third preset threshold is updated so that the updated third preset threshold is greater than the third preset threshold that is not updated, and the signal is continued to be collected.
  • the processor executes a computer program to realize a synchronization signal based on different types of signals and/or a single signal.
  • the second preset algorithm is used to calculate the signal analysis result.
  • the user's health status is output according to the signal analysis result, the include:
  • a preset corresponding signal analysis sub-algorithm in the second preset algorithm is determined.
  • the signal analysis sub-algorithm is used to calculate the signal analysis results corresponding to different types of signals and/or synchronization signals.
  • the value obtained by multiplying the signal analysis result and the preset weight value is added together to obtain the health reference value.
  • the user's health status is output according to the health reference value and a preset mapping table, where the preset mapping table stores the mapping relationship between the health reference value and the user's health status.
  • processor executes the computer program, it further includes the following steps:
  • the data volume of the signal with qualified signal quality does not meet the preset condition, it is checked whether there is a historical signal with qualified signal quality within the preset time period, where the preset time period is the historical time period.
  • the display of the signal analysis result on the screen of the wearable device includes descriptive information of historical signals with qualified signal quality.
  • the qualified signal duration is displayed and updated in real time on the screen of the wearable device.
  • the processor executes the computer program, it further includes the following steps: acquiring a modification instruction input by the user, and modifying a preset value according to the modification instruction, wherein the preset value includes a preset collection time, a preset collection total time, or a preset condition .
  • the embodiment of the present application also provides a multi-signal-based user health status detection device.
  • the device is used to implement the steps of the method in the embodiment, which will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, including: a computer program and a processor, and when the computer program is executed by the processor, the steps of the method in the foregoing embodiment are implemented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请公开了一种基于多信号的用户健康状态检测方法、可穿戴设备、装置和介质。该方法包括:获取信号采集指令,根据信号采集指令采集信号;在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留;根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长;信号采集结束后,若信号质量合格的信号的数据量满足预设条件,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态。采用方法能够较顺利地输出用户健康状态。

Description

基于多信号的用户健康状态检测方法、可穿戴设备和介质 【技术领域】
本申请涉及运动健康领域,尤其涉及一种基于多信号的用户健康状态检测方法、可穿戴设备和介质。
【背景技术】
随着可穿戴设备的不断演变与改进,其有关用户健康状态检测的功能由早期单一的PPG(Photoplethysmogram,光电容积脉搏波图)信号检测逐步向多信号检测发展,现有技术已可实现ECG(Electrocardiogram,心电图)+PPG的同时检测。目前的可穿戴设备为需完成预设总采集时间才会进入信号分析阶段。信号分析阶段会对整段信号进行质量检查,信号质量合格时反馈分析结果;不合格时则提示类似“信号质量差”等信息。可穿戴设备在应用于同时采集ECG信号与PPG信号时,由于信号质量合格的结果是取ECG信号合格和PPG信号合格的交集,极易出现较多不合格情况,导致经常出现用户健康状态检测失败的问题。
【发明内容】
有鉴于此,本申请实施例提供了一种基于多信号的用户健康状态检测方法、可穿戴设备、装置和介质,用以解决目前可穿戴设备在进行用户健康状态检测时频发检测失败的问题。
第一方面,本申请实施例提供了一种基于多信号的用户健康状态检测方法,包括:
获取信号采集指令,根据所述信号采集指令采集信号,其中,所述信号用于检测用户健康状态,所述信号的类型大于一种;
在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留;
根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长;
所述信号采集结束后,若所述信号质量合格的所述信号的数据量满足预设条件,基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述信号包括心电图信号或光电容积脉搏波图信号。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留,包括:
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述心电图信号的信号质量,将所述信号质量合格的所述心电图信号保留;
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述光电容积脉搏波图信号的信号质量,将所述信号质量合格的所述光电容积脉搏波图信号保留。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述合格信号时长包括单个所述信号的合格信号时长,或由所述信号质量均合格的单个所述信号组成的同步信号的合格信号时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长,包括:
根据所述信号质量是否合格,确定单个所述信号的合格信号时长或所述同步信号的合格信号时长;
根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长,包括:
判断当前采集总时长是否大于或等于第一预设阈值;
若所述当前采集总时长大于或等于第一预设阈值,分别将单个所述信号的合格信号时长除以所述当前采集总时长,得到当前合格比例,若所述当前采集总时长小于第一预设阈值,停止所述信号的采集;
若存在所述当前合格比例大于或等于预设比对阈值,判断所述同步信号的合格信号时长是否大于或等于第二预设阈值,其中,所述预设比对阈值用于与不同的所述当前合格比例进行数值比对,若不存在所述当前合格比例大于或等于预设比对阈值,停止所述信号的采集;
若所述同步信号的合格信号时长大于或等于所述第二预设阈值,停止所述信号的采集。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
若所述同步信号的合格信号时长小于所述第二预设阈值,判断所述当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集所述信号;
若获取用户输入的继续采集指令,则更新所述第三预设阈值,使更新后的所述第三预设阈值大于未更新的所述第三预设阈值,继续采集所述信号;
若获取用户输入的停止采集指令,则停止所述信号的采集。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态,包括:
根据所述不同类型的所述信号,和/或所述同步信号确定所述第二预设算法中预设对应的信号分析子算法;
采用所述信号分析子算法分别计算得到与所述不同类型的所述信号,和/或所述同步信号 对应的信号分析结果;
将所述信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值;
根据所述健康参考值和预设的映射表输出所述用户健康状态,其中,所述预设的映射表存储所述健康参考值与所述用户健康状态的映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
所述信号采集结束后,若所述信号质量合格的所述信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,所述预设时间段为历史时间段;
若所述预设时间段内存在所述信号质量合格的历史信号,将不同类型的所述信号,和/或由单个所述信号组成的同步信号分别与所述信号质量合格的历史信号进行数据合并,并在所述数据合并后采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,若所述信号分析结果为采用所述数据合并的方式计算得到,在可穿戴设备的屏幕上显示所述信号分析结果包含所述信号质量合格的所述历史信号的说明信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述在采集所述信号时,在可穿戴设备的屏幕上实时显示并更新所述合格信号时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
获取用户输入的修改指令,根据所述修改指令修改所述预设值,其中,所述预设值包括所述预设采集时长、所述预设采集总时长或所述预设条件。
第二方面,本申请实施例提供了一种可穿戴设备,包括采集信号的采集模块,其中,所述信号用于检测用户健康状态,所述信号的类型大于一种,所述可穿戴式设备还包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
获取信号采集指令,根据所述信号采集指令采集信号;
在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留;
根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长;
所述信号采集结束后,若所述信号质量合格的所述信号的数据量满足预设条件,基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述信号包括心电图信号或光电容积脉搏波图信号。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留时,包括:
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述心电图信号的信号质量,将所述信号质量合 格的所述心电图信号保留;
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述光电容积脉搏波图信号的信号质量,将所述信号质量合格的所述光电容积脉搏波图信号保留。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述合格信号时长包括单个所述信号的合格信号时长,或由所述信号质量均合格的单个所述信号组成的同步信号的合格信号时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长时,包括:
根据所述信号质量是否合格,确定单个所述信号的合格信号时长或所述同步信号的合格信号时长;
根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长时,包括:
判断当前采集总时长是否大于或等于第一预设阈值;
若所述当前采集总时长大于或等于第一预设阈值,分别将单个所述信号的合格信号时长除以所述当前采集总时长,得到当前合格比例,若所述当前采集总时长小于第一预设阈值,停止所述信号的采集;
若存在所述当前合格比例大于或等于预设比对阈值,判断所述同步信号的合格信号时长是否大于或等于第二预设阈值,其中,所述预设比对阈值用于与不同的所述当前合格比例进行数值比对,若不存在所述当前合格比例大于或等于预设比对阈值,停止所述信号的采集;
若所述同步信号的合格信号时长大于或等于所述第二预设阈值,停止所述信号的采集。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序时,还包括如下步骤:
若所述同步信号的合格信号时长小于所述第二预设阈值,判断所述当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集所述信号;
若获取用户输入的继续采集指令,则更新所述第三预设阈值,使更新后的所述第三预设阈值大于未更新的所述第三预设阈值,继续采集所述信号;
若获取用户输入的停止采集指令,则停止所述信号的采集。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态时,还包括:
根据所述不同类型的所述信号,和/或所述同步信号确定所述第二预设算法中预设对应的信号分析子算法;
采用所述信号分析子算法分别计算得到与所述不同类型的所述信号,和/或所述同步信号对应的信号分析结果;
将所述信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值;
根据所述健康参考值和预设的映射表输出所述用户健康状态,其中,所述预设的映射表存储所述健康参考值与所述用户健康状态的映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序时,还包括如下步骤:
所述信号采集结束后,若所述信号质量合格的所述信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,所述预设时间段为历史时间段;
若所述预设时间段内存在所述信号质量合格的历史信号,将不同类型的所述信号,和/或由单个所述信号组成的同步信号分别与所述信号质量合格的历史信号进行数据合并,并在所述数据合并后采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,若所述信号分析结果为采用所述数据合并的方式计算得到,在可穿戴设备的屏幕上显示所述信号分析结果包含所述信号质量合格的所述历史信号的说明信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述在采集所述信号时,在可穿戴设备的屏幕上实时显示并更新所述合格信号时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序时,还包括如下步骤:
获取用户输入的修改指令,根据所述修改指令修改所述预设值,其中,所述预设值包括所述预设采集时长、所述预设采集总时长或所述预设条件。
第三方面,本申请实施例提供了一种基于多信号的用户健康状态检测装置,包括:
第一处理模块,用于获取信号采集指令,根据所述信号采集指令采集信号,其中,所述信号用于检测用户健康状态,所述信号的类型大于一种;
第二处理模块,用于在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留;
第三处理模块,用于根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长;
第四处理模块,用于所述信号采集结束后,若所述信号质量合格的所述信号的数据量满足预设条件,基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
进一步地,所述信号包括心电图信号或光电容积脉搏波图信号。
进一步地,所述第二处理模块还具体用于:
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述心电图信号的信号质量,将所述信号质量合格的所述心电图信号保留;
在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述光电容积脉搏波图信号的信号质量, 将所述信号质量合格的所述光电容积脉搏波图信号保留。
进一步地,所述合格信号时长包括单个所述信号的合格信号时长,或由所述信号质量均合格的单个所述信号组成的同步信号的合格信号时长。
进一步地,所述第三处理模块还具体用于:
根据所述信号质量是否合格,确定单个所述信号的合格信号时长或所述同步信号的合格信号时长;
根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长。
进一步地,所述第三处理模块还具体用于:
判断当前采集总时长是否大于或等于第一预设阈值;
若所述当前采集总时长大于或等于第一预设阈值,分别将单个所述信号的合格信号时长除以所述当前采集总时长,得到当前合格比例,若所述当前采集总时长小于第一预设阈值,停止所述信号的采集;
若存在所述当前合格比例大于或等于预设比对阈值,判断所述同步信号的合格信号时长是否大于或等于第二预设阈值,其中,所述预设比对阈值用于与不同的所述当前合格比例进行数值比对,若不存在所述当前合格比例大于或等于预设比对阈值,停止所述信号的采集;
若所述同步信号的合格信号时长大于或等于所述第二预设阈值,停止所述信号的采集。
进一步地,所述装置还用于:
若所述同步信号的合格信号时长小于所述第二预设阈值,判断所述当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集所述信号;
若获取用户输入的继续采集指令,则更新所述第三预设阈值,使更新后的所述第三预设阈值大于未更新的所述第三预设阈值,继续采集所述信号;
若获取用户输入的停止采集指令,则停止所述信号的采集。
进一步地,第四处理模块还具体用于:
根据所述不同类型的所述信号,和/或所述同步信号确定所述第二预设算法中预设对应的信号分析子算法;
采用所述信号分析子算法分别计算得到与所述不同类型的所述信号,和/或所述同步信号对应的信号分析结果;
将所述信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值;
根据所述健康参考值和预设的映射表输出所述用户健康状态,其中,所述预设的映射表存储所述健康参考值与所述用户健康状态的映射关系。
进一步地,所述装置还用于:
所述信号采集结束后,若所述信号质量合格的所述信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,所述预设时间段为历史时间段;
若所述预设时间段内存在所述信号质量合格的历史信号,将不同类型的所述信号,和/或由单个所述信号组成的同步信号分别与所述信号质量合格的历史信号进行数据合并,并在所述数据合并后采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
进一步地,若所述信号分析结果为采用所述数据合并的方式计算得到,在可穿戴设备的屏幕上显示所述信号分析结果包含所述信号质量合格的所述历史信号的说明信息。
进一步地,所述在采集所述信号时,在可穿戴设备的屏幕上实时显示并更新所述合格信号时长。
进一步地,所述装置还用于:
获取用户输入的修改指令,根据所述修改指令修改所述预设值,其中,所述预设值包括所述预设采集时长、所述预设采集总时长或所述预设条件。
第四方面,本申请实施例提供了一种计算机可读存储介质,包括:计算机程序和处理器,所述计算机程序被所述处理器执行时实现上述第一方面所述方法的步骤。
在本申请实施例中,首先获取信号采集指令,根据信号采集指令采集信号,然后在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留,通过对信号的信号质量进行分时间段的检测,能够实时地获取信号质量的信息,为后续根据信号质量实现时长调整提供的实现的技术基础;接着根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长,可以理解地,合格信号时长能够准确地反映采集的信号质量与当前采集时长的关系,当采用较短的采集时长便得到较多的信号质量合格的信号时,可认为信号采集比较充分,可停止采集直接进入下一步的用户健康状态相关的计算,有效提高采集效率;最后在信号采集结束后,若信号质量合格的信号的数据量满足预设条件,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态,可综合多个信号进行分析,能够顺利、较准确地输出用户健康状态。
【附图说明】
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的一种自适应调整信号检测时长的流程图;
图2是本申请一实施例提供的一种采用第二预设算法计算得到健康状态的流程图;
图3是本申请一实施例提供的一种采用历史信号补偿信号的流程图;
图4是本申请一实施例提供的一种基于多信号的用户健康状态检测方法的流程图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或 者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
当前,多家公司均已推出了面向心脏健康的手表或者手环等可穿戴式设备。这些手表、手环一经推出,获得了极大的市场反响,2018年智能可穿戴设备市场增长率高达51%。ECG测试功能获得Apple 2018秋季发布会最热烈掌声,而基于ECG的心律失常检测获得2018年百大创新奖。可以预见的是,基于智能可穿戴设备的心脏健康等用户健康的检测功能将是各大厂商重点突破的重要技术之一。
随着可穿戴设备的不断演变与改进,其有关用户健康状态检测的功能由早期单一的PPG信号检测逐步向多信号检测发展,现有技术已可实现ECG+PPG的同时检测。但是现有可穿戴设备的信号检测逻辑仍较为简单,即必须完成固定时长的数据采集,无法胜任可穿戴设备在多信号同步检测中的诸多问题,用户体验较差。进一步地,在信号分析阶段需对整段信号进行质量检测,信号质量合格时反馈分析结果;不合格时则提示类似“信号质量差”等信息,不进行后续分析。可以理解地,可穿戴设备在应用于同时采集ECG信号与PPG信号时,由于信号质量合格的结果是取ECG信号合格和PPG信号合格的交集,极易出现较多不合格情况,导致经常出现用户健康状态检测失败的问题,用户体验不佳。
本申请实施例提供一种基于多信号的用户健康状态检测方法,包括如下步骤:
S10:获取信号采集指令,根据信号采集指令采集信号,其中,信号用于检测用户健康状态,信号的类型大于一种。
可以理解地,信号具体可以包括如心电图信号或光电容积脉搏波图信号等可用于检测用户健康状态的信号。例如,光电容积脉搏波图信号可用于检测血氧饱和度、心电图信号可用于检测心律失常,通过心电图信号或光电容积脉搏波图信号等信号可检测用户健康状态。
在一实施例中,用户在佩戴可穿戴式设备如手环、手表时,可通过该可穿戴式设备发起信号采集,通过按键或屏幕上显示的按钮实现信号采集指令的触发。可穿戴设备将在获取信号采集指令后同时进行多个信号的采集。可以理解地,对于单一信号检测的可穿戴式设备较少出现用户健康状态检测失败的现象,本申请实施例是在多信号检测条件下有效解决用户健康状态检测高频失败的问题。
S20:在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留。
在一实施例中,在可穿戴式设备采集信号时,是分时间段对信号的信号质量进行判断的,而不是在固定采集时长后统一对所有的信号进行信号质量的判断。可以理解地,本实施例中在每隔一预设采集时长,也即每隔一小段时间便对该时间段内采集的信号进行质量检测,若信号的信号质量合格,可将信号保留以在后续用于用户健康状态的分析。
其中,第一预设算法是用于检测信号质量的算法,在对不同种类型的信号,或者由单个信号组成的同步信号时,将采用各自对应的算法进行信号检测。在本实施中,通过对信号的信号质量分段检测,能够实时地获取信号质量的信息,为后续根据信号质量实现时长调整提 供了实现的技术基础。
进一步地,在步骤S20中,在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留,包括:
S21:在采集心电图信号或光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的心电图信号的信号质量,将信号质量合格的心电图信号保留。
S22:在采集心电图信号或光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的光电容积脉搏波图信号的信号质量,将信号质量合格的光电容积脉搏波图信号保留。
在步骤S21-S22中,具体采集的信号可以是PPG信号和ECG信号,该两种信号的采集可以是同步采集的。在采集PPG信号和ECG信号时,将分时间段对PPG信号或ECG信号进行质量检测,并将信号质量合格的信号保留。
进一步地,在采集信号时,在可穿戴设备的屏幕上实时显示并更新合格信号时长。可以理解地,用户可以根据可穿戴设备的屏幕上实时显示的合格信号时长主动减少检测干扰。当合格信号时长增长的速率较慢时,可认为信号采集存在干扰(如动作干扰),用户在屏幕显示界面上可根据提醒信息主动调整信号采集的行为或检测环境。
进一步地,该基于多信号的用户健康状态检测方法还包括:
获取用户输入的修改指令,根据修改指令修改预设值,其中,预设值包括预设采集时长、预设采集总时长或预设条件等预设值。可以理解地,预设值均可通过界面交互,在界面上通过输入修改指令,对各种预设值进行一定范围内的调整。
S30:根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长。
进一步地,合格信号时长具体可包括单个信号的合格信号时长,或由信号质量均合格的单个信号组成的同步信号的合格信号时长。可以理解地,单个信号的合格信号时长如ECG信号质量合格的数据段时长T B或PGG信号质量合格的数据段时长T C,而ECG信号质量与PGG信号质量合格均合格的数据段时长为同步时长T A。可以理解地,在进行用户健康状态检测时,可对ECG信号、PGG信号和由ECG信号、PGG信号组成的同步信号分别进行分析计算,以得到不同维度的用户健康状态的反馈结果。
在一实施例中,根据信号质量是否合格可确定合格信号时长,包括单个信号的合格时长和由信号质量均合格的单个信号组成的同步信号的合格信号时长。可以理解地,合格信号时长能够准确地反映采集的信号质量与当前采集时长的关系,当采用较短的采集时长便得到较多的信号质量合格的信号时,可认为信号采集比较充分,可停止采集并直接进入下一步的用户健康状态相关的计算,能够有效提高采集效率。
进一步地,在步骤S30中,根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长,包括:
S31:根据信号质量是否合格,确定单个信号的合格信号时长或同步信号的合格信号时长。
S32:根据单个信号的合格信号时长或同步信号的合格信号时长,缩短或延长预设采集总时长。
可以理解地,预设采集总时长可根据信号质量进行缩短或延长,当信号质量较好时,可适当缩短预设采集总时长;当信号质量较差时,可根据用户的选择适当延长该预设采集总时长。例如,在用户出现动作干扰甩臂、翻腕等动作时,可以理解地,一般在动作期间采集的信号质量都是较差的,用户可以在规避动作干扰后,选择继续采集信号,从而有效提高用户的使用体验。
进一步地,在步骤S30中,根据单个信号的合格信号时长或同步信号的合格信号时长,缩短或延长预设采集总时长,包括:
S321:判断当前采集总时长是否大于或等于第一预设阈值。
可以理解地,若当前采集总时长大于或等于第一预设阈值,可认为当前采集的信号的数据量在信号质量高的前提下,是有可能提前结束信号检测的。
S322:若当前采集总时长大于或等于第一预设阈值,分别将单个信号的合格信号时长除以当前采集总时长,得到当前合格比例,若当前采集总时长小于第一预设阈值,停止信号的采集。
可以理解地,当前合格比例能够体现单个信号的合格信号时长与当前采集总时长的比例关系,可用于确定在单位时间内符合信号质量的信号的数量比例,为是否结束信号采集提供参考。
S323:若存在当前合格比例大于或等于预设比对阈值,判断同步信号的合格信号时长是否大于或等于第二预设阈值,其中,预设比对阈值用于与不同的当前合格比例进行数值比对,若不存在当前合格比例大于或等于预设比对阈值,停止信号的采集。
可以理解地,若存在当前合格比例小于预设比对阈值,说明单位时间内符合信号质量的信号的数量太少,需停止信号的采集。
S324:若同步信号的合格信号时长大于或等于第二预设阈值,停止信号的采集。
可以理解地,同步信号的合格信号时长大于或等于第二预设阈值时,说明同步信号的信号质量合格的时长达到预期,可认为采集的信号质量高且数据充分,可停止信号采集。
进一步地,该基于多信号的用户健康状态检测方法还包括:
S325:若同步信号的合格信号时长小于第二预设阈值,判断当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集信号。
S326:若获取用户输入的继续采集指令,则更新第三预设阈值,使更新后的第三预设阈值大于未更新的第三预设阈值,继续采集信号。
S327:若获取用户输入的停止采集指令,则停止信号的采集。
在一实施例中,若当前采集总时长大于或等于第三预设阈值,可认为在期望的采集时长中没有采集到足够进行信号数据分析的信号,可通过显示界面通知用户是否继续检测,在用户出现动作干扰等信号干扰的情况下,提高信号采集的效率,不必每次都去重新启动信号采集。
图1示出了本申请实施例中自适应调整信号检测时长的一流程图。从图1可以看出,根据采集的ECG信号和PPG信号得到当前采集时长T0,以及ECG信号质量与PGG信号质量均合格的数据段时长T A,ECG信号质量合格的数据段时长T B,PGG信号质量合格的数据段时长T C。其中,W0对应实施例中的第一预设阈值,W B、W C对应实施例中的预设比对 阈值,W A对应实施例中的第二预设阈值,W1对应实施例中的第三预设阈值。从图中可以看到,若当前采集时长T0小于W0,则持续进行信号采集;在当前采集时长T0大于W0后,计算T B/T0与T C/T0这两个当前合格比例,当T B/T0小于W B且T C/T0小于WC时,提前停止采集,并可提示如“采集失败,数据质量不佳”的提示信息;若T A大于(或等于)W A,提前停止采集,提示“采集成功”,并转入数据分析模块对信号进行分析;若当前采集时长达到W1,可在显示界面提示合格信号较少。进一步地,若用户在一定时间内保持检测姿势不断开连接,则可更新W1值,继续进行信号采集,否则停止采集。
S40:信号采集结束后,若信号质量合格的信号的数据量满足预设条件,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态。
可以理解地,在信号采集过程中不同类型的单个信号是同时但分开采集的。可以理解地,同步信号的信号质量由单个信号质量合格的交集确定,当信号的数据量满足预设条件时,同步信号的信号质量不一定满足预设条件。在一实施例中,将采用第二预设算法分别对不同类型的信号、同步信号进行计算得到各自的信号分析结果,再根据信号分析结果输出用户健康状态。相比于现有技术中容易出现同步信号的信号质量不合格的情况,本实施例可综合多个信号进行分析,在大多数检测场景下顺利、较准确地输出用户健康状态,而不会让可穿戴设备高频出现用户健康状态检测失败的问题。
进一步地,在步骤S40中,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态,包括:
S41:根据不同类型的信号,和/或同步信号确定第二预设算法中预设对应的信号分析子算法。
S42:采用信号分析子算法分别计算得到与不同类型的信号,和/或同步信号对应的信号分析结果。
可以理解地,第二预设算法中包括多种信号分析子算法,与不同类型的信号如PPG信号、ECG信号,以及PPG信号、和ECG信号组成的同步信号均具有对应关系,也即,单个信号和同步信号将根据各自对应的信号分析子算法进行计算。
S43:将信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值。
S44:根据健康参考值和预设的映射表输出用户健康状态,其中,预设的映射表存储健康参考值与用户健康状态的映射关系。
在一实施例中,采用加权方式得到健康参考值。可以理解地,不同类型的单个信号如PPG信号可分配0.3的权值、ECG信号可分配0.3的权值,而PPG信号、ECG信号组成的同步信息可分配0.4的权值,从而根据信号的重要性综合计算健康参考值,即使PPG信号、ECG信号或同步信号中出现信号缺失等信号质量问题,也同样可以输出健康参考值,并根据健康参考值和预设的映射表输出用户健康状态。
图2示出了本申请实施例采用第二预设算法计算得到健康状态的一流程图。从图2可以看出,根据信号分析子算法A、信号分析子算法B和信号分析子算法C分别对同步信号、PPG信号和ECG信号进行计算得到信号分析结果A1、信号分析结果A2和信号分析结果A3,再采用加权综合的方式计算得到健康状态,即使单个信号或同步信号中出现信号缺失等信号质量问题,也同样能够输出健康状态。
进一步地,该基于多信号的用户健康状态检测方法还包括:
信号采集结束后,若信号质量合格的信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,预设时间段为历史时间段。
若预设时间段内存在信号质量合格的历史信号,将不同类型的信号,和/或由单个信号组成的同步信号分别与信号质量合格的历史信号进行数据合并,并在数据合并后采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态。
可以理解地,可认为一定时间内(历史时间段)采集的信号与当前采集的信号相近,可利用短期内历史信号的数据补偿数据量的需求。
进一步地,若信号分析结果为采用数据合并的方式计算得到,在可穿戴设备的屏幕上可显示信号分析结果包含信号质量合格的历史信号的说明信息。例如,在显示界面显示“本次检测结果参考了历史数据,仅供参考;若想获得更准确的检测结果,请在排除干扰的情况下进行信号采集”的说明信息。
图3示出了本申请实施例中采用历史信号补偿信号的一流程图。
其中,T A为ECG信号质量与PGG信号质量均合格的数据段时长。T B为ECG信号质量合格的数据段时长,T C为PGG信号质量合格的数据段时长。T2表示预设时间段。I A为T A是否满足信号分析要求的预设条件。其中,数据合并后的时长为T A*=∑T A′,T A′为T A对应的采集时长(分段采集)和T2预设时间段中信号质量均合格的时长。在用户进行信号的主动采集后,可触发历史信号补偿的流程。在一实施例中,当T2内存在信号质量合格的历史信号时进行数据合并。可以理解地,主动采集后的信号都可输入到信号分析模块,并根据第二预设算法进行健康状态分析,以输出健康状态。
图4示出了本申请实施例中基于多信号的用户健康状态检测方法的一流程图。
从图4中可以看出,用户在发起信号采集后,可穿戴设备将采用第一预设算法对信号进行分段分析,并支持在显示界面上显示实时的信号。通过信号分段分析,自适应调整预设采集总时长。之后,采用第二预设算法对采集完成的信号进行分析(信号质量不合格的不进行分析),在数据量充足的情况下直接得到健康状态,在数据量不充足的情况下等待用户决策是否继续进行信号采集。
在本申请实施例中,首先获取信号采集指令,根据信号采集指令采集信号,然后在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留,通过对信号的信号质量进行分时间段的检测,能够实时地获取信号质量的信息,为后续根据信号质量实现时长调整提供的实现的技术基础;接着根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长,可以理解地,合格信号时长能够准确地反映采集的信号质量与当前采集时长的关系,当采用较短的采集时长便得到较多的信号质量合格的信号时,可认为信号采集比较充分,可停止采集直接进入下一步的用户健康状态相关的计算,有效提高采集效率;最后在信号采集结束后,若信号质量合格的信号的数据量满足预设条件,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态,可综合多个信号进行分析,能够顺利、较准确地输出用户健康状态。
本申请实施例还提供一种可穿戴设备,包括采集信号的采集模块,其中,信号用于检测 用户健康状态,信号的类型大于一种,可穿戴式设备还包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,其特征在于,处理器执行计算机程序时实现如下步骤:
获取信号采集指令,根据信号采集指令采集信号。
在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留。
根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长。
信号采集结束后,若信号质量合格的信号的数据量满足预设条件,基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态。
进一步地,信号包括心电图信号或光电容积脉搏波图信号。
进一步地,处理器执行计算机程序,实现在采集信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的信号的信号质量,将信号质量合格的信号保留时,包括:
在采集心电图信号或光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的心电图信号的信号质量,将信号质量合格的心电图信号保留。
在采集心电图信号或光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断预设采集时长内采集的光电容积脉搏波图信号的信号质量,将信号质量合格的光电容积脉搏波图信号保留。
进一步地,合格信号时长包括单个信号的合格信号时长,或由信号质量均合格的单个信号组成的同步信号的合格信号时长。
进一步地,处理器执行计算机程序,实现根据信号质量确定合格信号时长,根据合格信号时长调整信号的预设采集总时长,其中,合格信号时长为信号质量合格的时长时,包括:
根据信号质量是否合格,确定单个信号的合格信号时长或同步信号的合格信号时长。
根据单个信号的合格信号时长或同步信号的合格信号时长,缩短或延长预设采集总时长。
进一步地,处理器执行计算机程序,实现根据单个信号的合格信号时长或同步信号的合格信号时长,缩短或延长预设采集总时长时,包括:
判断当前采集总时长是否大于或等于第一预设阈值。
若当前采集总时长大于或等于第一预设阈值,分别将单个信号的合格信号时长除以当前采集总时长,得到当前合格比例,若当前采集总时长小于第一预设阈值,停止信号的采集。
若存在当前合格比例大于或等于预设比对阈值,判断同步信号的合格信号时长是否大于或等于第二预设阈值,其中,预设比对阈值用于与不同的当前合格比例进行数值比对,若不存在当前合格比例大于或等于预设比对阈值,停止信号的采集。
若同步信号的合格信号时长大于或等于第二预设阈值,停止信号的采集。
进一步地,处理器执行计算机程序时,还包括如下步骤。
若同步信号的合格信号时长小于第二预设阈值,判断当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集信号。
若获取用户输入的继续采集指令,则更新第三预设阈值,使更新后的第三预设阈值大于 未更新的第三预设阈值,继续采集信号。
若获取用户输入的停止采集指令,则停止信号的采集。
进一步地,处理器执行计算机程序,实现基于不同类型的信号,和/或由单个信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态时,还包括:
根据不同类型的信号,和/或同步信号确定第二预设算法中预设对应的信号分析子算法。
采用信号分析子算法分别计算得到与不同类型的信号,和/或同步信号对应的信号分析结果。
将信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值。
根据健康参考值和预设的映射表输出用户健康状态,其中,预设的映射表存储健康参考值与用户健康状态的映射关系。
进一步地,处理器执行计算机程序时,还包括如下步骤:
信号采集结束后,若信号质量合格的信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,预设时间段为历史时间段。
若预设时间段内存在信号质量合格的历史信号,将不同类型的信号,和/或由单个信号组成的同步信号分别与信号质量合格的历史信号进行数据合并,并在数据合并后采用第二预设算法计算得到信号分析结果,根据信号分析结果输出用户健康状态。
进一步地,若信号分析结果为采用数据合并的方式计算得到,在可穿戴设备的屏幕上显示信号分析结果包含信号质量合格的历史信号的说明信息。
进一步地,在采集信号时,在可穿戴设备的屏幕上实时显示并更新合格信号时长。
进一步地,处理器执行计算机程序时,还包括如下步骤:获取用户输入的修改指令,根据修改指令修改预设值,其中,预设值包括预设采集时长、预设采集总时长或预设条件。
本申请实施例还提供了一种基于多信号的用户健康状态检测装置,所述装置用于实现如实施例方法的步骤,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括:计算机程序和处理器,所述计算机程序被所述处理器执行时实现上述实施例方法的步骤。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所存储的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种基于多信号的用户健康状态检测方法,其特征在于,包括:
    获取信号采集指令,根据所述信号采集指令采集信号,其中,所述信号用于检测用户健康状态,所述信号的类型大于一种;
    在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留;
    根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长;
    所述信号采集结束后,若所述信号质量合格的所述信号的数据量满足预设条件,基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
  2. 根据权利要求1所述的方法,其特征在于,所述信号包括心电图信号或光电容积脉搏波图信号。
  3. 根据权利要求2所述的方法,其特征在于,所述在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留,包括:
    在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述心电图信号的信号质量,将所述信号质量合格的所述心电图信号保留;
    在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述光电容积脉搏波图信号的信号质量,将所述信号质量合格的所述光电容积脉搏波图信号保留。
  4. 根据权利要求1所述的方法,其特征在于,所述合格信号时长包括单个所述信号的合格信号时长,或由所述信号质量均合格的单个所述信号组成的同步信号的合格信号时长。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长,包括:
    根据所述信号质量是否合格,确定单个所述信号的合格信号时长或所述同步信号的合格信号时长;
    根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长。
  6. 根据权利要求5所述的方法,其特征在于,所述根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长,包括:
    判断当前采集总时长是否大于或等于第一预设阈值;
    若所述当前采集总时长大于或等于第一预设阈值,分别将单个所述信号的合格信号时长除以所述当前采集总时长,得到当前合格比例,若所述当前采集总时长小于第一预设阈值,停止所述信号的采集;
    若存在所述当前合格比例大于或等于预设比对阈值,判断所述同步信号的合格信号时长是否大于或等于第二预设阈值,其中,所述预设比对阈值用于与不同的所述当前合格比例进 行数值比对,若不存在所述当前合格比例大于或等于预设比对阈值,停止所述信号的采集;
    若所述同步信号的合格信号时长大于或等于所述第二预设阈值,停止所述信号的采集。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述同步信号的合格信号时长小于所述第二预设阈值,判断所述当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集所述信号;
    若获取用户输入的继续采集指令,则更新所述第三预设阈值,使更新后的所述第三预设阈值大于未更新的所述第三预设阈值,继续采集所述信号;
    若获取用户输入的停止采集指令,则停止所述信号的采集。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态,包括:
    根据所述不同类型的所述信号,和/或所述同步信号确定所述第二预设算法中预设对应的信号分析子算法;
    采用所述信号分析子算法分别计算得到与所述不同类型的所述信号,和/或所述同步信号对应的信号分析结果;
    将所述信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值;
    根据所述健康参考值和预设的映射表输出所述用户健康状态,其中,所述预设的映射表存储所述健康参考值与所述用户健康状态的映射关系。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述信号采集结束后,若所述信号质量合格的所述信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,所述预设时间段为历史时间段;
    若所述预设时间段内存在所述信号质量合格的历史信号,将不同类型的所述信号,和/或由单个所述信号组成的同步信号分别与所述信号质量合格的历史信号进行数据合并,并在所述数据合并后采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
  10. 根据权利要求9所述的方法,其特征在于,若所述信号分析结果为采用所述数据合并的方式计算得到,在可穿戴设备的屏幕上显示所述信号分析结果包含所述信号质量合格的所述历史信号的说明信息。
  11. 根据权利要求1-7任一项所述的方法,其特征在于,所述在采集所述信号时,在可穿戴设备的屏幕上实时显示并更新所述合格信号时长。
  12. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    获取用户输入的修改指令,根据所述修改指令修改所述预设值,其中,所述预设值包括所述预设采集时长、所述预设采集总时长或所述预设条件。
  13. 一种可穿戴式设备,其特征在于,包括采集信号的采集模块,其中,所述信号用于检测用户健康状态,所述信号的类型大于一种,所述可穿戴式设备还包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    获取信号采集指令,根据所述信号采集指令采集信号;
    在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内 采集的所述信号的信号质量,将所述信号质量合格的所述信号保留;
    根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长;
    所述信号采集结束后,若所述信号质量合格的所述信号的数据量满足预设条件,基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
  14. 根据权利要求13所述的可穿戴式设备,其特征在于,所述信号包括心电图信号或光电容积脉搏波图信号。
  15. 根据权利要求14所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序,实现所述在采集所述信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述信号的信号质量,将所述信号质量合格的所述信号保留时,包括:
    在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述心电图信号的信号质量,将所述信号质量合格的所述心电图信号保留;
    在采集所述心电图信号或所述光电容积脉搏波图信号时,每隔一预设采集时长,采用第一预设算法判断所述预设采集时长内采集的所述光电容积脉搏波图信号的信号质量,将所述信号质量合格的所述光电容积脉搏波图信号保留。
  16. 根据权利要求13所述的可穿戴式设备,其特征在于,所述合格信号时长包括单个所述信号的合格信号时长,或由所述信号质量均合格的单个所述信号组成的同步信号的合格信号时长。
  17. 根据权利要求16所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序,实现所述根据所述信号质量确定合格信号时长,根据所述合格信号时长调整所述信号的预设采集总时长,其中,所述合格信号时长为所述信号质量合格的时长时,包括:
    根据所述信号质量是否合格,确定单个所述信号的合格信号时长或所述同步信号的合格信号时长;
    根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长。
  18. 根据权利要求17所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序,实现所述根据单个所述信号的合格信号时长或所述同步信号的合格信号时长,缩短或延长所述预设采集总时长时,包括:
    判断当前采集总时长是否大于或等于第一预设阈值;
    若所述当前采集总时长大于或等于第一预设阈值,分别将单个所述信号的合格信号时长除以所述当前采集总时长,得到当前合格比例,若所述当前采集总时长小于第一预设阈值,停止所述信号的采集;
    若存在所述当前合格比例大于或等于预设比对阈值,判断所述同步信号的合格信号时长是否大于或等于第二预设阈值,其中,所述预设比对阈值用于与不同的所述当前合格比例进行数值比对,若不存在所述当前合格比例大于或等于预设比对阈值,停止所述信号的采集;
    若所述同步信号的合格信号时长大于或等于所述第二预设阈值,停止所述信号的采集。
  19. 根据权利要求13所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程 序时,还包括如下步骤:
    若所述同步信号的合格信号时长小于所述第二预设阈值,判断所述当前采集总时长是否大于或等于第三预设阈值,若是,提示用户是否继续采集所述信号;
    若获取用户输入的继续采集指令,则更新所述第三预设阈值,使更新后的所述第三预设阈值大于未更新的所述第三预设阈值,继续采集所述信号;
    若获取用户输入的停止采集指令,则停止所述信号的采集。
  20. 根据权利要求13-19任一项所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序,实现所述基于不同类型的所述信号,和/或由单个所述信号组成的同步信号,采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态时,还包括:
    根据所述不同类型的所述信号,和/或所述同步信号确定所述第二预设算法中预设对应的信号分析子算法;
    采用所述信号分析子算法分别计算得到与所述不同类型的所述信号,和/或所述同步信号对应的信号分析结果;
    将所述信号分析结果与预设的权值分别相乘后得到的值再相加,得到健康参考值;
    根据所述健康参考值和预设的映射表输出所述用户健康状态,其中,所述预设的映射表存储所述健康参考值与所述用户健康状态的映射关系。
  21. 根据权利要求13-19任一项所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序时,还包括如下步骤:
    所述信号采集结束后,若所述信号质量合格的所述信号的数据量没有达到预设条件,在预设时间段内查找是否存在信号质量合格的历史信号,其中,所述预设时间段为历史时间段;
    若所述预设时间段内存在所述信号质量合格的历史信号,将不同类型的所述信号,和/或由单个所述信号组成的同步信号分别与所述信号质量合格的历史信号进行数据合并,并在所述数据合并后采用第二预设算法计算得到信号分析结果,根据所述信号分析结果输出所述用户健康状态。
  22. 根据权利要求13所述的可穿戴式设备,其特征在于,若所述信号分析结果为采用所述数据合并的方式计算得到,在可穿戴设备的屏幕上显示所述信号分析结果包含所述信号质量合格的所述历史信号的说明信息。
  23. 根据权利要求13-19任一项所述的可穿戴式设备,其特征在于,所述在采集所述信号时,在可穿戴设备的屏幕上实时显示并更新所述合格信号时长。
  24. 根据权利要求13-19任一项所述的可穿戴式设备,其特征在于,所述处理器执行所述计算机程序时,还包括如下步骤:
    获取用户输入的修改指令,根据所述修改指令修改所述预设值,其中,所述预设值包括所述预设采集时长、所述预设采集总时长或所述预设条件。
  25. 一种计算机可读存储介质,其特征在于,包括:计算机程序和处理器,所述计算机程序被所述处理器执行时实现如权利要求1-12任意一项所述的方法。
PCT/CN2021/089691 2020-05-15 2021-04-25 基于多信号的用户健康状态检测方法、可穿戴设备和介质 WO2021227848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010415019.8 2020-05-15
CN202010415019.8A CN113662510B (zh) 2020-05-15 2020-05-15 基于多信号的用户健康状态检测方法、可穿戴设备和介质

Publications (1)

Publication Number Publication Date
WO2021227848A1 true WO2021227848A1 (zh) 2021-11-18

Family

ID=78526419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089691 WO2021227848A1 (zh) 2020-05-15 2021-04-25 基于多信号的用户健康状态检测方法、可穿戴设备和介质

Country Status (2)

Country Link
CN (1) CN113662510B (zh)
WO (1) WO2021227848A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116746927B (zh) * 2023-05-18 2024-04-23 中国人民解放军海军特色医学中心 一种密闭舱水下作业时水下作业人员状态调节方法及系统
CN117694854A (zh) * 2023-08-28 2024-03-15 荣耀终端有限公司 血压测量方法和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106419879A (zh) * 2016-09-22 2017-02-22 上海水蓝信息科技有限公司 基于桡动脉生物传感器技术的血压动态监测系统及方法
CN107106055A (zh) * 2015-12-03 2017-08-29 华为技术有限公司 一种血压测量方法及装置
CN108451517A (zh) * 2018-02-13 2018-08-28 安徽奇智科技有限公司 一种基于可穿戴设备的健康检测方法
CN108784650A (zh) * 2017-05-03 2018-11-13 深圳迈瑞生物医疗电子股份有限公司 生理信号的同源性识别方法及装置
US20190110755A1 (en) * 2017-10-17 2019-04-18 Whoop, Inc. Applied data quality metrics for physiological measurements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015362697A1 (en) * 2014-12-15 2017-07-06 i4c Innovations Inc. Metrics to assess fit quality of a wearable device
WO2016135043A1 (en) * 2015-02-24 2016-09-01 Koninklijke Philips N.V. Apparatus and method for providing a control signal for a blood pressure measurement device
CN108670242A (zh) * 2018-02-13 2018-10-19 安徽奇智科技有限公司 一种智能手表检测健康数据的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106055A (zh) * 2015-12-03 2017-08-29 华为技术有限公司 一种血压测量方法及装置
CN106419879A (zh) * 2016-09-22 2017-02-22 上海水蓝信息科技有限公司 基于桡动脉生物传感器技术的血压动态监测系统及方法
CN108784650A (zh) * 2017-05-03 2018-11-13 深圳迈瑞生物医疗电子股份有限公司 生理信号的同源性识别方法及装置
US20190110755A1 (en) * 2017-10-17 2019-04-18 Whoop, Inc. Applied data quality metrics for physiological measurements
CN108451517A (zh) * 2018-02-13 2018-08-28 安徽奇智科技有限公司 一种基于可穿戴设备的健康检测方法

Also Published As

Publication number Publication date
CN113662510A (zh) 2021-11-19
CN113662510B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2021227848A1 (zh) 基于多信号的用户健康状态检测方法、可穿戴设备和介质
JP6435128B2 (ja) 生理学的パラメータの監視
Sideris et al. Building continuous arterial blood pressure prediction models using recurrent networks
US11547334B2 (en) Psychological stress estimation method and apparatus
WO2021052362A1 (zh) 数据显示方法及电子设备
CN102397067B (zh) 一种运动负荷心电波形叠加分析方法及其系统
US10765374B2 (en) Methods and apparatus for adaptable presentation of sensor data
WO2023236687A1 (zh) 运动心电数据分析方法、装置、计算机设备与存储介质
CN109935331B (zh) 一种基于多模型动态综合的血糖预测方法及系统
JP7032747B1 (ja) 心電図解析支援装置、プログラム、心電図解析支援方法、及び心電図解析支援システム
Lee et al. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model
WO2020147149A1 (zh) 纠偏心率的方法、装置及存储介质
US20210173697A1 (en) Method, apparatus and terminal device for acquiring application interface startup time
Wu et al. A new automatic blood pressure kit auscultates for accurate reading with a smartphone: A diagnostic accuracy study
CN117425431A (zh) 心电图解析辅助装置、程序、心电图解析辅助方法、以及心电图解析辅助系统
JP2022554297A (ja) 生理パラメータに基づき血管評定パラメータを取得する方法、装置及び記憶媒体
CN110693485A (zh) 一种可穿戴式的心电信息监测系统及方法
WO2023236689A1 (zh) 高频qrs波形曲线分析方法、装置、计算机设备与存储介质
US20220240796A1 (en) System and Method for Noninvasive Monitoring, Diagnosis and Reporting of Cardiovascular Stenosis
WO2022089101A1 (zh) 基于便携式电子设备的pwv检测方法和装置
US20230141642A1 (en) Work assignment device
CN113180621A (zh) 基于freeRTOS的连续无创血压测量系统
US20220262516A1 (en) Atrial Fibrillation Prediction Model And Prediction System Thereof
US9084585B1 (en) System and method to classify left ventricular and mitral valve function
CN111657908B (zh) 一种脑神经血管偶联检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805272

Country of ref document: EP

Kind code of ref document: A1