WO2021227354A1 - 一种电站直接空冷机组空冷风机群统筹调节控制方法 - Google Patents

一种电站直接空冷机组空冷风机群统筹调节控制方法 Download PDF

Info

Publication number
WO2021227354A1
WO2021227354A1 PCT/CN2020/121134 CN2020121134W WO2021227354A1 WO 2021227354 A1 WO2021227354 A1 WO 2021227354A1 CN 2020121134 W CN2020121134 W CN 2020121134W WO 2021227354 A1 WO2021227354 A1 WO 2021227354A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
design
row
speed
wind
Prior art date
Application number
PCT/CN2020/121134
Other languages
English (en)
French (fr)
Inventor
孙大伟
王星
郑金
陈得胜
闫宏
石清鑫
马翔
李凯伦
李昊燃
Original Assignee
西安热工研究院有限公司
西安西热锅炉环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热锅炉环保工程有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021227354A1 publication Critical patent/WO2021227354A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/002Details, component parts, or accessories especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers

Definitions

  • the invention belongs to the technical field of air-cooled fan groups used in direct air-cooled units of coal-fired power plants, and specifically relates to an overall adjustment control method for air-cooled fan groups of direct air-cooled units of power plants.
  • the scarcity of water resources makes the problem of water saving in thermal power plants increasingly become a hot spot of social concern.
  • the massive consumption of water resources by conventional wet-cooled units has restricted their application, and air-cooled units, especially direct air-cooled units, are becoming rich with excellent water-saving performance.
  • the direct air cooling system mainly adopts the mechanical ventilation type direct air cooling system.
  • the axial air cooling fan with large air volume and low pressure head is an important part of the cold end of the air cooling island, which provides the air volume required for cooling of the air condenser.
  • the air-cooled fan group is directly arranged in the open environment, this system has a natural defect, that is, it is easily affected by the surrounding environment.
  • the power station air-cooling fan group has the characteristics of unstable working status and susceptible to external factors, its operating status will directly affect the actual cooling air volume of each air-cooled condenser, and then affect the safety and economy of the entire air-cooling unit. Therefore, it is necessary to develop an overall adjustment and control technology for air-cooled fan groups to improve the safety and economy of the operation of air-cooled fans and even air-cooled units in power plants.
  • the present invention proposes a direct air-cooling unit air-cooled fan group (ACFG) overall adjustment control method, the purpose is to not change the power station air-cooled fan group (ACFG) structure and layout (air-cooled fan group) Under the premise that the existing air-cooling fans are the same, and keeping the angle of the air-cooling fan blades unchanged), the speed of the air-cooling fans in the air-cooling fan group (ACFG) is adjusted according to the wind direction and wind speed around the air-cooling fan group (ACFG). , To achieve the goal of the average operating air volume of the air-cooled fan group (ACFG) reaching the design air volume of a single air-cooled fan.
  • ACFG direct air-cooling unit air-cooled fan group
  • a method for overall adjustment and control of the air-cooling fan group of a direct air-cooling unit of a power station including:
  • the operating state of the air-cooled fan group is divided into four operating states: no wind, low wind, medium wind and high wind; the air-cooled fan group has p rows and q columns, totaling p ⁇ q units
  • Air-cooled fans, air-cooled fan groups set different speed adjustment and control methods in each operating state, and the wind speed and wind direction monitoring equipment and adjustment control equipment of the wind field are arranged around the air-cooled fan group to realize the overall planning of the air-cooled fan group Adjust control and switch between different operating states.
  • a further improvement of the present invention is that the specific implementation method is as follows:
  • a further improvement of the present invention is that the air-cooling fan group adjustment control method in the no-wind operation state is as follows:
  • the speed of the air-cooling fans at the edge of the air-cooling fan group, namely 1, p row and 1, q column air-cooling fan is increased from the design speed n design to ⁇ 1 n design , and the other area air-cooling fan speed keeps the design speed n design unchanged, and ⁇ 1 is no wind.
  • Speed amplification factor 1.1 ⁇ 1 ⁇ 1.2.
  • a further improvement of the present invention is that the air-cooling fan group adjustment control method in the low wind operation state is as follows:
  • the middle row speed is gradually increased from 1.1n design to ⁇ 2 n design , ⁇ 2 is the speed amplification factor in the low wind state, 1.15 ⁇ 2 ⁇ 1.25;
  • Line 1 is the nearest line to the reverse wind
  • P 2 0.75p, which is the second reference line number
  • p ⁇ P The 2- row air-cooling fan keeps the design speed n design unchanged
  • P 2 -1 the row air-cooling fan speed is increased to 1.1n design
  • the 1-row air- cooling fan speed is increased to ( ⁇ 2 +0.1)n design
  • P 2 -1) The speed of the middle row of row 1 is gradually increased from 1.1n design to ( ⁇ 2 +0.1)n design ;
  • 1 ⁇ Q 1 series air-cooling fan keeps the design speed n design unchanged, (Q 1 +1) series air-cooling fan speed is increased to 1.1n design , q series air-cooling fan speed is increased to ⁇ 2 n design , (Q 1 +1) series The speed of the middle row of the q row is gradually increased from 1.1n design to ⁇ 2 n design ;
  • a further improvement of the present invention is that the air-cooling fan group adjustment control method in the stroke operation state is as follows:
  • the middle row speed is gradually increased from 1.1n design to ⁇ 3 n design , ⁇ 3 is the speed amplification factor in stroke state, 1.35 ⁇ 3 ⁇ 1.45;
  • Line 1 is the nearest line to the reverse wind
  • P 2 0.75p, which is the second reference line number
  • p ⁇ P The 2- row air-cooling fan keeps the design speed n design unchanged
  • P 2 -1 the row air-cooling fan speed is increased to 1.1n design
  • the 1-row air- cooling fan speed is increased to ( ⁇ 3 +0.1)n design
  • P 2 -1) The speed of the middle row of row 1 is gradually increased from 1.1n design to ( ⁇ 3 +0.1)n design ;
  • 1 ⁇ Q 1 series air-cooling fans keep the design speed n design unchanged, (Q 1 +1) series air-cooling fan speed is increased to 1.1n design , q series air-cooling fan speed is increased to ⁇ 3 n design , (Q 1 +1) series The speed of the middle row of the q row is gradually increased from 1.1n design to ⁇ 3 n design ;
  • a further improvement of the present invention is that the air-cooling fan group adjustment and control method in the high-wind operation state is as follows:
  • the middle row speed is gradually increased from 1.1n design to ⁇ 4 n design , ⁇ 4 is the speed amplification factor in the high wind state, 1.55 ⁇ 4 ⁇ 1.65;
  • Line 1 is the nearest line to the reverse wind
  • P 2 0.75p, which is the second reference line number
  • p ⁇ P The 2- row air-cooling fan keeps the design speed n design unchanged
  • P 2 -1 the row air-cooling fan speed is increased to 1.1n design
  • the 1-row air- cooling fan speed is increased to ( ⁇ 4 +0.1)n design
  • P 2 -1) The speed of the middle row of row 1 is gradually increased from 1.1n design to ( ⁇ 4 +0.1)n design ;
  • 1 ⁇ Q 1 series air-cooling fans keep the design speed n design unchanged, (Q 1 +1) series air-cooling fans speed increase to 1.1n design , q series air- cooling fans speed increase to ⁇ 4 n design , (Q 1 +1) series
  • the speed of the middle row of the q row is gradually increased from 1.1n design to ⁇ 4 n design ;
  • the present invention proposes an overall adjustment and control method for the air-cooled fan group (ACFG) of the direct air-cooled unit of the power station. Under the premise of keeping the angle of the air-cooling fan blades unchanged, the air-cooled fan can be adjusted according to the changes in the wind direction and wind speed of the surrounding wind field.
  • the speed of different air-cooled fans in the group (ACFG) is adjusted in different areas, so that all air-cooled fans can actually operate to reach the design air volume, meet the actual cooling air volume requirements of the air-cooled condenser, and ensure the safe and stable operation of the air-cooled unit.
  • Fig. 1 is a schematic diagram of the air-cooling fan group and surrounding wind field of the present invention.
  • ACFG-air-cooled fan group 1- dominant wind, 2- reverse wind, 3-cross wind A, 4- cross wind B, p- total number of rows of air-cooled fan group, P 1 -first reference row number, P 2- The second reference number of rows, q-the total number of air-cooled fan groups, Q 1 -the first reference number of columns, Q 2 -the second reference number of columns, n- air-cooled fan speed, n design -air-cooled fan design speed, v-wind Field wind speed, ⁇ 1 -speed amplification factor in no wind condition, ⁇ 2 -speed amplification factor in low wind condition, ⁇ 3 -speed amplification factor in stroke condition, ⁇ 4 -speed amplification factor in high wind condition.
  • Figure 2 is a schematic diagram of an embodiment of the present invention.
  • the air-cooled fans in rows 1 to 2 keep the design speed (n design ) unchanged, the speed of the air-cooled fans in the third row is increased to 1.1n design , and the speeds of the air-cooled fans in rows 4 to 6 are increased to 1.15n design , 1.2n design and 1.3n design , the speed of the air-cooling fan in line 7 is increased to 1.4n design .
  • the present invention provides a direct air-cooling unit air-cooling fan group (ACFG) overall adjustment control method, including: according to the size of the wind field around the air-cooling fan group (ACFG), the operation state of the air-cooling fan group (ACFG) is divided into none Wind (v ⁇ 0m/s), low wind (0 ⁇ v ⁇ 4m/s), stroke (4 ⁇ v ⁇ 10m/s) and high wind (v>10m/s) 4 operating states.
  • the air-cooled fan group (ACFG) has p rows and q columns, and a total of p ⁇ q air-cooled fans.
  • Air-cooled fan group (ACFG) sets different speed adjustment control methods in each operating state.
  • a wind field (including wind speed and wind direction) monitoring equipment and adjustment control equipment are arranged around the air-cooled fan group (ACFG) to realize the overall adjustment control of the air-cooled fan group (ACFG) and switch between different operating states.
  • the specific implementation method is as follows:
  • Air-cooled fan group (ACFG) adjustment control method under no wind (v ⁇ 0m/s) operating state air-cooled fan group (ACFG) edge air-cooled fan (ie 1, p row and 1, q column air-cooled fan) speed is designed The speed n design is increased to ⁇ 1 n design ( ⁇ 1 is the speed amplification factor in the no-wind state, 1.1 ⁇ 1 ⁇ 1.2), and the air-cooling fan speed in other areas remains unchanged at the design speed n design.
  • the air-cooled fan group (ACFG) adopts different adjustment and control methods according to line p ⁇ 1:
  • Line 1 is the closest line to reverse wind 2
  • P 2 0.75p (rounded up), which is The second reference number of rows, p ⁇ P 2 rows of air-cooling fans keep the design speed n design unchanged, (P 2 -1) row air-cooling fan speed is increased to 1.1n design , 1 row air-cooling fan speed is increased to ( ⁇ 2 +0.1) n design , (P 2 -1) the middle row speed from row 1 to row 1 is gradually increased from 1.1n design to ( ⁇ 2 +0.1)n design ;
  • the air-cooled fans in the 1 ⁇ Q 1 row keep the design speed n design unchanged, the speed of the (Q 1 +1) row air-cooled fans is increased to 1.1n design , the speed of the q row air- cooled fans is increased to ⁇ 2 n design , (Q 1 +1)
  • the speed of the middle row from row q to row q is gradually increased from 1.1n design to ⁇ 2 n design ;
  • the air-cooled fan group (ACFG) adopts different adjustment and control methods according to line p ⁇ 1:
  • Line 1 is the closest line to reverse wind 2
  • P 2 0.75p (rounded up), which is The second reference number of rows, p ⁇ P 2 rows of air-cooled fans keep the design speed n design unchanged, (P 2 -1) row air-cooled fan speed increased to 1.1n design , 1 row air-cooled fan speed increased to ( ⁇ 3 +0.1) n design , (P 2 -1) the middle row speed from row 1 to row 1 is gradually increased from 1.1n design to ( ⁇ 3 +0.1)n design ;
  • the air-cooled fans in the 1 ⁇ Q 1 row keep the design speed n design unchanged, the speed of the (Q 1 +1) row air-cooled fans is increased to 1.1n design , the speed of the q row air- cooled fans is increased to ⁇ 3 n design , (Q 1 +1)
  • the speed of the middle row from row q to row q is gradually increased from 1.1n design to ⁇ 3 n design ;
  • q ⁇ Q 2 rows of air-cooled fans keep the design speed n design unchanged, (Q 2 -1) row air-cooled fan speed is increased to 1.1n design , 1 row air-cooled fan speed is increased to ⁇ 3 n design , (Q 2 -1) The speed of the middle row from row 1 to row 1 is gradually increased from 1.1n design to ⁇ 3 n design .
  • the air-cooled fan group (ACFG) adopts different adjustment and control methods according to line p ⁇ 1:
  • Line 1 is the closest line to reverse wind 2
  • P 2 0.75p (rounded up), which is The second reference number of rows, p ⁇ P 2 rows of air-cooled fans keep the design speed n design unchanged, (P 2 -1) row air-cooled fan speed increased to 1.1n design , 1 row air-cooled fan speed increased to ( ⁇ 4 +0.1) n design , (P 2 -1) the middle row speed from row 1 to row 1 is gradually increased from 1.1n design to ( ⁇ 4 +0.1)n design ;
  • the air-cooled fans in the 1 ⁇ Q 1 row keep the design speed n design unchanged, the speed of the (Q 1 +1) row air-cooled fans is increased to 1.1n design , the speed of the q row air- cooled fans is increased to ⁇ 4 n design , (Q 1 +1)
  • the speed of the middle row from row q to row q is gradually increased from 1.1n design to ⁇ 4 n design ;
  • q ⁇ Q 2 rows of air-cooled fans keep the design speed n design unchanged, (Q 2 -1) row air-cooled fan speed is increased to 1.1n design , 1 row air-cooled fan speed is increased to ⁇ 4 n design , (Q 2 -1) The speed of the middle row from row 1 to row 1 is gradually increased from 1.1n design to ⁇ 4 n design .
  • the total number of rows p of the air-cooled fan group (ACFG) is 7
  • the total number of columns q is 16
  • the wind speed of the surrounding wind farm is 4m/s, which is a stroke (4 ⁇ v ⁇ 10m/s) operation state.
  • the main wind direction is the dominant wind 1. Affected by the dominant wind in the stroke state, the actual operating air volume of the air-cooled fans in row 7 has been reduced by more than 40%, and the air volume of the air-cooled fans in rows 3 to 6 has also decreased in varying degrees.
  • the air-cooled fan group (ACFG) overall adjustment control method can significantly improve the air volume uniformity of the air-cooled fan group (ACFG), so that The operating air volume of all air-cooled fans can reach the design air volume.
  • the third row air cooling fan running speed is adjusted 1.1n design, operation of the air cooling fan 7, line speed was adjusted to 1.4n design, 4 ⁇
  • the operating speed of the 6-row air-cooling fan is adjusted to 1.15n design , 1.2n design and 1.3n design respectively .
  • the operating air volume of all air-cooled fans can reach the design air volume, which meets the actual cooling air volume requirements of the air-cooled condenser and ensures the safe and stable operation of the air-cooled unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电站直接空冷机组空冷风机群统筹调节控制方法,包括:根据空冷风机群周围风场强度的大小,将空冷风机群的运行状态划分为无风、低风、中风和高风4种运行状态;空冷风机群共有p行、q列,共计p·q台空冷风机,空冷风机群在每种运行状态,分别设定不同的转速调节控制方法,并在空冷风机群周围配置风场的风速、风向监测设备和调节控制设备,用于实现空冷风机群的统筹调节控制和不同运行状态之间的切换;在不改变电站空冷风机群结构和布局的前提下,根据空冷风机群周围的风向和风速,对空冷风机群内部的空冷风机分区域进行转速调节,实现了空冷风机群平均运行风量达到单台空冷风机设计风量的目的。

Description

一种电站直接空冷机组空冷风机群统筹调节控制方法 技术领域
本发明属于燃煤电厂直接空冷机组所使用的空冷风机群技术领域,具体涉及一种电站直接空冷机组空冷风机群统筹调节控制方法。
背景技术
水资源的匮乏使火电厂节水问题日益成为社会关注的热点,常规湿冷机组对水资源的大量消耗使其应用受到了限制,而空冷机组特别是直接空冷机组以优异的节水性能正成为富煤缺水地区的最佳选择。目前直接空冷系统主要采用机械通风式直接空冷系统,大风量、低压头的轴流空冷风机是空冷岛冷端的重要组成部分,为空冷凝结器提够冷却所需的风量。然而,由于空冷风机群直接布置在露天环境中,所以这种系统存在天然的缺陷,即容易受到周围环境影响,特别是不同的环境风速、风向均会对风机运行产生直接影响,使空冷风机工作状态偏离设计值,无法提供正常风量;同时由于空冷风机采用群布置,所以单个空冷风机的工作状态同样会受到周围其它风机的影响。
因为电站空冷风机群具有工作状态不稳定,易受外界因素影响的特点,所以其运行状态会直接影响到各空冷凝结器的实际冷却风量,进而影响到整个空冷机组运行的安全性和经济性。因此,有必要研究出空冷风机群统筹调节控制技术,以提高电站空冷风机乃至空冷机组运行的安全性和经济性。
发明内容
为解决现有技术存在的问题,本发明提出了一种电站直接空冷机组空冷风机群(ACFG)统筹调节控制方法,其目的是在不改变电站空冷风机群(ACFG)结构和布局(空冷风机群 中现有空冷风机均相同,且保持空冷风机叶片角度不变)的前提下,根据空冷风机群(ACFG)周围的风向和风速,对空冷风机群(ACFG)内部的空冷风机分区域进行转速调节,实现空冷风机群(ACFG)平均运行风量达到单台空冷风机设计风量的目的。
本发明采用如下技术方案来实现的:
一种电站直接空冷机组空冷风机群统筹调节控制方法,包括:
根据空冷风机群周围风场强度的大小,将空冷风机群的运行状态划分为无风、低风、中风和高风4种运行状态;空冷风机群共有p行、q列,共计p·q台空冷风机,空冷风机群在每种运行状态,分别设定不同的转速调节控制方法,并在空冷风机群周围配置风场的风速、风向监测设备和调节控制设备,用于实现空冷风机群的统筹调节控制和不同运行状态之间的切换。
本发明进一步的改进在于,具体实现方法如下:
确定空冷风机群周围风场强度的大小,根据空冷风机群现场布置情况,将风场划分为主导风、逆向风、横风A和横风B;根据周围风场主要风向的风速v,将风场强度划分为无风v≈0m/s、低风0<v<4m/s、中风4≤v<10m/s和高风v>10m/s4种运行状态;每种运行状态采用不同的调节控制方法,即在空冷风机群保持风机叶片角度不变的前提下,采用分区域转速调节控制方法。
本发明进一步的改进在于,无风运行状态下空冷风机群调节控制方法如下:
空冷风机群边缘空冷风机即1、p行和1、q列空冷风机转速由设计转速n design提高为α 1n design,其他区域空冷风机转速保持设计转速n design不变,α 1为无风状态转速放大系数,1.1≤α 1≤1.2。
本发明进一步的改进在于,低风运行状态下空冷风机群调节控制方法如下:
①周围风场主要风向为主导风时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不 变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 2n design,(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 2n design,α 2为低风状态转速放大系数,1.15≤α 2≤1.25;
②周围风场主要风向为逆向风时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 2+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 2+0.1)n design
③周围风场主要风向为横风A时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 2n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 2n design
④周围风场主要风向为横风B时,空冷风机群按照q~1列采取不同的调节控制方法:1列为离横风最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 2n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 2n design
本发明进一步的改进在于,中风运行状态下空冷风机群调节控制方法如下:
①周围风场主要风向为主导风时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 3n design,(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 3n design,α 3为中风状态转速放大系数,1.35≤α 3≤1.45;
②周围风场主要风向为逆向风时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 3+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 3+0.1)n design
③周围风场主要风向为横风A时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 3n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 3n design
④周围风场主要风向为横风B时,空冷风机群按照q~1列采取不同的调节控制方法:1列为离横风B最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 3n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 3n design
本发明进一步的改进在于,高风运行状态下空冷风机群调节控制方法如下:
①周围风场主要风向为主导风时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 4n design,(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 4n design,α 4为高风状态转速放大系数,1.55≤α 4≤1.65;
②周围风场主要风向为逆向风时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 4+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 4+0.1)n design
③周围风场主要风向为横风A时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 4n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 4n design
④周围风场主要风向为横风B时,空冷风机群按照q~1列采取不同的调节控制方法:1列为离横风B最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design 不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 4n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 4n design
本发明至少具有如下有益的技术效果:
位于空冷风机群(ACFG)四周边缘行列的空冷风机进口气流容易受到周围风场的影响,进口负压明显偏大,边缘行列的空冷风机需克服更大的系统阻力。这样会导致空冷风机群(ACFG)不同位置空冷风机的工作压力不同,进而导致不同位置空冷风机工作风量不均。为此,本发明提出了一种电站直接空冷机组空冷风机群(ACFG)统筹调节控制方法,在保持空冷风机叶片角度不变的前提下,可以根据周围风场的风向和风速变化,对空冷风机群(ACFG)内部不同空冷风机分区域进行转速调节,使得所有空冷风机实际运行均能达到设计风量,满足空冷凝结器实际冷却风量的需求,保证空冷机组安全稳定运行。
附图说明
图1为本发明的空冷风机群及周围风场示意图。
其中,ACFG-空冷风机群,1-主导风,2-逆向风,3-横风A,4-横风B,p-空冷风机群总行数,P 1-第一参考行数,P 2-第二参考行数,q-空冷风机群总列数,Q 1-第一参考列数,Q 2-第二参考列数,n-空冷风机转速,n design-空冷风机设计转速,v-风场风速,α 1-无风状态转速放大系数,α 2-低风状态转速放大系数,α 3-中风状态转速放大系数,α 4-高风状态转速放大系数。
图2为本发明的实施例示意图。
其中,在主导风中速运行状态,第1~2行空冷风机保持设计转速(n design)不变,第3行空冷风机转速提高至1.1n design,第4~6行空冷风机转速分别提高至1.15n design、1.2n design和1.3n design,第7行空冷风机转速提高至1.4n design
具体实施方式
以下结合附图和实施例对本发明做出进一步的说明。
本发明提供的一种电站直接空冷机组空冷风机群(ACFG)统筹调节控制方法,包括:根据空冷风机群(ACFG)周围风场强度的大小,将空冷风机群(ACFG)的运行状态划分为无风(v≈0m/s)、低风(0<v<4m/s)、中风(4≤v<10m/s)和高风(v>10m/s)4种运行状态。空冷风机群(ACFG)共有p行、q列,共计p·q台空冷风机。空冷风机群(ACFG)在每种运行状态,分别设定不同的转速调节控制方法。在空冷风机群(ACFG)周围配置风场(包括风速、风向)监测设备和调节控制设备,用于实现空冷风机群(ACFG)的统筹调节控制和不同运行状态之间的切换。具体实施方法如下:
1、确定空冷风机群(ACFG)周围风场强度的大小。根据空冷风机群(ACFG)现场布置情况,将风场划分为主导风1、逆向风2、横风A3和横风B4。根据周围风场主要风向的风速v,将风场强度划分为无风(v≈0m/s)、低风(0<v<4m/s)、中风(4≤v<10m/s)和高风(v>10m/s)4种运行状态。每种运行状态采用不同的调节控制方法,即在空冷风机群(ACFG)保持风机叶片角度不变的前提下,采用分区域转速调节控制方法。
2、无风(v≈0m/s)运行状态下空冷风机群(ACFG)调节控制方法:空冷风机群(ACFG)边缘空冷风机(即1、p行和1、q列空冷风机)转速由设计转速n design提高为α 1n design1为无风状态转速放大系数,1.1≤α 1≤1.2),其他区域空冷风机转速保持设计转速n design不变。
3、低风(0<v<4m/s)运行状态下空冷风机群(ACFG)调节控制方法:
①周围风场主要风向为主导风1时,空冷风机群(ACFG)按照1~p行采取不同的调节控制方法:p行为离主导风1最近行,P 1=0.25p(取整),为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 2n design2为低风状态转速放大系数,1.15≤α 2≤1.25),(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 2n design
②周围风场主要风向为逆向风2时,空冷风机群(ACFG)按照p~1行采取不同的调节控制方法:1行为离逆向风2最近行,P 2=0.75p(取整),为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 2+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 2+0.1)n design
③周围风场主要风向为横风A3时,空冷风机群(ACFG)按照1~q列采取不同的调节控制方法:q列为离横风A3最近列,Q 1=0.25q(取整),为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 2n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 2n design
④周围风场主要风向为横风B4时,空冷风机群(ACFG)按照q~1列采取不同的调节控制方法:1列为离横风B最近列,Q 2=0.75q(取整),为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 2n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 2n design
4、中风(4≤v<10m/s)运行状态下空冷风机群(ACFG)调节控制方法:
①周围风场主要风向为主导风1时,空冷风机群(ACFG)按照1~p行采取不同的调节控制方法:p行为离主导风1最近行,P 1=0.25p(取整),为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 3n design3为中风状态转速放大系数,1.35≤α 3≤1.45),(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 3n design
②周围风场主要风向为逆向风2时,空冷风机群(ACFG)按照p~1行采取不同的调节控制方法:1行为离逆向风2最近行,P 2=0.75p(取整),为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 3+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 3+0.1)n design
③周围风场主要风向为横风A3时,空冷风机群(ACFG)按照1~q列采取不同的调节控 制方法:q列为离横风A3最近列,Q 1=0.25q(取整),为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 3n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 3n design
④周围风场主要风向为横风B4时,空冷风机群(ACFG)按照q~1列采取不同的调节控制方法:1列为离横风B4最近列,Q 2=0.75q(取整),为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 3n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 3n design
5、高风(v>10m/s)运行状态下空冷风机群(ACFG)调节控制方法:
①周围风场主要风向为主导风1时,空冷风机群(ACFG)按照1~p行采取不同的调节控制方法:p行为离主导风1最近行,P 1=0.25p(取整),为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 4n design4为高风状态转速放大系数,1.55≤α 4≤1.65),(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 4n design
②周围风场主要风向为逆向风2时,空冷风机群(ACFG)按照p~1行采取不同的调节控制方法:1行为离逆向风2最近行,P 2=0.75p(取整),为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 4+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 4+0.1)n design
③周围风场主要风向为横风A3时,空冷风机群(ACFG)按照1~q列采取不同的调节控制方法:q列为离横风A3最近列,Q 1=0.25q(取整),为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 4n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 4n design
④周围风场主要风向为横风B4时,空冷风机群(ACFG)按照q~1列采取不同的调节控制方法:1列为离横风B4最近列,Q 2=0.75q(取整),为第二参考列数,q~Q 2列空冷风机 保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 4n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 4n design
实施例
国内某600MW直接空冷机组,空冷风机群(ACFG)的总行数p为7,总列数q为16,周围风场风速为4m/s,为中风(4≤v<10m/s)运行状态,主要风向为主导风1。受中风状态主导风的影响,第7行空冷风机实际运行风量降低了40%以上,第3~6行空冷风机风量也有不同幅度的下降。
针对上述空冷风机群(ACFG)受主导风1影响风量分配不均的问题,为空冷风机群(ACFG)统筹调节控制方法,通过该方法可以显著改善空冷风机群(ACFG)的风量均匀程度,使得全部空冷风机的运行风量均能到达设计风量。其中,参数设置如下:第一参考行数P 1=0.25p=0.25·7=1.75,取整后P 1=2;中风状态转速放大系数α 3取1.4。按照本发明的中风运行状态下主导风调节控制方法(如图2所示),第3行空冷风机运行转速调节为1.1n design,第7行空冷风机运行转速调节为1.4n design,第4~6行空冷风机运行转速分别调节为1.15n design、1.2n design和1.3n design
空冷风机群(ACFG)受主导风1影响实施统筹调节控制方法后,全部空冷风机的运行风量均能到达设计风量,满足了空冷凝结器实际冷却风量的需求,保证了空冷机组安全稳定运行。

Claims (6)

  1. 一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,包括:
    根据空冷风机群周围风场强度的大小,将空冷风机群的运行状态划分为无风、低风、中风和高风4种运行状态;空冷风机群共有p行、q列,共计p·q台空冷风机,空冷风机群在每种运行状态,分别设定不同的转速调节控制方法,并在空冷风机群周围配置风场的风速、风向监测设备和调节控制设备,用于实现空冷风机群的统筹调节控制和不同运行状态之间的切换。
  2. 根据权利要求1所述的一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,具体实现方法如下:
    确定空冷风机群周围风场强度的大小,根据空冷风机群现场布置情况,将风场划分为主导风(1)、逆向风(2)、横风A(3)和横风B(4);根据周围风场主要风向的风速v,将风场强度划分为无风v≈0m/s、低风0<v<4m/s、中风4≤v<10m/s和高风v>10m/s4种运行状态;每种运行状态采用不同的调节控制方法,即在空冷风机群保持风机叶片角度不变的前提下,采用分区域转速调节控制方法。
  3. 根据权利要求2所述的一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,无风运行状态下空冷风机群调节控制方法如下:
    空冷风机群边缘空冷风机即1、p行和1、q列空冷风机转速由设计转速n design提高为α 1n design,其他区域空冷风机转速保持设计转速n design不变,α 1为无风状态转速放大系数,1.1≤α 1≤1.2。
  4. 根据权利要求2所述的一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,低风运行状态下空冷风机群调节控制方法如下:
    ①周围风场主要风向为主导风(1)时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风(1)最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 2n design,(P 1+1)行 至p行中间行转速由1.1n design逐渐调高到α 2n design,α 2为低风状态转速放大系数,1.15≤α 2≤1.25;
    ②周围风场主要风向为逆向风(2)时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风(2)最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 2+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 2+0.1)n design
    ③周围风场主要风向为横风A(3)时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A(3)最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 2n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 2n design
    ④周围风场主要风向为横风B(4)时,空冷风机群按照q~1列采取不同的调节控制方法:1列为离横风B(4)最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 2n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 2n design
  5. 根据权利要求2所述的一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,中风运行状态下空冷风机群调节控制方法如下:
    ①周围风场主要风向为主导风(1)时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风(1)最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 3n design,(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 3n design,α 3为中风状态转速放大系数,1.35≤α 3≤1.45;
    ②周围风场主要风向为逆向风(2)时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风(2)最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 3+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 3+0.1)n design
    ③周围风场主要风向为横风A(3)时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A(3)最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 3n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 3n design
    ④周围风场主要风向为横风B(4)时,空冷风机群按照q~1列采取不同的调节控制方法:1列为离横风B(4)最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 3n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 3n design
  6. 根据权利要求2所述的一种电站直接空冷机组空冷风机群统筹调节控制方法,其特征在于,高风运行状态下空冷风机群调节控制方法如下:
    ①周围风场主要风向为主导风(1)时,空冷风机群按照1~p行采取不同的调节控制方法:p行为离主导风(1)最近行,P 1=0.25p,为第一参考行数,1~P 1行空冷风机保持设计转速n design不变,(P 1+1)行空冷风机转速提高为1.1n design,p行空冷风机转速提高为α 4n design,(P 1+1)行至p行中间行转速由1.1n design逐渐调高到α 4n design,α 4为高风状态转速放大系数,1.55≤α 4≤1.65;
    ②周围风场主要风向为逆向风(2)时,空冷风机群按照p~1行采取不同的调节控制方法:1行为离逆向风(2)最近行,P 2=0.75p,为第二参考行数,p~P 2行空冷风机保持设计转速n design不变,(P 2-1)行空冷风机转速提高为1.1n design,1行空冷风机转速提高为(α 4+0.1)n design,(P 2-1)行至1行中间行转速由1.1n design逐渐调高到(α 4+0.1)n design
    ③周围风场主要风向为横风A(3)时,空冷风机群按照1~q列采取不同的调节控制方法:q列为离横风A(3)最近列,Q 1=0.25q,为第一参考列数,1~Q 1列空冷风机保持设计转速n design不变,(Q 1+1)列空冷风机转速提高为1.1n design,q列空冷风机转速提高为α 4n design,(Q 1+1)列至q列中间列转速由1.1n design逐渐调高到α 4n design
    ④周围风场主要风向为横风B(4)时,空冷风机群按照q~1列采取不同的调节控制方法: 1列为离横风B(4)最近列,Q 2=0.75q,为第二参考列数,q~Q 2列空冷风机保持设计转速n design不变,(Q 2-1)列空冷风机转速提高为1.1n design,1列空冷风机转速提高为α 4n design,(Q 2-1)列至1列中间列转速由1.1n design逐渐调高到α 4n design
PCT/CN2020/121134 2020-05-13 2020-10-15 一种电站直接空冷机组空冷风机群统筹调节控制方法 WO2021227354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010403173.3A CN111594468B (zh) 2020-05-13 2020-05-13 一种电站直接空冷机组空冷风机群统筹调节控制方法
CN202010403173.3 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227354A1 true WO2021227354A1 (zh) 2021-11-18

Family

ID=72183692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121134 WO2021227354A1 (zh) 2020-05-13 2020-10-15 一种电站直接空冷机组空冷风机群统筹调节控制方法

Country Status (2)

Country Link
CN (1) CN111594468B (zh)
WO (1) WO2021227354A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594468B (zh) * 2020-05-13 2022-04-08 西安热工研究院有限公司 一种电站直接空冷机组空冷风机群统筹调节控制方法
CN113432483B (zh) * 2021-05-24 2022-04-29 东南大学 间接空冷塔塔内风机倾角的自适应调节方法
CN113431791A (zh) * 2021-06-25 2021-09-24 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种直接空冷风机的差异化控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216574U (zh) * 2011-08-01 2012-05-09 山西省电力勘测设计院 一种火力发电厂直接空冷系统改变风机布置的空冷平台
JP2015124686A (ja) * 2013-12-26 2015-07-06 三菱電機株式会社 送風機
CN104848708A (zh) * 2015-04-22 2015-08-19 华北电力大学 一种基于温度场和流速场的空冷岛阵列控制方法
CN107798167A (zh) * 2017-09-21 2018-03-13 东南大学 直接空冷发电机组冷端系统建模与优化方法
CN111594468A (zh) * 2020-05-13 2020-08-28 西安热工研究院有限公司 一种电站直接空冷机组空冷风机群统筹调节控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216575U (zh) * 2011-08-01 2012-05-09 山西省电力勘测设计院 一种发电厂直接空冷机组空冷平台
CN105157444B (zh) * 2015-03-30 2019-07-23 武汉理工大学 直接型空冷岛轴流风机智能控制方法及系统
CN107062936B (zh) * 2017-04-01 2019-07-19 廖原 直接空冷系统的控制方法
CN111121482B (zh) * 2020-01-07 2022-01-25 通辽霍林河坑口发电有限责任公司 极寒地区深度调峰下空冷岛防冻及背压自动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216574U (zh) * 2011-08-01 2012-05-09 山西省电力勘测设计院 一种火力发电厂直接空冷系统改变风机布置的空冷平台
JP2015124686A (ja) * 2013-12-26 2015-07-06 三菱電機株式会社 送風機
CN104848708A (zh) * 2015-04-22 2015-08-19 华北电力大学 一种基于温度场和流速场的空冷岛阵列控制方法
CN107798167A (zh) * 2017-09-21 2018-03-13 东南大学 直接空冷发电机组冷端系统建模与优化方法
CN111594468A (zh) * 2020-05-13 2020-08-28 西安热工研究院有限公司 一种电站直接空冷机组空冷风机群统筹调节控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG KANGTIAN; YAN HONG; SUN DAWEI; WANG XING: "Optimization on Operation Performance of Air Cooling Fan Cluster", THERMAL POWER GENERATION, vol. 43, no. 1, 31 January 2014 (2014-01-31), CN, pages 52 - 56, XP009531791, ISSN: 1002-3364, DOI: 10.3969/j.issn.1002-3364.2014.01.052 *
WANG XING; YAN HONG; SUN DAWEI; DONG KANGTIAN: "Effect of Environmental Air on Operation Performance of the Air Cooling Fan Cluster: Numerical Study", THERMAL POWER GENERATION, vol. 43, no. 6, 30 June 2014 (2014-06-30), CN, pages 112 - 118, XP009531792, ISSN: 1002-3364, DOI: 10.3969/j.issn.1002-3364.2014.06.112 *

Also Published As

Publication number Publication date
CN111594468B (zh) 2022-04-08
CN111594468A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021227354A1 (zh) 一种电站直接空冷机组空冷风机群统筹调节控制方法
CN203240923U (zh) 一种风冷喷雾蒸发冷却塔
CN204730411U (zh) 中央空调冷却水系统节能控制器
CN203036937U (zh) 闭式低温冷却水循环系统
CN103580504A (zh) 一种直流换流阀用阀外冷却系统及其操作方法
CN207006900U (zh) 加装变频器的空冷系统
CN108398035B (zh) 一种辅机冷却水并入主机间冷塔组合冷却系统及方法
CN202810977U (zh) 一种火力发电厂凝汽回热式小机驱动转动设备系统
CN215724291U (zh) 一种适用于空气源的热泵机组
CN110212861B (zh) 一种自然风调速调向的太阳能电池板背板降温装置
CN111397430B (zh) 一种可径向变相同角度的间接空冷导风模块组
CN201449205U (zh) 冷却塔用填料片及淋水填料
CN211503824U (zh) 一种驱动冷却塔风机的水轮机运行工况调节装置
CN204648533U (zh) 一种回水负反馈的智能变频中央空调控制系统
CN203928798U (zh) 一种新型的大型工业节水型闭式空冷塔
CN112944940A (zh) 一种带有导风装置的空冷塔
CN102997706A (zh) 一种改善直接空冷机组换热能力的防风装置
CN110514026A (zh) 模块化工业冷却塔控制系统及其工作方法
CN201724333U (zh) 双交叉流机芯的智能换热节能系统
CN113431791A (zh) 一种直接空冷风机的差异化控制方法
CN104880119A (zh) 一种冷却塔联合控制系统
CN220829101U (zh) 一种用于降低空冷机组背压的装置
CN204524203U (zh) 非晶薄带设备制带机铜辊封闭式循环水冷却系统
CN216482341U (zh) 节电型消除电厂烟气中白烟的闭式空冷系统
CN203203171U (zh) 针对北方化霜的低温型风冷冷热水机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936045

Country of ref document: EP

Kind code of ref document: A1