WO2021227587A1 - 一种数据传输方法及设备 - Google Patents

一种数据传输方法及设备 Download PDF

Info

Publication number
WO2021227587A1
WO2021227587A1 PCT/CN2021/076742 CN2021076742W WO2021227587A1 WO 2021227587 A1 WO2021227587 A1 WO 2021227587A1 CN 2021076742 W CN2021076742 W CN 2021076742W WO 2021227587 A1 WO2021227587 A1 WO 2021227587A1
Authority
WO
WIPO (PCT)
Prior art keywords
target terminal
information
network device
control
scheduling
Prior art date
Application number
PCT/CN2021/076742
Other languages
English (en)
French (fr)
Inventor
缪德山
孙韶辉
康绍莉
韩波
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021227587A1 publication Critical patent/WO2021227587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a data transmission method and device.
  • the coverage area of one beam in the multi-layer beam may be included in the coverage area of other beams.
  • Different beams have different frequencies and are mobile. .
  • the coverage area of the satellite beam may be much smaller than the expected service area. Therefore, how to use the limited beam to cover activated users for data transmission is an important technical issue.
  • the beam management technology of the ground communication system focuses on the same frequency beam scanning and beam measurement, and it is assumed that the beam is fixed, while the beam of the satellite communication system is mobile and the frequency changes, so the beam management technology of the ground mobile communication cannot be directly applied to the satellite The beam management of the communication system.
  • the embodiments of the present application provide a data transmission method and device, which are used to implement beam control in a satellite communication system.
  • a data transmission method including:
  • the beam scheduling indication information includes at least one of a beam index, a frequency band, a cell identifier, a beam direction, and service time information of the beam corresponding to the beam;
  • the method before scheduling a beam for data transmission for the target terminal, the method further includes sending a system broadcast message or a radio resource control (RRC) indication message, where the message carries beam configuration information of at least one beam.
  • RRC radio resource control
  • scheduling beams for data transmission for the target terminal includes: acquiring position information of the terminal, and selecting a beam direction from the at least one beam to match the position of the target terminal and use it for data Transmission beam.
  • sending beam scheduling indication information to the target terminal includes: sending a medium access control unit (MAC CE) or downlink control information (DCI) to the target terminal, wherein at least the The index of the beam.
  • MAC CE medium access control unit
  • DCI downlink control information
  • the service time information of the beam includes at least one of the effective start time of the beam, the beam activation duration, and the beam activation time pattern information.
  • the beam activation time pattern information includes the activation period of the beam, At least two of the beam activation duration and duty cycle in the activation period.
  • the method further includes: determining the beam activation duration of the beam activation time pattern information according to at least one of the number of terminals that are in the same serving cell as the target terminal and need to perform data transmission and the service status .
  • the method further includes: controlling the satellite antenna array in the designated frequency band and direction based on the indication information of at least one of the antenna array index, the beam direction, the frequency band, and the beam activation time according to the beam scheduled for the target terminal. Send beams; or, according to the beams scheduled for the target terminal, send beam control instructions to the satellite processing unit.
  • the beam control instructions are used to control the satellite antenna array to generate corresponding beams.
  • the beam control instructions carry the following information At least one item: antenna array index, beam direction, frequency band, beam activation time; or, according to the beam scheduled for the target terminal, send a beam control instruction to the satellite beam control module, so that the satellite beam control module controls the beam
  • the control instruction is sent to the satellite processing unit, the beam control instruction is used to control the satellite antenna array to generate a corresponding beam, and the beam control instruction carries at least one of the following information: antenna array index, beam direction, frequency band, beam activation time .
  • scheduling beams for data transmission for the target terminal according to the service requirements of the target terminal includes: when a scheduling request sent by the target terminal is received, scheduling the target terminal for data transmission Transmission beam; or, when downlink data from the target terminal arrives, schedule a beam for data transmission for the target terminal.
  • the beam corresponds to a cell or a carrier or a partial bandwidth (BWP); the beam is designated as a downlink beam or an uplink beam, or includes a downlink beam and an uplink beam, and the downlink beam and the uplink beam are combined Form a community.
  • BWP partial bandwidth
  • a data transmission method including:
  • Receive beam scheduling indication information sent by a network device where the beam scheduling indication information is used to indicate the beam scheduled for the target terminal, and the beam scheduling indication information includes the beam index, frequency band, cell identifier, beam direction, and beam corresponding to the beam. At least one item of service time information;
  • the received beam scheduling instruction information data and control information are received or sent on the beam.
  • the method before receiving the beam scheduling indication information sent by the network device, the method further includes: receiving a system broadcast message or an RRC indication message sent by the network device, where the system message carries beam configuration information of at least one beam.
  • the method before receiving the beam scheduling instruction information sent by the network device, the method further includes: sending location information to the network device.
  • receiving the beam scheduling indication information sent by the network device includes: receiving the MAC CE or DCI sent by the network device, where at least the index of the beam is carried.
  • the service time information of the beam includes at least one of the effective start time of the beam, the beam activation duration, and the beam activation time pattern information.
  • the beam activation time pattern information includes the activation period of the beam, At least two of the beam activation duration and duty cycle in the activation period.
  • receiving beam scheduling indication information sent by a network device includes: sending a scheduling request to the network device, and receiving beam scheduling indication information sent by the network device according to the scheduling request, the beam scheduling indication information The indicated beam is a beam allocated by the network device to the target terminal for data transmission.
  • the beam corresponds to a cell or a carrier or a BWP; the beam is designated as a downlink beam or an uplink beam, or includes a downlink beam and an uplink beam, and the downlink beam and the uplink beam jointly form a cell.
  • a network device including:
  • a processing module configured to schedule beams for data transmission for the target terminal according to the business needs of the target terminal;
  • a sending module configured to send beam scheduling indication information to the target terminal, where the beam scheduling indication information includes at least one of beam index, frequency band, cell identifier, beam direction, and service time information of the beam corresponding to the beam; And, sending the control information and data of the target terminal under the beam;
  • the receiving module is configured to receive control information and data of the target terminal under the beam.
  • a terminal including:
  • the receiving module is configured to receive beam scheduling indication information sent by a network device, the beam scheduling indication information is used to indicate a beam scheduled for a target terminal, and the beam scheduling indication information includes the beam index, frequency band, and cell identifier corresponding to the beam At least one of beam direction and service time information of the beam; and, according to the received beam scheduling indication information, receiving data and control information on the beam;
  • the sending module is configured to send data and control information on the beam according to the received beam scheduling instruction information.
  • a network device including: a processor, a memory, and a transceiver; the transceiver receives and sends data under the control of the processor; the memory stores computer instructions; the processor , Used to read the computer instructions, and execute the method according to any one of the above-mentioned first aspects.
  • a terminal including: a processor, a memory, and a transceiver; the transceiver, which receives and sends data under the control of the processor; the memory, stores computer instructions; the processor, It is used to read the computer instruction and execute the method according to any one of the above-mentioned second aspects.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute any of the above-mentioned first aspects method.
  • a computer-readable storage medium storing computer-executable instructions for causing a computer to execute the method according to any one of the above-mentioned second aspects.
  • the network device can schedule the beam for data transmission for the target terminal according to the business needs of the target terminal, and send beam scheduling indication information to the target terminal, and the beam scheduling indication information includes the beam index corresponding to the beam. At least one of, frequency band, cell ID, beam direction, and service time information of the beam, so that the network and the terminal can perform data transmission on the corresponding beam.
  • Figure 1 exemplarily shows a schematic diagram of dual-layer coverage of wide beams and spot beams in a satellite communication system
  • Figure 2 exemplarily shows the communication mode of the satellite communication system
  • FIG. 3 exemplarily shows a schematic flowchart of a beam control method implemented on the network side according to an embodiment of the present application
  • FIG. 4 exemplarily shows a schematic diagram of a first beam service time configuration method in an embodiment of the present application
  • FIG. 5 exemplarily shows a schematic diagram of a second beam service time configuration method in an embodiment of the present application
  • FIG. 6 exemplarily shows a schematic flowchart of a data transmission method implemented on the terminal side according to an embodiment of the present application
  • FIG. 7 exemplarily shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 8 exemplarily shows a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Fig. 9 exemplarily shows a schematic structural diagram of a network device provided by another embodiment of the present application.
  • Fig. 10 exemplarily shows a schematic structural diagram of a terminal provided by another embodiment of the present application.
  • a network device is a device that provides wireless communication functions for the terminal, including but not limited to: gNB in 5G, radio network controller (RNC), and node B (NB) , Base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU), transmission Point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • the base station in this application may also be a device that provides wireless communication functions for terminals in other communication systems that may appear in the future.
  • a terminal is a device that can provide users with voice and/or data connectivity.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, and so on.
  • terminal devices can be: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in smart grid (smart grid), transportation safety (transportation safety)
  • a wireless terminal a wireless terminal in a smart city, or a wireless terminal in a smart home, etc.
  • the beam can correspond to a cell or a carrier or a partial bandwidth (Band Width Part, BWP).
  • BWP Band Width Part
  • different BWPs have different bandwidths.
  • the configuration parameters of other physical layer channels/signals of each BWP are usually configured independently.
  • the network equipment can be configured for different BWPs of the terminal, so that the uplink and downlink bandwidths used by the terminal are variable.
  • One beam may be designated as a downlink beam or an uplink beam, or one beam includes a downlink beam and an uplink beam, and the downlink beam and the uplink beam jointly form a cell.
  • beamforming methods mainly include fixed beams and dynamic beams.
  • Fixed beams are satellite beams serving ground UEs (User Equipment, also known as terminals) in a fixed direction, and do not change with the location and movement of the UE.
  • the beam direction, the fixed beam is generally wider, the coverage area is larger, the fixed beam is also called the wide beam; the dynamic beam can control the beam direction based on the position of the UE, the beam is narrower, but the coverage area is small, the gain is large, and dynamic
  • the beam is also called a spot beam.
  • Fig. 1 exemplarily shows a schematic diagram of double-layer coverage of a wide beam and a spot beam in a satellite communication system.
  • the cell corresponds to the wide beam coverage
  • area 2 and area 3 correspond to the spot beam coverage
  • the coverage of the wide beam and spot beam is shown in the figure.
  • Area 2 corresponds to the coverage area of user plane high-speed transmission beam 1 (ie spot beam 1) in the cell
  • area 3 corresponds to the coverage area of user plane high-speed transmission beam 2 (ie spot beam 2) in the cell.
  • area 2 and area 3 can correspond to the partial frequency band (BWP) of the wide beam, that is, it belongs to serving cell 1, and area 2 and area 3 can also correspond to the spot beam cell.
  • BWP partial frequency band
  • the coverage of the wide beam is larger, and the spot beam
  • the coverage area is small, used for data enhancement, and can be accurately targeted to the served UE.
  • the embodiment of the present application proposes a beam control method and a data transmission method and related equipment based on the beam control method.
  • the network equipment dynamically adjusts the satellite beam and indicates the relevant information of the satellite beam to the terminal, so that the terminal is connected to the corresponding beam for data based on the satellite beam information indicated by the network side transmission.
  • the embodiments of this application can be applied to satellite communication systems.
  • the "network equipment” in the embodiments of this application can be equipment such as satellite ground gateway stations, or satellites equipped with base station functions.
  • the ground customs station is a kind of network equipment with the function of a base station, which is used to provide user access and data transmission services.
  • the transmission mode in the satellite communication system includes bent pipe communication mode and regenerative communication mode, as shown in Figure 2.
  • the transmission link is divided into two parts.
  • the link from the terminal to the satellite is called the user link or the service link, and the link from the satellite to the ground gateway is called It is a feeder link, and the satellite only performs transparent forwarding processing, and the beam management of the satellite needs to be performed through a separate control module (or satellite processing unit).
  • the satellite In the regenerative communication mode, the satellite is equivalent to the base station, the terminal directly communicates with the satellite base station, and the beam of the satellite is directly controlled by the satellite base station.
  • FIG. 3 is a schematic flow diagram of a beam control method implemented on the network side provided by an embodiment of this application.
  • the flow can be executed by a network device, which may be a gateway station in a bent-pipe communication mode in a satellite communication system. It may also be a satellite equipped with a base station function in a regenerative communication mode in a satellite communication system.
  • the method may include:
  • S301 The network device schedules beams for data transmission for the target terminal according to the service requirements of the target terminal.
  • the network side may perform beam scheduling for the target terminal based on the service requirements of the target terminal.
  • the target terminal in terms of uplink transmission, the target terminal may be the terminal that initiates the scheduling request; in terms of downlink transmission, the target terminal may be the receiving terminal of downlink data.
  • the target terminal when the target terminal has uplink data to send or needs to perform service transmission, it sends a scheduling request to the network device; when the network device receives the scheduling request sent by the target terminal, it allocates data for the target terminal Transmission beam.
  • the target terminal when downlink data that needs to be sent to the target terminal arrives at the network side, the target terminal is allocated a beam for data transmission.
  • the network device may schedule a beam whose beam direction matches the location of the target terminal to the target terminal for data transmission.
  • the beams scheduled by the network equipment to the terminal are spot beams.
  • the spot beams have a small coverage area and are used for data enhancement. They can be accurately projected to the served terminal and ensure data transmission performance with the terminal.
  • the beam used by the network device to provide access to the terminal is a wide beam.
  • the wide beam has a larger coverage area, can provide user access services and is used to maintain terminal handover and cell selection, so that the terminal can always It resides or is connected to the network.
  • the terminal can send a scheduling request to the network, and then the network performs spot beam configuration and scheduling.
  • the network device if the scheduled beam corresponds to a BWP, the network device directly allocates the BWP to the target terminal; if the scheduled beam corresponds to a carrier cell, the network device needs to activate the carrier cell, that is, The state of the carrier cell is set to the active state.
  • the network device sends beam scheduling indication information to the target terminal.
  • the beam scheduling indication information includes at least one of the beam index (beam ID), frequency band, cell identifier (cell ID), beam direction, and service time information of the beam corresponding to the beam.
  • beam ID the beam index
  • cell ID cell identifier
  • FIG. 3 may also include the following steps:
  • the network device sends or receives control information and data of the target terminal in the beam, so as to provide a data transmission service for the target terminal. For example, receiving uplink data sent by the terminal on the beam, or sending downlink data to the terminal on the beam.
  • the service time information of the beam may include at least one of the effective start time of the beam, the beam activation duration, and the beam activation time pattern information.
  • the beam activation time pattern information includes at least two of the beam activation period, the beam activation duration in the activation period, and the duty cycle of the beam activation duration in the activation period.
  • the activation time period of the beam indicated by the activation time pattern usually includes a plurality of discrete time periods.
  • the activation time of the beam can be indicated to the terminal through the effective start time of the beam and the beam activation duration.
  • the second configuration is In the manner, the activation time of the beam is indicated to the terminal through the effective start time of the beam and the beam activation time pattern.
  • the first beam service time configuration method it can specifically include the following situations:
  • the service time information of the beam can only include the beam activation duration, and the effective start time of the beam can be set by default.
  • the effective start time of the beam can be set to the time when the terminal receives the beam scheduling instruction information, or it can be set After receiving the beam scheduling instruction information for the terminal, it will take effect after a fixed delay time.
  • the terminal can determine the activation time length of the beam according to the beam activation start time set by default and the beam activation duration configured by the network, that is, the time length of using the beam for data transmission.
  • the service time information of the beam can only include the effective start time of the beam, and the beam activation duration can be set by default. For example, a fixed time length can be set, during which the beam is always activated, or it can be set to be beam effective After that, it has been activated until it receives a beam stop command sent by the network device.
  • the terminal can determine the activation time length of the beam according to the effective start time of the beam configured by the network and the beam activation duration of the default configuration, that is, the length of time that the beam is used for data transmission.
  • the service time information of the beam may include the effective start time of the beam and the beam activation duration.
  • the terminal can determine the activation time length of the beam according to the beam activation start time and the beam activation duration configured by the network, that is, the time length of using the beam for data transmission.
  • Fig. 4 exemplarily shows a schematic diagram of the first beam service time configuration mode.
  • the terminal receives the signaling carrying beam scheduling indication information sent by the network device, and at time T2, the beam indicated by the network for the terminal starts to take effect.
  • the activation duration of the beam at time T3, the activation duration of the beam is reached, and the beam ceases to be activated.
  • the terminal can perform data transmission on this beam.
  • the service time information of the beam may only include the beam activation time pattern information, and the effective start time of the beam may be set by default.
  • the terminal can determine the activation time period of the beam according to the beam activation start time set by default and the beam activation time pattern configured by the network, so that the beam can be used for data transmission.
  • the service time information of the beam may include the effective start time of the beam and beam activation time pattern information.
  • the terminal can determine the activation time period of the beam according to the beam activation start time and the beam activation time pattern configured by the network, so that the beam can be used for data transmission.
  • Fig. 5 exemplarily shows a schematic diagram of the second beam service time configuration mode.
  • the terminal receives the signaling carrying beam scheduling indication information sent by the network device, and at time T2, the beam indicated by the network for the terminal starts to take effect.
  • the activation duration of the beam in the activation period arrives, and at time T4, it starts to enter the second activation period, and the beam starts to be activated.
  • Time T4 to time T5 in the period is the activation time of the beam in the activation period.
  • the above two beam service time configuration methods can be selected and used according to needs. For example, in a scenario where the number of spot beams is small but the number of terminals that need to be served is large, the above-mentioned second beam service time configuration method can be used, so that different terminals use the beam in time sharing.
  • the inactive period of the beam activation period from the perspective of one or some terminals, the beam is in a dormant state. From the perspective of the satellite antenna array, the beam is time-division multiplexed in different directions to serve different directions. One or some other users.
  • a network device when a network device allocates a beam for data transmission to a target terminal, it can be based on at least one of the number of terminals that are in the same serving cell as the target terminal and need to perform data transmission and the service status. Item, determine the activation duration of the beam allocated to the target terminal, for example, determine the beam activation duration of the beam activation time pattern information.
  • the service status may include at least one of the type of service performed by the terminal and the amount of data that the terminal needs to transmit.
  • the serving cell may be a cell corresponding to a wide beam.
  • a longer beam activation duration can be configured for the target terminal to ensure data transmission.
  • the network device may send beam scheduling indication information to the terminal through high-level signaling or dynamic signaling.
  • the high-level signaling may be Radio Resource Control (RRC) signaling
  • the dynamic signaling may be Media Access Control Element (MAC CE) or downlink control information (Downlink, Control Information, DCI).
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • DCI Downlink Control Information
  • the beam scheduling indication information notified by the MAC CE or DCI can carry fewer parameters than the beam scheduling indication information notified by the RRC signaling.
  • the beam scheduling indication information notified by RRC signaling is complete beam configuration information, including beam ID, frequency band, cell ID, beam direction, beam service time, etc.
  • the beam scheduling indication information notified by MAC CE or DCI may only include The beam ID, or further includes beam service time information, etc.
  • the network device configures a wide beam for user initial access, and broadcasts configuration information of one or more spot beams through system messages, or informs the terminal of one or more spot beams through an RRC indication message
  • the configuration information of the spot beam includes beam ID, frequency band, cell ID, beam direction, etc.
  • the network device When the network device receives the service request of the terminal or the downlink data of the terminal arrives, it obtains the position of the target terminal, selects a beam whose beam direction matches the position of the terminal from the spot beams configured through the system message, and sends it to the target
  • the terminal sends the MAC CE or DCI, which carries the index of the beam, and may further carry the service time information of the beam, so as to configure the beam for data transmission for the terminal through dynamic signaling.
  • two beam control generation methods are provided, which are respectively applied to the bent pipe communication mode and the regenerative communication mode.
  • the base station is configured on the satellite, and the base station can directly control the satellite antenna array to generate the required beams.
  • the beam control generation method suitable for the regenerative communication mode may include: controlling the satellite antenna based on at least one of the antenna array index, beam direction, frequency band, and beam service time according to the beam scheduled for the target terminal The array transmits beams in a designated frequency band and direction.
  • the base station generates beam control information while configuring beam scheduling instruction information for the terminal to maintain synchronization between the terminal and the network.
  • the beam control information may include antenna array index, beam direction, frequency band, beam service time, etc. It is used to control the antenna array to generate the corresponding beam.
  • the beam control information includes the antenna array index and the beam direction, so that the corresponding antenna array can generate the beam in the corresponding direction. If there are multiple choices for the frequency or frequency band of the beam, a frequency indicating switch can be set and carried in the beam control information, so that the antenna array can generate the beam of the corresponding frequency or frequency band according to the indicating information.
  • the base station In the bent-pipe communication mode, the base station (or gateway station) is separated from the satellite.
  • the base station can send beam control instructions to the satellite processing unit, or send satellite beam configuration information to the satellite processing unit through the satellite beam control module, and the satellite processing unit generates the corresponding Beam.
  • the beam control instruction includes at least one of the following information: antenna array index, beam direction, frequency band, and beam service time.
  • the following beam control generation methods can be used:
  • Method 1 According to the beam scheduled for the target terminal, a beam control instruction is sent to the satellite processing unit. After the satellite processing unit receives the instruction, it controls the satellite antenna array to generate a corresponding beam.
  • Method 2 Send beam control instructions to the satellite beam control module according to the beams scheduled for the target terminal, so that the satellite beam control module sends the beam control instructions to the satellite processing unit, and the satellite processing unit controls the satellite antenna array to generate corresponding beams.
  • the effective start time of the beam needs to consider the transmission delay of the beam command in the air.
  • FIG. 6 is a schematic flowchart of a data transmission method on the terminal side according to an embodiment of this application. As shown in the figure, the process may include:
  • the target terminal receives beam scheduling indication information sent by the network device, where the beam scheduling indication information is used to indicate a beam scheduled for the target terminal.
  • the content and sending mode of the beam scheduling indication information are the same as those in the foregoing embodiment, and will not be repeated again.
  • the target terminal receives or sends data and control information on the beam according to the received beam scheduling instruction information.
  • the network side may perform beam scheduling for the target terminal based on the service requirements of the target terminal.
  • the target terminal in terms of uplink transmission, the target terminal may be a terminal that initiates a scheduling request; in terms of downlink transmission, the target terminal may be a receiving terminal of downlink data.
  • the target terminal when the target terminal has uplink data to send or needs to perform service transmission, it sends a scheduling request to the network device; when the network device receives the scheduling request sent by the target terminal, it allocates data for the target terminal Transmission beam.
  • the target terminal when downlink data that needs to be sent to the target terminal arrives at the network side, the target terminal is allocated a beam for data transmission.
  • the network device configures a wide beam for user initial access, and indicates configuration information of one or more spot beams through a system message broadcast or an RRC message, where the configuration information of the spot beam includes beam ID , Frequency band, cell ID, beam direction, etc.
  • the terminal After the terminal is connected to the wide beam, it needs to listen to the spot beam configuration information of the network.
  • the terminal may also send location information to the network device, so that the network device allocates a beam for data transmission to the terminal according to the location of the terminal.
  • the terminal when it detects that there is uplink data to be sent, it sends a service request or uplink data scheduling request to the network device to trigger the network device to allocate a beam for data transmission to the terminal and notify the configuration information of the beam .
  • the terminal if the beam allocated by the network side for the terminal corresponds to a BWP, the terminal directly performs uplink physical uplink shared channel (PUSCH) transmission based on the received beam scheduling instruction information, and the terminal performs beam switching in the manner of BWP switching connect. If the beam allocated by the network to the terminal corresponds to a carrier cell, the terminal needs to obtain carrier information to complete downlink synchronization.
  • PUSCH physical uplink shared channel
  • the terminal also needs to send an uplink physical random access channel (PRACH) for uplink Synchronize, and then listen to the scheduling indication information of the network, and send the uplink PUSCH data packet.
  • PRACH physical random access channel
  • the terminal uses the auxiliary carrier activation mechanism to perform beam connection.
  • the target terminal when the downlink data sent to the target terminal from the network side arrives, the target terminal is allocated a beam for data transmission, and the configuration information of the beam is sent to the target terminal.
  • the network side can directly indicate the BWP ID corresponding to the beam allocated to the terminal on the MAC CE or on the Physical Downlink Control Channel (PDCCH) (that is, send DCI) ,
  • the terminal receives downlink data in the BWP.
  • the network side performs beam configuration in a cell mode, the network side can first activate the beam and notify the terminal. After the beam is synchronized, the terminal detects the downlink control channel and the data channel, and starts data transmission and reception.
  • PDCH Physical Downlink Control Channel
  • the terminal may also autonomously select a beam from a plurality of beams configured through system messages on the network side for connection, and perform data transmission.
  • the network device can schedule the beam for data transmission for the target terminal according to the business needs of the target terminal, and send beam scheduling indication information to the target terminal.
  • the beam scheduling indication The information includes at least one of the beam index, frequency band, cell identifier, beam direction, and service time information of the beam corresponding to the beam, so that data transmission can be performed between the network and the terminal on the corresponding beam.
  • the embodiment of the present application also provides a network device.
  • the network device can implement the functions of the network device side in the foregoing embodiment.
  • the network device may include: a processing module 701, a sending module 702, and a receiving module 703.
  • the processing module 701 is configured to schedule a beam used for data transmission for the target terminal according to the business needs of the target terminal;
  • the sending module 702 is configured to send beam scheduling indication information to the target terminal, where the beam scheduling indication information includes at least one of the beam index, frequency band, cell identifier, beam direction, and service time information of the beam corresponding to the beam And, sending the control information and data of the target terminal under the beam;
  • the receiving module 703 is configured to receive control information and data of the target terminal under the beam.
  • the processing module 701 is further configured to: before scheduling a beam for data transmission for the target terminal, send a system broadcast message or an RRC indication message through the sending module 702, the message carrying the beam configuration of at least one beam information.
  • the processing module 701 may be specifically configured to: obtain position information of the terminal, and select a beam whose beam direction matches the position of the target terminal from the at least one beam and is used for data transmission.
  • the sending module 702 may be specifically configured to send MAC CE or DCI to the target terminal, where at least the index of the beam is carried.
  • the service time information of the beam includes at least one of the effective start time of the beam, the beam activation duration, and the beam activation time pattern information.
  • the beam activation time pattern information includes the activation period of the beam, At least two of the beam activation duration and duty cycle in the activation period.
  • the processing module 701 is further configured to: determine the beam activation time pattern information according to at least one of the number of terminals that are in the same serving cell as the target terminal and need to perform data transmission and the service status. Beam activation duration.
  • the processing module 701 is further configured to: according to the beams scheduled for the target terminal, and based on at least one of indication information such as antenna array index, beam direction, frequency band, and beam activation time, control the satellite antenna array to specify Or, according to the beam scheduled for the target terminal, send a beam control instruction to the satellite processing unit, the beam control instruction is used to control the satellite antenna array to generate a corresponding beam, and the beam control instruction carries At least one of the following information: antenna array index, beam direction, frequency band, beam activation time; or, according to the beam scheduled for the target terminal, send a beam control instruction to the satellite beam control module, so that the satellite beam control module
  • the beam control instruction is sent to the satellite processing unit, the beam control instruction is used to control the satellite antenna array to generate a corresponding beam, and the beam control instruction carries at least one of the following information: antenna array index, beam direction, frequency band , Beam activation time.
  • the processing module 701 is specifically configured to: when a scheduling request sent by the target terminal is received, schedule a beam for data transmission for the target terminal; or, when there is downlink data from the target terminal Upon arrival, schedule a beam for data transmission for the target terminal.
  • an embodiment of the present application also provides a terminal.
  • the terminal can implement the functions of the terminal side in the foregoing embodiment.
  • the network device may include: a processing module 801, a sending module 802, and a receiving module 803.
  • the receiving module 803 is configured to receive beam scheduling indication information sent by a network device, where the beam scheduling indication information is used to indicate a beam scheduled for the target terminal, and the beam scheduling indication information includes the beam index, frequency band, and cell corresponding to the beam. At least one of an identifier, a beam direction, and service time information of the beam; and, according to the received beam scheduling indication information, receiving data and control information on the beam;
  • the sending module 802 is configured to send data and control information on the beam according to the received beam scheduling instruction information.
  • the receiving module 803 is further configured to: before receiving the beam scheduling instruction information sent by the network device, receive a system broadcast message or an RRC instruction message sent by the network device, the system message carrying the beam configuration of at least one beam information.
  • the sending module 802 is further configured to send location information to the network device before receiving the beam scheduling instruction information sent by the network device.
  • the receiving module 803 is specifically configured to receive the MAC CE or DCI sent by the network device, where at least the index of the beam is carried.
  • the service time information of the beam includes at least one of the effective start time of the beam, the beam activation duration, and the beam activation time pattern information.
  • the beam activation time pattern information includes the activation period of the beam, At least two of the beam activation duration and duty cycle in the activation period.
  • the receiving module 803 receives the beam scheduling indication information sent by the network device according to the scheduling request, and the beam indicated by the beam scheduling indication information A beam used for data transmission allocated to the target terminal by the network device.
  • the embodiment of the present application also provides a network device.
  • the network device can implement the functions of the network device side in the foregoing embodiment.
  • the network device may include: a processor 901, a memory 902, a transceiver 903, and a bus interface 904.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 can store data used by the processor 901 when performing operations.
  • the transceiver 903 is used to receive and send data under the control of the processor 901.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 902 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 can store data used by the processor 901 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 901 or implemented by the processor 901.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 901 or instructions in the form of software.
  • the processor 901 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 902, and the processor 901 reads the information in the memory 902, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 901 is configured to read computer instructions in the memory 902 and execute the functions implemented by the network device in the process shown in FIG. 3.
  • the processor 901 may read computer instructions in the memory 902, and perform the following operations: according to the business needs of the target terminal, schedule the target terminal a beam for data transmission; send beam scheduling instruction information to the target terminal
  • the beam scheduling instruction information includes at least one of the beam index, frequency band, cell identifier, beam direction, and service time information of the beam corresponding to the beam; and the control information of the target terminal is sent or received under the beam And data.
  • an embodiment of the present application also provides a terminal.
  • the terminal can implement the functions of the terminal side in the foregoing embodiment.
  • the terminal may include a processor 1001, a memory 1002, a transceiver 1003, and a bus interface 1004.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the transceiver 1003 is used to receive and transmit data under the control of the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1002 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the processor 1001 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1001 is configured to read computer instructions in the memory 1002 and execute the functions implemented by the network device in the process shown in FIG. 6.
  • the processor 1001 may read computer instructions in the memory 1002, and perform the following operations: receive beam scheduling indication information sent by the network device, where the beam scheduling indication information is used to indicate the beams scheduled for the target terminal, and the beam scheduling The indication information includes at least one of the beam index, frequency band, cell identifier, beam direction, and service time information of the beam corresponding to the beam; data and control are performed on the beam according to the received beam scheduling indication information Receiving or sending of information.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the method executed by the network device in the foregoing embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium, and the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the method executed by the terminal in the above-mentioned embodiment.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法及设备。本申请中,根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;在所述波束下发送或接收所述目标终端的控制信息和数据。

Description

一种数据传输方法及设备
相关申请的交叉引用
本申请要求在2020年05月11日提交中国专利局、申请号为202010398007.9、申请名称为“一种数据传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据传输方法及设备。
背景技术
在卫星通信系统中,为了提高数据通信容量通常配置多个波束或多层波束(多层波束中一个波束的覆盖区域可能包括在其他波束的覆盖区域内),不同波束的频率不同且具有移动性。而且,卫星波束的覆盖区域可能远远小于所期望服务的区域,因此,如何用有限的波束覆盖激活的用户进行数据传输是一个重要的技术问题。
地面通信系统的波束管理技术侧重于同频波束扫描和波束测量,而且假设波束固定不变,而卫星通信系统的波束是移动且频率变化的,因此地面移动通信的波束管理技术无法直接应用到卫星通信系统的波束管理中。
因此,需要提供一种应用于卫星通信系统的波束控制机制。
发明内容
本申请实施例提供了一种数据传输方法及设备,用于实现卫星通信系统中的波束控制。
第一方面,提供一种数据传输方法,包括:
根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所 述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
在所述波束下发送或接收所述目标终端的控制信息和数据。
在一些实施例中,为所述目标终端调度用于数据传输的波束之前,还包括:发送系统广播消息或者无线资源控制(RRC)指示消息,所述消息携带至少一个波束的波束配置信息。
在一些实施例中,为所述目标终端调度用于数据传输的波束,包括:获取终端的位置信息,从所述至少一个波束中选取一个波束方向与所述目标终端的位置匹配且用于数据传输的波束。
在一些实施例中,向所述目标终端发送波束调度指示信息,包括:向所述目标终端发送媒体接入控制控制单元(MAC CE)或下行链路控制信息(DCI),其中至少携带所述波束的索引。
在一些实施例中,波束的服务时间信息,包括:波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
在一些实施例中,还包括:根据与所述目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定所述波束激活时间图样信息的波束激活持续时间。
在一些实施例中,还包括:根据为所述目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束激活时间等至少一项的指示信息,控制卫星天线阵列在指定的频带、方向发送波束;或者,根据为所述目标终端调度的波束,向卫星处理单元发送波束控制指令,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间;或者,根据为所述目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得所述卫星波束控制模块将所述波束控制指令发送给卫星处理单元,所述波束控制指令用于 控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间。
在一些实施例中,根据目标终端的业务需求,为所述目标终端调度用于数据传输的波束,包括:当接收到所述目标终端发送的调度请求时,为所述目标终端调度用于数据传输的波束;或者,当有所述目标终端的下行数据到达时,为所述目标终端调度用于数据传输的波束。
在一些实施例中,所述波束对应一个小区或者一个载波或者一个部分带宽(BWP);所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
第二方面,提供一种数据传输方法,包括:
接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收或发送。
在一些实施例中,接收网络设备发送的波束调度指示信息之前,还包括:接收所述网络设备发送的系统广播消息或RRC指示消息,所述系统消息携带至少一个波束的波束配置信息。
在一些实施例中,接收网络设备发送的波束调度指示信息之前,还包括:发送位置信息给所述网络设备。
在一些实施例中,接收网络设备发送的波束调度指示信息,包括:接收网络设备发送的MAC CE或DCI,其中至少携带所述波束的索引。
在一些实施例中,波束的服务时间信息,包括:波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
在一些实施例中,接收网络设备发送的波束调度指示信息,包括:向所 述网络设备发送调度请求,接收所述网络设备根据所述调度请求发送的波束调度指示信息,所述波束调度指示信息所指示的波束为所述网络设备为所述目标终端分配的用于进行数据传输的波束。
在一些实施例中,所述波束对应一个小区或者一个载波或者一个BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
第三方面,提供一种网络设备,包括:
处理模块,用于根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
发送模块,用于向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,在所述波束下发送所述目标终端的控制信息和数据;
接收模块,用于在所述波束下接收所述目标终端的控制信息和数据。
第四方面,提供一种终端,包括:
接收模块,用于接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收;
发送模块,用于根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的发送。
第五方面,提供一种网络设备,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第一方面中任一项所述的方法。
第六方面,提供一种终端,包括:处理器、存储器、收发机;所述收发 机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上述第一方面中任一项所述的方法。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上述第二方面中任一项所述的方法。
本申请的上述实施例中,网络设备可根据目标终端的业务需要,为目标终端调度用于数据传输的波束,并向目标终端发送波束调度指示信息,该波束调度指示信息包括波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项,使得网络和终端之间可在相应的波束上进行数据传输。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示例性示出了卫星通信系统中宽波束和点波束的双层覆盖示意图;
图2示例性示出了卫星通信系统的通信模式;
图3示例性示出了本申请实施例提供的在网络侧实现的波束控制方法的流程示意图;
图4示例性示出了本申请实施例中第一种波束服务时间配置方式示意图;
图5示例性示出了本申请实施例中第二种波束服务时间配置方式示意图;
图6示例性示出了本申请实施例提供的在终端侧实现的数据传输方法的 流程示意图;
图7示例性示出了本申请实施例提供的网络设备的结构示意图;
图8示例性示出了本申请实施例提供的终端的结构示意图;
图9示例性示出了本申请另外的实施例提供的网络设备的结构示意图;
图10示例性示出了本申请另外的实施例提供的终端的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以下对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(4)网络设备,是一种为所述终端提供无线通信功能的设备,包括但不限于:5G中的gNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。本申请中的 基站还可以是未来可能出现的其他通信系统中为终端提供无线通信功能的设备。
(5)终端,是一种可以向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
(6)波束,可对应一个小区或者一个载波或者一个部分带宽(Band Width Part,BWP)。NR小区中,不同BWP的带宽不同,各个BWP的其他物理层信道/信号的配置参数通常独立配置,网络设备可配置给终端不同的BWP,使得终端使用的上下行带宽可变。
一个波束可被指定为下行波束或者上行波束,或者一个波束包含下行波束和上行波束且所述下行波束和上行波束联合构成一个小区。
在卫星通信系统中,波束赋形方式主要包括固定波束和动态波束,固定波束是卫星的波束按照固定的方向服务地面UE(User Equipment,用户终端,也成终端),不随UE的位置和移动改变波束方向,固定波束一般较宽,覆盖区域较大,固定波束也被称为宽波束;动态波束能基于UE的位置进行波束方向的控制,波束比较窄,而覆盖面积小,增益较大,动态波束也被称为点波束。
图1示例性示出了卫星通信系统中宽波束和点波束的双层覆盖示意图。其中,小区对应于宽波束覆盖范围,区域2和区域3对应于点波束覆盖范围,宽波束和点波束的覆盖情况如图所示。区域2对应于小区内用户平面高速传输波束1(即点波束1)的覆盖范围,区域3对应于小区内用户平面高速传输波束2(即点波束2)的覆盖范围。其中,区域2和区域3可对应于宽波束的 部分频带(BWP),即属于服务小区1,;区域2和区域3也可对应于点波束小区,宽波束的覆盖范围较大,点波束的覆盖范围较小,用于数据增强,能准确投向所服务的UE。
本申请实施例提出了一种波束控制方法以及基于该波束控制方法的数据传输方法以及相关设备。本申请实施例基于终端的业务需求和位置信息,网络设备动态调整卫星波束,并向终端指示该卫星波束的相关信息,使得终端基于网络侧指示的卫星波束信息,连接到对应的波束以进行数据传输。
本申请实施例可适用于卫星通信系统,本申请实施例中的“网络设备”可以是卫星的地面信关站等设备,也可以配置有基站功能的卫星。地面信关站是一种具有基站功能的网络设备,用于提供用户的接入和数据传输服务。
卫星通信系统中的传输模式包括弯管通信模式和再生通信模式,如图2所示。参见图2中的(a),在弯管通信模式中,传输链路分为两部分,终端到卫星的链路称为用户链路或者服务链路,卫星到地面信关站的链路称之为馈电链路,卫星仅作透明转发处理,卫星的波束管理需要通过单独的控制模块(或称卫星处理单元)进行。参见图2中的(b),在再生通信模式中,卫星相当于基站,终端直接和卫星基站进行数据通信,卫星的波束则由卫星基站直接进行控制。
下面结合附图对本申请实施例进行描述。
参见图3,为本申请实施例提供的在网络侧实现的波束控制方法的流程示意图,该流程可由网络设备执行,所述网络设备可以是卫星通信系统中弯管通信模式下的信关站,也可以是卫星通信系统中再生通信模式中配置有基站功能的卫星。
如图所示,该方法可包括:
S301:网络设备根据目标终端的业务需求,为该目标终端调度用于数据传输的波束。
本申请实施例中,网络侧可以基于目标终端的业务需求,为该目标终端进行波束调度。其中,在上行传输方面,目标终端可以是发起调度请求的终 端;在下行传输方面,目标终端可以是下行数据的接收终端。
具体地,在上行传输场景中,目标终端有上行数据需要发送或者需要进行业务传输时,向网络设备发送调度请求;网络设备接收到目标终端发送的调度请求时,为该目标终端分配用于数据传输的波束。在下行传输场景中,当网络侧有需要发送给目标终端的下行数据到达时,为该目标终端分配用于数据传输的波束。
在一些实施例中,网络设备可将波束方向与目标终端的位置相匹配的波束调度给该目标终端进行数据传输。
在一些实施例中,网络设备调度给终端的波束为点波束,点波束的覆盖范围较小,用于数据增强,能准确投向所服务的终端,与保证与终端间的数据传输性能。
在一些实施例中,网络设备为终端提供接入连接的波束为宽波束,宽波束的覆盖范围较大,能提供用户的接入服务而且用于维持终端的切换和小区选择,使得终端可以总是驻留或连接在网络中,当终端存在上行数据发送需求时,终端可以发送调度请求给网络,然后网络进行点波束的配置和调度。
在一些实施例中,如果被调度的波束对应于一个BWP,则网络设备直接将该BWP分配给目标终端;如果被调度的波束对应于一个载波小区,则网络设备需要激活该载波小区,即将该载波小区的状态设置为激活状态。
S302:网络设备向目标终端发送波束调度指示信息,该波束调度指示信息包括该波束对应的波束索引(波束ID)、频带、小区标识(小区ID)、波束方向、波束的服务时间信息中的至少一项。
进一步地,上述图3还可包括以下步骤:
S303:网络设备在该波束发送或接收目标终端的控制信息和数据,从而为该目标终端提供数据传输服务。比如,接收该终端在该波束上发送的上行数据,或者在该波束上向该终端发送下行数据。
在一些实施例中,波束的服务时间信息可包括波束的生效起始时间、波束激活持续时间、波束激活时间图样信息(pattern)中的至少一项。其中,波 束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、激活周期内波束激活持续时间的占空比中的至少两项。激活时间图样所指示的波束的激活时间段通常包括多个离散的时间段。
具体地,波束的服务时间的配置方式可分为两种,其中第一种配置方式中,可通过波束的生效起始时间和波束激活持续时间来向终端指示波束的激活时间,第二种配置方式中,通过波束的生效起始时间和波束激活时间图样来向终端指示波束的激活时间。
对于第一种波束服务时间配置方式,具体可包括以下几种情况:
情况1:波束的服务时间信息可仅包括波束激活持续时间,波束的生效起始时间可默认设置,比如,可设置波束的生效起始时间为终端接收到波束调度指示信息的时间,也可设置为终端接收到波束调度指示信息后在一个固定的延迟时间后生效。这样,终端可根据默认设置的波束生效起始时间和网络配置的波束激活持续时间确定该波束的激活时间长度,即使用该波束进行数据传输的时间长度。
情况2:波束的服务时间信息可仅包括波束的生效起始时间,波束激活持续时间可默认设置,比如,可设置一个固定时间长度,在该时间长度内波束一直激活,也可设置为波束生效后一直激活,直到收到网络设备发送的波束中止命令为止。这样,终端可根据网络配置的波束生效起始时间和默认配置的波束激活持续时间确定该波束的激活时间长度,即使用该波束进行数据传输的时间长度。
情况3:波束的服务时间信息可包括波束的生效起始时间以及波束激活持续时间。这样,终端可根据网络配置的波束生效起始时间和波束激活持续时间确定该波束的激活时间长度,即使用该波束进行数据传输的时间长度。
图4示例性示出了第一种波束服务时间配置方式的示意图。如图所示,在T1时刻,终端接收到网络设备发送的携带有波束调度指示信息的信令,在T2时刻,网络为该终端指示的波束开始生效。根据该波束的激活持续时间,在T3时刻,该波束的激活持续时间到达,该波束停止激活。其中,T2时刻 到T3时刻的时间段内,终端可在该波束上进行数据传输。
对于第二种波束服务时间配置方式,具体可包括以下几种情况:
情况4:波束的服务时间信息可仅包括波束激活时间图样信息,波束的生效起始时间可默认设置。这样,终端可根据默认设置的波束生效起始时间和网络配置的波束激活时间图样确定该波束的激活时间段,从而可以使用该波束进行数据传输。
情况5:波束的服务时间信息可包括波束的生效起始时间以及波束激活时间图样信息。这样,终端可根据网络配置的波束生效起始时间以及波束激活时间图样确定该波束的激活时间段,从而可以使用该波束进行数据传输。
图5示例性示出了第二种波束服务时间配置方式的示意图。如图所示,在T1时刻,终端接收到网络设备发送的携带有波束调度指示信息的信令,在T2时刻,网络为该终端指示的波束开始生效。根据该波束的激活时间图样,在第一激活周期中的T3时刻,该波束在激活周期内的激活持续时间到达,在T4时刻,开始进入第二激活周期,该波束开始激活,在第二激活周期内的T4时刻到T5时刻,为该波束在该激活周期内的激活时间。
上述两种波束服务时间配置方式可根据需要选择使用。比如,在点波束数目较少,但需要服务的终端数量较多的场景下,可采用上述第二种波束服务时间配置方式,使得不同终端分时使用该波束。在波束激活周期内的非激活时间段内,从某个或某些终端角度看,波束为休眠状态,从卫星天线阵列角度来看,该波束在不同方向上时分复用的服务于不同方向位置的另外某个或某些用户。
在本申请的一些实施例中,网络设备在为目标终端分配用于数据传输的波束时,可根据与该目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定为该目标终端分配的波束的激活持续时间,比如确定波束激活时间图样信息的波束激活持续时间。
其中,业务状态可包括终端所执行的业务的类型、终端需要传输的数据量中的至少一项。服务小区可以是宽波束对应的小区。
比如,如果目标终端所在区域内有较多数量的终端需要进行数据传输,则为该目标终端以及该服务小区内其他需要进行数据传输的终端,配置较长的波束激活持续时间。再比如,如果目标终端需要传输的数据量较大,则可以为该目标终端配置较长的波束激活持续时间,以保证数据传输。
本申请的一些实施例中,网络设备可通过高层信令或动态信令,将波束调度指示信息发送给终端。
其中,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令,所述动态信令可以是媒体介入控制控制单元(Media Access Control Control Element,MAC CE)或下行链路控制信息(Downlink,Control Information,DCI)。
使用MAC CE或DCI通知的波束调度指示信息,与使用RRC信令通知的波束调度指示信息相比,可以携带更少的参数。比如,使用RRC信令通知的波束调度指示信息为完整的波束配置信息,包括波束ID、频带、小区ID、波束方向、波束服务时间等,使用MAC CE或DCI通知的波束调度指示信息可仅包括波束ID,或者进一步包括波束服务时间信息等。
本申请的一些实施例中,网络设备配置宽波束以用于用户初始接入,并通过系统消息广播一个或多个点波束的配置信息,或者通过RRC指示消息向终端通知一个或多个点波束的配置信息,其中,点波束的配置信息包括波束ID、频带、小区ID、波束方向等。终端在连接到宽波束后,需要侦听网络的点波束配置信息。当网络设备接收到终端的业务请求或有终端的下行数据到达时,获取该目标终端的位置,从通过系统消息配置的点波束中选取一个波束方向与该终端的位置匹配的波束,向该目标终端发送MAC CE或DCI,其中携带该波束的索引,并可进一步携带该波束的服务时间信息,以通过动态信令为终端配置用于数据传输的波束。
本申请实施例中,根据卫星通信系统采用的通信模式,提供了两种波束控制生成方式,分别应用于弯管通信模式和再生通信模式。
再生通信模式下,基站配置在卫星上,基站可直接控制卫星天线阵列产 生所需的波束。具体地,适用于再生通信模式的波束控制生成方式,可包括:根据为目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束服务时间等指示信息中的至少一项,控制卫星天线阵列在指定的频带、方向发送波束。
在一些实施例中,基站在为终端配置波束调度指示信息的同时,生成波束控制信息,以保持终端和网络的同步,波束控制信息可包括天线阵列索引、波束方向、频带、波束服务时间等,以用于控制天线阵列生成相应的波束。
一般卫星天线存在多个阵列,每个阵列可产生多个方向的波束,因此波束控制信息中包含天线阵列索引和波束方向,可以使得由相应的天线阵列生成相应方向的波束。如果波束的频率或频带有多种选择,则可设置频率指示开关,并携带于波束控制信息,使得天线阵列可根据该指示信息生成相应频率或频段的波束。
弯管通信模式下,基站(或信关站)与卫星分离,基站可发送波束控制指令到卫星处理单元,或者通过卫星波束控制模块发送卫星波束配置信息到卫星处理单元,由卫星处理单元产生相应的波束。其中,波束控制指令中包含以下信息中的至少一项:天线阵列索引、波束方向、频带、波束服务时间。
具体地,弯管通信模式下,可采用以下波束控制生成方式:
方式1:根据为目标终端调度的波束,向卫星处理单元发送波束控制指令,卫星处理单元接收到指令后,控制卫星天线阵列产生相应的波束。
方式2:根据为目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得卫星波束控制模块将波束控制指令发送给卫星处理单元,由卫星处理单元控制卫星天线阵列产生相应的波束。
在弯管通信模式下,由于波束控制指令需要发送到卫星上的卫星处理单元,因此波束的生效起始时间需要考虑波束指令在空中传输的延迟。
参见图6,为本申请实施例提供的终端侧的数据传输方法的流程示意图,如图所示,该流程可包括:
S601:目标终端接收网络设备发送的波束调度指示信息,所述波束调度 指示信息用于指示为目标终端调度的波束。
其中,该波束调度指示信息的内容以及发送方式,与前述实施例相同,再次不再重复。
S602:目标终端根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收或发送。
本申请实施例中,网络侧可以基于目标终端的业务需求,为该目标终端进行波束调度。其中,在上行传输方面,目标终端可以是发起调度请求的终端;在下行传输方面,目标终端可以是下行数据的接收终端。
具体地,在上行传输场景中,目标终端有上行数据需要发送或者需要进行业务传输时,向网络设备发送调度请求;网络设备接收到目标终端发送的调度请求时,为该目标终端分配用于数据传输的波束。在下行传输场景中,当网络侧有需要发送给目标终端的下行数据到达时,为该目标终端分配用于数据传输的波束。
本申请的一些实施例中,网络设备配置宽波束以用于用户初始接入,并通过系统消息广播或者RRC消息指示一个或多个点波束的配置信息,其中,点波束的配置信息包括波束ID、频带、小区ID、波束方向等。终端在连接到宽波束后,需要侦听网络的点波束配置信息。
在一些实施例中,终端还可发送位置信息给网络设备,以使得网络设备根据终端的位置为终端分配用于数据传输的波束。
在一些场景下,当终端检测到有上行数据需要发送时,向网络设备发送业务请求或上行数据调度请求,以触发网络设备为该终端分配用于数据传输的波束,并通知该波束的配置信息。其中,如果网络侧为终端分配的波束对应一个BWP时,终端基于接收到的波束调度指示信息,直接进行上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,终端以BWP切换的方式进行波束连接。如果网络侧为终端分配的波束对应一个载波小区时,终端需要获取载波信息,完成下行同步,如果定时关系发生变化,终端还需要发送上行物理随机接入信道(Physical Random Access Channel,PRACH) 进行上行同步,然后侦听网络的调度指示信息,发送上行PUSCH数据包,此时终端以辅载波激活的机制进行波束连接。
在另一些场景下,当网络侧发往目的终端得下行数据到达时,为该目标终端分配进行数据传输的波束,并将该波束的配置信息发送给该目标终端。其中,如果网络侧以BWP方式进行波束配置时,网络侧可直接在MAC CE或者在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上(即发送DCI)指示为终端分配的波束对应的BWP ID,终端在该BWP中接收下行数据。如果网络侧以小区方式进行波束配置时,网络侧可首先激活该波束并通知终端,终端在该波束进行同步后,检测下行控制信道和数据信道,开始进行数据收发。
在本申请的一些实施例中,终端还可以从网络侧通过系统消息配置的多个波束中自主选择一个波束进行连接,并进行数据传输。
通过以上描述可以看出,本申请的上述实施例中,网络设备可根据目标终端的业务需要,为目标终端调度用于数据传输的波束,并向目标终端发送波束调度指示信息,该波束调度指示信息包括波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项,使得网络和终端之间可在相应的波束上进行数据传输。
基于相同的技术构思,本申请实施例还提供了一种网络设备。该网络设备可以实现前述实施例中网络设备侧的功能。
参见图7,为本申请实施例提供的网络设备的结构示意图。该网络设备可包括:处理模块701、发送模块702、接收模块703。
处理模块701,用于根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
发送模块702,用于向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,在所述波束下发送所述目标终端的控制信息和数据;
接收模块703,用于在所述波束下接收所述目标终端的控制信息和数据。
在一些实施例中,处理模块701还用于:为所述目标终端调度用于数据传输的波束之前,通过发送模块702发送系统广播消息或者RRC指示消息,所述消息携带至少一个波束的波束配置信息。
在一些实施例中,处理模块701可具体用于:获取终端的位置信息,从所述至少一个波束中选取一个波束方向与所述目标终端的位置匹配且用于数据传输的波束。
在一些实施例中,发送模块702可具体用于:向所述目标终端发送MAC CE或DCI,其中至少携带所述波束的索引。
在一些实施例中,波束的服务时间信息,包括:波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
在一些实施例中,处理模块701还用于:根据与所述目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定所述波束激活时间图样信息的波束激活持续时间。
在一些实施例中,处理模块701还用于:根据为所述目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束激活时间等至少一项的指示信息,控制卫星天线阵列在指定的频带、方向发送波束;或者,根据为所述目标终端调度的波束,向卫星处理单元发送波束控制指令,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间;或者,根据为所述目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得所述卫星波束控制模块将所述波束控制指令发送给卫星处理单元,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间。
在一些实施例中,处理模块701具体用于:当接收到所述目标终端发送 的调度请求时,为所述目标终端调度用于数据传输的波束;或者,当有所述目标终端的下行数据到达时,为所述目标终端调度用于数据传输的波束。
在此需要说明的是,本申请实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种终端。该终端可以实现前述实施例中终端侧的功能。
参见图8,为本申请实施例提供的网络设备的结构示意图。该网络设备可包括:处理模块801、发送模块802、接收模块803。
接收模块803,用于接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收;
发送模块802,用于根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的发送。
在一些实施例中,接收模块803还用于:接收网络设备发送的波束调度指示信息之前,接收所述网络设备发送的系统广播消息或RRC指示消息,所述系统消息携带至少一个波束的波束配置信息。
在一些实施例中,发送模块802还用于:接收网络设备发送的波束调度指示信息之前,发送位置信息给所述网络设备。
在一些实施例中,接收模块803具体用于:接收网络设备发送的MAC CE或DCI,其中至少携带所述波束的索引。
在一些实施例中,波束的服务时间信息,包括:波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
在一些实施例中,接收模块803在发送模块802向所述网络设备发送调度请求后,接收所述网络设备根据所述调度请求发送的波束调度指示信息,所述波束调度指示信息所指示的波束为所述网络设备为所述目标终端分配的用于进行数据传输的波束。
在此需要说明的是,本申请实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种网络设备。该网络设备可以实现前述实施例中网络设备侧的功能。
参见图9,为本申请实施例提供的网络设备的结构示意图。如图所示,该网络设备可包括:处理器901、存储器902、收发机903以及总线接口904。
处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。收发机903用于在处理器901的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器902代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器901中,或者由处理器901实现。在实现过程中,信号处理流程的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。处理器901可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体 现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器901,用于读取存储器902中的计算机指令并执行图3所示的流程中网络设备实现的功能。
具体地,处理器901可以读取存储器902中的计算机指令,执行以下操作:根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;在所述波束下发送或接收所述目标终端的控制信息和数据。
在此需要说明的是,本申请实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种终端。该终端可以实现前述实施例中终端侧的功能。
参见图10,为本申请实施例提供的终端的结构示意图。如图所示,该终端可包括:处理器1001、存储器1002、收发机1003以及总线接口1004。
处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。收发机1003用于在处理器1001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1001负责管理总线架构和通常的处理,存 储器1002可以存储处理器1001在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1001中,或者由处理器1001实现。在实现过程中,信号处理流程的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1001,用于读取存储器1002中的计算机指令并执行图6所示的流程中网络设备实现的功能。
具体地,处理器1001可以读取存储器1002中的计算机指令,执行以下操作:接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收或发送。
在此需要说明的是,本申请实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行上述实施例中网络设备所执行的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行上述实施例中终端所执行的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种数据传输方法,其特征在于,包括:
    根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
    向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
    在所述波束下发送或接收所述目标终端的控制信息和数据。
  2. 如权利要求1所述的方法,其特征在于,为所述目标终端调度用于数据传输的波束之前,还包括:
    发送系统广播消息或者无线资源控制RRC指示消息,所述消息携带至少一个波束的波束配置信息。
  3. 如权利要求2所述的方法,其特征在于,为所述目标终端调度用于数据传输的波束,包括:
    获取终端的位置信息,从所述至少一个波束中选取一个波束方向与所述目标终端的位置匹配且用于数据传输的波束。
  4. 如权利要求2所述的方法,其特征在于,向所述目标终端发送波束调度指示信息,包括:
    向所述目标终端发送媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  5. 如权利要求1所述的方法,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    根据与所述目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定所述波束激活时间图样信息的波束激活持 续时间。
  7. 如权利要求1所述的方法,其特征在于,还包括:
    根据为所述目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束激活时间等至少一项的指示信息,控制卫星天线阵列在指定的频带、方向发送波束;或者
    根据为所述目标终端调度的波束,向卫星处理单元发送波束控制指令,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间;或者
    根据为所述目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得所述卫星波束控制模块将所述波束控制指令发送给卫星处理单元,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间。
  8. 如权利要求1所述的方法,其特征在于,根据目标终端的业务需求,为所述目标终端调度用于数据传输的波束,包括:
    当接收到所述目标终端发送的调度请求时,为所述目标终端调度用于数据传输的波束;或者
    当有所述目标终端的下行数据到达时,为所述目标终端调度用于数据传输的波束。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
  10. 一种数据传输方法,其特征在于,包括:
    接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束 索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
    根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收或发送。
  11. 如权利要求10所述的方法,其特征在于,接收网络设备发送的波束调度指示信息之前,还包括:
    接收所述网络设备发送的系统广播消息或无线资源控制RRC指示消息,所述系统消息携带至少一个波束的波束配置信息。
  12. 如权利要求10所述的方法,其特征在于,接收网络设备发送的波束调度指示信息之前,还包括:
    发送位置信息给所述网络设备。
  13. 如权利要求10所述的方法,其特征在于,接收网络设备发送的波束调度指示信息,包括:
    接收网络设备发送的媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  14. 如权利要求10所述的方法,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  15. 如权利要求10所述的方法,其特征在于,接收网络设备发送的波束调度指示信息,包括:
    向所述网络设备发送调度请求,接收所述网络设备根据所述调度请求发送的波束调度指示信息,所述波束调度指示信息所指示的波束为所述网络设备为所述目标终端分配的用于进行数据传输的波束。
  16. 如权利要求10-15中任一项所述的方法,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合 构成一个小区。
  17. 一种网络设备,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行以下操作:
    根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
    向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
    在所述波束下发送或接收所述目标终端的控制信息和数据。
  18. 如权利要求17所述的网络设备,其特征在于,为所述目标终端调度用于数据传输的波束之前,还包括:
    发送系统广播消息或者无线资源控制RRC指示消息,所述消息携带至少一个波束的波束配置信息。
  19. 如权利要求18所述的网络设备,其特征在于,为所述目标终端调度用于数据传输的波束,包括:
    获取终端的位置信息,从所述至少一个波束中选取一个波束方向与所述目标终端的位置匹配且用于数据传输的波束。
  20. 如权利要求18所述的网络设备,其特征在于,向所述目标终端发送波束调度指示信息,包括:
    向所述目标终端发送媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  21. 如权利要求17所述的网络设备,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  22. 如权利要求21所述的网络设备,其特征在于,所述操作还包括:
    根据与所述目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定所述波束激活时间图样信息的波束激活持续时间。
  23. 如权利要求17所述的网络设备,其特征在于,所述操作还包括:
    根据为所述目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束激活时间等至少一项的指示信息,控制卫星天线阵列在指定的频带、方向发送波束;或者
    根据为所述目标终端调度的波束,向卫星处理单元发送波束控制指令,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间;或者
    根据为所述目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得所述卫星波束控制模块将所述波束控制指令发送给卫星处理单元,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间。
  24. 如权利要求17所述的网络设备,其特征在于,根据目标终端的业务需求,为所述目标终端调度用于数据传输的波束,包括:
    当接收到所述目标终端发送的调度请求时,为所述目标终端调度用于数据传输的波束;或者
    当有所述目标终端的下行数据到达时,为所述目标终端调度用于数据传输的波束。
  25. 如权利要求17-24中任一项所述的网络设备,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
  26. 一种终端,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行以下操作:
    接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;
    根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收或发送。
  27. 如权利要求26所述的终端,其特征在于,所述操作还包括:
    接收网络设备发送的波束调度指示信息之前,接收所述网络设备发送的系统广播消息或无线资源控制RRC指示消息,所述系统消息携带至少一个波束的波束配置信息。
  28. 如权利要求26所述的终端,其特征在于,所述操作还包括:
    接收网络设备发送的波束调度指示信息之前,发送位置信息给所述网络设备。
  29. 如权利要求26所述的终端,其特征在于,接收网络设备发送的波束调度指示信息,包括:
    接收网络设备发送的媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  30. 如权利要求26所述的终端,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  31. 如权利要求26所述的终端,其特征在于,接收网络设备发送的波束调度指示信息,包括:
    向所述网络设备发送调度请求,接收所述网络设备根据所述调度请求发送的波束调度指示信息,所述波束调度指示信息所指示的波束为所述网络设备为所述目标终端分配的用于进行数据传输的波束。
  32. 如权利要求26-31中任一项所述的终端,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
  33. 一种网络设备,其特征在于,包括:
    处理模块,用于根据目标终端的业务需要,为所述目标终端调度用于数据传输的波束;
    发送模块,用于向所述目标终端发送波束调度指示信息,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,在所述波束下发送所述目标终端的控制信息和数据;
    接收模块,用于在所述波束下接收所述目标终端的控制信息和数据。
  34. 如权利要求33所述的网络设备,其特征在于,所述处理模块还用于:
    在为所述目标终端调度用于数据传输的波束之前,通过发送模块发送系统广播消息或者无线资源控制RRC指示消息,所述消息携带至少一个波束的波束配置信息。
  35. 如权利要求34所述的网络设备,其特征在于,所述处理模块,具体用于:
    获取终端的位置信息,从所述至少一个波束中选取一个波束方向与所述目标终端的位置匹配且用于数据传输的波束。
  36. 如权利要求34所述的网络设备,其特征在于,所述发送模块,具体用于:
    向所述目标终端发送媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  37. 如权利要求33所述的网络设备,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  38. 如权利要求37所述的网络设备,其特征在于,所述处理模块,还用于:
    根据与所述目标终端处于同一服务小区且需要进行数据传输的终端的数量、业务状态中的至少一项,确定所述波束激活时间图样信息的波束激活持续时间。
  39. 如权利要求33所述的网络设备,其特征在于,所述处理模块,还用于:
    根据为所述目标终端调度的波束,基于天线阵列索引、波束方向、频带、波束激活时间等至少一项的指示信息,控制卫星天线阵列在指定的频带、方向发送波束;或者
    根据为所述目标终端调度的波束,向卫星处理单元发送波束控制指令,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间;或者
    根据为所述目标终端调度的波束,向卫星波束控制模块发送波束控制指令,使得所述卫星波束控制模块将所述波束控制指令发送给卫星处理单元,所述波束控制指令用于控制卫星天线阵列产生相应的波束,所述波束控制指令携带以下信息中的至少一项:天线阵列索引、波束方向、频带、波束激活时间。
  40. 如权利要求33所述的网络设备,其特征在于,所述处理模块,具体用于:
    当接收到所述目标终端发送的调度请求时,为所述目标终端调度用于数 据传输的波束;或者
    当有所述目标终端的下行数据到达时,为所述目标终端调度用于数据传输的波束。
  41. 如权利要求33-40中任一项所述的网络设备,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
  42. 一种终端,其特征在于,包括:
    接收模块,用于接收网络设备发送的波束调度指示信息,所述波束调度指示信息用于指示为目标终端调度的波束,所述波束调度指示信息包括所述波束对应的波束索引、频带、小区标识、波束方向、波束的服务时间信息中的至少一项;以及,根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的接收;
    发送模块,用于根据接收到的所述波束调度指示信息,在所述波束上进行数据和控制信息的发送。
  43. 如权利要求42所述的终端,其特征在于,所述接收模块还用于:
    在接收网络设备发送的波束调度指示信息之前,接收所述网络设备发送的系统广播消息或无线资源控制RRC指示消息,所述系统消息携带至少一个波束的波束配置信息。
  44. 如权利要求42所述的终端,其特征在于,所述发送模块还用于:
    在所述接收模块接收网络设备发送的波束调度指示信息之前,发送位置信息给所述网络设备。
  45. 如权利要求42所述的终端,其特征在于,所述接收模块,具体用于:
    接收网络设备发送的媒体接入控制控制单元MAC CE或下行链路控制信息DCI,其中至少携带所述波束的索引。
  46. 如权利要求42所述的终端,其特征在于,波束的服务时间信息,包括:
    波束的生效起始时间、波束激活持续时间、波束激活时间图样信息中的至少一项,所述波束激活时间图样信息包括波束的激活周期、激活周期内波束激活持续时间、占空比中的至少两项。
  47. 如权利要求42所述的终端,其特征在于,所述接收模块,具体用于:
    通过所述发送模块向所述网络设备发送调度请求,接收所述网络设备根据所述调度请求发送的波束调度指示信息,所述波束调度指示信息所指示的波束为所述网络设备为所述目标终端分配的用于进行数据传输的波束。
  48. 如权利要求42-47所述的终端,其特征在于,所述波束对应一个小区或者一个载波或者一个部分带宽BWP;所述波束被指定为下行波束或者上行波束,或者包含下行波束和上行波束且该下行波束和上行波束联合构成一个小区。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-9中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求10-16中任一项所述的方法。
PCT/CN2021/076742 2020-05-11 2021-02-18 一种数据传输方法及设备 WO2021227587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010398007.9A CN113644951B (zh) 2020-05-11 2020-05-11 一种数据传输方法及设备
CN202010398007.9 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021227587A1 true WO2021227587A1 (zh) 2021-11-18

Family

ID=78415591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076742 WO2021227587A1 (zh) 2020-05-11 2021-02-18 一种数据传输方法及设备

Country Status (2)

Country Link
CN (1) CN113644951B (zh)
WO (1) WO2021227587A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116527108A (zh) * 2023-04-26 2023-08-01 中国人民解放军32039部队 一种基于地面管控中心的多址资源综合调度方法和装置
CN116527107A (zh) * 2023-04-26 2023-08-01 中国人民解放军32039部队 静止轨道卫星相控阵上行波束的调度方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873670B (zh) * 2021-12-03 2022-03-18 中国星网网络系统研究院有限公司 一种随机接入方法、系统、装置、设备及介质
CN116506864A (zh) * 2022-01-19 2023-07-28 华为技术有限公司 通信方法及装置
CN117596631A (zh) * 2022-08-08 2024-02-23 华为技术有限公司 一种通信方法和装置
CN117320137B (zh) * 2023-11-29 2024-02-23 上海卫星互联网研究院有限公司 发送方法、接收方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180038A1 (en) * 2015-12-16 2017-06-22 Hughes Network Systems, Llc System and method of predictive satellite spot beam selection
WO2018081991A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 传输上行信号的方法、终端设备和网络侧设备
WO2018094966A1 (zh) * 2016-11-24 2018-05-31 华为技术有限公司 一种数据传输速率的控制方法及设备
US20180269958A1 (en) * 2017-03-17 2018-09-20 Aireon Llc Scheduling beams of a satelite antenna
CN109391948A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种波束指示的处理方法、移动终端及网络侧设备
CN109479308A (zh) * 2016-08-12 2019-03-15 Lg 电子株式会社 无线通信系统中的信号发送的方法及其设备
WO2019118384A1 (en) * 2017-12-15 2019-06-20 Gogo Llc Dynamic satellite beam switching
CN110519844A (zh) * 2018-05-22 2019-11-29 电信科学技术研究院有限公司 物理上行信道的传输方法、接收方法、终端及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484242A (zh) * 2016-06-03 2017-12-15 北京信威通信技术股份有限公司 一种多波束非正交接入方法
CN108377536A (zh) * 2016-11-03 2018-08-07 华为技术有限公司 一种无线通信的方法和装置
CN108633064A (zh) * 2017-03-24 2018-10-09 夏普株式会社 多波束控制信息传输的方法和设备
CN108810922B (zh) * 2017-05-03 2021-02-23 华为技术有限公司 一种通信方法及终端、基站
CN109302720B (zh) * 2017-07-25 2021-03-23 华为技术有限公司 一种选择波束的方法及设备
CN109587699B (zh) * 2017-09-29 2021-07-09 华为技术有限公司 传输数据的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180038A1 (en) * 2015-12-16 2017-06-22 Hughes Network Systems, Llc System and method of predictive satellite spot beam selection
CN109479308A (zh) * 2016-08-12 2019-03-15 Lg 电子株式会社 无线通信系统中的信号发送的方法及其设备
WO2018081991A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 传输上行信号的方法、终端设备和网络侧设备
WO2018094966A1 (zh) * 2016-11-24 2018-05-31 华为技术有限公司 一种数据传输速率的控制方法及设备
US20180269958A1 (en) * 2017-03-17 2018-09-20 Aireon Llc Scheduling beams of a satelite antenna
CN109391948A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种波束指示的处理方法、移动终端及网络侧设备
WO2019118384A1 (en) * 2017-12-15 2019-06-20 Gogo Llc Dynamic satellite beam switching
CN110519844A (zh) * 2018-05-22 2019-11-29 电信科学技术研究院有限公司 物理上行信道的传输方法、接收方法、终端及基站

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116527108A (zh) * 2023-04-26 2023-08-01 中国人民解放军32039部队 一种基于地面管控中心的多址资源综合调度方法和装置
CN116527107A (zh) * 2023-04-26 2023-08-01 中国人民解放军32039部队 静止轨道卫星相控阵上行波束的调度方法和装置
CN116527107B (zh) * 2023-04-26 2024-02-23 中国人民解放军32039部队 静止轨道卫星相控阵上行波束的调度方法和装置
CN116527108B (zh) * 2023-04-26 2024-04-19 中国人民解放军32039部队 一种基于地面管控中心的多址资源综合调度方法和装置

Also Published As

Publication number Publication date
CN113644951B (zh) 2023-03-21
CN113644951A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021227587A1 (zh) 一种数据传输方法及设备
US20230262515A1 (en) Communication method and apparatus
JP6406777B2 (ja) ビーム構成方法、基地局、およびユーザ機器
EP3883288B1 (en) Wireless communication method, terminal device, and network device
WO2021190278A1 (zh) 业务的请求方法及装置
JP2022511334A (ja) ランダムアクセス方法及び装置、ネットワークデバイス、端末
US11903013B2 (en) Direct communication resource allocation method and apparatus
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2021249081A1 (zh) 一种随机接入方法及终端
EP3876566B1 (en) Direct communication resource allocation method and apparatus
JP7403631B2 (ja) 無線通信方法及び端末装置
WO2021134636A1 (zh) 随机接入方法及通信装置
WO2022127806A1 (zh) 一种无线通信的方法及装置
CA3066672C (en) Method for wireless communication, terminal device, network device, and network node
JP2022503933A (ja) 信号送信方法、アンテナパネル情報の指示方法、装置及びシステム
US20230127036A1 (en) Method and device for channel listening
WO2024067270A1 (zh) 一种切换方法及通信装置
WO2023143269A1 (zh) 一种通信方法及装置
WO2023245493A1 (zh) 无线通信的方法和终端设备
US20240114584A1 (en) Communication method and communication apparatus
WO2024032471A1 (zh) 一种上行调度方法及装置
WO2024093621A1 (zh) 一种用于通信的方法、设备、存储介质和程序产品
WO2023078186A1 (zh) 一种无线通信的方法和装置
WO2024007272A1 (zh) 无线通信方法、终端设备及网络设备
US20230421297A1 (en) Method for processing sidelink retransmission resources, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804545

Country of ref document: EP

Kind code of ref document: A1