WO2021227574A1 - 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 - Google Patents

光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 Download PDF

Info

Publication number
WO2021227574A1
WO2021227574A1 PCT/CN2021/075381 CN2021075381W WO2021227574A1 WO 2021227574 A1 WO2021227574 A1 WO 2021227574A1 CN 2021075381 W CN2021075381 W CN 2021075381W WO 2021227574 A1 WO2021227574 A1 WO 2021227574A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
inorganic hybrid
efficiency
hybrid perovskite
perovskite solar
Prior art date
Application number
PCT/CN2021/075381
Other languages
English (en)
French (fr)
Inventor
吴刚
连小梅
陈红征
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021227574A1 publication Critical patent/WO2021227574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the field of organic-inorganic hybrid perovskite solar cells, and in particular relates to a method for assisting in improving the efficiency of organic-inorganic hybrid perovskite solar cells by a photothermal combined external field.
  • Organic-inorganic hybrid perovskite solar cells have received extensive attention from the scientific and industrial circles because of their rapidly increasing photoelectric conversion efficiency and solution processability.
  • the preparation of high-quality perovskite films can reduce the internal and surface defects of the perovskite films, help reduce non-radiative recombination, improve the transmission of photo-generated carriers, reduce interface energy loss, and obtain high short-circuit current and high open circuit Voltage to improve photoelectric conversion efficiency.
  • the preparation method and process of the perovskite film it is the most important way to achieve high-quality film preparation.
  • adding additives to the perovskite precursor solution using thermal spin coating methods, anti-solvent methods, mixed solvent methods, slow thermal annealing methods, etc., can effectively improve the quality of the perovskite film.
  • the introduction of substances that can passivate perovskite defects into the grain boundary and surface of the perovskite film is also conducive to improving the transport of carriers.
  • Choosing a charge transport layer material that matches the energy level structure to match the perovskite film is beneficial to reduce the interface energy loss and increase the open circuit voltage.
  • the purpose of the present invention is to solve the above-mentioned problems in the prior art, and provide a method for improving the efficiency of organic-inorganic hybrid perovskite solar cells with the help of a combined photothermal external field.
  • the method can greatly improve the photoelectric conversion efficiency of the solar cell by placing the organic-inorganic hybrid perovskite solar cell in an inert gas environment for photothermal combined external field treatment.
  • a method for assisting in improving the efficiency of organic-inorganic hybrid perovskite solar cells by a photothermal combined external field is as follows: placing the organic-inorganic hybrid perovskite solar cell in a photothermal combined external field for processing;
  • the material chemical structure of the organic-inorganic hybrid perovskite light absorption layer in the battery is APbI x (Br y Cl 1-y ) 3-x , where 2.5 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, A is methylamine At least one of (MA) and formamidine (FA) cations.
  • the combined external field of light and heat refers to an external field that has both illumination and heating.
  • the treatment conditions of the photothermal combined external field are: temperature 50-120°C, light intensity 0.01-20 mW/cm 2 , treatment time 5-200 hours, and in an inert atmosphere.
  • the inert atmosphere is nitrogen or argon atmosphere.
  • the structure of the organic-inorganic hybrid perovskite solar cell includes a substrate (1), a transparent electrode layer (2), a first charge transport layer (3), an organic-inorganic hybrid An inorganic hybrid perovskite light absorption layer (4), a second charge transport layer (5) and a metal electrode layer (6).
  • the material of the substrate (1) is glass or quartz.
  • the material of the transparent electrode layer (2) is indium tin oxide or fluorine-doped indium tin oxide;
  • A is a mixture of methylamine (MA) and formamidine (FA), and the mixing ratio is 0.01:0.99 to 0.99 based on the molar ratio. :0.01.
  • the material of the first charge transport layer (3) is PEDOT: PSS, PTAA, NiOx, PCBM, C60, ZnO or TiO 2 .
  • the material of the second charge transport layer (5) is PEDOT: PSS, PTAA, NiOx, PCBM, C60, ZnO or TiO 2 .
  • the material of the metal electrode layer (6) is silver, aluminum, gold or copper.
  • the method greatly improves the photoelectric conversion efficiency of the solar cell by placing the organic-inorganic hybrid perovskite solar cell in an inert gas environment for photothermal combined field treatment. This is of great value for the preparation of high-performance hybrid perovskite solar cells.
  • Figure 1 is a schematic diagram of the structure of an organic-inorganic hybrid perovskite solar cell, from bottom to top: substrate 1, transparent electrode layer 2, first charge transport layer 3, organic-inorganic hybrid perovskite light absorption layer 4. The second charge transport layer 5 and the metal electrode layer 6.
  • the method for improving the efficiency of the organic-inorganic hybrid perovskite solar cell by the combined light and heat external field is as follows: the organic-inorganic hybrid perovskite solar cell is placed in the combined field of light and heating, and the atmosphere is an inert gas .
  • the heating temperature range is 50-120°C
  • the light intensity is 0.01-20mW/cm 2
  • the time is 5-200 hours.
  • the material chemical structure of the organic-inorganic hybrid perovskite light absorption layer is APbI x (Br y Cl 1-y ) 3-x , where 2.5 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, A It is at least one of methylamine (MA) and formamidine (FA) cations.
  • the invention relieves interface stress, avoids migration and aggregation of ions, thereby improving the quality of the perovskite film, reducing defects, effectively avoiding non-radiative recombination, and realizing the improvement of photovoltaic device efficiency.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere, under 10mW/cm 2 of light, and simultaneously heated at 100°C for 200 hours, which can improve the photoelectric conversion efficiency of the device.
  • the photoelectric conversion efficiency of the battery can be improved.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure is glass, indium tin oxide, NiOx, MAPbI 3 , PCBM, and silver from bottom to top.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 1-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 1-2 shows only the heat treatment efficiency changes with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 1-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere under 15 mW/cm 2 of light, and is heated at 55° C. for a treatment time of 70 hours, which can improve the photoelectric conversion efficiency of the cell.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, fluorine-doped indium tin oxide, TiO 2 , FAPbI 3 , PTAA, and aluminum.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 2-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 2-2 shows only the heat treatment efficiency changes with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 2-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere, under 8mW/cm 2 of light, and is simultaneously heated at 65°C for a treatment time of 150 hours, which can improve the photoelectric conversion efficiency of the cell.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, indium tin oxide, ZnO, (FA 0.99 MA 0.01 )PbI 2.5 (Br 0.01 Cl 0.99 ) 0.5 , PEDOT:PSS, and gold.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 3-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase.
  • Table 3-2 shows only the change of heat treatment efficiency over time. It can be seen that as the treatment time increases, the device efficiency drops rapidly.
  • Table 3-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in an argon atmosphere under 0.01 mW/cm 2 of light, and is heated at 80° C. for a treatment time of 10 hours, which can improve the photoelectric conversion efficiency of the cell.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is glass, fluorine-doped indium tin oxide, PTAA, (FA 0.01 MA 0.99 ) PbI 2.6 (Br 0.09 Cl 0.91 ) 0.4 , C60, and gold.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 4-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 4-2 shows only the heat treatment efficiency changes over time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 4-3 shows the change of efficiency with time when the light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere, under 6mW/cm 2 of light, and is heated at 75°C at the same time.
  • the treatment time is 175 hours, which can improve the photoelectric conversion efficiency of the cell.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is glass, fluorine-doped indium tin oxide, PTAA, (FA 0.1 MA 0.9 )PbI 2.7 Cl 0.3 , PCBM, and copper.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 5-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 5-2 shows only the heat treatment efficiency changes with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 5-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that the device efficiency hardly changes with the extension of the processing time. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic - inorganic hybrid perovskite solar cell is placed in an argon atmosphere at 12mW / cm 2 of light, and a heat treatment while 105 °C, the processing time is 35 hours, to improve the photoelectric conversion efficiency of the battery can be achieved.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure is glass, indium tin oxide, NiOx, (FA 0.2 MA 0.8 )PbI 2.8 Br 0.2 , C60, and copper from bottom to top.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 6-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 6-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 6-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in an argon atmosphere under 0.5 mW/cm 2 of light, and is heated at 65° C. for a treatment time of 125 hours, which can improve the photoelectric conversion efficiency of the device.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure is glass, indium tin oxide, NiOx, (FA 0.3 MA 0.7 )PbI 2.9 Br 0.1 , PCBM, and gold from bottom to top.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 7-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 7-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 7-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in an argon atmosphere, under 1.5mW/cm 2 of light, and is heated at 90°C at the same time.
  • the treatment time is 90 hours, and the photoelectric conversion efficiency of the device can be improved.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, fluorine-doped indium tin oxide, PTAA, (FA 0.4 MA 0.6 )PbI 2.9 Cl 0.1 , PCBM, and aluminum.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 8-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 8-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 8-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere under 5mW/cm 2 of light, and simultaneously heated at 70°C for 30 hours, which can improve the photoelectric conversion efficiency of the device.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure is glass, indium tin oxide, NiOx, (FA 0.5 MA 0.5 )PbI 2.6 Cl 0.4 , PCBM, and silver from bottom to top.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 9-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 9-2 shows only the heat treatment efficiency changes with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 9-3 shows the change in efficiency with time when light is not heated (room temperature). It can be seen that the device efficiency hardly changes with the extension of the processing time. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in an argon atmosphere, under 20mW/cm 2 of light, and is heated at 50°C at the same time.
  • the treatment time is 100 hours, and the photoelectric conversion efficiency of the device can be improved.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure is glass, indium tin oxide, PEDOT:PSS, (FA 0.6 MA 0.4 )PbI 2.5 Br 0.5 , PCBM, and aluminum from bottom to top.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 10-1 shows the efficiency change over time during the external field process of the photothermal combination. It can be seen that as the processing time increases, the device efficiency continues to increase. Table 10-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 10-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, there is almost no change in device efficiency. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere under 1 mW/cm 2 of light, and is heated at 60° C. for a treatment time of 80 hours, which can improve the photoelectric conversion efficiency of the device.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is glass, fluorine-doped indium tin oxide, PTAA, (FA 0.01 MA 0.99 ) PbI 2.6 (Br 0.9 Cl 0.1 ) 0.4 , C60, and gold.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 11-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 11-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 11-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic - inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere at 2mW / cm 2 of light, and a heat treatment 110 deg.] C while the processing time is 40 hours, to improve the photoelectric conversion efficiency of the device can be achieved.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, indium tin oxide, PTAA, (FA 0.6 MA 0.4 )PbI 2.8 (Br 0.4 Cl 0.6 ) 0.2 , C60, and silver.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 12-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 12-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 12-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere under 0.1 mW/cm 2 of light, and is simultaneously heated at 95° C. for a treatment time of 100 hours, which can improve the photoelectric conversion efficiency of the device.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, indium tin oxide, PTAA, (FA 0.7 MA 0.3 )PbI 2.8 (Br 0.3 Cl 0.7 ) 0.2 , C60, and silver.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 13-1 shows the change of efficiency with time during the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 13-2 shows only the heat treatment efficiency change with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 13-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere, under 20mW/cm 2 of light, and is heated at 120°C for 5 hours, which can improve the photoelectric conversion efficiency of the device.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, indium tin oxide, PEDOT:PSS, (FA 0.8 MA 0.2 )PbI 2.7 (Br 0.2 Cl 0.8 ) 0.3 , PCBM, and gold.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 14-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 14-2 shows only the heat treatment efficiency changes over time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 14-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.
  • the organic-inorganic hybrid perovskite solar cell is placed in a nitrogen atmosphere under 0.8mW/cm 2 of light, and heat treatment is performed at 115°C at the same time.
  • the treatment time is 145 hours, which can improve the photoelectric conversion efficiency of the cell.
  • the battery structure is shown in Figure 1, including a substrate 1, a transparent electrode layer 2, a first charge transport layer 3, an organic-inorganic hybrid perovskite light absorption layer 4, a second charge transport layer 5, and a metal electrode layer 6.
  • the multilayer structure from bottom to top is quartz, indium tin oxide, TiO 2 , (FA 0.9 MA 0.1 )PbI 2.5 (Br 0.1 Cl 0.9 ) 0.5 , PTAA, and copper.
  • this embodiment also sets up two sets of control experiments of single light treatment and single heat treatment.
  • the method of separate light treatment is compared with this embodiment. The difference is that the device is kept at room temperature when illuminated, without heating, and the rest of the methods and parameters are the same as the embodiment; the method of separate heating treatment is compared with this embodiment, the difference lies in the device The heating treatment is performed under the condition of no light, and the other methods and parameters are the same as the embodiment.
  • Table 15-1 shows the change of efficiency over time in the external field process of the photothermal combination. It can be seen that as the processing time increases, the efficiency of the device continues to increase. Table 15-2 shows only the heat treatment efficiency changes with time. It can be seen that as the treatment time increases, the device efficiency drops rapidly. Table 15-3 shows the change of efficiency with time when light is not heated (room temperature). It can be seen that with the extension of processing time, the device efficiency hardly changes. Comparing the data in these three tables, it can be seen that the combined photothermal external field treatment can effectively improve the efficiency of organic-inorganic hybrid perovskite solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,属于有机-无机杂化钙钛矿太阳电池领域。该方法通过将有机-无机杂化钙钛矿太阳电池置于惰性气体环境中进行光热组合外场处理,大幅度提高了太阳电池的光电转换效率。这对于高性能杂化钙钛矿太阳电池的制备具有十分重要的价值。

Description

光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 技术领域
本发明属于有机-无机杂化钙钛矿太阳电池领域,具体涉及一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法。
技术背景
有机-无机杂化钙钛矿太阳电池由于其不断迅速提高的光电转换效率以及可溶液加工的特性,受到了科学界与产业界的广泛的关注。制备高质量的钙钛矿薄膜,减少钙钛矿薄膜内部和表面的缺陷,有利于减少非辐射复合,改善光生载流子的传输,减少界面能量损失,进而获得高的短路电流和高的开路电压,以提高光电转换效率。
通过控制钙钛矿薄膜的制备方法与工艺,是实现高质量薄膜制备的最为主要的途径。例如在钙钛矿前驱体溶液中加入添加剂、采用热旋涂方法、反溶剂方法、混合溶剂方法、缓慢热退火方法等都可以有效提高钙钛矿薄膜的质量。此外,通过在钙钛矿薄膜晶界和表面引入可钝化钙钛矿缺陷的物质,也有利于改善载流子的传输。选择能级结构匹配的电荷传输层材料与钙钛矿薄膜相配合,有利于减少界面能量损失,提高开路电压。
目前,还没有将有机-无机杂化钙钛矿太阳电池置于光热组合外场中进行后处理,来提高电池效率的公开报道。
发明内容
本发明的目的是解决现有技术中存在的上述问题,并提供一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法。该方法通过将有机-无机杂化钙钛矿太阳电池置于惰性气体环境中进行光热组合外场处理,能够大幅度提高太阳电池的光电转换效率。
本发明具体采用的技术方案如下:
一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其过程为:将有 机-无机杂化钙钛矿太阳电池置于光热组合外场中进行处理;所述太阳电池中的有机-无机杂化钙钛矿光吸收层的材料化学结构为APbI x(Br yCl 1-y) 3-x,其中2.5≤x≤3,0≤y≤1,A为甲胺(MA)、甲脒(FA)阳离子中的至少一种。
本发明中,光热组合外场是指同时具有光照和加热的外场。
作为优选,所述的光热组合外场的处理条件为:温度50~120℃,光照强度0.01~20mW/cm 2,处理时间5~200小时,处于惰性气氛中。
进一步的,所述惰性气氛为氮气或者氩气气氛。
作为优选,所述的有机-无机杂化钙钛矿太阳电池的结构包括自下而上顺次叠加的基底(1)、透明电极层(2)、第一电荷传输层(3)、有机-无机杂化钙钛矿光吸收层(4)、第二电荷传输层(5)和金属电极层(6)。
进一步的,所述的基底(1)的材料为玻璃或石英。
进一步的,所述的透明电极层(2)的材料为氧化铟锡或氟掺氧化铟锡;
进一步的,所述有机-无机杂化钙钛矿光吸收层(4)中,A为甲胺(MA)和甲脒(FA)的混合物,以摩尔比计,混合比例为0.01:0.99~0.99:0.01。
进一步的,所述的第一电荷传输层(3)的材料为PEDOT:PSS、PTAA、NiOx、PCBM、C60、ZnO或TiO 2
进一步的,所述的第二电荷传输层(5)的材料为PEDOT:PSS、PTAA、NiOx、PCBM、C60、ZnO或TiO 2
进一步的,所述的金属电极层(6)的材料为银、铝、金或铜。
该方法通过将有机-无机杂化钙钛矿太阳电池置于惰性气体环境中进行光热组合外场处理,大幅度提高了太阳电池的光电转换效率。这对于高性能杂化钙钛矿太阳电池的制备具有十分重要的价值。
附图说明
图1为有机-无机杂化钙钛矿太阳电池的结构示意,从下到上分别为:基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6。
具体实施方式
光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其过程为:将有机-无机杂化钙钛矿太阳电池放置于光照与加热的组合外场中,气氛环境为惰性气体。加热温度范围为50-120℃,光照强度为0.01-20mW/cm 2,时间为5-200小时。在该太阳电池中,有机-无机杂化钙钛矿光吸收层的材料化学结构为APbI x(Br yCl 1-y) 3-x,其中2.5≤x≤3,0≤y≤1,A为甲胺(MA)、甲脒(FA)阳离子中的至少一种。
本发明通过加热和光照的结合,缓解界面应力,避免离子的迁移与聚集,从而提高钙钛矿薄膜质量,减少缺陷,有效避免非辐射复合,进而实现光伏器件效率的提升。
下面基于上述制备方法,通过如下实施例对本发明作进一步的详述:
实施例1:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,10mW/cm 2光照下,并同时进行100℃加热处理,处理时间200小时,可以实现器件光电转换效率的提高。可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氧化铟锡、NiOx、MAPbI 3、PCBM、银。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表1-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表1-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表1-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表1-1
时间(小时) 0 40 80 120 160 200
效率(%) 15.33 17.36 18.76 19.89 20.77 21.32
表1-2
时间(小时) 0 1 2 3 4 5
效率(%) 15.43 14.22 13.14 12.26 11.35 10.12
表1-3
时间(小时) 0 40 80 120 160 200
效率(%) 15.3 15.24 15.33 15.36 15.18 15.32
实施例2:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,15mW/cm 2光照下,并同时进行55℃加热处理,处理时间70小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氟掺氧化铟锡、TiO 2、FAPbI 3、PTAA、铝。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表2-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表2-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表2-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表2-1
时间(小时) 0 15 30 45 60 70
效率(%) 16.47 18.71 20.44 21.79 22.45 22.51
表2-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.23 14.53 12.84 11.62 10.74 9.81
表2-3
时间(小时) 0 15 30 45 60 70
效率(%) 16.43 16.12 16.43 16.51 16.56 16.24
实施例3:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,8mW/cm 2光照下,并同时进行65℃加热处理,处理时间150小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氧化铟锡、ZnO、(FA 0.99MA 0.01)PbI 2.5(Br 0.01Cl 0.99) 0.5、PEDOT:PSS、金。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表3-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长, 器件效率不断提高。表3-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表3-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表3-1
时间(小时) 0 30 60 90 120 150
效率(%) 13.31 15.65 17.54 18.29 19.45 19.62
表3-2
时间(小时) 0 1 2 3 4 5
效率(%) 13.37 12.21 11.18 10.24 9.67 9.03
表3-3
时间(小时) 0 30 60 90 120 150
效率(%) 13.28 13.56 13.05 13.42 13.12 13.65
实施例4:
将有机-无机杂化钙钛矿太阳电池放置于氩气气氛中,0.01mW/cm 2光照下,并同时进行80℃加热处理,处理时间10小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氟掺氧化铟锡、PTAA、(FA 0.01MA 0.99)PbI 2.6(Br 0.09Cl 0.91) 0.4、C60、金。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表4-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长, 器件效率不断提高。表4-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表4-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表4-1
时间(小时) 0 2 4 6 8 10
效率(%) 17.74 19.86 21.07 22.13 22.76 23.16
表4-2
时间(小时) 0 1 2 3 4 5
效率(%) 17.78 16.42 15.31 14.47 13.31 12.59
表4-3
时间(小时) 0 2 4 6 8 10
效率(%) 17.68 17.48 17.52 17.73 17.54 17.66
实施例5:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,6mW/cm 2光照下,并同时进行75℃加热处理,处理时间175小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氟掺氧化铟锡、PTAA、(FA 0.1MA 0.9)PbI 2.7Cl 0.3、PCBM、铜。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表5-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长, 器件效率不断提高。表5-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表5-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表5-1
时间(小时) 0 35 70 105 140 175
效率(%) 16.84 18.62 19.14 20.09 20.73 20.92
表5-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.23 14.53 12.84 11.62 10.74 9.81
表5-3
时间(小时) 0 35 70 105 140 175
效率(%) 16.8 16.96 16.83 16.79 16.88 16.9
实施例6:
将有机-无机杂化钙钛矿太阳电池放置于氩气气氛中,12mW/cm 2光照下,并同时进行105℃加热处理,处理时间35小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氧化铟锡、NiOx、(FA 0.2MA 0.8)PbI 2.8Br 0.2、C60、铜。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表6-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表6-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表6-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表6-1
时间(小时) 0 7 14 21 28 35
效率(%) 15.79 16.68 17.25 18.46 19.21 19.42
表6-2
时间(小时) 0 1 2 3 4 5
效率(%) 15.23 13.53 12.84 11.62 10.74 9.81
表6-3
时间(小时) 0 7 14 21 28 35
效率(%) 15.48 15.23 15.84 15.63 15.37 15.49
实施例7:
将有机-无机杂化钙钛矿太阳电池放置于氩气气氛中,0.5mW/cm 2光照下,并同时进行65℃加热处理,处理时间125小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氧化铟锡、NiOx、(FA 0.3MA 0.7)PbI 2.9Br 0.1、PCBM、金。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表7-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表7-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表7-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表7-1
时间(小时) 0 25 50 75 100 125
效率(%) 16.83 18.71 19.66 20.34 21.35 21.53
表7-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.86 14.96 13.03 11.97 10.63 9.42
表7-3
时间(小时) 0 25 50 75 100 125
效率(%) 16.77 16.25 16.38 16.59 16.83 16.61
实施例8:
将有机-无机杂化钙钛矿太阳电池放置于氩气气氛中,1.5mW/cm 2光照下,并同时进行90℃加热处理,处理时间90小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氟掺氧化铟锡、PTAA、(FA 0.4MA 0.6)PbI 2.9Cl 0.1、PCBM、铝。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表8-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表8-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表8-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表8-1
时间(小时) 0 20 40 60 80 90
效率(%) 16.13 17.34 18.47 19.24 20.79 20.91
表8-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.1 15.18 13.94 12.88 11.79 10.96
表8-3
时间(小时) 0 20 40 60 80 90
效率(%) 16.08 16.44 15.92 16.17 16.21 16.38
实施例9:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,5mW/cm 2光照下,并同时进行70℃加热处理,处理时间30小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氧化铟锡、NiOx、(FA 0.5MA 0.5)PbI 2.6Cl 0.4、PCBM、银。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表9-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长, 器件效率不断提高。表9-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表9-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表9-1
时间(小时) 0 6 12 18 24 30
效率(%) 16.46 17.21 18.97 19.41 20.65 21.01
表9-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.4 15.32 14.51 13.33 12.84 12.45
表9-3
时间(小时) 0 6 12 18 24 30
效率(%) 16.44 16.49 16.37 16.35 16.52 16.43
实施例10:
将有机-无机杂化钙钛矿太阳电池放置于氩气气氛中,20mW/cm 2光照下,并同时进行50℃加热处理,处理时间100小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氧化铟锡、PEDOT:PSS、(FA 0.6MA 0.4)PbI 2.5Br 0.5、PCBM、铝。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表10-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表10-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表10-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表10-1
时间(小时) 0 20 40 60 80 100
效率(%) 16.42 17.94 19.41 20.51 21.37 21.83
表10-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.45 15.22 14.31 13.56 12.48 11.74
表10-3
时间(小时) 0 20 40 60 80 100
效率(%) 16.38 16.32 15.96 16.11 16.52 16.34
实施例11:
将有机-无机杂化钙钛矿太阳电池放放置于氮气气氛中,1mW/cm 2光照下,并同时进行60℃加热处理,处理时间80小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为玻璃、氟掺氧化铟锡、PTAA、(FA 0.01MA 0.99)PbI 2.6(Br 0.9Cl 0.1) 0.4、C60、金。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表11-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表11-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表11-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表11-1
时间(小时) 0 15 30 45 60 80
效率(%) 17.58 18.85 19.94 20.57 20.86 20.95
表11-2
时间(小时) 0 1 2 3 4 5
效率(%) 17.54 15.85 14.54 13.46 12.58 11.64
表11-3
时间(小时) 0 15 30 45 60 80
效率(%) 17.55 17.68 17.33 17.41 17.49 17.74
实施例12:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,2mW/cm 2光照下,并同时进行110℃加热处理,处理时间40小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氧化铟锡、PTAA、(FA 0.6MA 0.4)PbI 2.8(Br 0.4Cl 0.6) 0.2、C60、银。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表12-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表12-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表12-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表12-1
时间(小时) 0 8 16 24 32 40
效率(%) 17.33 18.86 19.76 20.89 21.77 22.32
表12-2
时间(小时) 0 1 2 3 4 5
效率(%) 17.25 16.11 15.08 14.21 13.37 12.52
表12-3
时间(小时) 0 8 16 24 32 40
效率(%) 17.27 17.42 17.15 17.19 17.37 17.31
实施例13:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,0.1mW/cm 2光照下,并同时进行95℃加热处理,处理时间100小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氧化铟锡、PTAA、(FA 0.7MA 0.3)PbI 2.8(Br 0.3Cl 0.7) 0.2、C60、银。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表13-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表13-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间 的延长,器件效率迅速下降。表13-3给出了非加热(室温)情况下光照时,效率随时间的变化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表13-1
时间(小时) 0 20 40 60 80 100
效率(%) 16.27 17.63 18.87 19.68 20.21 20.39
表13-2
时间(小时) 0 1 2 3 4 5
效率(%) 16.23 14.53 12.84 11.62 10.74 9.81
表13-3
时间(小时) 0 20 40 60 80 100
效率(%) 16.31 16.17 16.22 16.07 16.35 16.24
实施例14:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,20mW/cm 2光照下,并同时进行120℃加热处理,处理时间5小时,可以实现器件光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氧化铟锡、PEDOT:PSS、(FA 0.8MA 0.2)PbI 2.7(Br 0.2Cl 0.8) 0.3、PCBM、金。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表14-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表14-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表14-3给出了非加热(室温)情况下光照时,效率随时间的变 化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表14-1
时间(小时) 0 1 2 3 4 5
效率(%) 19.02 20.28 21.17 22.09 22.89 23.25
表14-2
时间(小时) 0 1 2 3 4 5
效率(%) 19.07 18.18 17.21 16.08 15.24 14.05
表14-3
时间(小时) 0 1 2 3 4 5
效率(%) 19.12 19.18 19.01 19.13 19.03 19.15
实施例15:
将有机-无机杂化钙钛矿太阳电池放置于氮气气氛中,0.8mW/cm 2光照下,并同时进行115℃加热处理,处理时间145小时,可以实现电池光电转换效率的提高。电池结构如图1所示,包括基底1、透明电极层2、第一电荷传输层3、有机-无机杂化钙钛矿光吸收层4、第二电荷传输层5、金属电极层6,本实施例中多层结构自下而上为石英、氧化铟锡、TiO 2、(FA 0.9MA 0.1)PbI 2.5(Br 0.1Cl 0.9) 0.5、PTAA、铜。
另外,为了与光热组合外场处理形成对比,本实施例中还设置了单独光处理和单独加热处理的两组对照试验。其中,单独光处理的做法与本实施例相比,区别在于器件光照时保持室温,不加热,其余做法和参数均与实施例相同;单独加热处理的做法与本实施例相比,区别在于器件在无光照的情况下进行加热处理,其余做法和参数均与实施例相同。
表15-1给出了光热组合外场过程中效率随时间的变化,可以看到随着处理时间的延长,器件效率不断提高。表15-2给出了仅仅加热处理效率随时间的变化,可以看到随着处理时间的延长,器件效率迅速下降。表15-3给出了非加热(室温)情况下光照时,效率随时间的变 化,可以看到随着处理时间的延长,器件效率几乎没有变化。比较这三个表格中的数据,可以看到光热组合外场处理可以有效提高有机-无机杂化钙钛矿太阳电池效率。
表15-1
时间(小时) 0 30 60 90 120 145
效率(%) 17.53 18.89 19.75 21.41 21.98 22.16
表15-2
时间(小时) 0 1 2 3 4 5
效率(%) 17.23 15.53 13.84 12.62 11.74 10.81
表15-3
时间(小时) 0 30 60 90 120 145
效率(%) 17.46 17.13 17.17 17.66 17.29 17.51
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于过程为:将有机-无机杂化钙钛矿太阳电池置于光热组合外场中进行处理;所述太阳电池中的有机-无机杂化钙钛矿光吸收层的材料化学结构为APbI x(Br yCl 1-y) 3-x,其中2.5≤x≤3,0≤y≤1,A为甲胺(MA)、甲脒(FA)阳离子中的至少一种。
  2. 根据权利要求1所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的光热组合外场的处理条件为:温度50~120℃,光照强度0.01~20mW/cm 2,处理时间5~200小时,处于惰性气氛中。
  3. 根据权利要求2所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述惰性气氛为氮气或者氩气气氛。
  4. 根据权利要求1所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的有机-无机杂化钙钛矿太阳电池的结构包括自下而上顺次叠加的基底(1)、透明电极层(2)、第一电荷传输层(3)、有机-无机杂化钙钛矿光吸收层(4)、第二电荷传输层(5)和金属电极层(6)。
  5. 根据权利要求4所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的基底(1)的材料为玻璃或石英。
  6. 根据权利要求4所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的透明电极层(2)的材料为氧化铟锡或氟掺氧化铟锡;
  7. 根据权利要求1所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述有机-无机杂化钙钛矿光吸收层(4)中,A为甲胺(MA)和甲脒(FA)的混合物,以摩尔比计,混合比例为0.01:0.99~0.99:0.01。
  8. 根据权利要求4所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的第一电荷传输层(3)的材料为PEDOT:PSS、PTAA、NiOx、 PCBM、C60、ZnO或TiO 2
  9. 根据权利要求4所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的第二电荷传输层(5)的材料为PEDOT:PSS、PTAA、NiOx、PCBM、C60、ZnO或TiO 2
  10. 根据权利要求4所述的一种光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法,其特征在于所述的金属电极层(6)的材料为银、铝、金或铜。
PCT/CN2021/075381 2020-05-15 2021-02-05 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 WO2021227574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010413674.XA CN111584717B (zh) 2020-05-15 2020-05-15 光热组合外场辅助提高杂化钙钛矿太阳电池效率的方法
CN202010413674.X 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021227574A1 true WO2021227574A1 (zh) 2021-11-18

Family

ID=72123078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075381 WO2021227574A1 (zh) 2020-05-15 2021-02-05 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法

Country Status (2)

Country Link
CN (1) CN111584717B (zh)
WO (1) WO2021227574A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584717B (zh) * 2020-05-15 2022-05-10 浙江大学 光热组合外场辅助提高杂化钙钛矿太阳电池效率的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649888A (zh) * 2019-10-21 2020-01-03 华东师范大学 一种钙钛矿光伏电池降解测试装置
CN111584717A (zh) * 2020-05-15 2020-08-25 浙江大学 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784341A (zh) * 2017-01-20 2017-05-31 电子科技大学中山学院 一种钙钛矿太阳能电池光活性层的微波退火处理方法
CN107464882A (zh) * 2017-06-26 2017-12-12 中国科学院广州能源研究所 一种有机‑无机杂化钙钛矿太阳能电池及其制备方法
CN107275495A (zh) * 2017-06-28 2017-10-20 南方科技大学 一种卷对卷印刷制备钙钛矿太阳能电池组件的方法
CN110352507A (zh) * 2018-01-30 2019-10-18 南方科技大学 钙钛矿薄膜的制备方法及其应用
CN108574047A (zh) * 2018-06-08 2018-09-25 中南大学 一种钙钛矿太阳能电池的制备方法
CN108922972B (zh) * 2018-06-28 2022-07-05 中国科学院宁波材料技术与工程研究所 钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
CN109713136A (zh) * 2018-12-29 2019-05-03 杭州纤纳光电科技有限公司 一种钙钛矿太阳能电池生产的实时监测设备及其监测方法
CN110194718B (zh) * 2019-03-20 2020-10-27 电子科技大学 一种高度稳定铅基有机-无机杂化钙钛矿纳米片制备方法
CN110224065B (zh) * 2019-04-11 2021-01-01 浙江大学 膜厚不敏感的反型厚膜二维杂化钙钛矿太阳电池及其制备方法
CN111004629B (zh) * 2019-12-27 2022-07-12 上海应用技术大学 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649888A (zh) * 2019-10-21 2020-01-03 华东师范大学 一种钙钛矿光伏电池降解测试装置
CN111584717A (zh) * 2020-05-15 2020-08-25 浙江大学 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEO JIN HYUCK, CHOI YONG KYU, KOH CHANG WOO, WOO HAN YOUNG, IM SANG HYUK: "Semitransparent FAPbI 3- x Br x Perovskite Solar Cells Stable under Simultaneous Damp Heat (85 °C/85%) and 1 Sun Light Soaking", ADVANCED MATERIALS TECHNOLOGIES, WILEY, DE, vol. 4, no. 3, 1 March 2019 (2019-03-01), DE , pages 1800390, XP055867533, ISSN: 2365-709X, DOI: 10.1002/admt.201800390 *
PENG JIAJUN, SUN YONG, CHEN YANI, YAO YAO, LIANG ZIQI: "Light and Thermally Induced Evolutional Charge Transport in CH 3 NH 3 PbI 3 Perovskite Solar Cells", ACS ENERGY LETTERS, vol. 1, no. 5, 11 November 2016 (2016-11-11), pages 1000 - 1006, XP055867525, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.6b00393 *
TSAI HSINHAN, ASADPOUR REZA, BLANCON JEAN-CHRISTOPHE, STOUMPOS CONSTANTINOS C., DURAND OLIVIER, STRZALKA JOSEPH W., CHEN BO, VERDU: "Light-induced lattice expansion leads to high-efficiency perovskite solar cells", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 360, no. 6384, 6 April 2018 (2018-04-06), US , pages 67 - 70, XP055867527, ISSN: 0036-8075, DOI: 10.1126/science.aap8671 *
WU GUANGBAO, LI XING, ZHOU JIYU, ZHANG JIANQI, ZHANG XUNING, LENG XUANYE, WANG PEIJUN, CHEN MING, ZHANG DONGYANG, ZHAO KUI, LIU SH: "Fine Multi‐Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post‐Annealing", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 31, no. 42, 1 October 2019 (2019-10-01), DE , pages 1903889, XP055867531, ISSN: 0935-9648, DOI: 10.1002/adma.201903889 *

Also Published As

Publication number Publication date
CN111584717B (zh) 2022-05-10
CN111584717A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021227575A1 (zh) 热激活辅助光修复二维杂化钙钛矿太阳电池的方法
CN108899420A (zh) 钙钛矿薄膜的制备方法及钙钛矿太阳能电池器件
WO2022077981A1 (zh) MXene的应用和含有MXene的钙钛矿太阳能电池
CN109888108B (zh) 一种生物大分子修饰的钙钛矿太阳能电池及其制备方法
CN107369764A (zh) 一种掺杂三水合醋酸铅的钙钛矿太阳能电池及制备方法
CN108389969B (zh) 一种用于制备钙钛矿太阳能电池钙钛矿层的绿色溶剂体系及混合溶液
CN108878661A (zh) 一种碳量子点修饰的钙钛矿太阳能电池的制备方法
CN105742494A (zh) 一种钙钛矿太阳能电池及其制备方法
CN106953014A (zh) 一种以酞菁铜作为空穴传输层的杂化太阳能电池结构与制备方法
CN109378386A (zh) 一种调控无铅钙钛矿太阳能电池形貌的方法及制备的太阳能电池器件
WO2021227574A1 (zh) 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法
CN103178211B (zh) MoO3/MoS2复合薄膜作为阳极界面层的有机太阳能电池及其制备方法
CN103227286A (zh) 硫掺杂的MoO3薄膜作为阳极界面层的有机光伏电池及其制备方法
CN108832001A (zh) 一种无铅钙钛矿太阳能电池器件及其制备方法
CN111540807B (zh) 一种具有高开路电压的全无机钙钛矿太阳能电池及其制备方法
CN111063806B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109888100B (zh) 一种铷掺杂氧化镍薄膜的制备及作为空穴传输层在钙钛矿太阳能电池中的应用
CN106960911A (zh) 一种双光敏层杂化太阳能电池及其制备方法
CN106449983B (zh) 一种钒氧化物阳极缓冲层及其制备方法和应用
CN111048668B (zh) 一种基于溶液法制备钙钛矿薄膜的方法、钙钛矿薄膜与应用
CN110246969B (zh) 一种吡啶修饰氧化锡致密层的钙钛矿太阳能电池的制备方法
CN209675334U (zh) 防止反向电子传输的钙钛矿太阳能电池结构
CN112968129A (zh) 一种热稳定的无机钙钛矿薄膜及其制备方法
CN111092156B (zh) 一种钙钛矿太阳能电池及其制备方法
CN115360303B (zh) 一种界面原位诱导层及其光伏器件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803728

Country of ref document: EP

Kind code of ref document: A1