WO2021226990A1 - 适用于拍摄极限场景的摄像装置及拍摄方法 - Google Patents

适用于拍摄极限场景的摄像装置及拍摄方法 Download PDF

Info

Publication number
WO2021226990A1
WO2021226990A1 PCT/CN2020/090462 CN2020090462W WO2021226990A1 WO 2021226990 A1 WO2021226990 A1 WO 2021226990A1 CN 2020090462 W CN2020090462 W CN 2020090462W WO 2021226990 A1 WO2021226990 A1 WO 2021226990A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera device
speed
camera
scene
position change
Prior art date
Application number
PCT/CN2020/090462
Other languages
English (en)
French (fr)
Inventor
翁松伟
周梓航
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080031233.1A priority Critical patent/CN113950821A/zh
Priority to PCT/CN2020/090462 priority patent/WO2021226990A1/zh
Publication of WO2021226990A1 publication Critical patent/WO2021226990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the present invention generally relates to the field of communications, and in particular to a camera device and a shooting method suitable for shooting extreme scenes.
  • a camera device and a shooting method suitable for shooting extreme scenes are needed to solve the problem of slow convergence speed of automatic exposure.
  • a camera device suitable for shooting extreme scenes, the camera device including: a first sensing unit for acquiring the motion state of the camera device; and a second sensing unit , For acquiring the position change of the camera device; a third sensing unit, for acquiring scene information of the environment in which the camera device is located; a processing unit for receiving the motion state, the position change and/ Or the scene information, and based on the motion state, the position change, and/or the scene information, one of the at least two preset convergence coefficients is selected as the target convergence for the automatic exposure unit Coefficient; an automatic exposure unit for automatically adjusting exposure parameters for exposure based on the target convergence coefficient.
  • a method suitable for shooting extreme scenes by a camera device comprising: acquiring the motion state, position change of the camera device and/or the scene of the environment in which the camera device is located Information; based on the motion state, the position change, and/or the scene information, select a convergence coefficient from at least two preset convergence coefficients as the target convergence coefficient for the automatic exposure unit of the camera device; The exposure parameters of the automatic exposure unit are automatically adjusted to perform exposure based on the target convergence coefficient.
  • a computer-readable medium having a computer program stored on the computer-readable medium, and the computer program executes the above-mentioned camera device suitable for shooting extreme scenes during operation. method.
  • the camera device, the shooting method and the computer readable medium suitable for shooting extreme scenes of the embodiments of the present invention adopt convergence schemes with different convergence speeds for automatic exposure for common scenes and extreme sports scenes, so that the convergence speed under extreme scenes is accelerated.
  • the picture will not be overexposed or too dark, and the brightness of the video picture can be quickly adjusted to an appropriate value, so that the picture color is vivid and the picture quality is significantly improved.
  • FIG. 1 shows a schematic structural block diagram of a camera device suitable for shooting extreme scenes according to an embodiment of the present invention
  • Fig. 2 shows a flowchart of steps of a method suitable for shooting extreme scenes by a camera device according to an embodiment of the present invention.
  • the present invention provides a camera device suitable for shooting extreme scenes.
  • the camera device includes: a first sensing unit for acquiring the motion state of the camera device; and a second sensing unit for For acquiring the position change of the camera device; a third sensing unit for acquiring scene information of the environment in which the camera device is located; a processing unit for receiving the motion state, the position change and/or the The scene information, and based on the motion state, the position change, and/or the scene information, select one convergence coefficient from at least two preset convergence coefficients as the target convergence coefficient for the automatic exposure unit;
  • the automatic exposure unit is configured to automatically adjust the exposure parameters for exposure based on the target convergence coefficient.
  • the camera device suitable for shooting extreme scenes of the present invention adopts convergence schemes with different convergence speeds for automatic exposure for ordinary scenes and extreme sports scenes, so that the convergence speed in extreme scenes is accelerated, and the photo images will not be overexposed or too dark, and the video images
  • the brightness can be quickly adjusted to an appropriate value, so that the color of the picture is vivid and the picture quality is significantly improved.
  • This embodiment provides a camera device suitable for shooting extreme scenes.
  • FIG. 1 shows a schematic structural block diagram of a camera device 100 suitable for shooting extreme scenes according to an embodiment of the present invention.
  • the camera device 100 may be any type of camera device known in the art, such as a CCD camera, a CMOS camera, etc., which is not limited in the present invention.
  • the camera 100 may include a first sensing unit 110, a second sensing unit 120, a third sensing unit 130, an automatic exposure unit 140 and a processing unit 150. It should be understood that the imaging device 100 may also include any other units known in the art for implementing corresponding functions, and these units are not shown in the present invention, so as not to unnecessarily obscure the present invention.
  • the first sensing unit 110 is used to obtain the motion state of the camera device 100, so as to determine that the camera device 100 is in a violent motion state according to the rapid change of the motion state of the camera device 100.
  • the first sensing unit 110 may include an inertial measurement unit (IMU) sensor, such as a microelectromechanical system (MEMS) IMU, for measuring the motion parameters of the camera 100.
  • IMU inertial measurement unit
  • MEMS microelectromechanical system
  • the motion parameters may include the motion speed (ie, linear velocity), velocity direction, angular velocity, acceleration, etc. of the camera 100.
  • the first sensing unit 110 may further include an attitude sensor for measuring the attitude angle of the camera device 100, including a pitch angle, a yaw angle, and a roll angle. It should be understood that the first sensing unit 110 may also include other sensors, which are not limited in the present invention.
  • the second sensing unit 120 is used to obtain the real-time position of the camera 100 to obtain the position change of the camera 100 according to the real-time position.
  • the second sensing unit 120 may include a GPS device for measuring the position parameter of the camera device 100, and obtaining the position change of the camera device 100 based on the position parameter, thereby obtaining the height/horizontal distance of the camera device 100 Wait whether it changes drastically.
  • the location parameters may include the longitude, latitude, and altitude of the camera 100.
  • the GPS device may use any suitable type of GPS device known in the art as required, which is not limited in the present invention.
  • the second sensing unit 120 may further include a barometric pressure measuring device for measuring barometric parameters of the environment in which the camera device 100 is located, and further acquiring the position change of the camera device 100 based on the barometric parameters.
  • the barometric pressure measuring device may use any suitable type of barometric measuring device known in the art as required, such as a barometric measuring instrument, which is not limited in the present invention.
  • the second sensing unit 120 may further include an airspeed measuring device for measuring the movement speed of the camera device 100 relative to the surrounding air, and further obtain the position change of the camera device 100 based on the movement speed.
  • the airspeed measuring device may use any suitable type of airspeed measuring device known in the art as needed, such as an airspeed indicator, which is not limited in the present invention.
  • the second sensing unit 120 may only include a GPS device, and in addition to the GPS device, it may additionally include a barometric pressure measuring device and/or an airspeed measuring device to assist the GPS device to more accurately determine the position change of the camera 100.
  • the present invention does not limit this.
  • the third sensing unit 130 is used to obtain scene information of the environment in which the camera device 100 is located, so as to determine whether the scene in which the camera device 100 is located has changed.
  • the scenes may include static scenes, ordinary sports scenes, and extreme sports scenes.
  • the extreme sports scenes may include skiing, diving, parachuting, wing-mounted flying (flying squirrel), surfing, racing, and crossing planes.
  • the present invention There is no restriction on this. In these extreme sports scenes, the motion speed of the camera device is usually very fast, so the brightness of the environment changes very quickly.
  • the third sensing unit 130 may include a computational photographing unit for taking a video of the environment in which the camera 100 is located, and extracting frames based on the video to obtain scene information of the environment in which the camera 100 is located.
  • any suitable frame extraction method can be used to extract frames, such as extracting video scene transition frames, or evenly extracting frames according to time.
  • the frame rate of decimating frames can be selected as required, for example, 10 frames per second are decimated, which is not limited in the present invention.
  • the automatic exposure unit 140 is configured to automatically adjust exposure parameters based on the convergence coefficient to perform automatic exposure.
  • at least two convergence coefficients for example, 2, 3, 4, 5, 6, etc.
  • different convergence coefficients correspond to different exposure parameter convergence speeds for the automatic exposure unit to choose from.
  • One of the convergence coefficients (referred to herein as the target convergence coefficient) automatically adjusts the exposure parameters (for example, exposure time, aperture size, sensitivity (iso), etc.) for automatic exposure.
  • two convergence coefficients may be preset, one of which is suitable for the camera device 100 to capture still scenes and ordinary sports scenes, and the other is suitable for the camera device 100 to capture extreme sports scenes.
  • a plurality of convergence coefficients may be preset, one of which is suitable for the camera device 100 to capture still scenes and ordinary sports scenes, and the others are convergent.
  • the coefficients are respectively applicable to different types of extreme sports scenes captured by the camera 100.
  • the processing unit 150 is configured to receive the motion state acquired by the first sensing unit 110, the position change acquired by the second sensing unit 120, and/or the scene information acquired by the third sensing unit 130, and based on the motion state, position change and /Or scene information to select one convergence coefficient from at least two preset convergence coefficients as the target convergence coefficient for the automatic exposure unit 140.
  • two preset convergence coefficients are taken as an example for description: when the motion state indicates that the camera 100 is in a vigorous motion state (for example, the speed is high, the acceleration is high, etc.), and the position change indicates the height and height of the camera 100 When the horizontal distance changes rapidly, and/or the scene information indicates that the scene changes, it can be determined that the camera 100 is in an extreme sports scene, and the processing unit 150 can select the larger one of the two convergence coefficients as the one used for automatic exposure.
  • the target convergence coefficient of the unit 140 otherwise, a smaller convergence coefficient is selected as the target convergence coefficient.
  • respective weights may be preset for the motion state, position change, and/or scene information.
  • the processing unit 150 may obtain the preset weights respectively.
  • the respective weights of the motion state, position change, and/or scene information of, and the target convergence coefficient for the automatic exposure unit 140 is calculated and selected based on the respective weights.
  • the weights may be preset to 70%, 20%, and 10% for the motion state, position change, and scene information, respectively.
  • different weights may be preset for the motion state, position change, and/or scene information according to different scenes used by the camera 100.
  • the scene information may include the scene type and/or the speed of change of screen brightness.
  • the scene types may include skiing, diving, parachuting, wing-mounted flying (flying squirrel), surfing, racing, crossing planes, etc., which are not limited in the present invention.
  • the motion characteristics of the camera device 100 are different, and the brightness change characteristics in the scene are also different. Therefore, in one embodiment, different scene types may include motion state, position change, scene type, and The screen brightness change speed is preset with different weights. The following shows exemplary weight settings in several exemplary scenarios:
  • the sports are usually characterized by high altitude and fast speed.
  • the picture is sky and earth, so the weight can be set as follows: sports state 70%, position change 10%, scene type 10%, picture brightness The rate of change is 10%.
  • the movement is usually characterized by extremely fast speed (for example, the maximum speed can reach 120km/h ⁇ 230km/h), and the altitude is generally not high, so the weight can be set as follows: sports state 70%, screen brightness change speed 30%.
  • the weight setting can be similar to the scene of the rider: 70% of the movement state, 10% of the position change, and the type of scene 10. %, the screen brightness change speed is 10%.
  • the processing unit 150 may also obtain the motion state and position change corresponding to the scene type according to different scene types. , The respective weights of the scene type and the screen brightness change speed, and calculate and select the target convergence coefficient for the scene type based on each weight.
  • the movement speed of the camera 100 can also be divided into several (for example, 3, 4, 5, 6, etc.) speed ranges, and different convergence coefficients are preset for different speed ranges. .
  • the speed is 0m/s ⁇ 40m/s, the convergence coefficient is 1,
  • the speed is 40m/s ⁇ 50m/s, the convergence coefficient is 1.5,
  • the speed is 50m/s ⁇ 60m/s, the convergence coefficient is 2.0,
  • the speed is 60m/s ⁇ 70m/s, the convergence coefficient is 3.5,
  • the speed is 70m/s ⁇ 80m/s, and the convergence coefficient is 4.0.
  • a convergence coefficient of 1 corresponds to a static scene and a normal motion scene.
  • the speed of the automatic exposure unit 150 increases.
  • the above division of the speed range and the setting of the convergence coefficient corresponding to the speed range are only exemplary and not intended to be limiting. Those skilled in the art can also set different speed ranges according to needs (for example, according to different scene types). The speed range and the corresponding convergence coefficient are not limited by the present invention.
  • the processing unit 150 may also receive the motion speed of the camera 100, and based on the speed range in which the motion speed is located, select the convergence coefficient corresponding to the speed range as the target convergence coefficient of the automatic exposure unit. Still taking the above speed range and convergence coefficient as an example, when the speed of the traversing machine is 43m/s and is within the speed range of 40m/s-50m/s, the processing unit 150 can select the convergence coefficient 1.5 as the target convergence coefficient of the automatic exposure unit ; When the speed of the traversing machine is 68m/s, which is within the speed range of 40m/s-50m/s, the processing unit 150 can select a convergence coefficient of 3.5 as the target convergence coefficient of the automatic exposure unit.
  • the camera device suitable for shooting extreme scenes of the present invention for ordinary scenes and extreme sports scenes, convergence schemes with different convergence speeds are used for automatic exposure, and the convergence schemes are finely divided according to different scene types and speed ranges, so that normal scenes
  • the lower convergence speed is slow, the exposure speed is appropriate when the screen is switched, and the transition time is in line with the actual situation of the human eye.
  • the convergence speed is accelerated in the extreme scene, and the photo screen will not be overexposed or too dark in different scene types, and the video screen
  • the brightness can be quickly adjusted to an appropriate value, so that the color of the picture is vivid and the picture quality is significantly improved.
  • This embodiment provides a method suitable for shooting extreme scenes by a camera device.
  • the camera device may be any type of camera device known in the art, such as a CCD camera, a CMOS camera, etc., which is not limited in the present invention.
  • FIG. 2 shows a flowchart of the steps of a method 200 suitable for shooting extreme scenes by a camera device according to an embodiment of the present invention. As shown in FIG. 2, the method 200 may include the following steps:
  • step S210 the motion state, position change of the camera device and/or scene information of the environment in which the camera device is located are acquired.
  • the motion state of the camera device may be obtained by the inertial measurement unit by measuring the motion parameters of the camera device.
  • the inertial measurement unit may be a micro-electromechanical system (MEMS) IMU, which is used to measure the motion parameters of the camera device.
  • the motion parameters may include the motion speed (ie linear velocity), velocity direction, angular velocity, acceleration, etc. of the camera device.
  • the position change of the camera device may be obtained by the GPS device by measuring the position parameter of the camera device and based on the position parameter.
  • the location parameters may include the longitude, latitude, and altitude of the camera 100.
  • the position change may include a change in the height/horizontal distance, etc. of the camera.
  • the GPS device may use any suitable type of GPS device known in the art as required, which is not limited in the present invention.
  • the position change of the camera device can also be obtained by the air pressure measuring device by measuring the air pressure parameter of the environment in which the camera device is located, and further based on the air pressure parameter.
  • the barometric pressure measuring device can adopt any suitable type of barometric measuring device known in the art as required, such as a barometric measuring instrument, which is not limited in the present invention.
  • the position change of the camera device can also be obtained by the airspeed measuring device by measuring the movement speed of the camera device relative to the surrounding air, and further based on the movement speed.
  • the airspeed measuring device can adopt any suitable type of airspeed measuring device known in the art as required, such as an airspeed indicator, which is not limited in the present invention.
  • the position change of the camera device can be acquired only through the GPS device, or can also be obtained with the aid of a barometric pressure measurement device and/or an airspeed measurement device to assist the GPS device in judging the position change of the camera device more accurately.
  • the present invention does not do this. limited.
  • the scene information of the environment in which the camera is located is obtained by the computing camera unit by shooting a video of the environment in which the camera is located, and based on the video by decimating frames.
  • any suitable frame extraction method can be used to extract frames, such as extracting video scene transition frames, or evenly extracting frames according to time.
  • the frame rate of decimating frames can be selected as required, for example, 10 frames per second are decimated, which is not limited in the present invention.
  • the scenes may include static scenes, ordinary sports scenes, and extreme sports scenes.
  • the extreme sports scenes may include skiing, diving, parachuting, wing-mounted flying (flying squirrel), surfing, racing, and crossing planes.
  • the present invention There is no restriction on this. In these extreme sports scenes, the motion speed of the camera device is usually very fast, so the brightness of the environment changes very quickly.
  • step S220 one of the at least two preset convergence coefficients is selected as the target convergence coefficient for the automatic exposure unit of the camera based on the motion state, position change and/or scene information.
  • At least two convergence coefficients can be preset, and different convergence coefficients correspond to different exposure parameter convergence speeds for the automatic exposure unit to choose from.
  • One of the convergence coefficients (referred to herein as the target convergence coefficient) automatically adjusts the exposure parameters (for example, exposure time, aperture size, sensitivity (iso), etc.) for automatic exposure.
  • two convergence coefficients may be preset, one of which is suitable for the camera device to shoot still scenes and ordinary sports scenes, and the other is suitable for the camera device to shoot extreme sports scenes.
  • multiple convergence coefficients for example, 3, 4, 5, 6, etc.
  • two preset convergence coefficients are taken as an example for description: when the motion state indicates that the camera device is in a vigorous motion state (for example, a high speed, a large acceleration, etc.), and a position change indicates the height and/or height of the camera device When the horizontal distance changes rapidly, and/or the scene information indicates that the scene changes, it can be determined that the camera device is in an extreme sports scene, and the larger one of the two convergence coefficients can be selected as the target convergence coefficient for the automatic exposure unit. Otherwise, choose a smaller convergence coefficient as the target convergence coefficient.
  • respective weights may be preset for the motion state, position change, and/or scene information respectively.
  • the method 200 may include: separately obtaining Preset the respective weights of the motion state, position change and/or scene information, and calculate and select the target convergence coefficient for the automatic exposure unit based on the respective weights.
  • the weights may be preset to 70%, 20%, and 10% for the motion state, position change, and scene information, respectively.
  • different weights may be preset for the motion state, position change, and/or scene information according to different scenes used by the camera device.
  • the scene information may include the scene type and/or the speed of change of screen brightness.
  • the scene types may include skiing, diving, parachuting, wing-mounted flying (flying squirrel), surfing, racing, crossing planes, etc., which are not limited in the present invention.
  • the motion characteristics of the camera device are different, and the brightness change characteristics in the scene are also different. Therefore, in one embodiment, the method 200 may include: different scene types, such as motion state and position. Different weights are preset for change, scene type and screen brightness change speed. The following shows exemplary weight settings in several exemplary scenarios:
  • the sports are usually characterized by high altitude and fast speed.
  • the picture is sky and earth, so the weight can be set as follows: sports state 70%, position change 10%, scene type 10%, picture brightness The rate of change is 10%.
  • the movement is usually characterized by extremely fast speed (for example, the maximum speed can reach 120km/h ⁇ 230km/h), and the altitude is generally not high, so the weight can be set as follows: sports state 70%, screen brightness change speed 30%.
  • the weight setting can be similar to the scene of the rider: 70% of the movement state, 10% of the position change, and the type of scene 10. %, the screen brightness change speed is 10%.
  • the method 200 may further include: according to different scene types, respectively acquiring the motion state and position change corresponding to the scene type. , The respective weights of the scene type and the screen brightness change speed, and calculate and select the target convergence coefficient for the scene type based on each weight.
  • the motion speed of the camera device can also be divided into several (for example, 3, 4, 5, 6, etc.) speed ranges, and different convergence coefficients are preset for different speed ranges.
  • the speed is 0m/s ⁇ 40m/s, the convergence coefficient is 1,
  • the speed is 40m/s ⁇ 50m/s, the convergence coefficient is 1.5,
  • the speed is 50m/s ⁇ 60m/s, the convergence coefficient is 2.0,
  • the speed is 60m/s ⁇ 70m/s, the convergence coefficient is 3.5,
  • the speed is 70m/s ⁇ 80m/s, and the convergence coefficient is 4.0.
  • a convergence coefficient of 1 corresponds to static scenes and ordinary sports scenes.
  • the corresponding convergence coefficient increases, the convergence speed increases, and the automatic exposure unit adjusts the exposure parameters faster.
  • the division of the above speed range and the setting of the convergence coefficient corresponding to the speed range are only exemplary, and are not intended to limit the present invention to this. Those skilled in the art can also according to needs (for example, according to different scene types). ) Set different speed ranges and corresponding convergence coefficients, which are not limited in the present invention.
  • the method 200 may further include: receiving the motion speed of the camera device, and based on the speed range in which the motion speed is located, selecting a convergence coefficient corresponding to the speed range as the target convergence coefficient of the automatic exposure unit. Still taking the above speed range and convergence coefficient as an example, when the speed of the traversing machine is 43m/s, it is within the speed range of 40m/s ⁇ 50m/s, and the convergence coefficient 1.5 can be selected as the target convergence coefficient of the automatic exposure unit; When the speed of the machine is 68m/s, it is within the speed range of 40m/s ⁇ 50m/s, and the convergence coefficient of 3.5 can be selected as the target convergence coefficient of the automatic exposure unit.
  • step S230 the exposure parameters of the automatic exposure unit are automatically adjusted to perform exposure based on the target convergence coefficient.
  • the exposure parameters may include exposure time (ie, shutter speed), aperture size, sensitivity (iso), isp gain, and the like.
  • the method for shooting extreme scenes by a camera device of the present invention for ordinary scenes and extreme sports scenes, convergence schemes with different convergence speeds are automatically selected for automatic exposure, and the convergence schemes are refinedly divided according to different scene types and speed ranges,
  • the convergence speed is slow in normal scenes, the exposure speed is appropriate when switching screens, and the transition time is in line with the actual situation of the human eye.
  • the convergence speed is accelerated, and the photo images will not be overexposed or too dark in different scene types.
  • the brightness of the video screen can be quickly adjusted to an appropriate value, so that the color of the screen is vivid and the picture quality is significantly improved.
  • This embodiment provides a computer-readable medium having a computer program stored on the computer-readable medium, and the computer program executes the above-mentioned method suitable for shooting extreme scenes by a camera device during operation.
  • the computer program on it when executed, it can automatically select convergence schemes with different convergence speeds for automatic exposure for common scenes and extreme sports scenes, and perform automatic exposure according to different scene types and speed ranges.
  • the solution is refined and divided so that the convergence speed is slow in normal scenes, the exposure speed is appropriate during screen switching, and the transition time is in line with the actual situation of the human eye.
  • the convergence speed is accelerated in extreme scenes, and the photo images in different scene types are not It will be overexposed or too dark, and the brightness of the video screen can be quickly adjusted to an appropriate value, so that the color of the screen is vivid and the screen quality is significantly improved.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules in the article analysis device according to the embodiment of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种适用于拍摄极限场景的摄像装置及拍摄方法,摄像装置包括:第一、第二和第三感测单元,分别用于获取摄像装置的运动状态、位置变化和所处于的环境的场景信息;处理单元,用于接收运动状态、位置变化和/或场景信息,并基于其来从预设的至少两个收敛系数中选择一个收敛系数作为用于自动曝光单元的目标收敛系数;自动曝光单元,用于基于目标收敛系数自动调节曝光参数以进行曝光。本发明的摄像装置及拍摄方法,针对普通场景和极限运动场景采用收敛速度不同的收敛方案进行自动曝光,使得极限场景下收敛速度加快,照片画面不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真。

Description

适用于拍摄极限场景的摄像装置及拍摄方法 技术领域
本发明总地涉及通信领域,具体而言涉及一种适用于拍摄极限场景的摄像装置及拍摄方法。
背景技术
普通相机在运动场景(例如潜水、滑雪等)中表现不佳,使得防抖、轻便易携的运动相机应运而生。在运动相机领域,尽可能地覆盖更多运动场景就成为其追求的目标之一。
现在越来越热门的穿越机、跳伞、飞鼠、冲浪等极限场景中,光线、场景的快速变化,对于自动曝光的收敛速度提出了越来越高的要求。现有的运动相机在普通运动场景中的自动曝光表现尚可,但在极限运动场景中亮度快速变化时自动曝光的收敛速度慢引发了很多问题,例如速度较快时,照片画面容易过曝或过暗,或者视频画面亮度始终不能调整到合适的值,进而导致画面色彩失真,严重影响了拍摄效果与视频质量。
为了解决这个问题,需要一种适用于拍摄极限场景的摄像装置及拍摄方法,以解决自动曝光的收敛速度慢的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
鉴于上述技术问题的存在,有必要提出一种适用于拍摄极限场景的摄像装置及拍摄方法和计算机可读介质,以解决现有的运动相机在极限运动场景中收敛速度慢的问题。
根据本发明实施例的一方面,提供了一种适用于拍摄极限场景的 摄像装置,所述摄像装置包括:第一感测单元,用于获取所述摄像装置的运动状态;第二感测单元,用于获取所述摄像装置的位置变化;第三感测单元,用于获取所述摄像装置所处于的环境的场景信息;处理单元,用于接收所述运动状态、所述位置变化和/或所述场景信息,并基于所述运动状态、所述位置变化和/或所述场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于所述自动曝光单元的目标收敛系数;自动曝光单元,用于基于所述目标收敛系数自动调节曝光参数以进行曝光。
根据本发明实施例的另一方面提供了一种适用于摄像装置拍摄极限场景的方法,所述方法包括:获取摄像装置的运动状态、位置变化和/或所述摄像装置所处于的环境的场景信息;基于所述运动状态、所述位置变化和/或所述场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于所述摄像装置的自动曝光单元的目标收敛系数;基于所述目标收敛系数自动调节所述自动曝光单元的曝光参数以进行曝光。
根据本发明实施例的又一方面提供了一种计算机可读介质,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如上所述的适用于摄像装置拍摄极限场景的方法。
本发明的实施例的适用于拍摄极限场景的摄像装置及拍摄方法和计算机可读介质,针对普通场景和极限运动场景采用收敛速度不同的收敛方案进行自动曝光,使得极限场景下收敛速度加快,照片画面不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真,画面品质得到显著提高。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明的一个实施例的适用于拍摄极限场景的摄像装置的示意性结构框图;
图2示出了根据本发明的一个实施例的适用于摄像装置拍摄极 限场景的方法的步骤流程图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
为了解决上述技术问题,本发明提供一种适用于拍摄极限场景的摄像装置,所述摄像装置包括:第一感测单元,用于获取所述摄像装置的运动状态;第二感测单元,用于获取所述摄像装置的位置变化;第三感测单元,用于获取所述摄像装置所处于的环境的场景信息;处理单元,用于接收所述运动状态、所述位置变化和/或所述场景信息,并基于所述运动状态、所述位置变化和/或所述场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于所述自动曝光单元的目标收敛系数;自动曝光单元,用于基于所述目标收敛系数自动调节曝光参数以进行曝光。
本发明的适用于拍摄极限场景的摄像装置,针对普通场景和极限运动场景采用收敛速度不同的收敛方案进行自动曝光,使得极限场景下收敛速度加快,照片画面不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真,画面品质得到显著提高。
下面参考具体实施例详细描述根据本发明的实施例的适用于拍摄极限场景的摄像装置及拍摄方法和计算机可读介质。
实施例一
本实施例提供一种适用于拍摄极限场景的摄像装置。
参考图1,图1示出了根据本发明的一个实施例的适用于拍摄极限场景的摄像装置100的示意性结构框图。在一个实施例中,摄像装置100可以为本领域公知的任何类型的摄像装置,例如CCD相机、CMOS相机等,本发明对此不作限定。
如图1所示,摄像装置100可以包括第一感测单元110、第二感测单元120、第三感测单元130、自动曝光单元140和处理单元150。应理解,摄像装置100还可以包括本领域公知的用于实现相应功能的任何其他单元,本发明未示出这些单元,以免不必要地模糊本发明。
其中,第一感测单元110用于获取摄像装置100的运动状态,以根据摄像装置100的运动状态迅速变化来判断其处于剧烈运动状态。
在一个实施例中,第一感测单元110可以包括惯性测量单元(IMU)传感器,例如微机电系统(MEMS)IMU,用于测量摄像装置100的运动参数。在一个实施例中,运动参数可以包括摄像装置100的运动速度(即线速度)、速度方向、角速度和加速度等。
在一个实施例中,第一感测单元110还可以包括姿态传感器,用于测量摄像装置100的姿态角,包括俯仰角、偏航角和滚转角。应理解,第一感测单元110还可以包括其他传感器,本发明对此不作限定。
第二感测单元120用于获取摄像装置100的实时位置,以根据实时位置获取摄像装置100的位置变化。
在一个实施例中,第二感测单元120可以包括GPS装置,用于测量摄像装置100的位置参数,并基于该位置参数获取摄像装置100的位置变化,从而获取摄像装置100的高度/水平距离等是否急剧变化。在一个实施例中,位置参数可以包括摄像装置100的经度、纬度和海拔高度等。示例性地,该GPS装置可以根据需要采用本领域公知的任何合适类型的GPS装置,本发明对此不作限定。
在一个实施例中,第二感测单元120还可以包括气压测量装置,用于测量摄像装置100所处于的环境的气压参数,并进一步基于该气压参数获取摄像装置100的位置变化。示例性地,该气压测量装置可以根据需要采用本领域公知的任何合适类型的气压测量装置,例如气压测量仪,本发明对此不作限定。
在一个实施例中,第二感测单元120还可以包括空速测量装置,用于测量摄像装置100相对于周围空气的运动速度,并进一步基于该运动速度获取摄像装置100的位置变化。示例性地,该空速测量装置可以根据需要采用本领域公知的任何合适类型的空速测量装置,例如空速表,本发明对此不作限定。
应理解,第二感测单元120可以只包括GPS装置,除GPS装置以外,还可以额外包括气压测量装置和/或空速测量装置,以辅助GPS装置更准确地判断摄像装置100的位置变化,本发明对此不作限定。
第三感测单元130用于获取摄像装置100所处于的环境的场景信息,以判断摄像装置100所处于的场景是否发生变化。在一个实施例中,场景可以包括静止场景、普通运动场景和极限运动场景,其中极限运动场景可以包括滑雪、潜水、跳伞、翼装飞行(飞鼠)、冲浪、赛车、穿越机等类型,本发明对此不作限定。在这些极限运动场景中,摄像装置的运动速度通常很快,因此所处环境的亮度变化也很快。
在一个实施例中,第三感测单元130可以包括计算摄影单元,用于拍摄摄像装置100所处于的环境的视频,并基于视频通过抽帧来获取摄像装置100所处于的环境的场景信息。具体地,可以采取任何合适的抽帧方式进行抽帧,例如抽取视频场景转换帧、按照时间均匀抽帧等。示例性地,在按照时间均匀抽帧时,可以根据需要选择抽帧的抽帧速率,例如每秒抽取10帧等,本发明对此不作限定。
自动曝光单元140用于基于收敛系数自动调节曝光参数,以进行自动曝光。其中,可以预设至少两个收敛系数(例如,2个、3个、4个、5个、6个等),不同的收敛系数对应不同的曝光参数收敛速度,以供自动曝光单元根据从中选择的一个收敛系数(本文称为目标收敛系数)自动调节曝光参数(例如,曝光时间、光圈大小、感光度(iso)等),以进行自动曝光。在一个实施例中,可以预设两个收敛系数,其中一个收敛系数适用于摄像装置100拍摄静止场景和普通运动场景,另一个收敛系数适用于摄像装置100拍摄极限运动场景。在另一实施例中,可以预设多个收敛系数(例如,3个、4个、5个、6个等),其中一个收敛系数适用于摄像装置100拍摄静止场景和普通运动场景,其他收敛系数分别适用于摄像装置100拍摄不同类型的极限运动场景。
处理单元150用于接收第一感测单元110获取的运动状态、第二感测单元120获取的位置变化和/或第三感测单元130获取的场景信息,并基于该运动状态、位置变化和/或场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于自动曝光单元140的目标 收敛系数。具体地,以预设了两个收敛系数为例进行说明:当运动状态指示摄像装置100处于剧烈运动状态(例如,速度很大、加速度很大等),并且位置变化指示摄像装置100的高度和/或水平距离迅速变化,和/或场景信息指示场景发生变化时,可以判断为摄像装置100处于极限运动场景,则处理单元150可选择两个收敛系数中较大的收敛系数作为用于自动曝光单元140的目标收敛系数,否则选择较小的收敛系数作为目标收敛系数。
在一个实施例中,可以分别为运动状态、位置变化和/或场景信息预设各自的权重,处理单元150接收到摄像装置的运动状态、位置变化和/或场景信息后,可以分别获取预设的运动状态、位置变化和/或场景信息的各自的权重,并基于各个权重计算并选择用于自动曝光单元140的目标收敛系数。例如,可以分别为运动状态、位置变化和场景信息预设权重为70%、20%、10%。示例性地,可以根据摄像装置100所使用的场景不同,为运动状态、位置变化和/或场景信息预设不同的权重。
在一个实施例中,场景信息可以包括场景类型和/或画面亮度变化速度等。在一个实施例中,场景类型可以包括滑雪、潜水、跳伞、翼装飞行(飞鼠)、冲浪、赛车、穿越机等类型,本发明对此不作限定。在这些场景类型中,摄像装置100的运动特点各不相同,场景中的亮度变化特点也不相同,因此在一个实施例中,可以针对不同的场景类型,为运动状态、位置变化、场景类型和画面亮度变化速度预设不同的权重。下面示出了几种示例性场景下的示例性权重设置:
场景一:跳伞、滑翔伞
此类型的场景中,运动特点通常为海拔高,速度快,画面大多数情况下是天空、大地,因此可以将权重设置如下:运动状态70%,位置变化10%,场景类型10%,画面亮度变化速度10%。
场景二:穿越机
此类型的场景中,运动特点通常为速度极快(例如,最高时速可达到120km/h~230km/h),海拔一般不高,因此可以将权重设置如下:运动状态70%,画面亮度变化速度30%。
场景三:滑雪、自行车
此类型的场景中,有时会出现速度极快的情况(例如,自行车的时速超过了296km/h),因此权重设置可以与穿越机场景类似:运动状态70%,位置变化10%,场景类型10%,画面亮度变化速度10%。
……
应理解,以上场景类型的划分以及与该场景类型对应的权重设置仅仅是示例性的,并不意图是限制,本领域技术人员还可以根据需要设置不同的场景类型或其他场景类型和相对应的权重设置,本发明对此不作限定。
在一个实施例中,处理单元150在获取了摄像装置100的运动状态、位置变化和/或场景信息后,还可以根据不同的场景类型,分别获取与该场景类型相对应的运动状态、位置变化、场景类型和画面亮度变化速度的各自的权重,并基于各个权重计算并选择针对该场景类型的目标收敛系数。
在一个实施例中,还可以将摄像装置100的运动速度划分为若干个(例如,3个、4个、5个、6个等)速度范围,并针对不同的速度范围预设不同的收敛系数。下面以穿越机为例,其速度一般在33m/s到64m/s之间,示出了示例性的不同速度范围对应的收敛系数:
速度为0m/s~40m/s,收敛系数为1,
速度为40m/s~50m/s,收敛系数为1.5,
速度为50m/s~60m/s,收敛系数为2.0,
速度为60m/s~70m/s,收敛系数为3.5,
速度为70m/s~80m/s,收敛系数为4.0。
其中,收敛系数为1对应静止场景和普通运动场景,速度加快时,相应的收敛系数增加,收敛速度加快,自动曝光单元150调节曝光参数的速度加快。应理解,以上速度范围的划分以及与该速度范围对应的收敛系数的设置仅仅是示例性的,并不意图是限制,本领域技术人员还可以根据需要(例如,根据不同场景类型)设置不同的速度范围和相应的收敛系数,本发明对此不作限定。
在一个实施例中,处理单元150还可以接收摄像装置100的运动 速度,并基于该运动速度所位于的速度范围,选择与该速度范围相对应的收敛系数作为自动曝光单元的目标收敛系数。仍以上述速度范围和收敛系数为例,当穿越机的速度为43m/s时,位于40m/s~50m/s速度范围内,处理单元150可以选择收敛系数1.5作为自动曝光单元的目标收敛系数;当穿越机的速度为68m/s时,位于40m/s~50m/s速度范围内,处理单元150可以选择收敛系数3.5作为自动曝光单元的目标收敛系数。
根据本发明的适用于拍摄极限场景的摄像装置,针对普通场景和极限运动场景采用收敛速度不同的收敛方案进行自动曝光,并根据不同场景类型和速度范围对收敛方案进行精细化划分,使得正常场景下收敛速度较慢,画面切换时曝光快慢合适,具有过渡时间,符合人眼的实际情况,而极限场景下收敛速度加快,并且不同场景类型下照片画面均不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真,画面品质得到显著提高。
实施例二
本实施例提供一种适用于摄像装置拍摄极限场景的方法。
在一个实施例中,摄像装置可以为本领域公知的任何类型的摄像装置,例如CCD相机、CMOS相机等,本发明对此不作限定。
参考图2,图2示出了根据本发明的一个实施例的适用于摄像装置拍摄极限场景的方法200的步骤流程图。如图2所示,方法200可以包括如下步骤:
在步骤S210,获取摄像装置的运动状态、位置变化和/或摄像装置所处于的环境的场景信息。
在一个实施例中,摄像装置的运动状态可以由惯性测量单元通过测量该摄像装置的运动参数来获取。示例性地,惯性测量单元可以为微机电系统(MEMS)IMU,用于测量摄像装置的运动参数。在一个实施例中,运动参数可以包括摄像装置的运动速度(即线速度)、速度方向、角速度和加速度等。
在一个实施例中,摄像装置的位置变化可以由GPS装置通过测量摄像装置的位置参数并基于该位置参数来获取。在一个实施例中, 位置参数可以包括摄像装置100的经度、纬度和海拔高度等。示例性地,位置变化可以包括摄像装置的高度/水平距离等的变化。在一个实施例中,该GPS装置可以根据需要采用本领域公知的任何合适类型的GPS装置,本发明对此不作限定。
在一个实施例中,摄像装置的位置变化还可以由气压测量装置通过测量摄像装置所处于的环境的气压参数,并进一步基于该气压参数来获取。其中,该气压测量装置可以根据需要采用本领域公知的任何合适类型的气压测量装置,例如气压测量仪,本发明对此不作限定。
在一个实施例中,摄像装置的位置变化还可以由空速测量装置通过测量摄像装置相对于周围空气的运动速度,并进一步基于该运动速度来获取。其中,该空速测量装置可以根据需要采用本领域公知的任何合适类型的空速测量装置,例如空速表,本发明对此不作限定。
应理解,摄像装置的位置变化可以只通过GPS装置获取,还可以通过气压测量装置和/或空速测量装置辅助获取,以辅助GPS装置更准确地判断摄像装置的位置变化,本发明对此不作限定。
在一个实施例中,摄像装置所处于的环境的场景信息由计算摄影单元通过拍摄摄像装置所处于的环境的视频,并基于该视频通过抽帧来获取。具体地,可以采取任何合适的抽帧方式进行抽帧,例如抽取视频场景转换帧、按照时间均匀抽帧等。示例性地,在按照时间均匀抽帧时,可以根据需要选择抽帧的抽帧速率,例如每秒抽取10帧等,本发明对此不作限定。在一个实施例中,场景可以包括静止场景、普通运动场景和极限运动场景,其中极限运动场景可以包括滑雪、潜水、跳伞、翼装飞行(飞鼠)、冲浪、赛车、穿越机等类型,本发明对此不作限定。在这些极限运动场景中,摄像装置的运动速度通常很快,因此所处环境的亮度变化也很快。
在步骤S220,基于该运动状态、位置变化和/或场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于摄像装置的自动曝光单元的目标收敛系数。
其中,可以预设至少两个收敛系数(例如,2个、3个、4个、5个、6个等),不同的收敛系数对应不同的曝光参数收敛速度,以供自动曝光单元根据从中选择的一个收敛系数(本文称为目标收敛系 数)自动调节曝光参数(例如,曝光时间、光圈大小、感光度(iso)等),以进行自动曝光。在一个实施例中,可以预设两个收敛系数,其中一个收敛系数适用于摄像装置拍摄静止场景和普通运动场景,另一个收敛系数适用于摄像装置拍摄极限运动场景。在另一实施例中,可以预设多个收敛系数(例如,3个、4个、5个、6个等),其中一个收敛系数适用于摄像装置拍摄静止场景和普通运动场景,其他收敛系数分别适用于摄像装置拍摄不同类型的极限运动场景。
具体地,以预设了两个收敛系数为例进行说明:当运动状态指示摄像装置处于剧烈运动状态(例如,速度很大、加速度很大等),并且位置变化指示摄像装置的高度和/或水平距离迅速变化,和/或场景信息指示场景发生变化时,可以判断为摄像装置处于极限运动场景,则可选择两个收敛系数中较大的收敛系数作为用于自动曝光单元的目标收敛系数,否则选择较小的收敛系数作为目标收敛系数。
在一个实施例中,可以分别为运动状态、位置变化和/或场景信息预设各自的权重,在接收到摄像装置的运动状态、位置变化和/或场景信息后,方法200可以包括:分别获取预设的运动状态、位置变化和/或场景信息的各自的权重,并基于各个权重计算并选择用于自动曝光单元的目标收敛系数。例如,可以分别为运动状态、位置变化和场景信息预设权重为70%、20%、10%。示例性地,可以根据摄像装置所使用的不同的场景,为运动状态、位置变化和/或场景信息预设不同的权重。
在一个实施例中,场景信息可以包括场景类型和/或画面亮度变化速度等。在一个实施例中,场景类型可以包括滑雪、潜水、跳伞、翼装飞行(飞鼠)、冲浪、赛车、穿越机等类型,本发明对此不作限定。在不同的场景类型中,摄像装置的运动特点各不相同,场景中的亮度变化特点也不相同,因此在一个实施例中,方法200可以包括:可以针对不同的场景类型,为运动状态、位置变化、场景类型和画面亮度变化速度预设不同的权重。下面示出了几种示例性场景下的示例性权重设置:
场景一:跳伞、滑翔伞
此类型的场景中,运动特点通常为海拔高,速度快,画面大多数 情况下是天空、大地,因此可以将权重设置如下:运动状态70%,位置变化10%,场景类型10%,画面亮度变化速度10%。
场景二:穿越机
此类型的场景中,运动特点通常为速度极快(例如,最高时速可达到120km/h~230km/h),海拔一般不高,因此可以将权重设置如下:运动状态70%,画面亮度变化速度30%。
场景三:滑雪、自行车
此类型的场景中,有时会出现速度极快的情况(例如,自行车的时速超过了296km/h),因此权重设置可以与穿越机场景类似:运动状态70%,位置变化10%,场景类型10%,画面亮度变化速度10%。
……
应理解,以上场景类型的划分以及与该场景类型对应的权重设置仅仅是示例性的,并不意图将本发明限制于此,本领域技术人员还可以根据需要设置不同的或其他场景类型和相对应的权重设置,本发明对此不作限定。
在一个实施例中,在获取了摄像装置的运动状态、位置变化和/或场景信息后,方法200还可以包括:根据不同的场景类型,分别获取与该场景类型相对应的运动状态、位置变化、场景类型和画面亮度变化速度的各自的权重,并基于各个权重计算并选择针对该场景类型的目标收敛系数。
在一个实施例中,还可以将摄像装置的运动速度划分为若干个(例如,3个、4个、5个、6个等)速度范围,并针对不同的速度范围预设不同的收敛系数。下面以穿越机为例,其速度一般在33m/s到64m/s之间,示出了示例性的不同速度范围对应的收敛系数:
速度为0m/s~40m/s,收敛系数为1,
速度为40m/s~50m/s,收敛系数为1.5,
速度为50m/s~60m/s,收敛系数为2.0,
速度为60m/s~70m/s,收敛系数为3.5,
速度为70m/s~80m/s,收敛系数为4.0。
其中,收敛系数为1对应静止场景和普通运动场景,速度加快时,相应的收敛系数增加,收敛速度加快,自动曝光单元调节曝光参数的速度加快。应理解,以上速度范围的划分以及与该速度范围对应的收敛系数的设置仅仅是示例性的,并不意图将本发明限制于此,本领域技术人员还可以根据需要(例如,根据不同场景类型)设置不同的速度范围和相应的收敛系数,本发明对此不作限定。
在一个实施例中,方法200还可以包括:接收摄像装置的运动速度,并基于该运动速度所位于的速度范围,选择与该速度范围相对应的收敛系数作为自动曝光单元的目标收敛系数。仍以上述速度范围和收敛系数为例,当穿越机的速度为43m/s时,位于40m/s~50m/s速度范围内,可以选择收敛系数1.5作为自动曝光单元的目标收敛系数;当穿越机的速度为68m/s时,位于40m/s~50m/s速度范围内,可以选择收敛系数3.5作为自动曝光单元的目标收敛系数。
在步骤S230,基于该目标收敛系数自动调节自动曝光单元的曝光参数以进行曝光。
在一个实施例中,曝光参数可以包括曝光时间(即快门速度)、光圈大小、感光度(iso)、isp增益等。
根据本发明的适用于摄像装置拍摄极限场景的方法,针对普通场景和极限运动场景,自动选择收敛速度不同的收敛方案进行自动曝光,并根据不同场景类型和速度范围对收敛方案进行精细化划分,使得正常场景下收敛速度较慢,画面切换时曝光快慢合适,具有过渡时间,符合人眼的实际情况,而极限场景下收敛速度加快,并且不同场景类型下照片画面均不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真,画面品质得到显著提高。
实施例三
本实施例提供了一种计算机可读介质,该计算机可读介质上存储有计算机程序,该计算机程序在运行时执行如上所述的适用于摄像装置拍摄极限场景的方法。
根据本发明的计算机可读介质,在其上的计算机程序被执行时,能够针对普通场景和极限运动场景,自动选择收敛速度不同的收敛方 案进行自动曝光,并根据不同场景类型和速度范围对收敛方案进行精细化划分,使得正常场景下收敛速度较慢,画面切换时曝光快慢合适,具有过渡时间,符合人眼的实际情况,而极限场景下收敛速度加快,并且不同场景类型下照片画面均不会过曝或过暗,视频画面亮度能够快速调整到合适的值,从而使得画面色彩逼真,画面品质得到显著提高。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发 明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的物品分析设备中的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在 多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种适用于拍摄极限场景的摄像装置,其特征在于,所述摄像装置包括:
    第一感测单元,用于获取所述摄像装置的运动状态;
    第二感测单元,用于获取所述摄像装置的位置变化;
    第三感测单元,用于获取所述摄像装置所处于的环境的场景信息;
    处理单元,用于接收所述运动状态、所述位置变化和/或所述场景信息,并基于所述运动状态、所述位置变化和/或所述场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于所述自动曝光单元的目标收敛系数;
    自动曝光单元,用于基于所述目标收敛系数自动调节曝光参数以进行曝光。
  2. 如权利要求1所述的摄像装置,其特征在于,所述处理单元还用于分别获取预设的所述运动状态、所述位置变化和/或所述场景信息的各自的权重,并基于各个权重计算并选择用于所述自动曝光单元的所述目标收敛系数。
  3. 如权利要求1所述的摄像装置,其特征在于,其中所述场景信息包括场景类型和/或画面亮度变化速度。
  4. 如权利要求3所述的摄像装置,其特征在于,所述处理单元还用于根据不同的场景类型,分别获取与所述场景类型相对应的预设的所述运动状态、所述位置变化、所述场景类型和所述画面亮度变化速度的各自的权重,并基于各个权重计算并选择针对所述场景类型的所述目标收敛系数。
  5. 如权利要求1所述的摄像装置,其特征在于,其中所述第一感测单元包括惯性测量单元,所述惯性测量单元测量所述摄像装置的运动参数,并基于所述运动参数获取所述摄像装置的运动状态。
  6. 如权利要求5所述的摄像装置,其特征在于,其中所述运动参数包括所述摄像装置的运动速度,所述处理单元还接收所述摄像装置的运动速度,并基于所述运动速度所位于的速度范围,选择与所述速度范围相对应的收敛系数作为所述自动曝光单元的目标收敛系数。
  7. 如权利要求1所述的摄像装置,其特征在于,所述第三感测单元包括计算摄影单元,所述计算摄影单元拍摄所述摄像装置所处于的环境的视频,并基于所述视频通过抽帧来获取所述摄像装置所处于的环境的场景信息。
  8. 如权利要求1所述的摄像装置,其特征在于,其中所述第二感测单元包括GPS装置,所述GPS装置测量所述摄像装置的位置参数,并基于所述位置参数获取所述摄像装置的位置变化。
  9. 如权利要求1所述的摄像装置,其特征在于,其中所述第二感测单元包括气压测量装置,所述气压测量装置用于测量所述摄像装置所处于的环境的气压参数,并进一步基于所述气压参数获取所述摄像装置的位置变化。
  10. 如权利要求8所述的摄像装置,其特征在于,所述第二感测单元还包括空速测量装置,所述空速测量装置用于测量所述摄像装置相对于周围空气的运动速度,并进一步基于所述运动速度获取所述摄像装置的位置变化。
  11. 一种适用于摄像装置拍摄极限场景的方法,其特征在于,所述方法包括:
    获取摄像装置的运动状态、位置变化和/或所述摄像装置所处于的环境的场景信息;
    基于所述运动状态、所述位置变化和/或所述场景信息来从预设的至少两个收敛系数中选择一个收敛系数作为用于所述摄像装置的自动曝光单元的目标收敛系数;
    基于所述目标收敛系数自动调节所述自动曝光单元的曝光参数以进行曝光。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:分别获取预设的所述运动状态、所述位置变化和/或所述场景信息的各自的权重,并基于各个权重计算并选择用于所述自动曝光单元的所述目标收敛系数。
  13. 如权利要求11所述的方法,其特征在于,其中所述场景信息包括场景类型和/或画面亮度变化速度。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括: 根据不同的场景类型,分别获取与所述场景类型相对应的预设的所述运动状态、所述位置变化、所述场景类型和/或所述画面亮度变化速度的各自的权重,并基于各个权重计算并选择针对所述场景类型的所述目标收敛系数。
  15. 如权利要求11所述的方法,其特征在于,其中所述摄像装置的运动状态由惯性测量单元通过测量所述摄像装置的运动参数来获取。
  16. 如权利要求15所述的方法,其特征在于,其中所述运动参数包括所述摄像装置的运动速度,所述方法还包括:接收所述摄像装置的运动速度,并基于所述运动速度所位于的速度范围,选择与所述速度范围相对应的收敛系数作为所述自动曝光单元的目标收敛系数。
  17. 如权利要求11所述的方法,其特征在于,所述摄像装置所处于的环境的场景信息由计算摄影单元通过拍摄所述摄像装置所处于的环境的视频,并基于所述视频通过抽帧来获取。
  18. 如权利要求11所述的方法,其特征在于,其中所述摄像装置的位置变化由GPS装置通过测量所述摄像装置的位置参数并基于所述位置参数来获取。
  19. 如权利要求11所述的方法,其特征在于,其中所述摄像装置的位置变化由气压测量装置通过测量所述摄像装置所处于的环境的气压参数,并进一步基于所述气压参数来获取。
  20. 如权利要求11所述的方法,其特征在于,所述摄像装置的位置变化由空速测量装置通过测量所述摄像装置相对于周围空气的运动速度,并进一步基于所述运动速度来获取。
  21. 一种计算机可读介质,其特征在于,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求11-20中任一项所述的适用于摄像单元拍摄极限场景的方法。
PCT/CN2020/090462 2020-05-15 2020-05-15 适用于拍摄极限场景的摄像装置及拍摄方法 WO2021226990A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080031233.1A CN113950821A (zh) 2020-05-15 2020-05-15 适用于拍摄极限场景的摄像装置及拍摄方法
PCT/CN2020/090462 WO2021226990A1 (zh) 2020-05-15 2020-05-15 适用于拍摄极限场景的摄像装置及拍摄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090462 WO2021226990A1 (zh) 2020-05-15 2020-05-15 适用于拍摄极限场景的摄像装置及拍摄方法

Publications (1)

Publication Number Publication Date
WO2021226990A1 true WO2021226990A1 (zh) 2021-11-18

Family

ID=78525963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090462 WO2021226990A1 (zh) 2020-05-15 2020-05-15 适用于拍摄极限场景的摄像装置及拍摄方法

Country Status (2)

Country Link
CN (1) CN113950821A (zh)
WO (1) WO2021226990A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058923A (ja) * 2011-09-08 2013-03-28 Olympus Imaging Corp 撮影機器
CN204392420U (zh) * 2014-11-17 2015-06-10 谭斌 一种影像记录设备、智能设备及影像记录系统
CN106657805A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 运动中的拍摄方法及移动终端
CN106713778A (zh) * 2016-12-28 2017-05-24 上海兴芯微电子科技有限公司 曝光控制方法和装置
CN108234894A (zh) * 2018-01-15 2018-06-29 维沃移动通信有限公司 一种曝光调整方法及终端设备
CN109951647A (zh) * 2019-01-23 2019-06-28 努比亚技术有限公司 一种拍摄参数设置方法、终端及计算机可读存储介质
US20190394379A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Auto exposure control predictive convergence

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343158A (zh) * 2017-07-25 2017-11-10 广东欧珀移动通信有限公司 加快aec收敛的方法及装置、终端设备
CN108989695B (zh) * 2018-06-28 2021-04-16 努比亚技术有限公司 初始自动曝光收敛方法、移动终端及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058923A (ja) * 2011-09-08 2013-03-28 Olympus Imaging Corp 撮影機器
CN204392420U (zh) * 2014-11-17 2015-06-10 谭斌 一种影像记录设备、智能设备及影像记录系统
CN106713778A (zh) * 2016-12-28 2017-05-24 上海兴芯微电子科技有限公司 曝光控制方法和装置
CN106657805A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 运动中的拍摄方法及移动终端
CN108234894A (zh) * 2018-01-15 2018-06-29 维沃移动通信有限公司 一种曝光调整方法及终端设备
US20190394379A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Auto exposure control predictive convergence
CN109951647A (zh) * 2019-01-23 2019-06-28 努比亚技术有限公司 一种拍摄参数设置方法、终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN113950821A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
US8305452B2 (en) Remote determination of image-acquisition settings and opportunities
US10171746B2 (en) Drone with a front-view camera with segmentation of the sky image for auto-exposure control
US11102420B2 (en) Smart shutter in low light
CN109218627B (zh) 图像处理方法、装置、电子设备及存储介质
JP2017085551A (ja) ドローンに搭載されたカメラの露出時間を決定する方法、および関連するドローン
US9865064B2 (en) Image processing apparatus, image processing method, and storage medium
WO2021037285A1 (zh) 一种测光调整方法、装置、设备和存储介质
CN107615744B (zh) 一种图像拍摄参数的确定方法及摄像装置
CN109844632A (zh) 抖动校正装置、摄像装置及抖动校正方法
CN107613190A (zh) 一种拍照方法及终端
US10102442B2 (en) Image-processing device and image-processing method
WO2021226990A1 (zh) 适用于拍摄极限场景的摄像装置及拍摄方法
JP2021096865A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2021051304A1 (zh) 快门速度调节、安全快门标定方法、便携式设备及无人机
WO2022016340A1 (zh) 确定主摄像装置曝光参数的方法、系统、可移动平台及存储介质
US20160156825A1 (en) Outdoor exposure control of still image capture
WO2016009199A2 (en) Minimisation of blur in still image capture
WO2022160294A1 (zh) 曝光控制方法、装置及计算机可读存储介质
WO2022126378A1 (zh) 相机的控制方法及装置
WO2020042021A1 (zh) 电子设备的控制方法、装置、电子设备及存储介质
JP2019212961A (ja) 移動体、光量調整方法、プログラム、及び記録媒体
JP6171628B2 (ja) 撮像装置、制御プログラム、および電子機器
CN110971812B (zh) 一种拍摄方法、装置、电子设备及存储介质
JP2024078298A (ja) 撮像装置、撮像システム及びその制御方法、プログラム
WO2020216057A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935849

Country of ref document: EP

Kind code of ref document: A1