WO2021249081A1 - 一种随机接入方法及终端 - Google Patents

一种随机接入方法及终端 Download PDF

Info

Publication number
WO2021249081A1
WO2021249081A1 PCT/CN2021/092600 CN2021092600W WO2021249081A1 WO 2021249081 A1 WO2021249081 A1 WO 2021249081A1 CN 2021092600 W CN2021092600 W CN 2021092600W WO 2021249081 A1 WO2021249081 A1 WO 2021249081A1
Authority
WO
WIPO (PCT)
Prior art keywords
sul
suls
parameter information
available
random access
Prior art date
Application number
PCT/CN2021/092600
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
刘云
王洲
张健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21821367.6A priority Critical patent/EP4145910A4/en
Priority to US18/009,589 priority patent/US20230354433A1/en
Publication of WO2021249081A1 publication Critical patent/WO2021249081A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This application relates to the field of communications, and in particular to a random access method and terminal.
  • a cell usually includes one uplink carrier and one downlink carrier.
  • the terminal equipment receives the downlink signal on the downlink carrier and sends the uplink signal on the uplink carrier.
  • the frequency band deployed in the 5G new radio (NR) system is higher than that of the 4G long term evolution (LTE) system. Since the attenuation characteristic of electromagnetic waves is that the higher the frequency, the greater the attenuation, so the attenuation of the NR signal is greater than that of the LTE signal. From another perspective, when the signal from the base station or terminal is at the same degree of attenuation, the coverage of the NR cell is smaller than that of the LTE cell. And the transmit power of the macro base station on the downlink and the terminal on the uplink is quite different. The macro base station can transmit with a power of more than one hundred watts, while the transmit power of a mobile phone is usually only in the milliwatt level, which leads to This solves the problem of unbalanced uplink and downlink coverage.
  • LTE long term evolution
  • a supplementary uplink is introduced in the NR. That is, an additional uplink carrier is introduced in a cell, and the frequency of the carrier is lower, thereby improving uplink coverage.
  • the embodiments of the present application provide a random access method and a terminal.
  • the method is applied to a communication system, and the communication system includes a network device and a terminal.
  • the network equipment configures multiple SULs in a cell, and sends the configuration information of the multiple SULs to the terminal.
  • the terminal receives the configuration information of the multiple SULs, and can select one SUL from the multiple SULs for initiation according to the configuration information Random access to enhance uplink coverage.
  • the embodiments of the present application provide a random access method.
  • the method may include: a terminal receives configuration information sent by a network device, and the configuration information includes information of multiple secondary uplink carriers SUL; Select the first SUL used for random access in, and then, the terminal can initiate random access on the first SUL.
  • the network equipment can be configured with multiple SULs, and the multiple SULs are used to improve the uplink coverage of the cell, and solve the problem of limited uplink coverage in scenarios where the terminal equipment is located at the edge of the cell or the terminal equipment is far from the network equipment.
  • the terminal can select the first SUL from multiple SULs to initiate random access, thereby improving user experience. And because the cell includes multiple SULs, it can meet the requirement that a large number of terminals in the cell can access the network, and improve the success rate of uplink random access for multiple terminals.
  • the configuration information includes the channel quality threshold, SUL priority, SUL load, the number of resources available on the SUL, the slot position of the available random access channel RACH resource on the SUL, and the frequency band in which the SUL is located. At least one of them.
  • the configuration information includes the first parameter information and/or the second parameter information; the selection of the first SUL for random access among the multiple SULs according to the configuration information may include: One parameter information determines M second SULs among multiple SULs.
  • the first parameter information includes channel quality threshold, priority, load, number of available resources, slot position of available random access channel RACH resource, and SUL location At least one of the frequency bands; if M is equal to 1, the second SUL is the first SUL; if M is greater than 1, the terminal further selects M second SULs according to the second parameter information (the second SUL is a candidate resource The first SUL used for random access is determined in ), and the second parameter information is the channel quality threshold, priority, load, the number of available resources, the slot position of the available random access channel RACH resource, and the frequency band in which the SUL is located For at least one parameter information of, the first parameter information is different from the second parameter information.
  • the terminal can select the first SUL from multiple SULs based on one parameter.
  • the terminal can integrate different parameter information from multiple SULs.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the priority.
  • the terminal can first select candidate resources from multiple SULs according to the first parameter information, and then select the candidate resources The first SUL used for random access.
  • the first parameter information includes a first channel quality threshold corresponding to each SUL of the multiple SULs, and the first channel quality threshold is used by the terminal device to determine whether or not to use the channel quality threshold corresponding to the first channel quality threshold.
  • SUL performs random access; determining M second SULs according to the first parameter information may specifically include: the terminal receives a downlink signal, and determines a first information value according to the downlink signal, the first information value is used to characterize the channel quality; SUL, the terminal may compare the size of the first information value with the first channel quality threshold corresponding to each SUL, and determine the M second SULs according to the first information value and the first channel quality threshold corresponding to each SUL, if If M is 1, the second SUL is the first SUL; if M is greater than 1, the second parameter information is the SUL priority, the SUL load, the number of resources available on the SUL, and the The slot position of the available random access channel RACH resource, at least one parameter information in the frequency band where the SUL
  • a cell supports multiple SULs to improve uplink coverage.
  • the base station configures multiple SULs.
  • the terminal can select from multiple SULs for random access based on the current channel quality and the channel quality threshold corresponding to each SUL.
  • the terminal selects the first SUL from multiple SULs according to the channel quality, so as to ensure that uplink resources with good channel quality are selected for random access, and the success probability of random access for the terminal is improved.
  • the first parameter information includes the priority of each SUL in the multiple SULs; the terminal determining the M second SULs according to the first parameter information may specifically include: the terminal according to each of the multiple SULs The priority of each SUL determines the M second SULs.
  • the second SUL is the SUL with the highest priority among multiple SULs.
  • the second parameter information is the channel quality threshold, the At least one parameter information of the SUL load, the number of resources available on the SUL, the slot position of the random access channel RACH resource available on the SUL, and the frequency band in which the SUL is located; and then further according to the second parameter
  • the information determines the first SUL used for random access from M second SULs (the second SUL is a candidate resource).
  • the network device configures multiple SULs in a cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding priority, and the terminal can select the first SUL for random access from multiple SULs according to the priority in the configuration information.
  • the second SUL is the first SUL; if M is greater than 1, then
  • the second parameter information is the channel quality threshold, the SUL priority, the number of resources available on the SUL, the slot position of the available random access channel RACH resource on the SUL, and where the SUL is located
  • At least one parameter information in the frequency band, and then, the first SUL used for random access may be further determined from M second SULs (the second SUL is a candidate resource) according to the second parameter information.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding load, and the terminal can select the first SUL for random access from a plurality of SULs according to the load of each SUL. Thus, the load balance of each SUL can be guaranteed.
  • the first parameter information includes the number of available resources or the proportion of available resources of each SUL in the plurality of SULs, and the proportion of available resources is used to indicate the number of available resources;
  • the determining of the M second SULs by using parameter information may specifically include: the terminal determines the M second SULs according to the number of available resources of each SUL in the plurality of SULs, and the second SUL is the largest of the number of available resources.
  • the second SUL is the first SUL
  • the second parameter information is the channel quality threshold, the SUL priority, the SUL load, and the The slot position of the available random access channel RACH resource on the SUL and the at least one parameter information in the frequency band where the SUL is located.
  • the terminal may further obtain information from M second SULs (the second SUL is a candidate resource ) Determines the first SUL used for random access.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding number of available resources, and the terminal can select a SUL with a larger number of available resources from multiple SULs as the first SUL used for random access according to the number of available resources of each SUL. Reduce signal interference between terminals that select the first SUL for random access in the cell.
  • the available resources are available uplink time slot resources, or the available resources are available RACH resources.
  • the first parameter information includes the slot position of the available RACH resource of each SUL in the multiple SULs; the first parameter information to determine the M second SULs may also specifically include: the terminal determines that there are The first time unit of random access demand (or preparation to initiate random access); the terminal selects the SUL corresponding to the earliest first time slot position after the first time unit as the M second SUL, and multiple available RACH resources
  • the slot position includes the first slot position, if it is 1, the second SUL is the first SUL; if M is greater than 1, the second parameter information is the channel quality threshold, the SUL priority, The SUL load, the number of resources available on the SUL, and at least one parameter information in the frequency band in which the SUL is located.
  • the terminal may further obtain information from M second SULs (the second SUL is a candidate resource) according to the second parameter information. Determine the first SUL used for random access in.
  • M second SULs the second SUL is a candidate resource
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • the terminal can select the SUL corresponding to the slot position of the earliest available RACH resource as the first SUL, thereby reducing the delay of random access.
  • the first parameter information includes the frequency band in which each SUL of the multiple SULs is located; determining the M second SULs according to the first parameter information may specifically include: for each SUL, the terminal according to the SUL location The frequency band located in and the corresponding relationship between the frequency band and the maximum transmission power determine the maximum transmission power of the terminal device; the terminal can determine M second SULs according to the maximum transmission power of the terminal device, and the second SUL is the largest among the multiple maximum transmission powers.
  • the terminal may further obtain information from M second SULs (the second SUL is Candidate resources) determine the first SUL used for random access.
  • M second SULs the second SUL is Candidate resources
  • the terminal can determine the maximum transmission power of the terminal according to the frequency band where the SUL is located, and determine the first SUL according to the maximum transmission power of the terminal equipment, and the first SUL selected by the terminal has the maximum maximum transmission power, thereby increasing the success rate of random access, and Ensure the strength of the signal sent by the terminal.
  • the configuration information further includes a second channel quality threshold; the method further includes: the terminal receives a downlink signal and determines a first information value according to the downlink signal, the first information value is used to characterize the channel quality; When an information value is greater than the second channel quality threshold, select 2 steps to access the first SUL; or, when the first information value is less than or equal to the second channel quality threshold, select 4 steps to access the first SUL.
  • the terminal receives a downlink signal and determines a first information value according to the downlink signal, the first information value is used to characterize the channel quality
  • select 2 steps to access the first SUL select 2 steps to access the first SUL
  • select 4 steps to access the first SUL select 4 steps to access the first SUL.
  • the configuration information is information included in a system message broadcast by a network device.
  • the embodiments of the present application provide a device that can implement the functions performed by the terminal in the first aspect described above.
  • the function can be implemented by hardware or by hardware executing corresponding software; the hardware or software includes One or more modules corresponding to the above functions.
  • an embodiment of the present application provides a terminal, including a processor, the processor is coupled to at least one memory and a transceiver, and the processor is configured to read a computer program stored in the at least one memory, so that the The terminal executes the method described in any one of the above-mentioned first aspects.
  • an embodiment of the present application provides a computer-readable medium, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer executes the first aspect described above. Methods.
  • an embodiment of the present application provides a chip, which is characterized by comprising a processor and a communication interface, and the processor is configured to read instructions to execute the method of the first aspect.
  • this application provides a chip system including a processor for supporting the terminal to implement the functions involved in the above aspects, for example, sending or processing the data and/or information involved in the above methods .
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the terminal.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • Figure 1 is an example diagram of a scenario of a random access method
  • FIG. 2 is a schematic diagram of a scenario of an example of a communication system in an embodiment of the application
  • FIG. 3 is a schematic diagram of an example of a random access method in an embodiment of the application.
  • FIG. 4 is a schematic flowchart of steps of an embodiment of a random access method in an embodiment of this application;
  • 5A is a schematic diagram of 4-step random access in an embodiment of this application.
  • 5B is a schematic diagram of 2-step random access in an embodiment of this application.
  • FIG. 6 is a schematic diagram of time slot resources in SUL in an embodiment of this application.
  • FIG. 7 is a schematic diagram of the slot position of the earliest available RACH resource in the SUL in an embodiment of the application.
  • FIG. 8 is a schematic flowchart of steps of another embodiment of a random access method in an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of an example of a device in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of an example of a processing device in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of an example of a terminal in an embodiment of this application.
  • the frequency band deployed in the NR cell is usually higher than 4G LTE (for example, 3.5GHz, 4.9GHz, etc.). Since the attenuation characteristic of electromagnetic waves is that the higher the frequency, the greater the attenuation. Therefore, the attenuation of the NR signal is greater than that of the LTE signal. From another perspective, when the signal attenuation from the network equipment or terminal is the same, the distance corresponding to the NR system is shorter than that of the LTE system. In other words, the coverage area of the NR cell is smaller than that of the LTE cell.
  • the uplink coverage of the cell is limited, and the terminal equipment's access to the network is greatly restricted. Affect the user experience.
  • the embodiments of the present application provide a random access method, which is applied to a communication system
  • the communication system includes but is not limited to a fourth generation (4th generation, 4G) communication system, 5G communication system, and 6G A communication system, a system that integrates multiple communication systems, or a communication system that will evolve in the future.
  • 4G fourth generation
  • 5G communication system 5G communication system
  • 6G A communication system a system that integrates multiple communication systems
  • LTE long-term evolution
  • NR new radio
  • 3GPP 3rd generation partnership project
  • the communication system may be described by taking a 5G communication system as an example.
  • the communication system includes a network device 201 and a terminal 202.
  • the network device 201 configures multiple SULs in a cell.
  • the network device 201 can broadcast the configuration information of multiple SULs separately.
  • Each terminal in the cell 202 may receive configuration information of multiple SULs.
  • the network device 201 broadcasts a system message, and the configuration information of the multiple SULs is carried in the system message.
  • a cell search is first performed to obtain the physical cell identity (PCI) of the current cell.
  • the terminal 202 can synchronize to the current cell through cell search, and then can read system messages in the physical broadcast channel (PBCH) of the serving cell.
  • PBCH physical broadcast channel
  • the cell covered by the network device 201 includes an uplink carrier (UL) 203 and a downlink carrier (DL) 204.
  • the uplink carrier 203 is called a normal uplink carrier (NUL).
  • NUL normal uplink carrier
  • the cell is a time division duplex (TDD) cell
  • TDD time division duplex
  • the center frequency and bandwidth of the uplink carrier (NUL) 203 and the downlink carrier 204 are the same.
  • TDD time division duplex
  • there is only one carrier in the TDD cell which is only logically distinguished Up and down. For example, when a TDD cell is deployed at 2515 to 2615 MHz, the uplink and downlink center frequencies are both 2565 MHz and the bandwidth is 100 MHz.
  • the cell is a frequency division duplex (FDD) cell
  • the center frequencies of the uplink carrier (NUL) 203 and the downlink carrier 204 are different (but usually the frequencies are relatively close).
  • the uplink carrier is 1920 ⁇ 1935MHz
  • the downlink carrier is 2110 ⁇ 2125MHz.
  • the cell may be a TDD cell or an FDD cell, which is not specifically limited.
  • Multiple SUL205 are supplementary uplinks of NUL203 in the same cell. Multiple SULs are generally in a low frequency band. For example, multiple SULs can be common LTE deployment frequency bands, and low frequency band signal loss is small, thereby ensuring uplink coverage.
  • the uplink resources in the current cell include multiple SULs and one NUL.
  • the terminal can dynamically select the uplink carrier that initiates random access among multiple SULs and one NUL.
  • the network device may configure a channel quality threshold (which may be referred to as a target threshold), and the foregoing configuration information includes the target threshold.
  • the terminal receives the target threshold and determines the channel quality of the current channel. If the channel quality of the current channel is lower than the target threshold, it indicates that the current channel quality is poor.
  • the terminal can determine to initiate random access on the SUL, and then further Select one SUL among multiple SULs to initiate random access. If the channel quality of the channel is higher than the target threshold, it indicates that the current channel quality is good.
  • the terminal can determine to select an uplink carrier among multiple SULs or NULs to initiate random access, and the uplink selected by the terminal
  • the carrier may be one SUL among multiple SULs, or it may also be NUL.
  • the terminal may determine to select NUL to initiate random access.
  • the terminal when multiple SULs are included in a cell, after receiving the system message broadcast by the network device, the terminal can select the first SUL for random access from the multiple SULs according to the configuration information of the multiple SULs. Then, the random access process is initiated through the first SUL.
  • the network equipment can be configured with multiple SULs.
  • the multiple SULs are used to improve the uplink coverage of the cell and solve the problem of limited uplink coverage in scenarios where the terminal is located at the edge of the cell or the terminal equipment is far from the network equipment.
  • the first SUL can be selected from multiple SULs to initiate random access, thereby improving user experience.
  • the requirement that a large number of terminals in the cell can access the network can be met, and the success rate of uplink random access by multiple terminals can be improved.
  • network equipment includes but is not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station (gNodeB or gNB) in NR or transmission receiving point/transmission reception point, TRP), 3GPP subsequent evolution of the base station, wireless relay node, wireless backhaul node, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device may be a base station as an example.
  • a terminal is a device with a wireless transceiver function.
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, Augmented reality (AR) terminal equipment, industrial control (industrial control) terminal, vehicle-mounted terminal equipment, driverless (self-driving) terminal, assisted driving terminal, remote medical (remote medical) Terminals, terminals in smart grids, terminals in transportation safety, terminals in smart cities, terminals in smart homes, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, wireless communication equipment, machine terminal, UE agent or UE device, etc.
  • the terminal may be a mobile phone as an example.
  • Parameters used to indicate channel quality including but not limited to reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), signal to interference plus noise ratio (signal to interference plus) noise ratio, SINR).
  • the channel quality can be reflected by at least one parameter among RSRP, RSRQ, and SINR.
  • the parameter used to indicate the channel quality may be described by taking RSRP as an example.
  • SUL priority refers to the priority level of SUL. The higher the SUL priority, the easier it is to be selected by the terminal.
  • SUL load refers to the amount of resources occupied by the SUL or the number of users using one SUL for communication. The heavier the load of the SUL, the more resources in the SUL have been occupied or the more users using the SUL for communication. For example, taking the amount of time domain resources as an example, a part (such as two-thirds) of time domain resources in a SUL has been occupied as communication resources in the LET. In the NR system, another part (one third) of the unoccupied time domain resources in the SUL can be used as uplink transmission resources. For another example, there are two SULs SUL 1 and SUL 2 in a cell, and the bandwidths of the two SULs are the same. If 50 terminals communicate with network equipment through SUL 1, and 100 terminals communicate with network equipment through SUL 2, it can be considered that the load of SUL 2 is heavier than that of SUL 1.
  • the number of available resources of the SUL may be the number of available time slot resources. For example, if the time that the system broadcast can be used for uplink transmission on a SUL accounts for 30% of the total time, the available resources are 30% of the total resources.
  • the number of available resources may be the number of random access channel (Random Access Channel, RACH) resources, and the RACH resources may include, but are not limited to, time domain resources, frequency domain resources, code domain resources, and space domain resources.
  • RACH Random Access Channel
  • each SUL includes multiple slots, and each available RACH resource has a corresponding slot position.
  • the slot position can use frame number, subframe number, time One or more of the slot numbers are used for identification, and the slot position is a time opportunity for the terminal to initiate random access.
  • the band where the SUL is located the range of the frequency where the SUL is located or the center frequency point of the spectrum.
  • the frequency band where the SUL is located includes two possible indication methods: 1.
  • the base station directly configures the band number or band index of the SUL; 2.
  • the base station configures the frequency domain position of the SUL center frequency point (for example, in Hz).
  • the central frequency point may be configured to be 725MHz), and the UE can determine the frequency band number or frequency band index value to which the SUL belongs according to the pre-stored information.
  • an embodiment of the random access method provided in the present application includes:
  • Step 401 The terminal receives configuration information sent by a network device, where the configuration information includes information of multiple secondary uplink carriers SUL.
  • the network device configures multiple SULs, and the network device broadcasts the configuration information.
  • the terminal receives multiple SUL information through system messages.
  • the system message broadcast by the network device includes the first information and configuration information.
  • the first information includes parameter information of each SUL in the multiple SULs.
  • the parameter information of the SUL itself may include: frequency domain information of the SUL (such as frequency band list, reference resource block (Resource Block, RB) location, subcarrier spacing, maximum transmission power P-max, whether there is a 7.5kHz offset Etc.), uplink bandwidth (bandwidth part, BWP) configuration (such as including BWP parameters, random access configuration, uplink physical shared channel (PUSCH) configuration, physical uplink control channel, PUCCH) configuration, etc.), time alignment timer configuration, etc.
  • frequency domain information of the SUL such as frequency band list, reference resource block (Resource Block, RB) location, subcarrier spacing, maximum transmission power P-max, whether there is a 7.5kHz offset Etc.
  • uplink bandwidth (bandwidth part, BWP) configuration such as including BWP parameters, random access configuration, uplink physical shared channel (PUSCH) configuration,
  • the configuration information is used to instruct the terminal to select the first SUL for random access from among multiple SULs.
  • the configuration information includes: the channel quality threshold, SUL priority, SUL load, the number of resources available on the SUL, the slot location of the available random access channel (RACH) resources on the SUL, and the frequency band where the SUL is located At least one parameter information in.
  • the system message broadcast by the base station includes the first information and configuration information.
  • the first information includes sub-information related to each SUL itself, and each sub-information indicates one SUL.
  • the configuration information includes multiple sub-configuration information, and each SUL is associated with one sub-configuration information, that is, the number of SULs is the same as the number of sub-configuration information.
  • each SUL is associated with a priority, so that each of the multiple SULs corresponds to its own sub-configuration information. It can be understood that in the system message body, the sub-information used to indicate that each SUL is associated with one sub-configuration information, so that one SUL corresponds to one sub-configuration information.
  • the sub-configuration information can be channel quality threshold, priority, load, At least one parameter in the number of available resources, the slot position of the available random access channel (RACH) resource, and the frequency band where the SUL is located.
  • each sub-configuration information may have a one-to-one correspondence with each SUL in sequence. For example, if there are at most N SULs in a cell, the system message can contain the following content, where SUL-ConfigList is the first information of all SULs, including at most N SUL-Configs (SUL-Config is the Sub-information of a certain SUL). At the same time, the system message may also include SUL-AccessConfigList.
  • SUL-AccessConfigList is configuration information of all SULs, including at most N SUL-AccessConfig (SUL-AccessConfig is sub-configuration information of one SUL).
  • SUL-AccessConfig is sub-configuration information of one SUL.
  • the i-th among the N SUL-Configs and the i-th among the N SUL-AccessConfigs all correspond to the i-th SUL.
  • the message body looks like this:
  • SUL-AccessConfigList:: SEQUENCE(size(1...N))OF SUL-AccessConfig
  • each sub-configuration information corresponds to an index of a SUL
  • the configuration information includes an index of each SUL in a plurality of SULs
  • the index of a SUL corresponds to one sub-configuration information (such as priority). If the number of SULs is three, the indexes of the three SULs are "1", "2", and "3" respectively. Among them, the priority corresponding to the index "1" is the first priority, the priority corresponding to the index "2" is the second priority, and the priority corresponding to the index "3" is the third priority.
  • An example of configuration information is shown below. There are at most N SULs in a cell, and the system message can contain the following content.
  • SUL-ConfigList is the first information of all SULs, including at most N SUL-Configs (SUL-Config is the first information for a certain SUL sub-information).
  • the system message may also include SUL-AccessConfigList, which is the configuration information of all SULs, including at most N SUL-AccessConfig (SUL-AccessConfig is the sub-configuration information of one SUL).
  • SUL-Config contains one SUL-Index, and the SUL-Index is used to define the index of the current SUL.
  • Each SUL-AccessConfig also contains one SUL-Index, and the SUL-Index is used to indicate which SUL corresponds to the current configuration information.
  • Each SUL-AccessConfig also contains 1 SUL-Priority, and SUL-Priority is used to indicate the priority of the current SUL.
  • the message body looks like this:
  • each sub-configuration information is a part of the corresponding SUL sub-information. That is, the configuration information is part of the first information.
  • SUL-ConfigList is the first information of all SULs, including at most N SUL-Configs (SUL-Config is the first information for a certain SUL sub-information).
  • SUL-Config contains a SUL-AccessConfig
  • SUL-AccessConfig is the sub-configuration information of the current SUL.
  • the message body looks like this:
  • Step 402 The terminal selects the first SUL used for random access among multiple SULs according to the configuration information.
  • the configuration information includes first parameter information and/or second parameter information.
  • the first parameter information is the channel quality threshold, the SUL priority, the SUL load, the number of resources available on the SUL, and the slot location of the available random access channel RACH resources on the SUL.
  • M At least one of the frequency bands in which the SUL is located, M is an integer greater than or equal to 1, for example, M is 1, 2 or 3, etc.
  • M is that the terminal selects the number of SULs that meet the requirements among multiple SULs according to the first parameter information.
  • the first parameter information is exemplified by the channel quality threshold.
  • the terminal receives a downlink signal, and determines the first information value according to the downlink signal.
  • the first information value is the RSRP value of the current channel.
  • the terminal when the terminal receives a downlink signal, the first information value is used to indicate the channel quality of the downlink channel.
  • the terminal can estimate the uplink channel quality according to the downlink channel quality. For example, the terminal estimates the channel quality of the uplink channel based on the difference between the frequency band where the downlink channel is located and the frequency band where the uplink channel is located, and the channel quality of the downlink channel. Then, for each SUL, the terminal compares the current RSRP value with the RSRP threshold value corresponding to each SUL. That is, compare the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal determines M second SULs according to the first information value and the first channel quality threshold corresponding to each SUL. For example, when the first information value (current RSRP value) is less than threshold 3 (target channel quality threshold), the terminal determines that SUL3 is the first SUL used for random access, that is, M is 1, and the second SUL is random at this time The first SUL accessed. When the first information value is less than the threshold 2 and greater than the threshold 3, the terminal can use SUL2 or SUL3 for access, that is, M is 2, which means that there are two second SULs that can be used as candidate resources for selecting the first SUL.
  • threshold 3 target channel quality threshold
  • the second SUL is the first SUL, that is, the first SUL can be selected from multiple SULs by only one parameter information, that is, the following first possible implementation manner.
  • the first SUL used for random access is determined from the M second SULs according to the second parameter information.
  • the second parameter information is the channel quality threshold, SUL priority, SUL load, and the available resources on the SUL. At least one parameter information of the number, the slot position of the available random access channel RACH resource on the SUL, and the frequency band in which the SUL is located.
  • the first parameter information is different from the second parameter information.
  • the first parameter information is a channel quality threshold
  • the second parameter information is parameter information other than the channel quality threshold.
  • the second parameter information is a priority. That is, the second possible implementation is as follows.
  • the terminal may not select the first SUL from the M second SULs through the second parameter information, but may select the first SUL according to a preset manner. For example, the terminal selects the first SUL from the M second SULs in a random selection manner, or selects the SUL with the smallest (or largest) SUL index as the first SUL, etc.
  • the specific manner is not limited.
  • the configuration information includes a parameter information
  • the first parameter information is: channel quality threshold, priority, load, number of available resources, slot location of available random access channel RACH resources, Any parameter information in the frequency band where the SUL is located.
  • the terminal may directly select the first SUL used for random access from multiple SULs according to one piece of parameter information.
  • the configuration information includes at least two parameter information (that is, the first parameter information and the second parameter information), and the first SUL is selected from the multiple SULs through a combination of the at least two parameter information.
  • the first parameter information includes at least one parameter information of channel quality threshold, priority, load, number of available resources, slot position of available random access channel RACH resource, and frequency band in which SUL is located.
  • the second parameter information includes at least one parameter information in which the first parameter information is channel quality threshold, priority, load, number of available resources, slot location of available random access channel RACH resource, and frequency band in which SUL is located.
  • the terminal selects at least two second SULs as candidate resources among multiple SULs according to the first parameter information (such as the channel quality threshold).
  • the first parameter information such as the channel quality threshold.
  • the terminal determines the first SUL used for random access from the at least two second SULs according to the second parameter information (such as priority).
  • the second parameter information such as priority
  • the terminal can select the first SUL from the multiple SULs by combining different parameter information. That is, the terminal may first select candidate resources from multiple SULs according to the first parameter information, and then select the first SUL used for random access from the candidate resources.
  • the configuration information may also include three or more parameter information.
  • Each parameter information includes at least one of channel quality threshold, priority, load, number of available resources, slot position of available random access channel RACH resource, and frequency band in which SUL is located. Different parameter information is different from each other.
  • the terminal may gradually narrow the range from the multiple SULs according to various parameter information, and finally determine the first SUL used for random access.
  • the network device may indicate the priority of each parameter information.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the load
  • the third parameter information is the number of available resources.
  • the priority of the first parameter information is higher than the priority of the second parameter information.
  • the priority of is higher than the priority of the third parameter.
  • the terminal device gradually selects the first SUL from the multiple SULs according to the priority order of the parameter information. For example, the terminal first selects multiple second SULs from multiple SULs based on channel quality parameters, then selects multiple third SULs from multiple second SULs based on load, and finally, selects multiple third SULs based on the number of available resources.
  • the terminal device can select one SUL from multiple second SULs as the first SUL according to the load, there is no need to further select it through the third parameter information.
  • the priority of each parameter information may be determined by the terminal device, that is, the terminal device determines the priority of multiple parameter information by itself. The terminal device gradually selects the first SUL from the multiple SULs according to the priority of each parameter information from high to low.
  • Step 403 The terminal initiates random access on the first SUL.
  • the configuration information also includes a second channel quality threshold, which is used by the terminal to determine whether to perform random access in 2 or 4 steps.
  • the second channel quality threshold may be RSRP threshold, RSRQ threshold, SINR threshold, or the like.
  • the second channel quality threshold may be described by taking the RSRP threshold as an example.
  • the terminal receives the downlink signal, and the terminal determines the first information value according to the downlink signal, and the first information value is used to characterize the channel quality.
  • the terminal may receive a downlink signal through a downlink carrier (DL) in a cell, and the first information value may be RSRP, RSRQ, SINR, etc., and the first information value is an example of the first RSRP.
  • DL downlink carrier
  • the terminal compares the first information value with a second channel quality threshold.
  • the second channel quality threshold is configured by the network device. When the first information value is greater than the second channel quality threshold, it indicates that the current channel quality is better. In a better case, select the first SUL in 2 steps. When the first information value is less than or equal to the second channel quality threshold, it indicates that the current channel quality is poor, and 4 steps can be selected to access the first SUL.
  • 2-step access may be used, or 4-step access may be used, which is not specifically limited.
  • the 4-step access is used to increase the success rate of random access.
  • the 2-step access method can save data transmission steps and improve the efficiency of random access.
  • the 4-step random access includes the following four steps:
  • the terminal sends a message 1 (Msg1) to the network device, that is, the terminal sends a random access preamble sequence to the network device.
  • Msg1 message 1
  • the terminal After determining the first SUL, the terminal selects the preamble sequence on the first SUL to notify the network device of a random access request. After determining the initial transmit power, the terminal initiates random access through the physical random access channel (PRACH). enter.
  • PRACH physical random access channel
  • the network device feeds back message 2 (Msg2) to the terminal, that is, the network device feeds back a random access response (RAR) to the terminal, and the response signal is transmitted on the physical downlink shared channel (PDSCH).
  • Msg2 message 2
  • RAR random access response
  • the base station receives the preamble information sent by the terminal, and if the network device successfully detects the preamble sequence sent by the terminal, it sends a RAR message to the terminal,
  • the terminal sends a message 3 (Msg3) to the network device, where the information contained in the Msg3 varies depending on the situation.
  • the terminal After the terminal receives the RAR message, the terminal sends its identifier to the network device through a physical uplink shared channel (PUSCH), which is allocated by the network device to the terminal in step 2.
  • PUSCH physical uplink shared channel
  • the terminal can send a small amount of data or signaling messages (that is, access information transmission) on the requested uplink resources.
  • the network device sends message 4 (Msg4) to the terminal, where the information contained in Msg4 varies depending on the situation.
  • Msg4 may be a conflict resolution success message.
  • the terminal receives the Msg4, the terminal can participate in normal resource scheduling and send data.
  • 2-step random access includes the following two steps:
  • the terminal sends a message A (MsgA) to the network device.
  • MsgA message A
  • MsgA is equivalent to Msg1 and Msg3 in the 4-step random access corresponding to FIG. 5A.
  • the terminal After determining the first SUL, the terminal selects the preamble sequence on the first SUL for random access, that is, the terminal sends the preamble sequence and access information to the network device.
  • the network device sends a RAR message to the terminal. If the terminal receives the RAR message, it proves that the random access is successful, and data transmission can be performed.
  • the base station can configure a channel quality threshold (such as an RSRP threshold).
  • a channel quality threshold such as an RSRP threshold
  • the UE can choose to use 2-step access.
  • the purpose is to set the RSRP threshold (such as msg-RSRP-Threshold or msg-RSRP-Threshold SUL) to ensure that the terminal uses 2-step access when the channel conditions are good enough, thereby increasing the preamble and PUSCH in msgA Probability of being received correctly.
  • the network device is configured with multiple SULs
  • the terminal can select the first SUL from the multiple SULs as the random access resource according to the configuration information
  • the terminal selects the preamble sequence on the first SUL
  • the first SUL The above preamble sequence is sent to the network terminal. If there are a large number of terminals, different terminals can choose different SULs to initiate random access, that is, the terminal sends premble on different SUL resources, thereby avoiding multiple terminals on the same wireless resource The same premble is sent on, causing conflicts.
  • the configuration information may not be broadcast through system messages.
  • the configuration information is information configured by the network device for the terminal, and the network device sends the configuration information to the terminal through unicast.
  • the terminal has been connected to the network, that is, when the terminal and the network device are in a connected state, the network device sends configuration information of multiple SULs to the terminal.
  • the terminal needs to re-initiate the random access process.
  • the terminal can use the previously received configuration information to select the first SUL for random access from multiple SULs.
  • the second SUL is the first SUL, that is, the terminal according to the channel quality threshold, the priority of the SUL, the load of the SUL, and the load of the SUL.
  • the number of available resources, the slot location of the available RACH resources, and any one parameter information (ie, the first parameter information or the second parameter information) in the frequency band where the SUL is located directly select the first SUL from the multiple SULs.
  • Example 1 The configuration information includes the channel quality threshold of each SUL.
  • Example 2 The configuration information includes the priority of each SUL.
  • Example 3 The configuration information includes the load of each SUL.
  • Example 4 The configuration information includes the number of resources available on each SUL.
  • Example 5 The configuration information includes the slot location of each available RACH resource.
  • Example 6 The configuration information includes the frequency band where each SUL is located.
  • the configuration information includes sub-configuration information corresponding to each of the multiple SULs.
  • the sub-configuration information is the first channel quality threshold.
  • the first channel quality threshold is used by the terminal device to determine whether it can be used corresponding to the first channel quality threshold.
  • SUL performs random access.
  • the first channel quality threshold is an RSRP threshold, and each SUL corresponds to an RSRP threshold.
  • SULs are broadcast in the system message, namely SUL1, SUL2 and SUL3.
  • Different SULs can correspond to different RSRP thresholds.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is the RSRP value of the current channel. It can be understood that, when the terminal receives a downlink signal, the first information value is used to indicate the channel quality of the downlink channel.
  • the terminal can estimate the uplink channel quality according to the downlink channel quality. For example, the terminal estimates the channel quality of the uplink channel based on the difference between the frequency band where the downlink channel is located and the frequency band where the uplink channel is located, and the channel quality of the downlink channel.
  • the terminal compares the current RSRP value with the RSRP threshold value corresponding to each SUL. That is, compare the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal determines the first SUL according to the first channel quality threshold corresponding to the first information value and each SUL.
  • the first channel value is less than the target channel quality threshold of the multiple first channel quality thresholds, and the SUL corresponding to the target channel quality threshold is selected as the first SUL.
  • the terminal determines that SUL3 is the first SUL used for random access.
  • the terminal can use SUL2 or SUL3 for access, that is, the first SUL is SUL2 or SUL3, and the terminal can randomly select one SUL from SUL2 or SUL3 as the first SUL.
  • the terminal can use SUL1, SUL2, or SUL3 for access, that is, the first SUL is SUL1, SUL2, or SUL3, and the terminal can randomly select from SUL1, SUL2, or SUL2 with equal probability.
  • One SUL in SUL3 is selected as the first SUL used for random access.
  • the terminal can use SUL1 or SUL2 or SUL3 or NUL for access.
  • one channel quality threshold may correspond to multiple SULs, that is, at least two of the multiple SULs may correspond to the same channel quality threshold.
  • the base station is configured with 3 SULs
  • the RSRP threshold corresponding to SUL1 is configured as threshold 1
  • the RSRP threshold corresponding to SUL2 and SUL3 is threshold 2, where threshold 1>threshold 2.
  • the terminal can use SUL2 or SUL3 for access.
  • the first SUL is SUL2 or SUL3, and the terminal can randomly select SUL2 or SUL3 as the first SUL for random access.
  • the terminal can use SUL1 or SUL2 or SUL3 for access, that is, the first SUL is SUL1 or SUL2 or SUL3.
  • the terminal can use SUL1 or SUL2 or SUL3 or NUL for access.
  • a cell supports multiple SULs to improve uplink coverage.
  • the base station configures multiple SULs.
  • the terminal can select from multiple SULs for random access based on the current channel quality and the channel quality threshold corresponding to each SUL.
  • the terminal selects the first SUL from multiple SULs according to the channel quality to ensure the success probability of random access by the terminal.
  • Example 2 The configuration information includes the priority of each SUL in the multiple SULs.
  • the configuration information includes multiple sub-configuration information, and each SUL corresponds to one sub-configuration information.
  • the sub-configuration information is the priority.
  • the terminal compares the levels of multiple priorities corresponding to multiple SULs.
  • SUL1 and SUL2 are configured in the configuration message, namely SUL1 and SUL2.
  • the priority of SUL1 is the first priority
  • the priority of SUL2 is the second priority.
  • the first priority is higher than the second priority.
  • the terminal determines the first SUL according to the priority of each SUL in the multiple SULs, and the first SUL is the SUL with the highest priority among the multiple SULs.
  • the first priority is higher than the second priority, and the terminal selects SUL1 corresponding to the first priority as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding priority, and the terminal can select the first SUL for random access from multiple SULs according to the priority in the configuration information.
  • Example 3 The configuration information includes the load of each SUL in the multiple SULs.
  • the terminal compares the sizes of multiple loads corresponding to multiple SULs.
  • the base station when the base station indicates the SUL load, it can be characterized by an access control parameter value.
  • the access control parameter value is a number between 0 and 1. It can be understood that the smaller the access control parameter value, the heavier the current SUL load. The larger the value of the access control parameter, the lighter the load of the current SUL.
  • the terminal may select the SUL corresponding to the larger control parameter value as the first SUL used for random access.
  • the base station is configured with 3 SULs, and the 3 SULs are SUL1, SUL2, and SUL3.
  • SUL1 corresponds to the access control parameter value p (such as 0.4)
  • SUL2 corresponds to the access control parameter value q (such as 0.3)
  • SUL3 corresponds to the access control parameter value w (such as 0.2).
  • the terminal determines the first SUL according to the load of each SUL in the multiple SULs, and the first SUL is the SUL with the lightest load among the multiple loads.
  • the terminal selects SUL1 corresponding to the access control parameter 1 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding load, and the terminal can select the first SUL for random access from a plurality of SULs according to the load of each SUL. In this way, the load balance of each SUL can be ensured, and random access congestion can be avoided.
  • Example 4 The configuration information includes the number of available resources of each SUL in the multiple SULs.
  • the number of available resources is the number of available uplink time slot resources, or the number of available resources can be represented by the proportion of available time slot resources.
  • each SUL includes multiple time slots.
  • a part of the time slots on the SUL may be allocated in the LTE system for LTE communication, and the other part of the time slots may be used as uplink random access resources.
  • the terminal compares the size of the number of multiple available time slot resources corresponding to multiple SULs.
  • the network device is configured with 3 SULs, and the 3 SULs are SUL1, SUL2, and SUL3.
  • the number of available time slot resources of SUL1 is quantity a (or the proportion of available time slot resources a)
  • the number of available time slot resources of SUL2 is quantity b (or the proportion of available time slot resources b)
  • the available time of SUL3 The number of slot resources is the number c (or the proportion of available time slot resources c).
  • the terminal determines the first SUL according to the number of available time slot resources of each SUL in the multiple SULs, where the first SUL is the SUL corresponding to the largest value among the multiple available resources, or the first SUL is the multiple available resources SUL corresponding to the maximum of the proportion of.
  • the terminal selects SUL1 corresponding to the number a of available time slot resources as the first SUL for random access.
  • the number of available resources is the number of available RACH resources
  • the available RACH resources include, but are not limited to, time domain resources, frequency domain resources, code domain resources, and space domain resources.
  • the terminal compares the size of the number of multiple available RACH resources corresponding to multiple SULs.
  • SUL1 has the number of available RACH resources m (if there are 640 mutually orthogonal RACH resources), SUL2 has the number of available RACH resources n (if there are 320 mutually orthogonal RACH resources), and SUL3 has the number of available RACH resources s( If there are 160 mutually orthogonal RACH resources).
  • the terminal determines the first SUL according to the number of available RACH resources of each SUL in the multiple SULs, where the first SUL is the SUL corresponding to the largest value among the number of available RACH resources. That is, the terminal selects SUL1 corresponding to the number a of available RACH resources as the first SUL.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • Each SUL has a corresponding number of available resources, and the terminal can select a SUL with a larger number of available resources from multiple SULs as the first SUL used for random access according to the number of available resources of each SUL. Reduce signal interference between terminals that select the first SUL for random access in the cell.
  • Example 5 The configuration information includes the slot position of the available RACH resource of each SUL in the multiple SULs.
  • the base station configures 2 SULs, SUL1 and SUL2.
  • the terminal selects the SUL corresponding to the earliest first time slot position as the first SUL.
  • the slot position of the earliest available RACH resource in SUL1 is the third slot position.
  • the slot position of the earliest available RACH resource of SUL2 is the fifth slot position.
  • the terminal selects the SUL1 corresponding to the third slot position as the first SUL for random access.
  • the terminal determines the first time unit for which random access is required (or is ready to initiate random access).
  • the first time unit is the t-th time slot.
  • the terminal selects the SUL corresponding to the earliest first time slot position after the first time unit (t-th time slot) as the first SUL.
  • the slot position of the earliest available RACH resource in SUL1 is the (t+3)th slot position.
  • the slot position of the earliest available RACH resource in SUL2 is the (t+5)th slot position.
  • x is an integer greater than or equal to 3
  • y is an integer greater than or equal to 5.
  • the terminal selects the SUL1 corresponding to the (t+3)th slot position as the first SUL for random access.
  • the terminal determines the interval time slot from the first time unit to the first time slot position of the next available RACH resource. For example, in SUL1, the t-th time slot distance The interval between the slot positions of the earliest available RACH resource is 3 slots. In SUL2, the interval between the t-th time slot and the slot position of the earliest available RACH resource is 5 time slots, and the terminal selects the shortest interval time slot (3 interval time slots) from multiple interval time slots. The corresponding SUL is the first SUL.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal can select the SUL corresponding to the slot position of the earliest available RACH resource as the first SUL, thereby reducing the delay of random access.
  • Example 6 The configuration information includes the frequency band in which each SUL of the multiple SULs is located.
  • the base station configures 2 SULs, SUL1 and SUL2.
  • the frequency band where SUL1 is located is frequency band d
  • the frequency band where SUL2 is located is frequency band e.
  • the terminal determines the maximum transmit power of the terminal device according to the frequency band in which each SUL is located.
  • the terminal determines the maximum transmission power of the terminal device according to the frequency band d in which SUL1 is located.
  • the terminal can determine the maximum transmission power by querying the correspondence table between the frequency band and the maximum transmission power.
  • the correspondence table of the frequency band and the maximum transmission power has been pre-configured when the terminal leaves the factory. .
  • the terminal determines the maximum transmission power 1 corresponding to the frequency band d, the maximum transmission power 2 corresponding to the frequency band e, and the maximum transmission power 1>the maximum transmission power 2 according to the correspondence between the frequency band and the maximum transmission power.
  • the terminal determines the first SUL according to the maximum transmission power, where the first SUL is the SUL corresponding to the maximum value among the multiple maximum transmission powers.
  • the maximum value of maximum transmission power 1 and maximum transmission power 2 is maximum transmission power 1.
  • the terminal selects the SUL1 corresponding to the maximum transmit power of 1 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs improve the uplink coverage of the cell.
  • the terminal can determine the maximum transmission power of the terminal according to the frequency band where the SUL is located, and determine the first SUL according to the maximum transmission power of the terminal equipment, and the first SUL selected by the terminal has the maximum maximum transmission power, thereby increasing the success rate of random access, and Ensure the strength of the signal sent by the terminal.
  • the first SUL used for random access is selected from a plurality of SULs through a combination of at least two parameter information.
  • the configuration information includes at least the first parameter information and the second parameter information, and the terminal obtains information from multiple SULs through the first parameter information and the second parameter information.
  • the second parameter information may be the SUL priority, the SUL load, the number of resources available on the SUL, and the time of the random access channel RACH resources available on the SUL. Slot position and at least one parameter information in the frequency band in which the SUL is located, such as the following combination example 1 to combination example 6.
  • the second parameter information is the channel quality threshold, the SUL load, the number of resources available on the SUL, and the number of RACH resources available on the SUL.
  • the slot position and at least one parameter information in the frequency band in which the SUL is located are shown in the following combination example seven.
  • Combination example two a combination of the foregoing example one and example three, that is, the first parameter information is the channel quality threshold, and the second parameter information is the load.
  • Combination example three a combination of the foregoing example one and example four, that is, the first parameter information is the channel quality threshold, and the second parameter information is the number of available resources.
  • Combination example four a combination of the foregoing example 1 and example 5, that is, the first parameter information is the channel quality threshold, and the second parameter information is the slot position of the available RACH resource.
  • Combination example 5 a combination of the above example 1 and example 6, that is, the first parameter information is the channel quality threshold, and the second parameter information is the frequency band where the SUL is located.
  • Combination example six a combination of the above example one, example three, and example four, that is, the first parameter information is the channel quality threshold, and the second parameter information includes the load and the number of available resources.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the priority
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • the priority of SUL1 is the first priority
  • the priority of SUL2 is the second priority
  • the priority of SUL3 is the third priority.
  • the first priority is higher than the second priority
  • the second priority is higher than the third priority.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the channel quality threshold corresponding to each SUL.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is the current RSRP value.
  • the first information value is used to characterize the current channel quality.
  • the terminal compares the current RSRP value with the RSRP threshold value corresponding to each SUL. That is, compare the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal selects two second SULs from 3 SULs as candidate resources, such as SUL2 and SUL3 as candidate resources.
  • the terminal selects the first SUL used for random access from the multiple SULs according to the priority corresponding to each of the at least two second SULs.
  • the priority of SUL2 is higher than the priority of SUL3, and the terminal determines that SUL3 corresponding to the high priority is the first SUL used for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select from multiple second SULs according to the priority corresponding to each second SUL for random For the first SUL to be accessed, the first SUL for random access is selected from multiple SULs by integrating the channel quality threshold and priority of each SUL.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the load
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • SUL1 corresponds to the access control parameter value p (such as 0.4)
  • SUL2 corresponds to the access control parameter value q (such as 0.3)
  • SUL3 corresponds to the access control parameter value w (such as 0.2).
  • the smaller the access control parameter value the heavier the current SUL load.
  • the larger the value of the access control parameter the lighter the load of the current SUL.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the channel quality threshold corresponding to each SUL.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is used to characterize the current channel quality.
  • the first information value is the current RSRP value.
  • the terminal compares the first information value (current RSRP value) with the magnitude of the RSRP threshold corresponding to each SUL.
  • the terminal compares the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal selects two second SULs from 3 SULs as candidate resources, such as SUL2 and SUL3 as candidate resources.
  • the terminal selects the first SUL for random access from the multiple SULs according to the load corresponding to each of the at least two second SULs.
  • the terminal compares the load corresponding to the multiple second SULs.
  • the access control parameter value q of SUL2 is greater than the access control parameter value w of SUL3, indicating that the load of SUL2 is lighter than that of SUL3, and the terminal determines that SUL2 corresponding to the lighter load is the first SUL used for random access.
  • the terminal selects the first SUL among the plurality of second SULs, and the first SUL is the SUL with the lightest load among the plurality of second SULs.
  • the terminal selects SUL2 among SUL2 and SUL3 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select the multiple second SULs for random access according to the load corresponding to each second SUL.
  • the input first SUL, the first SUL used for random access is selected from multiple SULs by integrating the channel quality threshold and load of each SUL. That is, it can ensure that random access resources with better channel quality are selected, and the load balance of each SUL can be ensured to avoid random access congestion.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the number of available resources.
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • the available resources in this example may be available uplink time slot resources, or may also be the number of available RACH resources. In this example, the number of available resources is described by taking the number of available uplink time slot resources as an example.
  • the number of available time slot resources of SUL1 is a number a
  • the number of available time slot resources of SUL2 is a number b
  • the number of available time slot resources of SUL3 is a number c.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the channel quality threshold corresponding to each SUL.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is used to characterize the current channel quality.
  • the first information value is the current RSRP value.
  • the terminal compares the first information value (current RSRP value) with the magnitude of the RSRP threshold corresponding to each SUL.
  • the terminal compares the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal selects two second SULs from three SULs as candidate resources, such as SUL2 and SUL3 as candidate resources.
  • the terminal selects the first SUL for random access from the multiple SULs according to the number of available resources corresponding to each of the at least two second SULs.
  • the terminal compares the size of the number of multiple available time slot resources corresponding to multiple second SULs.
  • the number of available time slot resources of SUL2 (number b)>the number of available time slot resources of SUL3 (number c).
  • the terminal determines that the SUL corresponding to the maximum value among the number of available time slot resources is the first SUL used for random access.
  • the terminal selects SUL2 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select from multiple second SULs according to the number of available resources corresponding to each second SUL.
  • the first SUL for random access is selected from multiple SULs by integrating the channel quality threshold of each SUL and the number of available resources. That is, it is ensured that the uplink resource with better channel quality is selected for access, and the success rate of random access is improved, and the signal interference between the terminals that select the first SUL for random access in the cell can be reduced.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the slot position of the available RACH resource.
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the channel quality threshold corresponding to each SUL.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is used to characterize the current channel quality.
  • the first information value is the current RSRP value.
  • the terminal compares the first information value (current RSRP value) with the magnitude of the RSRP threshold corresponding to each SUL.
  • the terminal compares the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal selects two second SULs from three SULs as candidate resources, such as SUL2 and SUL3 as candidate resources.
  • the terminal selects the first SUL for random access from the multiple SULs according to the slot position of the available RACH resource corresponding to each of the at least two second SULs.
  • the terminal determines the first time unit for which random access is required (or is ready to initiate random access).
  • the first time unit is the t-th time slot.
  • the terminal selects the SUL corresponding to the earliest first time slot position after the first time unit as the first SUL.
  • the slot position of the earliest available RACH resource in SUL2 is the (t+3)th slot position.
  • the slot position of the earliest available RACH resource in SUL3 is the (t+5)th slot position.
  • the terminal selects the SUL2 corresponding to the (t+3)th slot position as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select the multiple second SULs from the multiple second SULs according to the slot position of the available RACH resource corresponding to each second SUL.
  • the first SUL used for random access is selected, and the channel quality threshold of each SUL and the slot position of the earliest available RACH resource are combined to select the first SUL used for random access from a plurality of SULs. That is, it is ensured that the uplink resource with better channel quality is selected for access, the success rate of random access is improved, and the delay of entering random access is reduced.
  • the first parameter information is the channel quality threshold
  • the second parameter information is the frequency band where the SUL is located.
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • the frequency band where SUL1 is located is frequency band d
  • the frequency band where SUL2 is located is frequency band e
  • the frequency band where SUL3 is located is frequency band f.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the channel quality threshold corresponding to each SUL.
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is used to characterize the current channel quality.
  • the first information value is the current RSRP value.
  • the terminal compares the first information value (current RSRP value) with the magnitude of the RSRP threshold corresponding to each SUL.
  • the terminal compares the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal selects two second SULs from three SULs as candidate resources, such as SUL2 and SUL3 as candidate resources.
  • the terminal selects the first SUL for random access from a plurality of SULs for the frequency band according to the frequency band in which each SUL of the at least two second SULs is located.
  • the terminal determines the maximum transmit power of the terminal device according to the frequency band in which each second SUL is located.
  • the terminal determines the maximum transmission power of the terminal device according to the frequency band d in which the SUL1 is located, and the terminal can query the correspondence table of the frequency band and the maximum transmission power to determine the maximum transmission power.
  • the terminal determines the maximum transmission power 2 corresponding to the frequency band e where the SUL2 is located, and the maximum transmission power 3 corresponding to the frequency band f where the SUL3 is located according to the correspondence between the frequency band and the maximum transmission power.
  • the terminal compares the magnitudes of the multiple maximum transmit powers corresponding to the multiple second SULs.
  • the terminal determines the first SUL according to the maximum transmission power, and the first SUL is the SUL corresponding to the maximum value among the multiple maximum transmission powers.
  • the maximum value of the maximum transmission power 2 and the maximum transmission power 3 is the maximum transmission power 2.
  • the terminal selects the SUL2 corresponding to the maximum transmit power of 2 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select from the multiple second SULs according to the maximum transmit power of the terminal equipment corresponding to each second SUL.
  • the first SUL used for random access is derived, and the first SUL used for random access is selected from multiple SULs by combining the channel quality threshold of each SUL and the maximum transmit power of the terminal device. That is, it is ensured that the uplink resource with better channel quality is selected for access, and the terminal device can be used for random access with the maximum transmission power, and the signal strength of the signal sent by the terminal device is ensured, thereby increasing the success rate of random access.
  • Combination example six a combination of example one, example three, and example four above. That is, the first parameter information is the channel quality threshold, the second parameter information includes the load, and the third parameter information is the number of available resources.
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to RSRP threshold 1
  • SUL2 corresponds to RSRP threshold 2
  • SUL3 corresponds to RSRP threshold 3.
  • SUL1 corresponds to the access control parameter value p (such as 0.4)
  • SUL2 corresponds to the access control parameter value q (such as 0.4)
  • SUL3 corresponds to the access control parameter value w (such as 0.2).
  • the number of available resources is described by taking the number of available uplink time slot resources as an example.
  • the number of available time slot resources of SUL1 is a number a
  • the number of available time slot resources of SUL2 is a number b
  • the number of available time slot resources of SUL3 is a number c.
  • the terminal selects at least two second SULs as candidate resources from the multiple SULs according to the first parameter information (such as the channel quality threshold) corresponding to each SUL.
  • the first parameter information such as the channel quality threshold
  • the terminal receives the downlink signal and determines the first information value according to the downlink signal.
  • the first information value is used to characterize the current channel quality.
  • the first information value is the current RSRP value.
  • the terminal compares the first information value (current RSRP value) with the magnitude of the RSRP threshold corresponding to each SUL.
  • the terminal compares the current RSRP value with RSRP threshold 1, the current RSRP value with RSRP threshold 2, and the current RSRP value with RSRP threshold 3.
  • the terminal can use SUL1, SUL2, or SUL3 for access, that is, the second SUL is SUL1, SUL2, or SUL3, and SUL1, SUL2, or SUL3 are candidate resources.
  • the terminal selects the third SUL from the multiple SULs according to the second parameter information (such as load) corresponding to each of the at least two second SULs.
  • the second parameter information such as load
  • the terminal compares the load corresponding to the multiple second SULs.
  • the access control parameter value p of SUL1 is equal to the access control parameter value q of SUL2, the access control parameter value q of SUL2 is greater than the access control parameter value w of SUL3, and the load of SUL1 and SUL2 is lighter than that of SUL3.
  • the terminal selects a third SUL among the plurality of second SULs, and the third SUL is the SUL with the lightest load among the plurality of second SULs.
  • the terminal determines that SUL1 and SUL2 with a light load are the third SUL.
  • the terminal selects the first SUL used for random access from a plurality of third SULs according to the third parameter information (for example, the number of available uplink time slot resources).
  • the terminal compares the size of the number of multiple available time slot resources corresponding to multiple third SULs.
  • the number of available time slot resources of SUL1 (number a)>the number of available time slot resources of SUL2 (number b).
  • the terminal determines that the SUL corresponding to the maximum value among the number of available time slot resources is the first SUL used for random access.
  • the terminal selects SUL1 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the current channel quality and the channel quality threshold corresponding to each SUL, and then the terminal may further select a third SUL from the multiple second SULs according to the load of each second SUL, and finally The terminal selects the first SUL used for random access from the plurality of third SULs according to the number of available time slot resources corresponding to each third SUL.
  • the first SUL used for random access is selected from multiple SULs based on the channel quality threshold, load, and number of available time slot resources of each SUL. That is, it is ensured that uplink resources with better channel quality are selected, and the load is the lightest to ensure SUL load balance and reduce signal interference between terminals that select the first SUL for random access in the cell.
  • the network device is configured with 3 SULs, namely SUL1, SUL2, and SUL3.
  • SUL1 corresponds to the first priority
  • SUL2 corresponds to the first priority
  • SUL3 corresponds to the second priority
  • the first priority is higher than the second priority
  • SUL1 corresponds to the access control parameter value p (such as 0.4)
  • SUL2 corresponds to the access control parameter value q (such as 0.3)
  • SUL3 corresponds to the access control parameter value w (such as 0.2).
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the priority corresponding to each SUL.
  • the terminal compares the priority levels corresponding to multiple SULs.
  • the priority corresponding to SUL1 and SUL2 is the same, and the priority corresponding to SUL1 and SUL2 is greater than the priority corresponding to SUL3.
  • the terminal selects at least two second SULs from the multiple SULs as candidate resources according to the priorities corresponding to the multiple SULs, and the second SUL is a SUL with a high priority among the multiple SULs.
  • the terminal selects SUL1 and SUL2 as the second SUL.
  • the terminal selects the first SUL for random access according to the load of each second SUL in the plurality of second SULs.
  • the terminal compares the load of each second SUL.
  • SUL1 corresponds to the access control parameter value p (such as 0.4)>SUL2 corresponds to the access control parameter value q (such as 0.3), indicating that the load of SUL1 is lighter than that of SUL2.
  • the terminal selects the SUL corresponding to the lightest load as the first SUL for random access.
  • the terminal selects SUL1 as the first SUL for random access.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may first select multiple second SULs according to the priority corresponding to each SUL, and then the terminal may further select the first SUL for random access from the multiple second SULs according to the load of each second SUL.
  • the priority and load of each SUL are combined to select the first SUL for random access from multiple SULs.
  • the above seven combination modes are only exemplary descriptions, and other permutation and combination modes based on the foregoing Examples 1 to 6 are also covered by the present application.
  • other combinations include: the combination of example two and the other five examples, that is, the first parameter information is the load of the SUL, and the second parameter information is the channel quality threshold, the SUL priority, the number of resources available on the SUL, and the SUL At least one parameter information of the slot position of the available random access channel RACH resource and the frequency band where the SUL is located.
  • the first parameter information is the number of available resources of the SUL
  • the second parameter information is the channel quality threshold, SUL priority, SUL load, and the number of RACH resources available on the SUL. Slot position, at least one parameter information in the frequency band where the SUL is located, and so on.
  • Combinations of Example 1, Example 4, and Example 5, etc. do not include examples of combination methods, and can be understood by referring to the above-mentioned examples (Example 1 to Example 6).
  • the first parameter information is the priority
  • the second parameter information is the slot position of the available RACH resource
  • the above example two and the above example four can be referred to for understanding and so on. I will not go into details here.
  • the embodiment of the present application also provides another embodiment of a random access method.
  • the difference between this embodiment and the embodiment corresponding to FIG. 4 is that: in this embodiment, the terminal device does not need to obtain information from multiple SULs according to configuration information. To select the first SUL, the first SUL can be selected from multiple SULs directly according to an equal-probability random selection method.
  • a random access method provided by an embodiment of the present application includes:
  • Step 801 The terminal receives first information of multiple SULs sent by a network device.
  • the network device is configured with multiple SULs, and can broadcast the first information of the multiple SULs through broadcast system messages.
  • first information please refer to step 401 in the embodiment corresponding to FIG. 4 for understanding, and will not be repeated here.
  • Step 802 The terminal device selects the first SUL from a plurality of SULs in a random selection manner.
  • the method of random selection with equal probability can be specifically as follows:
  • the terminal generates a random number, and determines the random number threshold range according to the number of SULs.
  • the random number is a random number between 0 and 1.
  • the terminal may use part or all of the UE ID as a seed for generating a random number, and further use a random number generation algorithm and the seed to generate a random number.
  • the terminal may use part or all of the UE's ID and the moment when the random number is generated as a seed to generate the random number. It can be guaranteed that the random numbers generated by different terminals at the same time are different, and the random numbers generated by the same terminal at different times are different.
  • the network device is configured with k SULs, and the terminal can divide (0,1) into k equally according to the number of SULs. For example, when the number of SUL is 2, the terminal determines that the random number threshold range corresponding to SUL1 is (0, 0.5], and the random number threshold range corresponding to SUL2 is (0.5, 1). For example, the random number generated by the terminal is 0.2 .
  • the terminal determines the first SUL used for random access according to the random number and the random number threshold range corresponding to each SUL.
  • the terminal determines that SUL1 is the first SUL used for random access. If the random number belongs to the random number threshold range corresponding to SUL2, the terminal determines that SUL2 is the first SUL used for random access.
  • the terminal determines that SUL1 is the first SUL.
  • Step 803 Initiate random access on the first SUL.
  • multiple SULs are configured in one cell, and the multiple SULs are used to improve the uplink coverage of the cell.
  • the terminal may select a first SUL for random access from a plurality of SULs in a random selection manner with equal probability.
  • 2-step access or 4-step access is selected according to the current channel quality.
  • This step can be understood in conjunction with step 403 in the embodiment corresponding to FIG. 4, and will not be repeated here.
  • the medium-probability random selection method in this embodiment can be combined with each example and each combination example in the embodiment corresponding to FIG.
  • One SUL is selected from the at least two SULs for random access by means of random selection with equal probability.
  • the configuration information includes r parameter information (for example, r is 2).
  • the first parameter information is the channel quality threshold
  • the second parameter information is the priority.
  • the terminal device still cannot select one SUL based on the two parameter information. It can select from multiple SULs randomly with medium probability in this embodiment.
  • One SUL is selected as the first SUL for random access.
  • Example 1 when the first information value is less than the threshold value 1 and greater than the threshold value 2, the terminal can use SUL1 or SUL2 or SUL3 for access, and the terminal can access from SUL1, SUL2 Or SUL3 medium probability random selection mode selects one SUL as the first SUL used for random access.
  • the terminal generates a random number and determines the threshold range corresponding to each SUL. For example, the threshold range corresponding to SUL1 is (0, 0.33], the threshold range corresponding to SUL2 is (0.33, 0.66], and the threshold range corresponding to SUL3 is (0.66, 1).
  • the random number generated by the terminal is 0.4.
  • the terminal determines the first SUL used for random access according to the random number and the random number threshold range corresponding to each SUL.
  • the terminal determines that SUL2 is the first SUL used for random access.
  • an embodiment of an apparatus 900 includes:
  • the receiving module 901 is configured to receive SUL configuration information of multiple auxiliary uplink carriers sent by a network device;
  • the processing module 902 selects the first SUL used for random access among the multiple SULs according to the configuration information received by the receiving module 901;
  • the processing module 902 is further configured to initiate random access on the first SUL determined by the processing module 902.
  • the receiving module 901 is used to perform step 401 in the embodiment corresponding to FIG. 4 and step 801 in the embodiment corresponding to FIG. 8, and the processing module 902 is used to perform step 402 and step 403 in the embodiment corresponding to FIG. 4 , And steps 802 and 803 in the embodiment corresponding to FIG. 8.
  • the apparatus 900 may be a terminal device in the method embodiment.
  • the corresponding units included in the apparatus 900 are respectively used to perform corresponding operations and/or processing performed by the terminal device in each example.
  • the receiving module 901 is a transceiver
  • the processing module 902 may be a processor.
  • the transceiver has the function of sending and/or receiving, and the transceiver can also be replaced by a receiver and/or transmitter.
  • the device 900 may be a chip or an integrated circuit.
  • the receiving module 901 may be a communication interface
  • the processing module 902 may be a logic circuit.
  • the communication interface may be an input/output interface or a transceiver circuit.
  • the input and output interface may include an input interface and an output interface.
  • the transceiver circuit may include an input interface circuit and an output interface circuit.
  • the processing module 902 may be a processing device, and the functions of the processing device may be partially or fully implemented by software.
  • the functions of the processing device may be partially or fully realized by software.
  • the processing device may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory to perform corresponding processing and/or steps in any method embodiment.
  • the processing device may only include a processor.
  • the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the functions of the processing device may be partially or fully implemented by hardware.
  • the processing device may include an input interface circuit, a logic circuit, and an output interface circuit. As shown in Figure 10.
  • the input interface circuit 1001 is used to receive configuration information of multiple SULs.
  • the logic circuit 1002 is configured to select the first SUL for random access among the multiple SULs according to the received configuration information of the multiple SULs, and initiate random access on the first SUL; optionally, output interface circuit 1003, used to select a preamble sequence on the first SUL to send to the network device to initiate random access.
  • the terminal device includes a processor 1101, a transceiver 1102, and a memory 1103.
  • the processor 1101, the transceiver 1102, and the memory 1103 can communicate with each other through an internal connection path to transfer control signals and/or data signals.
  • the memory 1103 is used to store computer programs, and the processor 1101 is used to call and run the computer programs from the memory 1103 to control the transceiver 1102 to send and receive signals.
  • the terminal device may further include an antenna 1104.
  • the transceiver 1102 transmits or receives wireless signals through an antenna.
  • processor 1101 and the memory 1103 may be combined into one processing device, and the processor 1101 is configured to execute the program code stored in the memory 1103 to implement the foregoing functions.
  • the memory 1103 may also be integrated in the processor 1101.
  • the memory 1103 is independent of the processor 1101, that is, located outside the processor 1101.
  • the processor 1101 may be used to execute the actions described in the foregoing method embodiments that are implemented internally by the terminal device.
  • the transceiver 1102 may be used to perform receiving or sending actions performed by the terminal device, and the memory 1103 is used to implement a storage function.
  • the processing and/or operation performed by the receiving module 901 shown in FIG. 9 may be implemented by the transceiver 1102.
  • the processing and/or operation performed by the processing module 902 may be implemented by the processor 1101 shown in FIG. 11.
  • the terminal device may also include a power supply 1105, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 1105 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device may further include one or more of the input unit 1106, the display unit 1107, the audio circuit 1108, the sensor 1110, and so on.
  • the audio circuit may also include a speaker 11082, a microphone 11084, and the like.
  • This application also provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium.
  • the computer program When the computer program is executed by a computer, the computer executes the operations performed by the terminal device in any method embodiment and /Or processing.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer can execute the operation performed by the terminal device in any method embodiment and/or deal with.
  • the application also provides a chip including a processor.
  • the memory used to store the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform operations and/or processing performed by the terminal device in any method embodiment.
  • the chip may also include a memory and/or a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, and the like.
  • At least one of or “at least one of” herein means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B alone exists, C exists alone, A and B exist at the same time, B and C exist at the same time, and there are six cases of A, B and C at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the chip when the device is a chip in a terminal, the chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, Pins or circuits, etc.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the wireless communication method of any one of the above-mentioned first aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory). -only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the first aspect is an integrated circuit for program execution of the wireless communication method.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例公开了一种随机接入方法及终端,应用于通信领域,用于增强5G、6G等高频段通信系统中上行覆盖,本申请实施例方法包括:网络设备在一个小区内配置多个SUL,该多个SUL用于补充该小区的上行覆盖,网络设备将多个SUL的配置信息发送给终端设备,该终端设备接收到配置信息后,可以根据该配置信息从多个SUL中选择一个SUL用于随机接入。本申请实施例中,小区内包括多个SUL,可以满足小区内大量终端都可以接入网络的需求,提高多个终端上行随机接入的成功率。本申请实施例中,还提供了一种终端,该终端用于从多个SUL中选择用于随机接入的第一SUL。

Description

一种随机接入方法及终端
本申请要求于2020年6月10日提交中国专利局、申请号为“202010524863.4”、申请名称为“一种提供辅助信息的方法及UE”的中国专利申请的优先权,和要求于2020年7月24日提交中国专利局、申请号为“202010725475.2”、申请名称为“一种随机接入方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种随机接入方法及终端。
背景技术
在第四代(4th generation,4G)通信系统和第五代(5th generation,5G)通信系统中,一个小区通常包括一个上行载波和一个下行载波。终端设备在下行载波上接收下行信号,在上行载波上发送上行信号。
在5G新空口(new radio,NR)系统部署的频段相比4G长期演进(long term evolution,LTE)系统更高。由于电磁波的衰减特性为频率越高,衰减越大,因此NR信号相比LTE的信号衰减更大。从另一个角度来说,基站或终端发出的信号衰减程度相同时,NR小区的覆盖范围比LTE小区的覆盖范围更小。并且下行链路上的宏基站与上行链路上的终端的发射功率具有相当大的差异,宏基站可以以上百瓦的功率进行发射,而手机的发射功率通常仅在毫瓦级,这就导致了上下行覆盖不平衡的问题。
为了提升NR小区的上行覆盖范围,在NR中引入了辅助上行载波(supplementary uplink,SUL)。即在一个小区中额外引入一个上行载波,该载波的频点较低,从而提升上行覆盖。
但是,随着智能终端技术的成熟,智能终端的数量井喷式增长,一个小区配置一个SUL显然已经不能满足终端设备接入网络的需求。
发明内容
本申请实施例提供了一种随机接入方法及终端,该方法应用于一种通信系统,该通信系统包括网络设备和终端。网络设备在一个小区内配置多个SUL,并将该多个SUL的配置信息向终端发送,终端接收到多个SUL的配置信息,可以根据该配置信息从多个SUL中选择一个SUL用于发起随机接入,增强上行覆盖。
第一方面,本申请实施例提供了一种随机接入方法,该方法可以包括:终端接收网络设备发送配置信息,配置信息包括多个辅助上行载波SUL的信息;并根据配置信息在多个SUL中选择用于随机接入的第一SUL;然后,终端可以在第一SUL上发起随机接入。本申请中,网络设备可以配置多个SUL,该多个SUL用于提升小区上行覆盖,解决在终端设备位于小区边缘,或者终端设备距离网络设备较远等场景中,上行覆盖受限的问题,终端可以从多个SUL中选择第一SUL发起随机接入,从而提升用户体验。并且由于小区内包括多个SUL,可以满足小区内大量终端都可以接入网络的需求,提高多个终端上行随机接入的成功率。
在一种可能的实现方式中,配置信息包括信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、SUL所位于的频带 中的至少一个。
在一种可能的实现方式中,配置信息包括第一参数信息和/或第二参数信息;根据配置信息在多个SUL中选择用于随机接入的第一SUL可以包括:终端可以首先根据第一参数信息在多个SUL中确定M个第二SUL,第一参数信息为信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个;若M等于1,则所述第二SUL为所述第一SUL;若M大于1,则终端进一步根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL,第二参数信息为信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息,第一参数信息和第二参数信息不同。本示例中,终端可以根据一个参数从多个SUL中选择第一SUL,当终端根据一个参数信息不能从多个SUL中一次性选择出第一SUL,终端可以综合不同的参数信息从多个SUL中选择第一SUL,例如,第一参数信息为信道质量阈值,第二参数信息为优先级,终端可以先根据第一参数信息从多个SUL中选出候选资源,然后在候选资源中选出用于随机接入的第一SUL。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL对应的第一信道质量阈值,第一信道质量阈值用于终端设备判断能否使用与第一信道质量阈值对应的SUL进行随机接入;根据所述第一参数信息确定M个第二SUL可以具体包括:终端接收下行信号,根据下行信号确定第一信息值,第一信息值用于表征信道质量;针对每个SUL,终端可以比较第一信息值与每个SUL对应的第一信道质量阈值的大小,根据第一信息值与每个SUL对应的第一信道质量阈值,确定所述M个第二SUL,若M为1,则第二SUL为第一SUL;若M大于1,则所述第二参数信息为所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,然后根据第二参数信息继续从M个第二SUL中选择第一SUL。本示例中,一个小区支持多个SUL,从而提升上行覆盖,基站配置多个SUL,终端可以根据当前的信道质量和每个SUL对应的信道质量阈值,从多个SUL中选择用于随机接入的第一SUL,终端根据信道质量从多个SUL中选择第一SUL,从而保证选择信道质量良好的上行资源进行随机接入,提高终端随机接入的成功概率。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL的优先级;终端根据所述第一参数信息确定M个第二SUL可以具体包括:终端根据多个SUL中每个SUL的优先级确定所述M个第二SUL,所述第二SUL为多个SUL中优先级最高的SUL,若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息;然后可以进一步根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL。本示例中,网络设备在一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的优先级,终端可以根据配置信息中的优先级从多个SUL中选择用于随机接入的第一SUL。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL的负载;根据所 述第一参数信息确定M个第二SUL可以具体包括:终端根据多个SUL中每个SUL的负载确定所述M个第二SUL,所述第二SUL为多个所述负载中负载最轻的SUL,若M为1,则第二SUL就为第一SUL;若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,然后,可以进一步根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL。本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的负载,终端可以根据每个SUL的负载从多个SUL中选择用于随机接入的第一SUL。从而可以保证每个SUL的负载均衡。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL的可用资源的数量或可用资源的占比,可用资源的占比用于指示可用资源的数量;根据所述第一参数信息确定M个第二SUL可以具体包括:终端根据多个SUL中每个SUL的可用资源的数量确定所述M个第二SUL,所述第二SUL为多个可用资源的数量中最大值对应的SUL,若为1,则第二SUL就为第一SUL,若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,终端进一步可以根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL。本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的可用资源的数量,终端可以根据每个SUL的可用资源的数量从多个SUL中选择可用资源的数量较多的SUL为用于随机接入的第一SUL。减少小区内选择该第一SUL进行随机接入的终端之间信号的干扰。
在一种可能的实现方式中,可用资源为可用上行时隙资源,或者,可用资源为可用RACH资源。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL的可用RACH资源的时隙位置;所述第一参数信息确定M个第二SUL还可以具体包括:终端确定有随机接入需求(或准备发起随机接入)的第一时间单元;终端选择在第一时间单元之后最早的第一时隙位置对应的SUL为所述M个第二SUL,多个可用RACH资源的时隙位置包括第一时隙位置,若为1,则第二SUL就为第一SUL;若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL所位于的频带中的至少一个参数信息,终端可以进一步根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL。本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。终端可以选择最早的可用RACH资源的时隙位置对应的SUL为第一SUL,从而减少随机接入的时延。
在一种可能的实现方式中,第一参数信息包括多个SUL中每个SUL所位于的频带;根据第一参数信息确定M个第二SUL可以具体包括:针对每个SUL,终端根据SUL所位于的频带及频带与最大发射功率的对应关系确定终端设备的最大发射功率;终端可以根据终端设备的最大发射功率确定M个第二SUL,所述第二SUL为多个最大发射功率中的最 大值对应的SUL;若M为1,则第二SUL就为第一SUL;若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置中的至少一个参数信息,终端可以进一步根据第二参数信息从M个第二SUL(第二SUL为候选资源)中确定用于随机接入的第一SUL。本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。终端可以根据SUL所在的频带确定终端的最大发射功率,根据终端设备的最大发射功率确定第一SUL,终端选择的第一SUL上具有最大的最大发射功率,从而增加随机接入的成功率,并且保证终端发送信号的强度。
在一种可能的实现方式中,配置信息还包括第二信道质量阈值;方法还包括:终端接收下行信号,并根据下行信号确定第一信息值,第一信息值用于表征信道质量;当第一信息值大于第二信道质量阈值时,选择2步接入第一SUL;或者,当第一信息值小于或者等于第二信道质量阈值时,选择4步接入第一SUL。本示例中,通过确定第一信息值与第二信道质量阈值的大小,来确定是采用2步随机接入还是4步随机接入,可以保证终端在当前信道条件良好的情况下采用2步随机接入,在当前信道质量较差的情况下采用4步随机接入。
在一种可能的实现方式中,配置信息为网络设备广播的系统消息中包括的信息。
第二方面,本申请实施例提供了一种装置,该装置具有实现上述第一方面终端所执行的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现;该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请实施例提供了一种终端,包括处理器,所述处理器与至少一个存储器和收发器耦合,处理器用于读取所述至少一个存储器所存储的计算机程序,使得所述终端执行上述第一方面中任一项所述的方法。
第四方面,本申请实施例提供了一种计算机可读介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面的方法。
第五方面,本申请实施例提供了一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行上述第一方面的方法。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为一种随机接入方法一个场景示例图;
图2为本申请实施例中通信系统的一个示例的场景示意图;
图3为本申请实施例中一种随机接入方法的一个示例的场景示意图;
图4为本申请实施例中一种随机接入方法的一个实施例的步骤流程示意图;
图5A为本申请实施例中4步随机接入的示意图;
图5B为本申请实施例中2步随机接入的示意图;
图6为本申请实施例中SUL中时隙资源的示意图;
图7为本申请实施例中SUL中最早的可用RACH资源的时隙位置的示意图;
图8为本申请实施例中一种随机接入方法的另一个实施例的步骤流程示意图;
图9为本申请实施例中一种装置的一个示例的结构示意图;
图10为本申请实施例中一种处理装置的一个示例的结构示意图;
图11为本申请实施例中一种终端的一个示例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
请参阅图1所示,在当前5G通信网路小区中,NR小区部署的频段通常(例如为3.5GHz,4.9GHz等)比4G LTE更高。由于电磁波的衰减特性为频率越高,衰减越大,因此,NR信号相比LTE的信号衰减更大。从另一个角度来说,网络设备或终端发出的信号衰减程度相同时,NR系统对应的距离比LTE系统对应的距离更短,换言之,NR小区的覆盖范围比LTE小区的覆盖范围更小。例如,当用户的终端设备在NR小区边缘,或者,当终端设备距离网络设备距离较远时,由于NR信号强度衰减大,导致小区的上行覆盖受限制,终端设备接入网络受限,极大的影响用户体验。
为了解决上述问题,本申请实施例提供了一种随机接入方法,该方法应用于通信系统,该通信系统包括但不限定于第四代(4th generation,4G)通信系统,5G通信系统,6G通信系统,多种通信系统融合的系统,或者未来演进的通信系统。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统等,以及其他此类通信系统。本申请实施例中,该通信系统可以以5G通信系统为例进行说明。
请参阅图2所示,该通信系统包括网络设备201和终端202,网络设备201在一个小区内配置多个SUL,网络设备201可以单独广播多个SUL的配置信息,该小区内的每个终端202可以接收到多个SUL的配置信息。或者,网络设备201广播系统消息,通过系统消息携带该多个SUL的配置信息。示例性的,终端202开机后首先要进行小区搜索,以获取 当前小区的物理层小区标识(Physical Cell Identity,PCI)。终端202通过小区搜索可以同步到当前小区,之后就可以读取服务小区的广播信道(Physical Broad-cast channel,PBCH)中的系统消息。终端202接收系统消息中的多个SUL的配置信息。
参阅图3所示,在网络设备201所覆盖的小区中包含一个上行载波(uplink carrier,UL)203和下行载波(downlink carrier,DL)204,为了区分该上行载波203和SUL205,将该上行载波203称为正常上行载波(normal uplink carrier,NUL)。如果小区是时分双工(time division duplex,TDD)小区,则上行载波(NUL)203和下行载波204的中心频点和带宽都相同,也可以理解为TDD小区中只有一个载波,仅仅逻辑上区分上下行。例如,TDD小区部署在2515~2615MHz时,上下行中心频点都为2565MHz,带宽都为100MHz。如果小区是频分双工(frequency division duplex,FDD)小区,则上行载波(NUL)203和下行载波204的中心频点不同(但是通常频点比较相近)。例如,上行载波为1920~1935MHz,下行载波为2110~2125MHz。本申请实施例中,该小区可以是TDD小区,也可以是FDD小区,具体的并不限定。多个SUL205为NUL203在同一个小区的补充上行链路,多个SUL一般处于低频段,例如多个SUL可以为常见LTE部署频段,低频段信号损耗较小,从而保证上行的覆盖。
当前小区中的上行资源包括多个SUL和一个NUL。终端可以在多个SUL和一个NUL中动态选择发起随机接入的上行载波。示例性的,网络设备可以配置一个信道质量阈值(可以称为目标阈值),上述配置信息中包括该目标阈值。终端接收到该目标阈值,并确定当前信道的信道质量,若当前信道的信道质量低于该目标阈值时,表明当前信道质量较差,终端可以确定在SUL上发起随机接入,然后,进一步在多个SUL中选择一个SUL发起随机接入。若信道的信道质量高于该目标阈值时,表明当前信道质量较好,一种可能的实现方式中,终端可以确定在多个SUL或NUL中选择一个上行载波发起随机接入,终端选择的上行载波可能是多个SUL中的一个SUL,或者也可能是NUL。在另一种可能的实现方式中,信道的信道质量高于该目标阈值时,终端可以确定选择NUL发起随机接入。
本申请实施例中,当小区中包括多个SUL时,终端接收到网络设备广播的系统消息后,可以根据多个SUL的配置信息从多个SUL中选择用于随机接入的第一SUL,然后通过该第一SUL发起随机接入的过程。本申请中,网络设备可以配置多个SUL,该多个SUL用于提升小区上行覆盖,解决在终端位于小区边缘,或者终端设备距离网络设备较远等场景中,上行覆盖受限的问题,终端可以从多个SUL中选择第一SUL发起随机接入,从而提升用户体验。并且由于小区内包括多个SUL,可以满足小区内大量终端都可以接入网络的需求,提高多个终端进行上行随机接入的成功率。
本申请中,网络设备包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基 站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或,分布单元(distributed unit,DU)。本申请实施例中,网络设备可以以基站为例。
本申请中,终端是一种具有无线收发功能的设备,所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。本申请实施例中,该终端可以以手机为例。
为了更好的对本申请实施例进行理解,首先对本申请中涉及的词语进行说明。
用于指示信道质量的参数:包括但不限定于参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。通过RSRP、RSRQ和SINR中的至少一个参数可以反映信道质量。本申请实施例中,用于指示信道质量的参数可以以RSRP为例进行说明。
SUL的优先级:指SUL被优先选择的级别,SUL的优先级越高,越容易被终端选择。
SUL的负载:指SUL已被占用的资源量或使用一个SUL进行通信的用户数。SUL的负载越重,表明该SUL中已经被占用的资源越多或者使用该SUL进行通信的用户数越多。例如,以时域资源量为例,一个SUL中的一部分(如三分之二)时域资源在LET中作为通信资源已经被占用。在NR系统中,该SUL中的另一部分(三分之一)没有被占用的时域资源可以作为上行传输资源。再例如,一个小区中有两个SUL分别为SUL 1和SUL 2,两个SUL的带宽相同。若有50个终端通过SUL 1与网络设备通信,有100个终端通过SUL 2与网络设备通信,则可以认为SUL 2的负载比SUL 1的更重。
SUL的可用资源的数量:该可用资源的数量可以为可用时隙资源的数量。例如,系统广播在一个SUL上可以用于上行发送的时间占总时间的30%,则可用资源为总资源的30%。或者,该可用资源的数量可以为随机接入信道(Random Access Channel,RACH)资源的数量,该RACH资源可以包括但不限定于时域资源、频域资源、码域资源和空域资源等。
SUL的可用RACH资源的时隙位置:在时域上,每个SUL包括多个时隙,每个可用RACH资源具有对应的时隙位置,该时隙位置可以用帧号、子帧号、时隙号中的一个或多个来标识,该时隙位置为终端可以用来发起随机接入的时间机会。
SUL所位于的频带(band):SUL所位于的频率的范围或者频谱的中心频点。SUL位于的频带包括两种可能的指示方式:一、基站直接配置SUL的频带号(band number)或频 带索引值(band index);二、基站配置SUL中心频点的频域位置(例如以Hz为单位,可能配置中心频点是725MHz),UE可以根据预存储的信息确定SUL归属的频带号或频带索引值。
本申请实施例提供了一种从多个SUL中选择一个SUL发起随机接入的方法,请参阅图4所示,本申请中提供的一种随机接入方法的一个实施例包括:
步骤401、终端接收网络设备发送配置信息,所述配置信息包括多个辅助上行载波SUL的信息。
网络设备配置多个SUL,网络设备广播该配置信息。终端通过系统消息接收多个SUL的信息。
可选地,网络设备广播的系统消息包括第一信息和配置信息。其中,该第一信息中包括多个SUL中每个SUL自身的参数信息。例如,SUL自身的参数信息可以包括:SUL的频域信息(如包括频带列表、参考资源块(Resource Block,RB)的位置、子载波间隔、最大发射功率P-max、是否有7.5kHz偏移等),上行带宽(band width part,BWP)配置(如包括BWP参数、随机接入配置、上行物理共享信道(physical uplink shared channel,PUSCH)配置、物理上行链路控制信道(physical uplink control channel,PUCCH)配置等),时间对齐定时器配置等。
配置信息用于指示终端从多个SUL中选择用于随机接入的第一SUL。该配置信息包括:用于信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道(random access channel,RACH)资源的时隙位置、SUL所位于的频带中的至少一个参数信息。
基站广播的系统消息中包括第一信息和配置信息。在一个示例中,第一信息包括每个SUL自身相关的子信息,每个子信息指示一个SUL。配置信息包括多个子配置信息,每个SUL关联一个子配置信息,即SUL的数量和子配置信息的数量相同。例如,每个SUL关联一个优先级,从而使得多个SUL中每个SUL对应各自的子配置信息。可以理解为,在系统消息体中,用于指示每个SUL的子信息关联一个子配置信息,从而使得一个SUL对应一个子配置信息,该子配置信息可以为信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道(random access channel,RACH)资源的时隙位置、SUL所位于的频带中的至少一个参数。示例性的,各个子配置信息可以与各个SUL按顺序一一对应。例如,一个小区中有最多N个SUL,系统消息中可以包含如下内容,其中SUL-ConfigList为所有SUL的第一信息,其中最多包括N个SUL-Config(SUL-Config即为第一信息中针对某个SUL的子信息)。同时,系统消息中还可以包含SUL-AccessConfigList,SUL-AccessConfigList即为所有SUL的配置信息,其中最多包括N个SUL-AccessConfig(SUL-AccessConfig即为一个SUL的子配置信息)。此时,N个SUL-Config中的第i个,以及N个SUL-AccessConfig中的第i个,均与第i个SUL对应。例如,消息体如下所示:
SUL-ConfigList::=SEQUENCE(size(1…N))OF SUL-Config
SUL-AccessConfigList::=SEQUENCE(size(1…N))OF SUL-AccessConfig
另一个示例中,每个子配置信息对应一个SUL的索引,配置信息包括多个SUL中每个SUL的索引,SUL的索引对应一个子配置信息(如优先级)。如SUL的数量为3个,3个SUL的索引分别为“1”,“2”,“3”。其中,索引“1”对应的优先级为第一优先级,索引“2”对应的优先级为第二优先级,索引“3”对应的优先级为第三优先级。一个配置信息的示例如下所示。一个小区中有最多N个SUL,系统消息中可以包含如下内容,其中SUL-ConfigList为所有SUL的第一信息,其中最多包括N个SUL-Config(SUL-Config即为第一信息中针对某个SUL的子信息)。同时,系统消息中还可以包含SUL-AccessConfigList,即为所有SUL的配置信息,其中最多包括N个SUL-AccessConfig(SUL-AccessConfig即为即为一个SUL的子配置信息)。此时,每个SUL-Config中包含1个SUL-Index,SUL-Index用于定义当前SUL的index。每个SUL-AccessConfig中也包含1个SUL-Index,SUL-Index用于指示当前配置信息对应的SUL是哪个。每个SUL-AccessConfig中还包含1个SUL-Priority,SUL-Priority用于指示当前SUL的优先级。例如,消息体如下所示:
Figure PCTCN2021092600-appb-000001
另一个示例中,每个子配置信息分别为对应的SUL的子信息的一部分。即配置信息为第一信息的一部分。一个示例如下所示。一个小区中有最多N个SUL,系统消息中可以包含如下内容,其中SUL-ConfigList为所有SUL的第一信息,其中最多包括N个SUL-Config(SUL-Config即为第一信息中针对某个SUL的子信息)。在每个SUL-Config中包含一个SUL-AccessConfig,SUL-AccessConfig为当前SUL的子配置信息。例如,消息体如下所示:
Figure PCTCN2021092600-appb-000002
步骤402、终端根据配置信息在多个SUL中选择用于随机接入的第一SUL。
配置信息包括第一参数信息和/或第二参数信息。
首先,根据第一参数信息确定M个第二SUL,第一参数信息为信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙 位置、SUL所位于的频带中的至少一个,M为大于或等于1的整数,例如,M为1,2或3等。M是终端根据第一参数信息在多个SUL中选择出符合要求的SUL数量。例如,该第一参数信息以信道质量阈值为例,首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值为当前信道的RSRP值。可以理解的是,终端接收下行信号,第一信息值用于指示下行信道的信道质量。终端可以根据下行信道质量估计上行信道质量。例如,终端根据下行信道所在的频带和上行信道所在的频带之间的差值及下行信道的信道质量估计出上行信道的信道质量。然后,终端针对每个SUL,比较当前RSRP值与每个SUL对应的RSRP阈值的大小。即比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。最后,终端根据第一信息值与每个SUL对应的第一信道质量阈值,确定M个第二SUL。例如,当第一信息值(当前RSRP值)小于阈值3(目标信道质量阈值)时,终端确定SUL3为用于随机接入的第一SUL,即M为1,此时第二SUL就为随机接入的第一SUL。当第一信息值小于阈值2且大于阈值3时,终端能使用SUL2或SUL3进行接入,即M为2,表示有两个第二SUL可以作为选择第一SUL的候选资源。
若M等于1,则第二SUL为第一SUL,即仅通过一个参数信息就可以从多个SUL中选择出第一SUL,即下述第一种可能的实现方式。
若M大于1,则根据第二参数信息从M个第二SUL中确定用于随机接入的第一SUL,第二参数信息为信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息,第一参数信息和第二参数信息不同。例如,第一参数信息为信道质量阈值,第二参数信息为除了信道质量阈值之外的其他参数信息,例如,第二参数信息为优先级。即下述第二种可能的实现方式。
或者,当M大于1时,终端可以不通过第二参数信息来从M个第二SUL中选择第一SUL,而可以根据预设置的方式来选择第一SUL。例如,终端通过随机选择的方式从M个第二SUL中选择第一SUL,或者选择SUL索引最小的(或最大的)SUL作为第一SUL等方式等等,具体的方式并不限定。
在第一种可能的实现方式中,该配置信息包括一个参数信息,第一参数信息为:信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的任一一个参数信息。
终端可以根据一个参数信息直接从多个SUL中选择用于随机接入的第一SUL。
在第二种可能的实现方式中,该配置信息包括至少两个参数信息(即第一参数信息和第二参数信息),通过至少两个参数信息的组合从多个SUL中选择第一SUL。
示例性的,该第一参数信息包括信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息。该第二参数信息包括第一参数信息为信道质量阈值、优先级、负载、可用资源的数量、可用随 机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息。
首先,终端根据第一参数信息(如信道质量阈值)在多个SUL中选择至少两个第二SUL作为候选资源。
然后,终端根据第二参数信息(如优先级)从至少两个第二SUL中确定用于随机接入的第一SUL。
当终端根据一个参数信息不能从多个SUL中一次性选择出第一SUL,终端可以综合不同的参数信息从多个SUL中选择第一SUL。即终端可以先根据第一参数信息从多个SUL中选出候选资源,然后在候选资源中选出用于随机接入的第一SUL。
示例性的,该配置信息也可以包括三个或三个以上的参数信息。每个参数信息包括信道质量阈值、优先级、负载、可用资源的数量、可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个,不同参数信息互不相同。终端可以依次根据各个参数信息,从多个SUL中逐步缩小范围,最终确定用于随机接入的第一SUL。
示例性的,当通过多个参数信息的组合方式从多个SUL中选择第一SUL的示例中,网络设备可以指示每个参数信息的优先级。例如,第一参数信息为信道质量阈值,第二参数信息为负载,第三参数信息为可用资源的数量,该第一参数信息的优先级高于第二参数信息的优先级,第二参数信息的优先级高于第三参数的优先级。终端设备按照各参数信息的优先级顺序从多个SUL中逐步选择出第一SUL。例如,终端先根据信道质量参数从多个SUL中选择多个第二SUL,然后根据负载从多个第二SUL中选择多个第三SUL,最后,根据可用资源的数量从多个第三SUL中选择用于随机接入的第一SUL。当然,若终端设备在根据负载从多个第二SUL中可以选择出一个SUL作为第一SUL,就不需要进一步的通过第三参数信息进行选择了。可选的,每个参数信息的优先级可以由终端设备确定,即终端设备自行确定多个参数信息的优先级。终端设备按照各参数信息的优先级从高到低的顺序从多个SUL中逐步选择出第一SUL。
步骤403、终端在第一SUL上发起随机接入。
配置信息还包括第二信道质量阈值,该第二信道质量阈值用于终端判断通过2步或4步进行随机接入。该第二信道质量阈值可以为RSRP阈值、RSRQ阈值或SINR阈值等。该第二信道质量阈值可以以RSRP阈值为例进行说明。
终端接收下行信号,终端根据下行信号确定第一信息值,该第一信息值用于表征信道质量。例如,终端可以通过小区中的下行载波(DL)接收下行信号,该第一信息值可以为RSRP、RSRQ、SINR等,该第一信息值以第一RSRP为例。
终端比较该第一信息值与第二信道质量阈值,该第二信道质量阈值由网络设备配置,当该第一信息值大于第二信道质量阈值时,表征当前信道质量较好,在当前信道质量较好的情况下,选择2步接入第一SUL。当第一信息值小于或者等于第二信道质量阈值时,表征当前信道质量较差,可以选择4步接入第一SUL。本申请实施例中,可以采用2步接入,也可以采用4步接入,具体的并不限定。当信道质量较差的情况下,采用4步接入提高随机接入成功率,当信道质量较好的情况下,采用2步接入法可以节省数据传输步骤,提高随机接入效率。
请参阅图5A,4步随机接入包括以下四个步骤:
1)终端向网络设备发送消息1(Msg1),即终端向网络设备发送随机接入前导序列。
终端确定第一SUL之后,选择第一SUL上的前导序列,以通知网络设备有一个随机接入请求,终端确定初始发射功率后通过物理机接入信道(physical random access channel,PRACH)发起随机接入。
2)网络设备向终端反馈消息2(Msg2),即网络设备向终端反馈随机接入响应(random access response,RAR),该响应信号在物理下行共享信道(physical downlink shared channel,PDSCH)上传输。
基站接收终端发送的前导码信息,网络设备如果成功检测到终端发送的前导序列,即发送RAR消息给终端,
3)终端发送消息3(Msg3)给网络设备,其中Msg3中所包含的信息视情况不同而不同。
终端接收到RAR消息后,终端将其标识通过物理上行共享信道(physical uplink shared channel,PUSCH)发送给网络设备,该信道是网络设备在步骤2中分配给终端的。终端可以在申请到的上行资源发送少量数据或者信令消息(即接入信息传输)。
4)网络设备发送消息4(Msg4)给终端,其中Msg4中所包含的信息视情况不同而不同。
示例性的,Msg4可以为冲突解决成功消息,终端接收到该Msg4,终端就可以参与正常的资源调度,发送数据。
请参阅图5B,2步随机接入包括以下两个步骤:
1)终端发送消息A(MsgA)给网络设备。
MsgA相当于上述图5A对应4步随机接入中的Msg1和Msg3。
终端确定第一SUL之后,选择第一SUL上的前导序列进行随机接入,即终端向网络设备发送前导码序列和接入信息。
2)网络设备回复MsgB给终端。
网络设备向终端发送RAR消息,如果终端接收到RAR消息,证明随机接入成功,即可以进行数据传输。
如果基站同时配置了支持2步(2-step)和4步(4-step)随机接入,则基站可以配置一个信道质量阈值(如RSRP阈值)。当同步信号和PBCH块(synchronization signal and PBCH block,SSB)RSRP高于该RSRP阈值时,UE可以选择使用2-step接入。其目的是在于,通过设置RSRP阈值(如msg-RSRP-Threshold或者msg-RSRP-Threshold SUL),可以保证终端在信道条件足够好的时候使用2-step接入,从而增大msgA中preamble和PUSCH都被正确接收的概率。
本申请实施例中,网络设备配置了多个SUL,终端可以根据配置信息从多个SUL中选择第一SUL作为随机接入资源,终端选择第一SUL上的前导码序列,将该第一SUL上的前导码序列发送给网络终端,若存在大量的终端,不同的终端可以选择不同的SUL发起随机接入,即终端在不同的SUL资源上发送premble,从而避免多个终端在相同的无线资源 上发送相同的premble,造成冲突。
需要说明的是,本申请实施例中,配置信息也可以不通过系统消息广播,该配置信息为网络设备为该终端配置的信息,网络设备通过单播将配置信息发送给终端。例如,在一个应用场景中,终端已经接入网络,即当终端与网络设备处于连接态时,网络设备将多个SUL的配置信息发送给该终端。当网络设备和终端断开连接,重建时,终端需要重新发起随机接入过程,此时,终端可以使用之前预先接收到的配置信息从多个SUL中选择用于随机接入的第一SUL。
可选地,针对上述步骤402中的第一种可能的实现方式,即M为1时,第二SUL为第一SUL,即终端根据信道质量阈值、SUL的优先级、SUL的负载、SUL上可用资源的数量、可用RACH资源的时隙位置、SUL所位于的频带中的任一一个参数信息(即第一参数信息或第二参数信息)从多个SUL中直接选择出第一SUL。
示例一、配置信息包括每个SUL的信道质量阈值。
示例二、配置信息包括每个SUL的优先级。
示例三、配置信息包括每个SUL的负载。
示例四、配置信息包括每个SUL上可用资源的数量。
示例五、配置信息包括每个可用RACH资源的时隙位置。
示例六、配置信息包括每个SUL所位于的频带。
下面针对上述6个示例进行分别说明。
示例一、配置信息包括多个SUL中每个SUL对应的子配置信息,该子配置信息为第一信道质量阈值,第一信道质量阈值用于终端设备判断能否使用与第一信道质量阈值对应的SUL进行随机接入。
该第一信道质量阈值以RSRP阈值为例,每个SUL对应一个RSRP阈值。
例如,系统消息中广播了3个SUL,分别为SUL1,SUL2和SUL3。不同的SUL可以对应不同的RSRP阈值。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值为当前信道的RSRP值。可以理解的是,终端接收下行信号,第一信息值用于指示下行信道的信道质量。终端可以根据下行信道质量估计上行信道质量。例如,终端根据下行信道所在的频带和上行信道所在的频带之间的差值及下行信道的信道质量估计出上行信道的信道质量。
然后,终端针对每个SUL,比较当前RSRP值与每个SUL对应的RSRP阈值的大小。即比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
最后,终端根据第一信息值与每个SUL对应的第一信道质量阈值,确定第一SUL。第一信道值小于多个第一信道质量阈值中的目标信道质量阈值,选择目标信道质量阈值对应的SUL为第一SUL。
例如,当第一信息值(当前RSRP值)小于阈值3(目标信道质量阈值)时,终端确定SUL3为用于随机接入的第一SUL。当第一信息值小于阈值2且大于阈值3时,终端能使用SUL2或SUL3进行接入,即该第一SUL为SUL2或SUL3,终端可以从SUL2或SUL3中随机选择一个SUL作为第一SUL。当第一信息值小于阈值1且大于阈值2时,终端能使用SUL1或SUL2或SUL3进行接入,即第一SUL为SUL1、SUL2或SUL3,终端可以以等概率随机选择方式从SUL1、SUL2或SUL3中选择一个SUL作为用于随机接入的第一SUL。当RSRP值大于阈值1时,终端能使用SUL1或SUL2或SUL3或NUL进行接入。
可选地,一个信道质量阈值可以对应多个SUL,即多个SUL中可能有至少两个SUL对应的信道质量阈值相同。例如,基站配置了3个SUL,并且配置SUL1对应的RSRP阈值为阈值1,SUL2和SUL3对应的RSRP阈值为阈值2,其中,阈值1>阈值2。当终端确定的当前RSRP值小于阈值2时,终端能使用SUL2或SUL3进行接入,第一SUL为SUL2或SUL3,终端可以随机选择SUL2或SUL3作为用于随机接入的第一SUL。当终端确定的当前RSRP值小于阈值1大于阈值2时,终端能使用SUL1或SUL2或SUL3进行接入,即第一SUL为SUL1或SUL2或SUL3。当RSRP值大于阈值1时,终端能使用SUL1或SUL2或SUL3或NUL进行接入。
本示例中,一个小区支持多个SUL,从而提升上行覆盖,基站配置多个SUL,终端可以根据当前的信道质量和每个SUL对应的信道质量阈值,从多个SUL中选择用于随机接入的第一SUL,终端根据信道质量从多个SUL中选择第一SUL,保障终端随机接入的成功概率。
示例二、该配置信息包括多个SUL中每个SUL的优先级。
配置信息包括多个子配置信息,每个SUL对应一个子配置信息,本示例中,子配置信息为优先级。
首先,终端比较多个SUL对应的多个优先级的高低。
例如,配置消息中配置了2个SUL,分别为SUL1和SUL2。SUL1的优先级为第一优先级,SUL2的优先级为第二优先级。第一优先级高于第二优先级。
然后,终端根据多个SUL中每个SUL的优先级确定第一SUL,第一SUL为多个SUL中优先级最高的SUL。
第一优先级高于第二优先级,终端选择第一优先级对应的SUL1为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的优先级,终端可以根据配置信息中的优先级从多个SUL中选择用于随机接入的第一SUL。
示例三、该配置信息包括多个SUL中每个SUL的负载。
首先,终端比较多个SUL对应的多个负载的大小。
示例性的,基站指示SUL的负载时,可以通过一个接入控制参数值来表征。该接入控 制参数值为一个0~1之间的数。可以理解的是,该接入控制参数值越小,表示当前SUL的负载越重。该接入控制参数值越大,表示当前SUL的负载越轻。终端可以选择较大的控制参数值对应的SUL为用于随机接入的第一SUL。
例如,基站配置了3个SUL,3个SUL分别为SUL1、SUL2和SUL3。SUL1对应接入控制参数值p(如0.4),SUL2对应接入控制参数值q(如0.3),SUL3对应接入控制参数值w(如0.2)。接入控制参数值p>接入控制参数值q>接入控制参数值w。
然后,终端根据多个SUL中每个SUL的负载确定第一SUL,第一SUL为多个负载中负载最轻的SUL。
终端选择接入控制参数1对应的SUL1作为用于随机接入第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的负载,终端可以根据每个SUL的负载从多个SUL中选择用于随机接入的第一SUL。从而可以保证每个SUL的负载均衡,避免随机接入拥塞。
示例四、该配置信息包括多个SUL中每个SUL的可用资源的数量。
一种方式中,可用资源的数量为可用上行时隙资源的数量,或者,该可用资源的数量可以用可用时隙资源的占比来表示。
请参阅图6所示,在时域上,每个SUL包括多个时隙。当SUL部署在LTE频段上时,该SUL上一部分时隙可能在LTE系统中被分配以用于LTE通信,而另一部分时隙可以作为上行随机接入资源。
首先,终端比较多个SUL对应的多个可用时隙资源的数量的大小。
例如,网络设备配置3个SUL,3个SUL分别为SUL1,SUL2和SUL3。其中,SUL1的可用时隙资源的数量为数量a(或可用时隙资源占比a),SUL2的可用时隙资源的数量为数量b(或可用时隙资源占比b),SUL3的可用时隙资源的数量为数量c(或可用时隙资源占比c)。
例如,数量a>数量b>数量c。
然后,终端根据多个SUL中每个SUL的可用时隙资源的数量确定第一SUL,第一SUL为多个可用资源的数量中最大值对应的SUL,或者,第一SUL为多个可用资源的占比中最大值对应的SUL。
例如,终端选择可用时隙资源数量a对应的SUL1为用于随机接入的第一SUL。
另一种方式中,该可用资源的数量为可用RACH资源的数量,该可用RACH资源包括但不限定于时域资源,频域资源、码域资源和空域资源等。
首先,终端比较多个SUL对应的多个可用RACH资源的数量的大小。
例如,SUL1有可用RACH资源数量m(如有640个相互正交的RACH资源),SUL2有可用RACH资源数量n(如有320个相互正交的RACH资源),SUL3有可用RACH资源数量s(如有160个相互正交的RACH资源)。
可用RACH资源数量m>可用RACH资源数量n>可用RACH资源数量s。
然后,终端根据多个SUL中每个SUL的可用RACH资源的数量确定第一SUL,第一 SUL为多个可用RACH资源的数量中最大值对应的SUL。即终端选择可用RACH资源数量a对应的SUL1为第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。每个SUL具有对应的可用资源的数量,终端可以根据每个SUL的可用资源的数量从多个SUL中选择可用资源的数量较多的SUL为用于随机接入的第一SUL。减少小区内选择该第一SUL进行随机接入的终端之间信号的干扰。
示例五、该配置信息包括多个SUL中每个SUL的可用RACH资源的时隙位置。
例如,基站配置2个SUL,分别为SUL1和SUL2。
终端选择最早的第一时隙位置对应的SUL为第一SUL。
例如,SUL1中的最早的可用RACH资源的时隙位置在第3个时隙位置。SUL2的最早的可用RACH资源的时隙位置在第5个时隙位置。
终端选择第3个时隙位置对应的SUL1为用于随机接入的第一SUL。
可选的,首先,终端确定有随机接入需求(或准备发起随机接入)的第一时间单元。
请参阅图7所示,该第一时间单元为第t个时隙。
然后,终端选择在第一时间单元(第t个时隙)之后最早的第一时隙位置对应的SUL为第一SUL。
在第一时间单元之后,SUL1中最早的可用RACH资源的时隙位置为第(t+3)个时隙位置。SUL2中最早的可用RACH资源的时隙位置为第(t+5)个时隙位置。x为大于或者等于3的整数,y为大于或者等于5的整数。
终端选择第(t+3)个时隙位置对应的SUL1为用于随机接入的第一SUL。
或者,也可以理解为,终端针对每个SUL,确定从第一时间单元开始距离下一个可用RACH资源的第一时隙位置之间的间隔时隙,如在SUL1中,第t个时隙距离最早的可用RACH资源的时隙位置之间的间隔为3个时隙。在SUL2中,第t个时隙距离最早的可用RACH资源的时隙位置之间的间隔为5个时隙,终端从多个间隔时隙中选择最短的间隔时隙(3个间隔时隙)所对应SUL为第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以选择最早的可用RACH资源的时隙位置对应的SUL为第一SUL,从而减少随机接入的时延。
示例六、配置信息包括多个SUL中每个SUL所位于的频带。
例如,基站配置2个SUL,分别为SUL1和SUL2。其中,SUL1所位于的频带为频带d,SUL2所位于的频带为频带e。
首先,终端针对每个SUL,根据每个SUL所位于的频带确定终端设备的最大发射功率。
终端根据SUL1所在的频带d确定终端设备的最大发射功率,终端可以通过查询频带与最大发射功率的对应表来确定最大发射功率,该频带与最大发射功率的对应关系表在终端出厂时已经预先配置。
例如,终端根据频带与最大发射功率的对应关系确定频带d对应的最大发射功率1,频带e对应的最大发射功率2,最大发射功率1>最大发射功率2。
然后,终端根据最大发射功率确定第一SUL,第一SUL为多个最大发射功率中的最大值对应的SUL。
例如,最大发射功率1和最大发射功率2中的最大值为最大发射功率1。终端选择最大发射功率1对应的SUL1为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL提升小区的上行覆盖。终端可以根据SUL所在的频带确定终端的最大发射功率,根据终端设备的最大发射功率确定第一SUL,终端选择的第一SUL上具有最大的最大发射功率,从而增加随机接入的成功率,并且保证终端发送信号的强度。
下面对上述各示例进行组合,通过至少两个参数信息的组合从多个SUL中选择用于随机接入的第一SUL。针对上述步骤402中的第二种可能的实现方式,即当M大于1时,配置信息至少包括第一参数信息和第二参数信息,终端通过第一参数信息和第二参数信息从多个SUL中选择第一SUL。当第一参数信息为信道质量阈值时,第二参数信息可以为所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,例如下述组合示例一至组合示例六。
当第一参数信息为优先级时,则所述第二参数信息为所述信道质量阈值、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,如下述组合示例七。
以下为配置信息包括第一参数信息和第二参数信息的各种组合示例及说明。
组合示例一、上述示例一与示例二的组合,即第一参数信息为信道质量阈值,第二参数信息为优先级。
组合示例二、上述示例一与示例三的组合,即第一参数信息为信道质量阈值,第二参数信息为负载。
组合示例三、上述示例一与示例四的组合,即第一参数信息为信道质量阈值,第二参数信息为可用资源的数量。
组合示例四、上述示例一与示例五的组合,即第一参数信息为信道质量阈值,第二参数信息为可用RACH资源的时隙位置。
组合示例五、上述示例一与示例六的组合,即第一参数信息为信道质量阈值,第二参数信息为SUL所位于的频带。
组合示例六、上述示例一、示例三和示例四的组合,即第一参数信息为信道质量阈值,第二参数信息包括负载和可用资源的数量。
组合示例七、上述示例二和示例三组合,即第一参数信息为优先级,第二参数信息为负载。
下面对上述七种组合示例进行说明。
组合示例一、上述示例一与示例二的组合,第一参数信息为信道质量阈值,第二参数信息为优先级。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。SUL1的优先级为第一优先级,SUL2的优先级为第二优先级,SUL3的优先级为第三优先级。第一优先级高于第二优先级,第二优先级高于第三优先级。
终端根据每个SUL对应的信道质量阈值在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。例如,该第一信息值为当前RSRP值。该第一信息值用于表征当前信道质量。
然后,终端针对每个SUL,比较当前RSRP值与每个SUL对应的RSRP阈值的大小。即比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于RSRP阈值2且大于RSRP阈值3时,终端从3个SUL中选择两个第二SUL为候选资源,如SUL2和SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL对应的优先级从多个SUL中选择用于随机接入的第一SUL。
SUL2的优先级高于SUL3的优先级,终端确定高优先级对应的SUL3为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL对应的优先级从多个第二SUL中选出用于随机接入的第一SUL,综合每个SUL的信道质量阈值和优先级从多个SUL中选择用于随机接入的第一SUL。
组合示例二、上述示例一与示例三的组合。第一参数信息为信道质量阈值,第二参数信息为负载。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。SUL1对应接入控制参数值p(如0.4),SUL2对应接入控制参数值q(如0.3),SUL3对应接入控制参数值w(如0.2)。接入控制参数值p>接入控制参数值q>接入控制参数值w。接入控制参数值越小,表示当前SUL的负载越重。接入控制参数值越大,表示当前SUL的负载越轻。
终端根据每个SUL对应的信道质量阈值在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值用于表征当 前信道质量。例如,该第一信息值为当前RSRP值。
然后,终端针对每个SUL,比较第一信息值(当前RSRP值)与每个SUL对应的RSRP阈值的大小。终端比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于RSRP阈值2且大于RSRP阈值3时,终端从3个SUL中选择两个第二SUL为候选资源,如SUL2和SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL对应的负载从多个SUL中选择用于随机接入的第一SUL。
首先,终端比较多个第二SUL对应的负载的轻重。
SUL2的接入控制参数值q大于SUL3的接入控制参数值w,表明SUL2的负载比SUL3的负载轻,终端确定负载轻对应的SUL2为用于随机接入的第一SUL。
然后,终端在多个第二SUL中选择第一SUL,第一SUL为负载多个第二SUL中负载最轻的SUL。
例如,终端在SUL2和SUL3中选择SUL2为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL对应的负载从多个第二SUL中选出用于随机接入的第一SUL,综合每个SUL的信道质量阈值和负载从多个SUL中选择用于随机接入的第一SUL。即可以保证选择信道质量较好的随机接入资源,又可以保证每个SUL的负载均衡,避免随机接入拥塞。
组合示例三、上述示例一与示例四的组合。即第一参数信息为信道质量阈值,第二参数信息为可用资源的数量。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。本示例中可用资源可以为可用上行时隙资源,或者,也可以为可用RACH资源的数量。本示例中,可用资源的数量以可用上行时隙资源的数量为例进行说明。
SUL1的可用时隙资源的数量为数量a,SUL2的可用时隙资源的数量为数量b,SUL3的可用时隙资源的数量为数量c。
终端根据每个SUL对应的信道质量阈值在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值用于表征当前信道质量。例如,该第一信息值为当前RSRP值。
然后,终端针对每个SUL,比较第一信息值(当前RSRP值)与每个SUL对应的RSRP阈值的大小。终端比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于RSRP阈值2且大于RSRP阈值3时,终端从3个SUL中选 择两个第二SUL为候选资源,如SUL2和SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL对应的可用资源的数量从多个SUL中选择用于随机接入的第一SUL。
首先,终端比较多个第二SUL对应的多个可用时隙资源的数量的大小。
例如,SUL2的可用时隙资源的数量(数量b)>SUL3的可用时隙资源的数量(数量c)。
然后,终端确定多个可用时隙资源的数量中最大值对应的SUL为用于随机接入的第一SUL。
例如,终端选择SUL2为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL对应的可用资源的数量从多个第二SUL中选出用于随机接入的第一SUL,综合每个SUL的信道质量阈值和可用资源的数量从多个SUL中选择用于随机接入的第一SUL。即保证选择信道质量较好的上行资源进行接入,提高随机接入的成功率,又可以减少小区内选择该第一SUL进行随机接入的终端之间信号的干扰。
组合示例四、上述示例一与示例五的组合。即第一参数信息为信道质量阈值,第二参数信息为可用RACH资源的时隙位置。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。
终端根据每个SUL对应的信道质量阈值在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值用于表征当前信道质量。例如,该第一信息值为当前RSRP值。
然后,终端针对每个SUL,比较第一信息值(当前RSRP值)与每个SUL对应的RSRP阈值的大小。终端比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于RSRP阈值2且大于RSRP阈值3时,终端从3个SUL中选择两个第二SUL为候选资源,如SUL2和SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL对应的可用RACH资源的时隙位置从多个SUL中选择用于随机接入的第一SUL。
首先,终端确定有随机接入需求(或准备发起随机接入)的第一时间单元。
例如,第一时间单元为第t个时隙。
然后,终端选择在第一时间单元之后最早的第一时隙位置对应的SUL为第一SUL。
在第一时间单元之后,SUL2中最早的可用RACH资源的时隙位置为第(t+3)个时隙位置。SUL3中最早的可用RACH资源的时隙位置为第(t+5)个时隙位置。
例如,终端选择第(t+3)个时隙位置对应的SUL2为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL对应的可用RACH资源的时隙位置从多个第二SUL中选出用于随机接入的第一SUL,综合每个SUL的信道质量阈值和最早的可用RACH资源的时隙位置从多个SUL中选择用于随机接入的第一SUL。即保证选择信道质量较好的上行资源进行接入,提高随机接入的成功率,又减少进入随机接入的时延。
组合示例五、上述示例一与示例六的组合。即第一参数信息为信道质量阈值,第二参数信息为SUL所位于的频带。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。SUL1所位于的频带为频带d,SUL2所位于的频带为频带e,SUL3所位于的频带为频带f。
终端根据每个SUL对应的信道质量阈值在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值用于表征当前信道质量。例如,该第一信息值为当前RSRP值。
然后,终端针对每个SUL,比较第一信息值(当前RSRP值)与每个SUL对应的RSRP阈值的大小。终端比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于RSRP阈值2且大于RSRP阈值3时,终端从3个SUL中选择两个第二SUL为候选资源,如SUL2和SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL所位于的频带为频带从多个SUL中选择用于随机接入的第一SUL。
首先,终端针对每个第二SUL,根据每个第二SUL所位于的频带确定终端设备的最大发射功率。
终端根据SUL1所在的频带d确定终端设备的最大发射功率,终端可以查询频带与最大发射功率的对应关系表来确定最大发射功率。
例如,终端根据频带与最大发射功率的对应关系确定SUL2所位于的频带e对应的最大发射功率2,SUL3所位于的频带f对应的最大发射功率3。
然后,终端比较多个第二SUL对应的多个最大发射功率的大小。
例如,最大发射功率2>最大发射功率3。
最后,终端根据最大发射功率确定第一SUL,第一SUL为多个最大发射功率中的最大值对应的SUL。
例如,最大发射功率2和最大发射功率3中的最大值为最大发射功率2。终端选择最大发射功率2对应的SUL2为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可 以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL对应的终端设备的最大发射功率从多个第二SUL中选出用于随机接入的第一SUL,综合每个SUL的信道质量阈值和终端设备的最大发射功率从多个SUL中选择用于随机接入的第一SUL。即保证选择信道质量较好的上行资源进行接入,又保证终端设备可以以最大发射功率进行随机接入,保证终端设备发送信号的信号强度,从而提高随机接入的成功率。
组合示例六、上述示例一、示例三和示例四的组合。即第一参数信息为信道质量阈值,第二参数信息包括负载,第三参数信息为可用资源的数量。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。SUL1对应RSRP阈值1,SUL2对应RSRP阈值2,SUL3对应RSRP阈值3。其中,RSRP阈值1>RSRP阈值2>RSRP阈值3。SUL1对应接入控制参数值p(如0.4),SUL2对应接入控制参数值q(如0.4),SUL3对应接入控制参数值w(如0.2)。接入控制参数值p>接入控制参数值q>接入控制参数值w。接入控制参数值越小,表示当前SUL的负载越重。接入控制参数值越大,表示当前SUL的负载越轻。本示例中,可用资源的数量以可用上行时隙资源的数量为例进行说明。SUL1的可用时隙资源的数量为数量a,SUL2的可用时隙资源的数量为数量b,SUL3的可用时隙资源的数量为数量c。
终端根据每个SUL对应的第一参数信息(如信道质量阈值)在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端接收下行信号,根据下行信号确定第一信息值。该第一信息值用于表征当前信道质量。例如,该第一信息值为当前RSRP值。
然后,终端针对每个SUL,比较第一信息值(当前RSRP值)与每个SUL对应的RSRP阈值的大小。终端比较当前RSRP值与RSRP阈值1的大小,当前RSRP值与RSRP阈值2的大小,当前RSRP值与RSRP阈值3的大小。
例如,当第一信息值小于阈值1且大于阈值2时,终端能使用SUL1或SUL2或SUL3进行接入,即第二SUL为SUL1、SUL2或SUL3,SUL1、SUL2或SUL3为候选资源。
终端根据至少两个第二SUL中每个SUL对应的第二参数信息(如负载)从多个SUL中选择第三SUL。
首先,终端比较多个第二SUL对应的负载的轻重。
SUL1的接入控制参数值p等于SUL2的接入控制参数值q,SUL2的接入控制参数值q大于SUL3的接入控制参数值w,SUL1和SUL2的负载比SUL3的负载轻。
然后,终端在多个第二SUL中选择第三SUL,第三SUL为负载多个第二SUL中负载最轻的SUL。
例如,终端确定负载轻的SUL1和SUL2为第三SUL。
终端根据第三参数信息(如可用上行时隙资源的数量)从多个第三SUL中选择用于随机接入的第一SUL。
首先,终端比较多个第三SUL对应的多个可用时隙资源的数量的大小。
例如,SUL1的可用时隙资源的数量(数量a)>SUL2的可用时隙资源的数量(数量b)。
然后,终端确定多个可用时隙资源的数量中最大值对应的SUL为用于随机接入的第一SUL。
例如,终端选择SUL1为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据当前信道质量和每个SUL对应的信道质量阈值选出多个第二SUL,然后终端可以进一步根据每个第二SUL的负载从多个第二SUL中选出第三SUL,最后终端根据每个第三SUL对应的可用时隙资源的数量从多个第三SUL中选择用于随机接入的第一SUL。综合每个SUL的信道质量阈值、负载及可用时隙资源的数量从多个SUL中选择用于随机接入的第一SUL。即保证选择信道质量较好的上行资源,负载最轻以保证SUL负载均衡,并且减少小区内选择该第一SUL进行随机接入的终端之间信号的干扰。
组合示例七、上述示例二和示例三组合。即第一参数信息为优先级,第二参数信息为负载。
例如,网络设备配置3个SUL,分别为SUL1、SUL2和SUL3。其中,SUL1对应第一优先级,SUL2对应第一优先级,SUL3对应第二优先级,且第一优先级高于第二优先级。SUL1对应接入控制参数值p(如0.4),SUL2对应接入控制参数值q(如0.3),SUL3对应接入控制参数值w(如0.2)。
终端根据每个SUL对应的优先级在多个SUL中选择至少两个第二SUL作为候选资源。
首先,终端比较多个SUL对应的优先级的高低。
SUL1和SUL2对应的优先级相同,SUL1和SUL2对应的优先级大于SUL3对应的优先级。
然后,终端根据多个SUL对应的优先级从多个SUL中选择至少两个第二SUL作为候选资源,第二SUL为多个SUL中高优先级的SUL。
例如,终端选择SUL1和SUL2作为第二SUL。
终端根据多个第二SUL中每个第二SUL的负载选择用于随机接入的第一SUL。
首先,终端比较每个第二SUL的负载的轻重。
例如,SUL1对应接入控制参数值p(如0.4)>SUL2对应接入控制参数值q(如0.3),表明SUL1的负载比SUL2的负载轻。
然后,终端选择最轻负载对应的SUL为用于随机接入的第一SUL。
例如,终端选择SUL1为用于随机接入的第一SUL。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以首先根据每个SUL对应的优先级选出多个第二SUL,然后终端可以进一步根据每个第二SUL的负载从多个第二SUL中选出用于随机接入的第一SUL。综合每个SUL的优先级及负载从多个SUL中选择用于随机接入的第一SUL。
需要说明的是,上述七种组合方式仅是示例性说明,基于上述示例一至示例六的其他 排列组合方式也属于本申请的覆盖范围之下。例如,其他组合方式还包括:示例二与其他五个示例的组合方式,即第一参数信息为SUL的负载,第二参数信息为信道质量阈值、SUL优先级、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息。示例三与其他五个示例的组合方式,即第一参数信息为SUL的可用资源的数量,第二参数信息为信道质量阈值、SUL优先级、SUL负载、SUL上可用随机接入信道RACH资源的时隙位置、SUL所位于的频带中的至少一个参数信息等等。示例一、示例四和示例五的组合方式等等,上述组合示例没有举例的组合方式,可以参阅上述各个示例(示例一至示例六)进行理解。例如,若第一参数信息为优先级,第二参数信息为可用RACH资源的时隙位置,可以参阅上述示例二和上述示例四进行理解等。此处不一一详述。
本申请实施例还提供了一种随机接入方法的另一个实施例,本实施例与图4对应的实施例的区别在于:本实施例中,终端设备不需要根据配置信息从多个SUL中选择第一SUL,而是可以直接根据等概率随机选择方式从多个SUL中选择第一SUL。
请参阅图8所示,本申请实施例提供的一种随机接入方法包括:
步骤801,终端接收网络设备发送的多个SUL的第一信息。
网络设备配置多个SUL,并且可以通过广播的系统消息广播该多个SUL的第一信息,该第一信息请参阅图4对应的实施例中步骤401进行理解,此处不赘述。
步骤802、终端设备通过随机选择的方式从多个SUL中选择第一SUL。
其中,等概率随机选择的方式具体可以为:
终端生成随机数,并根据SUL的数量确定随机数阈值范围。
该随机数为0~1之间的随机数。可选的,终端可以以UE ID的部分或全部作为生成随机数的种子,进一步利用随机数生成算法及种子生成随机数。例如,该UE的5G-全球唯一临时UE标识(globally unique temporary UE identity,GUTI)、5G-TMSI(5G-GUTI的缩短形式)、5G-S-TMSI(5G-GUTI的缩短形式)等。由于UE ID唯一,可以保证不同终端在同一时刻生成的随机数是不同。可选的,终端可以以UE ID的部分或全部及生成随机数的时刻作为种子来生成随机数。可以保证不同的终端在同一个时刻生成的随机数是不同的,且同一个终端在不同的时刻生成的随机数是不同的。
例如,网络设备配置k个SUL,终端可以根据SUL的数量,将(0,1)平均分成k份。例如,当SUL的数量为2个时,终端确定SUL1对应的随机数阈值范围为(0,0.5],SUL2对应的随机数阈值范围为(0.5,1]。例如,终端生成的随机数为0.2。
终端根据随机数和每个SUL对应的随机数阈值范围确定用于随机接入的第一SUL。
若随机数属于SUL1对应的随机数阈值范围,则终端确定SUL1为用于随机接入的第一SUL。若随机数属于SUL2对应的随机数阈值范围,则终端确定SUL2为用于随机接入的第一SUL。
例如,当随机数为0.2时,0.2属于SUL1对应的随机数阈值范围,则终端确定SUL1为第一SUL。
步骤803、在第一SUL上发起随机接入。
本示例中,一个小区中配置多个SUL,该多个SUL用于提升小区的上行覆盖。终端可以通过等概率随机选择的方式从多个SUL中选择一个用于随机接入的第一SUL。
本步骤中,根据当前信道质量选择采用2步接入或者也可以采用4步接入,本步骤可以结合上述图4对应的实施例中的步骤403进行理解,此处不赘述。
需要说明的是,本实施例中等概率随机选择的方式可以与图4对应的实施例中的各示例及各组合示例进行结合,当终端根据一个参数信息选择出至少两个SUL之后,都可以再通过等概率随机选择的方式从该至少两个SUL中选择出一个SUL用于随机接入。或者,在多个参数信息的组合示例中,若配置信息中包括了r个参数信息(例如r为2)。例如,第一参数信息为信道质量阈值,第二参数信息为优先级,终端设备通过这两个参数信息仍然不能选择出一个SUL,可以通过本实施例中等概率随机选择的方式从多个SUL中选择一个SUL作为随机接入的第一SUL。
示例性的,如在图4对应的实施例中的示例一中:当第一信息值小于阈值1且大于阈值2时,终端能使用SUL1或SUL2或SUL3进行接入,终端可以从SUL1、SUL2或SUL3中等概率随机选择方式选择一个SUL作为用于随机接入的第一SUL。
终端生成一个随机数,并确定每个SUL对应的阈值范围。例如,SUL1对应的阈值范围为(0,0.33],SUL2对应的阈值范围为(0.33,0.66],SUL3对应的阈值范围为(0.66,1]。
例如,终端生成的随机数为0.4。
终端根据随机数和每个SUL对应的随机数阈值范围确定用于随机接入的第一SUL。
例如,当随机数为0.4时,0.4属于SUL2对应的随机数阈值范围,则终端确定SUL2为用于随机接入的第一SUL。
上面对本申请涉及的一种随机接入方法,本申请提供了该方法应用的装置的一个实施例。请参阅图9所示,一种装置900的一个实施例包括:
接收模块901,用于接收网络设备发送的多个辅助上行载波SUL的配置信息;
处理模块902,根据接收模块901接收的配置信息在多个所述SUL中选择用于随机接入的第一SUL;
处理模块902,还用于在处理模块902确定的第一SUL上发起随机接入。
具体的,接收模块901用于执行图4对应的实施例中的步骤401和图8对应的实施例中的步骤801,处理模块902用于执行图4对应的实施例中的步骤402和步骤403,及图8对应的实施例中的步骤802和803。
在一种实现方式中,装置900可以为方法实施例中的终端设备。装置900包括的相应单元分别用于执行各示例中由终端设备执行的相应操作和/或处理。
例如,接收模块901为收发器,处理模块902可以是处理器。其中,收发器具有发送和/或接收的功能,收发器也可以由接收器和/或发射器代替。
在另一种实现方式中,装置900可以为芯片或集成电路。此时,接收模块901可以为通信接口,处理模块902可以为逻辑电路。
可选地,通信接口可以是输入输出接口或者收发电路。输入输出接口可以包括输入接口和输出接口。收发电路可以包括输入接口电路和输出接口电路。
在一种实现方式中,处理模块902可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
可选地,处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行任意一个方法实施例中的相应处理和/或步骤。
可选地,处理装置可以仅包括处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,处理装置的功能可以部分或全部通过硬件实现。此时,处理装置可以包括输入接口电路,逻辑电路和输出接口电路。如图10所示。
参见图10,图10为本申请提供的处理装置1000的一种示意性结构图。其中,输入接口电路1001用于接收多个SUL的配置信息。逻辑电路1002用于根据接收到的多个SUL的配置信息在多个SUL中选择用于随机接入的第一SUL,并在该第一SUL上发起随机接入;可选的,输出接口电路1003,用于在第一SUL上选择前导码序列向网络设备发送,发起随机接入。
参见图11,图11为本申请实施例提供的终端设备的一种示意性结构图。终端设备包括处理器1101、收发器1102和存储器1103。其中,处理器1101、收发器1102和存储器1103之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。存储器1103用于存储计算机程序,处理器1101用于从存储器1103中调用并运行计算机程序,以控制收发器1102收发信号。可选地,终端设备还可以包括天线1104。收发器1102通过天线发射或接收无线信号。
可选地,处理器1101和存储器1103可以合成一个处理装置,处理器1101用于执行存储器1103中存储的程序代码来实现上述功能。
可选地,存储器1103也可以集成在处理器1101中。或者,存储器1103独立于处理器1101,也即位于处理器1101之外。
处理器1101可以用于执行前面方法实施例中描述的由终端设备内部实现的动作。收发器1102可以用于执行由终端设备执行的接收或发送的动作,存储器1103用于实现存储的功能。例如,上述图9中所示的接收模块901执行的处理和/或操作可以由收发器1102实现。处理模块902执行的处理和/或操作可以由图11中所示的处理器1101实现。具体可以参见方法实施例的详细说明,这里不再赘述。
可选地,终端设备还可以包括电源1105,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,终端设备还可以包括输入单元1106、 显示单元1107、音频电路1108和传感器1110等中的一个或多个。音频电路还可以包括扬声器11082、麦克风11084等。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行任意一个方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行任意一个方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由终端设备执行的操作和/或处理。
进一步地,所述芯片还可以包括存储器和/或通信接口。所述通信接口可以是输入输出接口,输入输出电路等。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存 储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (26)

  1. 一种随机接入方法,其特征在于,包括:
    接收网络设备发送的配置信息,所述配置信息包括多个辅助上行载波SUL的信息;
    根据所述配置信息在多个所述SUL中选择用于随机接入的第一SUL;
    在所述第一SUL上发起随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息包括信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置信息包括第一参数信息和/或第二参数信息;所述根据所述配置信息在多个SUL中选择用于随机接入的第一SUL,包括:
    根据所述第一参数信息确定M个第二SUL,所述第一参数信息为信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个,所述M为大于或等于1的整数;
    若M等于1,则所述第二SUL为所述第一SUL;
    若M大于1,则根据所述第二参数信息从所述M个第二SUL中确定用于随机接入的所述第一SUL,所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,所述第一参数信息和所述第二参数信息不同。
  4. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL对应的第一信道质量阈值,所述第一信道质量阈值用于终端设备判断能否使用与所述第一信道质量阈值对应的SUL进行随机接入;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    接收下行信号,根据所述下行信号确定第一信息值,所述第一信息值用于表征信道质量;
    根据所述第一信息值与每个所述SUL对应的第一信道质量阈值,确定所述M个第二SUL;
    若M大于1,则所述第二参数信息为所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  5. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的优先级;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    根据多个所述SUL中每个所述SUL的优先级确定所述M个第二SUL,所述第二SUL为多个所述SUL中优先级最高的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL负载、所述SUL 上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  6. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的负载;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    根据多个所述SUL中每个所述SUL的负载确定所述M个第二SUL,所述第二SUL为多个所述负载中负载最轻的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  7. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的可用资源的数量或可用资源的占比,所述可用资源的占比用于指示所述可用资源的数量;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    根据多个所述SUL中每个所述SUL的可用资源的数量确定所述M个第二SUL,所述第二SUL为多个所述可用资源的数量中最大值对应的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  8. 根据权利要求7所述的方法,其特征在于,所述可用资源为可用上行时隙资源,或者,所述可用资源为可用RACH资源。
  9. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个SUL中每个所述SUL的可用RACH资源的时隙位置;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    确定有随机接入需求的第一时间单元;
    选择在所述第一时间单元之后最早的第一时隙位置对应的SUL为所述M个第二SUL,多个所述可用RACH资源的时隙位置包括所述第一时隙位置;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL所位于的频带中的至少一个参数信息。
  10. 根据权利要求3所述的方法,其特征在于,所述第一参数信息包括多个SUL中每个所述SUL所位于的频带;
    所述根据所述第一参数信息确定M个第二SUL,包括:
    针对每个所述SUL,根据所述SUL所位于的频带确定终端设备的最大发射功率;
    根据所述终端设备的最大发射功率确定所述M个第二SUL,所述第二SUL为多个所述最大发射功率中的最大值对应的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位 置中的至少一个参数信息。
  11. 根据权利要求1-3中任一项所述的方法,其特征在于,所述配置信息还包括第二信道质量阈值;所述方法还包括:
    接收下行信号,根据所述下行信号确定第一信息值,所述第一信息值用于表征信道质量;
    第一信息值大于所述第二信道质量阈值,选择2步接入所述第一SUL;
    或者,
    第一信息值小于或者等于所述第二信道质量阈值,选择4步接入所述第一SUL。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述配置信息为网络设备广播的系统消息中包括的信息。
  13. 一种终端,其特征在于,包括处理器和与所述处理器连接的收发器;
    所述收发器,用于接收网络设备发送的配置信息,所述配置信息包括多个辅助上行载波SUL的信息;
    所述处理器,用于根据所述收发器接收的所述配置信息在多个所述SUL中选择用于随机接入的第一SUL;并在所述第一SUL上发起随机接入。
  14. 根据权利要求13所述的终端,其特征在于,所述配置信息包括信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  15. 根据权利要求13或14所述的终端,其特征在于,所述配置信息包括第一参数信息和/或第二参数信息;
    所述处理器还用于:
    根据所述第一参数信息确定M个第二SUL,所述第一参数信息为信道质量阈值、SUL优先级、SUL负载、SUL上可用资源的数量、SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个,所述M为大于或等于1的整数;
    若M等于1,则所述第二SUL为所述第一SUL;
    若M大于1,则根据所述第二参数信息从所述M个第二SUL中确定用于随机接入的所述第一SUL,所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息,所述第一参数信息和所述第二参数信息不同。
  16. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL对应的第一信道质量阈值,所述第一信道质量阈值用于终端设备判断能否使用与所述第一信道质量阈值对应的SUL进行随机接入;
    所述收发器,还用于接收下行信号;
    所述处理器还用于:
    根据所述下行信号确定第一信息值,所述第一信息值用于表征信道质量;
    根据所述第一信息值与每个所述SUL对应的第一信道质量阈值,确定所述M个第二 SUL;
    若M大于1,则所述第二参数信息为所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  17. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的优先级;
    所述处理器还用于:
    根据多个所述SUL中每个所述SUL的优先级确定所述M个第二SUL,所述第二SUL为多个所述SUL中优先级中最高的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  18. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的负载;
    所述处理器还用于:
    根据多个所述SUL中每个所述SUL的负载确定所述M个第二SUL,所述第二SUL为多个所述负载中负载最轻的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  19. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个所述SUL中每个所述SUL的可用资源的数量或可用资源的占比,所述可用资源的占比用于指示所述可用资源的数量;
    所述处理器还用于:
    根据多个所述SUL中每个所述SUL的可用资源的数量确定所述M个第二SUL,所述第二SUL为多个所述可用资源的数量中最大值对应的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用随机接入信道RACH资源的时隙位置、所述SUL所位于的频带中的至少一个参数信息。
  20. 根据权利要求19所述的终端,其特征在于,所述可用资源为可用上行时隙资源,或者,所述可用资源为可用RACH资源。
  21. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个SUL中每个所述SUL的可用RACH资源的时隙位置;
    所述处理器还用于:
    确定有随机接入需求的第一时间单元;
    选择在所述第一时间单元之后最早的第一时隙位置对应的SUL为所述M个第二SUL,多个所述可用RACH资源的时隙位置包括所述第一时隙位置;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL所位于的频带中的至少一个参数信息。
  22. 根据权利要求15所述的终端,其特征在于,所述第一参数信息包括多个SUL中每个所述SUL所位于的频带;
    所述处理器还用于:
    针对每个所述SUL,根据所述SUL所位于的频带确定终端设备的最大发射功率;
    根据所述终端设备的最大发射功率确定所述M个第二SUL,所述第二SUL为多个所述最大发射功率中的最大值对应的SUL;
    若M大于1,则所述第二参数信息为所述信道质量阈值、所述SUL优先级、所述SUL负载、所述SUL上可用资源的数量、所述SUL上可用随机接入信道RACH资源的时隙位置中的至少一个参数信息。
  23. 根据权利要求13-15中任一项所述的终端,其特征在于,所述配置信息还包括第二信道质量阈值;所述方法还包括:
    所述收发器,还用于接收下行信号;
    所述处理器还用于:
    根据所述下行信号确定第一信息值,所述第一信息值用于表征信道质量;
    第一信息值大于所述第二信道质量阈值,选择2步接入所述第一SUL;
    或者,
    第一信息值小于或者等于所述第二信道质量阈值,选择4步接入所述第一SUL。
  24. 根据权利要求13-23中任一项所述的终端,其特征在于,所述配置信息为网络设备广播的系统消息中包括的信息。
  25. 一种计算机可读介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任意一项所述的方法。
  26. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1至12中任一项所述的方法。
PCT/CN2021/092600 2020-06-10 2021-05-10 一种随机接入方法及终端 WO2021249081A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21821367.6A EP4145910A4 (en) 2020-06-10 2021-05-10 DIRECT ACCESS METHOD AND TERMINAL
US18/009,589 US20230354433A1 (en) 2020-06-10 2021-05-10 Random access method and terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010524863.4 2020-06-10
CN202010524863 2020-06-10
CN202010725475.2 2020-07-24
CN202010725475.2A CN113784420A (zh) 2020-06-10 2020-07-24 一种随机接入方法及终端

Publications (1)

Publication Number Publication Date
WO2021249081A1 true WO2021249081A1 (zh) 2021-12-16

Family

ID=78835188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092600 WO2021249081A1 (zh) 2020-06-10 2021-05-10 一种随机接入方法及终端

Country Status (4)

Country Link
US (1) US20230354433A1 (zh)
EP (1) EP4145910A4 (zh)
CN (1) CN113784420A (zh)
WO (1) WO2021249081A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116744452A (zh) * 2022-03-01 2023-09-12 维沃移动通信有限公司 上行发送处理方法、装置、终端、网络侧设备及存储介质
CN117158092A (zh) * 2022-04-29 2023-12-01 北京小米移动软件有限公司 上行传输方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370574A (zh) * 2017-10-30 2018-08-03 北京小米移动软件有限公司 随机接入方法及装置
CN110337152A (zh) * 2019-06-11 2019-10-15 华为技术有限公司 一种配置sul的方法及通信装置
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
CN111034304A (zh) * 2017-06-16 2020-04-17 日本电气株式会社 用于nr专用载波和lte/nr共享载波之间的prach发送的上行链路载波选择

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034877B (zh) * 2018-01-11 2024-04-09 北京三星通信技术研究有限公司 补充上行载波配置信息传递的方法及设备
US11044756B2 (en) * 2017-10-09 2021-06-22 Qualcomm Incorporated Supplementary uplink random access channel procedures
CN109803398B (zh) * 2017-11-17 2023-06-02 华为技术有限公司 通信方法及其终端设备、网络设备
CN113556824B (zh) * 2017-11-17 2024-04-16 华为技术有限公司 一种随机接入方法及装置
CN110049557B (zh) * 2018-01-17 2023-06-20 华为技术有限公司 随机接入方法及装置
WO2019216697A1 (ko) * 2018-05-10 2019-11-14 주식회사 아이티엘 비면허 대역을 위한 nr 시스템에서 신호를 송수신하는 방법 및 그 장치
CN110859003A (zh) * 2018-08-22 2020-03-03 成都华为技术有限公司 确定上行资源的方法与装置
CN111225410B (zh) * 2018-11-24 2022-05-10 华为技术有限公司 一种确定上行链路的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034304A (zh) * 2017-06-16 2020-04-17 日本电气株式会社 用于nr专用载波和lte/nr共享载波之间的prach发送的上行链路载波选择
CN108370574A (zh) * 2017-10-30 2018-08-03 北京小米移动软件有限公司 随机接入方法及装置
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
CN110337152A (zh) * 2019-06-11 2019-10-15 华为技术有限公司 一种配置sul的方法及通信装置

Also Published As

Publication number Publication date
EP4145910A4 (en) 2023-11-08
CN113784420A (zh) 2021-12-10
EP4145910A1 (en) 2023-03-08
US20230354433A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US20200163074A1 (en) Beam selection method and device
US11665688B2 (en) Coordination between prose BSR and cellular BSR
CN111465117B (zh) 一种随机接入的方法和装置
CN114125955B (zh) 一种波形指示方法及芯片、系统
CN110312309B (zh) 一种随机接入的方法及装置
TWI723552B (zh) 判斷對話前監聽和通道存取優先級等級之方法及使用者設備
US11330589B2 (en) Carrier switching and information sending method and apparatus
US11317295B2 (en) Communications method and apparatus
RU2758784C1 (ru) Пользовательское устройство
US11134514B2 (en) Random access method, network device, and terminal device
WO2021249081A1 (zh) 一种随机接入方法及终端
US11889347B2 (en) Apparatus and method for uplink data report and control channel synchronization in wireless communication system
US11388683B2 (en) User equipment
CN109152083A (zh) 随机接入方法、装置及用户设备
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
US20230164746A1 (en) Random access resource selection method and related apparatus
US20230049532A1 (en) Random access method and terminal device
US20230116493A1 (en) Signal Transmission Method and Apparatus
WO2021017016A1 (zh) 随机接入方法及相关设备
WO2023010320A1 (en) Methods, devices, and systems for enhancing uplink coverage
US20240090002A1 (en) Sidelink communication method and apparatus
WO2022258041A1 (zh) 资源指示方法、数据传输方法、网络侧设备和终端设备
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
CN115175361A (zh) 一种通信方法及装置
CN115776733A (zh) 无线通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021821367

Country of ref document: EP

Effective date: 20221201

NENP Non-entry into the national phase

Ref country code: DE