WO2021227116A1 - 显示装置和终端 - Google Patents

显示装置和终端 Download PDF

Info

Publication number
WO2021227116A1
WO2021227116A1 PCT/CN2020/091456 CN2020091456W WO2021227116A1 WO 2021227116 A1 WO2021227116 A1 WO 2021227116A1 CN 2020091456 W CN2020091456 W CN 2020091456W WO 2021227116 A1 WO2021227116 A1 WO 2021227116A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
row
gray
data signal
Prior art date
Application number
PCT/CN2020/091456
Other languages
English (en)
French (fr)
Inventor
高翔
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/768,597 priority Critical patent/US20220122506A1/en
Publication of WO2021227116A1 publication Critical patent/WO2021227116A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image

Definitions

  • This application relates to the field of display technology, and in particular to a display device and a terminal.
  • the refresh rate becomes higher and higher.
  • the scan signal on the scan line will have a resistance capacitance delay (RC Delay).
  • RC Delay resistance capacitance delay
  • the existing display device has a technical problem that the boundary between the sub-pixels in adjacent rows is not clear and needs to be improved.
  • the embodiments of the present application provide a display device and a terminal to alleviate the technical problem of unclear boundaries between adjacent rows of sub-pixels in the existing display device.
  • This application provides a display device, including:
  • a plurality of sub-pixels, the plurality of sub-pixels are arranged in an array in the display area;
  • a plurality of scan lines the scan lines extend in the horizontal direction, and the scan lines are arranged at intervals along the vertical direction, and each scan line is connected to a row of sub-pixels.
  • the scan lines input scan signals row by row, and control The multiple sub-pixels are opened row by row;
  • a plurality of data lines are perpendicular to the scan lines, and each data line is arranged at intervals along the horizontal direction, and each data line is connected to a column of sub-pixels.
  • the plurality of data lines input data signals to control the opening
  • the sub-pixels of are displayed line by line under the gray scale corresponding to each data signal;
  • the driving chip is used to store the first gray scale corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area, the distance between the first area and the scan signal input end of the scan line is greater than a threshold, the The first area includes at least one column of sub-pixels, and is used to obtain the first gray-level difference between the second gray level corresponding to the first data signal input from the i-th row of sub-pixels in the first area and the first gray level After the value, according to the first gray-scale difference, before the i+1 row sub-pixels are turned on, the first data line corresponding to the sub-pixels in the first area is controlled to input compensation to the i-th row sub-pixels After the second data signal.
  • the driving chip is configured to control the first data line to input the compensated second data line to the i-th row of sub-pixels when the first grayscale difference value is positive.
  • Data signal, the third gray level corresponding to the second data signal is greater than the second gray level.
  • the driving chip is configured to control the first data line to input the compensated second data line to the i-th row of sub-pixels when the first grayscale difference is a negative value.
  • Data signal, the third gray scale corresponding to the second data signal is smaller than the second gray scale.
  • the driving chip is configured to, after obtaining the first gray-scale difference, query a compensation table to obtain the target gray-scale corresponding to the first gray-scale difference, and control the first gray-scale difference.
  • a data line uses the data signal corresponding to the target gray scale as a second data signal, and inputs it to the i-th row of sub-pixels.
  • the driving chip is configured to, after obtaining the first gray-scale difference, query a compensation table to obtain the second gray-scale difference corresponding to the first gray-scale difference, and then The first gray scale difference value and the second gray scale difference value are superimposed to obtain a target gray scale, and then the first data line is controlled to use the data signal corresponding to the target gray scale as a second data signal to the Sub-pixel input in the i-th row.
  • the driving chip is used to calculate the second data signal after obtaining the first gray-scale difference value, and then control the first data line to transfer to the i-th Row sub-pixels input the second data signal.
  • the first area and the display area have the same size.
  • the scan signal input terminal is arranged on the left or right side of the display device, and the first area is located on a side of the display area away from the scan signal input terminal.
  • the scanning signal input terminals are arranged on the left and right sides of the display device, and the first area is located in the middle area of the display area.
  • the driving chip is used to store the first gray level corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area in a buffer.
  • the present application also provides a terminal, including a display device and a housing, the display device including:
  • a plurality of sub-pixels, the plurality of sub-pixels are arranged in an array in the display area;
  • a plurality of scan lines the scan lines extend in the horizontal direction, and the scan lines are arranged at intervals along the vertical direction, and each scan line is connected to a row of sub-pixels.
  • the scan lines input scan signals row by row, and control The multiple sub-pixels are opened row by row;
  • a plurality of data lines are perpendicular to the scan lines, and each data line is arranged at intervals along the horizontal direction, and each data line is connected to a column of sub-pixels.
  • the plurality of data lines input data signals to control the opening
  • the sub-pixels of are displayed line by line under the gray scale corresponding to each data signal;
  • the driving chip is used to store the first gray scale corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area, the distance between the first area and the scan signal input end of the scan line is greater than a threshold, the The first area includes at least one column of sub-pixels, and is used to obtain the first gray-level difference between the second gray level corresponding to the first data signal input from the i-th row of sub-pixels in the first area and the first gray level After the value, according to the first gray-scale difference, before the i+1 row sub-pixels are turned on, the first data line corresponding to the sub-pixels in the first area is controlled to input compensation to the i-th row sub-pixels After the second data signal.
  • the driving chip is configured to control the first data line to input the compensated second data to the i-th row of sub-pixels when the first grayscale difference is a positive value Signal, the third gray level corresponding to the second data signal is greater than the second gray level.
  • the driving chip is used to control the first data line to input the compensated second data to the i-th row of sub-pixels when the first grayscale difference is a negative value Signal, the third gray scale corresponding to the second data signal is smaller than the second gray scale.
  • the driving chip is used to query the compensation table to obtain the target gray level corresponding to the first gray level difference after obtaining the first gray level difference value, and control the first gray level difference value.
  • the data line uses the data signal corresponding to the target gray scale as a second data signal, and inputs it to the i-th row of sub-pixels.
  • the driving chip is used to, after obtaining the first gray-scale difference, query the compensation table to obtain the second gray-scale difference corresponding to the first gray-scale difference, and then compare all The first gray scale difference value and the second gray scale difference value are superimposed to obtain a target gray scale, and then the first data line is controlled to use the data signal corresponding to the target gray scale as the second data signal to the second data signal.
  • the driving chip is used to calculate the second data signal after obtaining the first gray-scale difference, and then control the first data line to move to the i-th row The sub-pixel inputs the second data signal.
  • the first area and the display area have the same size.
  • the scan signal input terminal is arranged on the left or right side of the display device, and the first area is located on a side of the display area away from the scan signal input terminal.
  • the scanning signal input terminals are arranged on the left and right sides of the display device, and the first area is located in the middle area of the display area.
  • the driving chip is used to store the first gray level corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area in a buffer.
  • the present application provides a display device and a terminal.
  • the display device includes a plurality of sub-pixels, a plurality of scan lines, a plurality of data lines, and a driving chip; the plurality of sub-pixels are arranged in an array in the display area;
  • the scan lines extend in the horizontal direction, and the scan lines are arranged at intervals along the vertical direction.
  • Each scan line is connected to a row of sub-pixels.
  • the scan lines input scan signals row by row to control the plurality of sub-pixels. Open row by row; the data line is perpendicular to the scan line, each data line is arranged at intervals along the horizontal direction, and each data line is connected to a column of sub-pixels.
  • the multiple data lines input data signals to control the open The sub-pixels are displayed line by line at the gray scale corresponding to each data signal; the driving chip is used to store the first gray scale corresponding to the to-be-input data signal of the sub-pixel in the i+1 row in the first area, and the first area is connected to the The distance between the scan signal input ends of the scan line is greater than a threshold, and the first area includes at least one column of sub-pixels, and is used to obtain the second gray scale corresponding to the first data signal input from the i-th row of sub-pixels in the first area.
  • the first data line inputs the compensated second data signal to the i-th row of sub-pixels.
  • FIG. 1 is a schematic diagram of a planar structure of a display device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of waveform changes when an RC delay occurs in a scanning signal in the display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a wrong charging situation in a display device of the prior art.
  • FIG. 4 is a schematic diagram of the boundary condition of adjacent rows of sub-pixels in a display device in the prior art.
  • FIG. 5 is a schematic diagram of the improvement of wrong charging in the display device of this application.
  • FIG. 6 is a schematic diagram of the boundary condition of adjacent rows of sub-pixels in the display device of this application.
  • FIG. 7 is a schematic diagram of the operation of the driving chip in the display device of this application.
  • the embodiments of the present application provide a display device and a terminal to alleviate the technical problem of unclear boundaries between adjacent rows of sub-pixels in the existing display device.
  • the present application provides a display device, including a plurality of sub-pixels, a plurality of scan lines, a plurality of data lines, and a driving chip; the plurality of sub-pixels are arranged in an array in the display area; the scan lines extend in the horizontal direction, and each scan line extends in the vertical direction. Vertically spaced, each scan line is connected to a row of sub-pixels.
  • multiple scan lines input scan signals row by row to control multiple sub-pixels to turn on row by row; the data line is perpendicular to the scan line, and each data line is spaced along the horizontal direction.
  • each data line is connected to a column of sub-pixels.
  • the driving chip is used to store the first area
  • the sub-pixels in the i+1th row are turned on according to the first gray-level difference.
  • the first data line corresponding to the sub-pixel in the first area is controlled to input the compensated second data signal to the sub-pixel in the i-th row.
  • a plurality of sub-pixels 10 are arranged in an array in the display area, forming multiple rows and multiple columns, G1, G2,..., Gi, Gi+1,... , Gn represents the first, second,..., ith, i+1 to nth scan lines arranged at intervals from top to bottom in the vertical direction, i and n are all positive integers and i ⁇ n, the scan line extends in the horizontal direction, D1, D2, ..., Dj, Dj+1, ..., Dm represent the first, second, and second lines arranged at intervals from left to right in the horizontal direction.
  • the jth, j+1 to mth data lines, j and m are all positive integers and j ⁇ m
  • the data line is perpendicular to the scan line, that is, extends in the vertical direction.
  • Each scan line is connected to a row of sub-pixels 10, and each sub-pixel 10 in the row includes a pixel drive circuit.
  • the output signal end of the scan line inputs the scan signal Gate to the pixel drive circuit, which will correspond to
  • the m sub-pixels 10 of the row are turned on, and the m data lines input the data signal Data to the pixel driving circuit of each sub-pixel 10 of the row, so that each sub-pixel 10 displays in the gray scale corresponding to each data signal Data.
  • the scan signal Gate input from the left side of the same scan line is used to open a whole row of sub-pixels 10.
  • the scan signal Gate is input from the leftmost side to the The far right is far away, there will be resistance/capacitance delay (RC Delay) to change the rectangular waveform.
  • RC Delay resistance/capacitance delay
  • the data line When the data signal of a certain row of sub-pixels is written, the data line needs to write data signals to the next row of sub-pixels.
  • the scan line corresponding to the current row of sub-pixels the scan signal cannot reach the off potential immediately, but it takes a while to Therefore, when data is written to the sub-pixels in the next row, the sub-pixels in the current row are still in the on state, so a part of the data signals originally written to the sub-pixels in the next row will be written into the sub-pixels in the current row, that is, mischarging occurs.
  • the Data R- means that the data signal written in the next row of sub-pixels is positive. Due to the RC delay of the scan signal, part of the positive data signal originally written to the next row of sub-pixels will be written into the current row of sub-pixels , So that the potential Pixel of the current row sub-pixel R- is high; when the data signal written by the sub-pixels of a certain row is positive, it is represented by Data R+, and the data signal written by the sub-pixels of the next row is negative.
  • each row of sub-pixels includes red sub-pixels R, green sub-pixels G, and blue sub-pixels B.
  • the green sub-pixel G and the blue sub-pixel B are turned off, and only the red sub-pixel R is turned on, then the three rows of sub-pixels display red, and the red sub-pixel R and blue sub-pixel B in the fourth to sixth rows of sub-pixels are turned off, Only the green sub-pixel G is turned on, then the three rows of sub-pixels display green, the red sub-pixel R and the green sub-pixel G in the seventh to ninth rows of sub-pixels are turned off, and only the blue sub-pixel B is turned on, then the three rows of sub-pixels
  • the pixel displays blue. At this time, three color bands of red, green and blue appear in the display panel, as shown in a in FIG. 4.
  • the red sub-pixel R in the first column the red sub-pixel R in the third row from top to bottom is in the on state, and the red sub-pixel R in the fourth row is in the off state, that is, the gray level of the red sub-pixel R in the fourth row is reduced
  • the data signal input by the data line is negative, and when the scanning signal of the scan line has an RC delay, it should be input to the negative electrode in the red sub-pixel R in the fourth row.
  • the sexual data signal will be incorrectly charged into the red sub-pixel R in the third row, making the brightness of the red sub-pixel R in the third row darker.
  • the green sub-pixel G in the second column For the green sub-pixel G in the second column, the green sub-pixel G in the third row from top to bottom is in the off state, and the green sub-pixel G in the fourth row is in the on state. At this time, for the green sub-pixel G in the fourth row, due to scanning When there is an RC delay in the scanning signal of the line, the scanning signal cannot reach the turn-on potential immediately, but takes a while to reach, so that the charging time of the green sub-pixel G in the fourth row is too short, the charging is insufficient, and the brightness will be dark.
  • the boundary between the two rows of sub-pixels is not clear, and black lines will appear, which affects the display effect.
  • the prior art has a corresponding compensation method for insufficient charging, and the compensation method of the present application mainly compensates for the problem of incorrect charging.
  • a plurality of sub-pixels 10 are arranged in an array in the display area, wherein at least one column of sub-pixels is located in the first area 100, and the first area 100 is connected to the scan line.
  • the distance of the scanning signal input terminal is greater than the threshold, that is, the sub-pixels in the first region 100 are farther from the scanning signal input terminal, and the scanning signal will have RC delay, so the sub-pixels in this region can be compensated.
  • the threshold will be different.
  • Each data line corresponding to the data signal input to the sub-pixels in the first region 100 is the first data line.
  • the size of the first area 100 and the display area are the same, that is, all sub-pixels in the display device are compensated.
  • the scanning signal input terminal is arranged on the left or right side of the display device, and the first area 100 is located on the side of the display area away from the scanning signal input terminal.
  • the display device adopts a single-side scanning mode.
  • the scan signal input terminal is on the left side of the display device, the first area 100 is located on the right side of the display area, and the distance from the scan signal input terminal is greater than the threshold.
  • the first area 100 is located on the left side of the display area, and the distance from the scanning signal input terminal is greater than the threshold.
  • the scanning signal input terminals are arranged on the left and right sides of the display device, and the first area is located in the middle area of the display area.
  • the display device adopts a double-sided scanning method, and the first area 100 is located in the middle area of the display area, and the distance from the left and right scanning signal input terminals is greater than the threshold.
  • the driving chip is used to store the first gray scale corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area 100, that is, the sub-pixels in the i+1th row
  • first store the first gray scale corresponding to the data signal and then obtain the second gray scale and the first gray scale corresponding to the first data signal input from the i-th row of sub-pixels in the first area 100
  • the first gray-scale difference value, and according to the first gray-scale difference value, before the sub-pixels in the i+1th row are turned on, the first data line corresponding to the sub-pixels in the first region 100 is controlled to input the compensated sub-pixels in the i-th row
  • the second data signal is used to store the first gray scale corresponding to the to-be-input data signal of the sub-pixels in the i+1th row in the first area 100, that is, the sub-pixels in the i+1th row
  • the scanning signal will have an RC delay, and the data signal of the i+1th row will be incorrectly charged into the sub-pixels of the i-th row.
  • the sub-pixels of the i+1th row in the first region 100 Before opening, according to the first gray scale difference obtained by the driver chip, first perform data compensation on the i-th row of sub-pixels in the first area 100, so that the mischarged data signal of the i-th row of sub-pixels is cancelled, and then input
  • the data signals of the sub-pixels in the i+1th row alleviate the mischarging phenomenon, make the boundaries of the sub-pixels in adjacent rows clear, and improve the display effect.
  • the driver chip is used to control the first data line to input the compensated second data signal to the i-th row of sub-pixels when the first grayscale difference is a positive value, and the second data signal corresponds to The third gray scale is greater than the second gray scale.
  • the gray scale corresponding to the data signal to be input in the sub-pixels in the i+1 row is the first gray scale
  • the gray scale corresponding to the first data signal input by the sub-pixels in the i-th row is the second gray scale.
  • the driver chip obtains the first gray-scale difference between the second gray-scale and the first gray-scale.
  • the first gray-scale difference is a positive value, it indicates that the data signal of the i-th row of sub-pixels in the first region 100 has a positive polarity.
  • the driver chip controls the first data line to input the compensated second data signal to the i-th row of sub-pixels, and the third gray scale corresponding to the second data signal is greater than the second gray scale, that is, the The row sub-pixels are overcharged, so that the potential Pixel R+ of the i-th row sub-pixel is adjusted higher.
  • the difference between the second data and the first data will cancel out the negative data signal that was incorrectly charged to the i-th row sub-pixel , So that the brightness of the sub-pixels in the i-th row can be adjusted to a normal level.
  • the driver chip is used to control the first data line to input the compensated second data signal to the i-th row of sub-pixels when the first grayscale difference is a negative value, and the second data signal corresponds to The third gray scale is smaller than the second gray scale.
  • the driving chip obtains the first gray-scale difference between the second gray-scale and the first gray-scale.
  • the data signal is negative polarity, represented by Data R-
  • the data signal of the sub-pixel in the i+1th row is positive, and the positive data signal of the sub-pixel in the i+1th row will be incorrectly charged to the sub-pixel in the i-th row , Making the brightness of the i-th row sub-pixels brighter.
  • the driving chip controls the first data line to input the compensated second data signal to the i-th row sub-pixels, and the third gray scale corresponding to the second data signal is smaller than the second
  • the gray scale causes the potential Pixel R- of the i-th row of sub-pixels to be lowered.
  • the difference between the second data and the first data will cancel out the positive polarity data signal that is incorrectly charged to the i-th row of sub-pixels, so that the The brightness of the sub-pixels in the i-th row is adjusted to a normal level.
  • the sub-pixel R is in the open state, and the red sub-pixel R in the fourth row is in the closed state, that is, the gray level of the red sub-pixel R in the fourth row is in a reduced state, so the first gray-level difference is positive, and the driving chip controls the first
  • the data line inputs the compensated second data signal to the third row of sub-pixels, and the third gray scale corresponding to the second data signal is greater than the second gray scale, so that the brightness of the red sub-pixel R in the third row is increased, so that the third row In the area 11 where the sub-pixels and the fourth row of sub-pixels are located, the boundary between the two rows of sub-pixels is clear, no black lines appear, and the display effect is improved.
  • the driving chip controls the first data line to input the third data signal to the i-th row of sub-pixels according to the positive or negative of the first gray-scale difference, so as to The wrong charging of the sub-pixels in row i is compensated to keep the brightness at a normal level.
  • the driving chip controls the first data line to input the third data signal the specific value of the third data signal can be obtained in different ways.
  • the driving chip is used to query the compensation table to obtain the target gray scale corresponding to the first gray scale difference after obtaining the first gray scale difference, and control the first data line to set the target gray scale corresponding to the target gray scale.
  • the data signal is used as the second data signal and is input to the i-th row of sub-pixels.
  • Line i+1 represents the sub-pixels in row i+1
  • Line i represents the sub-pixels in row i
  • the first gray level corresponding to the to-be-input data signal of the sub-pixels in row i+1 is 0.
  • the second gray scale corresponding to the first data signal of the sub-pixel in the i-th row is 128 for description.
  • the first gray level 0 corresponding to the data signal is stored in the buffer buffer of the driving chip, and then the driving chip obtains the first area 100
  • the first gray level difference 128 between the second gray level 128 and the first gray level 0 corresponding to the first data signal input by the sub-pixels in the i-th row, the first gray-level difference 128 is a positive value, indicating that the i+ The gray level of one row of sub-pixels is reduced relative to the i-th row.
  • the driver chip obtains the target gray level 135 corresponding to the first gray level difference 128 from the compensation table.
  • the target gray level refers to the gray level when the brightness of the sub-pixel in the i-th row is normal.
  • the compensation table is a mischarge compensation table pre-stored in the driver chip. After the target gray level 135 is queried, the first data line is controlled to be The data signal corresponding to the target gray scale 135 is used as the second data signal and is input to the sub-pixels in the i-th row.
  • the driving chip is used to, after obtaining the first gray-scale difference, query the compensation table to obtain the second gray-scale difference corresponding to the first gray-scale difference, and then compare the first gray-scale difference with The second gray scale difference is superimposed to obtain the target gray scale, and then the first data line is controlled to use the data signal corresponding to the target gray scale as the second data signal to input to the i-th row of sub-pixels.
  • the driving chip first obtains the first gray level difference 128 between the second gray level 128 and the first gray level 0 corresponding to the first data signal input from the i-th row of sub-pixels in the first area 100, and the first gray level
  • the difference 128 is a positive value, indicating that the gray scale of the sub-pixels in the i+1th row is reduced relative to the i-th row, and the driver chip obtains the first gray scale difference 128 from the compensation table.
  • the second gray-scale difference of 128 corresponds to the second gray-scale difference 7, where the second gray-scale difference 7 is the difference between the first gray-scale difference and the target gray-scale 1, and then the first gray-scale difference
  • the value 127 is superimposed with the second gray level difference value 7 to obtain the target gray level 135, and then the first data line is controlled to use the data signal corresponding to the target gray level 135 as the second data signal and input to the i-th row of sub-pixels.
  • the driving chip is used to obtain the second data signal by calculation after obtaining the first grayscale difference, and then control the first data line to input the second data signal to the i-th row of sub-pixels.
  • the driver chip first obtains the first gray level difference 128 between the second gray level 128 and the first gray level 0 corresponding to the first data signal input from the i-th row of sub-pixels in the first area 100, and then directly calculates the current The value of the second data signal that needs to be input when the first gray level difference is 128, and then the first data line is controlled to use the data signal corresponding to the target gray level 135 as the second data signal to input to the i-th row of sub-pixels.
  • the i-th Row sub-pixels perform data compensation, and then input the data signal of the i+1th row sub-pixels, so that the compensation data signal of the i-th row sub-pixels and the wrong charging data signal cancel each other, thereby alleviating the wrong charging phenomenon, and making adjacent rows
  • the boundaries of the sub-pixels are clear, which improves the display effect.
  • the present application also provides a terminal, including a display device and a housing, wherein the display device is the display device described in any of the foregoing embodiments.
  • the present application provides a display device and a terminal.
  • the display device includes a plurality of sub-pixels, a plurality of scan lines, a plurality of data lines, and a driving chip; the plurality of sub-pixels are arranged in an array in the display area; the scan lines extend in the horizontal direction, each The scan lines are arranged at intervals in the vertical direction, and each scan line is connected to a row of sub-pixels.
  • multiple scan lines input scan signals line by line to control multiple sub-pixels to turn on line by line; data lines are perpendicular to the scan lines, and each data line Set at intervals along the horizontal direction, each data line is connected to a column of sub-pixels.
  • the drive chip is used for storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置和终端,显示装置中驱动芯片用于存储第一区域(100)内第i+1行子像素的待输入数据信号对应的第一灰阶、以及第i行子像素输入的第一数据信号对应的第二灰阶与第一灰阶的第一灰阶差值,并在第i+1行子像素打开之前,控制第一数据线向第i行子像素输入补偿后的第二数据信号。缓解了错充现象。

Description

显示装置和终端 技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置和终端。
背景技术
随着显示面板的尺寸越来越大,刷新率越来越高,在超大尺寸下,扫描线上的扫描信号会出现电阻电容延迟(RC Delay),使得本该写入下一行子像素中的数据信号写入到本行子像素中,即发生错充现象,造成相邻行子像素间的边界不清晰,影响显示效果。
因此,现有的显示装置存在相邻行子像素间的边界不清晰的技术问题,需要改进。
技术问题
本申请实施例提供一种显示装置和终端,用以缓解现有显示装置中相邻行子像素间的边界不清晰的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示装置,包括:
多个子像素,所述多个子像素在显示区内呈阵列排布;
多条扫描线,所述扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,所述多条扫描线逐行输入扫描信号,控制所述多个子像素逐行打开;
多条数据线,所述数据线与所述扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,所述多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;
驱动芯片,用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,所述第一区域与所述扫描线的扫描信号输入端的距离大于阈值,所述第一区域内包括至少一列子像素,并用于在获取所述第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值后,根据所述第一灰阶差值,在所述第i+1行子像素打开之前,控制所述第一区域内子像素对应的第一数据线向所述第i行子像素输入补偿后的第二数据信号。
在本申请的显示装置中,所述驱动芯片用于,在所述第一灰阶差值为正值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶大于所述第二灰阶。
在本申请的显示装置中,所述驱动芯片用于,在所述第一灰阶差值为负值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶小于所述第二灰阶。
在本申请的显示装置中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的目标灰阶,并控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
在本申请的显示装置中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的第二灰阶差值,再将所述第一灰阶差值与所述第二灰阶差值叠加得到目标灰阶,然后控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
在本申请的显示装置中,所述驱动芯片用于,在获取所述第一灰阶差值后,计算得到所述第二数据信号,然后控制所述第一数据线将向所述第i行子像素输入所述第二数据信号。
在本申请的显示装置中,所述第一区域与所述显示区大小相等。
在本申请的显示装置中,所述扫描信号输入端设置在所述显示装置的左侧或右侧,所述第一区域位于所述显示区内远离所述扫描信号输入端的一侧。
在本申请的显示装置中,所述扫描信号输入端设置在所述显示装置的左侧和右侧,所述第一区域位于所述显示区内的中间区域。
在本申请的显示装置中,所述驱动芯片用于,将所述第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶存储至缓存器中。
本申请还提供一种终端,包括显示装置和外壳,所述显示装置包括:
多个子像素,所述多个子像素在显示区内呈阵列排布;
多条扫描线,所述扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,所述多条扫描线逐行输入扫描信号,控制所述多个子像素逐行打开;
多条数据线,所述数据线与所述扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,所述多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;
驱动芯片,用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,所述第一区域与所述扫描线的扫描信号输入端的距离大于阈值,所述第一区域内包括至少一列子像素,并用于在获取所述第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值后,根据所述第一灰阶差值,在所述第i+1行子像素打开之前,控制所述第一区域内子像素对应的第一数据线向所述第i行子像素输入补偿后的第二数据信号。
在本申请的终端中,所述驱动芯片用于,在所述第一灰阶差值为正值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶大于所述第二灰阶。
在本申请的终端中,所述驱动芯片用于,在所述第一灰阶差值为负值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶小于所述第二灰阶。
在本申请的终端中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的目标灰阶,并控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
在本申请的终端中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的第二灰阶差值,再将所述第一灰阶差值与所述第二灰阶差值叠加得到目标灰阶,然后控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
在本申请的终端中,所述驱动芯片用于,在获取所述第一灰阶差值后,计算得到所述第二数据信号,然后控制所述第一数据线将向所述第i行子像素输入所述第二数据信号。
在本申请的终端中,所述第一区域与所述显示区大小相等。
在本申请的终端中,所述扫描信号输入端设置在所述显示装置的左侧或右侧,所述第一区域位于所述显示区内远离所述扫描信号输入端的一侧。
在本申请的终端中,所述扫描信号输入端设置在所述显示装置的左侧和右侧,所述第一区域位于所述显示区内的中间区域。
在本申请的终端中,所述驱动芯片用于,将所述第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶存储至缓存器中。
有益效果
本申请的有益效果:本申请提供一种显示装置和终端,显示装置包括多个子像素、多条扫描线、多条数据线和驱动芯片;所述多个子像素在显示区内呈阵列排布;所述扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,所述多条扫描线逐行输入扫描信号,控制所述多个子像素逐行打开;所述数据线与所述扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,所述多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;驱动芯片用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,所述第一区域与所述扫描线的扫描信号输入端的距离大于阈值,所述第一区域内包括至少一列子像素,并用于在获取所述第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值后,根据所述第一灰阶差值,在所述第i+1行子像素打开之前,控制所述第一区域内子像素对应的第一数据线向所述第i行子像素输入补偿后的第二数据信号。本申请在第一区域内的第i+1行子像素打开之前,根据驱动芯片获取到的第一灰阶差值,先对第一区域内的第i行子像素进行数据补偿,然后再输入第i+1行子像素的数据信号,使得第i行子像素的补偿数据信号和错充数据信号相互抵消,从而缓解了错充现象,使得相邻行子像素的边界清晰,提高了显示效果。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示装置的平面结构示意图。
图2为本申请实施例提供的显示装置中扫描信号出现RC延迟时的波形变化示意图。
图3为现有技术的显示装置中错充情况示意图。
图4为现有技术的显示装置中相邻行子像素边界情况示意图。
图5为本申请的显示装置中错充改善情况示意图。
图6为本申请的显示装置中相邻行子像素边界情况示意图。
图7为本申请的显示装置中驱动芯片工作示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相近的单元是用以相同标号表示。
本申请实施例提供一种显示装置和终端,用以缓解现有显示装置中相邻行子像素间的边界不清晰的技术问题。
本申请提供一种显示装置,包括多个子像素、多条扫描线、多条数据线和驱动芯片;多个子像素在显示区内呈阵列排布;扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,多条扫描线逐行输入扫描信号,控制多个子像素逐行打开;数据线与扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;驱动芯片用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,第一区域与扫描线的扫描信号输入端的距离大于阈值,第一区域内包括至少一列子像素,并用于在获取第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与第一灰阶的第一灰阶差值后,根据第一灰阶差值,在第i+1行子像素打开之前,控制第一区域内子像素对应的第一数据线向第i行子像素输入补偿后的第二数据信号。
如图1所示,本申请的显示装置中,多个子像素10在显示区内呈阵列排布,形成多行和多列,G1、G2、...、Gi、Gi+1、...、Gn表示沿竖直方向自上而下间隔设置的第1条、第2条、...、第i条、第i+1条至第n条扫描线,i、n均为正整数且i<n,扫描线沿水平方向延伸,D1、D2、...、Dj、Dj+1、...、Dm表示沿水平方向自左向右间隔设置的第1条、第2条、...、第j条、第j+1条至第m条数据线,j、m均为正整数且j<m,数据线与扫描线垂直,即沿竖直方向延伸。每条扫描线均连接一行子像素10,该行中每个子像素10均包括像素驱动电路,在显示装置进入的工作阶段后,扫描线的输出信号端向像素驱动电路输入扫描信号Gate,将对应行的m个子像素10打开,m条数据线向该行的每个子像素10的像素驱动电路中输入数据信号Data,使各子像素10在各数据信号Data对应的灰阶下进行显示。
如图2所示,同一条扫描线中由左侧输入的扫描信号Gate,用于打开一整行的子像素10,然而,在大尺寸的显示面板中,扫描信号Gate由最左侧输到最右侧距离较远,会出现电阻/电容延迟 (RC Delay),使得矩形的波形发生改变。
当某一行子像素写入数据信号结束后,数据线要向下一行子像素写入数据信号,而当前行子像素对应的扫描线中,扫描信号不能立刻达到关闭电位,而是需要一段时间才能达到,因此在下一行子像素写入数据时,当前行子像素仍然处于开启状态,因此原本要写入下一行子像素的数据信号会有一部分写入到当前行子像素中,即出现错充。
如图3所示,在现有的液晶显示面板中,当某一行子像素写入的数据信号为负极性时,用Data R-表示,则下一行子像素写入的数据信号为正极性,由于扫描信号的RC延迟,因此原本要写入下一行子像素的正极性数据信号会有一部分写入到当前行子像素中,使得当前行子像素的电位Pixel R-偏高;当某一行子像素写入的数据信号为正极性时,用Data R+表示,则下一行子像素写入的数据信号为负极性,由于扫描信号的RC延迟,因此原本要写入下一行子像素的负极性数据信号会有一部分写入到当前行子像素中,使得当前行子像素的电位Pixel R+偏低。
如图4所示,从现有显示面板中取9行子像素,每行子像素均包括红色子像素R、绿色子像素G和蓝色子像素B,将第1至3行子像素中的绿色子像素G和蓝色子像素B关闭,仅打开红色子像素R,则该3行子像素显示红色,将第4至6行子像素中的红色子像素R和蓝色子像素B关闭,仅打开绿色子像素G,则该3行子像素显示绿色,将第7至9行子像素中的红色子像素R和绿色子像素G关闭,仅打开蓝色子像素B,则该3行子像素显示蓝色。此时,显示面板中呈现红色、绿色和蓝色三条色带,如图4中的a所示。
为方便表述,取前6行子像素进行说明,如图4中的b所示。对于第1列的红色子像素R,自上而下第3行红色子像素R为打开状态,第4行红色子像素R为关闭状态,即第4行红色子像素R的灰阶是减小状态,此时,对于第4行红色子像素R,数据线输入的数据信号为负极性,而在扫描线的扫描信号出现RC延迟时,原本要输入到第4行红色子像素R中的负极性数据信号会错充到第3行红色子像素R中,使得第3行红色子像素R的亮度偏暗。
对于第二列的绿色子像素G,自上而下第3行绿色子像素G为关闭状态,第4行绿色子像素G为打开状态,此时,对于第4行绿色子像素G,由于扫描线的扫描信号出现RC延迟时,扫描信号不能立刻达到开启电位,而是需要一段时间才能达到,使得第4行绿色子像素G的充电时间过短,充电不足,亮度也会偏暗。
由于充电不足和错充的同时影响,在第3行子像素与第4行子像素所在区域11内,两行子像素边界不清晰,会出现黑线,影响显示效果。现有技术对于充电不足已有相应的补偿方法,本申请的补偿方式主要针对错充问题进行补偿。
如图1所示,在本申请实施例提供的显示装置中,多个子像素10在显示区内阵列排布,其中至少一列子像素位于第一区域100中,其中第一区域100与扫描线的扫描信号输入端的距离大于阈值,即在第一区域100内的子像素距离扫描信号输入端较远,扫描信号会发生RC延迟,因此可以对该区域内的子像素进行补偿。针对不同的机种和尺寸,阈值也会不同。对应向第一区域100内的子像素输入数据信号的各数据线为第一数据线。
在一种实施例中,第一区域100与显示区大小相等,即对于显示装置中所有子像素均进行补偿。
在一种实施例中,扫描信号输入端设置在显示装置的左侧或右侧,第一区域100位于显示区内远离扫描信号输入端的一侧。此时,显示装置采用单侧扫描方式,当扫描信号输入端在显示装置左侧时,第一区域100位于显示区内的右侧,且与扫描信号输入端的距离大于阈值,当扫描信号输入端在显示装置右侧时,第一区域100位于显示区内的左侧,且与扫描信号输入端的距离大于阈值。
在一种实施例中,扫描信号输入端设置在显示装置的左侧和右侧,第一区域位于显示区内的中间区域。此时,显示装置采用双侧扫描的方式,第一区域100位于显示区内的中间区域,且与左侧和右侧的扫描信号输入端的距离均大于阈值。
在本申请中,在显示装置进入工作阶段后,驱动芯片用于存储第一区域100内第i+1行子像素的待输入数据信号对应的第一灰阶,即第i+1行子像素在输入数据信号之前,先将该数据信号对应的第一灰阶存储起来,然后获取第一区域100内第i行子像素输入的第一数据信号对应的第二灰阶与第一灰阶的第一灰阶差值,并根据第一灰阶差值,在第i+1行子像素打开之前,控制第一区域100内子像素对应的第一数据线向第i行子像素输入补偿后的第二数据信号。
在第一区域100内,扫描信号会出现RC延迟,第i+1行的数据信号会错充到第i行的子像素中,本申请在第一区域100内的第i+1行子像素打开之前,根据驱动芯片获取到的第一灰阶差值,先对第一区域100内的第i行子像素进行数据补偿,使得第i行子像素的错充数据信号被抵消,然后再输入第i+1行子像素的数据信号,从而缓解了错充现象,使得相邻行子像素的边界清晰,提高了显示效果。
在一种实施例中,驱动芯片用于,在第一灰阶差值为正值时,控制第一数据线向第i行子像素输入补偿后的第二数据信号,第二数据信号对应的第三灰阶大于第二灰阶。
如图5所示,第i+1行子像素中待输入的数据信号对应的灰阶为第一灰阶,第i行子像素输入的第一数据信号对应的灰阶为第二灰阶,驱动芯片获取第二灰阶与第一灰阶的第一灰阶差值,当第一灰阶差值为正值时,表明第一区域100中第i行子像素的数据信号为正极性,用Data R+表示,第i+1行子像素的数据信号为负极性,第i+1行子像素的负极性数据信号会被错充到第i行子像素中时,使得第i行子像素亮度偏暗,此时,驱动芯片控制第一数据线向第i行子像素输入补偿后的第二数据信号,且第二数据信号对应的第三灰阶大于第二灰阶,即对第i行子像素进行过充处理,使得第i行子像素的电位Pixel R+被调高,第二数据与第一数据的差值会将错充到第i行子像素中的负极性数据信号抵消掉,从而可以将第i行子像素亮度调节至正常水平。
在一种实施例中,驱动芯片用于,在第一灰阶差值为负值时,控制第一数据线向第i行子像素输入补偿后的第二数据信号,第二数据信号对应的第三灰阶小于第二灰阶。
如图5所示,驱动芯片获取第二灰阶与第一灰阶的第一灰阶差值,当第一灰阶差值为负值时,表明第一区域100中第i行子像素的数据信号为负极性,用Data R-表示,第i+1行子像素的数据信号为正极性,第i+1行子像素的正极性数据信号会被错充到第i行子像素中时,使得第i行子像素亮度偏亮,此时,驱动芯片控制第一数据线向第i行子像素输入补偿后的第二数据信号,且第二数据信号对应的第三灰阶小于第二灰阶,使得第i行子像素的电位Pixel R-被调低,第二数据与第一数据的差值会将错充到第i行子像素中的正极性数据信号抵消掉,从而可以将第i行子像素亮度调节至正常水平。
如图6所示,当采用和图4中相同的点亮方式时,显示装置中也呈现红色、绿色和蓝色三条色带,如图6中的a所示。为方便表述,同样取前6行子像素进行说明,如图6中的b所示。对于绿色子像素G的充电不足补偿采用现有的补偿方式,对于红色子像素R的错充现象,在第4行红色子像素R的待输入数据信号输入之前,先将待输入数据信号对应的第一灰阶存储在驱动芯片中,然后驱动芯片获取第3行红色子像素R的第一数据信号对应的第二灰阶与第一灰阶的第一灰阶差值,由于第3行红色子像素R为打开状态,第4行红色子像素R为关闭状态,即第4行红色子像素R的灰阶是减小状态,因此第一灰阶差值为正值,驱动芯片控制第一数据线向第3行子像素输入补偿后的第二数据信号,第二数据信号对应的第三灰阶大于第二灰阶,使得第3行红色子像素R的亮度提高,从而使得第3行子像素与第4行子像素所在区域11内,两行子像素的边界清晰,不会出现黑线,提高了显示效果。
由上述实施例可知,驱动芯片在获取到第一灰阶差值后,根据第一灰阶差值的正负,控制第一数据线向第i行子像素输入第三数据信号,以对第i行子像素的错充进行补偿,使其亮度处于正常水平。驱动芯片在控制第一数据线输入第三数据信号时,可通过不同方式得到第三数据信号的具体数值。
在一种实施例中,驱动芯片用于,在获取第一灰阶差值后,查询补偿表得到第一灰阶差值对应的目标灰阶,并控制第一数据线将目标灰阶对应的数据信号作为第二数据信号,向第i行子像素输入。
如图7所示,Line i+1表示第i+1行子像素,Line i表示第i行子像素,以第i+1行子像素的待输入数据信号对应的第一灰阶为0,第i行子像素的第一数据信号对应的第二灰阶为128进行说明。第一区域100内第i+1行子像素的数据信号在输入之前,先将该数据信号对应的第一灰阶0存储在驱动芯片的缓存器Buffer中,然后,驱动芯片获取第一区域100内第i行子像素输入的第一数据信号对应的第二灰阶128与第一灰阶0的第一灰阶差值128,该第一灰阶差值128为正值,表明第i+1行子像素的灰阶相对于第i行是减小的,则驱动芯片在获取到第一灰阶差值128后,从补偿表中得到第一灰阶差值128对应的目标灰阶135,目标灰阶是指第i行子像素的亮度正常时的灰阶,补偿表为预先存储在驱动芯片中的错充补偿表,在查询到目标灰阶135后,再控制第一数据线将目标灰阶135对应的数据信号作为第二数据信号,向第i行子像素输入。
在一种实施例中,驱动芯片用于,在获取第一灰阶差值后,查询补偿表得到第一灰阶差值对应的第二灰阶差值,再将第一灰阶差值与第二灰阶差值叠加得到目标灰阶,然后控制第一数据线将目标灰阶对应的数据信号作为第二数据信号,向第i行子像素输入。此时,驱动芯片先获取第一区域100内第i行子像素输入的第一数据信号对应的第二灰阶128与第一灰阶0的第一灰阶差值128,该第一灰阶差值128为正值,表明第i+1行子像素的灰阶相对于第i行是减小的,则驱动芯片在获取到第一灰阶差值128后,从补偿表中得到第一灰阶差值128对应的第二灰阶差值7,其中第二灰阶差值7为第一灰阶差值与目标灰阶1之间的差值,然后,再将第一灰阶差值127与第二灰阶差值7进行叠加,得到目标灰阶135,再控制第一数据线将目标灰阶135对应的数据信号作为第二数据信号,向第i行子像素输入。
在一种实施例中,驱动芯片用于,在获取第一灰阶差值后,计算得到第二数据信号,然后控制第一数据线将向第i行子像素输入第二数据信号。此时,驱动芯片先获取第一区域100内第i行子像素输入的第一数据信号对应的第二灰阶128与第一灰阶0的第一灰阶差值128,然后直接计算得到当第一灰阶差值为128时需要输入的第二数据信号的数值,再控制第一数据线将目标灰阶135对应的数据信号作为第二数据信号,向第i行子像素输入。
通过上述实施例可知,本申请的显示装置,在第一区域内的第i+1行子像素打开之前,根据驱动芯片获取到的第一灰阶差值,先对第一区域内的第i行子像素进行数据补偿,然后再输入第i+1行子像素的数据信号,使得第i行子像素的补偿数据信号和错充数据信号相互抵消,从而缓解了错充现象,使得相邻行子像素的边界清晰,提高了显示效果。
本申请还提供一种终端,包括显示装置和外壳,其中显示装置为上述任一实施例所述的显示装置。
根据以上实施例可知:
本申请提供一种显示装置和终端,显示装置包括多个子像素、多条扫描线、多条数据线、驱动芯片;多个子像素在显示区内呈阵列排布;扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,多条扫描线逐行输入扫描信号,控制多个子像素逐行打开;数据线与扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;驱动芯片用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,第一区域与扫描线的扫描信号输入端的距离大于阈值,第一区域内包括至少一列子像素,并用于获取第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值,并根据第一灰阶差值,在第i+1行子像素打开之前,控制第一区域内子像素对应的第一数据线向第i行子像素输入补偿后的第二数据信号。本申请在第一区域内的第i+1行子像素打开之前,根据驱动芯片获取到的第一灰阶差值,先对第一区域内的第i行子像素进行数据补偿,然后再输入第i+1行子像素的数据信号,使得第i行子像素的补偿数据信号和错充数据信号相互抵消,从而缓解了错充现象,使得相邻行子像素的边界清晰,提高了显示效果。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种显示装置和终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示装置,其包括:
    多个子像素,所述多个子像素在显示区内呈阵列排布;
    多条扫描线,所述扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,所述多条扫描线逐行输入扫描信号,控制所述多个子像素逐行打开;
    多条数据线,所述数据线与所述扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,所述多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;
    驱动芯片,用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,所述第一区域与所述扫描线的扫描信号输入端的距离大于阈值,所述第一区域内包括至少一列子像素,并用于在获取所述第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值后,根据所述第一灰阶差值,在所述第i+1行子像素打开之前,控制所述第一区域内子像素对应的第一数据线向所述第i行子像素输入补偿后的第二数据信号。
  2. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,在所述第一灰阶差值为正值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶大于所述第二灰阶。
  3. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,在所述第一灰阶差值为负值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶小于所述第二灰阶。
  4. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的目标灰阶,并控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
  5. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的第二灰阶差值,再将所述第一灰阶差值与所述第二灰阶差值叠加得到目标灰阶,然后控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
  6. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,计算得到所述第二数据信号,然后控制所述第一数据线将向所述第i行子像素输入所述第二数据信号。
  7. 如权利要求1所述的显示装置,其中,所述第一区域与所述显示区大小相等。
  8. 如权利要求1所述的显示装置,其中,所述扫描信号输入端设置在所述显示装置的左侧或右侧,所述第一区域位于所述显示区内远离所述扫描信号输入端的一侧。
  9. 如权利要求1所述的显示装置,其中,所述扫描信号输入端设置在所述显示装置的左侧和右侧,所述第一区域位于所述显示区内的中间区域。
  10. 如权利要求1所述的显示装置,其中,所述驱动芯片用于,将所述第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶存储至缓存器中。
  11. 一种终端,其包括显示装置和外壳,所述显示装置包括:
    多个子像素,所述多个子像素在显示区内呈阵列排布;
    多条扫描线,所述扫描线沿水平方向延伸,各扫描线沿竖直方向间隔设置,每条扫描线连接一行子像素,在工作阶段,所述多条扫描线逐行输入扫描信号,控制所述多个子像素逐行打开;
    多条数据线,所述数据线与所述扫描线垂直,各数据线沿水平方向间隔设置,每条数据线连接一列子像素,在工作阶段,所述多条数据线输入数据信号,控制打开的子像素在各数据信号对应的灰阶下逐行显示;
    驱动芯片,用于存储第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶,所述第一区域与所述扫描线的扫描信号输入端的距离大于阈值,所述第一区域内包括至少一列子像素,并用于在获取所述第一区域内第i行子像素输入的第一数据信号对应的第二灰阶与所述第一灰阶的第一灰阶差值后,根据所述第一灰阶差值,在所述第i+1行子像素打开之前,控制所述第一区域内子像素对应的第一数据线向所述第i行子像素输入补偿后的第二数据信号。
  12. 如权利要求11所述的终端,其中,所述驱动芯片用于,在所述第一灰阶差值为正值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶大于所述第二灰阶。
  13. 如权利要求11所述的终端,其中,所述驱动芯片用于,在所述第一灰阶差值为负值时,控制所述第一数据线向所述第i行子像素输入补偿后的第二数据信号,所述第二数据信号对应的第三灰阶小于所述第二灰阶。
  14. 如权利要求11所述的终端,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的目标灰阶,并控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
  15. 如权利要求11所述的终端,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,查询补偿表得到所述第一灰阶差值对应的第二灰阶差值,再将所述第一灰阶差值与所述第二灰阶差值叠加得到目标灰阶,然后控制所述第一数据线将所述目标灰阶对应的数据信号作为第二数据信号,向所述第i行子像素输入。
  16. 如权利要求11所述的终端,其中,所述驱动芯片用于,在获取所述第一灰阶差值后,计算得到所述第二数据信号,然后控制所述第一数据线将向所述第i行子像素输入所述第二数据信号。
  17. 如权利要求11所述的显示装置,其中,所述第一区域与所述显示区大小相等。
  18. 如权利要求11所述的终端,其中,所述扫描信号输入端设置在所述显示装置的左侧或右侧,所述第一区域位于所述显示区内远离所述扫描信号输入端的一侧。
  19. 如权利要求11所述的终端,其中,所述扫描信号输入端设置在所述显示装置的左侧和右侧,所述第一区域位于所述显示区内的中间区域。
  20. 如权利要求11所述的终端,其中,所述驱动芯片用于,将所述第一区域内第i+1行子像素的待输入数据信号对应的第一灰阶存储至缓存器中。
PCT/CN2020/091456 2020-05-13 2020-05-21 显示装置和终端 WO2021227116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,597 US20220122506A1 (en) 2020-05-13 2020-05-21 Display device and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010401340.0A CN111554242B (zh) 2020-05-13 2020-05-13 显示装置和终端
CN202010401340.0 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227116A1 true WO2021227116A1 (zh) 2021-11-18

Family

ID=72001607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091456 WO2021227116A1 (zh) 2020-05-13 2020-05-21 显示装置和终端

Country Status (3)

Country Link
US (1) US20220122506A1 (zh)
CN (1) CN111554242B (zh)
WO (1) WO2021227116A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822425A (zh) * 2021-01-19 2022-07-29 京东方科技集团股份有限公司 显示面板的驱动方法、显示面板和显示装置
CN115691373A (zh) * 2021-07-30 2023-02-03 武汉京东方光电科技有限公司 显示面板的驱动方法、显示面板及显示装置
CN114242007B (zh) * 2021-12-10 2023-06-30 重庆惠科金渝光电科技有限公司 像素驱动方法以及显示设备
CN114627836B (zh) * 2022-03-24 2022-12-23 广州华星光电半导体显示技术有限公司 显示面板及显示装置
CN116129803B (zh) * 2023-02-28 2024-03-26 惠科股份有限公司 显示装置的驱动方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568430A (zh) * 2012-03-06 2012-07-11 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、显示驱动电路及液晶显示装置
US20130057568A1 (en) * 2011-09-06 2013-03-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Lcd overdriving method and device and lcd
CN103854616A (zh) * 2012-12-07 2014-06-11 群康科技(深圳)有限公司 显示面板的串音补偿方法及其显示装置
CN106205536A (zh) * 2016-08-30 2016-12-07 深圳市华星光电技术有限公司 液晶面板的驱动方法及装置
CN109785803A (zh) * 2017-11-13 2019-05-21 咸阳彩虹光电科技有限公司 一种显示方法、显示单元及显示器
CN110942754A (zh) * 2019-11-26 2020-03-31 Tcl华星光电技术有限公司 数据补偿方法及像素补偿装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015638B1 (ko) * 2012-01-03 2019-08-29 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
KR20130134814A (ko) * 2012-05-31 2013-12-10 삼성디스플레이 주식회사 액정 표시 장치
KR102541709B1 (ko) * 2016-04-04 2023-06-13 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
CN106023939B (zh) * 2016-07-29 2019-02-22 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN107068095B (zh) * 2017-05-10 2020-12-04 深圳市华星光电半导体显示技术有限公司 一种驱动信号的补偿方法及装置
CN109147687B (zh) * 2018-08-06 2020-05-29 深圳市华星光电技术有限公司 显示驱动方法及显示装置
CN109637432B (zh) * 2019-02-27 2021-12-10 天马微电子股份有限公司 显示面板及其驱动方法、显示装置
CN110930925A (zh) * 2019-12-09 2020-03-27 上海天马有机发光显示技术有限公司 一种显示面板的驱动方法和显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057568A1 (en) * 2011-09-06 2013-03-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Lcd overdriving method and device and lcd
CN102568430A (zh) * 2012-03-06 2012-07-11 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、显示驱动电路及液晶显示装置
CN103854616A (zh) * 2012-12-07 2014-06-11 群康科技(深圳)有限公司 显示面板的串音补偿方法及其显示装置
CN106205536A (zh) * 2016-08-30 2016-12-07 深圳市华星光电技术有限公司 液晶面板的驱动方法及装置
CN109785803A (zh) * 2017-11-13 2019-05-21 咸阳彩虹光电科技有限公司 一种显示方法、显示单元及显示器
CN110942754A (zh) * 2019-11-26 2020-03-31 Tcl华星光电技术有限公司 数据补偿方法及像素补偿装置

Also Published As

Publication number Publication date
US20220122506A1 (en) 2022-04-21
CN111554242A (zh) 2020-08-18
CN111554242B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021227116A1 (zh) 显示装置和终端
US10565953B2 (en) Display device capable of changing frame frequency and driving method thereof
WO2019242118A1 (zh) 显示装置和驱动方法
EP2833352B1 (en) Display device and driving method thereof
US8907883B2 (en) Active matrix type liquid crystal display device and drive method thereof
US20070195041A1 (en) Liquid crystal display device having improved side visibility
US20110249046A1 (en) Liquid crystal display device
US20130088527A1 (en) Color Liquid Crystal Display Device And Gamma Correction Method For The Same
EP2420993B1 (en) Display apparatus, liquid crystal display apparatus, drive method for display apparatus, and television receiver
CN106531096A (zh) Rgbw四基色显示面板的驱动方法
US8416175B2 (en) Liquid crystal display device and method for driving the same
CN101320539A (zh) 显示器以及驱动显示器的方法
US11030967B2 (en) Display device and method of driving the same
WO2011065063A1 (ja) 液晶表示装置および液晶表示装置の駆動方法
US10789875B2 (en) Pixel matrix display device
KR20150047965A (ko) 액정 표시 장치 및 그 구동 방법
WO2021062604A1 (zh) 驱动器、显示装置及其光学补偿方法
WO2019052448A1 (zh) 一种显示面板的驱动装置、驱动方法及显示装置
KR101286535B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
US20210027729A1 (en) Driving method and driving device of display panel
WO2022213366A1 (zh) 显示驱动方法、显示驱动装置及显示装置
CN212276722U (zh) 一种改善水平串扰的显示屏结构
WO2018171061A1 (zh) 驱动电路及液晶显示装置
CN212276723U (zh) 一种显示屏结构
KR102569700B1 (ko) 표시 장치 및 휘도 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935098

Country of ref document: EP

Kind code of ref document: A1