WO2021227683A1 - 无线连接重建方法及装置、终端、存储介质 - Google Patents

无线连接重建方法及装置、终端、存储介质 Download PDF

Info

Publication number
WO2021227683A1
WO2021227683A1 PCT/CN2021/083675 CN2021083675W WO2021227683A1 WO 2021227683 A1 WO2021227683 A1 WO 2021227683A1 CN 2021083675 W CN2021083675 W CN 2021083675W WO 2021227683 A1 WO2021227683 A1 WO 2021227683A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
access layer
uplink
plane entity
transmission rate
Prior art date
Application number
PCT/CN2021/083675
Other languages
English (en)
French (fr)
Inventor
刘君
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21804197.8A priority Critical patent/EP4142360A4/en
Publication of WO2021227683A1 publication Critical patent/WO2021227683A1/zh
Priority to US17/972,328 priority patent/US20230037776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • This application relates to the field of wireless communication connections, and relates to methods and devices, terminals, and storage media that are not limited to wireless connection reestablishment.
  • the transmission of terminal uplink user data is based on the wireless resource scheduling of the network device, that is, the terminal device needs to obtain the scheduling information sent by the network device before sending the uplink data, such as time-frequency resource allocation, and modulation and coding methods
  • the network device also needs to notify the terminal device of power control command information related to uplink transmission.
  • the embodiments of the present application provide a wireless connection reestablishment method and device, terminal, and storage medium.
  • an embodiment of the present application provides a wireless connection reestablishment method, including:
  • an embodiment of the present application provides a wireless connection reestablishment device, including:
  • the sending module is configured to respond to uplink data and send a scheduling request to the network device;
  • a determining module configured to determine the transmission rate of uplink data sent on the scheduled uplink resource
  • the trigger module is configured to trigger the RRC connection re-establishment process when the transmission rate meets the trigger condition.
  • an embodiment of the present application provides a terminal, including a memory and a processor, the memory stores a computer program that can be run on the processor, and when the processor executes the program, the wireless connection reconstruction method described above is implemented A step of.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the wireless connection reconstruction method described above are implemented.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic flow diagram of a user data transmission process in related technologies
  • FIG. 3 is a schematic flowchart of a method for reestablishing a wireless connection according to an embodiment of the application
  • FIG. 4 is an interaction flowchart of a wireless connection re-establishment method provided by an embodiment of the application
  • FIG. 5 is a logical flowchart of triggering an RRC re-establishment process based on an uplink transmission rate according to an embodiment of the application;
  • FIG. 6 is a schematic flowchart of a user data transmission process provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an RRC connection reestablishment process and an RRC reconfiguration process provided by an embodiment of this application;
  • FIG. 8 is a schematic structural diagram of a wireless connection reestablishment apparatus provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a hardware entity of a terminal provided by an embodiment of the application.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the application, and exemplarily shows a network device 110 and a terminal 120.
  • the communication system may include multiple network devices, and the coverage of each network device may include other numbers of terminals, which is not limited in the embodiment of the present application.
  • the network device 110 in the communication system can provide communication coverage for a specific geographic area, and can communicate with the terminal 120 located in the coverage area.
  • the network device 110 may be an eNB or an eNodeB (Evolutional NodeB, evolved network device) in an LTE (Long Term Evolution) system, or a CRAN (Cloud Radio Access Network, cloud wireless access network).
  • the wireless controller in the network), or the network device 110 may be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network device in a 5G network, or the future Network equipment in the communication system, etc.
  • the communication system also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes but is not limited to at least one of the following: connected via a wired line, such as via PSTN (Public Switched Telephone Networks), DSL (Digital Subscriber Line), digital cable , Direct cable connection; another data connection/network; and/or via a wireless interface, such as for cellular networks, WLAN (Wireless Local Area Network, wireless local area network), such as DVB-H (Digital Video Broadcasting Handheld, digital video broadcasting- Handheld) network digital TV network, satellite network, AM-FM (Amplitude Modulation-Frequency Modulation, FM-Amplitude Modulation) broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; IoT (Internet of Things (Internet of Things) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • Digital cable Digital cable connection
  • Direct cable connection another data connection/network
  • WLAN Wireless Local Area Network, wireless
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; PCS (Personal Communications System) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA (Personal Digital Assistant) with internet access, web browser, memo pad, calendar and/or GPS (Global Positioning System) receiver; and conventional laptop receiver, palm-type receiver At least one of other electronic devices including a radio telephone transceiver.
  • PCS Personal Communications System
  • PDA Personal Digital Assistant
  • GPS Global Positioning System
  • Terminal can refer to access terminal, UE (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • Access terminals can be cellular phones, cordless phones, SIP (Session Initiation Protocol) phones, WLL (Wireless Local Loop) stations, PDAs, handheld devices with wireless communication functions, computing devices or connections Other processing equipment to wireless modems, in-vehicle equipment, wearable equipment, terminals in 5G networks, or terminals in the future evolution of PLMN (Public Land Mobile Network, Public Land Mobile Network), etc.
  • PLMN Public Land Mobile Network, Public Land Mobile Network
  • the devices mentioned above are collectively referred to as terminals.
  • Figure 2 is a schematic flow chart of the user data transmission process in the related technology, as shown in Figure 2.
  • the existing terminal protocol stack design and implementation plan includes the following steps:
  • the NAS DP Non-Access Stratum Data Plane, non-access layer data plane
  • the AS DP Access Stratum Data Plane, access layer data plane
  • the AS DP sends a scheduling request to the network device
  • S203 The network equipment schedules uplink transmission radio resources to the AS DP;
  • AS DP sends uplink user data to the network device
  • the network device sends an uplink user data reception status report to the AS DP.
  • S205 is an optional step. Steps S202 to S205 are executed cyclically, indicating that the data is continuously scheduled for transmission, indicating that there is more uplink user data transmitted on the non-access layer data plane, and it is necessary to send scheduling requests multiple times to achieve multiple transmissions.
  • the uplink user data of the terminal is sent from NAS DP to AS DP.
  • AS DP buffers the uplink user data; then, AS DP will send a scheduling request to the network device, and the network device will base on the currently available radio resources.
  • the network equipment sends the uplink transmission radio resources to the terminal; after AS DP receives the uplink transmission radio resources, it sends the uplink user data to the network equipment.
  • AS DP can indicate that the network device needs to send an uplink data reception status report; the network device will send an uplink user data reception status report to the terminal according to the instructions in the received data packet header.
  • the transmission of the terminal's uplink user data is based on the wireless resource scheduling of the network device. If the network device continuously schedules few wireless resources to the terminal for a long time due to reasons such as network congestion, the terminal can only send very few uplinks. User data, which will cause the terminal to maintain a very low uplink transmission data rate for a long time, which will have a greater impact on the user experience.
  • FIG. 3 is a schematic flowchart of a wireless connection re-establishment method provided by an embodiment of the application. As shown in FIG. 3, the method at least includes the following steps:
  • Step S310 In response to the uplink data, a scheduling request is sent to the network device.
  • the scheduling request is used to request the uplink resource used to carry the uplink data from the network device.
  • the terminal needs to send a scheduling request to the network device to apply for uplink resources.
  • a scheduling request is triggered at the MAC (Medium Access Control) layer, and the request includes the terminal's identifier C-RNTI (Cell-Radio Network Temporary Identifier, cell radio network temporary identifier) ).
  • C-RNTI Cell-Radio Network Temporary Identifier, cell radio network temporary identifier
  • the scheduling request remains in a suspended state until the system cancels the scheduling request.
  • the system cancels the scheduling request in the following two cases: the MAC PDU (Protocol Data Unit) combined by the MAC layer contains all the uplink data to be sent in the terminal buffer; or the resource indicated in the uplink grant received by the terminal Can accommodate all the data to be tested.
  • the period of sending the scheduling request and the position in the subframe are determined by the configuration of the upper layer of the protocol stack.
  • Step S320 Determine the transmission rate at which the uplink data is sent on the scheduled uplink resource.
  • the scheduled uplink resource is an uplink transmission resource authorized by the network device to the terminal.
  • the sending uplink data includes the transmission of signaling data and the transmission of user data, which are transmitted from the terminal to the network device.
  • the terminal needs to tell the network device whether the terminal itself has uplink data to be transmitted, so that the network device can decide whether to allocate uplink resources to the terminal.
  • the terminal sends a scheduling request to the network device to apply for uplink resources to the network device for uplink data transmission.
  • the transmission rate refers to an uplink data transmission rate, which is a data transmission rate when a terminal sends information to a network device, such as a transmission data rate when a wireless terminal such as a mobile phone or a notebook sends user data to a base station. It can be expressed as the number of data and/or information bits in each uplink transmission unit. For example, the transmission rate can be expressed as the number of data and/or information bits per transmitted symbol, as the number of data/information bits per uplink segment, or as the number of data/information frames per uplink segment. It is numerically equal to the number of bits that constitute the data code transmitted per second, and the unit is megabits per second (Mbps).
  • Mbps megabits per second
  • Step S330 Trigger the RRC connection re-establishment process when the transmission rate meets the trigger condition.
  • the trigger condition indicates that the uplink data transmission rate is too low, and a good uplink data service cannot be obtained.
  • the trigger condition may be that the transmission rate within a set time is lower than a specific transmission threshold, or that the transmission rate has been lower than a specific transmission threshold for several consecutive set times, or it may be The uplink data cached within the time is higher than a specific cache threshold, etc.; among them, the set time is a preset specific time period after the uplink data arrives at the data plane of the access layer. Generally, it is set by the transmission rate change of the historical uplink data transmission process. If the uplink user data is sent from the non-access stratum data plane to the access stratum data plane within 3 seconds.
  • the RRC connection re-establishment process is used to restore the signaling connection between the network and the UE, that is, SRB1 (Signal Radio Bearer, signaling radio bearer).
  • SRB1 Signaling Radio Bearer, signaling radio bearer
  • the triggering reason for triggering the RRC re-establishment process can be radio link failure or cell handover failure; of course, the triggering reason can also be one of the following reasons: integrity check failure, RRC connection reconfiguration Reconfiguration that fails and fails to synchronize the primary cell group.
  • the terminal needs to initiate an RRC connection re-establishment process to select a new serving cell and obtain a better uplink Transmission service.
  • the RRC connection re-establishment will be triggered to select a new serving cell, so that a good uplink data transmission service is obtained and the user experience is improved.
  • Fig. 4 is an interaction flowchart of a wireless connection re-establishment method provided by an embodiment of the application. As shown in Fig. 4, the method at least includes the following steps:
  • Step S410 The access layer data plane entity buffers the uplink data sent by the non-access layer data plane entity.
  • the uplink data is uplink user data.
  • the uplink user data of the terminal is sent from the non-access layer data plane entity to the access layer data plane entity, and the access layer data plane entity first buffers the uplink user data.
  • Step S420 The access layer data plane entity sends a scheduling request to the network device.
  • the scheduling request is used to request the uplink resource used to carry the uplink data from the network device.
  • Step S430 The network device sends the scheduled uplink resource to the access layer data plane entity.
  • the network device will comprehensively schedule the uplink resources for the terminal, that is, the uplink transmission radio resources, according to the currently available radio resources, and then the network side sends the uplink transmission radio resources to the access layer data plane entity of the terminal.
  • Step S440 The access stratum data plane entity determines a transmission rate for sending the uplink data on the scheduled uplink resource.
  • the transmission rate of the uplink data may be expressed as the number of data and/or information bits in each uplink transmission unit.
  • the transmission rate can be expressed as the number of data and/or information bits per transmitted symbol, as the number of data/information bits per uplink segment, or as the number of data/information frames per uplink segment.
  • the value is equal to the number of bits constituting the data code transmitted per second, for example, the upstream rate of ADSL (Asymmetric Digital Subscriber Loop, symmetric digital subscriber loop technology) is 640Kbps to 1Mbps.
  • ADSL Asymmetric Digital Subscriber Loop, symmetric digital subscriber loop technology
  • L1 layer 1
  • L2 layer 2
  • L2 includes PDCP (Packet Data Convergence Protocol).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control, Radio Link Control Layer Protocol
  • MAC three sub-layers.
  • the calculation of the transmission rate of the uplink data may be implemented in the following manner:
  • Manner 1 The access layer data plane entity determines the number of data packets sent on the uplink resource in a specific time period; the access layer data plane entity determines according to the number of data packets and the specific time period The transmission rate; wherein, the specific time period starts when the access stratum data plane entity receives the uplink data.
  • the amount of transmission data sent on the uplink resource is the number of data packets transmitted for the first time on the uplink resource.
  • the terminal uses the uplink resource to send PDUs numbered 0, 1, 2, 3, and 4 to the network device.
  • Packet the network returns an ACK message to confirm or sends an uplink user data status report to the terminal, indicating that 5 PDU packets have been successfully received, and the amount of transmission data sent on the uplink resource in this process is 5 PDU packets.
  • a preset timer is started, and the specific time period may be the running duration of the preset timer. After the preset timer expires, the transmission rate can be obtained by calculating the transmission data packets of each layer (PDCP ⁇ RLC ⁇ MAC) per unit time.
  • the access layer data plane entity determines the uplink resource scheduled in a specific time period according to the resource indication returned by the network device; the access layer data plane entity determines the uplink resource scheduled in the specific time period according to the Resource, determine the transmission rate.
  • the preset timer is started when the uplink data is received by the access layer data plane entity, and the specific time period may be the running time of the preset timer.
  • the received physical layer resource can be determined according to the network resource indication issued by the network within the running time, for example, two symbols in the time domain and several consecutive symbols in the frequency domain. Resource block, thereby confirming the total amount of data carried by these time-frequency resources in the specific time period, and further calculating the user data transmitted per unit time.
  • Step S450 The access layer data plane entity determines the amount of buffered data in N consecutive specific time periods and the transmission rate in each of the specific time periods.
  • N is a positive integer greater than or equal to 2; N consecutive specific time periods are a preset period of time since the uplink data reaches the data plane of the access layer, generally through the transmission rate of the historical uplink data transmission process Change situation setting.
  • Step S460 In the case that the amount of cached data is greater than a specific cache threshold, and the transmission rate in each of the specific time periods is less than the specific transmission threshold, the access layer data plane entity sends a connection to the RRC entity Rebuild instruction message.
  • the access layer data plane entity sends a connection re-establishment to the RRC entity An indication message, where the connection re-establishment indication message is used to trigger the RRC connection re-establishment process.
  • Step S470 In response to the connection re-establishment instruction message, the RRC entity determines a target cell to camp on through cell selection.
  • the terminal RRC selects a target cell to camp on in at least one first candidate cell that is searched, and the target cell is a new cell under the coverage of a different network device from the current serving cell.
  • the serving cell is an inter-frequency cell with a better signal, or a new serving cell under the coverage of a different network device from the current serving cell, that is, a same-frequency cell with a better signal.
  • the process of determining the target cell can be implemented in the following steps: the RRC entity initiates cell selection in response to the connection re-establishment indication message to obtain at least one candidate cell; the RRC entity obtains at least one candidate cell according to the at least one candidate cell The frequency at which each candidate cell is located in each of the candidate cells determines the priority corresponding to each candidate cell; the RRC entity selects a target cell from the at least one candidate cell to camp on according to the priority.
  • the at least one candidate cell is a same-frequency cell or a different-frequency cell other than the current serving cell; when the channel quality of a certain cell in the at least one candidate cell meets the S criterion, it can be selected as the standby cell.
  • the terminal device can rebuild the target cell after staying in the target cell.
  • the terminal in the case of searching for an inter-frequency cell with a better signal, the terminal will preferentially camp in the inter-frequency cell; when there is no suitable inter-frequency cell but there is a same-frequency cell with a better signal Next, the terminal will choose to camp on the same frequency cell; if there is neither a suitable inter-frequency cell nor a suitable same frequency cell, the terminal will continue to camp on the current serving cell. That is to say, when the terminal selects the target cell to camp on, it preferentially selects the inter-frequency cell, and then selects the same-frequency cell to ensure the quality of service and thereby ensure the uplink user data transmission effect.
  • cell selection refers to the process in which the terminal has not camped on a cell and needs to select a suitable cell to camp on. For example, after the terminal is turned on or re-enters the network coverage area, it finds all the frequency points allowed by the PLMN and selects Camp in the appropriate cell.
  • the embodiment of the application proposes that when the uplink transmission data rate is continuously low, the access layer data plane entity sends an indication message to the non-access layer data plane entity to trigger the process of cell selection, and the data transmission service can be better as soon as possible. Establish connections in the communities to improve user experience.
  • Step S480 the RRC entity re-establishes the RRC connection with the target cell, so as to realize the transmission of the uplink data in the target cell.
  • the terminal when the terminal resides in a new serving cell, that is, the target cell, the terminal RRC performs an RRC connection re-establishment process, re-establishes RRC signaling with the target cell, and then can perform uplink user data transmission in the target cell after completing the RRC connection reconfiguration process.
  • the target network device corresponding to the target cell replies the RRC connection reestablishment message to the terminal RRC, and the terminal RRC performs the RRC connection reestablishment process. Then send the RRC connection re-establishment complete message to the target network device.
  • the target network device receives the RRC connection reconfiguration complete message, it sends an RRC connection reconfiguration message to the terminal RRC, and the terminal RRC executes the RRC connection reconfiguration process, and then sends an RRC connection reconfiguration complete message to the target network device.
  • the terminal reestablishes the RRC connection on the target cell, and can transmit uplink user data in the target cell.
  • the access layer data plane entity buffers the uplink data sent by the non-access layer and sends a scheduling request to the network device.
  • the network device schedules uplink resources to the access layer data plane entity, and then the access layer
  • the data plane entity determines the transmission rate for sending uplink data on the scheduled uplink resources, and finally determines that the transmission rate meets the trigger condition, the access layer data plane entity sends a connection re-establishment indication message to the non-access layer data plane entity to trigger
  • the RRC connection is reestablished to select a new serving cell and establish RRC connection signaling to obtain the transmission service of the target cell.
  • connection reconstruction method is described below with an example. However, it is worth noting that this example is only to better illustrate the application, and does not constitute an improper limitation of the application.
  • the terminal obtains a good uplink user data transmission service of the new serving cell through the RRC reestablishment process.
  • FIG. 5 includes at least the following steps:
  • step S501 the terminal determines that the uplink transmission rate is too low.
  • step S502 the terminal triggers the RRC connection re-establishment.
  • the terminal when the RRC receives an indication that the uplink user data transmission rate is too low, the terminal will trigger the RRC connection re-establishment.
  • Step S503 the terminal performs cell selection.
  • RRC initiates cell selection, and the current serving cell will be excluded from the cell search list. It should be noted that if the inter-frequency cell with better signal can be searched, the terminal will preferentially camp on the inter-frequency cell. If there is no suitable inter-frequency cell but there is a same-frequency cell with better signal, the terminal will choose to camp on. In the same frequency cell.
  • Step S504 It is judged whether the terminal can camp in the new serving cell.
  • the channel quality of a cell in the cell search list meets the S criterion, it can be selected as the target cell to be camped on, and the terminal device can rebuild after camping on the target cell.
  • step S505 is performed; if the terminal can camp on the new serving cell, step S506 is performed.
  • Step S505 The terminal continues to camp on the current serving cell.
  • the terminal will continue to camp on the current serving cell.
  • Step S506 the terminal executes the RRC connection reestablishment process and the RRC connection reconfiguration process.
  • the process of determining the uplink transmission rate in the above step S501 please refer to Figure 6, the uplink user data of the terminal is sent from the NAS DP to the AS DP, and the AS DP first buffers the uplink user data, and the AS DP will start for T seconds. Timer, then AS DP will send a scheduling request to the network device, the network device will comprehensively schedule the uplink transmission radio resources for the terminal according to the currently available radio resources, and then the network device sends the uplink transmission radio resources to AS DP, AS DP After receiving the uplink transmission radio resources, AS DP sends the uplink user data to the network device. In the header of the sent data packet, AS DP can instruct the network device to send an uplink data reception status report, and the network device will follow the received data packet header The indication in sends an uplink user data reception status report to the terminal.
  • the solution provided by the embodiment of the present application includes the following steps:
  • Step S601 The NAS DP of the terminal sends uplink user data to the AS DP.
  • step S602 the AS DP starts the T second timer for the first time.
  • Step S603 the AS DP sends a scheduling request to the network device.
  • Step S604 The network device schedules uplink transmission radio resources to the AS DP.
  • Step S605 the AS DP sends the uplink user data to the network device.
  • Step S606 The network device sends an uplink user data reception status report to the AS DP,
  • the above step 606 is an optional step.
  • the above steps S603 to S606 are executed cyclically, indicating that the non-access stratum data plane transmits more uplink user data, and it is necessary to send multiple scheduling requests to achieve multiple transmissions.
  • Step S607 After the T seconds timer expires, AS DP calculates and stores the uplink user data transmission rate.
  • AS DP When the T seconds timer expires, AS DP will calculate the uplink user data transmission rate within T seconds and save the uplink user data transmission rate in the uplink transmission rate array.
  • Step S608 start the T second timer for the Nth time
  • the T second timer When the T second timer expires for the N-1th time and the uplink data is continuously scheduled for transmission, the T second timer is started for the Nth time; wherein, the above steps S603 to S606 are cyclically executed within the Nth T seconds; when T After the second timer expires for the Nth time, step S607 is continued.
  • step S609 the AS DP determines that the total amount of cached data is greater than the cache threshold M, and the uplink user data transmission rate is always less than the rate threshold R within N*T seconds.
  • the actual value can be set according to the actual test.
  • step S610 the AS DP sends an indication that the uplink user data transmission rate is too low to the RRC.
  • the RRC connection reestablishment process includes:
  • Step S701 the terminal sends an RRC connection re-establishment request message to the network device;
  • Step S702 the network device sends an RRC connection re-establishment message to the terminal;
  • Step S703 The terminal sends an RRC connection re-establishment complete message to the network device.
  • the network device After the network device receives the RRC connection reestablishment complete message, it enters the RRC connection reconfiguration process, as shown in Figure 7, which includes the following steps:
  • step S704 the network device sends an RRC connection reconfiguration message to the terminal, and the terminal executes the RRC connection reconfiguration process.
  • Step S705 The terminal sends an RRC connection reconfiguration complete message to the network device.
  • the terminal performs the RRC connection reestablishment process and the RRC connection reconfiguration process, the RRC connection is reestablished on the new serving cell, and uplink user data transmission can be performed on the new serving cell.
  • the RRC connection re-establishment process is triggered, and good uplink user data transmission services are obtained by re-establishing the RRC connection on the new serving cell, and the user experience is improved; at the same time; Since a low-rate uplink transmission terminal accesses the new serving cell through the RRC re-establishment process, the congestion condition of the current serving cell can be partially improved.
  • an embodiment of the present application provides a wireless connection re-establishment device.
  • the device includes each module included and each unit included in each module, which can be implemented by a processor in a terminal; It can be implemented by logic circuits; in the process of implementation, the processor can be a CPU (Central Processing Unit, central processing unit), MPU (Micro Processing Unit, microprocessor), DSP (Digital Signal Processor, digital signal processor) or FPGA (Field Programmable Gate Array, Field Programmable Gate Array), etc.
  • CPU Central Processing Unit, central processing unit
  • MPU Micro Processing Unit, microprocessor
  • DSP Digital Signal Processor, digital signal processor
  • FPGA Field Programmable Gate Array, Field Programmable Gate Array
  • FIG. 8 is a schematic structural diagram of a wireless connection re-establishment device provided by an embodiment of the application.
  • the device 800 includes a sending module 810, a determining module 820, and a triggering module 830.
  • the sending module 810 is configured to In response to the uplink data, send a scheduling request to the network device;
  • the determining module 820 is configured to determine the transmission rate of sending uplink data on the scheduled uplink resource;
  • the triggering module 830 is configured to satisfy the trigger condition when the transmission rate In the case of triggering the RRC connection re-establishment process.
  • the device 800 further includes a buffer module, wherein: the buffer module is configured to buffer the uplink data sent by the access layer data plane entity by the non-access layer data plane entity; and the sending module 810 is configured to The access layer data plane entity sends a scheduling request to the network device; wherein, the scheduling request is configured to request the network device for uplink resources configured to carry the uplink data; accordingly, the determining module 820 also configures Determine the transmission rate for sending the uplink data on the scheduled uplink resource for the access layer data plane entity; the trigger module 830 is also configured to, when the transmission rate meets the trigger condition, the access The layer data plane entity triggers the RRC connection re-establishment process.
  • the buffer module is configured to buffer the uplink data sent by the access layer data plane entity by the non-access layer data plane entity
  • the sending module 810 is configured to The access layer data plane entity sends a scheduling request to the network device; wherein, the scheduling request is configured to request the network device for uplink resources configured to carry the uplink data; accordingly, the
  • the determining module 820 includes a first determining submodule and a second determining submodule, wherein: the first determining submodule is configured to determine that the access layer data plane entity is within a specific time period The number of data packets sent on the uplink resource; wherein, the specific time period starts when the access layer data plane entity receives the uplink data; the second determining submodule is configured to be the access layer The incoming data plane entity determines the transmission rate according to the number of data packets and the specific time period.
  • the determining module 820 includes a third determining sub-module and a fourth determining sub-module, wherein: the third determining sub-module is configured to be returned by the access layer data plane entity according to the network device The resource indication for determining the uplink resource scheduled in a specific time period; the specific time period starts when the access layer data plane entity receives the uplink data; the fourth determining submodule is configured to The access layer data plane entity determines the transmission rate according to the uplink resources scheduled in the specific time period.
  • the triggering module 830 includes a fifth determining submodule and a triggering submodule; wherein: the fifth determining submodule is configured to determine that the access layer data plane entity determines that within N consecutive specific time periods The amount of buffered data and the transmission rate in each of the specific time periods; wherein, the N is a positive integer greater than or equal to 2; the trigger sub-module is configured to be configured to: And when the transmission rate in each of the specific time periods is less than a specific transmission threshold, the access layer data plane entity sends a connection reestablishment instruction message to the RRC entity; wherein, the connection reestablishment instruction message is configured as Trigger the RRC connection re-establishment process.
  • the device further includes a cell selection module configured to, in response to the connection re-establishment instruction message, the RRC entity determines a target cell for camping through cell selection.
  • the cell selection module includes a cell selection submodule, a sixth determination submodule, and a camping submodule, wherein: the cell selection submodule is configured for the RRC entity to respond to the connection re-establishment instruction message , Initiate cell selection to obtain at least one candidate cell; wherein, the at least one candidate cell is an intra-frequency cell or an inter-frequency cell other than the current serving cell; the sixth determining submodule is configured to be configured by the RRC entity according to The frequency of each candidate cell in the at least one candidate cell is determined to determine the priority corresponding to each candidate cell; At least one candidate cell selects a target cell to camp on.
  • the sixth determining submodule includes a first determining unit and a second determining unit, wherein: the first determining unit is configured to compare the at least one candidate cell with the current service by the RRC entity Candidate cells with cells in different frequencies are determined as the first set of cells; the second determining unit is configured to determine, among the at least one candidate cell, the candidate cell with the same frequency as the current serving cell as the first cell set by the RRC entity 2. A cell set; wherein the priority of the candidate cell in the first cell set is higher than the priority of the candidate cell in the second cell set.
  • the apparatus 800 further includes a re-establishment module configured to re-establish the RRC connection with the target cell by the RRC entity, so as to realize the transmission of the uplink data in the target cell.
  • a re-establishment module configured to re-establish the RRC connection with the target cell by the RRC entity, so as to realize the transmission of the uplink data in the target cell.
  • FIG. 9 is a schematic diagram of a hardware entity of a terminal provided by an embodiment of the application.
  • the hardware entity of the terminal 900 includes: a processor 901, a receiver 902, a transmitter 903, a memory 904, and a bus 905.
  • FIG. 9 is only an exemplary architecture diagram.
  • the network architecture may also include other functional units, which are not limited in the embodiment of the present application.
  • the processor 901 includes one or more processing cores, and the processor 801 executes various functional applications and information processing by running software programs and modules.
  • the receiver 902 and the transmitter 903 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 904 is connected to the processor 901 through the bus 905.
  • the memory 904 may be configured to store a computer program, and the processor 901 is configured to execute the computer program to implement each step of the wireless connection reconstruction method executed by the terminal in the foregoing method embodiment.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, EEPROM (Electrically Erasable Programmable Read -Only Memory, Electrically Erasable Programmable Read Only Memory, EPROM (Erasable Programmable Read Only Memory, Erasable Programmable Read Only Memory), SRAM (Static Random Access Memory), ROM (Read Only Memory, magnetic memory, flash memory, PROM (Programmable Read Only Memory).
  • the terminal includes a processor 901 and a memory 904, and the processor is configured to call a computer program stored in the memory 904 to execute the wireless connection reconstruction method in the method embodiment, including: In response to the uplink data, send a scheduling request to the network device; determine the transmission rate of the uplink data to be sent on the scheduled uplink resource; if the transmission rate meets the trigger condition, trigger the RRC connection re-establishment process.
  • the memory 904 is further configured as an access layer data plane entity to buffer uplink data sent by a non-access layer data plane entity; the transmitter 903 is also configured as the access layer data plane entity Send a scheduling request to the network device; wherein, the scheduling request is configured to request the network device for uplink resources configured to carry the uplink data; correspondingly, the processor 901 is also configured as the access layer data plane
  • the entity determines the transmission rate at which the uplink data is sent on the scheduled uplink resource; when the transmission rate meets the trigger condition, the access layer data plane entity triggers the RRC connection re-establishment process.
  • the processor 901 is further configured for the access stratum data plane entity to determine the number of data packets sent on the uplink resource in a specific time period; wherein, the specific time period is from the When the access layer data plane entity receives the uplink data; the access layer data plane entity determines the transmission rate according to the number of data packets and the specific time period.
  • the processor 901 is further configured to determine the uplink resource scheduled in a specific time period according to the resource indication returned by the network device by the access layer data plane entity; wherein, the specific time The segment starts when the access layer data plane entity receives the uplink data; it is configured that the access layer data plane entity determines the transmission rate according to the uplink resources scheduled in the specific time period.
  • the processor 901 is further configured for the access layer data plane entity to determine the amount of buffered data in N consecutive specific time periods and the transmission rate in each of the specific time periods; wherein, the N is a positive integer greater than or equal to 2; it is configured that when the amount of cached data is greater than a specific cache threshold, and the transmission rate in each of the specific time periods is less than a specific transmission threshold, the access The layer data plane entity sends a connection re-establishment instruction message to the RRC entity; wherein the connection re-establishment instruction message is configured to trigger the RRC connection re-establishment process.
  • the processor 901 is further configured to determine a target cell for camping on the RRC entity through cell selection in response to the connection re-establishment instruction message.
  • the processor 901 is further configured to enable the RRC entity to initiate cell selection in response to the connection re-establishment instruction message to obtain at least one candidate cell; wherein, the at least one candidate cell is not a current service Same-frequency cell or inter-frequency cell outside the cell; configured so that the RRC entity determines the priority corresponding to each candidate cell in the at least one candidate cell according to the frequency of each candidate cell; The RRC entity selects a target cell to camp on from the at least one candidate cell according to the priority.
  • the processor 901 is further configured to determine, by the RRC entity, a candidate cell that is at a different frequency from the current serving cell among the at least one candidate cell as the first cell set; and configure it as the RRC The entity determines the candidate cell of the at least one candidate cell that is at the same frequency as the current serving cell as the second cell set; wherein the priority of the candidate cell in the first cell set is higher than that of the second cell set The priority of the candidate cell.
  • the processor 901 is further configured to re-establish the RRC connection with the target cell by the RRC entity, so as to realize the transmission of the uplink data in the target cell.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the wireless connection reconstruction method provided in the foregoing embodiments are implemented.
  • a chip is also provided.
  • the chip includes a programmable logic circuit and/or program instructions. When the chip is running, it is used to implement the wireless connection reconstruction method provided in the above embodiment.
  • a computer program product is also provided. When the computer program product is executed by the processor of the terminal, it is used to implement the wireless connection re-establishment method provided in the foregoing embodiment.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units; they can be located in one place or distributed on multiple network units; they can be selected according to actual needs. Some or all of the units are used to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the embodiments of the present application can be all integrated into one processing unit, or each unit can be individually used as a unit, or two or more units can be integrated into one unit;
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the aforementioned integrated unit of the present application is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions to enable The equipment automatic test line executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: removable storage devices, ROMs, magnetic disks, or optical disks and other media that can store program codes.
  • the RRC connection re-establishment process is triggered, and good uplink user data transmission services are obtained by re-establishing the RRC connection on the new serving cell, thereby improving user experience. Since the terminal with low-rate uplink transmission accesses the new serving cell through the RRC re-establishment process, the congestion condition of the current serving cell can be partially improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线连接重建方法,包括:响应上行数据,向网络设备发送调度请求;确定在被调度的上行资源上发送所述上行数据的传输速率;在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。本申请实施例还同时提供了一种无线连接重建装置、终端及存储介质。

Description

无线连接重建方法及装置、终端、存储介质
相关申请的交叉引用
本申请基于申请号为202010398575.9、申请日为2020年05月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本申请涉及无线通信的连接领域,涉及不限定于无线连接重建方法及装置、终端、存储介质。
背景技术
无线通信系统中,终端上行用户数据的传输基于网络设备的无线资源调度,也就是说,终端设备在发送上行数据前,需要获取网络设备发送的调度信息,例如时频资源分配、以及调制编码方式等,另外,网络设备也需要通知终端设备与上行传输相关的功控命令信息。
发明内容
本申请实施例提供一种无线连接重建方法及装置、终端、存储介质。
本申请实施例的技术方案是这样实现的:
第一方面,本申请实施例提供一种无线连接重建方法,包括:
响应上行数据,向网络设备发送调度请求;
确定在被调度的上行资源上发送上行数据的传输速率;
在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
第二方面,本申请实施例提供一种无线连接重建装置,包括:
发送模块,配置为响应上行数据,向网络设备发送调度请求;
确定模块,配置为确定在被调度的上行资源上发送上行数据的传输速率;
触发模块,配置为在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
第三方面,本申请实施例提供一种终端,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述无线连接重建方法中的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述无线连接重建方法中的步骤。
本申请实施例提供的技术方案带来的有益效果至少包括:
在本申请实施例中,首先,响应上行数据,向网络设备发送调度请求;然后,确定在被调度的上行资源上发送上行数据的传输速率;最后,在所述传输速率满足触发条件 的情况下,触发RRC(Radio Resource Control,无线资源控制)连接重建过程;如此,当终端长时间保持较低的上行数据传输速率时,会触发RRC连接重建来选择新的服务小区,如此获得良好的上行数据传输服务,提升了用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为相关技术中用户数据传输过程的流程示意图;
图3为本申请实施例提供的一种无线连接重建方法的流程示意图;
图4为本申请实施例提供的一种无线连接重建方法的交互流程图;
图5为本申请实施例提供的基于上行传输速率触发RRC重建过程的逻辑流程图;
图6为本申请实施例提供的用户数据传输过程的流程示意图;
图7为本申请实施例提供的RRC连接重建过程和RRC重配置过程示意图;
图8为本申请实施例提供的一种无线连接重建装置的结构示意图;
图9为本申请实施例提供的一种终端的硬件实体示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。以下实施例用于说明本申请,但不用来限制本申请的范围。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在对本申请实施例提供的无线连接重建方法进行详细介绍之前,先对本申请实施例涉及的通信系统和名词进行简单介绍。
请参阅图1,图1为本申请实施例提供的一种通信系统的架构示意图,示例性地示出了一个网络设备110和一个终端120。在一些实施例中,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
该通信系统中的网络设备110,可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端120进行通信。在一些实施例中,该网络设备110可以是LTE(Long Term Evolution,长期演进)系统中的eNB或eNodeB(Evolutional Node B,演进型网络设备),或者是CRAN(Cloud Radio Access Network,云无线接入网络)中的无线控制器,或者该网络设备110可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备或者未来通信系统中的网络设备等。
该通信系统还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于以下至少之一:经由有线线路连接,如经由PSTN(Public Switched Telephone Networks,公共交换电话网络)、DSL(Digital Subscriber Line,数字用户线路)、数字电缆、直接电缆连接;另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、WLAN(Wireless Local Area Network,无线局域网)、诸如DVB-H(Digital Video Broadcasting Handheld,数字视频广播-手持)网络的数字电视网络、卫星网络、AM-FM(Amplitude Modulation-Frequency Modulation,调频-调幅)广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;IoT(Internet of Things,物联网)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的PCS(Personal Communications System,个人通信系统)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、网页浏览器、记事簿、日历以及/或GPS(Global Positioning System,全球定位系统)接收器的PDA(Personal Digital Assistant,个人数字助理);以及常规膝上型接收器、掌上型接收器、包括无线电电话收发器的其它电子装置中的至少之一。终端可以指接入终端、UE(User Equipment,用户设备)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN(Public Land Mobile Network,公共陆地移动网)中的终端等。为方便描述,上面提到的设备统称为终端。
接下来,为了便于理解本申请实施例的方案,对相关技术中的用户数据传输过程进行分析说明:请参阅图2,图2为相关技术中用户数据传输过程的流程示意图,如图2所示,现有的终端协议栈设计实现方案包括以下步骤:
S201,终端的NAS DP(Non-Access Stratum Data Plane,非接入层数据面)发送上行用户数据到AS DP(Access Stratum Data Plane,接入层数据面);
S202,AS DP发送调度请求到网络设备;
S203,网络设备调度上行传输无线资源给AS DP;
S204,AS DP发送上行用户数据到网络设备;
S205,网络设备发送上行用户数据接收状态报告给AS DP。
其中,S205为可选步骤,步骤S202至S205循环执行,表示数据持续调度传输,说明非接入层数据面传输的上行用户数据较多,需要通过多次发送调度请求,以实现多次传输。
由图2可以看出,终端的上行用户数据从NAS DP发送到AS DP,首先,AS DP缓存上行用户数据;接着,AS DP将发送调度请求到网络设备,网络设备会根据当前可用 的无线资源,来综合调度用于该终端的上行传输无线资源;然后,网络设备发送上行传输无线资源给终端;AS DP接收到上行传输无线资源后,将上行用户数据发送到网络设备,在发送的数据包头中,AS DP可以指示网络设备需要发送上行数据接收状态报告;网络设备将会根据接收到的数据包头中的指示,发送上行用户数据接收状态报告给终端。
由以上可以看出,终端上行用户数据的传输基于网络设备的无线资源调度,如果由于诸如网络拥塞等原因,网络设备长时间持续调度很少的无线资源给终端,终端只能发送很少的上行用户数据,这将导致终端长时间保持很低的上行传输数据速率,对用户体验造成较大的影响。
本申请实施例提供一种无线连接重建方法,应用于终端,该方法所实现的功能可以通过终端中的处理器调用程序代码来实现,当然程序代码可以保存在计算机存储介质中,可见,该终端至少包括处理器和存储介质。图3为本申请实施例提供的一种无线连接重建方法的流程示意图,如图3所示,所述方法至少包括以下步骤:
步骤S310,响应上行数据,向网络设备发送调度请求。
这里,所述调度请求用于向所述网络设备请求用于承载所述上行数据的上行资源。
需要说明的是,当终端需要在上行共享信道发送数据时,终端需要向网络设备发送调度请求,进行上行资源的申请。例如:当有上行数据到达时,在MAC(Medium Access Control,媒体接入控制)层触发一个调度请求,该请求中包含终端的标识C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)。这个调度请求一直处于挂起状态,直到系统取消该调度请求。系统在以下两种情况下取消调度请求:在MAC层组合的MAC PDU(Protocol Data Unit,协议数据单元)中包含终端缓存中所有待发送的上行数据;或终端收到的上行授权中指示的资源能容纳所有待测数据。调度请求发送的周期以及在子帧中的位置由协议栈上层的配置决定。
步骤S320,确定在被调度的上行资源上发送所述上行数据的传输速率。
这里,所述被调度的上行资源为网络设备授权给终端的上行传输资源。
这里,所述发送上行数据包含信令数据的传输及用户数据的传输,由终端传向网络设备。
需要说明的是,为避免资源浪费,终端需要告诉网络设备终端本身是否有上行数据需要传输,以便网络设备决定是否给终端分配上行资源。在有上行数据到来时,终端通过给网络设备发送调度请求,向网络设备申请上行资源进行上行数据的传输。
这里,所述传输速率指上行数据传输速率,为终端给网络设备发送信息时的数据传输速率,比如手机、笔记本等无线终端给基站发送用户数据时的传输数据速率。可以表示为每上行传输单元中的数据和/或信息位数。例如,传输速率可以表示为每传输符号的数据和/或信息位数,也可以表示为每上行段的数据/信息位数,还可以表示为每上行段的数据/信息帧数。在数值上等于每秒钟传输构成数据代码的比特数,单位为兆比特每秒(Mbps)。
步骤S330,在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
这里,所述触发条件表征上行数据传输速率过低,不能获得良好的上行数据服务。在一些实施例中,触发条件可以为在设定时间内的传输速率低于特定传输阈值,还可以为在连续若干设定时间内的传输速率一直低于特定传输阈值,又可以为在设定时间内缓存的上行数据高于特定缓存阈值等;其中,设定时间为预先设置的自上行数据到达接入层数据面后的特定时间段,一般通过历史上行数据传输过程的传输速率变化情况设定,如上行用户数据从非接入层数据面发送到接入层数据面的3秒内。
这里,所述RRC连接重建过程,用于恢复网络和UE之间的信令连接,即SRB1(Signal Radio Bearer,信令无线承载)。
需要说明的是,RRC连接状态时,触发RRC重建立过程的触发原因可以是无线链路失败、小区切换失败;当然触发原因还可以是下述原因之一:完整性检查失败、RRC连接重配失败、主小区组同步失败的重配。
值得注意的是,在RRC连接重建过程中,终端正在进行的传输需要被暂停,会影响用户体验。本申请实施例中终端和网络设备之间的通信发生问题时,即在确定上行数据传输速率过低的情况下,终端需要发起RRC连接重建过程,以选择新的服务小区,获取更好的上行传输服务。
在本申请实施例中,首先,确定在被调度的上行资源上发送上行数据的传输速率;在所述传输速率满足触发条件的情况下,触发RRC连接重建过程;如此,当终端长时间保持较低的上行数据传输速率时,会触发RRC连接重建来选择新的服务小区,如此获得良好的上行数据传输服务,提升了用户体验。
图4为本申请实施例提供的一种无线连接重建方法的交互流程图,如图4所述,所述方法至少包括以下步骤:
步骤S410,接入层数据面实体缓存非接入层数据面实体发送的上行数据。
这里,所述上行数据为上行用户数据,终端的上行用户数据从非接入层数据面实体发送到接入层数据面实体,接入层数据面实体首先缓存上行用户数据。
步骤S420,所述接入层数据面实体向网络设备发送调度请求。
这里,所述调度请求用于向所述网络设备请求用于承载所述上行数据的上行资源。
步骤S430,所述网络设备向所述接入层数据面实体发送调度的上行资源。
这里,网络设备会根据当前可用的无线资源来综合调度用于该终端的上行资源即上行传输无线资源,然后网络侧发送上行传输无线资源给终端的接入层数据面实体。
步骤S440,所述接入层数据面实体确定在被调度的上行资源上发送所述上行数据的传输速率。
这里,所述上行数据的传输速率可以表示为每上行传输单元中的数据和/或信息位数。例如,传输速率可以表示为每传输符号的数据和/或信息位数,也可以表示为每上行段的数据/信息位数,还可以表示为每上行段的数据/信息帧数。在数值上等于每秒钟传输构成数据代码的比特数,例如ADSL(Asymmetric Digital Subscriber Loop,对称数字 用户环路技术)的上行速率640Kbps到1Mbps。
需要说明的是,在用户面传输用户数据时可认为有两层:层1(L1)物理层、层2(L2)数据链路层,L2又包括PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)、RLC(Radio Link Control,无线链路控制层协议)、MAC三个子层。
在一些实施例中,所述上行数据的传输速率的计算可以通过以下方式实现:
方式一:所述接入层数据面实体确定在特定时间段内所述上行资源上发送的数据包数量;所述接入层数据面实体根据所述数据包数量和所述特定时间段,确定所述传输速率;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的。
这里,所述上行资源上发送的传输数据量为所述上行资源上初次传输的数据包数量,例如终端利用所述上行资源向网络设备发送编号分别为0、1、2、3和4的PDU包,网络返回ACK消息确认或者向终端发送上行用户数据状态报告,指示成功收到5个PDU包,则该过程中上行资源上发送的传输数据量为5个PDU包。
需要说明的是,从所述接入层数据面实体收到所述上行数据开始,启动预设定时器,所述特定时间段可以是预设定时器的运行时长。在预设定时器超时后,可以通过计算单位时间内每一层(PDCP\RLC\MAC)的传输数据包,得到所述传输速率。
方式二:所述接入层数据面实体根据所述网络设备返回的资源指示,确定在特定时间段内调度的上行资源;所述接入层数据面实体根据所述特定时间段内调度的上行资源,确定所述传输速率。
这里,从所述接入层数据面实体收到所述上行数据开始启动预设定时器,所述特定时间段可以是预设定时器的运行时长。
在实施过程中,在预设定时器超时后,可以根据在所述运行时长内网络下发的网络资源指示,确定接收的物理层资源,例如时域上两个符号,频域上若干个连续资源块,从而确认该特定时间段内这些时频资源携带的数据总量,进一步计算单位时间传输的用户数据。
步骤S450,所述接入层数据面实体确定连续N个特定时间段内的缓存数据量和每一所述特定时间段内的传输速率。
这里,所述N为大于或等于2的正整数;连续N个特定时间段为预先设置的自上行数据到达接入层数据面后的一段持续时间段,一般通过历史上行数据传输过程的传输速率变化情况设定。
步骤S460,在所述缓存数据量大于特定缓存阈值,且所述每一所述特定时间段内的传输速率均小于特定传输阈值的情况下,所述接入层数据面实体向RRC实体发送连接重建指示消息。
这里,在连续N个特定时间段内传输速率一直低于设定值,并且接入层数据面实体缓存的数据量大于设定量的情况下,接入层数据面实体向RRC实体发送连接重建指示消息,其中,所述连接重建指示消息用于触发RRC连接重建过程。
步骤S470,所述RRC实体响应于所述连接重建指示消息,通过小区选择,确定目 标小区以进行驻留。
这里,当需要进行重建所述RRC连接的情况下,终端RRC在搜索的至少一个第一待候选小区中选择目标小区进行驻留,该目标小区为与当前服务小区属于不同网络设备覆盖下的新服务小区,即信号较好的异频小区,或者为与当前服务小区属于不同网络设备覆盖下的新服务小区,即信号较好的同频小区。
在一些实施例中,确定目标小区的过程可以以下步骤实现:所述RRC实体响应于所述连接重建指示消息,发起小区选择,得到至少一个候选小区;所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级;所述RRC实体根据所述优先级,从所述至少一个候选小区中选择目标小区进行驻留。
这里,所述至少一个候选小区为除当前服务小区之外的同频小区或异频小区;当所述至少一个候选小区中某个小区的信道质量满足S准则时,就可以被选择为待驻留的目标小区,终端设备能够在目标小区驻留后进行重建。
值得注意的是,在能够搜索到信号较好的异频小区的情况下,终端将会优先驻留在该异频小区;在没有合适的异频小区但存在信号较好的同频小区的情况下,终端将会选择驻留在该同频小区;在既没有合适的异频小区也没有合适的同频小区的情况下,终端将会继续驻留在当前服务小区。也就是说,终端在选择目标小区进行驻留时,优先选择异频小区,再选择同频小区,保证服务质量,进而确保上行用户数据传输效果。
需要说明的是,小区选择是指终端尚未驻留到一个小区,需要选择一个合适小区进行驻留的过程,例如终端在开机或重新进入网络覆盖区域后,发现PLMN所允许的所有频点并选择合适的小区进行驻留。本申请实施例提出了上行传输数据速率持续较低的情况下,由接入层数据面实体向非接入层数据面实体发送指示消息,触发小区选择的过程,可以尽快与数据传输服务较好的小区建立连接,提升用户体验。
步骤S480,所述RRC实体重建与所述目标小区的RRC连接,以实现在所述目标小区进行所述上行数据的传输。
这里,当终端驻留在新的服务小区即目标小区时,终端RRC执行RRC连接重建过程,与目标小区重建RRC信令,进而完成RRC连接重配置过程之后可以在目标小区进行上行用户数据传输。
需要说明的是,只有当终端驻留在目标小区,才会发送RRC连接重建请求消息到目标小区,目标小区对应的目标网络设备回复RRC连接重建消息给终端RRC,终端RRC执行RRC连接重建过程,然后发送RRC连接重建完成消息到目标网络设备。当目标网络设备收到RRC连接重建完成消息之后,会发送RRC连接重配置消息给终端RRC,终端RRC执行RRC连接重配置过程,然后发送RRC连接重配置完成消息到目标网络设备。最终,终端在目标小区上重建了RRC连接,可以在目标小区进行上行用户数据传输。
在本申请实施例中,首先,接入层数据面实体缓存非接入层发送的上行数据,并发 送调度请求给网络设备,网络设备调度上行资源给接入层数据面实体,然后接入层数据面实体确定在被调度的上行资源上发送上行数据的传输速率,最后判定传输速率满足触发条件的情况下,接入层数据面实体向非接入层数据面实体发送连接重建指示消息,触发RRC连接重建,从而选择新的服务小区并建立RRC连接信令,获取目标小区的传输服务。
下面结合一个示例对上述连接重建方法进行说明,然而值得注意的是,该示例仅是为了更好地说明本申请,并不构成对本申请的不当限定。
本申请实施例中终端通过RRC重建过程来获得新的服务小区的良好的上行用户数据传输服务,请参阅图5,至少包括以下步骤:
步骤S501,终端确定上行传输速率过低。
步骤S502,终端触发RRC连接重建。
这里,当RRC收到上行用户数据传输速率过低指示后,终端将会触发RRC连接重建。
步骤S503,终端进行小区选择。
这里,RRC发起小区选择,当前服务小区将被排除在小区搜索列表中。应注意,如果能够搜索到信号较好的异频小区,终端将会优先驻留在该异频小区,如果没有合适的异频小区但存在信号较好的同频小区,终端将会选择驻留在该同频小区。
步骤S504,判断终端是否能驻留在新的服务小区。
这里,当小区搜索列表中某个小区的信道质量满足S准则时,就可以被选择为待驻留的目标小区,终端设备能够在目标小区驻留后进行重建。
如果终端不能驻留到新的服务小区,则执行步骤S505;如果终端能够驻留到新的服务小区,则执行步骤S506。
步骤S505,终端继续驻留到当前服务小区。
这里,如果既没有合适的异频小区也没有合适的同频小区,终端将会继续驻留在当前服务小区。
步骤S506,终端执行RRC连接重建过程和RRC连接重配置过程。
在一些实施例中,上述步骤S501中确定上行传输速率的过程,请参阅图6,终端的上行用户数据从NAS DP发送到AS DP,AS DP首先缓存上行用户数据,AS DP将会启动T秒定时器,接着AS DP将发送调度请求到网络设备,网络设备会根据当前可用的无线资源来综合调度用于该终端的上行传输无线资源,然后网络设备发送上行传输无线资源给AS DP,AS DP接收到上行传输无线资源后,AS DP将上行用户数据发送到网络设备,在发送的数据包头中,AS DP可以指示网络设备需要发送上行数据接收状态报告,网络设备将会根据接收到的数据包头中的指示发送上行用户数据接收状态报告给终端。
如图6所示,本申请实施例提供的方案包括以下步骤:
步骤S601,终端的NAS DP发送上行用户数据到AS DP。
步骤S602,AS DP第一次启动T秒定时器。
步骤S603,AS DP发送调度请求到网络设备。
步骤S604,网络设备调度上行传输无线资源给AS DP。
步骤S605,AS DP发送上行用户数据到网络设备。
步骤S606,网络设备发送上行用户数据接收状态报告给AS DP,
上述步骤606为可选步骤,数据持续调度传输时上述步骤S603至S606循环执行,说明非接入层数据面传输的上行用户数据较多,需要通过多次发送调度请求,以实现多次传输。
步骤S607,T秒定时器超时后,AS DP计算并存储上行用户数据传输速率。
当T秒定时器超时之后,AS DP会计算T秒内的上行用户数据传输速率,并将该上行用户数据传输速率保存在上行传输速率数组中。
步骤S608,第N次启动T秒定时器
在T秒定时器第N-1次超时,并且上行数据持续调度传输的情况下,第N次启动T秒定时器;其中,在第N个T秒内循环执行上述步骤S603至S606;当T秒定时器第N次超时之后,继续执行步骤S607。
步骤S609,AS DP判定缓存数据总量大于缓存阈值M,且在N*T秒内上行用户数据传输速率一直小于速率阈值R。
在T秒定时器第N次超时之后,判断N*T秒内AS DP缓存的数据总量是否大于M,并且判定在N*T秒内上行用户数据传输速率是否一直小于R;其中,M和R均大于0,实际取值可以根据实际测试设定。
步骤S610,AS DP发送上行用户数据传输速率过低指示给RRC。
在一些实施例中,上述步骤S506中的RRC连接重建过程和RRC重配置过程,请参阅图7,RRC连接重建过程包括:
步骤S701,终端发送RRC连接重建请求消息到网络设备;
步骤S702,网络设备发送RRC连接重建消息给终端;
步骤S703,终端发送RRC连接重建完成消息到网络设备。
当网络设备收到RRC连接重建完成消息之后,进入到RRC连接重配置过程,如图7所示,包括以下步骤:
步骤S704,网络设备发送RRC连接重配置消息给终端,终端执行RRC连接重配置过程。
步骤S705,终端发送RRC连接重配置完成消息到网络设备。
最终,终端执行RRC连接重建过程和RRC连接重配置过程后,在新的服务小区上重建了RRC连接,可以在新的服务小区进行上行用户数据传输。
在本申请实施例中,当UE长时间保持较低上行传输速率时,触发RRC连接重建过程,通过在新的服务小区上重建RRC连接来获得良好的上行用户数据传输服务,改善用户体验;同时由于低速率上行传输的终端通过RRC重建过程接入到新的服务小区, 可以部分改善当前服务小区的拥塞状况。
基于前述的实施例,本申请实施例再提供一种无线连接重建装置,所述装置包括所包括的各模块、以及各模块所包括的各单元,可以通过终端中的处理器来实现;当然也可通过逻辑电路实现;在实施的过程中,处理器可以为CPU(Central Processing Unit,中央处理器)、MPU(Micro Processing Unit,微处理器)、DSP(Digital Signal Processor,数字信号处理器)或FPGA(Field Programmable Gate Array,现场可编程门阵列)等。
图8为本申请实施例提供的一种无线连接重建装置的结构示意图,如图8所示,所述装置800包括发送模块810、确定模块820和触发模块830,其中:发送模块810,配置为响应上行数据,向网络设备发送调度请求;所述确定模块820,配置为确定在被调度的上行资源上发送上行数据的传输速率;所述触发模块830,配置为在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
在一些实施例中,所述装置800还包括缓存模块,其中:所述缓存模块,配置为接入层数据面实体缓存非接入层数据面实体发送的上行数据;所述发送模块810配置为所述接入层数据面实体向网络设备发送调度请求;其中,所述调度请求配置为向所述网络设备请求配置为承载所述上行数据的上行资源;相应地,所述确定模块820还配置为所述接入层数据面实体确定在被调度的上行资源上发送所述上行数据的传输速率;所述触发模块830还配置为在所述传输速率满足触发条件的情况下,所述接入层数据面实体触发RRC连接重建过程。
在一些实施例中,所述确定模块820包括第一确定子模块和第二确定子模块,其中:所述第一确定子模块,配置为所述接入层数据面实体确定在特定时间段内所述上行资源上发送的数据包数量;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;所述第二确定子模块,配置为所述接入层数据面实体根据所述数据包数量和所述特定时间段,确定所述传输速率。
在一些实施例中,所述确定模块820包括第三确定子模块和第四确定子模块,其中:所述第三确定子模块,配置为所述接入层数据面实体根据所述网络设备返回的资源指示,确定在特定时间段内调度的上行资源;所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;所述第四确定子模块,配置为所述接入层数据面实体根据所述特定时间段内调度的上行资源,确定所述传输速率。
在一些实施例中,所述触发模块830包括第五确定子模块和触发子模块;其中:所述第五确定子模块,配置为所述接入层数据面实体确定连续N个特定时间段内的缓存数据量和每一所述特定时间段内的传输速率;其中,所述N为大于或等于2的正整数;所述触发子模块,配置为在所述缓存数据量大于特定缓存阈值,且所述每一所述特定时间段内的传输速率均小于特定传输阈值的情况下,所述接入层数据面实体向RRC实体发送连接重建指示消息;其中,所述连接重建指示消息配置为触发所述RRC连接重建过程。
在一些实施例中,所述装置还包括小区选择模块,配置为所述RRC实体响应于所 述连接重建指示消息,通过小区选择,确定目标小区以进行驻留。
在一些实施例中,所述小区选择模块包括小区选择子模块、第六确定子模块和驻留子模块,其中:所述小区选择子模块配置为所述RRC实体响应于所述连接重建指示消息,发起小区选择,得到至少一个候选小区;其中,所述至少一个候选小区为除当前服务小区之外的同频小区或异频小区;所述第六确定子模块,配置为所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级;所述驻留子模块,配置为所述RRC实体根据所述优先级,从所述至少一个候选小区中选择目标小区进行驻留。
在一些实施例中,所述第六确定子模块包括第一确定单元和第二确定单元,其中:所述第一确定单元,配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于不同频率的候选小区,确定为第一小区集合;所述第二确定单元,配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于相同频率的候选小区,确定为第二小区集合;其中,所述第一小区集合中候选小区的优先级高于所述第二小区集合中的候选小区的优先级。
在一些实施例中,所述装置800还包括重建模块,配置为所述RRC实体重建与所述目标小区的RRC连接,以实现在所述目标小区进行所述上行数据的传输。
这里需要指出的是:以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
对应地,基于同一技术构思,本申请实施例提供一种终端,用于实施上述方法实施例记载的无线连接重建方法。图9为本申请实施例提供的一种终端的硬件实体示意图,如图9所示,该终端900的硬件实体包括:处理器901、接收器902、发射器903、存储器904和总线905。需要说明的是,图9仅为示例性架构图,除图9中所示功能单元之外,该网络架构还可以包括其他功能单元,本申请实施例对此不进行限定。
处理器901包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器902和发射器903可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器904通过总线905与处理器901相连。
存储器904可配置为存储计算机程序,处理器901配置为执行该计算机程序,以实现上述方法实施例中的终端执行的无线连接重建方法的各个步骤。
此外,存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦除可编程只读存储器),EPROM(Erasable Programmable Read Only Memory,可擦除可编程只读存储器),SRAM(Static Random Access Memory,静态随时存取存储器),ROM(Read Only Memory,只读存 储器),磁存储器,快闪存储器,PROM(Programmable Read Only Memory,可编程只读存储器)。
在示例性实施例中,所述终端包括处理器901和存储器904,所述处理器配置为调用所述存储器904中存储的计算机程序,以执行所述方法实施例中无线连接重建方法,包括:响应上行数据,向网络设备发送调度请求;确定在被调度的上行资源上发送上行数据的传输速率;在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
在一些实施例中,所述存储器904,还配置为接入层数据面实体缓存非接入层数据面实体发送的上行数据;所述发射器903,还配置为所述接入层数据面实体向网络设备发送调度请求;其中,所述调度请求配置为向所述网络设备请求配置为承载所述上行数据的上行资源;对应地,所述处理器901还配置为所述接入层数据面实体确定在被调度的上行资源上发送所述上行数据的传输速率;在所述传输速率满足触发条件的情况下,所述接入层数据面实体触发RRC连接重建过程。
在一些实施例中,所述处理器901还配置为所述接入层数据面实体确定在特定时间段内所述上行资源上发送的数据包数量;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;所述接入层数据面实体根据所述数据包数量和所述特定时间段,确定所述传输速率。
在一些实施例中,所述处理器901,还配置为所述接入层数据面实体根据所述网络设备返回的资源指示,确定在特定时间段内调度的上行资源;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;配置为所述接入层数据面实体根据所述特定时间段内调度的上行资源,确定所述传输速率。
在一些实施例中,所述处理器901,还配置为接入层数据面实体确定连续N个特定时间段内的缓存数据量和每一所述特定时间段内的传输速率;其中,所述N为大于或等于2的正整数;配置为在所述缓存数据量大于特定缓存阈值,且所述每一所述特定时间段内的传输速率均小于特定传输阈值的情况下,所述接入层数据面实体向RRC实体发送连接重建指示消息;其中,所述连接重建指示消息配置为触发所述RRC连接重建过程。
在一些实施例中,所述处理器901还配置为所述RRC实体响应于所述连接重建指示消息,通过小区选择,确定目标小区以进行驻留。
在一些实施例中,所述处理器901,还配置为所述RRC实体响应于所述连接重建指示消息,发起小区选择,得到至少一个候选小区;其中,所述至少一个候选小区为除当前服务小区之外的同频小区或异频小区;配置为所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级;配置为所述RRC实体根据所述优先级,从所述至少一个候选小区中选择目标小区进行驻留。
在一些实施例中,所述处理器901,还配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于不同频率的候选小区,确定为第一小区集合;配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于相同频率的候选小区,确定为第二 小区集合;其中,所述第一小区集合中候选小区的优先级高于所述第二小区集合中的候选小区的优先级。
在一些实施例中,所述处理器901,还配置为所述RRC实体重建与所述目标小区的RRC连接,以实现在所述目标小区进行所述上行数据的传输。
对应地,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中提供的无线连接重建方法中的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质和设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
对应地,本申请实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述实施例中提供的无线连接重建方法。对应地,本申请实施例中,还提供了一种计算机程序产品,当该计算机程序产品被终端的处理器执行时,其用于实现上述实施例中提供的无线连接重建方法。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是或者不是物理上分开的,作为单元显示的部件可以是或者不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本申请实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述 集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得设备自动测试线执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例中,当终端长时间保持较低上行传输速率时,触发RRC连接重建过程,通过在新的服务小区上重建RRC连接来获得良好的上行用户数据传输服务,改善用户体验。由于低速率上行传输的终端通过RRC重建过程接入到新的服务小区,可以部分改善当前服务小区的拥塞状况。

Claims (20)

  1. 一种无线连接重建方法,所述方法包括:
    响应上行数据,向网络设备发送调度请求;
    确定在被调度的上行资源上发送所述上行数据的传输速率;
    在所述传输速率满足触发条件的情况下,触发无线资源控制RRC连接重建过程。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    接入层数据面实体缓存非接入层数据面实体发送的上行数据;
    所述接入层数据面实体向网络设备发送调度请求;
    所述接入层数据面实体确定在被调度的上行资源上发送所述上行数据的传输速率;
    在所述传输速率满足触发条件的情况下,所述接入层数据面实体触发RRC连接重建过程。
  3. 如权利要求2所述的方法,其中,所述接入层数据面实体确定在被调度的上行资源上发送上行数据的传输速率,包括:
    所述接入层数据面实体确定在特定时间段内所述上行资源上发送的数据包数量;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;
    所述接入层数据面实体根据所述数据包数量和所述特定时间段,确定所述传输速率。
  4. 如权利要求2所述的方法,其中,所述接入层数据面实体确定在被调度的上行资源上发送上行数据的传输速率,包括:
    所述接入层数据面实体根据所述网络设备返回的资源指示,确定在特定时间段内调度的上行资源;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;
    所述接入层数据面实体根据所述特定时间段内调度的上行资源,确定所述传输速率。
  5. 如权利要求2至4任一项所述的方法,其中,所述接入层数据面实体在所述传输速率满足触发条件的情况下,触发RRC连接重建过程,包括:
    所述接入层数据面实体确定连续N个特定时间段内的缓存数据量和每一所述特定时间段内的传输速率;其中,所述N为大于或等于2的正整数;
    在所述缓存数据量大于特定缓存阈值,且所述每一所述特定时间段内的传输速率均小于特定传输阈值的情况下,所述接入层数据面实体向RRC实体发送连接重建指示消息;其中,所述连接重建指示消息用于触发所述RRC连接重建过程。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    所述RRC实体响应于所述连接重建指示消息,通过小区选择,确定目标小区以进行驻留。
  7. 如权利要求6所述的方法,其中,所述RRC实体响应于所述连接重建指示消息,通过小区选择,确定目标小区以进行驻留,包括:
    所述RRC实体响应于所述连接重建指示消息,发起小区选择,得到至少一个候选小区;其中,所述至少一个候选小区为除当前服务小区之外的同频小区或异频小区;
    所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级;
    所述RRC实体根据所述优先级,从所述至少一个候选小区中选择目标小区进行驻留。
  8. 如权利要求7所述的方法,其中,所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级,包括:
    所述RRC实体将所述至少一个候选小区中与当前服务小区处于不同频率的候选小区,确定为第一小区集合;
    所述RRC实体将所述至少一个候选小区中与当前服务小区处于相同频率的候选小区,确定为第二小区集合;其中,所述第一小区集合中候选小区的优先级高于所述第二小区集合中的候选小区的优先级。
  9. 如权利要求6所述的方法,其中,所述方法还包括:
    所述RRC实体重建与所述目标小区的RRC连接,以实现在所述目标小区进行所述上行数据的传输。
  10. 一种无线连接重建装置,所述装置包括发送模块、确定模块和触发模块,其中:
    所述发送模块,配置为响应上行数据,向网络设备发送调度请求;
    所述确定模块,配置为确定在被调度的上行资源上发送所述上行数据的传输速率;
    所述触发模块,配置为在所述传输速率满足触发条件的情况下,触发RRC连接重建过程。
  11. 如权利要求10所述的装置,其中,所述装置还包括:
    缓存模块,配置为接入层数据面实体缓存非接入层数据面实体发送的上行数据;
    所述发送模块还配置为所述接入层数据面实体向网络设备发送调度请求;其中,所述调度请求配置为向所述网络设备请求配置为承载所述上行数据的上行资源;
    所述确定模块还配置为所述接入层数据面实体确定在被调度的上行资源上发送所述上行数据的传输速率;
    所述触发模块还配置为在所述传输速率满足触发条件的情况下,所述接入层数据面实体触发RRC连接重建过程。
  12. 如权利要求11所述的装置,其中,所述确定模块包括:
    第一确定子模块,配置为所述接入层数据面实体确定在特定时间段内所述上行资源上发送的数据包数量;其中,所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;第二确定子模块,配置为所述接入层数据面实体根据所述数据包数量和所述特定时间段,确定所述传输速率。
  13. 如权利要求11所述的装置,其中,所述确定模块包括:
    第三确定子模块,配置为所述接入层数据面实体根据所述网络设备返回的资源指示,确定在特定时间段内调度的上行资源;所述特定时间段是从所述接入层数据面实体收到所述上行数据开始的;第四确定子模块,配置为所述接入层数据面实体根据所述特定时间段内调度的上行资源,确定所述传输速率。
  14. 如权利要求11至13任一项所述的装置,其中,所述触发模块包括:
    第五确定子模块,配置为所述接入层数据面实体确定连续N个特定时间段内的缓存数据量和每一所述特定时间段内的传输速率;其中,所述N为大于或等于2的正整数;
    触发子模块,配置为在所述缓存数据量大于特定缓存阈值,且所述每一所述特定时间段内的传输速率均小于特定传输阈值的情况下,所述接入层数据面实体向RRC实体发送连接重建指示消息;其中,所述连接重建指示消息用于触发所述RRC连接重建过程。
  15. 如权利要求14所述的装置,其中,所述装置还包括:
    小区选择模块,配置为所述RRC实体响应于所述连接重建指示消息,通过小区选择,确定目标小区以进行驻留。
  16. 如权利要求15所述的装置,其中,所述小区选择模块包括:
    小区选择子模块,配置为所述RRC实体响应于所述连接重建指示消息,发起小区选择,得到至少一个候选小区;其中,所述至少一个候选小区为除当前服务小区之外的同频小区或异频小区;第六确定子模块,配置为所述RRC实体根据所述至少一个候选小区中每一候选小区所处的频率,确定所述每一候选小区对应的优先级;驻留子模块,配置为所述RRC实体根据所述优先级,从所述至少一个候选小区中选择目标小区进行驻留。
  17. 如权利要求16所述的装置,其中,所述第六确定子模块包括:
    第一确定单元,配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于不同频率的候选小区,确定为第一小区集合;
    第二确定单元,配置为所述RRC实体将所述至少一个候选小区中与当前服务小区处于相同频率的候选小区,确定为第二小区集合;其中,所述第一小区集合中候选小区的优先级高于所述第二小区集合中的候选小区的优先级。
  18. 如权利要求15所述的装置,其中,所述装置还包括:
    重建模块,配置为所述RRC实体重建与所述目标小区的RRC连接,以实现在所述目标小区进行所述上行数据的传输。
  19. 一种终端,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现权利要求1至9任一项所述方法中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现权利要求1至9任一项所述方法中的步骤。
PCT/CN2021/083675 2020-05-12 2021-03-29 无线连接重建方法及装置、终端、存储介质 WO2021227683A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21804197.8A EP4142360A4 (en) 2020-05-12 2021-03-29 RADIO CONNECTION RECONSTRUCTION METHOD AND DEVICE, TERMINAL AND STORAGE MEDIUM
US17/972,328 US20230037776A1 (en) 2020-05-12 2022-10-24 Wireless connection reestablishment method and apparatus, terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010398575.9A CN111641975B (zh) 2020-05-12 2020-05-12 无线连接重建方法及装置、终端、存储介质
CN202010398575.9 2020-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/972,328 Continuation US20230037776A1 (en) 2020-05-12 2022-10-24 Wireless connection reestablishment method and apparatus, terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2021227683A1 true WO2021227683A1 (zh) 2021-11-18

Family

ID=72331040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083675 WO2021227683A1 (zh) 2020-05-12 2021-03-29 无线连接重建方法及装置、终端、存储介质

Country Status (4)

Country Link
US (1) US20230037776A1 (zh)
EP (1) EP4142360A4 (zh)
CN (1) CN111641975B (zh)
WO (1) WO2021227683A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641975B (zh) * 2020-05-12 2023-07-21 Oppo广东移动通信有限公司 无线连接重建方法及装置、终端、存储介质
CN115211220A (zh) * 2021-02-10 2022-10-18 华为技术有限公司 一种无线链路的重建方法和装置
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754671A (zh) * 2013-12-31 2015-07-01 中国移动通信集团设计院有限公司 一种异系统小区重选方法、装置和网络侧设备
CN105981441A (zh) * 2014-02-11 2016-09-28 瑞典爱立信有限公司 基于上行链路配置的小区变化
CN109041151A (zh) * 2018-10-22 2018-12-18 奇酷互联网络科技(深圳)有限公司 信号切换的方法、通信设备以及计算机存储介质
CN111641975A (zh) * 2020-05-12 2020-09-08 Oppo广东移动通信有限公司 无线连接重建方法及装置、终端、存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651910A (zh) * 2008-08-12 2010-02-17 中兴通讯股份有限公司 小区重选指示的发送方法
CN103476069B (zh) * 2012-06-08 2016-03-30 华为技术有限公司 小区重选方法、资源释放方法、用户设备和基站
US10039086B2 (en) * 2013-11-11 2018-07-31 Electronics And Telecommunications Research Institute Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations
WO2017107073A1 (zh) * 2015-12-22 2017-06-29 华为技术有限公司 数据传输处理方法、用户设备和基站
WO2017118012A1 (zh) * 2016-01-07 2017-07-13 中兴通讯股份有限公司 一种数据传输方法、装置及系统
CN110290530B (zh) * 2018-03-19 2021-04-13 维沃移动通信有限公司 无线通信的方法、源节点和目标节点
CN110351895B (zh) * 2018-04-04 2021-11-09 华为技术有限公司 通信方法和装置
CN109769281B (zh) * 2019-03-06 2021-06-15 Oppo广东移动通信有限公司 一种提升通信速率的方法、装置、存储介质及智能终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754671A (zh) * 2013-12-31 2015-07-01 中国移动通信集团设计院有限公司 一种异系统小区重选方法、装置和网络侧设备
CN105981441A (zh) * 2014-02-11 2016-09-28 瑞典爱立信有限公司 基于上行链路配置的小区变化
CN109041151A (zh) * 2018-10-22 2018-12-18 奇酷互联网络科技(深圳)有限公司 信号切换的方法、通信设备以及计算机存储介质
CN111641975A (zh) * 2020-05-12 2020-09-08 Oppo广东移动通信有限公司 无线连接重建方法及装置、终端、存储介质

Also Published As

Publication number Publication date
US20230037776A1 (en) 2023-02-09
EP4142360A4 (en) 2023-10-04
CN111641975B (zh) 2023-07-21
EP4142360A1 (en) 2023-03-01
CN111641975A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
US11943676B2 (en) Switching between network based and relay based operation for mission critical voice call
US11202241B2 (en) Beam failure recovery method and terminal
WO2021227683A1 (zh) 无线连接重建方法及装置、终端、存储介质
US11395355B2 (en) Telecommunications apparatus and methods
US20160323794A1 (en) Method and Apparatus for Performing Handover in a Wireless Communication System
CN113543266B (zh) 无线通信链路建立方法与装置、终端和中继设备
US11218929B2 (en) Information transmission method and apparatus and communication system
WO2020153214A1 (ja) セル再選択制御方法及びユーザ装置
TWI728263B (zh) 與長期演進網路及新無線網路通訊的裝置及方法
CN114868425A (zh) 一种数据传输方法及装置、网络设备、终端设备
US20220061075A1 (en) Information transmission method and apparatus, and network device
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
EP3979697A1 (en) Data transmission method and apparatus, and terminal
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
US20240015606A1 (en) Method and apparatus for handover
WO2021223159A1 (en) Method and apparatus for sidelink communication during fast mcg link recovery procedure
CN112956237B (zh) 业务处理方法、装置、芯片及计算机程序
TW202025842A (zh) 一種切換定時方法、終端設備及網路設備
WO2022262596A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023123407A1 (en) Method and apparatus of supporting multicast and broadcast services (mbs)
WO2023193242A1 (en) Methods and apparatuses for switching to a relay ue in an rrc idle or inactive state
CN115134747A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021804197

Country of ref document: EP

Effective date: 20221123

NENP Non-entry into the national phase

Ref country code: DE