WO2021226847A1 - 一种差分信号双向隔离通讯电路及方法 - Google Patents

一种差分信号双向隔离通讯电路及方法 Download PDF

Info

Publication number
WO2021226847A1
WO2021226847A1 PCT/CN2020/089878 CN2020089878W WO2021226847A1 WO 2021226847 A1 WO2021226847 A1 WO 2021226847A1 CN 2020089878 W CN2020089878 W CN 2020089878W WO 2021226847 A1 WO2021226847 A1 WO 2021226847A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
differential signal
isolation
signal
detection circuit
Prior art date
Application number
PCT/CN2020/089878
Other languages
English (en)
French (fr)
Inventor
陆珂伟
李骥
陈文迪
林美爱
李洋
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Priority to EP20934957.0A priority Critical patent/EP4152169A4/en
Priority to PCT/CN2020/089878 priority patent/WO2021226847A1/zh
Priority to JP2022568434A priority patent/JP2023531362A/ja
Priority to US17/773,763 priority patent/US11677591B2/en
Publication of WO2021226847A1 publication Critical patent/WO2021226847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0292Arrangements specific to the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0292Arrangements specific to the receiver end
    • H04L25/0296Arrangements to ensure DC-balance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • H04L25/085Arrangements for reducing interference in line transmission systems, e.g. by differential transmission

Definitions

  • the embodiments of the present application relate to the technical field of electronic differential communication, and in particular to a differential signal bidirectional isolation communication circuit and method.
  • LVDS Low-voltage differential signaling
  • EMI external electromagnetic interference
  • the differential amplifier is designed as a low-swing, low-current corresponding circuit, which still cannot adapt to the 4.5V-5V input voltage range of CAN and daisy chain.
  • Another common solution for isolation measures similar to differential signals is to use passive components such as communication transformers or high-voltage capacitors. Since the capacitor acts as a short circuit during the hot plugging process, the battery management chip and other devices are subjected to higher electrical stress, and due to energy limitations, the communication distance is limited, only the on-board communication application is recommended.
  • Communication transformers commonly used for communication isolation between boards are limited to the current technological level and cannot be mass-produced automatically. The failure rate of communication transformers is much higher than that of other electronic components, which affects system functions.
  • the embodiments of the present application provide a differential signal bidirectional isolation communication circuit and method to overcome the defects in the prior art.
  • the embodiment of the present application provides a differential signal bidirectional isolation communication circuit, including: a first detection circuit for receiving a first differential signal from a first direction and converting the first differential signal into a first level signal , And suppress common mode interference; a second detection circuit, used to receive a second differential signal from the second direction, and convert the second differential signal into a second level signal, and suppress common mode interference; isolation adjustment circuit , Used to set up between the first detection circuit and the second detection circuit for communication isolation; watchdog circuit, used to be awakened according to the first differential signal and/or the second differential signal , So that the two-way isolation communication circuit enters the normal operation mode from the low current operation mode to perform communication isolation.
  • the isolation adjustment circuit includes: a first driving circuit for driving the first detection circuit according to an input signal from a second direction; and a second driving circuit for driving the first detection circuit according to the input signal from the second direction;
  • the input signal in the first direction drives the second detection circuit;
  • the first adjustment circuit is used to connect the first detection circuit to convert the first level signal into a first high frequency signal;
  • the second adjustment circuit Used to connect the second detection circuit to convert the second level signal into a second high frequency signal;
  • a third adjustment circuit used to connect to the first drive circuit, to input the first drive
  • the third level signal of the circuit is converted into a third high frequency signal;
  • a fourth adjustment circuit is used to connect the second drive circuit to convert the fourth level signal input to the second drive circuit to a fourth high Frequency signal;
  • a first isolation device for connecting between the first adjustment circuit and the fourth adjustment circuit;
  • a second isolation device for connecting between the second adjustment circuit and the third adjustment circuit between.
  • a wake-up circuit which is used to obtain power in the low-current working mode and wake up the watchdog circuit.
  • Embodiment 1 of the present application further includes: a third isolation device, configured to be connected between the second differential signal and the wake-up circuit, when the first differential signal and/or the first differential signal are present In the case of two differential signals, the watchdog circuit is awakened by the wake-up circuit.
  • a third isolation device configured to be connected between the second differential signal and the wake-up circuit, when the first differential signal and/or the first differential signal are present In the case of two differential signals, the watchdog circuit is awakened by the wake-up circuit.
  • the first isolation component and/or the second isolation component and/or the third isolation component are high-voltage isolation.
  • a power supply device which is used to provide normal power supply for the two-way isolated communication circuit to enter the normal working mode when the watchdog circuit is awakened; otherwise, the The two-way isolated communication circuit performs low-power power supply so that it enters a low-current working mode.
  • the power supply device includes: a wide-input linear voltage regulator, which is used to supply the two-way isolated communication circuit with normal power supply so that it enters the normal working mode; and a low-power linear voltage regulator, It is used to provide low-power power supply for the two-way isolated communication circuit to make it enter a low-current working mode.
  • the power supply device further includes: a secondary circuit module, configured to supply power to the other side of the bidirectional isolated communication circuit of the bidirectional isolated communication circuit.
  • the first embodiment of the present application further includes: a first resistor, configured to be connected between the two input terminals of the first detection circuit, and form a first differential signal at the two input terminals of the first detection circuit
  • the second resistor is used to connect between the two input ends of the second detection circuit, and form a second differential signal at the two input ends of the second detection circuit.
  • the first detection circuit and/or the second detection circuit are two-stage differential amplifier circuits, and the two-stage differential amplifier circuit includes two components composed of a first amplifier and a second amplifier.
  • the follower circuit, bias circuit and operational amplifier output differential signals after subtraction.
  • An embodiment of the present application also provides a differential signal bidirectional isolation communication method, including: receiving a first differential signal from a first direction, converting the first differential signal into a first level signal, and suppressing common mode interference; Receive the second differential signal from the second direction, and convert the second differential signal into a second level signal, and suppress common mode interference; according to the first differential signal and/or the second differential signal is Wake up, enter the normal working mode from the low current working mode to isolate the input signal.
  • the first detection circuit and the second detection circuit receive the first differential signal from the first direction and the second differential signal from the second direction through the first detection circuit and the second differential signal from the second direction.
  • the differential signal is converted into a first level signal
  • the second differential signal is converted into a second level signal
  • common mode interference is suppressed.
  • the embodiment of the application does not change the frequency and amplitude level characteristics of the signal at the input and output ends, and can realize two-way wake-up and two-way transmission of communication.
  • Figure 1 is a schematic diagram of a normal high-voltage battery management system
  • FIG. 2 is a schematic diagram of the isolated communication circuit of the distributed system of this application.
  • Figure 3 is a schematic diagram of the on-board level isolation communication application
  • Figure 4 is a schematic circuit diagram of a differential signal bidirectional isolation communication circuit
  • FIG. 5 is a schematic diagram of the power supply of the first direction side differential signal bidirectional isolation communication circuit
  • Figure 6 is a schematic diagram of the differential circuit architecture of the detection circuit
  • Figure 7 is a flow chart of the distributed system isolation communication method of this application.
  • a high-voltage battery management system is shown in Figure 1, which mainly monitors and manages a system in which multiple battery cells are connected in series.
  • ICn is a cell voltage acquisition chip
  • isoICn is a semiconductor isolation device.
  • the differential signal is transmitted step by step through isoICn.
  • two isoICn are required for inter-board communication to ensure the battery compatibility of the single board, as shown in Figure 2 for distributed system isolation communication applications.
  • ICn and ICn+1 only one isolation device is needed, as shown in Figure 3 for on-board level isolation communication applications.
  • the isolation chip power supply can be provided by the isolated power supplies on both sides.
  • the power supply for the isolated communication of the distributed system can be uniformly provided by the on-board battery and the onboard power supply on one side.
  • the onboard level power supply can be 5V, which can be provided by the AFE in the battery management system.
  • the car battery is usually a 12V or 24V power supply.
  • the LDO on the side of the isolation chip has a wide voltage range, which is suitable for
  • the first embodiment of the present application provides a differential signal bidirectional isolation communication circuit.
  • the circuit includes: a first detection circuit U1 for receiving a first differential signal from a first direction, and The first differential signal is converted into a first level signal, and common mode interference is suppressed.
  • the second detection circuit U5 is configured to receive a second differential signal from the second direction, convert the second differential signal into a second level signal, and suppress common mode interference.
  • the isolation adjustment circuit 1 is configured to be arranged between the first detection circuit U1 and the second detection circuit U5 for communication isolation.
  • the watchdog circuit U12 is configured to be awakened according to the first differential signal and/or the second differential signal, so that the two-way isolated communication circuit enters the normal operating mode from the low current operating mode to perform communication isolation.
  • the embodiment of the application does not change the frequency and amplitude level characteristics of the signal at the input and output ends, and can realize two-way wake-up and two-way transmission of communication.
  • the isolation adjustment circuit 1 includes: a first driving circuit U8, configured to drive the first detection circuit U1 according to an input signal from a second direction.
  • the second driving circuit U4 is used for driving the second detection circuit U5 according to the input signal from the first direction.
  • the first adjustment circuit U2 is used to connect the first detection circuit U1 to convert the first level signal into a first high frequency signal.
  • the second adjustment circuit U6 is used to connect the second detection circuit U5 to convert the second level signal into a second high frequency signal.
  • the third adjustment circuit U7 is configured to connect to the first driving circuit U2, and convert the third level signal input to the first driving circuit U8 into a third high frequency signal.
  • the fourth adjustment circuit U3 is used to connect to the second drive circuit U4, and convert the fourth level signal input to the second drive circuit U4 into a fourth high frequency signal.
  • the first isolation device U9 is used to connect between the first adjustment circuit U2 and the fourth adjustment circuit U3.
  • the second isolation device U10 is used to connect between the second adjustment circuit U6 and the third adjustment circuit U7.
  • the embodiment of the present application implements bidirectional wake-up and bidirectional transmission through a drive circuit, an adjustment circuit, and an isolation device.
  • the drive circuit, adjustment circuit, isolation device, detection circuit, and gate dog are all implemented by semiconductor isolation devices.
  • the semiconductor isolation device used in the embodiments of the present application replaces communication transformers or capacitors, eliminates electronic components with many manual production steps, significantly improves circuit failure rate, and can significantly improve product yield and product reliability.
  • the semiconductor isolation device used in the embodiment of the present application can avoid the impact of the surge current in the hot plug process on the chip and peripheral devices, and significantly improve product reliability.
  • the invention can realize differential signal transmission such as daisy chain and can simplify the system power supply solution.
  • the invention uses a small-volume semiconductor isolation device to realize differential signal transmission, which is beneficial to the miniaturization and thinning of the product.
  • the embodiment of the present application further includes a wake-up circuit U16, which is used to obtain power in the low-current working mode and wake up the watchdog circuit U12.
  • the wake-up circuit U16 of the embodiment of the present application facilitates the accurate execution of the wake-up operation, and avoids the isolation communication failure caused by the delayed wake-up operation.
  • the embodiment of the present application further includes: a third isolation device U13, configured to connect between the second differential signal and the wake-up circuit U16, when the first differential signal exists Signal and/or the second differential signal, the watchdog circuit U12 is awakened by the awakening circuit U16.
  • the embodiment of the present application isolates the second differential signal and the first differential signal transmitted through the wake-up circuit through the third isolation device U13, further ensuring the effect of bidirectional transmission and isolation.
  • first isolation component U9 and/or the second isolation component U10 and/or the third isolation component U13 are high-voltage isolation.
  • the embodiments of the present application are not limited to high-voltage isolation, and may also be capacitive or magnetic isolation circuit modules.
  • the embodiment of the present application further includes: a power supply device 2 for performing normal power supply for the two-way isolated communication circuit to enter normal operation when the watchdog circuit is awakened Mode, otherwise, the two-way isolated communication circuit is supplied with low power consumption so that it enters the low current working mode.
  • the power supply device 2 includes:
  • the wide-input linear voltage regulator U14 is used for normal power supply for the two-way isolated communication circuit to make it enter the normal working mode.
  • the low-power linear voltage regulator U11 is used to provide low-power power supply for the two-way isolated communication circuit so that it enters a low-current working mode.
  • the low-power linear voltage regulator U11 only charges the watchdog circuit U12 in the low-current operating mode, so that the maximum output current is small, and low-power design is easy to implement.
  • the wide-input linear voltage regulator U14 is used to supply the two-way isolated communication circuit with normal power supply by controlling the switch to enter the normal working mode, otherwise the The watchdog circuit U12 controls the switch to enable the low-power linear voltage regulator U11 to perform low-power power supply for the two-way isolated communication circuit into a low-current working mode.
  • the power supply device 2 further includes:
  • the secondary circuit module U15 is used to supply power to the other side of the bidirectional isolated communication circuit of the bidirectional isolated communication circuit.
  • the embodiment of the application is optimized compared to the architecture of the existing isolation device on the power module circuit, and can achieve low standby power consumption and bidirectional wake-up.
  • the first resistor R1 is used to connect between the two input ends of the first detection circuit, and form a first differential signal at the two input ends of the first detection circuit.
  • the second resistor R2 is used to connect between the two input ends of the second detection circuit to form a second differential signal at the two input ends of the second detection circuit.
  • the first detection circuit and/or the second detection circuit described in the embodiment of the present application are two-stage differential amplifier circuits
  • the two-stage differential amplifier circuit includes a second An amplifier AMP1 and a second amplifier AMP2 are composed of two follower circuits, a bias circuit BIAS and an operational amplifier AMP3, which output a differential signal after subtraction, which is used for the input of the conditioning circuit.
  • the external isolation circuit can connect resistors in series and parallel to the R1 and R2 terminals to adjust the maximum amplitude of the output voltage. To adapt to the level and amplitude adjustment of different differential input circuits.
  • the above related differential signal bidirectional isolation communication circuit is prepared as a semiconductor device and implemented. Using a multi-chip module structure (MCM), the circuit and isolation device are prepared separately, and then the two components are electrically connected by wire bonding, and packaged into a single semiconductor device.
  • MCM multi-chip module structure
  • an embodiment of the present application also provides a differential signal bidirectional isolation communication method.
  • the method includes:
  • the embodiment of the application does not change the frequency and amplitude level characteristics of the signal at the input and output ends, and can realize two-way wake-up and two-way transmission of communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)
  • Amplifiers (AREA)

Abstract

一种差分信号双向隔离通讯电路及方法,该电路包括第一检波电路(U1),用于接收来自第一方向的第一差分信号,并将该第一差分信号转换成第一电平信号,并抑制共模干扰;第二检波电路(U5),用于接收来自第二方向的第二差分信号,并将该第二差分信号转换成第二电平信号,并抑制共模干扰;隔离调整电路(1),用于设置在该第一检波电路(U1)与该第二检波电路(U5)之间,进行通讯隔离;看门狗电路,用于根据该第一差分信号和/或该第二差分信号被唤醒,令该双向隔离通讯电路从小电流工作模式进入正常工作模式以进行通讯隔离。

Description

一种差分信号双向隔离通讯电路及方法 技术领域
本申请实施例涉及电子差分通讯技术领域,尤其涉及一种差分信号双向隔离通讯电路及方法。
背景技术
为了令汽车的电子差分通讯具有较强的抗干扰能力,类似CAN总线、菊花链等均使用差分信号进行双向传输信息。在新能源汽车中或其他新能源高压储能系统中,由于电池电压高达400V或以上,出于高压安全及通讯质量的要求,ECU之间的通讯或ECU内不同电压等级的部分电路之间的通讯均需采取隔离措施。
市面上已有多种器件可以实现隔离通讯,如磁耦合隔离芯片或电容耦合隔离专用芯片,此类芯片对电磁干扰有一定的抑制能力,并且可以实现单电平信号隔离,但无法应用于CAN及菊花链此类差分信号隔离。低压差分信号传输(LVDS)是一种在更高性能转换器和高带宽FPGA或ASICI/O中常用的高速接口。差分信号传输对于外部电磁干扰(EMI)具有很强的抑制能力,但类似隔离芯片的输入差分幅值较低,一般在0.5V以下,输入电压范围低于2.5V,类似芯片为实现高速通讯故差分放大器设计为低摆幅、低电流相应的电路,仍无法适应CAN和菊花链在4.5V-5V输入电压范围。类似差分信号的隔离措施另一种常见的方案是使用通讯变压器或高压电容等被动器件。由于电容在热插拔过程中,表现为短路,使电芯管理芯片等器件承受更高的电应力,而且由于能量限制,通讯距离有限,仅推荐板内通讯应用。板间通讯隔离常用的通讯变压器又局限于现在的工艺水平,无法大量自动化生产,通讯变压器的失效率较其他电子元件高得多,影响系统功能。
发明内容
有鉴于此,本申请实施例提供一种差分信号双向隔离通讯电路及方法,用以克服现有技术中的缺陷。
本申请实施例提供了一种差分信号双向隔离通讯电路,包括:第一检波电路,用于接收来自第一方向的第一差分信号,并将所述第一差分信号转换成 第一电平信号,并抑制共模干扰;第二检波电路,用于接收来自第二方向的第二差分信号,并将所述第二差分信号转换成第二电平信号,并抑制共模干扰;隔离调整电路,用于设置在所述第一检波电路与所述第二检波电路之间,进行通讯隔离;看门狗电路,用于根据所述第一差分信号和/或所述第二差分信号被唤醒,令所述双向隔离通讯电路从小电流工作模式进入正常工作模式以进行通讯隔离。
在本申请实施例一具体实现中,所述隔离调整电路包括:第一驱动电路,用于根据来自第二方向的输入信号,驱动所述第一检波电路;第二驱动电路,用于根据来自第一方向的输入信号,驱动所述第二检波电路;第一调整电路,用于连接所述第一检波电路,将所述第一电平信号转换成第一高频信号;第二调整电路,用于连接所述第二检波电路,将所述第二电平信号转换成第二高频信号;第三调整电路,用于连接所述第一驱动电路,将对输入所述第一驱动电路的第三电平信号转成第三高频信号;第四调整电路,用于连接所述第二驱动电路,将对输入所述第二驱动电路的第四电平信号转成第四高频信号;第一隔离装置,用于连接在所述第一调整电路与所述第四调整电路之间;第二隔离装置,用于连接在所述第二调整电路与所述第三调整电路之间。
在本申请实施例一具体实现中,还包括:唤醒电路,用于在小电流工作模式下获得供电,并对所述看门狗电路进行唤醒。
在本申请实施例一具体实现中,还包括:第三隔离装置,用于连接在所述第二差分信号与所述唤醒电路之间,当存在所述第一差分信号和/或所述第二差分信号时,通过所述唤醒电路唤醒所述看门狗电路。
在本申请实施例一具体实现中,所述第一隔离部件和/或所述第二隔离部件和/或所述第三隔离部件为高压隔离。
在本申请实施例一具体实现中,还包括:电源装置,用于在所述看门狗电路被唤醒时,为所述双向隔离通讯电路进行正常供电令其进入正常工作模式,否则为所述双向隔离通讯电路进行低功耗供电令其进入小电流工作模式。
在本申请实施例一具体实现中,所述电源装置包括:宽输入线性调压器,用于为所述双向隔离通讯电路进行正常供电令其进入正常工作模式;低功耗线性调压器,用于为所述双向隔离通讯电路进行低功耗供电令其进入小电流工作模式。
在本申请实施例一具体实现中,所述电源装置还包括:次侧电路模块, 用于为所述双向隔离通讯电路的另一侧双向隔离通讯电路供电。
在本申请实施例一具体实现中,还包括:第一电阻,用于连接在所述第一检波电路的两个输入端之间,在第一检波电路的两个输入端形成第一差分信号;第二电阻,用于连接在所述第二检波电路的两个输入端之间,在第二检波电路的两个输入端形成第二差分信号。
在本申请实施例一具体实现中,所述第一检波电路和/或所述第二检波电路为二级差分放大电路,所述二级差分放大电路包括第一放大器和第二放大器组成的两跟随电路、偏置电路以及运算放大器,其做减法运算后输出差分信号。
本申请实施例还提供一种差分信号双向隔离通讯方法,包括:接收来自第一方向的第一差分信号,并将所述第一差分信号转换成第一电平信号,并抑制共模干扰;接收来自第二方向的第二差分信号,并将所述第二差分信号转换成第二电平信号,并抑制共模干扰;根据所述第一差分信号和/或所述第二差分信号被唤醒,从小电流工作模式进入正常工作模式对输入信号进行通讯隔离。
本申请的实施例中,本申请实施例通过第一检波电路和第二检波电路分别接收来自第一方向的第一差分信号以及来自第二方向的第二差分信号,并分别将所述第一差分信号转换成第一电平信号,将所述第二差分信号转换成第二电平信号,抑制共模干扰。本申请实施例在输入输出端不改变信号的频率、幅度等电平特征,并且可实现通讯的双向唤醒、双向传输。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比值绘制的。附图中:
图1为通常高压电池管理系统示意图;
图2为本申请分布式系统隔离通讯电路示意图;
图3为板载级别隔离通讯应用示意图;
图4为差分信号双向隔离通讯电路的电路示意图;
图5为第一方向侧差分信号双向隔离通讯电路的电源示意图;
图6为检波电路的差分电路架构示意图;
图7为本申请分布式系统隔离通讯方法流程图。
具体实施方式
通常高压电池管理系统如图1所示,主要监测和管理多节电芯串联的系统。ICn为电芯电压采集芯片,isoICn为半导体隔离器件。差分信号通过isoICn逐级传递。在分布式系统中,板间通讯需要2个isoICn,以保证单板的电池兼容特性,如图2分布式系统隔离通讯应用。对于集中式系统ICn与ICn+1之间只需要一个隔离器件即可,如图3板载级别隔离通讯应用。
对于板载级别隔离通讯应用的系统,隔离芯片供电可以由被隔离的两侧电源分别提供。对于分布式系统隔离通讯的供电可以统一由车载电瓶及一侧板载电源提供。板载级别供电可为5V,可有电池管理系统中的AFE提供。车载电瓶通常为12V或24V电源。隔离芯片一侧LDO为宽电压范围,适应
5V/12V/24V供电。
下面结合本发明实施例附图进一步说明本发明实施例具体实现。
本申请实施例一提供一种差分信号双向隔离通讯电路,如图4所示,所述电路,包括:第一检波电路U1,用于接收来自第一方向的第一差分信号,并将所述第一差分信号转换成第一电平信号,并抑制共模干扰。第二检波电路U5,用于接收来自第二方向的第二差分信号,并将所述第二差分信号转换成第二电平信号,并抑制共模干扰。隔离调整电路1,用于设置在所述第一检波电路U1与所述第二检波电路U5之间,进行通讯隔离。看门狗电路U12,用于根据所述第一差分信号和/或所述第二差分信号被唤醒,令所述双向隔离通讯电路从小电流工作模式进入正常工作模式以进行通讯隔离。
本申请实施例在输入输出端不改变信号的频率、幅度等电平特征,并且可实现通讯的双向唤醒、双向传输。
在本申请实施例一具体实现中,所述隔离调整电路1包括:第一驱动电路U8,用于根据来自第二方向的输入信号,驱动所述第一检波电路U1。第二驱动电路U4,用于根据来自第一方向的输入信号,驱动所述第二检波电路U5。第一调整电路U2,用于连接所述第一检波电路U1,将所述第一电平信号转换成第一高频信号。第二调整电路U6,用于连接所述第二检波电路U5,将所述第二电平信号转换成第二高频信号。第三调整电路U7,用于连接所述第一驱动电路U2,将对输入所述第一驱动电路U8的第三电平信号转成第三高频信号。第四调整电路U3,用于连接所述第二驱动电路U4,将对输入所述第二驱动电路U4的第四电平信号转成第四高频信号。第一隔离装置U9,用于连接在所述 第一调整电路U2与所述第四调整电路U3之间。第二隔离装置U10,用于连接在所述第二调整电路U6与所述第三调整电路U7之间。
本申请实施例通过驱动电路、调整电路以及隔离装置实现双向唤醒与双向传输,所述驱动电路、调整电路以及隔离装置与检波电路以及关门狗都采用半导体隔离器件实现。本申请实施例所采用的半导体隔离器件代替通讯变压器或电容,取消人工生产环节多的电子元件、明显改善电路失效率,可显著提高产品良率、产品可靠性。本申请实施例所采用的半导体隔离器件可避免热插拔过程的浪涌电流对芯片及周边器件的冲击,显著提高产品可靠性。本发明与现有隔离器件方案相比,可实现菊花链等差分信号传输且可以简化系统供电方案。本发明使用体积较小的半导体隔离器件实现差分信号传输,有利于产品的小型化、薄型化。
在本申请实施例另一具体实现中,本申请实施例还包括唤醒电路U16,用于在小电流工作模式下获得供电,并对所述看门狗电路U12进行唤醒。
本申请实施例的唤醒电路U16便于准确执行唤醒操作,避免由于唤醒操作不及时造成的隔离通讯失效。
在本申请实施例再一具体实现中,本申请实施例还包括:第三隔离装置U13,用于连接在所述第二差分信号与所述唤醒电路U16之间,当存在所述第一差分信号和/或所述第二差分信号时,通过所述唤醒电路U16唤醒所述看门狗电路U12。
本申请实施例通过所述第三隔离装置U13隔离所述第二差分信号以及通过唤醒电路传送的所述第一差分信号,更进一步保证双向传输与隔离的效果。
具体地,所述第一隔离部件U9和/或所述第二隔离部件U10和/或所述第三隔离部件U13为高压隔离。本申请实施例并不仅限于高压隔离,也可以为容性或磁性隔离电路模块。
在本申请实施例再一具体实现中,本申请实施例还包括:电源装置2,用于在所述看门狗电路被唤醒时,为所述双向隔离通讯电路进行正常供电令其进入正常工作模式,否则为所述双向隔离通讯电路进行低功耗供电令其进入小电流工作模式。
具体地,参见图5所述电源装置2包括:
宽输入线性调压器U14,用于为所述双向隔离通讯电路进行正常供电令其进入正常工作模式。低功耗线性调压器U11,用于为所述双向隔离通讯电路 进行低功耗供电令其进入小电流工作模式。
具体地,所述低功耗线性调压器U11在小电流工作模式仅为看门狗电路U12充电,从而令最大输出电流小,容易实现低功耗设计。
在所述看门狗电路U12被所述唤醒电路U16唤醒时,通过控制开关令所述宽输入线性调压器U14为所述双向隔离通讯电路进行正常供电令其进入正常工作模式,否则所述看门狗电路U12,通过控制开关令所述低功耗线性调压器U11为所述双向隔离通讯电路进行低功耗供电进入小电流工作模式。
具体地,所述电源装置2还包括:
次侧电路模块U15,用于为所述双向隔离通讯电路的另一侧双向隔离通讯电路供电。
本申请实施例较现有隔离器件在电源模块电路上的架构优化,可实现低待机功耗及双向唤醒。
本申请实施例还包括:
第一电阻R1,用于连接在所述第一检波电路的两个输入端之间,在第一检波电路的两个输入端形成第一差分信号。第二电阻R2,用于连接在所述第二检波电路的两个输入端之间,在第二检波电路的两个输入端形成第二差分信号。
在本申请实施例再一具体实现中,参见图6,本申请实施例所述第一检波电路和/或所述第二检波电路为二级差分放大电路,所述二级差分放大电路包括第一放大器AMP1和第二放大器AMP2组成的两跟随电路、偏置电路BIAS以及运算放大器AMP3,其做减法运算后输出差分信号,用于供调理电路输入。
为适应不同电压幅值及驱动电流的差分信号,隔离电路外部可串并联电阻于R1与R2端,用于调节输出电压最大幅值。以适应不同差分输入电路电平幅值调整。
以上相关差分信号双向隔离通讯电路制备成半导体器件实施。采用多芯片组件结构(MCM),分别制备电路、隔离装置,再通过引线键合实现电气连接两组件,并封装制备成单个半导体器件。
对应上述电路,本申请实施例还提供一种差分信号双向隔离通讯方法,参见图7,所述方法包括:
S1、接收来自第一方向的第一差分信号,并将所述第一差分信号转换成第一电平信号,并抑制共模干扰;
S2、接收来自第二方向的第二差分信号,并将所述第二差分信号转换成 第二电平信号,并抑制共模干扰;
S3、根据所述第一差分信号和/或所述第二差分信号被唤醒,从小电流工作模式进入正常工作模式对输入信号进行通讯隔离。
本申请实施例在输入输出端不改变信号的频率、幅度等电平特征,并且可实现通讯的双向唤醒、双向传输。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元提示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本申请的一种具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (11)

  1. 一种差分信号双向隔离通讯电路,其特征在于,包括:
    第一检波电路,用于接收来自第一方向的第一差分信号,并将所述第一差分信号转换成第一电平信号,并抑制共模干扰;
    第二检波电路,用于接收来自第二方向的第二差分信号,并将所述第二差分信号转换成第二电平信号,并抑制共模干扰;
    隔离调整电路,用于设置在所述第一检波电路与所述第二检波电路之间,进行通讯隔离;
    看门狗电路,用于根据所述第一差分信号和/或所述第二差分信号被唤醒,令所述双向隔离通讯电路从小电流工作模式进入正常工作模式以进行通讯隔离。
  2. 根据权利要求1所述的电路,其特征在于,所述隔离调整电路包括:
    第一驱动电路,用于根据来自第二方向的输入信号,驱动所述第一检波电路;
    第二驱动电路,用于根据来自第一方向的输入信号,驱动所述第二检波电路;
    第一调整电路,用于连接所述第一检波电路,将所述第一电平信号转换成第一高频信号;
    第二调整电路,用于连接所述第二检波电路,将所述第二电平信号转换成第二高频信号;
    第三调整电路,用于连接所述第一驱动电路,将对输入所述第一驱动电路的第三电平信号转成第三高频信号;
    第四调整电路,用于连接所述第二驱动电路,将对输入所述第二驱动电路的第四电平信号转成第四高频信号;
    第一隔离装置,用于连接在所述第一调整电路与所述第四调整电路之间;
    第二隔离装置,用于连接在所述第二调整电路与所述第三调整电路之间。
  3. 根据权利要求2所述的电路,其特征在于,还包括:唤醒电路,用于在小电流工作模式下获得供电,并对所述看门狗电路进行唤醒。
  4. 根据权利要求3所述的电路,其特征在于,还包括:第三隔离装置, 用于连接在所述第二差分信号与所述唤醒电路之间,当存在所述第一差分信号和/或所述第二差分信号时,通过所述唤醒电路唤醒所述看门狗电路。
  5. 根据权利要求4所述的电路,其特征在于,所述第一隔离部件和/或所述第二隔离部件和/或所述第三隔离部件为高压隔离。
  6. 根据权利要求5所述的电路,其特征在于,还包括:
    电源装置,用于在所述看门狗电路被唤醒时,为所述双向隔离通讯电路进行正常供电令其进入正常工作模式,否则为所述双向隔离通讯电路进行低功耗供电令其进入小电流工作模式。
  7. 根据权利要求6所述的电路,其特征在于,所述电源装置包括:
    宽输入线性调压器,用于为所述双向隔离通讯电路进行正常供电令其进入正常工作模式;
    低功耗线性调压器,用于为所述双向隔离通讯电路进行低功耗供电令其进入小电流工作模式。
  8. 根据权利要求7所述的电路,其特征在于,所述电源装置还包括:
    次侧电路模块,用于为所述双向隔离通讯电路的另一侧双向隔离通讯电路供电。
  9. 根据权利要求8所述的电路,其特征在于,还包括:
    第一电阻,用于连接在所述第一检波电路的两个输入端之间,在第一检波电路的两个输入端形成第一差分信号;
    第二电阻,用于连接在所述第二检波电路的两个输入端之间,在第二检波电路的两个输入端形成第二差分信号。
  10. 根据权利要求9所述的电路,其特征在于,
    所述第一检波电路和/或所述第二检波电路为二级差分放大电路,所述二级差分放大电路包括第一放大器和第二放大器组成的两跟随电路、偏置电路以及运算放大器,其做减法运算后输出差分信号。
  11. 一种差分信号双向隔离通讯方法,其特征在于,包括:
    接收来自第一方向的第一差分信号,并将所述第一差分信号转换成第一电平信号,并抑制共模干扰;
    接收来自第二方向的第二差分信号,并将所述第二差分信号转换成第二电平信号,并抑制共模干扰;
    根据所述第一差分信号和/或所述第二差分信号被唤醒,从小电流工作模式进入正常工作模式对输入信号进行通讯隔离。
PCT/CN2020/089878 2020-05-12 2020-05-12 一种差分信号双向隔离通讯电路及方法 WO2021226847A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20934957.0A EP4152169A4 (en) 2020-05-12 2020-05-12 BIDIRECTIONAL ISOLATED COMMUNICATIONS CIRCUIT AND DIFFERENTIAL SIGNAL METHOD
PCT/CN2020/089878 WO2021226847A1 (zh) 2020-05-12 2020-05-12 一种差分信号双向隔离通讯电路及方法
JP2022568434A JP2023531362A (ja) 2020-05-12 2020-05-12 差動信号双方向アイソレーション通信回路及び方法
US17/773,763 US11677591B2 (en) 2020-05-12 2020-05-12 Bidirectional isolated communication circuit and method for differential signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089878 WO2021226847A1 (zh) 2020-05-12 2020-05-12 一种差分信号双向隔离通讯电路及方法

Publications (1)

Publication Number Publication Date
WO2021226847A1 true WO2021226847A1 (zh) 2021-11-18

Family

ID=78526141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089878 WO2021226847A1 (zh) 2020-05-12 2020-05-12 一种差分信号双向隔离通讯电路及方法

Country Status (4)

Country Link
US (1) US11677591B2 (zh)
EP (1) EP4152169A4 (zh)
JP (1) JP2023531362A (zh)
WO (1) WO2021226847A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019037A1 (en) * 2011-07-15 2013-01-17 Allan Flippin Battery management systems with vertical bus circuits
CN203104693U (zh) * 2013-01-31 2013-07-31 广东安居宝数码科技股份有限公司 楼宇对讲差分数据传输电路
US20140028369A1 (en) * 2012-07-26 2014-01-30 International Rectifier Corporation Level Shifter Utilizing Bidirectional Signaling Through a Capacitive Isolation Barrier
CN104317760A (zh) * 2014-10-23 2015-01-28 安徽工程大学 一种全速usb3.0接口隔离保护装置
CN104484306A (zh) * 2014-12-31 2015-04-01 哈尔滨工业大学 基于差分信号的主从同步串行通讯总线及其实现方法
CN109976203A (zh) * 2017-12-28 2019-07-05 中国电信股份有限公司 环境监测终端和系统、电源管理方法和装置
CN209070002U (zh) * 2018-09-11 2019-07-05 山东鲁能智能技术有限公司 一种高精度双向直流电压隔离采集电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220341A (ja) * 1997-11-26 1999-08-10 Oki Electric Ind Co Ltd 演算増幅器
US6307543B1 (en) * 1998-09-10 2001-10-23 Silicon Image, Inc. Bi-directional data transfer using two pair of differential lines as a single additional differential pair
US7170949B2 (en) * 2002-03-14 2007-01-30 Intel Corporation Methods and apparatus for signaling on a differential link
WO2007013052A1 (en) * 2005-07-26 2007-02-01 Alex Axelrod Electromagnetic interface module for balanced data communication
US8188764B2 (en) * 2010-03-18 2012-05-29 Sandisk Technologies Inc. Efficient electrical hibernate entry and recovery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019037A1 (en) * 2011-07-15 2013-01-17 Allan Flippin Battery management systems with vertical bus circuits
US20140028369A1 (en) * 2012-07-26 2014-01-30 International Rectifier Corporation Level Shifter Utilizing Bidirectional Signaling Through a Capacitive Isolation Barrier
CN203104693U (zh) * 2013-01-31 2013-07-31 广东安居宝数码科技股份有限公司 楼宇对讲差分数据传输电路
CN104317760A (zh) * 2014-10-23 2015-01-28 安徽工程大学 一种全速usb3.0接口隔离保护装置
CN104484306A (zh) * 2014-12-31 2015-04-01 哈尔滨工业大学 基于差分信号的主从同步串行通讯总线及其实现方法
CN109976203A (zh) * 2017-12-28 2019-07-05 中国电信股份有限公司 环境监测终端和系统、电源管理方法和装置
CN209070002U (zh) * 2018-09-11 2019-07-05 山东鲁能智能技术有限公司 一种高精度双向直流电压隔离采集电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152169A4 *

Also Published As

Publication number Publication date
EP4152169A4 (en) 2024-01-24
US20230006865A1 (en) 2023-01-05
EP4152169A1 (en) 2023-03-22
JP2023531362A (ja) 2023-07-24
US11677591B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US20180248361A1 (en) Electric vehicle and electromagnetic interference suppression circuit thereof
US20130229054A1 (en) Network and method for operating a network
US20210250199A1 (en) Monolithic high-voltage transceiver connected to two different supply voltage domains
WO2021226847A1 (zh) 一种差分信号双向隔离通讯电路及方法
CN112782570A (zh) 一种用于监测继电器的系统及方法
CN206878840U (zh) 一种usb转rs485通信适配器
CN206759482U (zh) Can总线隔离电路
CN218547284U (zh) 一种用于测试系统工作状态的监控装置
CN107273330B (zh) 三线制串行通信接口隔离电路模块
CN113659976A (zh) 一种差分信号双向隔离通讯电路及方法
CN218897224U (zh) 一种侦查阵模块
CN203435003U (zh) 光纤板卡供电装置
CN208834144U (zh) 用于机器人的传感器电路板及其机器人
CN201600574U (zh) 一种实现插件互换的车载逻辑控制单元
CN111600391A (zh) 一种基于rs-485的直流电力线通讯装置
CN217956959U (zh) 接口转接装置以及rs232接口装置
CN104915313A (zh) 一种采用fpga实现电平转换的fmc板卡
CN217333288U (zh) 一种小功率使用场合的fpga供电电路
CN218587174U (zh) 一种通信隔离电路及开关电源
CN211378028U (zh) 一种带保护装置的光模块及光模块通讯系统
CN107317635A (zh) 多路电光信号集成电路转换板
CN206452394U (zh) 一种汽车监控用的新型can转换板
CN211046903U (zh) 一种数据电平传输转换电路
CN115883617A (zh) 控制器用通讯接管电路、方法、控制器、系统及电动车辆
CN213817960U (zh) 一种led显示屏控制卡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020934957

Country of ref document: EP

Effective date: 20221212