WO2020147149A1 - 纠偏心率的方法、装置及存储介质 - Google Patents
纠偏心率的方法、装置及存储介质 Download PDFInfo
- Publication number
- WO2020147149A1 WO2020147149A1 PCT/CN2019/073528 CN2019073528W WO2020147149A1 WO 2020147149 A1 WO2020147149 A1 WO 2020147149A1 CN 2019073528 W CN2019073528 W CN 2019073528W WO 2020147149 A1 WO2020147149 A1 WO 2020147149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heart rate
- value
- derivative
- unit
- preset threshold
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
Definitions
- the present invention relates to the field of heart rate measurement, in particular to a method, device and storage medium for correcting eccentric heart rate.
- smart products such as smart watches, bracelets, and smart homes have gradually entered people's field of vision, and the industry of smart products has continued to commercialize and scale.
- the products are manufactured in batches, and the quality is better from generation to generation. Consumers are paying more and more attention to health issues while pursuing quality; since professional medical equipment is only available in hospitals or related medical outpatient clinics, users should use professional medical equipment for medical treatment. During examinations, it is often necessary to ask for leave, make appointments, and queue up for medical treatment, which causes great inconvenience to users.
- smart products such as smart watches and bracelets are convenient for users to use, so now many smart products are combined with medical modules, and this health detection method is favored by users.
- the medical health module is mainly divided into: heart rate measurement function (bpm), electrocardiogram function (ECG), blood pressure detection function (diastolic blood pressure, systolic blood pressure), atrial fibrillation function, etc.
- heart rate measurement function bpm
- ECG electrocardiogram function
- blood pressure detection function diastolic blood pressure, systolic blood pressure
- atrial fibrillation function etc.
- the data obtained by the heart rate chip algorithm is inaccurate, that is, the data obtained by the heart rate algorithm has large errors and inaccuracy, and must be corrected.
- Existing methods for correcting eccentric heart rate are usually calculated through complex algorithms, but this complex method requires a higher calculation capability of the heart rate measurement device, and the large amount of calculation consumes the power of the heart rate measurement device and affects the heart rate measurement device
- the service life of the device, and the cost of the equipment is higher based on the requirements for the computing power of the chip.
- the main purpose of the present invention is to provide a method, a device and a storage medium for correcting eccentric heart rate with simple calculation and better correction effect.
- the present invention provides a method for correcting eccentric heart rate, including:
- the collected (m+1)th measured heart rate value is taken as V1
- m is a preset positive integer.
- the steps include:
- step of correspondingly judging the derivation direction of V2 based on V1 includes:
- V1 as a benchmark to compare the sizes of V1 and V2;
- the magnitude of V1 and V2 are compared with V1 as a reference; the step of judging the derivative direction of V2 according to the comparison result includes:
- V2-V1 > 0
- V2-V1 ⁇ 0 the derivative direction of V2 is judged to be downward derivative
- the preset threshold is V1 + a
- the preset range is [V1, V1+a]
- a is a preset positive integer
- the preset threshold value is V1-a
- the preset range is [V1-a, V1)
- a is a preset positive integer
- the present invention also provides a device for correcting eccentric heart rate, including:
- the collection unit is used to collect the second heart rate value V2;
- the first judging unit is used to judge the derivative direction of V2 based on V1;
- the second judgment unit is used to judge whether V2 exceeds the preset range defined by the preset threshold based on V1 in the derivative direction;
- the determination execution unit is configured to: if V2 exceeds the preset range defined by the preset threshold based on V1 in the derivative direction, use the preset threshold as the heart rate output value; if V2 does not exceed the preset threshold in the derivative direction V1 is the preset range defined by the reference preset threshold, and V2 is used as the heart rate output value.
- the acquiring unit includes:
- the first acquiring unit is configured to use the collected m+1th measured heart rate value as V1.
- the acquiring unit further includes:
- the second acquiring unit is used to assign the heart rate output value to V1.
- the first judgment unit includes:
- the comparison unit is used to compare the sizes of V1 and V2 based on V1;
- the third judgment unit is used to judge the derivative direction of V2 according to the comparison result.
- the comparison unit includes: an arithmetic unit for subtracting V2 from V1;
- the second judgment unit includes:
- the first determination specifying unit is used to specify the preset threshold value as V1 + when the derivative direction of V2 is upward derivative a, the preset range limited by the preset threshold is [V1, V1+a], and a is a preset positive integer.
- the second judgment unit further includes:
- the second determination specifying unit is used to specify the preset threshold value V1-a when the derivative direction of V2 is downward derivative, and the preset range limited by the preset threshold value is [V1-a, V1), a which is the preset A positive integer.
- the present invention also provides a computer-readable storage medium on which a computer program is stored, and the method for correcting eccentric heart rate is realized when the computer program is executed.
- the present invention has the beneficial effects that: the method, device and storage medium for correcting eccentric heart rate provided by the present invention set a corresponding preset threshold in the derivation direction of the data, and based on the preset threshold Judge the obtained heart rate data, and then perform correction processing to correct the abnormal jump data caused by objective reasons, so that the heart rate data is placed in a more accurate range.
- the heart rate measurement value can be more stable and accurate.
- Better correction effect can prevent the heart rate value from sudden big and small, avoid obvious heart rate value error, correction processing improves the accuracy of the product heart rate measurement data, and improves the practicability of the product function.
- the method for correcting the eccentric heart rate has a simple algorithm, no complicated algorithm processing is required, and the steps are relatively simple, the algorithm processing is reduced, the requirements for hardware and operating performance are lower, and the hardware cost of the equipment can be reduced accordingly.
- the algorithm is relatively simple, the method is relatively simple, and the corresponding follow-up test and project execution cycle and cost can be reduced.
- FIG. 1 is a schematic flowchart of a method for correcting eccentric heart rate according to an embodiment of the present invention
- step S3 is a schematic flowchart of step S3 in a method for correcting eccentric heart rate according to an embodiment of the present invention
- step S4 is a schematic flow chart of step S4 in a method for correcting eccentric heart rate according to an embodiment of the present invention
- FIG. 4 is a schematic structural diagram of a device for correcting eccentric heart rate according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an embodiment of an acquisition unit in an apparatus for correcting eccentric heart rate according to an embodiment of the present invention
- FIG. 6 is a schematic structural diagram of an embodiment of a first determining unit in an apparatus for correcting eccentric heart rate according to an embodiment of the present invention
- FIG. 7 is a schematic structural diagram of an embodiment of a second judgment unit in an apparatus for correcting eccentric heart rate according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of an embodiment of a first obtaining unit in an apparatus for correcting eccentric heart rate according to an embodiment of the present invention
- Fig. 9 is a schematic structural diagram of a heart rate measuring device according to an embodiment of the present invention.
- the third determination designation unit 100, the heart rate sensor; 200, the memory; 300, the processor.
- an embodiment of the present invention provides a method for correcting eccentric heart rate, including:
- the first heart rate value V1 obtained in step S1 is used as the correction reference, and its acquisition objects and methods are different:
- the first heart rate value V1 is the initial value of V1 (the initial value is selected as the first data of the V1 value according to needs) to facilitate subsequent correction processing and provide an initial reference for subsequent correction processing.
- the first heart rate data displayed and used as the reference for subsequent processing which is the initial value of V1.
- the collected (m+1)th measured heart rate value is taken as V1, and m is a preset positive integer.
- “collecting the m+1th measured heart rate value as the V1” can be understood as: 1) collecting 1, 2 ⁇ m+1 initial values, and selecting the m+1th one, That is, after the heart rate sensor is turned on for measurement, it will collect the initial heart rate values from 1 to m+1, and the initial value of V1 is the m+1th heart rate value; 2) in 1, 2, ⁇ Among the m+1 data, the m+1th data is collected, that is, after the heart rate sensor is turned on for measurement, the 1st to mth heart rate data will not be collected, and the data will be collected from the m+1th data. You can choose according to the actual situation, and there is no restriction here.
- the measured m heart rate data are directly discarded. This prevents unstable and inaccurate data caused by the shaking of the body and equipment in the previous period from affecting the measurement results.
- the m+1 The obtained initial value of V1 is equivalent to the heart rate output value obtained through correction processing, and the processing of discarding the first m data is correction processing.
- the second method when the second method is adopted, more data space can be saved because the first m data are not collected.
- the collected first heart rate value V1 of the m+1th measurement tends to be stable, and its heart rate value data is relatively accurate, which provides a good basis for obtaining accurate heart rate data for subsequent correction processing.
- the measured V1 value needs to be saved as a reference object for the subsequent correction processing to prepare for the subsequent processing.
- the algorithm processing process is omitted, which is simpler.
- m is preferably less than 20 to prevent the user's waiting time from being too long and affecting user experience.
- m is set to 10. At this time, the first heart rate value V1 becomes more stable and accurate, and the user does not need to wait too long.
- the first heart rate value V1 can also be obtained by directly setting the preset time, which will not be described in detail here.
- the heart rate measurement device When the heart rate measurement device is turned on for heart rate measurement, because the software and hardware are not running smoothly and their interaction has not yet entered the state, and the person and the device are also shaking, the heart rate measurement data is inaccurate. Its volatility is large, usually calculated by algorithm and judged whether the measured heart rate value deviates from the preset range, and usually in the most initial time period measured heart rate value data is removed from the minimum and maximum values of a small number of data. And take the average number as the judgment basis for the later correction. The heart rate value measured later uses the average heart rate value measured before as the comparison object to judge whether it is abnormal and correct the deviation through the corresponding algorithm.
- the heart rate measuring device measures the corresponding heart rate of the human body every second If you measure for ten seconds, you will get ten heart rate values accordingly, and so on.
- this step does not need to do algorithm calculations, and directly discard the m data of the initial measurement. There is no need to consider which of the m data are normal values, because there are more abnormal data in these m data. It is easy to affect the accuracy of the data, so this step saves the complicated algorithm processing process and is simpler.
- the first heart rate value V1 is the reference value converted in the subsequent process.
- the corrected data is processed as the reference value and the reference value is used as the V1 value for the next correction processing.
- I will continue to introduce it later.
- step S2 after obtaining V1, the device continues to collect the next heart rate value data, which is the second heart rate value V2. At this time, the V2 value may be abnormal, and judgment is needed.
- step S3 a derivative direction judgment is performed on the collected V2, and the derivative direction of V2 is judged correspondingly based on V1, so that the subsequent processing of V2 is performed according to the corresponding derivative direction.
- V1 as a reference means performing calculations on the basis of V1, which can be simple V1, or the square of V1 or the value obtained by other algorithms.
- V2 can also be done like V1. Process accordingly, and determine whether the value processed by V2 fluctuates relative to the value processed by V1, and then determine the derivative direction of V2.
- the derivative direction is the up and down fluctuation direction of the value processed by V2 relative to the value processed by V1. It is convenient to judge the corresponding fluctuation range of V2 in the derivative direction later.
- both V1 and V2 can be the initial original value (that is, the value without calculation processing).
- the benchmark judgment value is obtained (such as calculating the arithmetic mean or variance average of the previous time period, etc.), then the benchmark judgment value is judged and correspondingly processed through a complex algorithm, such as standard deviation or Other complex data processing methods in statistics process the currently measured heart rate value as the basis for subsequent judgment and processing.
- the processing process is complex, requires a lot of calculations, and requires high hardware and operating performance. The cost is higher.
- this step preferably, on the basis of the reference judgment value V1, there is no need to make other complicated judgments, just simply judge the derivative direction of V2 compared to V1, eliminating the need for the corresponding algorithm calculation steps (specifically, it can be combined with steps S3 and S4) are also simpler.
- step S4 according to the determined corresponding derivative direction, it is further judged whether V2 exceeds the preset range defined by the preset threshold based on V1 in the derivative direction, and the corresponding fluctuation range of V2 in the derivative direction based on V1 is performed. Judge, in order to facilitate the subsequent corresponding processing of the value of V2, to achieve the correction effect.
- step S5 the value of V2 is further processed and adjusted according to the judgment of S4 and output as the heart rate output value to the user for viewing, so as to achieve the correction effect. If V2 in the derivative direction exceeds the preset range defined by the preset threshold based on V1, it is considered that V2 fluctuates greatly relative to V1. V2 needs to be corrected and adjusted to set V2 as the preset corresponding to the derivative direction Threshold, use the preset threshold as the heart rate output value; if V2 does not exceed the preset range defined by the preset threshold based on V1 in the derivative direction, it is considered that the fluctuation of V2 relative to the V1 benchmark is small, and V2 does not need to be corrected , And use V2 as the heart rate output value.
- the V1 value itself is relatively accurate, by limiting the heart rate output value to the vicinity of the V1 value and constraining the heart rate output value within the set range, the overall data can be stabilized and the heart rate data can be prevented from being inaccurate. Jumping, unstable, and will not cause data jumps due to hardware and software problems or heart rate data jumps caused by the user's inadvertent movement, resulting in inaccurate data, or directly causing users to be troubled, and affecting user experience.
- the heart rate output value has been corrected, then correspondingly, as described in S102, a new reference value is formed through the conversion of the heart rate output value and converted to V1 to prepare for the next time, in which the heart rate output can be
- the value is averaged with the previous V1 value to obtain a new V1, or a new V1 is calculated according to the previous standard deviation, or a heart rate output value is directly assigned to V1 to obtain a new V1, etc.
- the V1 value is used as the "first heart rate value V1 obtained" in the new round of correction.
- the heart rate output value after correction processing is assigned to V1, and the heart rate output value is used as the reference value.
- V1 the heart rate output value after correction processing
- the way to obtain V1 as the new reference is simple and does not require complicated calculations.
- the measurement of the heart rate measuring device is continuous, S1 to S5 are operated in a loop, and the new heart rate value collected subsequently is used as V2 to repeat the steps S1 to S5 for loop operation to continuously obtain the corrected heart rate output value.
- the heart rate measurement value is corrected to obtain the heart rate output value, and the corresponding preset threshold is set in the direction of data derivation, and the obtained heart rate data is judged based on the preset threshold, and then the correction processing is performed .
- correction processing improves the accuracy of the product heart rate measurement data, and improves the practicability of product functions.
- V1 is used as the benchmark for judgment and corresponding data processing.
- the overall correction processing method is simple and does not need to be complicated.
- the algorithm processing further reduce the algorithm processing; and the other steps are relatively simple, no need to design complex algorithms.
- there is no need for complex algorithms and the requirements for hardware and operating performance are lower, and the hardware cost of the equipment can be reduced accordingly.
- the algorithm is simpler, the method is simpler, and the corresponding subsequent tests and projects are carried out. The cycle and cost can be reduced.
- V1 As the benchmark, it can be judged by judging the variance of V1 and V2, judging by comparing the magnitude of V1 and V2, or V1 and V2 are placed/mapped on a graphic coordinate axis, V2 is judged according to the arrangement position of V1 and V2, and according to preset rules, or other methods.
- the magnitudes of V1 and V2 are compared with V1 as a reference, and the derivative direction of V2 is determined correspondingly according to the comparison result.
- the derivative direction of this embodiment includes: S301.
- S302 When V2-V1 ⁇ 0, it is determined that the derivative direction of V2 is downward derivative.
- the preset threshold is set accordingly according to the different derivation directions, referring to Figure 3, including: S401.
- the preset threshold is V1 + a, and it is judged whether V2 is greater than V1+a and process the value of V2 accordingly.
- the preset range defined by the preset threshold is [V1, V1+a], which is to determine whether V2 exceeds the preset range [V1, V1+a] and respond accordingly Process the value of V2; S402.
- the preset threshold is V1-a. At this time, it is determined whether V2 is less than V1-a and the value of V2 is processed accordingly.
- the limited preset range is [V1-a, V1), which is to determine whether V2 exceeds the preset range [V1-a, V1) and process the value of V2 accordingly.
- the heart rate output value is obtained by judging whether the absolute value of the difference between V2 and V1 is greater than the set a and adjusting the value of V2 in the corresponding derivative direction to obtain the heart rate output value. Since the heart rate value is usually calculated as an integer, for the convenience of calculation, a is the default A positive integer.
- the value of a is a normal change of heart rate.
- the value of a is preferably not greater than 5.
- the normal heart rate change of ordinary people is about 5, so the upper limit of a is set to 5.
- the limit value of the abnormal heart rate data will be larger. From the user's perspective, the heart rate data is still not stable and beating, which affects the user experience, so a is not Greater than 5.
- a value is set to 3 to be relatively stable, and the time it takes for the heart rate value to change to the next stable value will not be too long.
- the heart rate measuring device needs to display the data for the user to view, and save the data during data collection for subsequent calculations. Therefore, V1 is displayed on the device as the heart rate output value when it is acquired for the first time, and the heart rate output value is saved as V1, so as to facilitate the next comparison with V1 as the benchmark; in the subsequent processing, the adjusted value after step S5 The heart rate output value is displayed on the device display, and the heart rate output value is saved as the new V1, so that the new V1 is used as a benchmark for comparison next time.
- this embodiment also provides a device for correcting eccentric heart rate, including:
- the obtaining unit 1 is used to obtain the first heart rate value V1;
- the collection unit 2 is used to collect the second heart rate value V2;
- the first judging unit 3 is used to judge the derivative direction of V2 based on V1;
- the second judgment unit 4 is used to judge whether V2 exceeds a preset range defined by a preset threshold based on V1 in the derivative direction;
- the determination execution unit 5 is configured to: if V2 exceeds the preset range defined by the preset threshold based on V1 in the derivative direction, use the preset threshold as the heart rate output value; if V2 does not exceed V1 in the derivative direction For the preset range defined by the reference preset threshold, V2 is used as the heart rate output value.
- the acquisition unit 1 includes: a first acquisition unit 6 for taking the collected m+1th measured heart rate value as V1; preferably, the acquisition unit 1 also includes a second acquisition unit 7 for calculating the heart rate The output value is assigned to V1.
- the first judging unit 3 includes: a comparing unit 8 for comparing the sizes of V1 and V2 based on V1; the first judging unit 3 also includes a third judging unit 9 for judging based on the comparison result The derivative direction of V2.
- the comparison unit 8 includes: an arithmetic unit 10 for subtracting V2 from V1, and comparing the magnitudes of V1 and V2 through the subtraction operation.
- the second judgment unit 4 includes:
- the first determination specifying unit 12 is configured to specify a preset threshold value of V1 + a when the derivative direction of V2 is upwardly derived, and the preset range limited by the preset threshold value is [V1, V1+a], where a is the preset A positive integer.
- the second determination specifying unit 13 is used to specify a preset threshold value V1-a when the derivative direction of V2 is downward derivative, and the preset range defined by the preset threshold value is [V1-a, V1), a is The preset positive integer.
- the first determination designation unit 12 and the second determination designation unit 13 respectively specify and set the preset threshold and the preset range according to the derivation direction of V2.
- the first acquisition unit 6 includes a fourth determination unit 14 and a third determination designation unit 15, and the fourth determination unit 14 is used to determine the number of collected heart rate value data for cumulative calculation and determine the heart rate Whether the number of value data is greater than m, and if so, the third determination specifying unit 15 determines that the initial value of the specified V1 is the current heart rate value.
- the device for correcting eccentric heart rate of this embodiment further includes a storage unit for storing heart rate data whose number of heart rate data is greater than m, so as to facilitate the call of heart rate data.
- the fourth judgment unit 14 judges that the number of heart rate data is greater than m
- the current heart rate data is stored in the storage unit
- the first judgment unit 3 calls the heart rate data in the storage unit and judges based on V1
- the derivative direction of V2 is further judged by the second judgment unit 4 whether V2 exceeds the preset range defined by the preset threshold based on V1 in the derivative direction, and then the judgment execution unit 5 performs corresponding actions according to the second judgment unit 4 deal with.
- the device for correcting eccentric heart rate of this embodiment further includes a display unit for displaying the output value of the corrected heart rate for the user to view.
- the fourth judging unit 14 judges that the number of heart rate value data is greater than m, the current heart rate value is displayed as the heart rate output value for the user to view.
- the execution unit 5 is determined to be executed, the corrected heart rate output value is displayed to the user View.
- an embodiment of the present invention provides a heart rate measuring device, including:
- the heart rate sensor 100 is used to measure heart rate and provide heart rate data
- the memory 200 stores a computer program of the above method for correcting eccentric heart rate
- the processor 300 is configured to execute the above method for correcting eccentric heart rate
- the terminal device is used to display or broadcast the corrected heart rate output value.
- the heart rate value is measured by the H_SENSOR platform.
- MAX30101 in H_SENSOR is a high-sensitivity pulse oximeter and heart rate sensor 100.
- the heart rate sensor 100 can be used to measure heart rate and provide heart rate data; the processor 300 executes the above The method of correcting heart rate corrects the measured heart rate value to obtain the heart rate output value; the terminal device includes a display screen and/or a voice player, the display screen can display the heart rate output value, and the voice player can broadcast the heart rate output value.
- the heart rate measurement device of this embodiment is a smart bracelet.
- the terminal device of the smart bracelet is a display screen, which can display heart rate measurement data and other data.
- the user can view the deviation corrected by the processor 300 from the display screen of the smart bracelet Output the heart rate value.
- the terminal of the present invention and the above-mentioned embodiments of the equipment and method items involved in executing one or more of the methods in the present application are complementary and compatible with each other, and multiple details described in the method items Both the description and the description are applicable to the above-mentioned embodiments of the terminal and the device, and in order to avoid repetition, the details are not repeated here.
- These devices may be specially designed and manufactured for the required purpose, or may also include known devices such as smart bracelets and computers. These devices have computer programs or application programs stored in them, which are selectively activated or reconfigured.
- Such a computer program can be stored in a device (for example, computer) readable medium or in any type of medium suitable for storing electronic instructions and respectively coupled to a bus.
- the computer readable medium includes but is not limited to any type of Disk (including floppy disk, hard disk, CD-ROM, CD-ROM, and magneto-optical disk), ROM (Read-Only Memory), RAM (Random Access Memory, random access memory), EPROM (Erasable Programmable Read-Only Memory, EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, magnetic card or light card. That is, a readable medium includes any medium that stores or transmits information in a readable form by a device (eg, a computer).
- a device eg, a computer.
- An embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for correcting eccentric heart rate are realized.
- the present invention also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method for correcting eccentricity as described in the above embodiments.
- the computer program product includes one or more computer instructions.
- the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
- Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
- a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless such as infrared, wireless, microwave, etc.
- the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明揭示了一种纠偏心率的方法、装置及存储介质,其方法包括:获取第一心率值V1;采集第二心率值V2;以V1为基准并相应判断V2的衍生方向;判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围;根据衍生方向相应设置心率输出值;其装置及存储介质基于方法设置。本发明计算简单,纠偏效果良好。
Description
本发明涉及到心率测量领域,特别是涉及到一种纠偏心率的方法、装置及存储介质。
当前移动互联网设备不断兴起,智能手表、手环、智能家居等智能产品逐渐走入人们的视野,智能产品的产业不断商业化规模化。产品批量制造生产,质量一代比一代好,消费者在追求质量的同时也越来越注重健康问题;由于在医院或者相关医疗门诊中才有专业医疗设备,用户若要使用专业的医疗设备进行医疗检查时,往往需要请假,预约,排队就诊,如此给用户造成很大的不便。而智能手表、手环等智能产品,用户使用起来方便,所以现在很所智能产品与医疗模块结合,该种健康检测方式受到用户青睐。
医疗健康模块主要分:心率测量功能(bpm)、心电图功能(ECG)、血压检测功能(舒张压,收缩压)、房颤功能等。其中,心率芯片算法得出的数据具有有不准确性,也就是说,心率算法出值数据误差较大、不准确,必须要经过纠偏处理。现有的纠偏心率的方法通常是经过复杂的算法进行计算,,但该复杂方法对心率测量设备的计算能力要求较高,并且由于计算量较大而损耗心率测量设备的电量以及影响心率测量设备的使用寿命,同时基于对芯片计算能力的要求而使设备的成本较高。
本发明的主要目的为提供一种计算简单,并能达到较好的纠偏效果的方法纠偏心率的方法、装置及存储介质。
本发明提出一种纠偏心率的方法,包括:
获取第一心率值V1;
采集第二心率值V2;
以V1为基准相应判断V2的衍生方向;
判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围;
若是,则将衍生方向上的预设阈值作为心率输出值;若否,则将V2作为心率输出值。
进一步地,获取第一心率值V1的步骤中,把采集的第m+1个测量的心率值作为V1,m为预设的正整数。
进一步地,若是,则将预设阈值作为心率输出值;若否,则将V2作为心率输出值的步骤之后,包括:
把心率输出值赋值给V1。
进一步地,以V1为基准相应判断V2的衍生方向的步骤,包括:
以V1为基准,对V1和V2的大小作比较;
根据比较结果判断V2的衍生方向。
进一步地,以V1为基准对V1和V2的大小作比较;根据比较结果判断V2的衍生方向步骤,包括:
将V2与V1相减;
当V2-V1 >= 0时,判定V2的衍生方向为向上衍生;当V2-V1 < 0时,判定V2的衍生方向为向下衍生。
进一步地,当V2的衍生方向为向上衍生时,预设阈值为V1 +
a,预设范围为[V1,V1+a],a为预设的正整数。
进一步地,当V2的衍生方向为向下衍生时,预设阈值为V1 – a,预设范围为[V1-a,V1),a为预设的正整数。
本发明还提供一种纠偏心率的装置,包括:
获取单元,用于获取第一心率值V1;
采集单元,用于采集第二心率值V2;
第一判断单元,用于以V1为基准相应判断V2的衍生方向;
第二判断单元,用于判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围;
判定执行单元,用于:若V2在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,则将所述预设阈值作为心率输出值;若V2没有在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,则将V2作为心率输出值。
进一步地,获取单元包括:
第一获取单元,用于把采集的第m+1个测量的心率值作为V1。
进一步地,所述获取单元还包括:
第二获取单元,用于把所述心率输出值赋值给V1。
进一步地,第一判断单元包括:
比较单元,用于:以V1为基准,对V1和V2的大小作比较;
第三判断单元,用于根据比较结果判断V2的衍生方向。
进一步地,比较单元包括:运算单元,用于将V2与V1相减;
第三判断单元包括:判定子单元,用于:当V2-V1 >= 0时,判定V2的衍生方向为向上衍生;当V2-V1 < 0时,判定V2的衍生方向为向下衍生。
进一步地,第二判断单元包括:
第一判定指定单元,用于当V2的衍生方向为向上衍生时,指定预设阈值为V1 +
a,预设阈值限定的预设范围为[V1,V1+a],a为预设的正整数。
进一步地,第二判断单元还包括:
第二判定指定单元,用于当V2的衍生方向为向下衍生时,指定预设阈值为V1 – a,预设阈值限定的预设范围为[V1-a,V1),a其为预设的正整数。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被执行时实现上述纠偏心率的方法。
本发明与现有技术相比,有益效果在于:本发明提供的一种纠偏心率的方法、装置及存储介质,通过在数据的衍生方向上设定对应的预设阈值,并基于该预设阈值对获取的心率数据进行判断,进而执行纠偏处理,以将客观原因造成的非正常跳变数据纠正,使心率数据置于较为准确的范围内,如此,可实现心率测量值更加稳定以及准确,达到较好的纠偏效果,可防止心率值突大突小,避免显而易见的心率数值错误,纠偏处理提高产品心率测量数据的准确性,提高产品功能的实用性。其纠偏心率的方法相比于现有技术,算法简单,无需进行复杂的算法处理,且步骤比较简单,减少算法处理,对硬件及运行性能的要求较低,相应的可减少设备的硬件成本,此外,由于其算法较简单,该方法较简单,相应的后续的测试及项目进行等周期及成本均可降低。
图1 为本发明一实施例的纠偏心率的方法的流程示意图;
图2 为本发明一实施例的纠偏心率的方法中S3步骤的流程示意图;
图3为本发明一实施例的纠偏心率的方法中S4步骤的流程示意图;
图4为本发明一实施例的纠偏心率的装置的结构示意图;
图5为本发明一实施例的纠偏心率的装置中获取单元一实施例的结构示意图;
图6为本发明一实施例的纠偏心率的装置中第一判断单元一实施例的结构示意图;
图7为本发明一实施例的纠偏心率的装置中第二判断单元一实施例的结构示意图;
图8为本发明一实施例的纠偏心率的装置中第一获取单元一实施例的结构示意图;
图9为本发明一实施例的心率测量设备的结构示意图。
附图标记说明:
1、获取单元;2、采集单元;3、第一判断单元;4、第二判断单元;
5、判定执行单元;6、第一获取单元;7、第二获取单元;
8、比较单元;9、第三判断单元;10、运算单元;11、判定子单元;
12、第一判定指定单元;13、第二判定指定单元; 14、第四判断单元;
15、第三判定指定单元;100、心率传感器;200、存储器;300、处理器。本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本发明实施例中提供一种纠偏心率的方法,包括:
S1. 获取第一心率值V1;
S2. 采集第二心率值V2;
S3. 以V1为基准并相应判断V2的衍生方向;
S4. 判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围;
S5. 若是,则将衍生方向上的预设阈值作为心率输出值;若否,则将V2作为心率输出值。
本实施方式中,S1步骤获得的第一心率值V1作为纠偏基准,其获取对象及方式不同:
情况一. 第一心率值V1为V1初始值(该初始值为根据需要而选择的作为V1值的第一个数据),以方便后续纠偏处理,并为后续纠偏处理提供初始基准。当设备开启进行测量时,要有第一个显示并作为后续处理基准的心率值数据,即为V1的初始值。
本实施方式中,优选的,把采集的第m+1个测量的心率值作为V1,m为预设的正整数。需要说明是,其“采集第m+1个测量的心率值作为所述V1”可理解为:1)采集1、2···m+1个初始值,选取其中的第m+1个,即心率传感器在开启测量后,即进行采集动作,采集从1至m+1个初始的心率值,V1的初始值为其中的第m+1个心率值;2)在1、2···m+1个数据中,对第m+1个数据做采集,即心率传感器在开启测量后,对第1至m个心率值数据不做采集动作,从第m+1个数据开始做采集。可根据实际情况进行选择,此处不做限制。
不论采用哪一种方式,所测量的m个心率值数据直接舍弃,如此,防止了因前期的身体、设备晃动而造成的不稳定、不准确的数据影响测量结果,此时的第m+1个所得的V1的初始值相当于经过纠偏处理而得到的心率输出值,其舍弃前m个数据的处理即为纠偏处理。优选的,当采用第二种方式时,可以因未采集前m个数据,而节省更多的数据空间。
舍弃了m个心率值数据后,所采集的第m+1个测量的第一心率值V1趋于稳定,其心率值数据相对准确,为后面纠偏处理得到准确的心率值数据提供良好基础。同时,所测量的V1值需要保存下来,以作为后面纠偏处理的基准对象,为后续处理做准备。相比于现有技术,无需做复杂的算法计算,直接将初始测量的m个数据舍弃,相对现有技术省去了算法处理过程,更加简单。
当m大于5时,心率值开始变得稳定,则心率值在m大于5时可测得较准确的数据。由于心率值为每秒测量,当m大于5时,相当于初始时间段大于5秒,当m越大时,则相应的时间则更长,心率测量设备从设备开启到显示心率测量值的时间则越长,则用户等待时间越长,因此优选的,m小于20,防止用户等待时间过长影响用户体验。优选的,本实施例中,m设为10,此时的第一心率值V1变得更加稳定和准确,同时用户无需等待太久。
需要说明的是,也可以通过直接设定预设时间的方式,来获取第一心率值V1,此处不做详细描述。
在心率测量设备开启心率测量时,由于软件和硬件的运行尚未流畅且二者的相互配合尚未进入状态,且人和设备也存在晃动的情况,此时,心率值的测量数据是不准确的,其波动性较大,通常是通过算法计算并判断所测心率值是否偏离预设范围,而通常是在最初始时间段内测量的心率值数据中去除少数数据相差较大的最小值和最大值并取平均数作为在后纠偏的判断依据,在后测量的心率值以在先测量的平均心率值作为比较对象通过相应的算法判断是否异常并进行纠偏处理。但是在初始测量时,因前期的身体、设备晃动而造成的不稳定、不准确的数据,会使得所测量数据本身波动较大,所得到的平均心率值往往也是不准确的,此时,如果在先平均心率值数据不准确,那么在后测量并纠偏的心率值就会有偏差。
根据心率值大数据分析,将前期普遍出现的与正常心率值相差较大的初始时间段内的心率值数据舍弃,该时间段以秒为单位,心率测量设备每秒测量得出人体相应的心率值,若测量十秒,则相应的得到十个心率值,以此类推。本步骤相比于其他方案而言,无需做算法计算,直接将初始测量的m个数据舍弃,无需考虑这m个数据中哪些是正常的数值,因为这m个数据中异常的数据更多,容易影响数据准确性,这样本步骤省去了复杂的算法处理过程,更加简单。
情况二. 第一心率值V1 是后续过程中变换而来的基准值。当后续继续测量心率值并进行纠偏后,对纠偏后的数据进行处理作为基准值并将该基准值作为V1值,以进行下一次纠偏处理。关于该步骤,后续将会继续介绍。
S2步骤中,设备在获取V1之后,继续采集下一个心率值数据,为第二心率值V2。此时V2值可能有异常,需要进行判断。
S3步骤中,对采集的V2进行衍生方向判断,以V1为基准并相应判断V2的衍生方向,以便后续根据相应的衍生方向进行对V2的处理。
其中,本实施方式中,以V1作为基准是指在V1的基础上做运算,可以是单纯的V1,也可以是V1的平方或者其他算法得到的值,相应的,V2也可如V1一样做相应处理,并判断V2处理后的值相对于V1处理后的值是否有波动,从而判断V2的衍生方向,其衍生方向即为V2处理后的值相对于V1处理后的值的上下波动方向,方便后续对V2在衍生方向上的相应的波动范围进行判断。当然,V1、V2均可为初始原值(即不做运算处理的值)。
若在得出基准判断值后(如算出之前时间段的心率值的算术平均值或者方差平均值等),再通过复杂的算法对该基准判断值进行判断及相应的处理,如通过标准差或者统计学中其他复杂的数据处理方式进行对当前测量的心率值进行处理,以作为后续判断和处理基础,其处理过程复杂,要求的计算量多,对硬件及其运行性能的要求较高,相应的成本较高。本步骤中,优选的,在基准判断值V1的基础上,无需进行其他复杂的判断,仅需简单的判断V2相较于V1的衍生方向,省去了相应的算法计算步骤(具体可结合步骤S3和S4),也更加简单。
S4步骤中,根据所判断的相应的衍生方向进一步判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,对V2在衍生方向上基于V1的相应的波动范围进行判断,以方便后续相应处理V2的值,达到纠偏效果。
S5步骤中,根据S4的判断进一步处理调整V2的值并作为心率输出值输出给用户查看,达到纠偏效果。若V2在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,认为V2相对于以V1基准的波动较大,V2需修正,调整为将V2设为对应衍生方向的预设阈值,将该预设阈值作为心率输出值;若V2没有在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,认为V2相对于以V1基准的波动较小,V2无需修正,将V2作为心率输出值。
如前述可知,由于V1值本身较为准确,因此通过将心率输出值限定在V1值的附近,将心率输出值约束在设定范围内,可使整体数据稳定,防止心率值数据发生不准确的大跳变,不稳定,不至于由于硬件及软件问题产生数据跳变或者由于用户不经意的运动而造成的产生心率数据跳变,造成数据不准确、或直接带给用户困扰,影响用户体验。
此时,心率输出值已被纠偏,则相应的,如S102所述,通过对心率输出值的相关处理进行变换形成新的基准值并变换为V1为下一次做准备,其中,可将心率输出值与在前的V1值做平均处理,得到新的V1,或者根据在前的标准差计算得到新的V1,或者直接将心率输出值赋值给V1而得到新的V1,等等方式,将新V1值作为新一轮纠偏中“获取的第一心率值V1”。
优选的,本实施例中,将纠偏处理后的心率输出值赋值给V1,以心率输出值作为基准值,其作为新基准的V1的获取方式简单,无需进行复杂计算。
此外,心率测量设备的测量是持续的,S1至S5循环操作,后续所采集的新的心率值作为V2重复S1至S5步骤进行循环操作,不断得到纠偏后的心率输出值。
整个S1至S5的步骤将心率测量值进行纠偏得到心率输出值,通过在数据的衍生方向上设定对应的预设阈值,并基于该预设阈值对获取的心率数据进行判断,进而执行纠偏处理,以将客观原因造成的非正常跳变数据纠正,使心率数据置于较为准确的范围内,如此,可实现心率输出值更加稳定以及准确,达到较好的纠偏效果,可防止心率值突大突小,避免显而易见的心率数值错误,纠偏处理提高产品心率测量数据的准确性,提高产品功能的实用性。其S3步骤至S5步骤中,以V1作为基准进行判断及相应的数据处理,无需进行其他复杂的算法计算得到判断基准才进行下一步V2的数据处理,其整体的纠偏处理方法简单,无需进行复杂的算法处理,进一步减少算法处理;而其他步骤比较简单,无需设计复杂的算法。相对现有技术均无需复杂的算法,对硬件及运行性能的要求较低,相应的可减少设备的硬件成本,此外,由于其算法较简单,该方法较简单,相应的后续的测试及项目进行等周期及成本均可降低。
进一步的,S3步骤中V2的衍生方向的判断方式有多种,以V1为基准,可以通过判断V1和V2的方差进行判断,可以通过对V1和V2的大小做比较进行判断,还可以是将V1和V2置于/映射于一个图形坐标轴上、按照V1和V2的排布位置、并根据预设规则来对V2进行判断,或者其他方式。本实施例中,优选的,以V1为基准对V1和V2的大小作比较并根据比较结果相应判断所述V2的衍生方向。这种衍生方向的判断方式简单方便,无需进行复杂的算法计算,只需简单的大小比较即可,可简化算法,减少对硬件运行性能的要求。参照图2,本实施例的衍生方向包括:S301. 当V2-V1
>= 0时,判定V2的衍生方向为向上衍生;S302.
当V2-V1 < 0时,判定V2的衍生方向为向下衍生。
进一步的,S4步骤中,预设阈值根据衍生方向不同而相应设置,参照图3,包括:S401. 当V2的衍生方向为向上衍生时,预设阈值为V1 + a,此时判断V2是否大于V1+a并相应处理V2的值,此时根据该预设阈值所限定的预设范围为[V1,V1+a],即为判断V2是否超出预设范围[V1,V1+a] 并相应处理V2的值;S402. 当V2的衍生方向为向下衍生时,预设阈值为V1 – a,此时判断V2是否小于V1-a并相应处理V2的值,此时根据该预设阈值所限定的预设范围为[V1-a,V1),即为判断V2是否超出预设范围[V1-a,V1)并相应处理V2的值。通过判断V2与V1的差值的绝对值是否大于设定的a并在对应的衍生方向上相应调整V2的值得到心率输出值,由于心率值通常计算为整数,为方便计算,a为预设的正整数。
a值为一个心率的正常变化量值,在本实施方式中,优选的,a的值不大于5,基于心率大数据统计,普通人正常的心率变化为5左右,因此将a上限设为5,此外,当a大于5时,若心率数据异常,则将该异常心率数据约束的极限值则较大,在用户看来,心率数据还是不大稳定、跳动的,影响用户体验,因此a不大于5。
进一步的,将a的值设为3。其a值设置为3较稳定,且心率值变化到下一稳定值所用的时间并不会太长,在实际使用过程中,若用户心率发生突变,如正常心率值为60次一分钟,突然受惊吓或者其他情况使用户的心率变为100次一分钟,此时心率测量设备的心率测量值需要在
(60-40)/3 = 13秒左右可达到变化后的心率值,其时间并不是很长,同时用户也能欣然接受该变化速度,用户也更能接受该变化,不至于因为心率值突大突小变化,而引起用户困扰。
此外,通常心率测量设备需要将数据显示出来供用户查看,且在数据采集时会保存数据,以便后续计算。因此V1在第一次获取时即作为心率输出值在设备上显示,并保存该心率输出值作为V1,以方便下次以V1作为基准作比较;在后续处理过程中,经S5步骤调整后的心率输出值在设备显示上显示、并保存该心率输出值作为新的V1,以方便下次以该新的V1作为基准作比较。
参照图4,对应于上述方法,相应的,本实施例还提供一种纠偏心率的装置,包括:
获取单元1,用于获取第一心率值V1;
采集单元2,用于采集第二心率值V2;
第一判断单元3,用于以V1为基准相应判断V2的衍生方向;
第二判断单元4,用于判断V2是否在衍生方向上超出以V1为基准的预设阈值所限定的预设范围;
判定执行单元5,用于:若V2在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,则将预设阈值作为心率输出值;若V2没有在衍生方向上超出以V1为基准的预设阈值所限定的预设范围,则将V2作为心率输出值。
参照图5,获取单元1包括:第一获取单元6,用于把采集的第m+1个测量的心率值作为V1;优选的,获取单元1还包括第二获取单元7,用于把心率输出值赋值给V1。
参照图6,第一判断单元3包括:比较单元8,用于以V1为基准,对V1和V2的大小作比较;第一判断单元3还包括第三判断单元9,用于根据比较结果判断V2的衍生方向。
进一步地,比较单元8包括:运算单元10,用于将V2与V1相减,通过相减运算实现对V1和V2的大小比较,当然也可以通过其他方式的运算对V1和V2的大小比较。第三判断单元9包括:判定子单元11,用于:当V2-V1 >= 0时,判定V2的衍生方向为向上衍生;当V2-V1 < 0时,判定V2的衍生方向为向下衍生。也就是说,判定子单元11根据运算单元10的运算比较结果进一步相应判定V2的衍生方向。
参照图7,第二判断单元4包括:
第一判定指定单元12,用于当V2的衍生方向为向上衍生时,指定预设阈值为V1 + a,该预设阈值限定的预设范围为[V1,V1+a],a为预设的正整数。
第二判定指定单元13,用于当V2的衍生方向为向下衍生时,指定预设阈值为V1 – a,该预设阈值限定的预设范围为[V1-a,V1),a其为预设的正整数。
也就是说,在判定子单元11进一步判断V2的衍生方向后,第一判定指定单元12和第二判定指定单元13相应根据V2所在的衍生方向对预设阈值和预设范围进行指定设置。
参照图8,进一步地,第一获取单元6包括第四判断单元14和第三判定指定单元15,其第四判断单元14用于判断所采集的心率值数据的个数进行累加计算并判断心率值数据的个数是否大于m,若是,则第三判定指定单元15判定指定V1的初始值为当前心率值。
本实施例的纠偏心率的装置还包括存储单元,用于存储心率值数据的个数大于m的心率值数据,以方便心率值数据的调用。
当上述第四判断单元14判断心率值数据的个数大于m时,将当前心率值数据存入到存储单元中,而后第一判断单元3调用存储单元中的心率值数据并以V1为基准判断V2的衍生方向,进一步通过第二判断单元4判断V2是否在衍生方向上超出以V1为基准的预设阈值所述限定的预设范围,而后判定执行单元5根据第二判断单元4进行相应的处理。
本实施例的纠偏心率的装置还包括显示单元,用于显示纠偏后的心率输出值以供用户查看。当第四判断单元14判断心率值数据的个数大于m时,则将当前心率值作为心率输出值显示给用户查看,当判定执行单元5执行完成后,将纠偏后的心率输出值显示给用户查看。
参照图9,本发明一实施例提供了一种心率测量设备,包括:
心率传感器100,用于测量心率,提供心率值数据;
存储器200,存储器200存储有上述纠偏心率的方法的计算机程序;
处理器300,用于执行上述纠偏心率的方法;
终端装置,用于显示或播报纠偏后的心率输出值。
本实施例中,心率值通过H_SENSOR平台测量出值,H_SENSOR中的 MAX30101为高灵敏度脉搏血氧仪和心率传感器100,其心率传感器100可用于测量心率,提供心率值数据;;处理器300执行上述纠偏心率的方法对所测量的心率值进行纠偏处理得到心率输出值;终端装置包括显示屏和/或语音播放器,显示屏可显示心率输出值,语音播放器则可播报心率输出值。
本实施例的心率测量设备为智能手环,该智能手环的终端装置为显示屏,可显示心率测量数据,以及其他数据,用户从智能手环的显示屏上查看通过处理器300纠偏后的输出心率值。
本领域技术人员可以理解,本发明的终端和上述所涉及用于执行本申请中方法中的一项或多项的设备与方法项的实施例相辅相成、互相适应,方法项中描述的多个细节和说明均可适用于上述的终端、设备的实施例,为了避免重复,此处不再赘述。这些设备可以为所需的目的而专门设计和制造,或者也可以包括智能手环以及计算机等已知设备。这些设备具有存储在其内的计算机程序或应用程序,这些计算机程序选择性地激活或重构。这样的计算机程序可以被存储在设备(例如,计算机)可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何类型的介质中,计算机可读介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM(Read-Only Memory,只读存储器)、RAM(Random Access
Memory,随机存储器)、EPROM(Erasable
Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)、闪存、磁性卡片或光线卡片。也就是,可读介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。
本发明一实施例提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述纠偏心率的方法的步骤。
本发明还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行以上实施例所描述的纠偏心率的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (15)
- 一种纠偏心率的方法,其特征在于,包括:获取第一心率值V1;采集第二心率值V2;以所述V1为基准相应判断所述V2的衍生方向;判断所述V2是否在所述衍生方向上超出以所述V1为基准的预设阈值所限定的预设范围;若是,则将所述衍生方向上的所述预设阈值作为心率输出值;若否,则将所述V2作为心率输出值。
- 根据权利要求1所述的纠偏心率的方法,其特征在于,所述获取第一心率值V1的步骤中,把采集的第m+1个测量的心率值作为所述V1,所述m为预设的正整数。
- 根据权利要求1或2所述的纠偏心率的方法,其特征在于,所述若是,则将所述预设阈值作为心率输出值;若否,则将所述V2作为心率输出值的步骤之后,包括:把所述心率输出值赋值给所述V1。
- 根据权利要求1所述的纠偏心率的方法,其特征在于,所述以所述V1为基准相应判断所述V2的衍生方向的步骤,包括:以所述V1为基准,对所述V1和V2的大小作比较;根据所述比较结果判断所述V2的衍生方向。
- 根据权利要求4所述的纠偏心率的方法,其特征在于,所述以所述V1为基准对所述V1和V2的大小作比较;根据所述比较结果判断所述V2的衍生方向步骤,包括:将所述V2与所述V1相减;当V2-V1 >= 0时,判定所述V2的衍生方向为向上衍生;当V2-V1 < 0时,判定所述V2的衍生方向为向下衍生。
- 根据权利要求5所述的纠偏心率的方法,其特征在于,当所述V2的衍生方向为向上衍生时,所述预设阈值为V1 + a,所述预设范围为[V1,V1+a],所述a为预设的正整数。
- 根据权利要求5或6所述的纠偏心率的方法,其特征在于,当所述V2的衍生方向为向下衍生时,所述预设阈值为V1 – a,所述预设范围为[V1-a,V1),所述a为预设的正整数。
- 一种纠偏心率的装置,其特征在于,包括:获取单元,用于获取第一心率值V1;采集单元,用于采集第二心率值V2;第一判断单元,用于以所述V1为基准相应判断所述V2的衍生方向;第二判断单元,用于判断所述V2是否在衍生方向上超出以所述V1为基准的预设阈值所限定的预设范围;判定执行单元,用于:若所述V2在衍生方向上超出以所述V1为基准的预设阈值所限定的预设范围,则将所述预设阈值作为心率输出值;若所述V2没有在衍生方向上超出以所述V1为基准的预设阈值所限定的预设范围,则将所述V2作为心率输出值。
- 根据权利要求8所述纠偏心率的装置,其特征在于,所述获取单元包括:第一获取单元,用于把采集的第m+1个测量的心率值作为所述V1。
- 根据权利要求8或9所述纠偏心率的装置,其特征在于,所述获取单元还包括:第二获取单元,用于把所述心率输出值赋值给所述V1。
- 根据权利要求8所述纠偏心率的装置,其特征在于,所述第一判断单元包括:比较单元,用于:以V1为基准,对V1和V2的大小作比较;第三判断单元,用于根据比较结果判断V2的衍生方向。
- 根据权利要求11所述纠偏心率的装置,其特征在于,所述比较单元包括:运算单元,用于将V2与V1相减;所述第三判断单元包括:判定子单元,用于:当V2-V1 >= 0时,判定V2的衍生方向为向上衍生;当V2-V1 < 0时,判定V2的衍生方向为向下衍生。
- 根据权利要求12所述纠偏心率的装置,其特征在于,所述第二判断单元包括:第一判定指定单元,用于当V2的衍生方向为向上衍生时,指定预设阈值为V1 + a,所述预设阈值限定的预设范围为[V1,V1+a],a为预设的正整数。
- 根据权利要求12或13所述纠偏心率的装置,其特征在于,所述第二判断单元还包括:第二判定指定单元,用于当V2的衍生方向为向下衍生时,指定预设阈值为V1 – a,所述预设阈值限定的预设范围为[V1-a,V1),a其为预设的正整数。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被执行时实现权利要求1至7中任一项所述的纠偏心率的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910049886.1 | 2019-01-18 | ||
CN201910049886.1A CN109620196A (zh) | 2019-01-18 | 2019-01-18 | 纠偏心率的方法、装置及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020147149A1 true WO2020147149A1 (zh) | 2020-07-23 |
Family
ID=66061388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/073528 WO2020147149A1 (zh) | 2019-01-18 | 2019-01-28 | 纠偏心率的方法、装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109620196A (zh) |
WO (1) | WO2020147149A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110279407B (zh) * | 2019-06-27 | 2023-07-04 | 重庆金康特智能穿戴技术研究院有限公司 | 基于Android系统的心率数据平缓方法及可穿戴设备 |
CN110935159B (zh) * | 2019-12-25 | 2021-08-03 | 青岛英派斯健康科技股份有限公司 | 一种健身器材心率显示方法、装置、设备及存储介质 |
CN111714110A (zh) * | 2020-05-19 | 2020-09-29 | 成都云卫康医疗科技有限公司 | 一种基于ppg波形的实时心率计算方法 |
CN114469004A (zh) * | 2022-02-16 | 2022-05-13 | 中物云信息科技(无锡)有限公司 | 基于光纤光栅传感器的人体睡眠健康监测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101262815A (zh) * | 2005-09-15 | 2008-09-10 | 西铁城控股株式会社 | 心率计及心跳波形的噪音除去方法 |
CN104168828A (zh) * | 2012-01-16 | 2014-11-26 | 瓦伦赛尔公司 | 生理指标估值的上升和下降极限 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007054471A (ja) * | 2005-08-26 | 2007-03-08 | Nippon Koden Corp | 脈拍数測定装置及び脈拍数測定方法 |
-
2019
- 2019-01-18 CN CN201910049886.1A patent/CN109620196A/zh active Pending
- 2019-01-28 WO PCT/CN2019/073528 patent/WO2020147149A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101262815A (zh) * | 2005-09-15 | 2008-09-10 | 西铁城控股株式会社 | 心率计及心跳波形的噪音除去方法 |
CN104168828A (zh) * | 2012-01-16 | 2014-11-26 | 瓦伦赛尔公司 | 生理指标估值的上升和下降极限 |
Also Published As
Publication number | Publication date |
---|---|
CN109620196A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020147149A1 (zh) | 纠偏心率的方法、装置及存储介质 | |
US11330991B2 (en) | Calibration method for blood pressure measuring device, and blood pressure measuring device | |
US10376156B2 (en) | Device for monitoring for effectiveness of heart failure therapy | |
US11547334B2 (en) | Psychological stress estimation method and apparatus | |
KR20190008992A (ko) | 기준 상황 및 스트레스 대처 능력의 결정 | |
US10945675B2 (en) | Determining a health status for a user | |
US8932062B2 (en) | Body weight management device | |
US11191483B2 (en) | Wearable blood pressure measurement systems | |
US12097049B2 (en) | Methods, apparatus and systems for adaptable presentation of sensor data | |
US10441224B2 (en) | Systems and methods for adaptable presentation of sensor data | |
JP2016202346A (ja) | 生体情報処理システム、生体情報処理装置及び解析結果情報の生成方法 | |
CN109833037B (zh) | 一种监测血压状态的设备和计算机可读存储介质 | |
WO2018168804A1 (ja) | 血圧関連情報表示装置および方法 | |
US20150045680A1 (en) | Blood-pressure related information display device | |
Verdecchia et al. | Validation of the A&D UA-774 (UA-767Plus) device for self-measurement of blood pressure | |
US20210330237A1 (en) | Apparatus and a method for qt correction | |
US20230190187A1 (en) | Device, method, program, and system for determining degree of progression of disease | |
CN114903457A (zh) | 人体生理参数正负关联的动态血压监测装置及系统 | |
WO2020013004A1 (ja) | 生体データ提供装置、生体データ提供方法及び生体データ提供のためのプログラム | |
CN112545501A (zh) | 一种血液成分浓度检测方法及装置 | |
CN112040859A (zh) | 无氧代谢阈值估计方法和装置 | |
US12023140B2 (en) | Biological information analysis device, biological information analysis method, and biological information analysis system | |
JP2023002975A (ja) | 静脈圧測定装置、静脈圧測定方法および静脈圧測定プログラム | |
CN116636827A (zh) | 自动校准方法、心排量的监测方法、装置及监护设备 | |
FI20226156A1 (en) | Interval series of heart beats to assess a person's condition. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19910270 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19910270 Country of ref document: EP Kind code of ref document: A1 |