WO2022077981A1 - MXene的应用和含有MXene的钙钛矿太阳能电池 - Google Patents

MXene的应用和含有MXene的钙钛矿太阳能电池 Download PDF

Info

Publication number
WO2022077981A1
WO2022077981A1 PCT/CN2021/106581 CN2021106581W WO2022077981A1 WO 2022077981 A1 WO2022077981 A1 WO 2022077981A1 CN 2021106581 W CN2021106581 W CN 2021106581W WO 2022077981 A1 WO2022077981 A1 WO 2022077981A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mxene
charge transport
solar cell
electrode
Prior art date
Application number
PCT/CN2021/106581
Other languages
English (en)
French (fr)
Inventor
徐保民
张罗正
唐俊
周贤勇
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2022077981A1 publication Critical patent/WO2022077981A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application belongs to the technical field of solar cells, and in particular relates to an application of MXene and a perovskite solar cell containing MXene.
  • Perovskite solar cell is a new type of solar cell using organic-inorganic halide perovskite as light absorbing material. It has the advantages of easy fabrication, low cost and high efficiency. At present, its highest conversion efficiency has reached 22% , which is comparable to the highest efficiency of solar cells such as copper indium gallium selenide (CIGS), cadmium telluride (CdTe) and polycrystalline silicon, and far higher than the highest efficiency of dye-sensitized and organic solar cells.
  • CIGS copper indium gallium selenide
  • CdTe cadmium telluride
  • PSCs One of the most promising photovoltaic technologies, and PSCs have achieved considerable progress since their inception in 2009 due to the many unique properties of perovskite materials, such as high absorption coefficient, low exciton binding energy, and excellent hole and electron conductivity. Progress.
  • PSCs generally consist of a transparent electrode, an electron transport layer, a perovskite light absorption layer, a hole transport layer, and a metal back electrode.
  • a significant advantage of perovskite solar cells is that their light absorption layers can be prepared at low temperature by solution chemistry.
  • the functional layer can also be prepared at low temperature ( ⁇ 150°C), so this cell will be very suitable for flexible substrates to be fabricated into flexible solar cells.
  • the charge transport layers of PSCs with high energy conversion efficiency are all doped or expensive organics.
  • doped spirofluorene material spiro-OMeTAD, doped polytriphenylamine material PTAA are used as hole transport layers; fullerene derivatives PCBM, C60, etc. are used as electron transport layers.
  • the use of these charge transport materials will not only increase the fabrication cost and material cost of the battery, but also pose challenges to the long-term stability of the battery during service.
  • the energy levels of these materials are fixed or their tuning range is very limited, when combined with perovskite layers with different energy levels and band gaps to form PSC devices, it will bring very obvious energy loss and device performance. Raise the difficulty.
  • the cost of ITO, FTO and metal material Au as electrode materials is very high, and it is the functional layer with the highest cost in the whole PSC.
  • the work function of these materials is also fixed, and it is difficult to match the energy level of various interface materials, resulting in huge energy loss and limiting the improvement of PSC efficiency.
  • the purpose of this application is to overcome the above-mentioned deficiencies of the prior art, and to provide an application of MXene and a perovskite solar cell, so as to solve the technical problem of low photoelectric conversion efficiency but high cost of the existing perovskite solar cell.
  • MXene is provided as at least one of charge transport materials, electrode materials, and intermediate connecting layer materials between adjacent perovskite light-absorbing layers in a perovskite solar cell.
  • a perovskite solar cell in another aspect of the present application, includes a substrate and a first electrode layer laminated and combined with the substrate, and along the extending direction from the substrate to the first electrode layer, a surface of the first electrode layer is also laminated and combined with a first electrode layer.
  • a charge transport function layer, a perovskite light absorption layer, a second charge transport function layer and a second electrode layer characterized in that: the first electrode layer, the second electrode layer, the first charge transport function layer, the second charge transport layer
  • the material of at least one of the transport functional layers contains MXene; wherein, the work function of the MXene is adapted to the energy level or/and work function of the layer structure in which it is located.
  • the perovskite solar cell includes a perovskite light-absorbing layer unit, and the perovskite light-absorbing layer unit includes at least two perovskite light-absorbing layers, and between two adjacent perovskite light-absorbing layers is also stacked and bonded.
  • An intermediate connection layer the material of the intermediate connection layer contains an eighth MXene, and the work function of the eighth MXene is directly related to the energy level or/and work function of the titanium light absorbing layer in which the intermediate connection layer is directly laminated and combined adaptation.
  • MXene to at least one material among charge transport materials, electrode materials, and intermediate connecting layer materials of perovskite solar cells, and making full use of the energy level or work function of MXene can be continuous and flexible. It can be adjusted to match the energy level position of the conduction band bottom or valence band top of the perovskite material to minimize the energy loss at the interface during photoelectric conversion, so as to improve the photoelectric conversion efficiency of perovskite solar cells, and The cost is low, and it provides more choices for perovskite solar cell related functional layer materials.
  • MXene is arranged in the material of the electrode layer and/or the charge transport functional layer, and the work function of the MXene is correspondingly adjusted to match the energy level or/and work function of the layer structure in which it is located.
  • the structure of the MXene-containing layer matches the energy level position of the bottom of the conduction band or the top of the valence band of the perovskite material, minimizing the energy loss at the interface during photoelectric conversion, thereby endowing the perovskite solar cell with high performance.
  • the photoelectric conversion efficiency is high, and the use of precious metals can be avoided, thereby significantly reducing the cost, and providing more choices for the corresponding functional materials of the perovskite solar cell.
  • the adjacent two perovskite light absorbing layers contained in another perovskite solar cell provided by this application are stacked and bonded by an intermediate connecting layer containing MXene, so that the calcium
  • the energy level or work function of the titanium absorbing layer flexibly adjusts the energy level or work function of MXene, thereby adjusting the energy level or work function of the intermediate connecting layer, and provides more corresponding functional materials for the perovskite solar cell. Choose space, thereby significantly reducing costs.
  • FIGS. 1-5 are schematic diagrams of five structures of perovskite solar cells using MXene as a charge transport layer according to the embodiments of the present application;
  • 6-10 are schematic diagrams of five structures of the perovskite solar cells using MXene as the electrode material according to the embodiments of the present application.
  • 11-16 are schematic diagrams of six structures of perovskite solar cells using MXene as both a charge transport material and an electrode material according to the embodiments of the present application;
  • FIG. 17 is a schematic structural diagram of a perovskite solar cell containing a barrier layer and containing MXene according to an embodiment of the present application;
  • FIG. 18 is a schematic structural diagram of a perovskite solar cell having two perovskite light-absorbing layers connected in series according to an embodiment of the present application;
  • FIG. 19 is a J-V curve diagram of the perovskite solar cell device with the structure shown in FIG. 2 in Example 1 of the application.
  • At least one means one or more
  • plural items means two or more.
  • At least one item(s) below” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (one) of a, b, or c or “at least one (one) of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • the weight of the relevant components mentioned in the description of the examples of this application can not only refer to the specific content of each component, but also can represent the proportional relationship between the weights of the components. It is within the scope disclosed in the description of the embodiments of the present application that the content of the ingredients is scaled up or down.
  • the mass in the description of the embodiments of the present application may be a mass unit known in the chemical field such as ⁇ g, mg, g, kg, etc.
  • first and second are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • first XX may also be referred to as the second XX
  • second XX may also be referred to as the first XX.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • MXene Two-dimensional inorganic compound composed of transition metal carbides, nitrides or carbonitrides with a thickness of several atomic layers. MXene materials have hydroxyl groups, halogen atoms or terminal oxygens on the surface, and they have the metallic conductivity of transition metal carbides. .
  • Perovskite solar cell It is a solar cell that uses perovskite-type organometallic halide semiconductors as light-absorbing materials.
  • the embodiments of the present application provide a new application of MXene.
  • the MXene is used as at least one of charge transport materials, electrode materials, and intermediate connection layer materials between adjacent perovskite light-absorbing layers in a tandem battery.
  • MXene is applied to at least one of the charge transport materials, electrode materials, and intermediate connecting layer materials of perovskite solar cells, making full use of the energy level or work function of MXene to continuously, It can be flexibly adjusted according to the needs, so as to match the energy level position of the conduction band bottom or valence band top of the perovskite material, and minimize the energy loss at the interface during photoelectric conversion, so as to improve the photoelectric conversion of perovskite solar cells. Efficiency and low cost, and provide more choices for perovskite solar cell related functional layer materials.
  • the charge transport material is a hole transport material and/or an electron transport material.
  • the electrode material includes cathode material and/or anode material.
  • the energy level or work function of the MXene is flexibly adjusted according to the energy level requirements of the corresponding electrode layer structure and charge transport layer structure, so that MXene is suitable for corresponding layer structures such as hole transport layer, electron transport layer, cathode layer and anode layer energy level or work function requirements, and replace the traditional corresponding layer structure materials, such as conductive glass and metal electrodes, which account for the largest proportion of the entire battery cost, and other electrode materials, thereby improving the photoelectric conversion efficiency of perovskite solar cells. and reduce battery costs. At the same time, it provides more choices for other related functional layer materials for perovskite solar cells.
  • the energy level or work function of the MXene can be adjusted continuously and flexibly through the selection and control or further increase or decrease of the terminal functional group, so that the energy level or work function of the MXene is the same as that in which it is located.
  • the energy level of the layer structure is adapted.
  • the MXene may be Ti 3 C 2 T x , Mo 2 CT x , Zr 3 C 2 T x , Hf 3 C 2 T x , Cr 2 CO x F 2 ⁇ x (0 ⁇ at least one of x ⁇ 2).
  • FIGS. 1-18 The structure of the perovskite solar cell is shown in FIGS. 1-18 , which includes a substrate 1 and a first electrode layer 2 laminated and combined with the substrate, and extending from the substrate 1 to the first electrode layer 2 In the direction of the first electrode layer 2, a first charge transport function layer 3, a perovskite light absorption layer 4, a second charge transport function layer 5 and a second electrode layer 6 are also stacked and combined.
  • the material of at least one of the first electrode layer 2, the second electrode layer 6, the first charge transport functional layer 3, and the second charge transport functional layer 5 contains MXene; wherein, the energy level of the MXene or The/and work function is adapted to the energy level or/and the work function of the layer structure in which it is located.
  • MXene is arranged in the material of the electrode layer and/or the charge transport functional layer, and the energy level or/or work function of MXene and the energy level and/or work function of the layer structure are correspondingly adjusted. function to match.
  • the structure of the MXene-containing layer matches the energy level position of the bottom of the conduction band or the top of the valence band of the perovskite material, minimizing the energy loss at the interface during photoelectric conversion, thereby endowing the perovskite solar cell with high performance.
  • the photoelectric conversion efficiency is high, and the use of precious metals can be avoided, thereby significantly reducing the cost, and providing more choices for the corresponding functional materials of the perovskite solar cell.
  • the perovskite solar cell described in this application may have at least the following structures:
  • the first charge transport functional layer 3 of the perovskite solar cell includes an electron transport layer 31
  • the second charge transport functional layer 5 includes a hole transport layer 51
  • the material of the hole transport layer 31 contains the first MXene.
  • the first MXene acts as a hole transport material for the perovskite solar cell. Therefore, in one embodiment, the hole transport layer 51 containing the first MXene has a thickness of 20-400 nm, for example.
  • the substrate 1 , the first electrode layer 2 , the electron transport layer 31 , the perovskite light absorption layer 4 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 1 can be but not only glass or plastic
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • the electron transport layer 31 can be but not only PCBM, TiO2 , SnO2 , etc.
  • the perovskite light-absorbing layer 4 can be a conventional perovskite light-absorbing material, or other wide, low-bandgap perovskite light-absorbing materials
  • the second electrode Layer 6 can be but not only Au.
  • the first charge transport functional layer 3 in the perovskite solar cell as shown in FIG. 1 includes the electron transport layer 31, the first electrode 2 is the cathode and is directly laminated with the substrate 1. Therefore, at this time, the perovskite solar cell
  • the battery is a positive type perovskite solar cell.
  • the first charge transport functional layer 3 of the perovskite solar cell includes a hole transport layer 31
  • the second charge transport function layer 5 includes an electron transport layer 51
  • the material of the hole transport layer 31 contains the first MXene.
  • the first MXene acts as a hole transport material for the perovskite solar cell.
  • the hole transport layer 31 containing the first MXene has a thickness of, for example, 5-100 nanometers.
  • the substrate 1 , the first electrode layer 2 , the perovskite light absorption layer 4 , the electron transport layer 51 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 2 can be but not only glass or plastic
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • the light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the material of the electron transport layer 51 can be but not only PCBM, C60, etc.
  • the second electrode layer 6 can be but not only Ag, Cu, etc.
  • the first charge transport functional layer 3 includes a hole transport layer 31
  • the first electrode 2 is an anode and is directly stacked and bonded to the substrate 1 . Therefore, at this time, the perovskite The ore solar cell is an inverse perovskite solar cell.
  • the energy level and/or work function of the first MXene at this time should be related to hole transport.
  • the energy level and/or work function required by the layer is adapted, for example, the energy level and/or work function of the first MXene can be flexibly adjusted according to the layer structure position where the hole transport layer is located and the structural materials of the upper and lower layers, So that it is suitable for the energy level and/or work function requirements of the hole transport layer, the energy loss on the interface during photoelectric conversion is minimized, and the photoelectric conversion efficiency of the perovskite solar cell is improved.
  • the first charge transport functional layer 3 of the perovskite solar cell includes a hole transport layer 31
  • the second charge transport functional layer 5 includes an electron transport layer 51
  • the material of the electron transport layer 51 contains the second MXene.
  • the energy level and/or work function of the second MXene at this time should be the energy level required by the electron transport layer and/or the work function is adapted, for example, the energy level and/or work function of the second MXene can be flexibly adjusted according to the layer structure position of the electron transport layer 51 and the upper and lower layer structure materials, so that it is suitable for electronic
  • the energy level and/or work function of the transport layer 51 is required to minimize the energy loss at the interface during photoelectric conversion, thereby improving the photoelectric conversion efficiency of the perovskite solar cell.
  • the electron transport layer 51 containing the second MXene has a thickness of, for example, 20-400 nm.
  • the substrate 1 , the first electrode layer 2 , the hole transport layer 31 , the perovskite light absorption layer 4 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • hole transport The material of the layer 31 can be but not only spiro-OMeTAD, PTAA, the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material, and the second electrode layer 6 can be but not only Ag, Cu, etc.
  • the first charge transport functional layer 3 includes a hole transport layer 31
  • the first electrode 2 is an anode, and is directly laminated with the substrate 1 . Therefore, at this time, the perovskite The ore solar cell is an inverse perovskite solar cell.
  • the first charge transport functional layer 3 of the perovskite solar cell includes an electron transport layer 31
  • the second charge transport functional layer 5 includes a hole transport layer 51
  • the material of the hole transport layer 51 contains the first MXene
  • the material of the electron transport layer 31 contains the second MXene.
  • the first MXene acts as a hole transport material for the perovskite solar cell
  • the second MXene acts as an electron transport material for the perovskite solar cell.
  • the hole transport layer 51 containing the first MXene has a thickness of, for example, 20-400 nm.
  • the electron transport layer 31 containing the second MXene has a thickness of, for example, 5-100 nanometers.
  • the substrate 1 , the first electrode layer 2 , the perovskite light absorption layer 4 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 4 can be but not only glass or plastic
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • the light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the second electrode layer 6 can be but not only Au.
  • the first charge transport functional layer 3 includes the electron transport layer 31
  • the first electrode 2 is the cathode, and is directly stacked and bonded to the substrate 1 . Therefore, at this time, the perovskite The solar cell is a positive type perovskite solar cell.
  • the first charge transport functional layer 3 of the perovskite solar cell includes a hole transport layer 31
  • the second charge transport function layer 5 includes an electron transport layer 51
  • the material of the hole transport layer 31 contains the first MXene
  • the material of the electron transport layer 51 contains the second MXene.
  • the first MXene acts as a hole transport material for the perovskite solar cell
  • the second MXene acts as an electron transport material for the perovskite solar cell.
  • the hole transport layer 31 containing the first MXene has a thickness of, for example, 5-100 nanometers.
  • the electron transport layer 51 containing the second MXene has a thickness of, for example, 20-400 nm.
  • the substrate 1 , the first electrode layer 2 , the perovskite light absorption layer 4 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 5 can be but not only glass or plastic
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • the light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the second electrode layer 6 can be but not only Ag, Cu, etc.
  • the first charge transport functional layer 3 includes a hole transport layer 31 , then the first electrode 2 is an anode and is directly stacked and bonded to the substrate 1 . Therefore, at this time, the perovskite The ore solar cell is an inverse perovskite solar cell.
  • the first MXenes are both used as hole transport materials
  • the second MXenes are both used as electron transport materials.
  • the first MXene energy level and/or work function at this time should be compatible with the energy level and/or work function required by the hole transport layer
  • the second MXene energy level and/or work function should be compatible with the electron level and/or work function.
  • the energy level and/or work function required by the transport layer is adapted, for example, the energy levels of the first MXene and the second MXene can be adjusted according to the layer structure positions of the hole transport layer 31 and the electron transport layer 51 and the upper and lower structural materials.
  • the level and/or work function can be flexibly adjusted, so that MXene is suitable for the energy level and/or work function requirements of the hole transport layer and the electron transport layer, respectively, and minimizes the energy loss at the interface during photoelectric conversion, thereby improving the said Photoelectric conversion efficiency of perovskite solar cells.
  • MXene is used as a charge transport material, and specifically, it can be used as a hole transport material and an electron transport material to improve the photoelectric conversion efficiency of the perovskite solar cells. .
  • the first electrode layer 2 of the perovskite solar cell is the cathode
  • the second electrode layer 6 is the anode
  • the material of the cathode contains the third MXene.
  • the third MXene acts as the cathode material of the perovskite solar cell.
  • the cathode containing the third MXene has, for example, a thickness of 5-100 nanometers.
  • the substrate 1 , the first charge transport functional layer 3 , the perovskite light absorption layer 4 , the second charge transport functional layer 5 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 6 can be but not only glass or plastic, and the material of the first charge transport functional layer 3 can be but not only PCBM, C60, perovskite
  • the mineral light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the material of the second charge transport functional layer 5 can be but not only spiro-OMeTAD and PTAA
  • the second electrode layer 6 can be but not only Au.
  • the first electrode layer 2 of the perovskite solar cell is the cathode
  • the second electrode layer 6 is the anode
  • the material of the anode contains the fourth MXene.
  • the fourth MXene acts as the anode material of the perovskite solar cell.
  • the anode containing the fourth MXene has, for example, a thickness of 20-400 nanometers.
  • the substrate 1 , the first electrode layer 2 , the first charge transport functional layer 3 , the perovskite light absorption layer 4 , and the second charge transport functional layer 5 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 7 can be but not only glass or plastic, and the material of the first electrode layer 2 can be but not only ITO, FTO, etc., the first charge
  • the material of the transport functional layer 3 can be but not only PCBM and C60, the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material, and the material of the second charge transport functional layer 5 can be but not only spiro-OMeTAD, PTAA .
  • the first electrode layer 2 is the cathode, and is directly laminated and combined with the substrate 1 and the first charge transport functional layer 3 (electron transport layer), therefore, this
  • the perovskite solar cells are positive type perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is an anode
  • the second electrode layer 6 is a cathode
  • the material of the anode contains the fourth MXene.
  • the fourth MXene acts as the anode material of the perovskite solar cell.
  • the anode containing the fourth MXene has, for example, a thickness of 5-100 nanometers.
  • the substrate 1 , the first charge transport functional layer 3 , the perovskite light absorption layer 4 , the second charge transport functional layer 5 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 8 can be but not only glass or plastic
  • the material of the first charge transport functional layer 3 can be but not only spiro-OMeTAD, PTAA
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the material of the second charge transport functional layer 5 can be but not only PCBM, C60
  • the second electrode layer 6 can be but not only Ag, Cu, etc. Since in the perovskite solar cell shown in FIG. 8 , the first electrode layer 2 is the anode, which is directly stacked and combined with the substrate 1 and the first charge transport functional layer 3 . Therefore, the perovskite solar cell is an inversion type at this time. Perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is an anode
  • the second electrode layer 6 is a cathode
  • the material of the cathode contains a third MXene.
  • the third MXene acts as the cathode material of the perovskite solar cell.
  • the thickness of the cathode containing the third MXene is 20-400 nanometers, for example.
  • the substrate 1 , the first electrode layer 2 , the first charge transport functional layer 3 , the perovskite light absorption layer 4 , and the second charge transport functional layer 5 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 9 can be but not only glass or plastic, and the material of the first electrode layer 2 can be but not only ITO, FTO, etc., the first charge
  • the material of the transport functional layer 3 can be but not only spiro-OMeTAD and PTAA
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the material of the second charge transport functional layer 5 can be but not only PCBM, C60 . Since in the perovskite solar cell shown in FIG. 9 , the first electrode layer 2 is the anode, and is directly stacked and combined with the substrate 1 and the first charge transport functional layer 3 . Therefore, the perovskite solar cell is in the reverse type at this time. Perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is the anode
  • the second electrode layer 6 is the cathode
  • the material of the cathode contains the third MXene
  • the material of the anode contains a fourth MXene.
  • the third MXene is used as the cathode material of the perovskite solar cell
  • the fourth MXene is used as the anode material of the perovskite solar cell.
  • the thickness of the cathode containing the third MXene is 20-400 nanometers, for example.
  • the anode containing the fourth MXene has, for example, a thickness of 5-100 nanometers.
  • the substrate 1 , the first charge transport functional layer 3 , the perovskite light absorption layer 4 , and the second charge transport functional layer 5 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 10 can be but not only glass or plastic
  • the material of the first charge transport functional layer 3 can be but not only spiro-OMeTAD, PTAA
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the material of the second charge transport functional layer 5 can be but not only PCBM and C60. Since in the perovskite solar cell shown in FIG.
  • the first electrode layer 2 is the anode, which is directly stacked and combined with the substrate 1 and the first charge transport functional layer 3 . Therefore, the perovskite solar cell is an inversion type at this time. Perovskite solar cells.
  • a positive-type perovskite solar cell can also be configured according to the structure shown in FIG. 10 , and the positive-type perovskite solar cell is also within the scope disclosed in the embodiments of the present application.
  • the third MXene is used as the cathode material or/and the fourth MXene is used as the anode material.
  • the third MXene energy level and/or work function at this time should be compatible with the energy level and/or work function required by the cathode
  • the fourth MXene energy level and/or work function should be compatible with the energy level of the anode
  • the work function is adapted, for example, the energy level and/or work function of the third MXene and the fourth MXene can be adjusted according to the layer structure positions of the first electrode layer 2 and the second electrode layer 6 and the upper and lower layer structure materials.
  • the function is flexibly adjusted, so that the MXene is suitable for the energy level and/or work function requirements of the first electrode layer and the second electrode layer, respectively, and the energy loss at the interface during photoelectric conversion is minimized, thereby improving the perovskite.
  • it can replace traditional noble electrode materials, thereby significantly reducing the cost of perovskite solar cells, and also providing more choices for the corresponding functional materials of perovskite solar cells.
  • MXene is used as the electrode material.
  • MXene can be used as the anode material and the cathode material to improve the photoelectric conversion efficiency of the perovskite solar cell, instead of The traditional expensive precious electrode metal, thereby significantly reducing the cost of perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is a cathode
  • the first charge transport functional layer 3 includes an electron transport layer 31
  • the first electrode layer 2 It has the same layer structure as the electron transport layer 31 , which is two layers and two layers in one, and its material contains fifth MXene.
  • the fifth MXene serves as the cathode material of the perovskite solar cell and also serves as the electron transport material of the perovskite solar cell, therefore, the electron transport layer 31 or the first electrode layer 2 is both a perovskite solar cell
  • the cathode of the battery is also its electron transport layer
  • the electron transport layer 31 or the first electrode layer 2 also acts as the cathode of the perovskite solar cell and also its electron transport layer.
  • the thickness of the electron transport layer 31 or the first electrode layer 2 is, for example, 5-100 nanometers.
  • the substrate 1 , the perovskite light absorption layer 4 , the second charge transport functional layer 5 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 11 can be but not only glass or plastic
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the second charge transport The material of the functional layer 5 can be but not only spiro-OMeTAD and PTAA
  • the material of the second electrode layer 6 can be but not only Au. Since in the perovskite solar cell shown in FIG. 11 , the electron transport layer 31 is directly stacked and combined with the substrate 1 and the perovskite light absorbing layer 4 , the perovskite solar cell is a positive type perovskite solar cell at this time.
  • the second electrode layer 6 of the perovskite solar cell is an anode
  • the second charge transport functional layer 5 includes a hole transport layer 51
  • the second The electrode layer 6 and the hole transport layer 51 are of the same layer structure, that is, two layers are combined into one, and the material thereof contains the sixth MXene.
  • the sixth MXene serves as the anode material of the perovskite solar cell and also serves as the hole transport material of the perovskite solar cell.
  • the hole transport layer 51 or the second electrode layer 6 is both the hole transport layer and the anode of the perovskite solar cell, and the hole transport layer 51 or the second electrode layer 6 is also the anode of the perovskite solar cell.
  • the role of the hole transport layer In one embodiment, the thickness of the hole transport layer 51 or the second electrode layer 6 is, for example, 20-400 nanometers.
  • the substrate 1 , the first electrode layer 2 , the first charge transport functional layer 3 and the perovskite light absorbing layer 4 may be conventional layer structure materials, respectively. In a specific embodiment, the material of the substrate 1 of the perovskite solar cell shown in FIG.
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • the first charge The material of the transport function layer 3 can be but not only electron transport materials such as PCBM and C60
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material. Since in the perovskite solar cell shown in FIG. 12 , the first electrode layer 2 is the cathode, and is directly stacked and combined with the substrate 1 and the first charge transport functional layer 3 , therefore, the perovskite solar cell is a positive type at this time. Perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is an anode
  • the first charge transport functional layer 3 includes a hole transport layer 31
  • the first electrode layer 2 and the hole transport layer 31 are of the same layer structure, that is, two layers are combined into one
  • the material thereof contains sixth MXene.
  • the sixth MXene serves as the anode material of the perovskite solar cell and also serves as the hole transport material of the perovskite solar cell. Therefore, the hole transport layer 31 or the first electrode layer 2 is both the anode and the hole transport layer of the perovskite solar cell, and the hole transport layer 31 or the first electrode layer 2 is also the anode of the perovskite solar cell.
  • the hole transport layer 31 or the first electrode layer 2 has a thickness of, for example, 5-100 nanometers.
  • the substrate 1 , the perovskite light absorption layer 4 , the second charge transport functional layer 5 and the second electrode layer 6 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 13 can be but not only glass or plastic
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material
  • the second charge transport The material of the functional layer 5 can be but not only electron transport materials such as PCBM and C60
  • the material of the second electrode layer 6 can be but not only Ag, Cu and the like.
  • the perovskite solar cell at this time is Inverse perovskite solar cells.
  • the second electrode layer 6 of the perovskite solar cell is a cathode
  • the second charge transport functional layer 5 includes an electron transport layer 51
  • the second electrode The layer 6 and the electron transport layer 51 have the same layer structure, that is, two layers are combined into one, and the material thereof contains the fifth MXene.
  • the fifth MXene serves as the cathode material of the perovskite solar cell and also serves as the electron transport material of the perovskite solar cell.
  • the electron transport layer 51 or the second electrode layer 6 is both the electron transport layer anode and the cathode of the perovskite solar cell, and the electron transport layer 51 or the second electrode layer 6 simultaneously functions as the electron transport layer and the cathode of the perovskite solar cell. effect.
  • the thickness of the electron transport layer 51 or the second electrode layer 6 is 20-400 nanometers, for example.
  • the substrate 1 , the first electrode layer 2 , the first charge transport functional layer 3 and the perovskite light absorbing layer 4 may be conventional layer structure materials, respectively.
  • the material of the first electrode layer 2 can be but not only ITO, FTO, etc.
  • hole transport The material of the functional layer 31 can be but not only a hole transport material such as spiro-OMeTAD and PTAA
  • the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material. Since in the perovskite solar cell shown in FIG. 14 , the first electrode layer 2 is the anode, which is directly stacked and combined with the substrate 1 and the hole transport functional layer 31 . Therefore, the perovskite solar cell is an inverse perovskite solar cell at this time. Titanite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is a cathode
  • the first charge transport functional layer 3 includes an electron transport layer 31
  • the second electrode layer 6 is the anode
  • the second charge transport functional layer 5 includes a hole transport layer 51
  • the first electrode layer 2 (cathode) and the electron transport layer 31 are of the same layer structure, which is a combination of two layers.
  • One, and its material contains a fifth MXene. Therefore, the electron transport layer 31 or the first electrode layer 2 is both the cathode and the electron transport layer of the perovskite solar cell, and the electron transport layer 31 or the first electrode layer 2 simultaneously functions as the cathode of the perovskite solar cell and also its electron transport layer.
  • the hole transport layer 51 and the second electrode layer 6 have the same layer structure, and the material thereof contains sixth MXene. Therefore, the hole transport layer 51 or the second electrode layer 6 is both the hole transport layer and the anode of the perovskite solar cell, and the hole transport layer 51 or the second electrode layer 6 is also the anode of the perovskite solar cell. The role of the hole transport layer.
  • MXene not only serves as the electrode material (both positive and negative electrode materials) of the perovskite solar cell, and MXene serves as the charge transport material (simultaneous electron transport material and hole transport material) of the perovskite solar cell ).
  • the thickness of the hole transport layer 51 or the second electrode layer 6 is 20-400 nanometers, for example. In another embodiment, the thickness of the electron transport layer 31 or the first electrode layer 2 is 5-100 nanometers, for example.
  • the substrate 1 and the perovskite light-absorbing layer 4 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 15 can be but not only glass or plastic, and the perovskite light absorbing layer 4 can be a conventional perovskite light absorbing material. Since in the perovskite solar cell shown in FIG.
  • the perovskite solar cell is a positive type at this time. Perovskite solar cells.
  • the first electrode layer 2 of the perovskite solar cell is an anode
  • the first charge transport functional layer 3 includes a hole transport layer 31
  • the second electrode is the cathode
  • the second charge transport function layer 5 includes an electron transport layer 51
  • the first electrode layer 2 (anode) and the hole transport layer 31 are of the same layer structure, which is also a combination of two layers. , and its material contains the sixth MXene. Therefore, the first electrode layer 2 or the electron transport layer 31 is both the anode and the hole transport layer of the perovskite solar cell, and the first electrode layer 2 or the hole transport layer 31 is also the anode of the perovskite solar cell. The role of the hole transport layer.
  • the electron transport layer 51 and the second electrode layer 6 have the same layer structure, and the material thereof contains fifth MXene. Therefore, the electron transport layer 51 or the second electrode layer 6 is both the electron transport layer and the cathode of the perovskite solar cell, and the electron transport layer 51 or the second electrode layer 6 simultaneously functions as the cathode of the perovskite solar cell and also its electron transport layer. effect.
  • MXene not only serves as the electrode material (both positive and negative electrode materials) of the perovskite solar cell, but also serves as the charge transport material (simultaneous electron transport material and hole transport material) of the perovskite solar cell. .
  • the hole transport layer 31 or the first electrode layer 2 has a thickness of, for example, 5-100 nanometers. In another embodiment, the thickness of the electron transport layer 51 or the second electrode layer 6 is 20-400 nanometers.
  • the substrate 1 and the perovskite light-absorbing layer 4 may be conventional layer structure materials, respectively.
  • the material of the substrate 1 of the perovskite solar cell shown in FIG. 16 can be but not only glass or plastic, and the perovskite light-absorbing layer 4 can be a conventional perovskite light-absorbing material. Since in the perovskite solar cell shown in FIG. 15 , the first electrode layer 2 or the hole transport layer 31 is directly stacked and combined with the substrate 1 and the perovskite light-absorbing layer 4 , therefore, the perovskite solar cell is a reverse type perovskite solar cells.
  • MXene acts as both electrode material and charge transport material.
  • the MXene energy level and/or work function contained in each electrode layer and charge transport layer at this time should be compatible with the energy level and/or work function of the corresponding layer structure, so that each electrode layer and charge transport layer
  • the MXene contained is suitable for the energy level and/or work function requirements of the corresponding electrode layer and the charge transport layer, respectively, so as to minimize the energy loss at the interface during photoelectric conversion, thereby improving the photoelectric conversion efficiency of the perovskite solar cell
  • it can replace the traditional noble electrode materials, thereby significantly reducing the cost of perovskite solar cells, and also providing more choices for the corresponding functional materials of the perovskite solar cells.
  • MXene is used as an electrode material and a charge transport material to improve the photoelectric conversion efficiency of the perovskite solar cells and reduce the perovskite solar energy. battery cost.
  • the structure of the perovskite solar cell constitutes a sandwich structure, which effectively simplifies the structure of the perovskite solar cell, reduces its economic cost, and improves its preparation efficiency.
  • a blocking layer 7 is also laminated and combined between the second electrode layer 6 and the second charge transport functional layer 5 , as shown in FIG. 17 .
  • the provision of the blocking layer 7 can effectively protect the second charge transport functional layer 5 and the perovskite light absorbing layer 4 from being affected by infiltrating water vapor, etc., so that the structural performance of each layer is stable.
  • the perovskite light absorbing layers 4 contained in the perovskite solar cells in the above embodiments are at least two or more layers, and are also composed of at least two or more perovskite light absorbing layers, and are adjacent to each other.
  • An intermediate connecting layer is also stacked between the two perovskite light-absorbing layers.
  • the material of the intermediate connection layer contains the seventh MXene, and the energy level or work function of the seventh MXene is at least the energy of the perovskite light absorbing layer 4 that is directly laminated (that is, in direct contact with) the intermediate connection layer. level or work function.
  • the perovskite light-absorbing layer 4 contained in the perovskite solar cell includes a perovskite light-absorbing layer 41 and a perovskite light-absorbing layer 42 , and the perovskite light-absorbing layer 4 is located in the perovskite light-absorbing layer.
  • An intermediate connection layer 8 is laminated between 41 and the perovskite light absorbing layer 42 .
  • the intermediate connection layer 8 contains a seventh MXene, and the energy level or work function of the seventh MXene is adapted to the energy level or work function of the perovskite light-absorbing layer 41 and the perovskite light-absorbing layer 42 .
  • the thickness of the intermediate connecting layer 8 containing the seventh MXene is, for example, 1-50 nanometers.
  • perovskite solar cell is also provided in the embodiments of the present application.
  • the structure of the perovskite solar cell is shown in FIG. 18 , including a substrate 1 and a first electrode layer 2 laminated and combined with the substrate. Along the extending direction from the substrate 1 to the first electrode layer 2 , A first charge transport functional layer 3 , a perovskite light absorption layer unit 4 , a second charge transport functional layer 5 and a second electrode layer 6 are also stacked and combined on the surface of the first electrode layer 2 .
  • the perovskite solar cell may also be referred to as a perovskite solar tandem cell.
  • the perovskite light-absorbing layer unit 4 is at least two or more perovskite light-absorbing layers, and an intermediate connecting layer 8 is also stacked between two adjacent perovskite light-absorbing layers.
  • the perovskite light-absorbing layer unit 4 includes a perovskite light-absorbing layer 41 and a perovskite light-absorbing layer 42, and between the perovskite light-absorbing layer 41 and the perovskite light-absorbing layer 42 An intermediate connection layer 8 is laminated therebetween.
  • the material of the intermediate connection layer contains the eighth MXene, and the energy level and/or work function of the eighth MXene is at least directly laminated with the perovskite light-absorbing layer of the intermediate connection layer 8, such as the perovskite light-absorbing layer 41 and the perovskite light-absorbing layer.
  • the energy level or/and the work function of the perovskite light absorbing layer 42 are adapted.
  • the materials and related parameters of the substrate 1 , the first electrode layer 2 , the first charge transport functional layer 3 , the second charge transport functional layer 5 and the second electrode layer 6 contained in the perovskite solar cell in the embodiment of the present application can all be
  • the materials and related parameters of the substrate 1, the first electrode layer 2, the first charge transport function layer 3, the second charge transport function layer 5 and the second electrode layer 6 contained in the conventional perovskite solar cell can also be as above
  • the perovskite solar cell specifically shows the substrate 1, the first electrode layer 2, the first charge transport functional layer 3, the second charge transport functional layer 5 and the second electrode contained in the perovskite solar cell as shown in Figures 1 to 17.
  • the perovskite solar cell can flexibly adjust the energy level or work function of MXene according to the energy level or work function of the perovskite light absorbing layer directly laminated with the intermediate connecting layer 8, so as to adjust the intermediate
  • the energy level or work function of the connection layer 8 is thus significantly reduced, and more choices are provided for the corresponding functional materials of the perovskite solar cell.
  • the thickness of the intermediate tie layer containing the eighth MXene is, for example, 1-50 nanometers.
  • the MXene can be Ti 3 C 2 T x , Mo 2 CT x , Zr 3 C 2 T x , Hf 3 C 2 T x , Cr 2 CO x F 2 ⁇ x (0 ⁇ x ⁇ 2) at least one.
  • adjusting the energy level or/and work function of the MXene can be adjusted according to existing methods, for example, by adjusting the terminal functional group contained in the MXene, that is, represented by T in Mn +1 X n T x
  • the types of terminal functional groups are selected and the content of functional groups is controlled, so as to realize continuous and flexible adjustment of the energy level or work function of the MXene, so that the energy level or work function of the MXene is related to the energy of the layer structure. level matching.
  • MXene (+) represents the work function and the energy level of the top of the valence band of the perovskite material contained in the perovskite light absorbing layer 4
  • the close MXene material, MXene(-) represents the MXene material whose work function is close to the energy level level of the bottom of the conduction band of the perovskite material contained in the perovskite light-absorbing layer 4.
  • the perovskite solar cells in the above-mentioned embodiments can be prepared according to the conventional preparation method and the MXene film layer formation method and according to the structure of the specific perovskite solar cell.
  • the perovskite solar cells in the above embodiments can be achieved by arranging MXene in the material of the electrode layer and/or the charge transport functional layer, or further arranging MXene in the junction layer containing multiple perovskite cells. , and correspondingly adjust the energy level and/or work function of MXene to match the energy level of the layer structure.
  • the structure of the MXene-containing layer matches the energy level position of the bottom of the conduction band or the top of the valence band of the perovskite material, minimizing the energy loss at the interface during photoelectric conversion, thereby endowing the perovskite solar cell with high performance.
  • the photoelectric conversion efficiency is high, and the use of precious metals can be avoided, thereby significantly reducing the cost, and providing more choices for the corresponding functional materials of the perovskite solar cell.
  • This embodiment provides an inverse perovskite solar cell and a preparation method thereof.
  • the structure of the perovskite solar cell in this embodiment is shown in Fig. 2, and its structure is: glass substrate/anode (ITO)/hole transport layer (MXene, Ti 3 C 2 T x )/perovskite light absorbing layer (FAI , MABr, PbI 2 , PbBr 2 molar ratio 0.85:0.15:0.85:0.15)/electron transport layer (C60)/blocking layer (BCP)/cathode (Ag).
  • the inverse perovskite solar cell is prepared as follows:
  • Etch the conductive layer of the transparent electrode use an infrared laser with a wavelength of 1000 nanometers to etch an insulating tape on the transparent ITO electrode, so that a non-conductive positive electrode area and a negative electrode area are formed on the electrode substrate;
  • the supernatant contains unetched Ti 3 AlC 2 , multi-layer Ti 3 C 2 T x and large-sized Ti 3 C 2 T x flakes in the precipitate; the black supernatant is uniformly dispersed monolayer Ti 3 C 2 T x ; collect the black supernatant, take a certain volume of the supernatant by suction filtration to form a self-supporting film, and after vacuum drying at 70 degrees Celsius overnight, weigh the film quality to determine the concentration of the Ti 3 C 2 T x dispersion;
  • the semiconductor laser marking machine produced by the company has a total output power of 30 watts and an infrared laser with a wavelength of 1064 nanometers; the output power range is adjustable from 0-100%, but the actual output power has a minimum threshold of about 5%; this work uses
  • the laser parameters used to irradiate the Ti 3 C 2 T x self-supporting film are: repetition rate 20 kHz, laser pulse width 100 ns, line scan rate 2 m/s; power setting value is 6 of the total power -14%;
  • the powder is dispersed in deionized water to form an aqueous solution of 10 mg per ml;
  • perovskite light-absorbing layer First, the purchased FAI, MABr, PbI 2 , PbBr 2 were weighed in a glove box in a molar ratio of 0.85:0.15:0.85:0.15 and dissolved in DMF/DMSO (volume ratio 4 /1) In the mixed solution, a perovskite precursor solution with a concentration of 1.0-1.5 mol per liter was obtained, which was then spin-coated or printed on the Ti 3 C 2 T x substrate, and then annealed at 100 degrees Celsius for 15 minutes to finally obtain high-quality Perovskite light absorbing layer; (thickness 300-500 nm)
  • the electron transport layer was prepared by PC 61 BM (20 mg/ml in chlorobenzene) or acetylthiocholine chloride (0.5-1 mg/ml in isopropyl Alcohol solution) prepared by spin coating; (thickness 40 nm)
  • the barrier layer is mainly BCP (0.1-0.6 mg/ml, dissolved in isopropanol) obtained by spin coating or obtained by evaporation (thickness 5-8 nm);
  • Evaporated metal counter electrode The metal electrodes are mainly Cu and Ag, prepared by thermal evaporation vacuum deposition (thickness 80-120 nm) under the condition of vacuum degree ⁇ 10 -5 Pa.
  • the structure of the perovskite solar cell in this embodiment is shown in Figure 3, and its structure is: glass substrate/anode (ITO)/hole transport layer (PEDOT: PSS)/perovskite light absorbing layer (FAI, MABr, PbI 2 , PbBr 2 molar ratio 0.85:0.15:0.85:0.15)/electron transport layer ( MXene , Ti3C2Tx )/cathode (Ag).
  • the inverse perovskite solar cell is prepared as follows:
  • Etch the conductive layer of the transparent electrode use an infrared laser with a wavelength of 1000 nanometers to etch an insulating tape on the transparent ITO electrode, so that a non-conductive positive electrode area and a negative electrode area are formed on the electrode substrate;
  • hole transport layer The ITO glass was treated in an ultraviolet ozone device for 30 minutes, and after cooling, the PEDOT:PSS aqueous solution was spin-coated to prepare a hole transport layer (thickness 40 nm);
  • perovskite light-absorbing layer First, the purchased FAI, MABr, PbI 2 , PbBr 2 were weighed in a glove box in a molar ratio of 0.85:0.15:0.85:0.15 and dissolved in DMF/DMSO (volume ratio 4 /1) In the mixed solution, a perovskite precursor solution with a concentration of 1.0-1.5 mol per liter was obtained, which was then spin-coated or printed on the Ti 3 C 2 T x substrate, and then annealed at 100 degrees Celsius for 15 minutes to finally obtain high-quality Perovskite light-absorbing layer (thickness 300-500 nm);
  • Ti 3 C 2 T x precursor solution use layered ternary carbide Ti 3 AlC 2 (MAX phase, particle size less than 40 microns) powder to prepare Ti 3 C 2 T x , the preparation method adopts the same field
  • the hydrofluoric acid-hydrochloric acid joint etching method reported by workers: First, mix 12 ml of hydrochloric acid with a concentration of 12 mol per liter with 2 ml of hydrofluoric acid (49% concentration) and 6 ml of deionized water; after mixing evenly , slowly add 1 g of Ti 3 AlC 2 powder to the solution, and then stir at room temperature for 24 hours at a speed of 400 rpm; the etched MXene is a multi-layer structure, which is centrifuged with deionized water (3500 rpm) ) washed to near neutrality (PH>6); collected the precipitate and re-dispersed in 10 ml of deionized water by shaking by hand, and added the disper
  • the supernatant contains unetched Ti 3 AlC 2 , multi-layer Ti 3 C 2 T x and large-sized Ti 3 C 2 T x flakes in the precipitate; the black supernatant is uniformly dispersed monolayer Ti 3 C 2 T x ; collect the black supernatant, take a certain volume of the supernatant by suction filtration to form a self-supporting film, and after vacuum drying at 70 degrees Celsius overnight, weigh the film quality to determine the concentration of the Ti 3 C 2 T x dispersion;
  • UV lamp irradiation is an effective method, which can effectively increase the concentration of -OH; the details are as follows: Ti 3 After spraying C 2 T x on the transparent glass and drying at 150 degrees Celsius for 15 minutes, put it into a UV lamp for 5-30 minutes (increasing the irradiation time can increase the -OH content), scrape off the treated film and remove the powder Disperse into isopropanol to form a 10 mg/mL solution in isopropanol;
  • Evaporated metal counter electrode The metal electrodes are mainly Cu and Ag, prepared by thermal evaporation vacuum evaporation (thickness 80-120 nm) under the condition of vacuum degree ⁇ 10 -5 Pa.
  • the structure of the perovskite solar cell in this embodiment is shown in FIG. 4, and its structure is: glass substrate/cathode (ITO)/electron transport layer (MXene, Ti 3 C 2 T x )/perovskite light absorption layer (FAI, MABr, PbI 2 , PbBr 2 molar ratio 0.85:0.15:0.85:0.15)/hole transport layer ( MXene , Ti3C2Tx )/anode (Au).
  • the positive type perovskite solar cell is prepared according to the following method:
  • Etch the conductive layer of the transparent electrode use an infrared laser with a wavelength of 1000 nanometers to etch an insulating tape on the transparent ITO electrode, so that a positive electrode area and a negative electrode area that are not conductive to each other are formed on the electrode substrate;
  • Ti 3 C 2 T x is prepared by using layered ternary carbide Ti 3 AlC 2 (MAX phase, particle size less than 40 microns) powder, and the preparation method adopts the same field
  • the hydrofluoric acid-hydrochloric acid joint etching method reported by workers: First, mix 12 ml of hydrochloric acid with a concentration of 12 mol per liter with 2 ml of hydrofluoric acid (49% concentration) and 6 ml of deionized water; after mixing evenly , slowly add 1 g of Ti 3 AlC 2 powder to the solution, and then stir at room temperature for 24 hours at a speed of 400 rpm; the etched MXene is a multi-layer structure, which is centrifuged with deionized water (3500 rpm) ) washed to near neutrality (PH >6); collected the precipitate and redispersed in 10 ml of deionized water by shaking by hand, and added the dispersion
  • the semiconductor laser marking machine produced by the company has a total output power of 30 watts and an infrared laser with a wavelength of 1064 nanometers; the output power range is adjustable from 0-100%, but the actual output power has a minimum threshold of about 5%; this work uses
  • the laser parameters used to irradiate the Ti 3 C 2 T x self-supporting film are: repetition rate 20 kHz, laser pulse width 100 ns, line scan rate 2 m/s; power setting value is 6 of the total power -14%; after the treatment, the powder is dispersed in isopropanol to form a solution of 10 mg per ml;
  • UV lamp irradiation is an effective method, which can effectively increase the concentration of -OH; the details are as follows: Ti 3 After spraying C 2 T x on the transparent glass and drying at 150 degrees Celsius for 15 minutes, put it into a UV lamp for 5-30 minutes (increasing the irradiation time can increase the -OH content), scrape off the treated film and remove the powder Disperse into water to form an aqueous solution of 10 mg per ml;
  • ITO glass was treated in ultraviolet ozone equipment for 30 minutes, and after cooling, the prepared Ti 3 C 2 T x aqueous solution with low work function was completely covered by spin coating on the transparent electrode On the ITO substrate, then annealed at 150 degrees Celsius for 20 minutes or vacuumed for 30 minutes to form a conductor layer (thickness 10 nanometers);
  • perovskite light-absorbing layer First, the purchased FAI, MABr, PbI 2 , PbBr 2 were weighed in a glove box in a molar ratio of 0.85:0.15:0.85:0.15 and dissolved in DMF/DMSO (volume ratio 4 /1) In the mixed solution, a perovskite precursor solution with a concentration of 1.0-1.5 mol per liter was obtained, which was then spin-coated or printed on the Ti 3 C 2 T x substrate, and then annealed at 100 degrees Celsius for 15 minutes to finally obtain high-quality Perovskite light-absorbing layer (thickness 300-500 nm);
  • the metal electrode is mainly Au, which is prepared by thermal evaporation vacuum evaporation (thickness 80-120 nm) under the condition of vacuum degree ⁇ 10-5 Pa.
  • the structure of the perovskite solar cell in this embodiment is shown in FIG. 6 , and its structure is: glass substrate/cathode (MXene, Ti 3 C 2 T x )/ electron transport layer (SnO 2 )/perovskite light absorption layer (FAI , MABr, PbI 2 , PbBr 2 molar ratio 0.85:0.15:0.85:0.15)/hole transport layer (spiro-OMeTAD)/anode (Au).
  • the positive type perovskite solar cell is prepared according to the following method:
  • UV lamp irradiation is an effective method, which can effectively increase the concentration of -OH; the details are as follows: Ti 3 After spraying C 2 T x on the transparent glass and drying at 150 degrees Celsius for 15 minutes, put it into a UV lamp for 5-30 minutes (increasing the irradiation time can increase the -OH content), scrape off the treated film and remove the powder Disperse into water to form an aqueous solution of 10 mg per ml;
  • cathode layer common glass is treated in ultraviolet ozone equipment for 30 minutes, and after cooling, the prepared Ti 3 C 2 T x aqueous solution with low work function is completely covered on the glass substrate by spin coating , and then annealed at 150 degrees Celsius for 20 minutes or vacuumed for 30 minutes to form a conductive layer (thickness 10 nanometers);
  • perovskite light-absorbing layer First, the purchased FAI, MABr, PbI 2 , PbBr 2 were weighed in a glove box in a molar ratio of 0.85:0.15:0.85:0.15 and dissolved in DMF/DMSO (volume ratio 4 /1) In the mixed solution, a perovskite precursor solution with a concentration of 1.0-1.5 mol per liter was obtained, which was then spin-coated or printed on the Ti 3 C 2 T x substrate, and then annealed at 100 degrees Celsius for 15 minutes to finally obtain high-quality Perovskite light-absorbing layer (thickness 300-500 nm);
  • hole transport layer 1 g of 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) was dissolved in 1 ml of anhydrous chlorobenzene, and 28.8 ⁇ l of 4-tert-butylpyridine (TBP) and 17.5 ⁇ l of 520 mg per ml concentration of bis-trifluoromethanesulfonylidene were added Lithium amide (Li-TFSI) acetonitrile solution, the precursor solution of the hole transport material is obtained after the shaking is complete. The solution was completely covered on the perovskite light-absorbing layer by spin coating to form a hole transport layer (thickness 150 nm);
  • the metal electrode is mainly Au, prepared by thermal evaporation vacuum evaporation (thickness 80-120 nm) under the condition of vacuum degree ⁇ 10-5 Pa.
  • This comparative example provides an inverse perovskite solar cell and a preparation method thereof, which is the comparative example of Example 1.
  • the structure of the perovskite solar cell of this comparative example is: glass substrate/anode (ITO)/hole transport layer (PEDOT:PSS)/perovskite light-absorbing layer (FAI, MABr, PbI 2 , PbBr 2 molar ratio 0.85:0.15 : 0.85: 0.15)/electron transport layer (C60)/blocking layer (BCP)/cathode (Ag).
  • the inverse perovskite solar cell is prepared as follows:
  • Etch the transparent electrode conductive layer use an infrared laser with a wavelength of 1000 nanometers to etch an insulating tape on the transparent ITO electrode, so that a positive electrode area and a negative electrode area that are not conductive to each other are formed on the electrode substrate;
  • perovskite light-absorbing layer First, the purchased FAI, MABr, PbI 2 , PbBr 2 were weighed in a glove box in a molar ratio of 0.85:0.15:0.85:0.15 and dissolved in DMF/DMSO (volume ratio 4 /1) In the mixed solution, a perovskite precursor solution with a concentration of 1.0-1.5 mol per liter was obtained, which was then spin-coated or printed on the Ti 3 C 2 T x substrate, and then annealed at 100 degrees Celsius for 15 minutes to finally obtain high-quality Perovskite light-absorbing layer (thickness 300-500 nm);
  • the electron transport layer was prepared by PC 61 BM (20 mg/ml in chlorobenzene) or acetylthiocholine chloride (0.5-1 mg/ml in isopropyl Alcohol solution) prepared by spin coating (thickness 40 nm);
  • the barrier layer is mainly BCP (0.1-0.6 mg/ml, dissolved in isopropanol) obtained by spin coating or by evaporation with a vapor deposition apparatus (thickness 5-8 nm);
  • Evaporated metal counter electrode The metal electrodes are mainly Cu and Ag, prepared by thermal evaporation vacuum evaporation (thickness 80-120 nm) under the condition of vacuum degree ⁇ 10 -5 Pa.
  • the test results of the capacitance-voltage characteristics of the perovskite solar cells provided in Examples 1-4 are shown in Table 1 below.
  • the JV characteristic curve of the inversion perovskite solar cell based on MXene as the hole transport layer provided in Example 1 is shown in FIG. 19 .
  • the optimized perovskite solar cell has an open circuit voltage ( V OC ) of 1.12 volts, a short-circuit current density ( J SC ) of 23.51 mA per square centimeter, a fill factor (FF) of 81%, and a fill factor (FF) of 21.33%
  • V OC open circuit voltage
  • J SC short-circuit current density
  • FF fill factor
  • FF fill factor
  • Example Open Circuit Voltage (VOC) Volts) Short Circuit Current Density (JSC) (mA) Fill Factor (FF) (%) Photoelectric conversion efficiency (PCE) (%)
  • VOC Voltage
  • JSC Short Circuit Current Density
  • FF Fill Factor
  • Photoelectric conversion efficiency (PCE) (%)
  • Example 1 1.12 23.51 81 21.33
  • Example 2 1.00 21.73 75.7 16.45
  • Example 3 1.05 22.93 79.9 19.23
  • Example 4 1.06 22.06 81.1 18.96 Comparative ratio 1.00 22.27 76 16.93
  • the perovskite solar cells provided in the examples of the present application with low work function MXene as the electron transport layer are close to the photovoltaic performance of the cells with C60 as the electron transport layer, while the high work function MXene When used as a hole transport layer, its photovoltaic performance is significantly better than that of the device with the classical PEDOT:PSS as the hole transport layer.
  • MXene when using MXene as an electrode, its battery performance can also be achieved with high efficiency. This indicates that Mxene has an easily tunable work function/energy level, has great potential to replace traditional charge transport materials, traditional electrode materials, and has natural advantages in multi-purpose materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种MXene的应用和钙钛矿太阳能电池。所述MXene作为钙钛矿太阳能电池的电荷传输材料、电极材料、叠层电池中相邻钙钛矿吸光层之间的连接层材料中至少一种的应用。钙钛矿太阳能电池包括基底和与所述基底层叠结合的第一电极层,沿基底至所述第一电极层延伸的方向,在第一电极层表面还层叠结合有第一电荷传输功能层、钙钛矿吸光层、第二电荷传输功能层和第二电极层;叠层电池钙钛矿吸光层单元,钙钛矿吸光层单元包括至少两层钙钛矿吸光层,且在相邻两层钙钛矿吸光层之间还层叠结合有中间连接层。其中,第一电极层、第二电极层、第一电荷传输功能层、第二电荷传输功能层、中间连接层中的至少一层的材料含有MXene。

Description

MXene的应用和含有MXene的钙钛矿太阳能电池
本申请要求于2020年10月15日在中国专利局提交的、申请号为202011106208.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能电池技术领域,具体涉及一种MXene的应用和含有MXene的钙钛矿太阳能电池。
背景技术
钙钛矿太阳能电池(PSC)是一种以有机-无机卤化物钙钛矿为光吸收材料的新型太阳能电池,具有易于制作、成本低、效率高等优点,目前其最高转换效率已经达到22%以上,与铜铟镓硒(CIGS)、碲化镉(CdTe)和多晶硅等太阳能电池的最高效率相当,而远高于染料敏化和有机太阳能电池的最高效率,是目前作为一种得到最广泛研究的光伏技术之一,而且PSC由于钙钛矿材料本身的许多独特性能,例如高吸光系数、低激子结合能和优良的空穴和电子传导能力等,自2009年问世以来已经取得了相当大的进展。
PSC一般由透明电极、电子传输层、钙钛矿光吸收层、空穴传输层和金属背电极组成。与铜铟镓硒、碲化镉和多晶硅等太阳能电池相比,钙钛矿太阳能电池的一个显著优势是其光吸收层可以采用溶液化学法低温制备,如果电子传输层和空穴传输层等其它功能层也能低温(≤ 150°C)制备,那么这种电池将非常适合应用于柔性衬底,制作成柔性太阳能电池。
目前能量转化效率很高的PSC的电荷传输层均采用掺杂的或者价格高昂的有机物。例如掺杂的螺芴材料spiro-OMeTAD、掺杂的聚三苯胺材料PTAA作为空穴传输层;富勒烯衍生物PCBM、C60等作为电子传输层。这些电荷传输材料的使用,不仅会提高电池的制备成本、材料成本,也对电池在服役期间的长期稳定性带来挑战。此外,由于这些材料的能级水平是固定的,或者其调节范围十分有限,当与不同能级水平、带隙的钙钛矿层组合成PSC器件时,会带来非常明显的能量损失和器件性能提升难度。
此外,作为电极材料的ITO、FTO和金属材料Au等,其成本非常高,是整个PSC中成本最高的功能层。并且这些材料的功函数也是固定不变的,很难与各类界面材料的能级水平相匹配,从而造成巨大的能量损失,限制了PSC效率的提升。
目前使用石墨烯或者氧化石墨烯来代替电荷传输材料或者电极材料的工作已经有所报道,但是这些材料本身的能级水平难以调节,或者导电性不太理想,因此基于该类材料的PSC的器件效率都不太高。
技术问题
本申请的目的在于克服现有技术的上述不足,提供一种MXene的应用和钙钛矿太阳能电池,以解决现有钙钛矿太阳能电池的光电转换效率不高但成本高的技术问题。
技术解决方案
为了实现上述发明目的,本申请一方面,提供了MXene作为钙钛矿太阳能电池的电荷传输材料、电极材料、叠层电池中相邻钙钛矿吸光层之间的中间连接层材料中至少一种的应用。
本申请另一方面,提供了一种钙钛矿太阳能电池。所述钙钛矿太阳能电池包括基底和与所述基底层叠结合的第一电极层,沿所述基底至所述第一电极层延伸的方向,在所述第一电极层表面还层叠结合有第一电荷传输功能层、钙钛矿吸光层、第二电荷传输功能层和第二电极层;其特征在于:所述第一电极层、第二电极层、第一电荷传输功能层、第二电荷传输功能层中的至少一层的材料含有MXene;其中,所述MXene的功函数与所处层结构的能级或/和功函数相适配。
本申请再一方面,提供了另一种钙钛矿太阳能电池。所述钙钛矿太阳能电池包括钙钛矿吸光层单元,所述钙钛矿吸光层单元包括至少两层钙钛矿吸光层,且在相邻两层钙钛矿吸光层之间还层叠结合有中间连接层,所述中间连接层的材料含有第八MXene,且所述第八MXene的功函数与所述中间连接层直接层叠结合的所述钛矿吸光层的能级或/和功函数相适配。
与现有技术相比,本申请将MXene应用于钙钛矿太阳能电池的电荷传输材料、电极材料、中间连接层材料中至少一种材料,充分利用MXene的能级水平或功函数可以连续、灵活调节,从而实现与钙钛矿材料的导带底或价带顶的能级位置相匹配,最大限度地降低光电转换时界面上的能量损失,以提高钙钛矿太阳能电池的光电转换效率,而且成本低,并为钙钛矿太阳能电池相关功能层材料提供了更多选择空间。
本申请钙钛矿太阳能电池通过在电极层和/或电荷传输功能层的材料中设置MXene,并对应调节MXene的功函数与所处的层结构的能级或/和功函数相适配。这样使得含有MXene层结构与钙钛矿材料的导带底或价带顶的能级位置相匹配,最大限度地降低光电转换时界面上的能量损失,从而赋予所述钙钛矿太阳能电池具有高的光电转换效率,而且可以避免贵重金属的使用,从而显著降低成本,而且为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。
本申请提供的另一种钙钛矿太阳能电池所含的相邻两个钙钛矿吸光层之间通过含有MXene的中间连接层层叠结合,这样可以根据与所述中间连接层连接的所述钙钛矿吸光层的能级或功函数灵活调节MXene的能级或功函数,从而调节所述中间连接层的能级或功函数,而且为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间,从而显著降低成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-5为本申请实施例以MXene用作电荷传输层的钙钛矿太阳能电池的五种结构示意图;
图6-10为本申请实施例以MXene用作电极材料的钙钛矿太阳能电池的五种结构示意图;
图11-16为本申请实施例以MXene同时用作电荷传输材料和电极材料的钙钛矿太阳能电池的六种结构示意图;
图17为本申请实施例含有阻挡层且含有MXene的钙钛矿太阳能电池结构示意图;
图18为本申请实施例具有串联连接的两个钙钛矿吸光层的钙钛矿太阳能电池结构示意图;
图19为本申请实施例1中如图2所示结构钙钛矿太阳能电池器件的J-V曲线图。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“ a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a, b, c, a-b(即a和b), a-c, b-c, 或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中的质量可以是µg、mg、g、kg等化工领域公知的质量单位。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请涉及的专业名称说明:
MXene:二维无机化合物,由几个原子层厚度的过渡金属碳化物、氮化物或碳氮化物构成,MXene材料表面有羟基、卤族原子或末端氧,它们有着过渡金属碳化物的金属导电性。
钙钛矿型太阳能电池(perovskite solar cell,PSC):是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池。
一方面,本申请实施例提供了MXene的一种新应用。在本申请实施例中,所述MXene作为钙钛矿太阳能电池的电荷传输材料、电极材料、叠层电池中相邻钙钛矿吸光层之间的中间连接层材料中至少一种的应用。这样,在本申请实施例中,将MXene应用于钙钛矿太阳能电池的电荷传输材料、电极材料、中间连接层材料中至少一种材料,充分利用了MXene的能级水平或功函数可以连续、根据需要灵活调节,从而实现与钙钛矿材料的导带底或价带顶的能级位置相匹配,最大限度地降低光电转换时界面上的能量损失,以提高钙钛矿太阳能电池的光电转换效率,而且成本低,并为钙钛矿太阳能电池相关功能层材料提供了更多选择空间。
在优选实施例中,所述电荷传输材料为空穴传输材料和/或电子传输材料。所述电极材料包括阴极材料和/或阳极材料。根据对应电极层结构和电荷传输层结构的能级要求而灵活调节所述MXene的能级水平或功函数,使得MXene适用于相应层结构如空穴传输层、电子传输层、阴极层和阳极层的能级或功函数要求,并替代传统的对应层结构材料,如可以取代在整个电池成本中占据最大比重的导电玻璃和金属电极等电极材料,从而提高钙钛矿太阳能电池的光电转换效率,并降低电池成本。同时为钙钛矿太阳能电池其他相关功能层材料提供了更多选择空间。
具体实施例中,所述MXene的通式为M n+1X nT x,其中,通式中的M为过渡金属元素,如优选可以是包括Ti、Sc、Y、Zr、Hf、V、Nb、Ta、Cr、Mo、W中的至少一种;X为C或N,n=1–4,x=0 - 2。
通式中的T代表末端功能基团,如优选可以是-OH、=O、=S、=Se、=Te、-Br、-Cl或-F的至少一种,x代表末端基团的数量,且0<x≤2。可以通过对所述末端功能基团的选择和控制或进一步增减,从而实现连续、灵活调节所述MXene的能级水平或功函数,从而使得所述MXene的能级水平或功函数与所处层结构的能级相适配。
因此,在具体实施例中,所述MXene可以为Ti 3C 2T x、Mo 2CT x、Zr 3C 2T x、Hf 3C 2T x、Cr 2CO xF 2−x(0<x≤2)中的至少一种。
另一方面,基于上文所述MXene在钙钛矿太阳能电池中的应用。本申请实施例还提供了一种钙钛矿太阳能电池。所述钙钛矿太阳能电池的结构如图1-18所示,其包括基底1和与所述基底层叠结合的第一电极层2,沿所述基底1至所述第一电极层2延伸的方向,在所述第一电极层2表面还层叠结合有第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5和第二电极层6。其中,所述第一电极层2、第二电极层6、第一电荷传输功能层3、第二电荷传输功能层5中的至少一层的材料含有MXene;其中,所述MXene的能级或/和功函数与所处层结构的能级或/和功函数相适配。这样,所述钙钛矿太阳能电池通过在电极层和/或电荷传输功能层的材料中设置MXene,并对应调节MXene的能级或/和功函数与所处层结构的能级和/或功函数相适配。这样使得含有MXene层结构与钙钛矿材料的导带底或价带顶的能级位置相匹配,最大限度地降低光电转换时界面上的能量损失,从而赋予所述钙钛矿太阳能电池具有高的光电转换效率,而且可以避免贵重金属的使用,从而显著降低成本,而且为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。
基于所述钙钛矿太阳能电池的基本结构,本申请所述钙钛矿太阳能电池可以至少有以下若干实施例中的结构:
第一种,如图1所示,所述钙钛矿太阳能电池的所述第一电荷传输功能层3包括电子传输层31,那么所述第二电荷传输功能层5包括空穴传输层51,且所述空穴传输层31的材料含有第一MXene。此时,第一MXene作为所述钙钛矿太阳能电池的空穴传输材料。因此,在一实施例中,含所述第一MXene的所述空穴传输层51的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、电子传输层31、钙钛矿吸光层4和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图1所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,电子传输层31可以但不仅仅为PCBM、TiO 2、SnO 2等,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,也可以是其他宽、低带隙的钙钛矿吸光材料,第二电极层6可以是但不仅仅为Au。
由于如图1所示的钙钛矿太阳能电池中第一电荷传输功能层3包括电子传输层31,那么第一电极2为阴极,且直接与基底1层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第二种,如图2所示,所述钙钛矿太阳能电池的所述第一电荷传输功能层3包括空穴传输层31,那么所述第二电荷传输功能层5包括电子传输层51,且所述空穴传输层31的材料含有第一MXene。此时,第一MXene作为所述钙钛矿太阳能电池的空穴传输材料。在一实施例中,含所述第一MXene的所述空穴传输层31的如厚度5-100纳米。与此同时,所述基底1、第一电极层2、钙钛矿吸光层4、电子传输层51和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图2所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,电子传输层51的材料可以但不仅仅为PCBM、C60等,第二电极层6可以是但不仅仅为Ag、Cu等。
由于如图2所示的钙钛矿太阳能电池中,第一电荷传输功能层3包括空穴传输层31,那么第一电极2为阳极,且直接与基底1层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
另外,在图1和图2所示钙钛矿太阳能电池中,由于第一MXene均为作为空穴传输材料,那么此时的第一MXene的能级和/或功函数应该是与空穴传输层要求的能级和/或功函数是相适配的,如可以根据空穴传输层所处的层结构位置和上下层结构材料对第一MXene的能级和/或功函数进行灵活调节,使得其适于空穴传输层的能级和/或功函数要求,最大限度地降低光电转换时界面上的能量损失,从而提高所述钙钛矿太阳能电池光电转换效率。
第三种,如图3所示,所述钙钛矿太阳能电池的所述第一电荷传输功能层3包括空穴传输层31,那么所述第二电荷传输功能层5包括电子传输层51,且所述电子传输层51的材料含有第二MXene。此时,在图3所示钙钛矿太阳能电池中,由于第二MXene均为作为电子传输材料,那么此时的第二MXene能级和/或功函数应该是与电子传输层要求的能级和/或功函数是相适配的,如可以根据电子传输层51所处的层结构位置和上下层结构材料对第二MXene的能级和/或功函数进行灵活调节,使得其适于电子传输层51的能级和/或功函数要求,最大限度地降低光电转换时界面上的能量损失,从而提高所述钙钛矿太阳能电池光电转换效率。在一实施例中,含所述第二MXene的所述电子传输层51的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、空穴传输层31、钙钛矿吸光层4和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图3所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,空穴传输层31的材料可以但不仅仅为spiro-OMeTAD、PTAA,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电极层6可以是但不仅仅为Ag、Cu等。
由于如图3所示的钙钛矿太阳能电池中,第一电荷传输功能层3包括空穴传输层31,那么第一电极2为阳极,且直接与基底1层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
第四种,如图4所示,所述钙钛矿太阳能电池的所述第一电荷传输功能层3包括电子传输层31,那么所述第二电荷传输功能层5包括空穴传输层51,且所述空穴传输层51的材料含有第一MXene,所述电子传输层31的材料含有第二MXene。此时,第一MXene作为所述钙钛矿太阳能电池的空穴传输材料,第二MXene作为所述钙钛矿太阳能电池的电子传输材料。在一实施例中,含所述第一MXene的所述空穴传输层51的如厚度20-400纳米。在另一实施例中,含所述第二MXene的所述电子传输层31的如厚度5-100纳米。与此同时,所述基底1、第一电极层2、钙钛矿吸光层4和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图4所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电极层6可以是但不仅仅为Au。
由于如图4所示的钙钛矿太阳能电池中,第一电荷传输功能层3包括电子传输层31,那么第一电极2为阴极,且直接与基底1层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第五种,如图5所示,所述钙钛矿太阳能电池的所述第一电荷传输功能层3包括空穴传输层31,那么所述第二电荷传输功能层5包括电子传输层51,且所述空穴传输层31的材料含有第一MXene,所述电子传输层51的材料含有第二MXene。此时,第一MXene作为所述钙钛矿太阳能电池的空穴传输材料,第二MXene作为所述钙钛矿太阳能电池的电子传输材料。在一实施例中,含所述第一MXene的所述空穴传输层31的如厚度5-100纳米。在另一实施例中,含所述第二MXene的所述电子传输层51的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、钙钛矿吸光层4和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图5所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电极层6可以是但不仅仅为Ag、Cu等。
由于如图5所示的钙钛矿太阳能电池中,第一电荷传输功能层3包括空穴传输层31,那么第一电极2为阳极,且直接与基底1层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
另外,在图4和图5所示钙钛矿太阳能电池中,由于第一MXene均为作为空穴传输材料,同时第二MXene均为作为电子传输材料。那么此时的第一MXene能级和/或功函数应该是与空穴传输层要求的能级和/或功函数是相适配的,第二MXene能级和/或功函数应该是与电子传输层要求的能级和/或功函数是相适配的,如可以根据空穴传输层31、电子传输层51所处的层结构位置和上下层结构材料对第一MXene和第二MXene能级和/或功函数进行灵活调节,使得MXene分别适于空穴传输层和电子传输层的能级和/或功函数要求,最大限度地降低光电转换时界面上的能量损失,从而提高所述钙钛矿太阳能电池光电转换效率。
由图1-5可知,上述各实施例钙钛矿太阳能电池中,是将MXene作为电荷传输材料,具体的可以作为空穴传输材料和电子传输材料以提高所述钙钛矿太阳能电池光电转换效率。
第六种,如图6所示,所述钙钛矿太阳能电池的第一电极层2为阴极,所述第二电极层6为阳极,且所述阴极的材料含有第三MXene。此时,第三MXene作为所述钙钛矿太阳能电池的阴极材料。在一实施例中,含所述第三MXene的所述阴极的如厚度5-100纳米。与此同时,所述基底1、第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图6所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电荷传输功能层3的材料可以但不仅仅为PCBM、C60,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为spiro-OMeTAD、PTAA,第二电极层6可以是但不仅仅为Au。
第七种,如图7所示,所述钙钛矿太阳能电池的第一电极层2为阴极,所述第二电极层6为阳极,且所述阳极的材料含有第四MXene。此时,第四MXene作为所述钙钛矿太阳能电池的阳极材料。在一实施例中,含所述第四MXene的所述阳极的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5分别可以是常规的层结构材料。如具体实施例中,图7所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等、第一电荷传输功能层3的材料可以但不仅仅为PCBM、C60,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为spiro-OMeTAD、PTAA。
由于如图6和图7所示的钙钛矿太阳能电池中,第一电极层2均为阴极,且直接与基底1和第一电荷传输功能层3(电子传输层)层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第八种,如图8所示,所述钙钛矿太阳能电池的第一电极层2为阳极,所述第二电极层6为阴极,且所述阳极的材料含有第四MXene。此时,第四MXene作为所述钙钛矿太阳能电池的阳极材料。在一实施例中,含所述第四MXene的所述阳极的如厚度5-100纳米。与此同时,所述基底1、第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图8所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电荷传输功能层3的材料可以但不仅仅为spiro-OMeTAD、PTAA,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为PCBM、C60,第二电极层6可以是但不仅仅为Ag、Cu等。由于如图8所示的钙钛矿太阳能电池中,第一电极层2为阳极,且直接与基底1和第一电荷传输功能层3层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
第九种,如图9所示,所述钙钛矿太阳能电池的第一电极层2为阳极,所述第二电极层6为阴极,且所述阴极的材料含有第三MXene。此时,第三MXene作为所述钙钛矿太阳能电池的阴极材料。在一实施例中,含所述第三MXene的所述阴极的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5分别可以是常规的层结构材料。如具体实施例中,图9所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等、第一电荷传输功能层3的材料可以但不仅仅为spiro-OMeTAD、PTAA,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为PCBM、C60。由于如图9所示的钙钛矿太阳能电池中,第一电极层2为阳极,且直接与基底1和第一电荷传输功能层3层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
第十种,如图10所示,所述钙钛矿太阳能电池的所述第一电极层2为阳极,所述第二电极层6为阴极,且所述阴极的材料含有第三MXene,所述阳极的材料含有第四MXene。此时,第三MXene作为所述钙钛矿太阳能电池的阴极材料的同时,第四MXene作为所述钙钛矿太阳能电池的阳极材料。在一实施例中,含所述第三MXene的所述阴极的如厚度20-400纳米。在另一实施例中,含所述第四MXene的所述阳极的如厚度5-100纳米。与此同时,所述基底1、第一电荷传输功能层3、钙钛矿吸光层4、第二电荷传输功能层5分别可以是常规的层结构材料。如具体实施例中,图10所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电荷传输功能层3的材料可以但不仅仅为spiro-OMeTAD、PTAA,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为PCBM、C60。由于如图10所示的钙钛矿太阳能电池中,第一电极层2为阳极,且直接与基底1和第一电荷传输功能层3层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。当然,也可以根据图10所示的结构设置为正型钙钛矿太阳能电池,该正型钙钛矿太阳能电池也在本申请实施例公开的范围。
另外,在图6和图10所示钙钛矿太阳能电池中,由于第三MXene均为作为阴极材料或/和第四MXene均为作为阳极材料。那么此时的第三MXene能级和/或功函数应该是与阴极要求的能级和/或功函数是相适配的,第四MXene能级和/或功函数应该是与阳极的能级和/或功函数是相适配的,如可以根据第一电极层2、第二电极层6所处的层结构位置和上下层结构材料对第三MXene和第四MXene能级和/或功函数进行灵活调节,使得MXene分别适于第一电极层和第二电极层的能级和/或功函数要求,在最大限度地降低光电转换时界面上的能量损失,从而提高所述钙钛矿太阳能电池光电转换效率的同时,替代传统的高贵的电极材料,从而显著的降低钙钛矿太阳能电池的成本,而且也为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。
另外,由图6-10可知,上述各实施例钙钛矿太阳能电池中,是将MXene作为电极材料,具体的可以作为阳极材料和阴极材料以提高所述钙钛矿太阳能电池光电转换效率,替代传统价格高贵的贵重电极金属,从而显著的降低钙钛矿太阳能电池成本。
第十一种,如图11所示,所述钙钛矿太阳能电池的所述第一电极层2为阴极,所述第一电荷传输功能层3包括电子传输层31,且第一电极层2和所述电子传输层31为同一层结构,也既是两层二合为一,且其材料含有第五MXene。此时,第五MXene作为所述钙钛矿太阳能电池的阴极材料的同时也作为所述钙钛矿太阳能电池的电子传输材料,因此,电子传输层31或第一电极层2既是钙钛矿太阳能电池的阴极也是其电子传输层,电子传输层31或第一电极层2同时起到钙钛矿太阳能电池的阴极也是其电子传输层作用。在一实施例中,电子传输层31或第一电极层2的如厚度5-100纳米。与此同时,所述基底1、钙钛矿吸光层4、第二电荷传输功能层5和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图11所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为spiro-OMeTAD、PTAA,第二电极层6的材料可以但不仅仅为Au。由于如图11所示的钙钛矿太阳能电池中,电子传输层31直接与基底1和钙钛矿吸光层4层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第十二种,如图12所示,所述钙钛矿太阳能电池的所述第二电极层6为阳极,所述第二电荷传输功能层5包括空穴传输层51,且所述第二电极层6和空穴传输层51为同一层结构,也既是两层二合为一,且其材料含有第六MXene。此时,第六MXene作为所述钙钛矿太阳能电池的阳极材料的同时也作为所述钙钛矿太阳能电池的空穴传输材料。因此,空穴传输层51或第二电极层6既是钙钛矿太阳能电池的空穴传输层也是阳极,空穴传输层51或第二电极层6同时起到钙钛矿太阳能电池的阳极也是其空穴传输层作用。在一实施例中,空穴传输层51或第二电极层6的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、第一电荷传输功能层3、钙钛矿吸光层4分别可以是常规的层结构材料。如具体实施例中,图12所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,第一电荷传输功能层3的材料可以但不仅仅为PCBM、C60等电子传输材料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料。由于如图12所示的钙钛矿太阳能电池中,第一电极层2为阴极,且直接与基底1和第一电荷传输功能层3层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第十三种,如图13所示,所述钙钛矿太阳能电池的所述第一电极层2为阳极,所述第一电荷传输功能层3包括空穴传输层31,且第一电极层2和所述空穴传输层31为同一层结构,也既是两层二合为一,且其材料含有第六MXene。此时,第六MXene作为所述钙钛矿太阳能电池的阳极材料的同时也作为所述钙钛矿太阳能电池的空穴传输材料。因此,空穴传输层31或第一电极层2既是钙钛矿太阳能电池的阳极也是其空穴传输层,空穴传输层31或第一电极层2同时起到钙钛矿太阳能电池的阳极也是其空穴传输层作用。在一实施例中,所述空穴传输层31或第一电极层2的如厚度5-100纳米。与此同时,所述基底1、钙钛矿吸光层4、第二电荷传输功能层5和第二电极层6分别可以是常规的层结构材料。如具体实施例中,图13所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料,第二电荷传输功能层5的材料可以但不仅仅为PCBM、C60等电子传输材料,第二电极层6的材料可以但不仅仅为Ag、Cu等。由于如图13所示的钙钛矿太阳能电池中,空穴传输层31或第一电极层2直接与基底1和第一电荷传输功能层3层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
第十四种,如图14所示,所述钙钛矿太阳能电池的所述第二电极层6为阴极,所述第二电荷传输功能层5包括电子传输层51,且所述第二电极层6和所述电子传输层51为同一层结构,也既是两层二合为一,且其的材料含有第五MXene。此时,第五MXene作为所述钙钛矿太阳能电池的阴极材料的同时也作为所述钙钛矿太阳能电池的电子传输材料。因此,电子传输层51或第二电极层6既是钙钛矿太阳能电池的电子传输层阳极也是阴极,电子传输层51或第二电极层6同时起到钙钛矿太阳能电池的电子传输层和阴极作用。在一实施例中,所述电子传输层51或第二电极层6的如厚度20-400纳米。与此同时,所述基底1、第一电极层2、第一电荷传输功能层3、钙钛矿吸光层4分别可以是常规的层结构材料。如具体实施例中,图14所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,第一电极层2的材料可以但不仅仅为ITO、FTO等,空穴传输功能层31的材料可以但不仅仅为spiro-OMeTAD、PTAA等空穴传输材料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料。由于如图14所示的钙钛矿太阳能电池中,第一电极层2为阳极,且直接与基底1和空穴传输功能层31层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
第十五种,如图15所示,所述钙钛矿太阳能电池的所述第一电极层2为阴极,所述第一电荷传输功能层3包括电子传输层31,所述第二电极层6为阳极,所述第二电荷传输功能层5包括空穴传输层51,且所述第一电极层2(阴极)和所述电子传输层31为同一层结构,也既是两层二合为一,且其材料含有第五MXene。因此,电子传输层31或第一电极层2既是钙钛矿太阳能电池的阴极也是其电子传输层,电子传输层31或第一电极层2同时起到钙钛矿太阳能电池的阴极也是其电子传输层作用。所述空穴传输层51和第二电极层6(阳极)为同一层结构,且其材料含有第六MXene。因此,空穴传输层51或第二电极层6既是钙钛矿太阳能电池的空穴传输层也是阳极,空穴传输层51或第二电极层6同时起到钙钛矿太阳能电池的阳极也是其空穴传输层作用。此时,MXene既作为作为所述钙钛矿太阳能电池的电极材料(同时正、负极材料)的同时,MXene作为所述钙钛矿太阳能电池的电荷传输材料(同时电子传输材料和空穴传输材料)。在一实施例中,所述空穴传输层51或第二电极层6的如厚度20-400纳米。在另一实施例中,所述电子传输层31或第一电极层2的如厚度5-100纳米。与此同时,所述基底1、钙钛矿吸光层4分别可以是常规的层结构材料。如具体实施例中,图15所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料。由于如图15所示的钙钛矿太阳能电池中,第一电极层2或电子传输层31直接与基底1和钙钛矿吸光层4层叠结合,因此,此时钙钛矿太阳能电池为正型钙钛矿太阳能电池。
第十六种,如图16所示,所述钙钛矿太阳能电池的所述第一电极层2为阳极,所述第一电荷传输功能层3包括空穴传输层31,所述第二电极层6为阴极,所述第二电荷传输功能层5包括电子传输层51,且所述第一电极层2(阳极)和空穴传输层31为同一层结构,也既是两层二合为一,且其材料含有第六MXene。因此,第一电极层2或电子传输层31既是钙钛矿太阳能电池的阳极也是其空穴传输层,第一电极层2或空穴传输层31同时起到钙钛矿太阳能电池的阳极也是其空穴传输层作用。所述电子传输层51和第二电极层6(阴极)为同一层结构,且其材料含有第五MXene。因此,电子传输层51或第二电极层6既是钙钛矿太阳能电池的电子传输层也是阴极,电子传输层51或第二电极层6同时起到钙钛矿太阳能电池的阴极也是其电子传输层作用。此时,MXene既作为所述钙钛矿太阳能电池的电极材料(同时正、负极材料)的同时,MXene作为所述钙钛矿太阳能电池的电荷传输材料(同时电子传输材料和空穴传输材料)。在一实施例中,所述空穴传输层31或第一电极层2的如厚度5-100纳米。在另一实施例中,所述电子传输层51或第二电极层6的如厚度20-400纳米。与此同时,所述基底1、钙钛矿吸光层4分别可以是常规的层结构材料。如具体实施例中,图16所示的钙钛矿太阳能电池的基底1的材料可以但不仅仅为玻璃或塑料,钙钛矿吸光层4可以是常规的钙钛矿吸光材料。由于如图15所示的钙钛矿太阳能电池中,第一电极层2或空穴传输层31直接与基底1和钙钛矿吸光层4层叠结合,因此,此时钙钛矿太阳能电池为反型钙钛矿太阳能电池。
另外,在图11和图16所示钙钛矿太阳能电池中,由于MXene同时作为电极材料和电荷传输材料。那么此时的各电极层和电荷传输层所含的MXene能级和/或功函数应该是与对应层结构的能级和/或功函数是相适配的,使得各电极层和电荷传输层所含的MXene分别适于对应电极层和电荷传输层的能级和/或功函数要求,在最大限度地降低光电转换时界面上的能量损失,从而提高所述钙钛矿太阳能电池光电转换效率的同时,替代传统的高贵的电极材料,从而显著的降低钙钛矿太阳能电池的成本,而且也为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。
其次,由图11-16可知,上述各实施例钙钛矿太阳能电池中,是将MXene作为电极材料同时作为电荷传输材料,以提高所述钙钛矿太阳能电池光电转换效率和降低钙钛矿太阳能电池成本。而且如图15和16所示钙钛矿太阳能电池的结构构成三明治结构,有效简化了钙钛矿太阳能电池的结构,降低了其经济成本,提高了其制备的效率。
在上文各实施例中,在所述第二电极层6与第二电荷传输功能层5之间还层叠结合有阻挡层7,如图17所示。设置阻挡层7能够有效保护第二电荷传输功能层5、钙钛矿吸光层4不被渗透进的水汽等影响,使得各层结构性能稳定。
在进一步实施例中,以上文各实施例中钙钛矿太阳能电池所含的钙钛矿吸光层4至少为两层以上,也既是由至少两层以上钙钛矿吸光层构成,且在相邻两钙钛矿吸光层之间还层叠有中间连接层。所述中间连接层的材料含有第七MXene,且所述第七MXene的能级或功函数至少与所述中间连接层直接层叠结合(也即是直接接触)的钙钛矿吸光层4的能级或功函数相适配。在具体实施例中,如图18所示,所述钙钛矿太阳能电池所含的钙钛矿吸光层4包括钙钛矿吸光层41和钙钛矿吸光层42,且在钙钛矿吸光层41和钙钛矿吸光层42之间层叠有中间连接层8。其中,所述中间连接层8含有第七MXene,且所述第七MXene的能级或功函数与钙钛矿吸光层41和钙钛矿吸光层42的能级或功函数相适配。在具体实施例中,在一实施例中,含所述第七MXene的所述中间连接层8的如厚度1-50纳米。
再一方面,基于上文所述MXene在钙钛矿太阳能电池中的应用。本申请实施例还提供的另一种钙钛矿太阳能电池。所述钙钛矿太阳能电池的结构如图18所示的,包括基底1和与所述基底层叠结合的第一电极层2,沿所述基底1至所述第一电极层2延伸的方向,在所述第一电极层2表面还层叠结合有第一电荷传输功能层3、钙钛矿吸光层单元4、第二电荷传输功能层5和第二电极层6。该钙钛矿太阳能电池也可称为钙钛矿太阳能叠层电池。其中,钙钛矿吸光层单元4至少为两层以上的钙钛矿吸光层,且在相邻两钙钛矿吸光层之间还层叠有中间连接层8。在具体实施例中,如图18所示,钙钛矿吸光层单元4包括钙钛矿吸光层41和钙钛矿吸光层42,且在钙钛矿吸光层41和钙钛矿吸光层42之间层叠有中间连接层8。中间连接层的材料含有第八MXene,且所述第八MXene的能级和/或功函数至少与所述中间连接层8直接层叠结合的钙钛矿吸光层具体如钙钛矿吸光层41和钙钛矿吸光层42的能级或/和功函数相适配。本申请实施例钙钛矿太阳能电池所含的基底1、第一电极层2、第一电荷传输功能层3、第二电荷传输功能层5和第二电极层6的材料和相关参数均可以是常规钙钛矿太阳能电池所含的基底1、第一电极层2、第一电荷传输功能层3、第二电荷传输功能层5和第二电极层6的材料和相关参数,当然也可以是如上文钙钛矿太阳能电池具体如图1至图17中钙钛矿太阳能电池所含的基底1、第一电极层2、第一电荷传输功能层3、第二电荷传输功能层5和第二电极层6的材料和相关参数。这样,所述钙钛矿太阳能电池可以根据与所述中间连接层8直接层叠结合的所述钙钛矿吸光层的能级或功函数灵活调节MXene的能级或功函数,从而调节所述中间连接层8的能级或功函数,从而显著降低成本,而且为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。在一实施例中,含所述第八MXene的所述中间连接层的如厚度1-50纳米。
另外,上文各所述实施例中钙钛矿太阳能电池所含的MXene如上文所述,所述MXene的通式为M n+1X nT x,其中,通式中的M为过渡金属元素,如优选可以是包括Ti、Sc、Y、Zr、Hf、V、Nb、Ta、Cr、Mo、W中的至少一种;T代表末端功能基团,如优选可以是-OH、=O、=S、=Se、=Te、-Br、-Cl或-F的至少一种。在具体实施例中,所述MXene可以为Ti 3C 2T x、Mo 2CT x、Zr 3C 2T x、Hf 3C 2T x、Cr 2CO xF 2−x(0<x≤2)中的至少一种。
那么调节所述MXene的能级或/和功函数可以根据现有方法进行调节,如通过调节所述MXene所含的末端功能基团也即是M n+1X nT x中T所示的末端功能基团种类选择和控制功能基团的含量,从而实现连续、灵活调节所述MXene的能级水平或功函数,从而使得所述MXene的能级水平或功函数与所处层结构的能级相适配。如在具体实施例中,当需要增加所述MXene的功函数时,可以通过降低末端功能基团-OH的含量或提高=O、-F等的含量来实现。当降低所述MXene的功函数时,可以通过增加末端功能基团-OH的含量、或降低=O、-F等的含量来实现。具体的如上文如图1-16所示的各实施例钙钛矿太阳能电池中,MXene(+)表示功函数与钙钛矿吸光层4所含钙钛矿材料的价带顶的能级水平接近的MXene材料,MXene(-)表示功函数与钙钛矿吸光层4所含钙钛矿材料的导带底的能级水平接近的MXene材料。
其次,上文各所述实施例中钙钛矿太阳能电池可以根据常规的制备方法和MXene的膜层形成方法并按照具体钙钛矿太阳能电池的结构进行制备各实施例中钙钛矿太阳能电池。
因此,上文各实施例中的钙钛矿太阳能电池通过在电极层和/或电荷传输功能层的材料中设置MXene,或进一步在含多个钙钛矿电池单元之间的连接层中设置MXene,并对应调节MXene的能级和/或功函数与所处的层结构的能级相适配。这样使得含有MXene层结构与钙钛矿材料的导带底或价带顶的能级位置相匹配,最大限度地降低光电转换时界面上的能量损失,从而赋予所述钙钛矿太阳能电池具有高的光电转换效率,而且可以避免贵重金属的使用,从而显著降低成本,而且为所述钙钛矿太阳能电池相应功能材料提供了更多选择空间。
现结合具体实例,对本申请进行进一步详细说明。
实施例1
本实施例提供了一种反型钙钛矿太阳能电池及其制备方法。本实施例钙钛矿太阳能电池的结构如图2所示,其结构为:玻璃基底/阳极(ITO)/空穴传输层(MXene,Ti 3C 2T x )/钙钛矿吸光层(FAI、MABr、PbI 2、PbBr 2摩尔比0.85:0.15:0.85:0.15)/电子传输层(C60)/阻挡层(BCP)/阴极(Ag)。
所述反型钙钛矿太阳能电池按照如下方法制备:
S11. 刻蚀透明电极导电层:使用波长为1000纳米的红外激光器在透明ITO电极上刻蚀一条绝缘带,使得电极基板上形成互不导通的正极区域和负极区域;
S12. Ti 3C 2T x 前驱液的配制:使用层状三元碳化物Ti 3AlC 2(MAX相,颗粒尺寸小于40微米)粉体来制备Ti 3C 2T x ,制备方法采用同领域工作者已报导的氢氟酸-盐酸联合刻蚀法:首先,将12 毫升、12 摩尔每升浓度的盐酸与2 毫升氢氟酸(浓度49%)以及6 毫升去离子水混合;混合均匀后,缓慢将1克Ti 3AlC 2粉末加入到该溶液中,然后室温搅拌24小时,转速400转每分钟;刻蚀后的MXene为多层结构,将之用去离子水离心(3500转每分钟)清洗至接近中性(PH> 6);收集沉淀,并用手摇的方式重新分散于10毫升去离子水中,并将该分散液加入到LiCl水溶液中(1克LiCl预先溶解于50 毫升去离子水中),随之在400转每分钟转速下搅拌4小时;在搅拌状态下,Li +渐渐插层到多层的Ti 3C 2T x 层间,使之有效剥离;通过去离子水高速离心(7000转每分钟)清洗至上清液PH> 6后,再将之分散到去离子水中,此时,将该分散液改为低速离心(3500转每分钟),可以得到均为黑色的沉淀和上清液,沉淀中包含未刻蚀完全的Ti 3AlC 2、多层Ti 3C 2T x 以及大尺寸的Ti 3C 2T x 片;黑色上清液为均匀分散的单层Ti 3C 2T x ;收集黑色上清液,取一定体积上清液抽滤成自支撑薄膜,待70摄氏度彻夜真空干燥后,称取该薄膜质量来确定Ti 3C 2T x 分散液的浓度;
为获得高功函的MXene,需要降低-OH官能团的含量或提高=O、-F等的含量,而激光辐照是一种有效方法;具体如下:所用激光器为二十一世纪星光工业技术有限公司所产半导体激光打标机,总输出功率30瓦,波长为1064纳米的红外激光;输出功率幅度从0–100%可调,然而实际输出功率有最低阈值,约为5%;本工作用于辐照Ti 3C 2T x 自支撑薄膜所采用的激光参数为:重复频率20千赫兹,激光脉冲宽度为100纳秒,线扫描速率为2米每秒;功率设置值为总功率的6-14%;
处理完成后将粉体分散到去离子水中,形成10毫克每毫升的水溶液;
S13. Ti 3C 2T x 膜层的制备:在前驱水溶液配制好后,将之前刻蚀好的透明导电衬底在紫外处理仪器中放置30分钟,待基板冷却后,将配制好的前躯体溶液通过旋涂的方法完整的覆盖住透明电极ITO或者FTO基板上,之后150摄氏度退火20分钟或抽真空处理30分钟,形成导体层(厚度10纳米);
S14. 钙钛矿吸光层的制备:首先将买来的FAI、MABr、PbI 2、PbBr 2按摩尔比0.85:0.15:0.85:0.15在手套箱中称量并溶于DMF/DMSO(体积比4/1)混合溶液中,得到1.0-1.5摩尔每升浓度的钙钛矿前驱体溶液,之后旋涂或印刷在Ti 3C 2T x 基板上,之后100摄氏度退火15分钟,最终获得高质量的钙钛矿吸光层;(厚度300-500纳米)
S15. 电子传输层或钝化层的制备:电子传输层是通过PC 61BM(20毫克每毫升,溶解在氯苯中)或者氯化乙酰硫代胆碱(0.5-1毫克每毫升的异丙醇溶液)旋涂法制备;(厚度40纳米)
S16. 蒸镀C60(电子传输层):在真空度<10 -5帕条件下通过热蒸发真空蒸镀制备(厚度30-40纳米);
S17. 阻挡层的制备:阻挡层主要是BCP(0.1-0.6毫克每毫升,溶解在异丙醇中)通过旋涂法获得或者通过蒸镀仪蒸镀获得(厚度5-8纳米);
S18. 蒸镀金属对电极:金属电极主要是Cu和Ag,在真空度<10 -5帕条件下通过热蒸发真空蒸镀制备(厚度80-120纳米)。
实施例 2
本实施例钙钛矿太阳能电池的结构如图3所示,其结构为:玻璃基底/阳极(ITO)/空穴传输层(PEDOT:PSS)/钙钛矿吸光层(FAI、MABr、PbI 2、PbBr 2摩尔比0.85:0.15:0.85:0.15)/电子传输层(MXene,Ti 3C 2T x )/阴极(Ag)。
所述反型钙钛矿太阳能电池按照如下方法制备:
S21. 刻蚀透明电极导电层:使用波长为1000纳米的红外激光器在透明ITO电极上刻蚀一条绝缘带,使得电极基板上形成互不导通的正极区域和负极区域;
S22. 空穴传输层的制备:将ITO玻璃在紫外臭氧设备中处理30分钟,待冷却后将PEDOT:PSS水溶液通过旋涂方式制备空穴传输层(厚度40纳米);
S23.钙钛矿吸光层的制备:首先将买来的FAI、MABr、PbI 2、PbBr 2按摩尔比0.85:0.15:0.85:0.15在手套箱中称量并溶于DMF/DMSO(体积比4/1)混合溶液中,得到1.0-1.5摩尔每升浓度的钙钛矿前驱体溶液,之后旋涂或印刷在Ti 3C 2T x 基板上,之后100摄氏度退火15分钟,最终获得高质量的钙钛矿吸光层(厚度300-500纳米);
S24. Ti 3C 2T x 前驱液的配制:使用层状三元碳化物Ti 3AlC 2(MAX相,颗粒尺寸小于40微米)粉体来制备Ti 3C 2T x ,制备方法采用同领域工作者已报导的氢氟酸-盐酸联合刻蚀法:首先,将12毫升、12摩尔每升浓度的盐酸与2 毫升氢氟酸(浓度49%)以及6毫升去离子水混合;混合均匀后,缓慢将1克Ti 3AlC 2粉末加入到该溶液中,然后室温搅拌24小时,转速400转每分钟;刻蚀后的MXene为多层结构,将之用去离子水离心(3500转每分钟)清洗至接近中性(PH> 6);收集沉淀,并用手摇的方式重新分散于10毫升去离子水中,并将该分散液加入到LiCl水溶液中(1克LiCl预先溶解于50 毫升去离子水中),随之在400转每分钟转速下搅拌4小时;在搅拌状态下,Li +渐渐插层到多层的Ti 3C 2T x 层间,使之有效剥离;通过去离子水高速离心(7000转每分钟)清洗至上清液PH> 6后,再将之分散到去离子水中,此时,将该分散液改为低速离心(3500转每分钟),可以得到均为黑色的沉淀和上清液,沉淀中包含未刻蚀完全的Ti 3AlC 2、多层Ti 3C 2T x 以及大尺寸的Ti 3C 2T x 片;黑色上清液为均匀分散的单层Ti 3C 2T x ;收集黑色上清液,取一定体积上清液抽滤成自支撑薄膜,待70摄氏度彻夜真空干燥后,称取该薄膜质量来确定Ti 3C 2T x 分散液的浓度;
为获得低功函的MXene,需要提高-OH官能团的含量或降低=O、-F等的含量,而紫外灯照射是一种有效方法,可以有效提高-OH的浓度;具体如下:将Ti 3C 2T x 喷洒在透明玻璃上并150摄氏度下干燥15分钟后,放入紫外灯设备中照射5-30分钟(增加照射时间可以提高-OH含量),处理完的薄膜刮下后将粉体分散到异丙醇中,形成10毫克每毫升的异丙醇溶液;
S25. Ti 3C 2T x 膜层的制备:将配制好的前躯体溶液通过旋涂的方法完整地覆盖在钙钛矿吸光层上,之后100摄氏度退火5-10分钟,形成导体层(厚度20纳米);
S26. 蒸镀金属对电极:金属电极主要是Cu和Ag,在真空度<10 -5帕条件下通过热蒸发真空蒸镀制备(厚度80-120纳米)。
实施例3
本实施例钙钛矿太阳能电池的结构如图4所示,其结构为:玻璃基底/阴极(ITO)/电子传输层(MXene,Ti 3C 2T x)/钙钛矿吸光层(FAI、MABr、PbI 2、PbBr 2摩尔比0.85:0.15:0.85:0.15)/空穴传输层(MXene,Ti 3C 2T x)/阳极(Au)。
所述正型钙钛矿太阳能电池按照如下方法制备:
S31. 刻蚀透明电极导电层:使用波长为1000纳米的红外激光器在透明ITO电极上刻蚀一条绝缘带,使得电极基板上形成互不导通的正极区域和负极区域;
S32. Ti 3C 2T x 前驱液的配制:使用层状三元碳化物Ti 3AlC 2(MAX相,颗粒尺寸小于40微米)粉体来制备Ti 3C 2T x ,制备方法采用同领域工作者已报导的氢氟酸-盐酸联合刻蚀法:首先,将12毫升、12摩尔每升浓度的盐酸与2 毫升氢氟酸(浓度49%)以及6毫升去离子水混合;混合均匀后,缓慢将1克Ti 3AlC 2粉末加入到该溶液中,然后室温搅拌24小时,转速400转每分钟;刻蚀后的MXene为多层结构,将之用去离子水离心(3500转每分钟)清洗至接近中性(PH> 6);收集沉淀,并用手摇的方式重新分散于10毫升去离子水中,并将该分散液加入到LiCl水溶液中(1克LiCl预先溶解于50毫升去离子水中),随之在400转每分钟转速下搅拌4小时;在搅拌状态下,Li +渐渐插层到多层的Ti 3C 2T x 层间,使之有效剥离;通过去离子水高速离心(7000转每分钟)清洗至上清液PH> 6后,再将之分散到去离子水中,此时,将该分散液改为低速离心(3500转每分钟),可以得到均为黑色的沉淀和上清液,沉淀中包含未刻蚀完全的Ti 3AlC 2、多层Ti 3C 2T x 以及大尺寸的Ti 3C 2T x 片;黑色上清液为均匀分散的单层Ti 3C 2T x ;收集黑色上清液,取一定体积上清液抽滤成自支撑薄膜,待70摄氏度彻夜真空干燥后,称取该薄膜质量来确定Ti 3C 2T x 分散液的浓度;
为获得高功函的MXene,需要降低-OH官能团的含量或提高=O、-F等的含量,而激光辐照是一种有效方法;具体如下:所用激光器为二十一世纪星光工业技术有限公司所产半导体激光打标机,总输出功率30瓦,波长为1064纳米的红外激光;输出功率幅度从0–100%可调,然而实际输出功率有最低阈值,约为5%;本工作用于辐照Ti 3C 2T x 自支撑薄膜所采用的激光参数为:重复频率20千赫兹,激光脉冲宽度为100纳秒,线扫描速率为2米每秒;功率设置值为总功率的6-14%;处理完成后将粉体分散到异丙醇中,形成10毫克每毫升的溶液;
为获得低功函的MXene,需要提高-OH官能团的含量或降低=O、-F等的含量,而紫外灯照射是一种有效方法,可以有效提高-OH的浓度;具体如下:将Ti 3C 2T x 喷洒在透明玻璃上并150摄氏度下干燥15分钟后,放入紫外灯设备中照射5-30分钟(增加照射时间可以提高-OH含量),处理完的薄膜刮下后将粉体分散到水中,形成10毫克每毫升的水溶液;
S33. 电子传输层的制备:将ITO玻璃在紫外臭氧设备中处理30分钟,待冷却后将配制好的具有低功函的Ti 3C 2T x水溶液通过旋涂的方法完整的覆盖住透明电极ITO基板上,之后150摄氏度退火20分钟或抽真空处理30分钟,形成导体层(厚度10纳米);
S34. 钙钛矿吸光层的制备:首先将买来的FAI、MABr、PbI 2、PbBr 2按摩尔比0.85:0.15:0.85:0.15在手套箱中称量并溶于DMF/DMSO(体积比4/1)混合溶液中,得到1.0-1.5摩尔每升浓度的钙钛矿前驱体溶液,之后旋涂或印刷在Ti 3C 2T x基板上,之后100摄氏度退火15分钟,最终获得高质量的钙钛矿吸光层(厚度300-500纳米);
S35. 空穴传输层的制备:将配制好的具有高功函的Ti 3C 2T x溶液通过旋涂的方法完整地覆盖在钙钛矿吸光层上,之后100摄氏度退火5-10分钟,形成导体层(厚度20纳米);
S36. 蒸镀金属对电极:金属电极主要是Au,在真空度<10-5帕条件下通过热蒸发真空蒸镀制备(厚度80-120纳米)。
实施例4
本实施例钙钛矿太阳能电池的结构如图6所示,其结构为:玻璃基底/阴极(MXene,Ti 3C 2T x)/电子传输层(SnO 2)/钙钛矿吸光层(FAI、MABr、PbI 2、PbBr 2摩尔比0.85:0.15:0.85:0.15)/空穴传输层(spiro-OMeTAD)/阳极(Au)。
所述正型钙钛矿太阳能电池按照如下方法制备:
S41. Ti 3C 2T x 前驱液的配制:使用层状三元碳化物Ti 3AlC 2(MAX相,颗粒尺寸小于40微米)粉体来制备Ti 3C 2T x ,制备方法采用同领域工作者已报导的氢氟酸-盐酸联合刻蚀法:首先,将12毫升、12摩尔每升浓度的盐酸与2 毫升氢氟酸(浓度49%)以及6毫升去离子水混合;混合均匀后,缓慢将1克Ti 3AlC 2粉末加入到该溶液中,然后室温搅拌24小时,转速400转每分钟;刻蚀后的MXene为多层结构,将之用去离子水离心(3500转每分钟)清洗至接近中性(PH> 6);收集沉淀,并用手摇的方式重新分散于10毫升去离子水中,并将该分散液加入到LiCl水溶液中(1克LiCl预先溶解于50毫升去离子水中),随之在400转每分钟转速下搅拌4小时;在搅拌状态下,Li +渐渐插层到多层的Ti 3C 2T x 层间,使之有效剥离;通过去离子水高速离心(7000转每分钟)清洗至上清液PH> 6后,再将之分散到去离子水中,此时,将该分散液改为低速离心(3500转每分钟),可以得到均为黑色的沉淀和上清液,沉淀中包含未刻蚀完全的Ti 3AlC 2、多层Ti 3C 2T x 以及大尺寸的Ti 3C 2T x 片;黑色上清液为均匀分散的单层Ti 3C 2T x ;收集黑色上清液,取一定体积上清液抽滤成自支撑薄膜,待70摄氏度彻夜真空干燥后,称取该薄膜质量来确定Ti 3C 2T x 分散液的浓度;
为获得低功函的MXene,需要提高-OH官能团的含量或降低=O、-F等的含量,而紫外灯照射是一种有效方法,可以有效提高-OH的浓度;具体如下:将Ti 3C 2T x 喷洒在透明玻璃上并150摄氏度下干燥15分钟后,放入紫外灯设备中照射5-30分钟(增加照射时间可以提高-OH含量),处理完的薄膜刮下后将粉体分散到水中,形成10毫克每毫升的水溶液;
S42. 阴极层的制备:将普通玻璃在紫外臭氧设备中处理30分钟,待冷却后将配制好的具有低功函的Ti 3C 2T x水溶液通过旋涂的方法完整的覆盖在玻璃基板上,之后150摄氏度退火20分钟或抽真空处理30分钟,形成导电层(厚度10纳米);
S43. 电子传输层的制备:将2.5%的SnO 2胶体水基分散液旋涂在阴极基板上,之后150摄氏度加热处理30分钟;
S44. 钙钛矿吸光层的制备:首先将买来的FAI、MABr、PbI 2、PbBr 2按摩尔比0.85:0.15:0.85:0.15在手套箱中称量并溶于DMF/DMSO(体积比4/1)混合溶液中,得到1.0-1.5摩尔每升浓度的钙钛矿前驱体溶液,之后旋涂或印刷在Ti 3C 2T x基板上,之后100摄氏度退火15分钟,最终获得高质量的钙钛矿吸光层(厚度300-500纳米);
S45. 空穴传输层的制备:将1克的2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)溶解到1毫升的无水氯苯中,并加入28.8微升的4-叔丁基吡啶(TBP)和17.5微升的520毫克每毫升浓度的双三氟甲基磺酰亚胺锂(Li-TFSI)乙腈溶液,振荡完全后得到空穴传输材料的前驱体溶液。将该溶液通过旋涂的方法完整地覆盖在钙钛矿吸光层上,形成空穴传输层(厚度150纳米);
S46. 蒸镀金属对电极:金属电极主要是Au,在真空度<10-5帕条件下通过热蒸发真空蒸镀制备(厚度80-120纳米)。
对比例
本对比例提供了一种反型钙钛矿太阳能电池及其制备方法,是实施例1的对比例。本对比例钙钛矿太阳能电池的结构为:玻璃基底/阳极(ITO)/空穴传输层(PEDOT:PSS)/钙钛矿吸光层(FAI、MABr、PbI 2、PbBr 2摩尔比0.85:0.15:0.85:0.15)/电子传输层(C60)/阻挡层(BCP)/阴极(Ag)。
所述反型钙钛矿太阳能电池按照如下方法制备:
S51. 刻蚀透明电极导电层:使用波长为1000纳米的红外激光器在透明ITO电极上刻蚀一条绝缘带,使得电极基板上形成互不导通的正极区域和负极区域;
S52. 空穴传输层的制备:将ITO玻璃在紫外臭氧设备中处理30分钟,待冷却后将PEDOT:PSS水溶液通过旋涂方式制备空穴传输层(厚度40纳米);
S53. 钙钛矿吸光层的制备:首先将买来的FAI、MABr、PbI 2、PbBr 2按摩尔比0.85:0.15:0.85:0.15在手套箱中称量并溶于DMF/DMSO(体积比4/1)混合溶液中,得到1.0-1.5摩尔每升浓度的钙钛矿前驱体溶液,之后旋涂或印刷在Ti 3C 2T x 基板上,之后100摄氏度退火15分钟,最终获得高质量的钙钛矿吸光层(厚度300-500纳米);
S54. 电子传输层或钝化层的制备:电子传输层是通过PC 61BM(20毫克每毫升,溶解在氯苯中)或者氯化乙酰硫代胆碱(0.5-1毫克每毫升的异丙醇溶液)旋涂法制备(厚度40纳米);
S55. 蒸镀C60(电子传输层):在真空度<10 -5帕条件下通过热蒸发真空蒸镀制备(厚度30-40纳米);
S56. 阻挡层的制备:阻挡层主要是BCP(0.1-0.6毫克每毫升,溶解在异丙醇中)通过旋涂法获得或者通过蒸镀仪蒸镀获得(厚度5-8纳米);
S57. 蒸镀金属对电极:金属电极主要是Cu和Ag,在真空度<10 -5帕条件下通过热蒸发真空蒸镀制备(厚度80-120纳米)。
钛矿太阳能电池相关性能测试
在AM1.5G的100毫瓦每平方厘米的模拟光源(Enlitech Solar Simulator SS-F5-3A)下,对器件的电流-电压(J-V)特性曲线进行测量;测量是在室温、空气(60%湿度)、未封装的条件下,由计算机控制的Keithley 2400源测量单元进行的;外部量子效率(EQE)则在环境气氛、室温下使用具有SR830锁定放大器的DSR100UV-B光谱仪测量的,其光源为溴钨灯。
实施例1-4提供的钙钛矿太阳能电池的电容电压特性测试结果如下表1所示。其中,实施例1提供的基于MXene用作空穴传输层的反型钙钛矿太阳能电池的J-V特性曲线如图19所示。由图19可知,经优化的钙钛矿太阳能电池有1.12伏特的开路电压( V OC),23.51毫安每平方厘米的短路电流密度( J SC),81%的填充因子(FF)和21.33%的光电转换效率(PCE)。
表1
实施例 开路电压(VOC)(伏特) 短路电流密度(JSC)(毫安) 填充因子(FF)(%) 光电转换效率(PCE)(%)
实施例1 1.12 23.51 81 21.33
实施例2 1.00 21.73 75.7 16.45
实施例3 1.05 22.93 79.9 19.23
实施例4 1.06 22.06 81.1 18.96
对比例 1.00 22.27 76 16.93
由图19和表1可知,本申请实施例提供的以低功函MXene作为电子传输层的钙钛矿太阳能电池与采用C60作为电子传输层的电池在光伏性能上接近,而以高功函Mxene作为空穴传输层时,其光伏性能显著优于以经典的PEDOT:PSS作为空穴传输层的器件。此外,利用MXene作为电极时,其电池性能也可以获得高效率。这表明Mxene具有易于调节的功函数/能级水平,具有代替传统电荷传输材料、传统电极材料的巨大潜力,并在一材多用方面具有天然优势。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. MXene作为钙钛矿太阳能电池的电荷传输材料、电极材料、叠层电池中相邻钙钛矿吸光层之间的中间连接层材料中至少一种的应用。
  2. 根据权利要求1所述的应用,其特征在于:所述MXene的通式为M n+1X nT x,其中,通式中的M为过渡金属元素,X为C或N,T代表末端功能基团,n=1–4,x代表所述末端功能基团的数量,且0<x≤2;和/或
    所述电荷传输材料为空穴传输材料和/或电子传输材料。
  3. 根据权利要求2所述的应用,其特征在于:所述末端功能基团为-OH、=O、=S、=Se、=Te、-Br、-Cl或-F的至少一种;和/或
    所述过渡金属元素包括Ti、Sc、Y、Zr、Hf、V、Nb、Ta、Cr、Mo、W中的至少一种。
  4. 一种钙钛矿太阳能电池,包括基底和与所述基底层叠结合的第一电极层,沿所述基底至所述第一电极层延伸的方向,在所述第一电极层表面还层叠结合有第一电荷传输功能层、钙钛矿吸光层、第二电荷传输功能层和第二电极层;其特征在于:所述第一电极层、第二电极层、第一电荷传输功能层、第二电荷传输功能层中的至少一层的材料含有MXene;其中,所述MXene的功函数与所处层结构的能级或/和功函数相适配。
  5. 根据权利要求4所述的钙钛矿太阳能电池,其特征在于:
    所述第一电荷传输功能层包括电子传输层,所述第二电荷传输功能层包括空穴传输层,且所述空穴传输层的材料含有第一MXene;或
    所述第一电荷传输功能层包括空穴传输层,所述第二电荷传输功能层包括电子传输层,且所述空穴传输层的材料含有第一MXene;或
    所述第一电荷传输功能层包括空穴传输层,所述第二电荷传输功能层包括电子传输层,且所述电子传输层的材料含有第二MXene;或
    所述第一电荷传输功能层包括电子传输层,所述第二电荷传输功能层包括空穴传输层,且所述空穴传输层的材料含有第一MXene,所述电子传输层的材料含有第二MXene;或
    所述第一电荷传输功能层包括空穴传输层,所述第二电荷传输功能层包括电子传输层,且所述空穴传输层的材料含有第一MXene,所述电子传输层的材料含有第二MXene。
  6. 根据权利要求4所述的钙钛矿太阳能电池,其特征在于:
    所述第一电极层为阴极,所述第二电极层为阳极,且所述阴极的材料含有第三MXene;或
    所述第一电极层为阴极,所述第二电极层为阳极,且所述阳极的材料含有第四MXene;或
    所述第一电极层为阳极,所述第二电极层为阴极,且所述阳极的材料含有第四MXene;或
    所述第一电极层为阳极,所述第二电极层为阴极,且所述阴极的材料含有第三MXene;或
    所述第一电极层为阳极,所述第二电极层为阴极,且所述阴极的材料含有第三MXene,所述阳极的材料含有第四MXene。
  7. 根据权利要求4所述的钙钛矿太阳能电池,其特征在于:
    所述第一电极层为阴极,所述第一电荷传输功能层包括电子传输层,所述阴极和所述电子传输层为同一层结构,且材料含有第五MXene;或
    所述第二电极层为阳极,所述第二电荷传输功能层包括空穴传输层,所述阳极和所述空穴传输层为同一层结构,且材料含有第六MXene;或
    所述第一电极层为阳极,所述第一电荷传输功能层包括空穴传输层,所述阳极和所述空穴传输层为同一层结构,且材料含有第六MXene;或
    所述第二电极层为阴极,所述第二电荷传输功能层包括电子传输层,且所述阴极和所述电子传输层为同一层结构,且材料含有第五MXene;或
    所述第一电极层为阴极,所述第一电荷传输功能层包括电子传输层,所述第二电极层为阳极,所述第二电荷传输功能层包括空穴传输层,所述阴极和所述电子传输层为同一层结构,且材料含有第五MXene,所述阳极的材料和所述空穴传输层为同一层结构,且材料含有第六MXene;或
    所述第一电极层为阳极,所述第一电荷传输功能层包括空穴传输层,所述第二电极层为阴极,所述第二电荷传输功能层包括电子传输层,所述阳极和所述空穴传输层为同一层结构,且材料含有第六MXene,所述阴极和所述电子传输层为同一层结构,且材料含有第五MXene。
  8. 根据权利要求4-7任一项所述的钙钛矿太阳能电池,其特征在于:所述第二电极层与第二电荷传输功能层之间还层叠结合有阻挡层。
  9. 根据权利要求4-7任一项所述的钙钛矿太阳能电池,其特征在于:所述钙钛矿吸光层至少为两层以上,且在相邻两钙钛矿吸光层之间还层叠有中间连接层,所述中间连接层的材料含有第七MXene,且所述第七MXene功函数至少与所述中间连接层直接层叠结合的所述钙钛矿吸光层的能级或/和功函数相适配。
  10. 一种钙钛矿太阳能电池,包括钙钛矿吸光层单元,其特征在于:所述钙钛矿吸光层单元包括至少两层钙钛矿吸光层,且在相邻两层钙钛矿吸光层之间还层叠结合有中间连接层,所述中间连接层的材料含有第八MXene,且所述第八MXene的功函数与所述中间连接层直接层叠结合的所述钙钛矿吸光层的能级或/和功函数相适配。
PCT/CN2021/106581 2020-10-15 2021-07-15 MXene的应用和含有MXene的钙钛矿太阳能电池 WO2022077981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011106208.3 2020-10-15
CN202011106208.3A CN112366275A (zh) 2020-10-15 2020-10-15 MXene的应用和含有MXene的钙钛矿太阳能电池

Publications (1)

Publication Number Publication Date
WO2022077981A1 true WO2022077981A1 (zh) 2022-04-21

Family

ID=74507980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106581 WO2022077981A1 (zh) 2020-10-15 2021-07-15 MXene的应用和含有MXene的钙钛矿太阳能电池

Country Status (2)

Country Link
CN (1) CN112366275A (zh)
WO (1) WO2022077981A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864745A (zh) * 2022-05-10 2022-08-05 中国科学院半导体研究所 光电探测器的制备方法
CN115161027A (zh) * 2022-07-05 2022-10-11 安徽大学 钙钛矿埋底界面材料、制备方法及应用
CN116669439A (zh) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366275A (zh) * 2020-10-15 2021-02-12 南方科技大学 MXene的应用和含有MXene的钙钛矿太阳能电池
CN113078843B (zh) * 2021-03-31 2022-08-16 上海工程技术大学 基于褶皱结构MXene薄膜的摩擦纳米发电机及其制备方法
CN114497391B (zh) * 2022-01-13 2023-04-07 电子科技大学 一种光电探测器的制备方法
CN115101614B (zh) * 2022-06-02 2023-11-24 西安电子科技大学 MXene互联层的钙钛矿/GaAs两端机械叠层太阳电池及其制备方法
CN115207143B (zh) * 2022-06-02 2023-10-31 西安电子科技大学 MXene互联层的钙钛矿/Si两端机械叠层太阳电池及其制备方法
CN115332293A (zh) * 2022-07-29 2022-11-11 国家电投集团黄河上游水电开发有限责任公司 基于MXene材料互联的两端式叠层太阳能电池及其制备方法
CN117729826B (zh) * 2023-12-08 2024-05-28 安徽大学 一种MXene掺杂的钙钛矿单晶及其同质结光电探测器制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470835A (zh) * 2018-03-29 2018-08-31 大连理工大学 基于二维过渡金属碳化物或氮化物的钙钛矿太阳能电池及其制备方法
CN110277498A (zh) * 2019-06-10 2019-09-24 储天新能源科技(长春)有限公司 一种高效率钙钛矿电池的制备方法
CN110518122A (zh) * 2019-07-26 2019-11-29 西安电子科技大学 以二维材料为电子传输层的钙钛矿太阳能电池及制备方法
CN112366275A (zh) * 2020-10-15 2021-02-12 南方科技大学 MXene的应用和含有MXene的钙钛矿太阳能电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700769B (zh) * 2013-12-03 2016-05-04 常州大学 一种有机/无机杂化钙钛矿太阳能电池及其制备方法
CN104953032A (zh) * 2015-07-01 2015-09-30 中国华能集团清洁能源技术研究院有限公司 基于多吡咯共轭大环的三结叠层太阳能电池
CN105336862B (zh) * 2015-09-28 2017-11-03 湘潭大学 一种整体堆叠双结钙钛矿太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470835A (zh) * 2018-03-29 2018-08-31 大连理工大学 基于二维过渡金属碳化物或氮化物的钙钛矿太阳能电池及其制备方法
CN110277498A (zh) * 2019-06-10 2019-09-24 储天新能源科技(长春)有限公司 一种高效率钙钛矿电池的制备方法
CN110518122A (zh) * 2019-07-26 2019-11-29 西安电子科技大学 以二维材料为电子传输层的钙钛矿太阳能电池及制备方法
CN112366275A (zh) * 2020-10-15 2021-02-12 南方科技大学 MXene的应用和含有MXene的钙钛矿太阳能电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864745A (zh) * 2022-05-10 2022-08-05 中国科学院半导体研究所 光电探测器的制备方法
CN115161027A (zh) * 2022-07-05 2022-10-11 安徽大学 钙钛矿埋底界面材料、制备方法及应用
CN115161027B (zh) * 2022-07-05 2023-09-22 安徽大学 钙钛矿埋底界面材料、制备方法及应用
CN116669439A (zh) * 2023-07-31 2023-08-29 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置
CN116669439B (zh) * 2023-07-31 2024-04-12 宁德时代新能源科技股份有限公司 太阳能电池及其制备方法、光伏组件和光伏装置

Also Published As

Publication number Publication date
CN112366275A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2022077981A1 (zh) MXene的应用和含有MXene的钙钛矿太阳能电池
Chu et al. Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes
Tao et al. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells
Liu et al. Low temperature Zn-doped TiO2 as electron transport layer for 19% efficient planar perovskite solar cells
US20100084011A1 (en) Organic tandem solar cells
Upama et al. Low-temperature processed efficient and colourful semitransparent perovskite solar cells for building integration and tandem applications
Ullah et al. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer
Zhang et al. Hole-conductor-free perovskite solar cells prepared with carbon counter electrode
Chen et al. SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells
Sun et al. Ternary oxide BaSnO3 nanoparticles as an efficient electron-transporting layer for planar perovskite solar cells
Liu et al. Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells
Qiu et al. Efficient, stable and flexible perovskite solar cells using two-step solution-processed SnO2 layers as electron-transport-material
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
Zhang et al. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells
Bu Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells
Wu et al. Improved performance of perovskite photodetectors based on a solution-processed CH3NH3PbI3/SnO2 heterojunction
Shahiduzzaman et al. Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative
Zhang et al. The facile modification of PEDOT: PSS buffer layer by polyethyleneglycol and their effects on inverted perovskite solar cell
Chen et al. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
Zhang et al. Influence of drying temperature on morphology of MAPbI3 thin films and the performance of solar cells
Guo et al. Low temperature solution deposited niobium oxide films as efficient electron transport layer for planar perovskite solar cell
Zong et al. Highly stable hole-conductor-free CH3NH3Pb (I1-xBrx) 3 perovskite solar cells with carbon counter electrode
Du et al. Precursor engineering for performance enhancement of hole-transport-layer-free carbon-based MAPbBr3 perovskite solar cells
Yang et al. Grain-boundary effect and post treatment of active layer for efficient inverted planar perovskite solar cells
Kumari et al. Superior efficiency achievement for FAPbI3-perovskite thin film solar cell by optimization with response surface methodology technique and partial replacement of Pb by Sn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879029

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21879029

Country of ref document: EP

Kind code of ref document: A1