WO2021227469A1 - 核电厂的三维仿真显示系统 - Google Patents

核电厂的三维仿真显示系统 Download PDF

Info

Publication number
WO2021227469A1
WO2021227469A1 PCT/CN2020/134728 CN2020134728W WO2021227469A1 WO 2021227469 A1 WO2021227469 A1 WO 2021227469A1 CN 2020134728 W CN2020134728 W CN 2020134728W WO 2021227469 A1 WO2021227469 A1 WO 2021227469A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear power
target
plant
roaming
information
Prior art date
Application number
PCT/CN2020/134728
Other languages
English (en)
French (fr)
Inventor
张振楠
魏淑虹
梁玮伦
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Priority to EP20935198.0A priority Critical patent/EP4242809A1/en
Publication of WO2021227469A1 publication Critical patent/WO2021227469A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/24Use of tools
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/02Electrically-operated educational appliances with visual presentation of the material to be studied, e.g. using film strip
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/008Man-machine interface, e.g. control room layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to the simulation field of nuclear power plants, and more specifically, the present invention relates to a three-dimensional simulation display system of nuclear power plants.
  • the present invention provides a three-dimensional simulation display system of a nuclear power plant, which solves the above-mentioned technical problems.
  • a three-dimensional simulation display system of a nuclear power plant including a pre-editing module, an interactive module, a simulation module, and a display module,
  • the pre-editing module is used to set initialization information, the initialization information includes all models of the nuclear power plant, initial source item information of each model, and detailed information about the entire plant's equipment, systems, and plant structure;
  • the interaction module is used to record the operation instructions issued by the user, and send the operation instructions to the simulation module for processing;
  • the simulation module is configured to receive the operation instruction, call the target initialization information from the pre-editing module according to the operation instruction, and integrate and process the target initialization information to generate a corresponding feedback result and send it to the display module;
  • the display module is used to present the feedback result to the user in a graphical interface with a specific layout.
  • the pre-editing module includes a model processing unit, which is used to modify a preset model online or import a target model file in a preset format, and replace the original model file with the target model file. After the model file, the corresponding script file is automatically associated.
  • the interaction module specifically includes a virtual sand table interaction unit and a radiation field interaction unit,
  • the virtual sand table interaction unit is used to send a first operation instruction to the simulation module according to a user's real-time operation, and the first operation instruction is used to call a miniature sand table including all models, and adjust the transparency and transparency of the model in the miniature sand table.
  • the angle at which the model rotates horizontally around the center point, and the miniature sand table is automatically explained, enlarged and reduced; all the models include the plant structure model of the nuclear power plant and the nuclear power equipment model;
  • the radiation field interaction unit is used to send a second operation instruction to the simulation module according to the user's real-time operation, and the second operation instruction is used to calculate the three-dimensional radiation dose field of the target factory building based on the initial source item information, and
  • the three-dimensional radiation field distribution cloud map is displayed in the target factory building in a red-yellow-green gradient according to the radiation intensity.
  • the simulation module includes a sand table instruction processing unit, the sand table instruction processing unit is used to call the virtual sand table corresponding to different types of nuclear power plants, and drive the display module to parallel the virtual sand table according to different technical routes
  • the virtual sandboxes distributed and the same technical route are lined up and distributed from low to high according to the model, and the overall arrangement is in a tree-like arrangement of science and technology.
  • the interaction module further includes a scene roaming interaction unit, the scene roaming interaction unit is configured to send a third operation instruction to the simulation module according to the user's real-time operation, and the third operation instruction is used for Set a roaming starting point, generate a roaming route according to the patrol roaming mode or free roaming mode selected by the user, and count the roaming information of the roaming route.
  • the scene roaming interaction unit is configured to send a third operation instruction to the simulation module according to the user's real-time operation, and the third operation instruction is used for Set a roaming starting point, generate a roaming route according to the patrol roaming mode or free roaming mode selected by the user, and count the roaming information of the roaming route.
  • the simulation module further includes a roaming instruction processing unit, and the roaming instruction processing unit includes a roaming starting point acquisition unit, a patrol roaming route generating unit, a free roaming route generating unit, and an adding unit,
  • the roaming starting point obtaining unit is used to obtain the position of the virtual person placed by the user during the virtual sand table interaction process, and use the position of the virtual person as the roaming starting point; The corresponding location is used as the starting point of roaming;
  • the patrol route roaming route generating unit is used to automatically plan and generate the shortest route of the route, the route with the least absorbed radiation dose, the emergency evacuation route or the flow of people logistics route according to the user's roaming purpose;
  • the free roaming route generating unit is configured to automatically generate a free roaming route according to the movement path of the virtual person on the virtual sand table, and to perform statistics on roaming information, the roaming information including route distance, walking time and/or intake dose;
  • the adding unit is used to add the free roaming route selected by the user as a new emergency evacuation route or a pedestrian logistics route.
  • the interaction module further includes a plant information interaction unit, an equipment information interaction unit and/or a system information interaction unit,
  • the plant information interaction unit is configured to send a fourth operation instruction to the simulation module according to a real-time operation of the user, and the fourth operation instruction is used to locate a target plant structure model and call detailed information of the target plant structure model;
  • the equipment information interaction unit is configured to send a fifth operation instruction to the simulation module according to a user's real-time operation, the fifth operation instruction being used to locate a target nuclear power equipment model and call detailed information of the target nuclear power equipment model;
  • the system information interaction unit is configured to send a sixth operation instruction to the simulation module according to a real-time operation of the user.
  • the sixth operation instruction is used to locate all models of the target system and call detailed information of the target system.
  • the simulation module further includes a plant instruction processing unit, and the plant instruction processing unit includes a target plant positioning unit and a plant information calling unit,
  • the target plant positioning unit is used to highlight the target plant structure model that the user locates in the virtual sand table and/or scene roaming; or is used to obtain the plant structure code entered by the user in the virtual sand table search box, and highlight all State the target plant structure model corresponding to the plant structure code;
  • the plant information calling unit is used to call detailed information of the target plant structure model and generate a link to the corresponding design drawings of the target plant structure model; the detailed information includes plant structure name, plant name, floor, compartment, elevation , Radiation zone and one or more of geometric dimensions, the design drawings include template drawings, reinforcement drawings and/or anchor positioning drawings of the target plant structure.
  • the simulation module further includes a device instruction processing unit, and the device instruction processing unit includes a target nuclear power device positioning unit and a device information calling unit,
  • the target nuclear power equipment positioning unit is used to highlight the target nuclear power equipment model that the user locates in the virtual sand table, scene roaming and/or system information interaction; or to obtain the nuclear power equipment code entered by the user in the virtual sand table search box, And highlight the target nuclear power equipment model corresponding to the nuclear power equipment code;
  • the equipment information calling unit is used to call detailed information of the target nuclear power equipment model and generate a link to the corresponding design drawings of the target nuclear power equipment model; the detailed information includes equipment name and abbreviation, space location, belonging system, equipment parameters One or more of radiation data, equipment level, purchasing and manufacturing information, and supplier information, and the design drawings include installation drawings, equipment parts drawings, positioning drawings and/or equipment specifications of the target nuclear power equipment.
  • the simulation module further includes a system instruction processing unit, and the system instruction processing unit includes a target system positioning unit and a system information calling unit,
  • the target system positioning unit is used to obtain the system code entered by the user in the virtual sandbox search box, and to highlight all models of the target system corresponding to the system code; or to obtain the target system that the user locates in the device information interaction, And highlight all models of the target system;
  • the system information calling unit is used to call detailed information of the target system and generate a link to the corresponding design drawing of the target system; the detailed information includes one of the system name and abbreviation, process parameters, system equipment list, and radiation intensity Or more, the design drawing includes a system design instruction manual and/or a system flow chart.
  • the present invention provides a three-dimensional simulation display system for a nuclear power plant, which has the ability to cover the plant area distribution of the entire plant (including nuclear island plant, steam turbine plant, and BOP plant) and three-dimensional models and information display capabilities of the systems, structures, and equipment in each plant. It not only meets the needs of ordinary people and professionals for different interaction methods, but also allows users to further view detailed information about the plant structure, system and equipment, breaking through the barriers of three-dimensional models, various parameter descriptions, and drawing files, and can be displayed intuitively and professionally.
  • the three-dimensional radiation field of nuclear power plants is used for on-site safety training of power plant staff, nuclear power plant main and auxiliary system process training, equipment training, overhaul and decommissioning period logistics route planning and on-site emergency drills; also for the general public to observe nuclear power up close Plants, learning to understand the working principles of power plants, and eliminating nuclear fears provide a solution.
  • Fig. 1 is a schematic structural diagram of a three-dimensional simulation display system of a nuclear power plant provided in Embodiment 1.
  • FIG. 2 is a schematic diagram of the structure of the interaction module in Embodiment 1;
  • FIG. 3 is a schematic diagram of the structure of a roaming instruction processing unit in Embodiment 1;
  • FIG. 5 is a schematic diagram of the structure of a device command processing unit in Embodiment 1;
  • FIG. 6 is a schematic diagram of the structure of the system command processing unit in Embodiment 1.
  • FIG. 6 is a schematic diagram of the structure of the system command processing unit in Embodiment 1.
  • FIG. 1 is a schematic structural diagram of a three-dimensional simulation display system of a nuclear power plant provided in Embodiment 1. As shown in FIG. 1, it includes a pre-editing module 100, an interactive module 200, a simulation module 300, and a display module 400.
  • the pre-editing module 100 is used to set initialization information, the initialization information includes all the models of the nuclear power plant, the initial source item information of each model, and detailed information about the entire plant's equipment, systems, and plant structure;
  • the interaction module 200 is used to record the operation instructions issued by the user, and send the operation instructions to the simulation module for processing;
  • the simulation module 300 is configured to receive the operation instruction, call the target initialization information from the pre-editing module according to the operation instruction, and integrate the target initialization information to generate a corresponding feedback result and send it to the display module;
  • the display module 400 is used to present the feedback results to the user in a graphical interface with a specific layout, so as to make nuclear power plant site condition training, structural system equipment training and information inquiry, people flow planning, and emergency evacuation drills more three-dimensional and intuitive, Improve the efficiency of training and exercises.
  • the pre-editing module 100 includes a model processing unit, which is used to modify the preset model online or import a target model file in a preset format (such as .stp), and replace the original model file with After the target model file is automatically associated with the corresponding script file, the pre-editing of the model is completed.
  • a model processing unit which is used to modify the preset model online or import a target model file in a preset format (such as .stp), and replace the original model file with After the target model file is automatically associated with the corresponding script file, the pre-editing of the model is completed.
  • the interaction module 200 is an integrated entrance for all levels of system functions, covering all operations that users can perform through the system, such as nuclear power plant virtual sand table, scene roaming, plant structure viewing, equipment viewing, system details viewing, etc.
  • the interaction module 200 collects the user's operation information and generates an operation instruction, which is calculated by the simulation module 300 inside the system, and then feeds back the required information or data to the user.
  • the interaction module 200 specifically includes a virtual sand table interaction unit 201.
  • the virtual sand table interaction unit 201 is configured to send a first operation instruction to the simulation module 300 according to a user's real-time operation.
  • the first operation instruction is used to drive the simulation module 300 to call the miniature sand table and adjust the model in the miniature sand table. Transparency and the angle at which the model rotates horizontally around the center point, and the miniature sand table is automatically explained, enlarged and reduced.
  • the virtual sand table of the nuclear power plant is placed in the virtual hall, which can be seen after the user logs in.
  • the virtual sand table has an automatic explanation function, introducing the main plant area distribution and system structure equipment of the nuclear power plant (this process can be skipped). Users can walk around the virtual sand table to observe the layout of the nuclear power plant from various perspectives, or use external devices such as a mouse/keyboard/touch screen to drag the nuclear power plant model to rotate horizontally around the center point to realize the observation of the power plant from various angles.
  • the miniature sand table can be zoomed in and out to facilitate users to understand the detailed layout of the nuclear power plant's global or local space.
  • the models in the sand table such as the outer wall of the factory building, the containment of the reactor building, etc., can be selectively adjusted to be transparent to observe the internal structure of the nuclear power plant.
  • the design of the virtual sand table of the nuclear power plant in the virtual hall allows users to interact with the power plant model in a variety of ways. While quickly understanding the overall picture of the plant, they can directly click to select the equipment model, plant model or use the three-character code and coding principles commonly used in the nuclear power field to encode
  • the search method is used to inquire every detail of the plant structure, system and equipment of the power plant. The former is a fool-like operation of what you see is what you get, suitable for public use, and the latter is faster, more accurate and professional, suitable for nuclear power engineers and power plant staff. Observing the internal structure of the nuclear power plant from the perspective of God, it becomes the entrance to the scene roaming, the plant structure model and detailed information view, and the equipment model and detailed information view.
  • the virtual hall can be set up with multiple sets of virtual sand tables corresponding to different nuclear power units.
  • the simulation module 300 includes a sand table instruction processing unit 301, which is used to call and drive the virtual sand tables corresponding to different types of nuclear power units.
  • the display modules are distributed in parallel according to the virtual sandboxes of different technical routes, and the virtual sandboxes of the same technical route are arranged in a row and distributed from low to high according to the model, and overall presents a technological tree-like arrangement. Therefore, the public can understand the development route of nuclear power technology in our country during the popularization of science, and intuitively compare the technical characteristics of different units.
  • the interaction module 200 further includes a radiation field interaction unit 202, which is configured to send a second operation to the simulation module 300 according to a user's real-time operation Instruction, the second operation instruction is used to drive the simulation module 300 to calculate the three-dimensional radiation dose field of the target factory building according to the initial source item information, and display the three-dimensional radiation dose field in the target factory building in a red-yellow-green gradient according to the radiation intensity Radiation field distribution cloud map.
  • a radiation field interaction unit 202 which is configured to send a second operation to the simulation module 300 according to a user's real-time operation Instruction, the second operation instruction is used to drive the simulation module 300 to calculate the three-dimensional radiation dose field of the target factory building according to the initial source item information, and display the three-dimensional radiation dose field in the target factory building in a red-yellow-green gradient according to the radiation intensity Radiation field distribution cloud map.
  • the 3D radiation field distribution cloud map of nuclear power plant buildings mainly reactor buildings, gradually changes from red to red according to the radiation intensity. Transition to green, red represents strong radiation in hazardous areas, and green represents low radiation in safe areas.
  • the interaction module 200 further includes a scene roaming interaction unit 203, the scene roaming interaction unit 203 is configured to send a third operation to the simulation module 300 according to a user's real-time operation Instruction, the third operation instruction is used to drive the simulation module 300 to set a roaming starting point, generate a roaming route according to the patrol roaming mode or free roaming mode selected by the user, and to make statistics of the roaming information of the roaming route.
  • the scene roaming interaction unit 203 is configured to send a third operation to the simulation module 300 according to a user's real-time operation Instruction, the third operation instruction is used to drive the simulation module 300 to set a roaming starting point, generate a roaming route according to the patrol roaming mode or free roaming mode selected by the user, and to make statistics of the roaming information of the roaming route.
  • the simulation module 300 includes a roaming instruction processing unit 302, and the roaming instruction processing unit 302 includes a roaming starting point acquisition unit 3021, a patrol roaming route generating unit 3022, a free roaming route generating unit 3023 And adding unit 3024.
  • the roaming starting point obtaining unit 3021 is used to obtain the position of the virtual person placed by the user during the virtual sand table interaction process, such as the corridor, platform, compartment, or near the equipment, and use the position of the virtual person as the roaming starting point;
  • the patrol roaming route generating unit 3022 is used to automatically plan and generate the shortest route, the route with the least absorbed radiation dose, the emergency evacuation route or the pedestrian logistics route according to the user's roaming purpose, for the user to use, and to facilitate their familiarization with various routes in the nuclear power plant. Deepen the understanding of power plants.
  • the free roaming route generating unit 3023 is configured to automatically generate a free roaming route according to the movement path of the virtual person in the virtual sand table.
  • the free roaming route generation unit 3023 will monitor the route distance, walking time and/or intake
  • the dose is counted, and the user can drive the adding unit 3024 to add the new free roaming route as a new emergency evacuation route or pedestrian logistics route according to the statistical result, and the power supply plant optimizes the route use.
  • This function can also be used for power plant staff, such as pre-job operation training for operation, maintenance and patrol personnel, and power plant layout training for new employees.
  • the interaction module 200 further includes a plant information interaction unit 204.
  • the plant information interaction unit 204 is configured to send a fourth operation instruction to the simulation module 300 according to a real-time operation of the user.
  • the operating instructions are used to drive the simulation module 300 to locate the target plant structure model, and call detailed information of the target plant structure model.
  • the simulation module 300 includes a plant instruction processing unit 303, and the plant instruction processing unit 303 includes a target plant positioning unit 3031 and a plant information calling unit 3032.
  • the target plant locating unit 3031 is used to highlight the target plant structure model that the user locates in the virtual sand table and/or scene roaming; or is used to obtain the plant structure code entered by the user in the virtual sand table search box and highlight it The target plant structure model corresponding to the plant structure code;
  • the plant information calling unit 3032 is used to call detailed information of the target plant structure model and generate a link to the corresponding design drawings of the target plant structure model; the detailed information includes plant structure name, plant name, floor, compartment, One or more of elevation, radiation zone, and geometric dimensions.
  • the design drawings include template drawings, reinforcement drawings and/or anchor positioning drawings of the target plant structure, so as to be close to the design, construction, operation, and decommissioning of nuclear power. Use needs.
  • the interaction module 200 further includes a device information interaction unit 205.
  • the device information interaction unit 205 is configured to send a fifth operation instruction to the simulation module 300 according to a user's real-time operation.
  • the operation instructions are used to drive the simulation module 300 to locate the target nuclear power equipment model, and call detailed information of the target nuclear power equipment model.
  • the simulation module 300 includes a device instruction processing unit 304, and the device instruction processing unit 304 includes a target nuclear power device positioning unit 3041 and a device information calling unit 3042,
  • the target nuclear power equipment positioning unit 3041 is used to highlight the target nuclear power equipment model that the user locates in the virtual sand table, scene roaming and/or system information interaction; or to obtain the nuclear power equipment code entered by the user in the virtual sand table search box , And highlight the target nuclear power equipment model corresponding to the nuclear power equipment code;
  • the equipment information calling unit 3042 is used to call detailed information of the target nuclear power equipment model and generate a link to the corresponding design drawings of the target nuclear power equipment model; the detailed information includes the equipment name and abbreviations, spatial location, belonging system, and equipment One or more of parameters, radiation data, equipment level, purchasing and manufacturing information, and supplier information, and the design drawings include installation drawings, equipment parts drawings, positioning drawings, and/or equipment specifications of the target nuclear power equipment.
  • the interaction module 200 further includes a system information interaction unit 206, which is configured to send a sixth operation instruction to the simulation module 300 according to a user's real-time operation.
  • the operating instructions are used to drive the simulation module 300 to locate all models of the target system and call detailed information of the target system.
  • the simulation module 300 includes a system instruction processing unit 305, and the system instruction processing unit 305 includes a target system positioning unit 3051 and a system information calling unit 3052,
  • the target system positioning unit 3051 is used to obtain the system code entered by the user in the virtual sand table search box, and to highlight all models of the target system corresponding to the system code; or to obtain the target system that the user locates in the device information interaction , And highlight all models of the target system;
  • the system information calling unit 3052 is used to call detailed information of the target system and generate a link to the corresponding design drawings of the target system; the detailed information includes system names and abbreviations, process parameters, system equipment lists, and radiation intensity.
  • One or more of the design drawings include a system design instruction manual and/or a system flow chart.
  • the above embodiments provide a three-dimensional simulation display system for a nuclear power plant, which has a plant area distribution covering the entire plant (including nuclear island plant, steam turbine plant, BOP plant, etc.) and three-dimensional models and information display of the systems, structures, and equipment in each plant
  • a plant area distribution covering the entire plant including nuclear island plant, steam turbine plant, BOP plant, etc.
  • three-dimensional models and information display of the systems, structures, and equipment in each plant Ability not only meets the needs of ordinary people and professionals for different interaction methods, but also allows users to further view detailed information about plant structures, systems, and equipment, breaking through the barriers of three-dimensional models, various parameter descriptions, and drawing files.
  • nuclear power plants which can be used for on-site safety training of power plant staff, nuclear power plant main and auxiliary system process training, equipment training, logistics route planning during overhaul and decommissioning, and on-site emergency drills; it is also a close range for ordinary people Observing nuclear power plants, learning to understand the working principles of power plants, and eliminating nuclear fears provide solutions.
  • the disclosed device/terminal device and method may be implemented in other ways.
  • the device/terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Structural Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Civil Engineering (AREA)
  • Computer Graphics (AREA)
  • Computational Mathematics (AREA)
  • Remote Sensing (AREA)
  • Mathematical Optimization (AREA)
  • Architecture (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种核电厂的三维仿真显示系统,包括预编辑模块(100)、交互模块(200)、仿真模块(300)和显示模块(400),预编辑模块(100)用于设置初始化信息;交互模块(200)用于记录用户下达的操作指令,并将操作指令发送至仿真模块(300)进行处理;仿真模块(300)用于根据操作指令从预编辑模块(100)中调用目标初始化信息,并对目标初始化信息整合处理后生成对应的反馈结果发送至显示模块(400)呈现给用户。所述系统具备覆盖全厂的厂区分布及各厂房内系统、结构、设备的三维模型及信息展示能力,可用于电厂工作人员驻场安全培训、核电厂主辅系统流程培训、设备培训、大修及退役期间人流物流路径规划以及现场应急演练;也为普通民众近距离观察核电厂、学习了解电厂工作原理、消除核恐惧提供了解决手段。

Description

核电厂的三维仿真显示系统 技术领域
本发明涉及核电厂的仿真领域,更具体地说,本发明涉及一种核电厂的三维仿真显示系统。
背景技术
随着三维仿真技术的迅猛发展,各类三维建筑模型及信息展示系统凭借直观、便捷、交互感强的特点在园区管理、工程建设、会展宣传介绍、房地产销售等领域得到广泛应用。一些核电厂也顺势开发各自的电厂游览/展示系统,突破了以往扁平化的展示手段,借助三维模型的立体性和仿真系统的交互特点,改善了用户体验,向民众近距离宣传核电。但当前的核电厂三维展示系统多移植于市场通用技术,区别仅为用电厂模型替代普通建筑模型,但在交互手段、操作布局、系统功能设置上依旧沿用老手段,难以适用核电厂的特殊情况,使用起来存在以下不足:
(1)交互手段不足,只适用于结构简单、内部布置较少、追求外观展示的三维建筑;
(2)不满足核电厂对辐射分区的展示需求,用户只能自由游览,无法查看不同楼层区域的辐射分区情况;
(3)操作逻辑简陋,仅满足公众科普展览需要,缺少核电技术人员需要的专业化快速查询通道;
(4)功能简单,缺少人流物流规划、应急演练等培训功能,未能充分发挥三维展示系统的优点;
(5)专业化水平不够,电厂模型不精确且系统内虚拟人物的操作、行进路 线规划不符合电厂操作规程;
(6)展示信息不足,缺少详细的系统、厂房结构以及设备介绍。
发明内容
本发明提供了一种核电厂的三维仿真显示系统,解决了以上所述的技术问题。
本发明解决上述技术问题的技术方案如下:一种核电厂的三维仿真显示系统,包括预编辑模块、交互模块、仿真模块和显示模块,
所述预编辑模块用于设置初始化信息,所述初始化信息包括核电厂的全部模型、各个模型的初始源项信息以及全厂设备、系统与厂房结构的详尽信息;
所述交互模块用于记录用户下达的操作指令,并将所述操作指令发送至仿真模块进行处理;
所述仿真模块用于接收所述操作指令,根据所述操作指令从所述预编辑模块中调用目标初始化信息,并对所述目标初始化信息整合处理后生成对应的反馈结果发送至显示模块;
所述显示模块用于将所述反馈结果以特定布局的图形界面呈现给用户。
在一个优选实施方式中,所述预编辑模块包括模型处理单元,所述模型处理单元用于对预设模型进行在线修改或者导入预设格式的目标模型文件,将原模型文件替换为所述目标模型文件后自动关联对应的脚本文件。
在一个优选实施方式中,所述交互模块具体包括虚拟沙盘交互单元和辐射场交互单元,
所述虚拟沙盘交互单元用于根据用户实时操作,向所述仿真模块发送第一操作指令,所述第一操作指令用于调用包括全部模型的微缩沙盘,调整所述微缩沙盘中模型的透明度和模型围绕中心点水平旋转的角度,并对所述微缩沙盘 进行自动讲解和放大缩小;所述全部模型包括核电厂的厂房结构模型和核电设备模型;
所述辐射场交互单元用于根据用户实时操作,向所述仿真模块发送第二操作指令,所述第二操作指令用于根据所述初始源项信息计算目标厂房的三维辐射剂量场,并在目标厂房内按照辐射强弱以红-黄-绿渐变的方式显示三维辐射场分布云图。
在一个优选实施方式中,所述仿真模块包括沙盘指令处理单元,所述沙盘指令处理单元用于调用不同型号核电机组分别对应的虚拟沙盘,并驱动所述显示模块按照不同技术路线的虚拟沙盘并行分布、同一技术路线的虚拟沙盘一字排开且按照型号从低到高分布,总体呈现科技树状的排列方式。
在一个优选实施方式中,所述交互模块还包括场景漫游交互单元,所述场景漫游交互单元用于根据用户实时操作,向所述仿真模块发送第三操作指令,所述第三操作指令用于设置漫游起点,根据用户选择的巡径漫游模式或者自由漫游模式生成漫游路线,并统计所述漫游路线的漫游信息。
在一个优选实施方式中,所述仿真模块还包括漫游指令处理单元,所述漫游指令处理单元包括漫游起点获取单元、巡径漫游路线生成单元、自由漫游路线生成单元和添加单元,
所述漫游起点获取单元用于获取用户在虚拟沙盘交互过程中放置的虚拟人位置,并将所述虚拟人位置作为漫游起点;或者获取用户在虚拟沙盘搜索框中输入的代码,将所述代码对应的地点作为漫游起点;
所述巡径漫游路线生成单元用于根据用户漫游目的自动规划生成路径最短路线、辐射吸收剂量最少路线、应急疏散路线或人流物流路线;
所述自由漫游路线生成单元用于根据虚拟人在虚拟沙盘的移动路径自动生成自由漫游路线,并对漫游信息进行统计,所述漫游信息包括路线距离、行走时间和/或摄入剂量;
所述添加单元用于将用户选中的自由漫游路线添加为新的应急疏散路线或人流物流路线。
在一个优选实施方式中,所述交互模块还包括厂房信息交互单元、设备信息交互单元和/或系统信息交互单元,
所述厂房信息交互单元用于根据用户实时操作,向所述仿真模块发送第四操作指令,所述第四操作指令用于定位目标厂房结构模型,并调用所述目标厂房结构模型的详尽信息;
所述设备信息交互单元用于根据用户实时操作,向所述仿真模块发送第五操作指令,所述第五操作指令用于定位目标核电设备模型,并调用所述目标核电设备模型的详尽信息;
所述系统信息交互单元用于根据用户实时操作,向所述仿真模块发送第六操作指令,所述第六操作指令用于定位目标系统的全部模型,并调用所述目标系统的详尽信息。
在一个优选实施方式中,所述仿真模块还包括厂房指令处理单元,所述厂房指令处理单元包括目标厂房定位单元和厂房信息调用单元,
所述目标厂房定位单元用于高亮显示用户在虚拟沙盘和/或场景漫游中定位的目标厂房结构模型;或者用于获取用户在虚拟沙盘搜索框中输入的厂房结构代码,并高亮显示所述厂房结构代码对应的目标厂房结构模型;
所述厂房信息调用单元用于调用所述目标厂房结构模型的详尽信息并生成 指向目标厂房结构模型对应设计图纸的链接;所述详尽信息包括厂房结构名称、所在厂房名称、楼层、隔间、标高、辐射分区以及几何尺寸中的一个或多个,所述设计图纸包括目标厂房结构的模板图、配筋图和/或锚固件定位图。
在一个优选实施方式中,所述仿真模块还包括设备指令处理单元,所述设备指令处理单元包括目标核电设备定位单元和设备信息调用单元,
所述目标核电设备定位单元用于高亮显示用户在虚拟沙盘、场景漫游和/或系统信息交互中定位的目标核电设备模型;或者用于获取用户在虚拟沙盘搜索框中输入的核电设备代码,并高亮显示所述核电设备代码对应的目标核电设备模型;
所述设备信息调用单元用于调用所述目标核电设备模型的详尽信息并生成指向目标核电设备模型对应设计图纸的链接;所述详尽信息包括设备名称及缩略语、空间位置、所属系统、设备参数、辐射数据、设备级别、采购制造信息以及供应商信息中的一个或多个,所述设计图纸包括目标核电设备的安装图、设备零件图、定位图和/或设备规格书。
在一个优选实施方式中,所述仿真模块还包括系统指令处理单元,所述系统指令处理单元包括目标系统定位单元和系统信息调用单元,
所述目标系统定位单元用于获取用户在虚拟沙盘搜索框中输入的系统代码,高亮显示所述系统代码对应目标系统的全部模型;或者用于获取用户在设备信息交互中定位的目标系统,并高亮显示所述目标系统的全部模型;
所述系统信息调用单元用于调用所述目标系统的详尽信息并生成指向目标系统对应设计图纸的链接;所述详尽信息包括系统名称及缩略语、工艺参数、系统设备清单以及辐射强度中的一个或多个,所述设计图纸包括系统设计指导 手册和/或系统流程图。
本发明提供了一种核电厂的三维仿真显示系统,具备覆盖全厂(包括核岛厂房、汽轮机厂房、BOP厂房)的厂区分布及各厂房内系统、结构、设备的三维模型及信息展示能力,不仅满足普通民众与专业人员对不同交互方式的需求,而且允许用户进一步查看厂房结构、系统以及设备的详尽信息,打通了三维模型和各种参数说明、图纸文件的壁垒,同时可以直观且专业显示核电厂的三维辐射场,从而用于电厂工作人员驻场安全培训、核电厂主辅系统流程培训、设备培训、大修及退役期间人流物流路径规划以及现场应急演练;也为普通民众近距离观察核电厂、学习了解电厂工作原理、消除核恐惧提供了解决手段。
为使发明的上述目的、特征和优点能更明显易懂,下文特举本发明较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是实施例1提供的核电厂的三维仿真显示系统的结构示意图。
图2是实施例1中交互模块的结构示意图;
图3是实施例1中漫游指令处理单元的结构示意图;
图4是实施例1中厂房指令处理单元的结构示意图;
图5是实施例1中设备指令处理单元的结构示意图;
图6是实施例1中系统指令处理单元的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。再者,本发明所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
图1是实施例1提供的核电厂的三维仿真显示系统的结构示意图,如图1所示,包括预编辑模块100、交互模块200、仿真模块300和显示模块400,
所述预编辑模块100用于设置初始化信息,所述初始化信息包括核电厂的全部模型、各个模型的初始源项信息以及全厂设备、系统与厂房结构的详尽信息;
所述交互模块200用于记录用户下达的操作指令,并将所述操作指令发送至仿真模块进行处理;
所述仿真模块300用于接收所述操作指令,根据所述操作指令从所述预编辑模块中调用目标初始化信息,并对所述目标初始化信息整合处理后生成对应的反馈结果发送至显示模块;
所述显示模块400用于将所述反馈结果以特定布局的图形界面呈现给用户,从而让核电厂的厂区情况培训、结构系统设备培训和信息查询、人流物流规划、 应急疏散演练更加立体直观,提高培训演练效率。
以下对实施例1所述核电厂的三维仿真显示系统进行详细说明。
常规情况下,系统默认自带一套标准核电厂模型,或者根据用户要求增加其他堆型核电厂模型,但各电厂在工程建设、运营乃至退役阶段会对原有设计持续改造升级,使电厂实际情况较标准模型有一定差别,因此优选实施例中,系统可以允许用户对标准模型进行修改。具体来说,所述预编辑模块100包括模型处理单元,所述模型处理单元用于对预设模型进行在线修改或者导入预设格式(如.stp)的目标模型文件,将原模型文件替换为所述目标模型文件后自动关联对应的脚本文件完成模型的预编辑。
所述交互模块200是系统各级功能的集成入口,覆盖用户能够通过本系统执行的所有操作,如核电厂虚拟沙盘、场景漫游、厂房结构查看、设备查看、系统详情查看等。交互模块200收集用户的操作信息后生成操作指令,通过系统内部的仿真模块300计算后再向用户反馈所需信息或数据。
如图2所示,在一个优选实施方式中,所述交互模块200具体包括虚拟沙盘交互单元201。所述虚拟沙盘交互单元201用于根据用户实时操作,向所述仿真模块300发送第一操作指令,所述第一操作指令用于驱动仿真模块300调用微缩沙盘,调整所述微缩沙盘中模型的透明度和模型围绕中心点水平旋转的角度,并对所述微缩沙盘进行自动讲解和放大缩小。具体来说,核电厂虚拟沙盘摆放于虚拟大厅中,用户登录后即可见,为一个等比例的核电厂微缩沙盘,包括核电厂的全部模型,比如核电厂的厂房结构模型和核电设备模型。虚拟沙盘具备自动讲解功能,介绍核电厂主要厂区分布和系统结构设备(此过程可跳过)。用户可围绕虚拟沙盘走动从各个视角观察核电厂布局,也可使用鼠标/键盘/触摸 屏等外接设备拖动核电厂模型围绕中心点水平旋转,实现对电厂各角度的观察。微缩沙盘可放大缩小,方便用户了解核电厂全局或局部空间的详细布置情况。同时沙盘中的模型,如厂房外壁、反应堆厂房安全壳等,可有选择地调为透明以观察核电厂内部结构。
虚拟大厅中核电厂虚拟沙盘的设计允许用户采用多种方式与电厂模型互动,在迅速了解厂区全貌的同时可通过直接点击选中设备模型、厂房模型或者借助核电领域通行的三字码以及编码原则进行编码检索的方式查询电厂的厂房结构、系统、设备每一处细节,前者为所见即所得的傻瓜式操作,适合民众使用,后者更加快速、准确和专业,适合核电工程师以及电厂工作人员使用。从而以上帝视角观察核电厂内部结构,因此成为场景漫游、厂房结构模型及详细信息查看、设备模型及详细信息查看的入口。
同时,虚拟大厅可设置分别对应不同核电机组的多组虚拟沙盘,此时仿真模块300包括沙盘指令处理单元301,所述沙盘指令处理单元用于调用不同型号核电机组分别对应的虚拟沙盘,并驱动所述显示模块按照不同技术路线的虚拟沙盘并行分布、同一技术路线的虚拟沙盘一字排开且按照型号从低到高分布,总体呈现科技树状的排列方式。从而在科普宣传时民众可了解我国核电技术的发展路线,直观对比不同机组的技术特点。
如图2所示,在一个优选实施例中,所述交互模块200还包括辐射场交互单元202,所述辐射场交互单元202用于根据用户实时操作,向所述仿真模块300发送第二操作指令,所述第二操作指令用于驱动仿真模块300根据所述初始源项信息计算目标厂房的三维辐射剂量场,并在目标厂房内按照辐射强弱以红-黄-绿渐变的方式显示三维辐射场分布云图。
用户在虚拟沙盘和场景漫游两种主要展示模式下,均可开启或者关闭三维辐射场功能,打开上述功能后,核电厂厂房,主要是反应堆厂房的三维辐射场分布云图按照辐射强弱从红色逐渐过渡到绿色,红色代表危险区域辐射强,绿色代表安全区域辐射低。
如图2所示,在一个优选实施例中,所述交互模块200还包括场景漫游交互单元203,所述场景漫游交互单元203用于根据用户实时操作,向所述仿真模块300发送第三操作指令,所述第三操作指令用于驱动仿真模块300设置漫游起点,根据用户选择的巡径漫游模式或者自由漫游模式生成漫游路线,并统计所述漫游路线的漫游信息。
具体来说,如图3所示,所述仿真模块300包括漫游指令处理单元302,所述漫游指令处理单元302包括漫游起点获取单元3021、巡径漫游路线生成单元3022、自由漫游路线生成单元3023和添加单元3024。
所述漫游起点获取单元3021用于获取用户在虚拟沙盘交互过程中放置的虚拟人位置,如走廊、平台、隔间、设备附近,并将所述虚拟人位置作为漫游起点;或者获取用户在虚拟沙盘搜索框中输入的代码,比如隔间、设备以及系统代码,然后界面跳转到指定地点并根据用户选择将所述代码对应的地点作为漫游起点。
所述巡径漫游路线生成单元3022用于根据用户漫游目的自动规划生成路径最短路线、辐射吸收剂量最少路线、应急疏散路线或人流物流路线,供用户使用,方便其熟知核电厂内各种路径,加深对电厂的了解。
所述自由漫游路线生成单元3023用于根据虚拟人在虚拟沙盘的移动路径自动生成自由漫游路线。自由漫游模式下,用户游览过程是不受约束的,可依据各自的参观、学习、应急需求自由规划行进路线,而且所述自由漫游路线生成 单元3023会对路线距离、行走时间和/或摄入剂量进行统计,用户可根据统计结果驱动添加单元3024将新的自由漫游路线添加为新的应急疏散路线或人流物流路线,供电厂优化路径使用。此功能同时可用于电厂工作人员,如运营检修巡更人员的岗前操作培训以及新员工电厂布置培训等活动。
在两种漫游模式下,用户均可在漫游过程中停留,并通过选中目标厂房结构、设备或系统以获取详尽信息。即场景漫游可作为厂房结构模型及详细信息查看、设备模型及详细信息查看的入口,比如可以从系统的设备清单中跳转到某一设备或从设备所在系统介绍中跳转到整个系统,信息交互过程直观明了,解决了查询图纸或技术规格书带来的信息繁杂、表现形式不直观等问题。
另一优选实施例中,所述交互模块200还包括厂房信息交互单元204,所述厂房信息交互单元204用于根据用户实时操作,向所述仿真模块300发送第四操作指令,所述第四操作指令用于驱动仿真模块300定位目标厂房结构模型,并调用所述目标厂房结构模型的详尽信息。
与之相对应的,如图4所示,所述仿真模块300包括厂房指令处理单元303,所述厂房指令处理单元303包括目标厂房定位单元3031和厂房信息调用单元3032,
所述目标厂房定位单元3031用于高亮显示用户在虚拟沙盘和/或场景漫游中定位的目标厂房结构模型;或者用于获取用户在虚拟沙盘搜索框中输入的厂房结构代码,并高亮显示所述厂房结构代码对应的目标厂房结构模型;
所述厂房信息调用单元3032用于调用所述目标厂房结构模型的详尽信息并生成指向目标厂房结构模型对应设计图纸的链接;所述详尽信息包括厂房结构名称、所在厂房名称、楼层、隔间、标高、辐射分区以及几何尺寸中的一个或 多个,所述设计图纸包括目标厂房结构的模板图、配筋图和/或锚固件定位图,从而贴近核电设计、建造、运营、退役从业人员的使用需要。
另一优选实施例中,所述交互模块200还包括设备信息交互单元205,所述设备信息交互单元205用于根据用户实时操作,向所述仿真模块300发送第五操作指令,所述第五操作指令用于驱动仿真模块300定位目标核电设备模型,并调用所述目标核电设备模型的详尽信息。
与之相对应的,如图5所示,所述仿真模块300包括设备指令处理单元304,所述设备指令处理单元304包括目标核电设备定位单元3041和设备信息调用单元3042,
所述目标核电设备定位单元3041用于高亮显示用户在虚拟沙盘、场景漫游和/或系统信息交互中定位的目标核电设备模型;或者用于获取用户在虚拟沙盘搜索框中输入的核电设备代码,并高亮显示所述核电设备代码对应的目标核电设备模型;
所述设备信息调用单元3042用于调用所述目标核电设备模型的详尽信息并生成指向目标核电设备模型对应设计图纸的链接;所述详尽信息包括设备名称及缩略语、空间位置、所属系统、设备参数、辐射数据、设备级别、采购制造信息以及供应商信息中的一个或多个,所述设计图纸包括目标核电设备的安装图、设备零件图、定位图和/或设备规格书。
另一优选实施例中,所述交互模块200还包括系统信息交互单元206,所述系统信息交互单元206用于根据用户实时操作,向所述仿真模块300发送第六操作指令,所述第六操作指令用于驱动仿真模块300定位目标系统的全部模型,并调用所述目标系统的详尽信息。
与之相对应的,如图6所示,所述仿真模块300包括系统指令处理单元305,所述系统指令处理单元305包括目标系统定位单元3051和系统信息调用单元3052,
所述目标系统定位单元3051用于获取用户在虚拟沙盘搜索框中输入的系统代码,高亮显示所述系统代码对应目标系统的全部模型;或者用于获取用户在设备信息交互中定位的目标系统,并高亮显示所述目标系统的全部模型;
所述系统信息调用单元3052用于调用所述目标系统的详尽信息并生成指向目标系统对应设计图纸的链接;所述详尽信息包括系统名称及缩略语、工艺参数、系统设备清单以及辐射强度中的一个或多个,所述设计图纸包括系统设计指导手册和/或系统流程图。
以上实施例提供了一种核电厂的三维仿真显示系统,具备覆盖全厂(包括核岛厂房、汽轮机厂房、BOP厂房等)的厂区分布及各厂房内系统、结构、设备的三维模型及信息展示能力,不仅满足普通民众与专业人员对不同交互方式的需求,而且允许用户进一步查看厂房结构、系统以及设备的详尽信息,打通了三维模型和各种参数说明、图纸文件的壁垒,同时可以直观且专业显示核电厂的三维辐射场,从而用于电厂工作人员驻场安全培训、核电厂主辅系统流程培训、设备培训、大修及退役期间人流物流路径规划以及现场应急演练;也为普通民众近距离观察核电厂、学习了解电厂工作原理、消除核恐惧提供了解决手段。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (10)

  1. 一种核电厂的三维仿真显示系统,其特征在于,包括预编辑模块、交互模块、仿真模块和显示模块,
    所述预编辑模块用于设置初始化信息,所述初始化信息包括核电厂的全部模型、各个模型的初始源项信息以及全厂设备、系统与厂房结构的详尽信息;
    所述交互模块用于记录用户下达的操作指令,并将所述操作指令发送至仿真模块进行处理;
    所述仿真模块用于接收所述操作指令,根据所述操作指令从所述预编辑模块中调用目标初始化信息,并对所述目标初始化信息整合处理后生成对应的反馈结果发送至显示模块;
    所述显示模块用于将所述反馈结果以特定布局的图形界面呈现给用户。
  2. 根据权利要求1所述核电厂的三维仿真显示系统,其特征在于,所述预编辑模块包括模型处理单元,所述模型处理单元用于对预设模型进行在线修改或者导入预设格式的目标模型文件,将原模型文件替换为所述目标模型文件后自动关联对应的脚本文件。
  3. 根据权利要求1所述核电厂的三维仿真显示系统,其特征在于,所述交互模块具体包括虚拟沙盘交互单元和辐射场交互单元,
    所述虚拟沙盘交互单元用于根据用户实时操作,向所述仿真模块发送第一操作指令,所述第一操作指令用于调用包括全部模型的微缩沙盘,调整所述微缩沙盘中模型的透明度和模型围绕中心点水平旋转的角度,并对所述微缩沙盘进行自动讲解和放大缩小;所述全部模型包括核电厂的厂房结构模型和核电设 备模型;
    所述辐射场交互单元用于根据用户实时操作,向所述仿真模块发送第二操作指令,所述第二操作指令用于根据所述初始源项信息计算目标厂房的三维辐射剂量场,并在目标厂房内按照辐射强弱以红-黄-绿渐变的方式显示三维辐射场分布云图。
  4. 根据权利要求3所述核电厂的三维仿真显示系统,其特征在于,所述仿真模块包括沙盘指令处理单元,所述沙盘指令处理单元用于调用不同型号核电机组分别对应的虚拟沙盘,并驱动所述显示模块按照不同技术路线的虚拟沙盘并行分布、同一技术路线的虚拟沙盘一字排开且按照型号从低到高分布,总体呈现科技树状的排列方式。
  5. 根据权利要求1-4任一所述核电厂的三维仿真显示系统,其特征在于,所述交互模块还包括场景漫游交互单元,所述场景漫游交互单元用于根据用户实时操作,向所述仿真模块发送第三操作指令,所述第三操作指令用于设置漫游起点,根据用户选择的巡径漫游模式或者自由漫游模式生成漫游路线,并统计所述漫游路线的漫游信息。
  6. 根据权利要求5所述核电厂的三维仿真显示系统,其特征在于,所述仿真模块还包括漫游指令处理单元,所述漫游指令处理单元包括漫游起点获取单元、巡径漫游路线生成单元、自由漫游路线生成单元和添加单元,
    所述漫游起点获取单元用于获取用户在虚拟沙盘交互过程中放置的虚拟人位置,并将所述虚拟人位置作为漫游起点;或者获取用户在虚拟沙盘搜索框中输入的代码,将所述代码对应的地点作为漫游起点;
    所述巡径漫游路线生成单元用于根据用户漫游目的自动规划生成路径最短 路线、辐射吸收剂量最少路线、应急疏散路线或人流物流路线;
    所述自由漫游路线生成单元用于根据虚拟人在虚拟沙盘的移动路径自动生成自由漫游路线,并对漫游信息进行统计,所述漫游信息包括路线距离、行走时间和/或摄入剂量;
    所述添加单元用于将用户选中的自由漫游路线添加为新的应急疏散路线或人流物流路线。
  7. 根据权利要求5所述核电厂的三维仿真显示系统,其特征在于,所述交互模块还包括厂房信息交互单元、设备信息交互单元和/或系统信息交互单元,
    所述厂房信息交互单元用于根据用户实时操作,向所述仿真模块发送第四操作指令,所述第四操作指令用于定位目标厂房结构模型,并调用所述目标厂房结构模型的详尽信息;
    所述设备信息交互单元用于根据用户实时操作,向所述仿真模块发送第五操作指令,所述第五操作指令用于定位目标核电设备模型,并调用所述目标核电设备模型的详尽信息;
    所述系统信息交互单元用于根据用户实时操作,向所述仿真模块发送第六操作指令,所述第六操作指令用于定位目标系统的全部模型,并调用所述目标系统的详尽信息。
  8. 根据权利要求7所述核电厂的三维仿真显示系统,其特征在于,所述仿真模块还包括厂房指令处理单元,所述厂房指令处理单元包括目标厂房定位单元和厂房信息调用单元,
    所述目标厂房定位单元用于高亮显示用户在虚拟沙盘和/或场景漫游中定位的目标厂房结构模型;或者用于获取用户在虚拟沙盘搜索框中输入的厂房结构 代码,并高亮显示所述厂房结构代码对应的目标厂房结构模型;
    所述厂房信息调用单元用于调用所述目标厂房结构模型的详尽信息并生成指向目标厂房结构模型对应设计图纸的链接;所述详尽信息包括厂房结构名称、所在厂房名称、楼层、隔间、标高、辐射分区以及几何尺寸中的一个或多个,所述设计图纸包括目标厂房结构的模板图、配筋图和/或锚固件定位图。
  9. 根据权利要求7所述核电厂的三维仿真显示系统,其特征在于,所述仿真模块还包括设备指令处理单元,所述设备指令处理单元包括目标核电设备定位单元和设备信息调用单元,
    所述目标核电设备定位单元用于高亮显示用户在虚拟沙盘、场景漫游和/或系统信息交互中定位的目标核电设备模型;或者用于获取用户在虚拟沙盘搜索框中输入的核电设备代码,并高亮显示所述核电设备代码对应的目标核电设备模型;
    所述设备信息调用单元用于调用所述目标核电设备模型的详尽信息并生成指向目标核电设备模型对应设计图纸的链接;所述详尽信息包括设备名称及缩略语、空间位置、所属系统、设备参数、辐射数据、设备级别、采购制造信息以及供应商信息中的一个或多个,所述设计图纸包括目标核电设备的安装图、设备零件图、定位图和/或设备规格书。
  10. 根据权利要求7所述核电厂的三维仿真显示系统,其特征在于,所述仿真模块还包括系统指令处理单元,所述系统指令处理单元包括目标系统定位单元和系统信息调用单元,
    所述目标系统定位单元用于获取用户在虚拟沙盘搜索框中输入的系统代码,高亮显示所述系统代码对应目标系统的全部模型;或者用于获取用户在设备信 息交互中定位的目标系统,并高亮显示所述目标系统的全部模型;
    所述系统信息调用单元用于调用所述目标系统的详尽信息并生成指向目标系统对应设计图纸的链接;所述详尽信息包括系统名称及缩略语、工艺参数、系统设备清单以及辐射强度中的一个或多个,所述设计图纸包括系统设计指导手册和/或系统流程图。
PCT/CN2020/134728 2020-10-15 2020-12-09 核电厂的三维仿真显示系统 WO2021227469A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20935198.0A EP4242809A1 (en) 2020-10-15 2020-12-09 Three-dimensional simulation display system for nuclear power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011100539.6 2020-10-15
CN202011100539.6A CN112306319B (zh) 2020-10-15 2020-10-15 核电厂的三维仿真显示系统

Publications (1)

Publication Number Publication Date
WO2021227469A1 true WO2021227469A1 (zh) 2021-11-18

Family

ID=74327168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134728 WO2021227469A1 (zh) 2020-10-15 2020-12-09 核电厂的三维仿真显示系统

Country Status (3)

Country Link
EP (1) EP4242809A1 (zh)
CN (1) CN112306319B (zh)
WO (1) WO2021227469A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115632A (zh) * 2021-12-03 2022-03-01 国网浙江省电力有限公司电力科学研究院 一种沉浸式虚拟现实培训平台的速成系统及使用方法
CN114169170A (zh) * 2021-12-08 2022-03-11 天津大学 一种核安全应急的虚拟仿真系统
CN115049812A (zh) * 2022-07-01 2022-09-13 中国电建集团北京勘测设计研究院有限公司 一种用于制作可智能交互的工程照明三维详图的系统
CN115331506A (zh) * 2022-07-19 2022-11-11 国能大渡河大岗山发电有限公司 水电厂电网设备仿真培训方法、装置、介质及电子设备
CN115565429A (zh) * 2022-10-18 2023-01-03 兰州交通大学 一种轨道交通列车控制设备培训系统
WO2023245478A1 (zh) * 2022-06-22 2023-12-28 唐溢泽 电子变压器设计、生产、交付互联网共享服务系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391704A (zh) * 2021-06-21 2021-09-14 广东韶钢松山股份有限公司 一种数字智慧电厂虚拟现实的展示方法及系统
CN115880985B (zh) * 2022-10-26 2024-06-04 福州大学 一种基于增强现实的公共安全仿真装置、方法及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741046A (zh) * 2016-02-05 2016-07-06 国核电站运行服务技术有限公司 信息管理模型的生成方法/系统,信息处理方法/系统
CN106354393A (zh) * 2015-07-15 2017-01-25 北京迪文科技有限公司 一种文本滚动显示的方法
US20170235853A1 (en) * 2016-02-12 2017-08-17 The Boeing Company Real-time interactive modeling & simulation process for factory layout
CN109493430A (zh) * 2018-11-21 2019-03-19 深圳中广核工程设计有限公司 一种核电主控制室虚拟设计系统及方法
CN110824956A (zh) * 2019-12-02 2020-02-21 国核自仪系统工程有限公司 核电厂控制室的仿真交互系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180622B2 (en) * 2006-10-24 2012-05-15 Power Analytics Corporation Systems and methods for a real-time synchronized electrical power system simulator for “what-if” analysis and prediction over electrical power networks
CN101034208A (zh) * 2007-04-04 2007-09-12 大连东锐软件有限公司 三维仿真沙盘系统
CN104361622B (zh) * 2014-10-31 2018-06-19 福建星网视易信息系统有限公司 一种界面绘制方法和装置
CN105354393A (zh) * 2015-12-02 2016-02-24 上海核工程研究设计院 一种核电厂三维数字地图的实现系统及方法
CN107862930B (zh) * 2017-12-01 2021-01-01 大唐国信滨海海上风力发电有限公司 一种海上风电厂运维培训考核系统及其风险评估方法
CN110299042B (zh) * 2019-06-04 2021-09-07 中广核工程有限公司 一种沉浸式核电厂主设备工艺仿真推演方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354393A (zh) * 2015-07-15 2017-01-25 北京迪文科技有限公司 一种文本滚动显示的方法
CN105741046A (zh) * 2016-02-05 2016-07-06 国核电站运行服务技术有限公司 信息管理模型的生成方法/系统,信息处理方法/系统
US20170235853A1 (en) * 2016-02-12 2017-08-17 The Boeing Company Real-time interactive modeling & simulation process for factory layout
CN109493430A (zh) * 2018-11-21 2019-03-19 深圳中广核工程设计有限公司 一种核电主控制室虚拟设计系统及方法
CN110824956A (zh) * 2019-12-02 2020-02-21 国核自仪系统工程有限公司 核电厂控制室的仿真交互系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115632A (zh) * 2021-12-03 2022-03-01 国网浙江省电力有限公司电力科学研究院 一种沉浸式虚拟现实培训平台的速成系统及使用方法
CN114169170A (zh) * 2021-12-08 2022-03-11 天津大学 一种核安全应急的虚拟仿真系统
CN114169170B (zh) * 2021-12-08 2024-04-30 天津大学 一种核安全应急的虚拟仿真系统
WO2023245478A1 (zh) * 2022-06-22 2023-12-28 唐溢泽 电子变压器设计、生产、交付互联网共享服务系统及方法
CN115049812A (zh) * 2022-07-01 2022-09-13 中国电建集团北京勘测设计研究院有限公司 一种用于制作可智能交互的工程照明三维详图的系统
CN115331506A (zh) * 2022-07-19 2022-11-11 国能大渡河大岗山发电有限公司 水电厂电网设备仿真培训方法、装置、介质及电子设备
CN115565429A (zh) * 2022-10-18 2023-01-03 兰州交通大学 一种轨道交通列车控制设备培训系统
CN115565429B (zh) * 2022-10-18 2023-10-10 兰州交通大学 一种轨道交通列车控制设备培训系统

Also Published As

Publication number Publication date
EP4242809A1 (en) 2023-09-13
CN112306319B (zh) 2022-07-12
CN112306319A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021227469A1 (zh) 核电厂的三维仿真显示系统
CN111382214B (zh) 一种基于3dgis bim的综合管廊运维管理系统
Liu Three-dimensional visualized urban landscape planning and design based on virtual reality technology
CN104765905B (zh) 基于bim的平面图和第一视角分屏同步显示方法和系统
CN102750618B (zh) 一种地铁综合管线施工辅助管理系统及实施方法
CN107480370A (zh) 一种基于bim模型的施工进度预测方法及系统
CN112053130A (zh) 抽水蓄能电站综合管理方法、平台、系统、设备和介质
CN108842782A (zh) 基于bim技术深基坑开挖及支护施工方法
CN108268128A (zh) 一种安全生产应急预案3dvr虚拟现实演练系统
CN104573032A (zh) 用于核应急处置的应急模拟演练一体机
CN106056349A (zh) 一种省地县三级电网规划gis绘图系统及方法
CN112437252A (zh) 一种基于无人机倾斜摄像的电网项目规划方法
CN107153744B (zh) 地下三维管线决策系统
CN109559379A (zh) 一种基于装配式建筑平台的全景看房方法及装置
CN110175368A (zh) 一种基于bim+gis的轨道交通数据展示系统
CN107610227A (zh) 室内三维地图的制作方法
CN108984832A (zh) 一种智能建筑运维中利用Unity3D加载BIM模型的方法及系统
CN112945239A (zh) 核电厂房三维寻路导航方法及系统
CN104103088A (zh) 变电站内部结构三维展示和工作原理的三维动画演示方法
CN102354387A (zh) 电网离散供电信息的多维平台数据挖掘方法及系统
JP2024052978A (ja) オペレータ用情報端末
CN110764623A (zh) 一种用于管廊空间的虚拟现实仿真系统
CN110941867A (zh) 基于bim的标准化场地布置的施工方法
JP2024110390A (ja) デジタル化に基づく住環境設計システム及び方法
Bressan et al. Case studies of eXtended reality combined with Building Information Modeling: A literature review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935198

Country of ref document: EP

Effective date: 20230515