WO2021062604A1 - 驱动器、显示装置及其光学补偿方法 - Google Patents

驱动器、显示装置及其光学补偿方法 Download PDF

Info

Publication number
WO2021062604A1
WO2021062604A1 PCT/CN2019/109381 CN2019109381W WO2021062604A1 WO 2021062604 A1 WO2021062604 A1 WO 2021062604A1 CN 2019109381 W CN2019109381 W CN 2019109381W WO 2021062604 A1 WO2021062604 A1 WO 2021062604A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
initial gray
preset
Prior art date
Application number
PCT/CN2019/109381
Other languages
English (en)
French (fr)
Inventor
杨燕
洪青桦
黄文杰
刘蕊
孙伟
陈明
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/109381 priority Critical patent/WO2021062604A1/zh
Priority to US16/960,137 priority patent/US11328650B2/en
Priority to CN201980001891.3A priority patent/CN113597638B/zh
Publication of WO2021062604A1 publication Critical patent/WO2021062604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a driver, a display device and an optical compensation method thereof.
  • Active driving technology is widely used in the display field. It uses a pixel driving circuit containing thin film transistors to control each sub-pixel to emit light independently. However, as the refresh frequency and size of the display panel continue to increase, the charging time of each sub-pixel is getting shorter and shorter. In particular, when the display panel displays a heavy-duty picture, each sub-pixel is prone to insufficient charging, which reduces the display effect of the display panel.
  • the purpose of the present disclosure is to provide a driver, a display device and an optical compensation method thereof to improve the charging rate of sub-pixels.
  • an optical compensation method for a display device including a driver and a display panel, the display panel including a plurality of sub-pixels distributed in an array; the optical compensation calibration method includes:
  • each of the sub-pixels it is determined whether each of the sub-pixels meets the preset determination condition; wherein, if the initial gray scales of the two sub-pixels that are electrically connected to the same data line and located in two adjacent rows are If the absolute value of the difference value of the order is greater than the preset threshold, it is determined that the sub-pixels in the next row meet the preset determination condition;
  • the first compensation parameter of the sub-pixel is acquired, and the initial gray scale of the sub-pixel is compensated according to the acquired first compensation parameter.
  • the sub-pixels in the same column are connected to the same data line;
  • Determining whether any next row of sub-pixels meets the preset determination conditions includes:
  • the sub-pixel P(i, 2j) and the sub-pixel P(i+1, 2j-1) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j) is the sub-pixel located in the i-th column and the 2j-th row, and the sub-pixel P(i+1, 2j- 1) is a sub-pixel located in the i+1th column and 2j-1th row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • determining whether each of the sub-pixels meets a preset determination condition includes:
  • G(i, 2j) is the initial gray scale of sub-pixel P(i, 2j)
  • G(i+1, 2j-1) is the initial gray scale of sub-pixel P(i+1, 2j-1)
  • the level, G(i+1, 2j+1) is the initial gray level of the sub-pixel P(i+1, 2j+1).
  • the sub-pixel P(i, 2j-1) and the sub-pixel P(i+1, 2j) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j-1) is the sub-pixel located in the i-th column and the 2j-1th row, and the sub-pixel P(i+ 1, 2j) are the sub-pixels located in the i+1th column and the 2jth row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • determining whether each of the sub-pixels meets a preset determination condition includes:
  • G(i, 2j-1) is the initial gray level of the sub-pixel P(i, 2j-1)
  • G(i+1, 2j) is the initial gray level of the sub-pixel P(i+1, 2j)
  • G(i, 2j+1) is the initial gray scale of the sub-pixel P(i, 2j+1).
  • the optical compensation method of the display device further includes:
  • the initial gray scale of each of the sub-pixels of the first preset picture is input to the driver; wherein, in the first preset picture, two arbitrarily electrically connected to the same data line and located in two adjacent rows
  • the absolute value of the difference between the initial gray levels of the sub-pixels is greater than a preset threshold
  • the first compensation parameter of each of the sub-pixels is stored in the driver.
  • the sub-pixels in the same column are connected to the same data line;
  • the absolute value of the difference between the initial gray levels of any two adjacent rows of the sub-pixels is greater than a preset threshold.
  • the sub-pixel P(i, 2j) and the sub-pixel P(i+1, 2j-1) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j) is the sub-pixel located in the i-th column and the 2j-th row, and the sub-pixel P(i+1, 2j- 1) is a sub-pixel located in the i+1th column and 2j-1th row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is greater than the preset threshold, and G(i, 2j) and G(i+1) , The absolute value of the difference of 2j+1) is greater than the preset threshold; where G(i, 2j) is the initial gray scale of the sub-pixel P(i, 2j), G(i+1, 2j-1) Is the initial gray level of the sub-pixel P(i+1, 2j-1), and G(i+1, 2j+1) is the initial gray level of the sub-pixel P(i+1, 2j+1).
  • the sub-pixel P(i, 2j-1) and the sub-pixel P(i+1, 2j) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j-1) is the sub-pixel located in the i-th column and the 2j-1th row, and the sub-pixel P(i+ 1, 2j) are the sub-pixels located in the i+1th column and the 2jth row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • the absolute value of the difference between G(i, 2j-1) and G(i+1, 2j) is greater than the preset threshold, and G(i, 2j+1) and G(i The absolute value of the difference of +1, 2j) is greater than the preset threshold; where G(i, 2j-1) is the initial gray level of the sub-pixel P(i, 2j-1), and G(i+1, 2j) is the initial gray level of the sub-pixel P(i+1, 2j), and G(i, 2j+1) is the initial gray level of the sub-pixel P(i, 2j+1).
  • the driver includes a timing controller
  • the storing the first compensation parameter of each of the sub-pixels in the driver includes:
  • the first compensation parameter of each of the sub-pixels is stored in the timing controller.
  • the optical compensation calibration method further includes:
  • the second compensation parameter of the sub-pixel is acquired, and the initial gray scale of the sub-pixel is compensated according to the acquired second compensation parameter .
  • the optical compensation method of the display device further includes:
  • the initial gray scale of each of the sub-pixels of the second preset picture is input to the driver; wherein, in the second preset picture, any two sub-pixels that are electrically connected to the same data line and located in two adjacent rows The absolute value of the difference between the initial gray scales of the pixels does not exceed the preset threshold;
  • the second compensation parameter of each of the sub-pixels is stored in the driver.
  • the first compensation parameter is a gray scale difference
  • Compensating the initial gray scale of the sub-pixel according to the acquired first compensation parameter includes:
  • the sum of the acquired first compensation parameter and the initial gray scale of the sub-pixel is calculated to obtain the target gray scale of the sub-pixel.
  • a driver for driving a display panel the display panel including sub-pixels distributed in an array; the driver including:
  • a data receiving circuit for receiving the initial gray level of each of the sub-pixels of the picture to be displayed
  • the judging circuit is electrically connected to the data receiving circuit for judging whether each of the sub-pixels meets the preset judgment condition according to the initial gray scale of each of the sub-pixels; wherein, if the sub-pixels are electrically connected to the same data line and are located If the absolute value of the difference between the initial gray levels of the two adjacent sub-pixels in two adjacent rows is greater than a preset threshold, it is determined that the sub-pixels in the next row meet the preset determination condition;
  • a first compensation parameter storage circuit configured to store the first compensation parameter of each of the sub-pixels
  • the first execution circuit is electrically connected to the judgment circuit and the first compensation parameter storage circuit, and is used to obtain the first compensation parameter of the sub-pixel when it is judged that the sub-pixel satisfies the preset judgment condition , And compensate the initial gray scale of the sub-pixel according to the acquired first compensation parameter.
  • the sub-pixels in the same column are connected to the same data line;
  • the judgment circuit is configured to judge whether each of the sub-pixels meets a preset judgment condition, and the method for judging whether any next row of sub-pixels meets the preset judgment condition includes:
  • the sub-pixel P(i, 2j) and the sub-pixel P(i+1, 2j-1) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j) is the sub-pixel located in the i-th column and the 2j-th row, and the sub-pixel P(i+1, 2j- 1) is a sub-pixel located in the i+1th column and 2j-1th row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • the judgment circuit is configured as:
  • G(i, 2j) is the initial gray scale of sub-pixel P(i, 2j)
  • G(i+1, 2j-1) is the initial gray scale of sub-pixel P(i+1, 2j-1)
  • the level, G(i+1, 2j+1) is the initial gray level of the sub-pixel P(i+1, 2j+1).
  • the sub-pixel P(i, 2j-1) and the sub-pixel P(i+1, 2j) are connected to the data line L(i+1), Among them, the data line L(i+1) is the i+1th data line, the sub-pixel P(i, 2j-1) is the sub-pixel located in the i-th column and the 2j-1th row, and the sub-pixel P(i+ 1, 2j) are the sub-pixels located in the i+1th column and the 2jth row, where i is a positive integer greater than 0, and j is a positive integer greater than 0;
  • the judgment circuit is configured as:
  • G(i, 2j-1) is the initial gray level of the sub-pixel P(i, 2j-1)
  • G(i+1, 2j) is the initial gray level of the sub-pixel P(i+1, 2j)
  • G(i, 2j+1) is the initial gray scale of the sub-pixel P(i, 2j+1).
  • the driver further includes:
  • a second compensation parameter storage circuit configured to store the second compensation parameter of each of the sub-pixels
  • the second execution circuit is electrically connected to the judgment circuit and the second compensation parameter storage circuit, and is used to obtain the second compensation of the sub-pixel when it is judged that the sub-pixel does not satisfy the preset judgment condition Parameters, and compensate the initial gray levels of the sub-pixels according to the acquired second compensation parameters.
  • a display device including the above-mentioned driver.
  • FIG. 1 is a schematic diagram of the structure of a display device of the present disclosure.
  • FIG. 2 is a schematic flowchart of a method for optical compensation and calibration of a display device of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an optical compensation calibration device of a display device of the present disclosure.
  • FIG. 4 is a schematic diagram of the structure of a display panel of the present disclosure.
  • FIG. 5 is a schematic diagram of the structure of a display panel of the present disclosure.
  • FIG. 6 is a schematic diagram of the structure of a display panel of the present disclosure.
  • FIG. 7 is a schematic diagram of the structure of a first preset screen of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of a first preset screen of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a first preset screen of the present disclosure.
  • FIG. 10 is a schematic diagram of the structure of a first preset screen of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a first preset screen of the present disclosure.
  • FIG. 12 is a schematic diagram of the structure of a first preset screen of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a first preset screen of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a first preset screen of the present disclosure.
  • FIG. 15 is a schematic diagram of the structure of a first preset screen of the present disclosure.
  • FIG. 16 is a schematic flowchart of a method for optical compensation and calibration of a display device of the present disclosure.
  • FIG. 17 is a schematic flowchart of an optical compensation method for a display device of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a driver of the present disclosure.
  • Display panel 110, sub-pixel; 120, data line; 130, scan line; 200, driver; 201, timing controller; 210, data receiving circuit; 220, judgment circuit; 230, first compensation parameter storage circuit; 240.
  • Computer Computer.
  • Active driving technology is widely used in the display field. It uses a pixel driving circuit containing thin film transistors to control each sub-pixel to emit light independently.
  • the pixel driving circuit may contain one or more of amorphous-Si TFT, low-temperature polysilicon thin-film transistor (LTPS TFT), and oxide thin-film transistor (Oxide TFT).
  • LTPS TFT low-temperature polysilicon thin-film transistor
  • Oxide TFT oxide thin-film transistor
  • thin film transistors have problems with uniformity or stability, leading to differences in threshold voltages of thin film transistors at different positions of the display panel, which leads to differences in brightness of the display panel at different positions.
  • compensation can be used to eliminate or reduce the brightness difference of the display panel. For example, you can use demura (color spot removal) compensation to make the darker area variable, make the lighter area darker, or eliminate the color cast, so that different areas on the display panel have roughly the same brightness or color. .
  • the charging time of each sub-pixel is getting shorter and shorter.
  • the charging time of a single data line is reduced from 3.75 microseconds at 60 Hz to 1.85 microseconds, and the fall time T f of the gate signal is generally designed to be about 1 microsecond. Therefore, when there is a heavy load picture, due to the large change in the pixel gray scale between adjacent pixels on the same data line, the amount of charge in the storage capacitor of the pixel drive circuit changes greatly, and the problem of insufficient charging is likely to occur, resulting in the storage capacitor The expected voltage cannot be reached accurately.
  • the light-load image is usually selected when performing the demura compensation in the related art, and the pixel gray scale changes between adjacent pixels on the same data line are small.
  • mura color spots
  • the display panel can perform demura compensation according to the related technology, when the display panel loads a heavy-duty picture, it is still prone to insufficient charging, which causes the storage capacitor to fail to accurately reach the expected voltage.
  • the embodiments of the present disclosure provide a method for optical compensation and calibration of a display device.
  • the display device includes a driver 200 and a display panel 100, and the display panel 100 includes a plurality of sub-pixels 110 arranged in an array.
  • the optical compensation calibration method of the display device includes:
  • Step S111 input the initial gray scale of each sub-pixel 110 of the first preset picture to the driver 200; wherein, in the first preset picture, any two of the first preset picture are electrically connected to the same data line and located in two adjacent rows.
  • the absolute value of the difference between the initial gray levels of the sub-pixels is greater than a preset threshold;
  • Step S113 and obtain the initial brightness of each sub-pixel 110 in the display panel 100;
  • Step S120 determining the first compensation parameter of each sub-pixel 110 according to the initial gray scale of each sub-pixel 110 and the initial brightness of each sub-pixel 110;
  • step S130 the first compensation parameter of each sub-pixel 110 is stored in the driver 200.
  • the optical compensation calibration can be performed on the basis of the first preset picture in the optical compensation calibration stage, so that each sub-pixel 110 can accurately emit light when displaying the first preset picture, thereby obtaining a display panel
  • the first compensation parameter of each sub-pixel 110 of 100 in the first preset frame Since each sub-pixel 110 compensated by the first compensation parameter can accurately emit light when displaying the first preset image, it is ensured that each sub-pixel 110 can be accurately charged to the expected voltage when displaying the first preset image, eliminating the The charging rate of the sub-pixel 110 is insufficient when displaying the first preset picture.
  • step S111 the display data of the first preset screen may be input to the data interface circuit of the driver 200, and the driver 200 obtains the display data of each sub-pixel 110 of the first preset screen according to the received display data of the first preset screen.
  • Initial gray scale the display data of the first preset screen
  • the driver 200 includes a timing controller 201 (TCON), and the timing controller 201 may be provided with a data interface circuit and a picture detection (PD, Picture Detection). Detection) circuit.
  • the data interface circuit is used for data exchange with the outside of the display device, especially for receiving the display data of the image to be displayed from the external input to the display device; the image detection circuit is electrically connected with the data interface circuit, and is used to obtain the data to be displayed according to the display data.
  • the initial gray scale of each sub-pixel 110 of the image is displayed.
  • the data interface circuit and the image detection circuit can form the data receiving circuit 210 of the driver 200, so that the driver 200 can obtain the initial gray scale of each sub-pixel 110 of the image to be displayed.
  • the initial gray scale of the sub-pixel 110 refers to the gray scale of the sub-pixel 110 that is externally input and has not been compensated.
  • step S113 the driver 200 drives the display panel 100 to display the screen according to the initial gray scale of each sub-pixel 110 of the first preset screen.
  • each sub-pixel 110 emits light independently and has brightness independently, and collects each sub-pixel 110. The initial brightness of each sub-pixel 110 is obtained.
  • the initial brightness of each sub-pixel 110 may be obtained by an optical extraction method.
  • the driver 200 may light up the display panel 100 according to the initial gray scale of each sub-pixel 110 of the first preset picture, and a CCD (charge coupled device) camera collects the picture displayed on the display panel 100, and one is connected to the CCD camera 300
  • the computer 400 receives the images collected by the CCD camera 300 and analyzes the brightness of each sub-pixel 110.
  • CCD charge coupled device
  • the computer 400 may obtain the first compensation parameter of each sub-pixel 110 according to the initial gray scale of each sub-pixel 110 of the brightness of each sub-pixel 110.
  • the computer 400 may write the first compensation parameter of each sub-pixel 110 into the driver 200.
  • the first preset picture is a first type picture.
  • the feature of the first type of picture is that, as shown in FIGS. 4 to 6, when the data line 120 charges two adjacent rows of sub-pixels 110, the data voltage varies greatly, which may easily lead to insufficient charging of the next row of sub-pixels 110.
  • the absolute value of the difference between the initial gray levels of the two sub-pixels 110 exceeds the preset threshold.
  • the two sub-pixels 110 may be located on the same side of the data line 120, or may be located on both sides of the data line 120. It is understandable that when the arrangement of the sub-pixels 110 on the display panel 100 is different, the same picture may be the first type picture on one type of display panel 100, but not the first type picture on another type of display panel 100. Picture.
  • the second type of picture is characterized in that, as shown in Figs. 4-6, when the data line 120 charges two adjacent rows of sub-pixels 110, the data voltage has a small change range, which is not easy to cause the next row.
  • the sub-pixel 110 is under-charged.
  • the absolute value of the difference between the initial gray levels of the two sub-pixels 110 does not exceed the preset threshold.
  • the two sub-pixels 110 may be located on the same side of the data line 120, or may be located on both sides of the data line 120. It is understandable that when the sub-pixels 110 on the display panel 100 are arranged in different ways, the same picture may become a second type picture on one type of display panel 100, but not a second type picture on another type of display panel 100. Picture.
  • the data voltage of the data line 120 changes greatly when the sub-pixels 110 in the next row is charged, and the sub-pixels 110 in the next row are prone to undercharge. It can be understood that the sub-pixels 110 in the next row are the sub-pixels 110 that are post-charged in the charging sequence.
  • the preset threshold can be selected and determined according to different optical compensation and calibration requirements.
  • the preset threshold may be 1/5 to 1/3 of the maximum number of gray levels of the sub-pixel 110. For example, if the gray scale range of the sub-pixel 110 is 0-255, and the maximum gray scale number is 256, the preset threshold can be selected from 51-85.
  • the preset threshold may be 1/4 of the maximum number of gray levels of the sub-pixel 110; thus, for the sub-pixel 110 with 8 bit gray levels (the maximum number of gray levels is 256), the preset threshold is 64.
  • the same column of sub-pixels 110 are connected to the same data line 120, and one data line 120 is connected to one column of sub-pixels 110.
  • step S111 in any same column of sub-pixels 110 in the first preset picture, the absolute value of the difference between the initial gray levels of any two adjacent rows of sub-pixels 110 is greater than the preset threshold.
  • the absolute value of the difference between the initial gray levels of any two adjacent rows of sub-pixels 110 is not greater than a preset threshold.
  • the odd-numbered rows of the sub-pixels 110 in one column and the even-numbered rows of the sub-pixels 110 in the other column are The sub-pixel 110 is connected to the same data line 120; among them, the sub-pixel 110P(i, 2j) and the sub-pixel 110P(i+1, 2j-1) are connected to the data line 120L(i+1), and the data line 120L(i +1) is the i+1th data line 120, the sub-pixel 110P(i, 2j) is the sub-pixel 110 located in the ith column and the 2j-th row, and the sub-pixel 110P(i+1, 2j-1) is located in the In the sub-pixel 110 in column i+1 and row 2j-1, i is a positive integer greater than 0, and j is a positive integer greater than 0. It can be understood that i+1 is not greater than the total number of data lines 120; both 2j and 2
  • the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is greater than a preset threshold, and G(i, 2j) The absolute value of the difference between) and G(i+1, 2j+1) is greater than the preset threshold; where G(i, 2j) is the initial gray scale of the sub-pixel 110P(i, 2j), G(i+1 , 2j-1) is the initial gray scale of sub-pixel 110P(i+1, 2j-1), G(i+1, 2j+1) is the initial gray scale of sub-pixel 110P(i+1, 2j+1) .
  • step S111 in the first preset picture, the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is greater than the preset threshold, and G(i, 2j) and The absolute value of the difference of G(i+1, 2j+1) is greater than the preset threshold; where G(i, 2j) is the initial gray level of the sub-pixel 110P(i, 2j), G(i+1, 2j) -1) is the initial gray scale of the sub-pixel 110P (i+1, 2j-1), and G(i+1, 2j+1) is the initial gray scale of the sub-pixel 110P (i+1, 2j+1).
  • the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is not greater than a preset threshold, and G(i, The absolute value of the difference between 2j) and G(i+1, 2j+1) is not greater than the preset threshold; where G(i, 2j) is the initial gray scale of the sub-pixel 110P(i, 2j), G(i +1, 2j-1) is the initial gray scale of the sub-pixel 110P (i+1, 2j-1), and G(i+1, 2j+1) is the initial gray scale of the sub-pixel 110P (i+1, 2j+1) Grayscale.
  • the odd-numbered rows of sub-pixels 110 of one column of sub-pixels 110 and the even-numbered rows of sub-pixels 110 of another column are The sub-pixel 110 is connected to the same data line 120; among them, the sub-pixel 110P(i, 2j-1) and the sub-pixel 110P(i+1, 2j) are connected to the data line 120L(i+1), and the data line 120L(i +1) is the i+1th data line 120, the sub-pixel 110P(i, 2j-1) is the sub-pixel 110 located in the i-th column and the 2j-1th row, and the sub-pixel 110P(i+1, 2j) is In the sub-pixel 110 located in the i+1th column and the 2jth row, i is a positive integer greater than 0, and j is a positive integer greater than 0. It can be understood that i+1 is not greater than the total number of data lines 120
  • the absolute value of the difference between G(i, 2j-1) and G(i+1, 2j) is greater than a preset threshold, and G(i, 2j+ 1)
  • the absolute value of the difference between G(i+1, 2j) and G(i+1, 2j) is greater than the preset threshold; where G(i, 2j-1) is the initial gray scale of the sub-pixel 110P(i, 2j-1), and G( i+1, 2j) is the initial gray scale of the sub-pixel 110P (i+1, 2j), and G(i, 2j+1) is the initial gray scale of the sub-pixel 110P (i, 2j+1).
  • step S111 in the first preset picture, the absolute value of the difference between G(i, 2j-1) and G(i+1, 2j) is greater than the preset threshold, and G(i, 2j+1 The absolute value of the difference between) and G(i+1, 2j) is greater than the preset threshold; where G(i, 2j-1) is the initial gray scale of the sub-pixel 110P(i, 2j-1), G(i +1, 2j) is the initial gray scale of the sub-pixel 110P (i+1, 2j), and G(i, 2j+1) is the initial gray scale of the sub-pixel 110P (i, 2j+1).
  • the absolute value of the difference between G(i, 2j-1) and G(i+1, 2j) is not greater than a preset threshold, and G(i, 2j) The absolute value of the difference between +1) and G(i+1, 2j) is not greater than the preset threshold; where G(i, 2j-1) is the initial gray scale of the sub-pixel 110P(i, 2j-1), G(i+1, 2j) is the initial gray level of the sub-pixel 110P(i+1, 2j), and G(i, 2j+1) is the initial gray level of the sub-pixel 110P(i, 2j+1).
  • the number of first preset pictures may be multiple; correspondingly, the initial gray scale of each sub-pixel 110 corresponding to each first preset picture can be obtained. , And obtain the initial brightness of each sub-pixel 110 corresponding to each first preset picture.
  • multiple first preset frames may include 7 to the screen shown in Figure 12.
  • the initial gray level of one sub-pixel 110 is m
  • the initial gray level of the other sub-pixel 110 is n
  • m and n The absolute value of the difference is greater than the preset threshold. Further, the value of n may be zero.
  • the multiple first preset screens may include the screens shown in FIGS. 13-15.
  • FIG. 14 may be a flicker image (flicker image).
  • one column of sub-pixels 110 emits light while the other column of sub-pixels 110 does not emit light.
  • FIG. 13 may be an H1line picture, in which, in any two adjacent rows of sub-pixels 110, one row of sub-pixels 110 emits light while the other row of sub-pixels 110 does not emit light.
  • FIG. 15 between two adjacent rows of sub-pixels 110 that emit light, there are two rows of non-emitting sub-pixels 110 spaced apart.
  • any row of sub-pixels 110 includes sub-pixels 110 of three colors of red, green, and blue that are periodically arranged, and the sub-pixels 110 in the same column are sub-pixels 110 of the same color, the figure CCC is three pure colors of red, green, and blue.
  • the demura algorithm may be used to compensate each sub-pixel 110 to obtain the first compensation parameter of each sub-pixel 110.
  • the first compensation parameter can be a plurality of different forms of compensation parameters.
  • the first compensation parameter may be a compensation coefficient, and the product of the compensation coefficient and the initial gray level of the sub-pixel 110 is used as the target gray level of the sub-pixel 110.
  • the first compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or 0, and the initial gray scale of the sub-pixel 110 The sum of the gray scale and the gray scale difference is used as the target gray scale of the sub-pixel 110.
  • the first compensation parameter includes two parameters; one parameter is used when the initial gray level of the sub-pixel 110 in the next row is greater than the initial gray level of the sub-pixel 110 in the previous row , To compensate the initial gray level of the next row of sub-pixels 110; another parameter is used to adjust the initial gray level of the next row of sub-pixels 110 when the initial gray level of the next row of sub-pixels 110 is less than the initial gray level of the previous row of sub-pixels 110 Make compensation.
  • step S130 the first compensation parameter of each sub-pixel 110 may be stored in the timing controller 201 of the driver 200.
  • the first compensation parameter of each sub-pixel 110 may form a first compensation table, and the first compensation table records each sub-pixel 110 and the first compensation parameter of each sub-pixel 110.
  • the first compensation table may be stored in the driver 200, for example, burned into the timing controller 201 of the driver 200.
  • the driver 200 may include a first compensation parameter storage circuit 230 for storing the first compensation parameter of each sub-pixel 110.
  • the optical compensation calibration method of the present disclosure may further include:
  • Step S141 input the initial gray scale of each sub-pixel 110 of the second preset picture to the driver 200; wherein, the second preset picture is a second type picture;
  • Step S143 acquiring the initial brightness of each sub-pixel 110 in the display panel 100;
  • Step S150 determining the second compensation parameter of each sub-pixel 110 according to the initial gray scale of each sub-pixel 110 and the initial brightness of each sub-pixel 110;
  • step S160 the second compensation parameter of each sub-pixel 110 is stored in the driver 200.
  • the optical compensation calibration method of the present disclosure can also complete the demura calibration through the second type of picture, and obtain the second compensation parameter of each sub-pixel 110.
  • the initial gray scale of the sub-pixel 110 can be compensated by the second compensation parameter, so that the sub-pixel 110 can accurately charge and emit light.
  • the second compensation parameter of each sub-pixel 110 may form a second compensation table, and the second compensation table records each sub-pixel 110 and one of the second compensation parameters of each sub-pixel 110.
  • the second compensation table may be stored in the driver 200, for example, burned into the timing controller 201 of the driver 200.
  • the demura algorithm may be used to compensate each sub-pixel 110 to obtain the second compensation parameter of each sub-pixel 110.
  • the second compensation parameter can be a variety of different forms of compensation parameters.
  • the second compensation parameter may be a compensation coefficient, and the product of the compensation coefficient and the initial gray level of the sub-pixel 110 is used as the target gray level of the sub-pixel 110.
  • the second compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or 0, and the initial gray of the sub-pixel 110 The sum of the gray scale and the gray scale difference is used as the target gray scale of the sub-pixel 110.
  • the second compensation parameter includes two parameters; one parameter is used when the initial gray level of the sub-pixel 110 in the next row is greater than the initial gray level of the sub-pixel 110 in the previous row , To compensate the initial gray level of the next row of sub-pixels 110; another parameter is used to adjust the initial gray level of the next row of sub-pixels 110 when the initial gray level of the next row of sub-pixels 110 is less than the initial gray level of the previous row of sub-pixels 110 Make compensation.
  • the timing controller 201 of the driver 200 may further include a second compensation parameter storage circuit 250 for storing the second compensation parameter of each sub-pixel 110.
  • step S130 and step S160 are performed simultaneously, that is, after the first compensation parameter and the second compensation parameter of each sub-pixel 110 are obtained, the first compensation parameter and the second compensation parameter of each sub-pixel 110 are stored in the driver 200 in.
  • the optical compensation calibration method of the present disclosure may further include:
  • Step S171 Input the initial gray scale of each sub-pixel 110 of the first preset picture to the driver 200, where the driver 200 calculates the initial gray scale of each sub-pixel 110 of the first preset picture according to the first compensation parameter of each sub-pixel 110.
  • the gray scale is compensated to obtain the target gray scale of each sub-pixel 110; the driver 200 lights the display panel 100 according to the target gray scale of each sub-pixel 110;
  • Step S172 Obtain a picture displayed on the display panel 100, and compare the obtained picture with a first preset picture to determine whether the first compensation parameter of each sub-pixel 110 meets the requirements. If it is determined that the first compensation parameter of each sub-pixel 110 does not meet the requirements, step S111 to step S130 are executed again.
  • the first compensation parameter can accurately compensate the first type of picture, and that each sub-pixel 110 that meets the preset determination condition can accurately emit light after being compensated by the first compensation parameter.
  • the optical compensation calibration method of the present disclosure may further include:
  • Step S181 Input the initial gray scale of each sub-pixel 110 of the second preset picture to the driver 200, where the driver 200 calculates the initial gray scale of each sub-pixel 110 of the second preset picture according to the second compensation parameter of each sub-pixel 110.
  • the gray scale is compensated to obtain the target gray scale of each sub-pixel 110; the driver 200 lights the display panel 100 according to the target gray scale of each sub-pixel 110;
  • Step S182 Obtain a picture displayed by the display panel 100, and compare the obtained picture with a second preset picture to determine whether the second compensation parameter of each sub-pixel 110 meets the requirements. If it is determined that the second compensation parameter of each sub-pixel 110 does not meet the requirements, step S141 to step S160 are executed again.
  • the second compensation parameter can accurately compensate the second type of picture, and that each sub-pixel 110 that does not meet the preset determination condition can accurately emit light after being compensated by the second compensation parameter.
  • the present disclosure also provides an optical compensation method for a display device.
  • the display device includes a driver 200 and a display panel 100, and the display panel 100 includes a plurality of sub-pixels 110 distributed in an array.
  • the optical compensation calibration method includes:
  • Step S210 receiving the initial gray level of each sub-pixel 110 of the picture to be displayed
  • Step S220 according to the initial gray scale of each sub-pixel 110, determine whether each sub-pixel 110 satisfies a preset determination condition
  • step S230 if it is determined that a sub-pixel 110 meets the preset determination condition, the first compensation parameter of the sub-pixel 110 is acquired, and the initial gray scale of the sub-pixel 110 is compensated according to the acquired first compensation parameter to obtain the sub-pixel 110 The target gray level.
  • the optical compensation method of the display device of the present disclosure when it is determined that the sub-pixel 110 meets the preset determination condition according to the initial gray scale of the sub-pixel 110, it can be known that the data voltage changes greatly when the sub-pixel 110 is charged by the data line 120.
  • the pixel 110 is prone to insufficient charging.
  • the first compensation parameter of the sub-pixel 110 is exactly the compensation parameter obtained when the sub-pixel 110 meets the preset determination condition. Compensating the sub-pixel 110 by the first compensation parameter can make the sub-pixel 110 display the correct brightness. Furthermore, it is ensured that the sub-pixel 110 is charged to the correct potential, which avoids the problem of insufficient charging of the sub-pixel 110 when the predetermined determination condition is met.
  • the optical compensation method of the present disclosure can directly compensate the initial gray scale of the sub-pixel 110 of the image to be displayed, avoiding the problem of insufficient charging of the sub-pixel 110 when the predetermined determination condition is met, and improving the compensation of the sub-pixel 110 effectiveness.
  • the driver 200 may receive the initial gray level of each sub-pixel 110 of the image to be displayed through a data receiving circuit 210.
  • the data receiving circuit 210 may include a data interface circuit and a picture detection (PD, Picture Detection) circuit provided on the timing controller 201.
  • the data interface circuit is used for data exchange with the outside of the display device, especially for receiving the display data of the image to be displayed from the external input to the display device;
  • the image detection circuit is electrically connected with the data interface circuit, and is used for performing data exchange according to the display data.
  • the initial gray scale of each sub-pixel 110 of the image to be displayed is obtained.
  • step S220 it can be determined whether the sub-pixel 110 meets the preset determination condition according to the following principle: For two sub-pixels 110 that are electrically connected to the same data line 120 and located in two adjacent rows, if the initial value of the two sub-pixels 110 is If the absolute value of the difference between gray levels exceeds the preset threshold, it can be considered that the next row of sub-pixels 110 meet the preset determination condition, the data line 120 changes greatly when the next row of sub-pixels 110 are charged, and the next row of sub-pixels 110 is prone to insufficient charging. It can be understood that the sub-pixels 110 in the next row are the sub-pixels 110 that are post-charged in the charging sequence.
  • a specific sub-pixel 110 of the to-be-displayed picture may meet the preset determination condition on one type of display panel 100, and in another type of display panel 100.
  • the display panel 100 does not meet the preset determination condition.
  • the same column of sub-pixels 110 are connected to the same data line 120, and one data line 120 is electrically connected to a column of sub-pixels 110.
  • the next row of sub-pixels 110 A row of sub-pixels 110 meets a preset determination condition.
  • step S220 it is possible to determine whether any next row of sub-pixels 110 meets the preset determination condition by the following method:
  • the absolute value of the difference is not greater than the preset threshold, it is determined that the sub-pixels 110 in the next row do not meet the preset determination condition.
  • the odd-numbered rows of the sub-pixels 110 in one column and the even-numbered rows of the sub-pixels 110 in the other column are The sub-pixel 110 is connected to the same data line 120; among them, the sub-pixel 110P(i, 2j) and the sub-pixel 110P(i+1, 2j-1) are connected to the data line 120L(i+1), and the data line 120L(i +1) is the i+1th data line 120, the sub-pixel 110P(i, 2j) is the sub-pixel 110 located in the ith column and the 2j-th row, and the sub-pixel 110P(i+1, 2j-1) is located in the In the sub-pixel 110 in column i+1 and row 2j-1, i is a positive integer greater than 0, and j is a positive integer greater than 0.
  • determining whether each sub-pixel 110 satisfies a preset determination condition includes:
  • G(i, 2j) is the initial gray scale of sub-pixel 110P(i, 2j)
  • G(i+1, 2j-1) is the initial gray scale of sub-pixel 110P(i+1, 2j-1)
  • the level, G(i+1, 2j+1) is the initial gray level of the sub-pixel 110P(i+1, 2j+1).
  • the sub-pixel 110P(i, 2j) does not meet the preset determination condition if the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is not greater than a preset threshold, it is determined that the sub-pixel 110P(i, 2j) does not meet the preset determination condition if the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is not greater than a preset threshold, it is determined that the sub-pixel 110P(i, 2j) does not meet the preset determination condition .
  • the odd-numbered rows of sub-pixels 110 of one column of sub-pixels 110 and the even-numbered rows of sub-pixels 110 of another column are The sub-pixel 110 is connected to the same data line 120; among them, the sub-pixel 110P(i, 2j-1) and the sub-pixel 110P(i+1, 2j) are connected to the data line 120L(i+1), and the data line 120L(i +1) is the i+1th data line 120, the sub-pixel 110P(i, 2j-1) is the sub-pixel 110 located in the i-th column and the 2j-1th row, and the sub-pixel 110P(i+1, 2j) is In the sub-pixel 110 located in the i+1th column and the 2jth row, i is a positive integer greater than 0, and j is a positive integer greater than 0.
  • judging whether each sub-pixel 110 satisfies a preset determination condition according to the initial gray scale of each sub-pixel 110 includes:
  • G(i, 2j-1) is the initial gray level of the sub-pixel 110P(i, 2j-1)
  • G(i+1, 2j) is the initial gray level of the sub-pixel 110P(i+1, 2j)
  • G(i, 2j+1) is the initial gray scale of the sub-pixel 110P(i, 2j+1).
  • the sub-pixel 110P(i+1, 2j) does not satisfy the preset Judgment conditions.
  • the sub-pixel 110P(i, 2j+1) does not satisfy the preset Judgment conditions.
  • the first compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or 0; the initial gray scale of the sub-pixel 110 is adjusted by the first compensation parameter.
  • the sum of the initial gray level of the sub-pixel 110 and the first compensation parameter can be calculated as the target gray level of the sub-pixel 110.
  • the optical compensation calibration method of the present disclosure may further include:
  • step S240 if it is determined that a sub-pixel 110 does not meet the preset determination condition, the second compensation parameter of the sub-pixel 110 is acquired, and the initial gray scale of the sub-pixel 110 is compensated according to the acquired second compensation parameter to obtain the sub-pixel The target gray level of 110.
  • the second compensation parameter of the sub-pixel 110 is a compensation parameter obtained by performing optical compensation calibration according to the second type of picture.
  • the sub-pixel 110 does not meet the preset determination condition. Therefore, when it is determined that the sub-pixel 110 does not meet the preset determination condition, the initial gray scale of the sub-pixel 110 is compensated by the second compensation parameter, so that the sub-pixel 110 can emit light correctly, thereby ensuring that the sub-pixel 110 does not meet the preset determination.
  • the conditions are met, it can be accurately charged to the expected potential, which prevents the sub-pixel 110 from being under-charged when the predetermined determination condition is not met.
  • the second compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or zero.
  • the sum of the initial gray scale of the sub-pixel 110 and the second compensation parameter can be calculated as the target gray scale of the sub-pixel 110.
  • the optical compensation calibration method of the present disclosure may further include:
  • step S250 the display panel 100 is driven to display an image according to the target gray scale of each sub-pixel 110.
  • each sub-pixel 110 since each sub-pixel 110 has undergone optical compensation, each sub-pixel 110 can accurately emit light, and the problem of insufficient charging of each sub-pixel 110 is avoided.
  • the present disclosure also provides a driver 200.
  • the driver 200 is used to drive a display panel 100.
  • the display panel 100 includes sub-pixels 110 arranged in an array.
  • the driver 200 may include a data receiving circuit 210, a judgment circuit 220, a first compensation parameter storage circuit 230, and a first execution circuit 240, where:
  • the data receiving circuit 210 is used to receive the initial gray level of each sub-pixel 110 of the picture to be displayed; the determining circuit 220 is electrically connected to the data receiving circuit 210, and is used to determine whether each sub-pixel 110 satisfies the initial gray level of each sub-pixel 110 Preset judgment conditions; the first compensation parameter storage circuit 230 is used to store the first compensation parameters of each sub-pixel 110; the first execution circuit 240 is electrically connected to the judgment circuit 220 and the first compensation parameter storage circuit 230, and is used for judging one When the sub-pixel 110 meets the preset determination condition, the first compensation parameter of the sub-pixel 110 is acquired, and the initial gray scale of the sub-pixel 110 is compensated according to the acquired first compensation parameter.
  • the driver 200 provided by the present disclosure can obtain the initial gray scale of each sub-pixel 110 of the picture to be displayed, and determine whether each sub-pixel 110 meets a preset determination condition, and can determine whether a sub-pixel 110 meets the preset determination condition,
  • the first compensation parameter of the sub-pixel 110 is acquired, and the initial gray scale of the sub-pixel 110 is compensated according to the acquired first compensation parameter.
  • the data voltage changes greatly when the data line 120 charges the sub-pixel 110, and the sub-pixel 110 is prone to insufficient charging.
  • the first compensation parameter of the sub-pixel 110 is exactly the compensation parameter obtained when the sub-pixel 110 meets the preset determination condition.
  • Compensating the sub-pixel 110 by the first compensation parameter can make the sub-pixel 110 display the correct brightness. Furthermore, it is ensured that the sub-pixel 110 is charged to the correct potential, which avoids the problem of insufficient charging of the sub-pixel 110 when the predetermined determination condition is met. In this way, the driver 200 of the present disclosure can directly compensate the initial gray scale of the sub-pixel 110 of the image to be displayed, avoiding the problem of insufficient charging of the sub-pixel 110 when the predetermined determination condition is met, and improving the compensation efficiency of the sub-pixel 110.
  • the data receiving circuit 210 is used to receive the initial gray scale of each sub-pixel 110 of the picture to be displayed.
  • the data receiving circuit 210 may include a data interface circuit and a picture detection (PD, Picture Detection) circuit provided on the timing controller 201.
  • the data interface circuit is used for data exchange with the outside of the display device, especially for receiving the display data of the image to be displayed from the external input to the display device;
  • the image detection circuit is electrically connected with the data interface circuit, and is used for performing data exchange according to the display data.
  • the initial gray scale of each sub-pixel 110 of the image to be displayed is obtained.
  • the judgment circuit 220 is used to judge whether each sub-pixel 110 satisfies a preset judgment condition.
  • the judging circuit 220 can judge whether the sub-pixel 110 meets the preset judgment condition according to the following principle: two sub-pixels 110 that are electrically connected to the same data line 120 and located in two adjacent rows, if the initial gray levels of the two sub-pixels 110 are different If the absolute value of the value exceeds the preset threshold, it can be considered that the next row of sub-pixels 110 meet the preset determination condition, the data line 120 changes greatly when the next row of sub-pixels 110 are charged, and the next row of sub-pixels 110 is prone to charging The phenomenon of insufficient. It can be understood that the sub-pixels 110 in the next row are the sub-pixels 110 that are post-charged in the charging sequence.
  • the determination circuit 220 may be different.
  • several different types of display panels 100 and the judgment circuit 220 corresponding to each type of display panel 100 are exemplified to further explain and illustrate the preset judgment conditions.
  • the same column of sub-pixels 110 are connected to the same data line 120, and one data line 120 is connected to one column of sub-pixels 110.
  • the next row of sub-pixels 110 A row of sub-pixels 110 meets a preset determination condition.
  • the judgment circuit 220 is configured as:
  • the method for determining whether each sub-pixel 110 meets the preset determination condition; and the method for determining whether any next row of sub-pixels 110 meets the preset determination condition includes:
  • the judging circuit 220 may also be configured to: if the absolute value of the difference is not greater than a preset threshold, judge that the sub-pixels 110 in the next row do not meet the preset judging condition.
  • the odd-numbered rows of the sub-pixels 110 in one column and the even-numbered rows of the sub-pixels 110 in the other column are The sub-pixel 110 is connected to the same data line 120; among them, the sub-pixel 110P(i, 2j) and the sub-pixel 110P(i+1, 2j-1) are connected to the data line 120L(i+1), and the data line 120L(i +1) is the i+1th data line 120, the sub-pixel 110P(i, 2j) is the sub-pixel 110 located in the ith column and the 2j-th row, and the sub-pixel 110P(i+1, 2j-1) is located in the In the sub-pixel 110 in column i+1 and row 2j-1, i is a positive integer greater than 0, and j is a positive integer greater than 0.
  • the judgment circuit 220 is configured as:
  • G(i, 2j) is the initial gray scale of sub-pixel 110P(i, 2j)
  • G(i+1, 2j-1) is the initial gray scale of sub-pixel 110P(i+1, 2j-1)
  • the level, G(i+1, 2j+1) is the initial gray level of the sub-pixel 110P(i+1, 2j+1).
  • the judging circuit 220 may also be configured to: if the absolute value of the difference between G(i, 2j) and G(i+1, 2j-1) is not greater than a preset threshold, then judging the sub-pixel 110P(i , 2j) does not meet the preset judgment conditions.
  • the judging circuit 220 may also be configured to: if the absolute value of the difference between G(i+1, 2j+1) and G(i, 2j) is not greater than a preset threshold, then judging the sub-pixel 110P(i +1, 2j+1) does not meet the preset judgment conditions.
  • the odd-numbered rows of sub-pixels 110 of one column of sub-pixels 110 and the even-numbered rows of sub-pixels 110 of another column are The sub-pixel 110 is connected to the same data line 120; the sub-pixel 110P(i, 2j-1) and the sub-pixel 110P(i+1, 2j) are connected to the data line 120L(i+1), and the data line 120L(i+1) ) Is the i+1th data line 120, the sub-pixel 110P(i, 2j-1) is the sub-pixel 110 located in the ith column and the 2j-1th row, and the sub-pixel 110P(i+1, 2j) is located in the In the sub-pixel 110 in column i+1 and row 2j, i is a positive integer greater than zero, and j is a positive integer greater than zero.
  • the judgment circuit 220 is configured as:
  • G(i, 2j-1) is the initial gray level of the sub-pixel 110P(i, 2j-1)
  • G(i+1, 2j) is the initial gray level of the sub-pixel 110P(i+1, 2j)
  • G(i, 2j+1) is the initial gray scale of the sub-pixel 110P(i, 2j+1).
  • the judging circuit 220 may also be configured to: if the absolute value of the difference between G(i+1, 2j) and G(i, 2j-1) is not greater than a preset threshold, then judging the sub-pixel 110P(i +1, 2j) does not meet the preset judgment conditions.
  • the judging circuit 220 may also be configured to: if the absolute value of the difference between G(i, 2j+1) and G(i+1, 2j) is not greater than a preset threshold, then judging the sub-pixel 110P(i , 2j+1) does not meet the preset judgment conditions.
  • the first compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or zero.
  • the first execution circuit may be configured to, when determining that a sub-pixel 110 satisfies the preset determination condition, obtain the first compensation parameter of the sub-pixel 110, and calculate the first compensation parameter of the sub-pixel 110 and the sub-pixel The sum of the initial gray levels of 110 is used as the target gray level of the sub-pixel 110.
  • the driver 200 of the present disclosure may further include a second compensation parameter storage circuit 250 and a second execution circuit 260, where the second compensation parameter storage circuit 250 is used to store the second compensation parameter of each sub-pixel 110;
  • the second execution circuit 260 is electrically connected to the judgment circuit 220 and the second compensation parameter storage circuit 250, and is used to obtain the second compensation parameter of the sub-pixel 110 when it is judged that a sub-pixel 110 does not meet the preset judgment condition, and according to the obtained
  • the second compensation parameter of is compensated for the initial gray scale of the sub-pixel 110.
  • the second compensation parameter may be a gray-scale difference, where the gray-scale difference may be a positive value, a negative value, or zero.
  • the second execution circuit may be configured to, when it is determined that a sub-pixel 110 does not meet the preset determination condition, obtain the second compensation parameter of the sub-pixel 110, and calculate the second compensation parameter of the sub-pixel 110 and the sub-pixel 110. The sum of the initial gray levels of the pixel 110 is used as the target gray level of the sub-pixel 110.
  • the second compensation parameter of the sub-pixel 110 is a compensation parameter obtained by performing optical compensation calibration according to the second type of picture.
  • the sub-pixel 110 does not meet the preset determination condition. Therefore, when it is determined that the sub-pixel 110 does not meet the preset determination condition, the initial gray scale of the sub-pixel 110 is compensated by the second compensation parameter, so that the sub-pixel 110 can emit light correctly, thereby ensuring that the sub-pixel 110 does not meet the preset determination.
  • the conditions are met, it can be accurately charged to the expected potential, which prevents the sub-pixel 110 from being under-charged when the predetermined determination condition is not met.
  • the first execution circuit 240 and the second execution circuit 260 may be the same execution circuit.
  • the execution circuit may include a selection sub-circuit and a compensation sub-circuit, wherein,
  • the selection sub-circuit is electrically connected to the judgment circuit 220, the first compensation parameter storage circuit 230, and the second compensation parameter storage circuit 250, and the selection sub-circuit is configured to receive the initial gray scale and the judgment result of the sub-pixel 110 sent by the judgment circuit 220 When the judgment result is that the sub-pixel 110 meets the preset judgment condition, obtain the first compensation parameter of the sub-pixel 110 from the first compensation parameter storage circuit 230; when the judgment result is that the sub-pixel 110 does not meet the preset judgment condition, from The second compensation parameter storage circuit 250 acquires the second compensation parameter of the sub-pixel 110; and outputs the initial gray scale and the first compensation parameter or the second compensation parameter of the sub-pixel 110.
  • the compensation sub-circuit is electrically connected to the selection sub-circuit, and is used to receive the initial gray scale of the sub-pixel 110 and the first compensation parameter or the second compensation parameter, and adjust the initial gray scale of the sub-pixel 110 according to the first compensation parameter or the second compensation parameter. Compensation is performed to obtain the target gray scale of the sub-pixel 110.
  • the driver 200 of the present disclosure can also perform other forms of compensation for the target gray level of the sub-pixel 110, such as gamma compensation, and drive the display panel 100 to display images according to the compensation result.
  • gamma compensation forms of compensation for the target gray level of the sub-pixel 110
  • the embodiment of the present disclosure also provides a display device.
  • the display device includes any one of the drivers 200 described in the above driver embodiments.
  • the display device can be a mobile phone screen, a television, a smart watch screen or other types of display devices. Since the display device has any one of the drivers described in the above driver embodiments, it has the same beneficial effects, which will not be repeated here in this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种驱动器(200)、显示装置及其光学补偿方法,显示装置包括驱动器(200)和显示面板(100),显示面板(100)包括阵列分布的多个子像素(110);光学补偿方法包括:向驱动器(200)输入第一预设画面的各个子像素(110)的初始灰阶,其中,在第一预设画面中,任意电连接于同一数据线上且位于相邻两行的两个子像素的初始灰阶的差值的绝对值大于预设阈值(S111);获取显示面板(100)中各个子像素110的初始亮度(S113);根据各个子像素(110)的初始灰阶和各个子像素(110)的初始亮度,确定各个子像素(110)的第一补偿参数(S120);将各个子像素(110)的第一补偿参数存储于驱动器(200)中(S130)。该驱动器(200)、显示装置及其光学补偿方法,能够提高子像素(110)的充电率。

Description

驱动器、显示装置及其光学补偿方法 技术领域
本公开涉及显示技术领域,尤其涉及一种驱动器、显示装置及其光学补偿方法。
背景技术
有源驱动技术广泛应用于显示领域中,其采用含有薄膜晶体管的像素驱动电路以控制各个子像素独立发光。然而,随着显示面板刷新频率的不断提高和尺寸的不断增大,每个子像素的充电时间越来越短。尤其是,当显示面板显示重载画面时,各个子像素很容易出现充电不足的问题,降低了显示面板的显示效果。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种驱动器、显示装置及其光学补偿方法,提高子像素的充电率。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种显示装置的光学补偿方法,所述显示装置包括驱动器和显示面板,所述显示面板包括阵列分布的多个子像素;所述光学补偿校准方法包括:
接收待显示画面的各个所述子像素的初始灰阶;
根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件;其中,若电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值,则判断下一行子像素满足所述预设判定条件;
若判断一所述子像素满足所述预设判定条件,则获取所述子像素的第一补偿参数,并根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿。
在本公开的一种示例性实施例中,在所述显示面板中,同一列所述子像素连接于同一数据线;
判断任意下一行子像素是否满足预设判定条件包括:
计算下一行子像素的初始灰阶与上一行子像素的初始灰阶的差值的绝对值;
若所述差值的绝对值大于预设阈值,则判断所述下一行子像素满足所述预设判定条件。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于 第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件包括:
计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i,2j)满足所述预设判定条件;
计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i+1,2j+1)满足所述预设判定条件;
其中,其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件包括:
计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i+1,2j)满足所述预设判定条件;
计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i,2j+1)满足所述预设判定条件;
其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,所述显示装置的光学补偿方法还包括:
向所述驱动器输入第一预设画面的各个所述子像素的初始灰阶;其中,在所述第一预设画面中,任意电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值;
获取所述显示面板中各个所述子像素的初始亮度;
根据各个所述子像素的初始灰阶和各个所述子像素的初始亮度,确定各个所述子像素的第一补偿参数;
将各个所述子像素的第一补偿参数存储于所述驱动器中。
在本公开的一种示例性实施例中,在所述显示面板中,同一列所述子像素连接于同一所述数据线;
所述第一预设画面的任意同一列所述子像素中,任意相邻两行所述子像素的初始灰阶的差值的绝对值大于预设阈值。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于 第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
所述第一预设画面中,G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,且G(i,2j)和G(i+1,2j+1)的差值的绝对值大于所述预设阈值;其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
所述第一预设画面中,G(i,2j-1)和G(i+1,2j)的差值的绝对值大于预设阈值,且G(i,2j+1)和G(i+1,2j)的差值的绝对值大于所述预设阈值;其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,所述驱动器包括时序控制器;
将各个所述子像素的第一补偿参数存储于所述驱动器中包括:
将各个所述子像素的第一补偿参数存储于所述时序控制器中。
在本公开的一种示例性实施例中,所述光学补偿校准方法还包括:
若判断一所述子像素不满足所述预设判定条件,则获取所述子像素的第二补偿参数,并根据所获取的所述第二补偿参数对所述子像素的初始灰阶进行补偿。
在本公开的一种示例性实施例中,所述显示装置的光学补偿方法还包括:
向所述驱动器输入第二预设画面的各个所述子像素的初始灰阶;其中,在所述第二预设画面中,任意电连接于同一数据线上且位于相邻两行的两个子像素的初始灰阶的差值的绝对值不超过所述预设阈值;
获取所述显示面板中各个所述子像素的初始亮度;
根据各个所述子像素的初始灰阶和各个所述子像素的初始亮度,确定各个所述子像素的第二补偿参数;
将各个所述子像素的第二补偿参数存储于所述驱动器中。
在本公开的一种示例性实施例中,所述第一补偿参数为一灰阶差值;
根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿包括:
计算所获取的所述第一补偿参数与所述子像素的初始灰阶的和,获得所述子像素的目标灰阶。
根据本公开的第二个方面,提供一种驱动器,所述驱动器用于驱动一显示面板,所述显示面板包括阵列分布的子像素;所述驱动器包括:
数据接收电路,用于接收待显示画面的各个所述子像素的初始灰阶;
判断电路,与所述数据接收电路电连接,用于根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件;其中,若电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值,则判断下一行子像素满足所述预设判定条件;
第一补偿参数存储电路,用于存储各个所述子像素的第一补偿参数;
第一执行电路,与所述判断电路和所述第一补偿参数存储电路电连接,用于在判断一所述子像素满足所述预设判定条件时,获取所述子像素的第一补偿参数,并根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿。
在本公开的一种示例性实施例中,在所述显示面板中,同一列所述子像素连接于同一数据线;
所述判断电路被配置为,判断各个所述子像素是否满足预设判定条件,且判断任意下一行子像素是否满足预设判定条件的方法包括:
计算下一行子像素的初始灰阶与上一行子像素的初始灰阶的差值的绝对值;
若所述差值的绝对值大于预设阈值,则判断所述下一行子像素满足所述预设判定条件。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
所述判断电路被配置为:
计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i,2j)满足所述预设判定条件;
计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i+1,2j+1)满足所述预设判定条件;
其中,其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
所述判断电路被配置为:
计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i+1,2j)满足所述预设判定条件;
计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i,2j+1)满足所述预设判定条件;
其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
在本公开的一种示例性实施例中,所述驱动器还包括:
第二补偿参数存储电路,用于存储各个所述子像素的第二补偿参数;
第二执行电路,与所述判断电路和所述第二补偿参数存储电路电连接,用于在判断一所述子像素不满足所述预设判定条件时,获取所述子像素的第二补偿参数,并根据所获取的所述第二补偿参数对所述子像素的初始灰阶进行补偿。
根据本公开的第三个方面,提供一种显示装置,包括上述的驱动器。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1为本公开的一种显示装置的结构示意图。
图2为本公开的一种显示装置的光学补偿校准方法流程示意图。
图3为本公开的一种显示装置的光学补偿校准设备的结构示意图。
图4为本公开的一种显示面板的结构示意图。
图5为本公开的一种显示面板的结构示意图。
图6为本公开的一种显示面板的结构示意图。
图7为本公开的一种第一预设画面的结构示意图。
图8为本公开的一种第一预设画面的结构示意图。
图9为本公开的一种第一预设画面的结构示意图。
图10为本公开的一种第一预设画面的结构示意图。
图11为本公开的一种第一预设画面的结构示意图。
图12为本公开的一种第一预设画面的结构示意图。
图13为本公开的一种第一预设画面的结构示意图。
图14为本公开的一种第一预设画面的结构示意图。
图15为本公开的一种第一预设画面的结构示意图。
图16为本公开的一种显示装置的光学补偿校准方法流程示意图。
图17为本公开的一种显示装置的光学补偿方法流程示意图。
图18为本公开的一种驱动器的结构示意图。
图中主要元件附图标记说明如下:
100、显示面板;110、子像素;120、数据线;130、扫描线;200、驱动器;201、时 序控制器;210、数据接收电路;220、判断电路;230、第一补偿参数存储电路;240、第一执行电路;250、第二补偿参数存储电路;260、第二执行电路;300、CCD相机;400、计算机。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
有源驱动技术广泛应用于显示领域中,其采用含有薄膜晶体管的像素驱动电路以控制各个子像素独立发光。像素驱动电路中可以含有非晶硅薄膜晶体管(amorphous-Si TFT)、低温多晶硅薄膜晶体管(LTPS TFT)和氧化物薄膜晶体管(Oxide TFT)中的一种或者多种。然而,薄膜晶体管存在均匀性或者稳定性问题,导致显示面板的不同位置的薄膜晶体管的阈值电压存在差异,这导致显示面板在不同位置存在亮度差异。相关技术中,可以采用补偿的方式来消除或者减小显示面板的亮度差异。举例而言,可以采用demura(消除色斑)补偿,使得偏暗的区域变量,使得偏亮的区域变暗,或者消除产生的色偏,最终使得显示面板上不同区域具有大体相同的亮度或者颜色。
随着显示面板刷新频率的不断提高和尺寸的不断增大,每个子像素的充电时间越来越短。举例而言,在120Hz的显示面板中,单条数据线的充电时间由60Hz的3.75微秒降低至1.85微秒,而栅极信号的下降时间T f一般设计为1微秒左右。因此,当出现重载画面时,由于同一数据线上相邻像素之间的像素灰阶变化大,像素驱动电路的存储电容中的电荷量变化大,很容易出现充电不足的问题,导致存储电容无法准确达到预期的电压。
尽管相关技术中可以对显示面板进行demura补偿,但是相关技术中进行demura补偿时通常选取轻载画面,同一数据线上相邻像素之间的像素灰阶变化小。不仅如此,相关技术中还通常会检测高中低灰阶的mura(色斑),进而获得高中低灰阶的平均demura数据。因此,即便显示面板可以按照相关技术进行demura补偿,当显示面板加载重载画面时,依然很容易出现充电不足的问题,导致存储电容无法准确达到预期的电压。
本公开实施方式中提供一种显示装置的光学补偿校准方法,如图1所示,显示装置包括驱动器200和显示面板100,显示面板100包括阵列分布的多个子像素110。如图2所示,该显示装置的光学补偿校准方法包括:
步骤S111,向驱动器200输入第一预设画面的各个子像素110的初始灰阶;其中,在所述第一预设画面中,任意电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值;
步骤S113,并获取显示面板100中各个子像素110的初始亮度;
步骤S120,根据各个子像素110的初始灰阶和各个子像素110的初始亮度,确定各个子像素110的第一补偿参数;
步骤S130,将各个子像素110的第一补偿参数存储于驱动器200中。
根据本公开提供的光学补偿校准方法,可以在光学补偿校准阶段以第一预设画面为基础进行光学补偿校准,使得各个子像素110在显示第一预设画面时可以准确发光,进而获得显示面板100的各个子像素110在第一预设画面下的第一补偿参数。由于经过第一补偿参数补偿的各个子像素110在显示第一预设画面时可以准确发光,因此确保了各个子像素110在显示第一预设画面时已经能够准确充电至预期电压,消除了各个子像素110在显示第一预设画面时充电率不足的问题。
下面结合附图对本公开实施方式提供的显示装置的光学补偿校准方法的各步骤进行详细说明:
在步骤S111中,可以向驱动器200的数据接口电路输入第一预设画面的显示数据,驱动器200根据所接收的第一预设画面的显示数据而获得第一预设画面的各个子像素110的初始灰阶。
举例而言,在本公开的一种实施方式中,如图18所示,驱动器200包括时序控制器201(TCON),时序控制器201上可以设置有数据接口电路和图片侦测(PD,Picture Detection)电路。数据接口电路用于与显示装置外部进行数据交换,尤其是用于接收外部向显示装置输入的待显示图像的显示数据;图片侦测电路与数据接口电路电连接,并用于根据显示数据而获得待显示图像的各个子像素110的初始灰阶。其中,数据接口电路和图片侦测电路可以组成驱动器200的数据接收电路210,以使得驱动器200可以获得待显示画面的各个子像素110的初始灰阶。
其中,子像素110的初始灰阶,指的是外部输入的且未经补偿的子像素110的灰阶。
在步骤S113中,驱动器200根据第一预设画面的各个子像素110的初始灰阶驱动显示面板100显示画面,此时各个子像素110独立的发光而各自独立地具有亮度,采集各个子像素110的亮度而获得各个子像素110的初始亮度。
可选地,在本公开的一种实施方式中,如图3所示,可以通过光学抽取的方法获得各个子像素110的初始亮度。举例而言,驱动器200可以根据第一预设画面的各个子像素110的初始灰阶点亮显示面板100,CCD(电荷耦合器件)相机采集显示面板100所显示的画面,一与CCD相机300连接的计算机400接收CCD相机300所采集的画面并解析出各个子像素110的亮度。
可选的,在步骤S120中,计算机400可以根据各个子像素110的亮度的各个子像素110的初始灰阶,获得各个子像素110的第一补偿参数。在步骤S130中,计算机400可以将各个子像素110的第一补偿参数写入驱动器200中。
在步骤S111中,第一预设画面为第一类型画面。其中,第一类型画面的特点为,如图4~图6所示,数据线120向相邻两行子像素110充电时,数据电压的变化幅度大,容易导致下一行子像素110充电不足。在第一类型画面中,对于任意电连接于同一数据线120上且位于相邻两行的两个子像素110,这两个子像素110的初始灰阶的差值的绝对值超过预设阈值。可以理解的是,对于电连接于同一数据线120上且位于相邻两行的两个子像素110,这两个子像素110可以位于数据线120上的同一侧,也可以位于数据线120的两侧。可以理解的是,当显示面板100上子像素110的设置方式不同时,同一画面可能在一种类型的显示面板100上为第一类型画面,在另一种类型的显示面板100不是第一类型画面。
与第一类型画面相反,第二类型画面的特点为,如图4~图6所示,数据线120向相邻两行子像素110充电时,数据电压的变化幅度小,不容易导致下一行子像素110充电不足。在第二类型画面中,对于任意电连接于同一数据线120上且位于相邻两行的两个子像素110,这两个子像素110的初始灰阶的差值的绝对值不超过预设阈值。可以理解的是,对于电连接于同一数据线120上且位于相邻两行的两个子像素110,这两个子像素110可以位于数据线120上的同一侧,也可以位于数据线120的两侧。可以理解的是,当显示面板100上子像素110的设置方式不同时,同一画面可能在一种类型的显示面板100上成为第二类型画面,在另一种类型的显示面板100不是第二类型画面。
同样的,在本公开中,对于电连接于同一数据线120上且位于相邻两行的两个子像素110,如果这两个子像素110的初始灰阶的差值的绝对值超过预设阈值,则可以认为下一行子像素110满足预设判定条件,数据线120在向下一行子像素110充电时数据电压的变化幅度大,下一行子像素110容易出现充电不足的现象。可以理解的是,下一行子像素110为,在充电时序上,后充电的子像素110。
预设阈值可以根据不同的光学补偿校准需求进行选择和确定。可选的,预设阈值可以为子像素110的最大灰阶数的1/5~1/3。举例而言,若子像素110的灰阶范围为0~255,则最大灰阶数为256,则预设阈值可以选自51~85。
进一步地,预设阈值可以为子像素110的最大灰阶数的1/4;如此,对于8bit灰阶的子像素110(最大灰阶数为256),预设阈值为64。
在本公开中,当描述“行”时,其指的是数据线120的延伸方向;描述“列”时,其指的是扫描线130的延伸方向。“行”与“列”是根据数据线120和扫描线130而定义的相对概念,这种定义是本领域的惯用方式;在本领域中,“行”与“列”的概念,不同于“横向”和“竖向”的概念。
下面,示例地例举几种不同类型的显示面板,以及各类型显示面板对应的第一类型画 面和第二类型画面的判断标准,以进一步解释和说明第一类型画面和第二类型画面。
在本公开的一种实施方式中,如图4所示,在显示面板100中,同一列子像素110连接于同一数据线120,且一根数据线120连接一列子像素110。
在该类显示面板100中,第一类型画面的任意同一列子像素110中,任意相邻两行子像素110的初始灰阶的差值的绝对值大于预设阈值。因此,在步骤S111中,第一预设画面的任意同一列子像素110中,任意相邻两行子像素110的初始灰阶的差值的绝对值大于预设阈值。
在该类型的显示面板100中,第二类型画面的任意同一列子像素110中,任意相邻两行子像素110的初始灰阶的差值的绝对值不大于预设阈值。
在本公开的另一种实施方式中,如图5所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;其中,子像素110P(i,2j)和子像素110P(i+1,2j-1)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j)为位于第i列、第2j行的子像素110,子像素110P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。可以理解的是,i+1不大于数据线120的总个数;2j和2j-1均不大于子像素110的总行数。
在该类型的显示面板100中,在第一类型画面中,G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,且G(i,2j)和G(i+1,2j+1)的差值的绝对值大于预设阈值;其中,G(i,2j)为子像素110P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素110P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素110P(i+1,2j+1)的初始灰阶。
因此,在步骤S111中,第一预设画面中,G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,且G(i,2j)和G(i+1,2j+1)的差值的绝对值大于预设阈值;其中,G(i,2j)为子像素110P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素110P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素110P(i+1,2j+1)的初始灰阶。
在该类型的显示面板100中,在第二类型画面中,G(i,2j)和G(i+1,2j-1)的差值的绝对值不大于预设阈值,且G(i,2j)和G(i+1,2j+1)的差值的绝对值不大于预设阈值;其中,G(i,2j)为子像素110P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素110P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素110P(i+1,2j+1)的初始灰阶。
在本公开的另一种实施方式中,如图6所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;其中,子像素110P(i,2j-1)和子像素110P(i+1,2j)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j-1)为位于第i列、第2j-1行的子像素110,子像素110P(i+1,2j)为位于第i+1列、第2j行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。可以理解的是,i+1不大于数据线120的总个数; 2j和2j-1均不大于子像素110的总行数。
在该类型的显示面板100中,第一类型画面中,G(i,2j-1)和G(i+1,2j)的差值的绝对值大于预设阈值,且G(i,2j+1)和G(i+1,2j)的差值的绝对值大于预设阈值;其中,G(i,2j-1)为子像素110P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素110P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素110P(i,2j+1)的初始灰阶。
因此,在步骤S111中,第一预设画面中,G(i,2j-1)和G(i+1,2j)的差值的绝对值大于预设阈值,且G(i,2j+1)和G(i+1,2j)的差值的绝对值大于预设阈值;其中,G(i,2j-1)为子像素110P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素110P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素110P(i,2j+1)的初始灰阶。
在该类型的显示面板100中,第二类型画面中,G(i,2j-1)和G(i+1,2j)的差值的绝对值不大于预设阈值,且G(i,2j+1)和G(i+1,2j)的差值的绝对值不大于预设阈值;其中,G(i,2j-1)为子像素110P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素110P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素110P(i,2j+1)的初始灰阶。
在本公开的一种实施方式中,在步骤S111中,第一预设画面的数量可以为多个;相应的,可以获得各个第一预设画面所各自对应的各个子像素110的初始灰阶,以及获得各个第一预设画面所各自对应的各个子像素110的初始亮度。
举例而言,如图4所示,在显示面板100中,同一列子像素110连接于同一数据线120且一根数据线120连接一列子像素110时,多个第一预设画面可以包括如图7~图12所示的画面。在图7~图12所示的画面中,上下行相邻的两个子像素110中,一个子像素110的初始灰阶为m,另一个子像素110的初始灰阶为n,且m与n的差值的绝对值大于预设阈值。进一步地,n的值可以为0。
再举例而言,如图5和图6所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120时,多个第一预设画面可以包括如图13~图15所示的画面。其中,图14可以为抖动画面(flicker画面),在任意相邻的两列子像素110中,一列子像素110发光而另一列子像素110不发光。图13可以为H1line画面,其中,在任意相邻的两行子像素110中,一行子像素110发光而另一行子像素110不发光。图15中,相邻的两列发光的子像素110之间,间隔有两列不发光的子像素110。如此,若任意行子像素110包括周期设置的红、绿、蓝三种颜色的子像素110,且同一列子像素110为同一颜色的子像素110,则图CCC为红、绿、蓝三种纯色画面中的一种。
在步骤S120中,可以通过demura算法对各个子像素110进行补偿,获得各个子像素110的第一补偿参数。其中,第一补偿参数可以为多种不同形式的补偿参数。举例而言,在本公开的一种实施方式中,第一补偿参数可以为一补偿系数,该补偿系数与子像素110的初始灰阶的乘积作为子像素110的目标灰阶。再举例而言,在本公开的另一种实施方式 中,第一补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0,子像素110的初始灰阶与该灰阶差值的和作为子像素110的目标灰阶。再举例而言,在本公开的另一种实施方式中,第一补偿参数为包括两个参数;一个参数用于当下一行子像素110的初始灰阶大于上一行子像素110的初始灰阶时,对下一行子像素110的初始灰阶进行补偿;另一个参数用于当下一行子像素110的初始灰阶小于上一行子像素110的初始灰阶时,对下一行子像素110的初始灰阶进行补偿。
在步骤S130中,可以将各个子像素110的第一补偿参数存储于驱动器200的时序控制器201中。
可选的,在本公开的一种实施方式中,各个子像素110的第一补偿参数可以形成一第一补偿表,且第一补偿表记录有各个子像素110与各个子像素110的第一补偿参数的一一对应关系。第一补偿表可以存储于驱动器200中,例如烧录至驱动器200的时序控制器201中。
可选的,驱动器200可以包括第一补偿参数存储电路230,用于存储各个子像素110的第一补偿参数。
如图16所示,本公开的光学补偿校准方法还可以包括:
步骤S141,向驱动器200输入第二预设画面的各个子像素110的初始灰阶;其中,第二预设画面为第二类型画面;
步骤S143,获取显示面板100中各个子像素110的初始亮度;
步骤S150,根据各个子像素110的初始灰阶和各个子像素110的初始亮度,确定各个子像素110的第二补偿参数;
步骤S160,将各个子像素110的第二补偿参数存储于驱动器200中。
如此,本公开的光学补偿校准方法还可以通过第二类型画面,完成demura校准,获得各个子像素110的第二补偿参数。如此,当待显示的画面的子像素110不满足预设判定条件时,可以通过第二补偿参数对该子像素110的初始灰阶进行补偿,使得该子像素110可以准确充电和发光。
在本公开的一种实施方式中,各个子像素110的第二补偿参数可以形成一第二补偿表,且第二补偿表记录有各个子像素110与各个子像素110的第二补偿参数的一一对应关系。其中,在步骤S160中,可以将该第二补偿表存储于驱动器200中,例如烧录至驱动器200的时序控制器201中。
在步骤S150中,可以通过demura算法对各个子像素110进行补偿,获得各个子像素110的第二补偿参数。其中,第二补偿参数可以为多种不同形式的补偿参数。举例而言,在本公开的一种实施方式中,第二补偿参数可以为一补偿系数,该补偿系数与子像素110的初始灰阶的乘积作为子像素110的目标灰阶。再举例而言,在本公开的另一种实施方式中,第二补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0,子像素 110的初始灰阶与该灰阶差值的和作为子像素110的目标灰阶。再举例而言,在本公开的另一种实施方式中,第二补偿参数为包括两个参数;一个参数用于当下一行子像素110的初始灰阶大于上一行子像素110的初始灰阶时,对下一行子像素110的初始灰阶进行补偿;另一个参数用于当下一行子像素110的初始灰阶小于上一行子像素110的初始灰阶时,对下一行子像素110的初始灰阶进行补偿。
在本公开的另一种实施方式中,如图18所示,驱动器200的时序控制器201还可以包括第二补偿参数存储电路250,用于存储各个子像素110的第二补偿参数。
可选的,步骤S130和步骤S160同时执行,即在获得各个子像素110的第一补偿参数和第二补偿参数后,将各个子像素110的第一补偿参数和第二补偿参数存储于驱动器200中。
本公开的光学补偿校准方法还可以包括:
步骤S171,向驱动器200输入第一预设画面的各个子像素110的初始灰阶,其中,驱动器200根据各个子像素110的第一补偿参数,对第一预设画面的各个子像素110的初始灰阶进行补偿,得到各个子像素110的目标灰阶;驱动器200根据各个子像素110的目标灰阶点亮显示面板100;
步骤S172,获取显示面板100所显示的画面,并将所获得的画面与第一预设画面比较,以判断各个子像素110的第一补偿参数是否满足要求。若判断各个子像素110的第一补偿参数不满足要求,则重新执行步骤S111~步骤S130。
如此,可以保证第一补偿参数能够对第一类型画面进行准确补偿,保证各个满足预设判定条件的子像素110在经过第一补偿参数补偿后,能够准确发光。
本公开的光学补偿校准方法还可以包括:
步骤S181,向驱动器200输入第二预设画面的各个子像素110的初始灰阶,其中,驱动器200根据各个子像素110的第二补偿参数,对第二预设画面的各个子像素110的初始灰阶进行补偿,得到各个子像素110的目标灰阶;驱动器200根据各个子像素110的目标灰阶点亮显示面板100;
步骤S182,获取显示面板100所显示的画面,并将所获得的画面与第二预设画面比较,以判断各个子像素110的第二补偿参数是否满足要求。若判断各个子像素110的第二补偿参数不满足要求,则重新执行步骤S141~步骤S160。
如此,可以保证第二补偿参数能够对第二类型画面进行准确补偿,保证各个不满足预设判定条件的子像素110在经过第二补偿参数补偿后,能够准确发光。
本公开还提供一种显示装置的光学补偿方法,如图1所示,显示装置包括驱动器200和显示面板100,显示面板100包括阵列分布的多个子像素110。如图17所示,光学补偿校准方法包括:
步骤S210,接收待显示画面的各个子像素110的初始灰阶;
步骤S220,根据各个子像素110的初始灰阶,判断各个子像素110是否满足预设判定条件;
步骤S230,若判断一子像素110满足预设判定条件,则获取子像素110的第一补偿参数,并根据所获取的第一补偿参数对子像素110的初始灰阶进行补偿,获得子像素110的目标灰阶。
根据本公开的显示装置的光学补偿方法,当根据子像素110的初始灰阶判断子像素110符合预设判定条件时,可以知晓数据线120向该子像素110充电时数据电压变化大,该子像素110容易出现充电不足的问题。子像素110的第一补偿参数恰恰是在该子像素110符合预设判定条件时而获得的补偿参数,通过该第一补偿参数对该子像素110进行补偿可以使得该子像素110显示正确的亮度,进而保证该子像素110充电至正确的电位,避免了子像素110在符合预设判定条件时出现充电不足的问题。如此,本公开的光学补偿方法可以直接对待显示画面的子像素110的初始灰阶进行补偿,避免了子像素110在符合预设判定条件时出现充电不足的问题,提高了对子像素110的补偿效率。
下面,对本公开的显示装置的光学补偿方法的各个步骤做进一步的解释和说明:
在步骤S210中,驱动器200可以通过一数据接收电路210接收待显示画面的各个子像素110的初始灰阶。可选的,该数据接收电路210可以包括设置于时序控制器201上的数据接口电路和图片侦测(PD,Picture Detection)电路。其中,数据接口电路用于与显示装置外部进行数据交换,尤其是用于接收外部向显示装置输入的待显示图像的显示数据;图片侦测电路与数据接口电路电连接,并用于根据显示数据而获得待显示图像的各个子像素110的初始灰阶。
在步骤S220中,可以依据如下原理,来判断子像素110是否符合预设判定条件:对于电连接于同一数据线120上且位于相邻两行的两个子像素110,如果两个子像素110的初始灰阶的差值的绝对值超过预设阈值,则可以认为下一行子像素110满足预设判定条件,数据线120在向下一行子像素110充电时数据电压的变化幅度大,下一行子像素110容易出现充电不足的现象。可以理解的是,下一行子像素110为,在充电时序上,后充电的子像素110。
可以理解的是,当显示面板100上子像素110的设置方式不同时,待显示画面的一个特定子像素110可能在一种类型的显示面板100上符合预设判定条件,在另一种类型的显示面板100不符合预设判定条件。
下面,示例地例举几种不同类型的显示面板100,以及各类型显示面板100对应的预设判定条件,以进一步解释和说明预设判定条件。
在本公开的一种实施方式中,如图4所示,在显示面板100中,同一列子像素110连接于同一数据线120,且一根数据线120与一列子像素110电连接。在该类型的显示面板100中,在同一列子像素110中,若下一行子像素110的初始灰阶与上一行子像素110的 初始灰阶的差值的绝对值超过预设阈值,则该下一行子像素110满足预设判定条件。
因此,在步骤S220中,可以通过如下方法判断任意下一行子像素110是否满足预设判定条件:
计算下一行子像素110的初始灰阶与上一行子像素110的初始灰阶的差值的绝对值;
若差值的绝对值大于预设阈值,则判断下一行子像素110满足预设判定条件。
可选的,若差值的绝对值不大于预设阈值,则判断下一行子像素110不满足预设判定条件。
在本公开的另一种实施方式中,如图5所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;其中,子像素110P(i,2j)和子像素110P(i+1,2j-1)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j)为位于第i列、第2j行的子像素110,子像素110P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。
在该类型的显示面板100中,判断各个子像素110是否满足预设判定条件包括:
计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素110P(i,2j)满足预设判定条件;
计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于预设阈值,则判断子像素110P(i+1,2j+1)满足预设判定条件;
其中,其中,G(i,2j)为子像素110P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素110P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素110P(i+1,2j+1)的初始灰阶。
可选的,若G(i,2j)和G(i+1,2j-1)的差值的绝对值不大于预设阈值,则判断子像素110P(i,2j)不满足预设判定条件。
可选的,若G(i+1,2j+1)和G(i,2j)的差值的绝对值不大于预设阈值,则判断子像素110P(i+1,2j+1)不满足预设判定条件。
在本公开的另一种实施方式中,如图6所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;其中,子像素110P(i,2j-1)和子像素110P(i+1,2j)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j-1)为位于第i列、第2j-1行的子像素110,子像素110P(i+1,2j)为位于第i+1列、第2j行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。
在该类型的显示面板100中,根据各个子像素110的初始灰阶,判断各个子像素110是否满足预设判定条件包括:
计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝对值大于预设阈值,则判断子像素110P(i+1,2j)满足预设判定条件;
计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝对值大于预设阈值,则判断子像素110P(i,2j+1)满足预设判定条件;
其中,G(i,2j-1)为子像素110P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素110P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素110P(i,2j+1)的初始灰阶。
可选的,若G(i+1,2j)和G(i,2j-1)的差值的绝对值不大于预设阈值,则判断子像素110P(i+1,2j)不满足预设判定条件。
可选的,若G(i,2j+1)和G(i+1,2j)的差值的绝对值不大于预设阈值,则判断子像素110P(i,2j+1)不满足预设判定条件。
在本公开的一种实施方式中,第一补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0;通过第一补偿参数对子像素110的初始灰阶进行补偿时,可以计算子像素110的初始灰阶与第一补偿参数的和作为子像素110的目标灰阶。
本公开的光学补偿校准方法还可以包括:
步骤S240,若判断一子像素110不满足预设判定条件,则获取子像素110的第二补偿参数,并根据所获取的第二补偿参数对子像素110的初始灰阶进行补偿,获得子像素110的目标灰阶。
子像素110的第二补偿参数为根据第二类型画面进行光学补偿校准而获得的补偿参数,在第二类型画面中,该子像素110不满足预设判定条件。因此,当判断子像素110不满足预设判定条件时,通过第二补偿参数对子像素110的初始灰阶进行补偿,可以使得子像素110正确发光,进而保证子像素110在不满足预设判定条件时可以准确充电至预期电位,避免子像素110在不满足预设判定条件时充电不足。
在本公开的一种实施方式中,第二补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0。通过第二补偿参数对子像素110的初始灰阶进行补偿时,可以计算子像素110的初始灰阶与第二补偿参数的和作为子像素110的目标灰阶。
本公开的光学补偿校准方法还可以包括:
步骤S250,根据各个子像素110的目标灰阶,驱动显示面板100显示画面。
如此,由于各个子像素110均经过了光学补偿,因此各个子像素110可以准确发光,避免了各个子像素110充电不足的问题。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等,均应视为本公开的一部分。
本公开还提供一种驱动器200,如图1所示,驱动器200用于驱动一显示面板100,显示面板100包括阵列分布的子像素110。如图18所示,该驱动器200可以包括数据接收电路210、判断电路220、第一补偿参数存储电路230和第一执行电路240,其中,
数据接收电路210用于接收待显示画面的各个子像素110的初始灰阶;判断电路220与数据接收电路210电连接,用于根据各个子像素110的初始灰阶,判断各个子像素110是否满足预设判定条件;第一补偿参数存储电路230用于存储各个子像素110的第一补偿参数;第一执行电路240与判断电路220和第一补偿参数存储电路230电连接,用于在判断一子像素110满足预设判定条件时,获取子像素110的第一补偿参数,并根据所获取的第一补偿参数对子像素110的初始灰阶进行补偿。
本公开提供的驱动器200,可以获取待显示画面的各个子像素110的初始灰阶,并判断各个子像素110是否满足预设判定条件,且能够在判断一子像素110满足预设判定条件时,获取子像素110的第一补偿参数,并根据所获取的第一补偿参数对子像素110的初始灰阶进行补偿。当根据子像素110的初始灰阶判断子像素110符合预设判定条件时,可以知晓数据线120向该子像素110充电时数据电压变化大,该子像素110容易出现充电不足的问题。子像素110的第一补偿参数恰恰是在该子像素110符合预设判定条件时而获得的补偿参数,通过该第一补偿参数对该子像素110进行补偿可以使得该子像素110显示正确的亮度,进而保证该子像素110充电至正确的电位,避免了子像素110在符合预设判定条件时出现充电不足的问题。如此,本公开的驱动器200可以直接对待显示画面的子像素110的初始灰阶进行补偿,避免了子像素110在符合预设判定条件出现充电不足的问题,提高了对子像素110的补偿效率。
下面,结合附图对本公开的驱动器200的各个电路做进一步的解释和说明:
数据接收电路210用于接收待显示画面的各个子像素110的初始灰阶。可选的,该数据接收电路210可以包括设置于时序控制器201上的数据接口电路和图片侦测(PD,Picture Detection)电路。其中,数据接口电路用于与显示装置外部进行数据交换,尤其是用于接收外部向显示装置输入的待显示图像的显示数据;图片侦测电路与数据接口电路电连接,并用于根据显示数据而获得待显示图像的各个子像素110的初始灰阶。
判断电路220用于判断各个子像素110是否满足预设判定条件。判断电路220可以依据如下原理,来判断子像素110是否符合预设判定条件:电连接于同一数据线120上且位于相邻两行的两个子像素110,如果两个子像素110初始灰阶的差值的绝对值超过预设阈值,则可以认为下一行子像素110满足预设判定条件,数据线120在向下一行子像素110充电时数据电压的变化幅度大,下一行子像素110容易出现充电不足的现象。可以理解的是,下一行子像素110为,在充电时序上,后充电的子像素110。
可以理解的是,当显示面板100上子像素110的设置方式不同时,判断电路220可以不同。下面,示例地例举几种不同类型的显示面板100,以及各类型显示面板100对应的判断电路220,以进一步解释和说明预设判定条件。
在本公开的一种实施方式中,如图4所示,在显示面板100中,同一列子像素110连接于同一数据线120,且一数据线120上连接一列子像素110。在该类型的显示面板100 中,在同一列子像素110中,若下一行子像素110的初始灰阶与上一行子像素110的初始灰阶的差值的绝对值超过预设阈值,则该下一行子像素110满足预设判定条件。
对应于该类型的显示面板100,判断电路220被配置为:
判断各个子像素110是否满足预设判定条件;且判断任意下一行子像素110是否满足预设判定条件的方法包括:
计算下一行子像素110的初始灰阶与上一行子像素110的初始灰阶的差值的绝对值;
若差值的绝对值大于预设阈值,则判断下一行子像素110满足预设判定条件。
可选的,判断电路220还可以被配置为:若差值的绝对值不大于预设阈值,则判断下一行子像素110不满足预设判定条件。
在本公开的另一种实施方式中,如图5所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;其中,子像素110P(i,2j)和子像素110P(i+1,2j-1)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j)为位于第i列、第2j行的子像素110,子像素110P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。
对应于该类型的显示面板100,判断电路220被配置为:
计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素110P(i,2j)满足预设判定条件;
计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于预设阈值,则判断子像素110P(i+1,2j+1)满足预设判定条件;
其中,其中,G(i,2j)为子像素110P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素110P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素110P(i+1,2j+1)的初始灰阶。
可选的,判断电路220还可以被配置为:若G(i,2j)和G(i+1,2j-1)的差值的绝对值不大于预设阈值,则判断子像素110P(i,2j)不满足预设判定条件。
可选的,判断电路220还可以被配置为:若G(i+1,2j+1)和G(i,2j)的差值的绝对值不大于预设阈值,则判断子像素110P(i+1,2j+1)不满足预设判定条件。
在本公开的另一种实施方式中,如图6所示,在显示面板100中,相邻两列子像素110中,一列子像素110的奇数行子像素110与另一列子像素110的偶数行子像素110连接于同一数据线120;子像素110P(i,2j-1)和子像素110P(i+1,2j)连接于数据线120L(i+1),其中,数据线120L(i+1)为第i+1根数据线120,子像素110P(i,2j-1)为位于第i列、第2j-1行的子像素110,子像素110P(i+1,2j)为位于第i+1列、第2j行的子像素110,其中,i为大于0的正整数,j为大于0的正整数。
对应于该类型的显示面板100,判断电路220被配置为:
计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝 对值大于预设阈值,则判断子像素110P(i+1,2j)满足预设判定条件;
计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝对值大于预设阈值,则判断子像素110P(i,2j+1)满足预设判定条件;
其中,G(i,2j-1)为子像素110P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素110P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素110P(i,2j+1)的初始灰阶。
可选的,判断电路220还可以被配置为:若G(i+1,2j)和G(i,2j-1)的差值的绝对值不大于预设阈值,则判断子像素110P(i+1,2j)不满足预设判定条件。
可选的,判断电路220还可以被配置为:若G(i,2j+1)和G(i+1,2j)的差值的绝对值不大于预设阈值,则判断子像素110P(i,2j+1)不满足预设判定条件。
在本公开的另一种实施方式中,第一补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0。第一执行电路可以被配置为,当判断一子像素110满足所述预设判定条件时,获取该子像素110的第一补偿参数,并计算该子像素110的第一补偿参数与该子像素110的初始灰阶的和,作为该子像素110的目标灰阶。
如图18所示,本公开的驱动器200还可以包括第二补偿参数存储电路250和第二执行电路260,其中,第二补偿参数存储电路250用于存储各个子像素110的第二补偿参数;第二执行电路260与判断电路220和第二补偿参数存储电路250电连接,用于在判断一子像素110不满足预设判定条件时,获取子像素110的第二补偿参数,并根据所获取的第二补偿参数对子像素110的初始灰阶进行补偿。
在本公开的另一种实施方式中,第二补偿参数可以为一灰阶差值,其中该灰阶差值可以为正值、负值或者0。第二执行电路可以被配置为,当判断一子像素110不满足所述预设判定条件时,获取该子像素110的第二补偿参数,并计算该子像素110的第二补偿参数与该子像素110的初始灰阶的和,作为该子像素110的目标灰阶。
子像素110的第二补偿参数为根据第二类型画面进行光学补偿校准而获得的补偿参数,在第二类型画面中,该子像素110不满足预设判定条件。因此,当判断子像素110不满足预设判定条件时,通过第二补偿参数对子像素110的初始灰阶进行补偿,可以使得子像素110正确发光,进而保证子像素110在不满足预设判定条件时可以准确充电至预期电位,避免子像素110在不满足预设判定条件时充电不足。
在本公开的一种实施方式中,第一执行电路240和第二执行电路260可以为同一执行电路。举例而言,该执行电路可以包括选择子电路和补偿子电路,其中,
选择子电路与判断电路220、第一补偿参数存储电路230和第二补偿参数存储电路250电连接,且选择子电路被配置为:接收判断电路220发送的子像素110的初始灰阶和判断结果;当判断结果为子像素110满足预设判定条件时,从第一补偿参数存储电路230中获取子像素110的第一补偿参数;当判断结果为子像素110不满足预设判定条件时,从第二补偿参数存储电路250中获取子像素110的第二补偿参数;输出子像素110的初始灰阶和 第一补偿参数或第二补偿参数。
补偿子电路与选择子电路电连接,用于接收子像素110的初始灰阶和第一补偿参数或第二补偿参数,并根据第一补偿参数或第二补偿参数对子像素110的初始灰阶进行补偿,获得子像素110的目标灰阶。
本公开的驱动器200还可以对子像素110的目标灰阶,进行其他形式的补偿,例如进行gamma补偿等,并根据补偿结果驱动显示面板100显示画面。
本公开实施方式还提供一种显示装置,如图1所示,该显示装置包括上述驱动器实施方式所描述的任意一种驱动器200。该显示装置可以为手机屏幕、电视机、智能手表屏幕或者其他类型的显示装置。由于该显示装置具有上述驱动器实施方式所描述的任意一种驱动器,因此具有相同的有益效果,本公开在此不再赘述。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (18)

  1. 一种显示装置的光学补偿方法,其特征在于,所述显示装置包括驱动器和显示面板,所述显示面板包括阵列分布的多个子像素;所述光学补偿校准方法包括:
    接收待显示画面的各个所述子像素的初始灰阶;
    根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件;其中,若电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值,则判断下一行子像素满足所述预设判定条件;
    若判断一所述子像素满足所述预设判定条件,则获取所述子像素的第一补偿参数,并根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿。
  2. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,同一列所述子像素连接于同一所述数据线;
    判断任意下一行子像素是否满足预设判定条件包括:
    计算下一行子像素的初始灰阶与上一行子像素的初始灰阶的差值的绝对值;
    若所述差值的绝对值大于预设阈值,则判断所述下一行子像素满足所述预设判定条件。
  3. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件包括:
    计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i,2j)满足所述预设判定条件;
    计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i+1,2j+1)满足所述预设判定条件;
    其中,其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
  4. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件包括:
    计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i+1,2j)满足所述预设判定条件;
    计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝 对值大于所述预设阈值,则判断子像素P(i,2j+1)满足所述预设判定条件;
    其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
  5. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,所述显示装置的光学补偿方法还包括:
    向所述驱动器输入第一预设画面的各个所述子像素的初始灰阶;其中,在所述第一预设画面中,任意电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值;
    获取所述显示面板中各个所述子像素的初始亮度;
    根据各个所述子像素的初始灰阶和各个所述子像素的初始亮度,确定各个所述子像素的第一补偿参数;
    将各个所述子像素的第一补偿参数存储于所述驱动器中。
  6. 根据权利要求5所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,同一列所述子像素连接于同一所述数据线;
    所述第一预设画面的任意同一列所述子像素中,任意相邻两行所述子像素的初始灰阶的差值的绝对值大于预设阈值。
  7. 根据权利要求5所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    所述第一预设画面中,G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,且G(i,2j)和G(i+1,2j+1)的差值的绝对值大于所述预设阈值;其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
  8. 根据权利要求5所述的显示装置的光学补偿方法,其特征在于,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    所述第一预设画面中,G(i,2j-1)和G(i+1,2j)的差值的绝对值大于预设阈值,且G(i,2j+1)和G(i+1,2j)的差值的绝对值大于所述预设阈值;其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
  9. 根据权利要求5所述的显示装置的光学补偿方法,其特征在于,所述驱动器包括时序控制器;
    将各个所述子像素的第一补偿参数存储于所述驱动器中包括:
    将各个所述子像素的第一补偿参数存储于所述时序控制器中。
  10. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,所述光学补偿校准方法还包括:
    若判断一所述子像素不满足所述预设判定条件,则获取所述子像素的第二补偿参数,并根据所获取的所述第二补偿参数对所述子像素的初始灰阶进行补偿。
  11. 根据权利要求10所述的显示装置的光学补偿方法,其特征在于,所述显示装置的光学补偿方法还包括:
    向所述驱动器输入第二预设画面的各个所述子像素的初始灰阶;其中,在所述第二预设画面中,任意电连接于同一数据线上且位于相邻两行的两个子像素的初始灰阶的差值的绝对值不超过所述预设阈值;
    获取所述显示面板中各个所述子像素的初始亮度;
    根据各个所述子像素的初始灰阶和各个所述子像素的初始亮度,确定各个所述子像素的第二补偿参数;
    将各个所述子像素的第二补偿参数存储于所述驱动器中。
  12. 根据权利要求1所述的显示装置的光学补偿方法,其特征在于,所述第一补偿参数为一灰阶差值;
    根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿包括:
    计算所获取的所述第一补偿参数与所述子像素的初始灰阶的和,获得所述子像素的目标灰阶。
  13. 一种驱动器,其特征在于,所述驱动器用于驱动一显示面板,所述显示面板包括阵列分布的子像素;所述驱动器包括:
    数据接收电路,用于接收待显示画面的各个所述子像素的初始灰阶;
    判断电路,与所述数据接收电路电连接,用于根据各个所述子像素的初始灰阶,判断各个所述子像素是否满足预设判定条件;其中,若电连接于同一数据线上且位于相邻两行的两个所述子像素的初始灰阶的差值的绝对值大于预设阈值,则判断下一行子像素满足所述预设判定条件;
    第一补偿参数存储电路,用于存储各个所述子像素的第一补偿参数;
    第一执行电路,与所述判断电路和所述第一补偿参数存储电路电连接,用于在判断一所述子像素满足所述预设判定条件时,获取所述子像素的第一补偿参数,并根据所获取的所述第一补偿参数对所述子像素的初始灰阶进行补偿。
  14. 根据权利要求13所述的驱动器,其特征在于,在所述显示面板中,同一列所述子像素连接于同一数据线;
    所述判断电路被配置为,判断各个所述子像素是否满足预设判定条件,且判断任意下 一行子像素是否满足预设判定条件的方法包括:
    计算下一行子像素的初始灰阶与上一行子像素的初始灰阶的差值的绝对值;
    若所述差值的绝对值大于预设阈值,则判断所述下一行子像素满足所述预设判定条件。
  15. 根据权利要求13所述的驱动器,其特征在于,在所述显示面板中,子像素P(i,2j)和子像素P(i+1,2j-1)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j)为位于第i列、第2j行的子像素,子像素P(i+1,2j-1)为位于第i+1列、第2j-1行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    所述判断电路被配置为:
    计算G(i,2j)和G(i+1,2j-1)的差值的绝对值,若G(i,2j)和G(i+1,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i,2j)满足所述预设判定条件;
    计算G(i+1,2j+1)和G(i,2j)的差值的绝对值,若G(i+1,2j+1)和G(i,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i+1,2j+1)满足所述预设判定条件;
    其中,其中,G(i,2j)为子像素P(i,2j)的初始灰阶,G(i+1,2j-1)为子像素P(i+1,2j-1)的初始灰阶,G(i+1,2j+1)为子像素P(i+1,2j+1)的初始灰阶。
  16. 根据权利要求13所述的驱动器,其特征在于,在所述显示面板中,子像素P(i,2j-1)和子像素P(i+1,2j)连接于数据线L(i+1),其中,数据线L(i+1)为第i+1根数据线,子像素P(i,2j-1)为位于第i列、第2j-1行的子像素,子像素P(i+1,2j)为位于第i+1列、第2j行的子像素,其中,i为大于0的正整数,j为大于0的正整数;
    所述判断电路被配置为:
    计算G(i+1,2j)和G(i,2j-1)的差值的绝对值,若G(i+1,2j)和G(i,2j-1)的差值的绝对值大于预设阈值,则判断子像素P(i+1,2j)满足所述预设判定条件;
    计算G(i,2j+1)和G(i+1,2j)的差值的绝对值,若G(i,2j+1)和G(i+1,2j)的差值的绝对值大于所述预设阈值,则判断子像素P(i,2j+1)满足所述预设判定条件;
    其中,G(i,2j-1)为子像素P(i,2j-1)的初始灰阶,G(i+1,2j)为子像素P(i+1,2j)的初始灰阶,G(i,2j+1)为子像素P(i,2j+1)的初始灰阶。
  17. 根据权利要求13所述的驱动器,其特征在于,所述驱动器还包括:
    第二补偿参数存储电路,用于存储各个所述子像素的第二补偿参数;
    第二执行电路,与所述判断电路和所述第二补偿参数存储电路电连接,用于在判断一所述子像素不满足所述预设判定条件时,获取所述子像素的第二补偿参数,并根据所获取的所述第二补偿参数对所述子像素的初始灰阶进行补偿。
  18. 一种显示装置,其特征在于,包括权利要求13~17任一项所述的驱动器。
PCT/CN2019/109381 2019-09-30 2019-09-30 驱动器、显示装置及其光学补偿方法 WO2021062604A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/109381 WO2021062604A1 (zh) 2019-09-30 2019-09-30 驱动器、显示装置及其光学补偿方法
US16/960,137 US11328650B2 (en) 2019-09-30 2019-09-30 Driver, display device and optical compensation method
CN201980001891.3A CN113597638B (zh) 2019-09-30 2019-09-30 驱动器、显示装置及其光学补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109381 WO2021062604A1 (zh) 2019-09-30 2019-09-30 驱动器、显示装置及其光学补偿方法

Publications (1)

Publication Number Publication Date
WO2021062604A1 true WO2021062604A1 (zh) 2021-04-08

Family

ID=75336738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109381 WO2021062604A1 (zh) 2019-09-30 2019-09-30 驱动器、显示装置及其光学补偿方法

Country Status (3)

Country Link
US (1) US11328650B2 (zh)
CN (1) CN113597638B (zh)
WO (1) WO2021062604A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495800A (zh) * 2022-03-07 2022-05-13 北京京东方显示技术有限公司 显示面板的驱动方法及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067407A (ko) * 2020-11-17 2022-05-24 엘지디스플레이 주식회사 표시 장치, 컨트롤러 및 디스플레이 구동 방법
CN117203693A (zh) * 2022-02-24 2023-12-08 京东方科技集团股份有限公司 显示面板的驱动方法及显示装置
WO2023159557A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 显示面板的驱动方法、驱动电路、显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040253A (ko) * 2006-11-02 2008-05-08 삼성전자주식회사 표시장치의 영상처리방법
US20140320521A1 (en) * 2013-04-25 2014-10-30 Samsung Display Co., Ltd. Display device and image signal compensating method
CN106228943A (zh) * 2016-10-11 2016-12-14 深圳市华星光电技术有限公司 图像灰阶调整方法及调整装置
CN106297644A (zh) * 2016-11-04 2017-01-04 京东方科技集团股份有限公司 一种显示面板的驱动电路、其驱动方法及显示装置
CN106847157A (zh) * 2017-03-24 2017-06-13 上海天马有机发光显示技术有限公司 一种显示面板的亮度补偿方法及装置
CN106842752A (zh) * 2017-04-24 2017-06-13 京东方科技集团股份有限公司 显示面板、显示装置及其显示方法
CN107170419A (zh) * 2017-06-29 2017-09-15 惠科股份有限公司 显示面板驱动方法、系统及显示装置
CN109584796A (zh) * 2019-01-30 2019-04-05 昆山国显光电有限公司 显示面板的显示驱动方法、显示驱动装置及显示装置
CN109979385A (zh) * 2019-05-15 2019-07-05 昆山国显光电有限公司 显示面板的显示驱动方法、显示驱动装置及显示装置
CN110134353A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 颜色补偿方法、补偿装置以及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212158B1 (ko) * 2006-02-27 2012-12-13 엘지디스플레이 주식회사 액정 표시장치와 그 구동방법
KR20130049619A (ko) * 2011-11-04 2013-05-14 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
JP2013114143A (ja) * 2011-11-30 2013-06-10 Seiko Epson Corp 電気光学装置および電子機器
CN103854616A (zh) * 2012-12-07 2014-06-11 群康科技(深圳)有限公司 显示面板的串音补偿方法及其显示装置
CN105096834B (zh) * 2015-08-26 2017-05-17 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管显示装置及其亮度补偿方法
CN110137215A (zh) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构、显示基板和显示装置
US10854684B2 (en) 2016-02-18 2020-12-01 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
US9984639B2 (en) * 2016-05-25 2018-05-29 Parade Technologies, Ltd. Adaptive spatial offset cancellation of source driver
KR20180079563A (ko) * 2016-12-30 2018-07-11 엘지디스플레이 주식회사 표시장치의 광학보상방법
CN107767815B (zh) * 2017-11-30 2020-09-29 武汉华星光电半导体显示技术有限公司 Oled显示面板的补偿系统及方法
CN108877678A (zh) * 2018-09-10 2018-11-23 深圳创维-Rgb电子有限公司 基于像素补偿的图像显示方法、装置、显示设备和介质
CN109360534B (zh) * 2018-11-30 2020-04-10 深圳市华星光电半导体显示技术有限公司 像素驱动方法
CN110010100B (zh) * 2019-05-10 2020-08-04 深圳市华星光电技术有限公司 像素驱动方法
CN110021271B (zh) * 2019-05-23 2021-03-23 京东方科技集团股份有限公司 光学补偿方法、光学补偿系统、显示方法和显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040253A (ko) * 2006-11-02 2008-05-08 삼성전자주식회사 표시장치의 영상처리방법
US20140320521A1 (en) * 2013-04-25 2014-10-30 Samsung Display Co., Ltd. Display device and image signal compensating method
CN106228943A (zh) * 2016-10-11 2016-12-14 深圳市华星光电技术有限公司 图像灰阶调整方法及调整装置
CN106297644A (zh) * 2016-11-04 2017-01-04 京东方科技集团股份有限公司 一种显示面板的驱动电路、其驱动方法及显示装置
CN106847157A (zh) * 2017-03-24 2017-06-13 上海天马有机发光显示技术有限公司 一种显示面板的亮度补偿方法及装置
CN106842752A (zh) * 2017-04-24 2017-06-13 京东方科技集团股份有限公司 显示面板、显示装置及其显示方法
CN107170419A (zh) * 2017-06-29 2017-09-15 惠科股份有限公司 显示面板驱动方法、系统及显示装置
CN110134353A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 颜色补偿方法、补偿装置以及显示装置
CN109584796A (zh) * 2019-01-30 2019-04-05 昆山国显光电有限公司 显示面板的显示驱动方法、显示驱动装置及显示装置
CN109979385A (zh) * 2019-05-15 2019-07-05 昆山国显光电有限公司 显示面板的显示驱动方法、显示驱动装置及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495800A (zh) * 2022-03-07 2022-05-13 北京京东方显示技术有限公司 显示面板的驱动方法及显示装置
CN114495800B (zh) * 2022-03-07 2023-12-26 北京京东方显示技术有限公司 显示面板的驱动方法及显示装置

Also Published As

Publication number Publication date
CN113597638B (zh) 2024-01-09
US20210407370A1 (en) 2021-12-30
US11328650B2 (en) 2022-05-10
CN113597638A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021062604A1 (zh) 驱动器、显示装置及其光学补偿方法
CN101689347B (zh) 显示装置和显示装置驱动方法
CN102047313B (zh) 多色电致发光显示器的补偿方案
US20160189619A1 (en) Display Device and Method for Driving the Same
KR101878976B1 (ko) 터치 센싱 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
US10522100B2 (en) Method of driving a display panel and display apparatus performing the same
KR102289716B1 (ko) 표시 장치 및 이의 구동 방법
US10460668B2 (en) Pixel compensation method, pixel compensation apparatus and display apparatus
US20190066591A1 (en) Pixel compensation method, pixel compensation apparatus and display device
US20070132674A1 (en) Driving method of self-luminous type display unit, display control device of self-luminous type display unit, current output type drive circuit of self-luminous type display unit
US9830858B2 (en) Display panel and display device having the same
US20100060554A1 (en) Display apparatus and method of driving the same
US20140210876A1 (en) Pixel structure and display device comprising the same
US20140333516A1 (en) Display device and driving method thereof
KR20100018320A (ko) 액정 표시 장치 및 그것의 공통전압 조절 방법
CN101536071A (zh) 响应输电线压降进行数据调整的有源矩阵电致发光显示器
JP2005352483A (ja) 液晶表示装置及びその駆動方法
US20200357333A1 (en) Light-emitting diode display device and method of operating the same
KR102245502B1 (ko) 표시 장치 및 이의 구동 방법
US20180226045A1 (en) Display device and driving method thereof
WO2021227116A1 (zh) 显示装置和终端
CN109961739A (zh) 显示调试方法、补偿方法及装置、显示装置和存储介质
KR20200082347A (ko) 얼룩 특성에 기초하여 휘도 보상 데이터를 생성하기 위한 장치 및 방법 및 휘도 보상을 수행하기 위한 장치 및 방법
KR20140054598A (ko) 타이밍 컨트롤러 및 그 구동 방법과 이를 이용한 표시장치
CN113066429A (zh) 显示装置的补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947444

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947444

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19947444

Country of ref document: EP

Kind code of ref document: A1