WO2021226765A1 - 测量系统和方法 - Google Patents

测量系统和方法 Download PDF

Info

Publication number
WO2021226765A1
WO2021226765A1 PCT/CN2020/089487 CN2020089487W WO2021226765A1 WO 2021226765 A1 WO2021226765 A1 WO 2021226765A1 CN 2020089487 W CN2020089487 W CN 2020089487W WO 2021226765 A1 WO2021226765 A1 WO 2021226765A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
optical component
moment
light
detection information
Prior art date
Application number
PCT/CN2020/089487
Other languages
English (en)
French (fr)
Inventor
陈鲁
杨乐
马砚忠
张威
李小辉
Original Assignee
深圳中科飞测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中科飞测科技股份有限公司 filed Critical 深圳中科飞测科技股份有限公司
Priority to PCT/CN2020/089487 priority Critical patent/WO2021226765A1/zh
Priority to US17/924,032 priority patent/US20230175980A1/en
Publication of WO2021226765A1 publication Critical patent/WO2021226765A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to the field of measurement technology, and more particularly to a measurement system and method.
  • the three-dimensional shape measurement method based on white light interference technology is widely used in the field of integrated circuit testing due to its non-contact, fast, and high-precision characteristics.
  • the white light interference technology uses white light with a short coherence length as the light source, and the surface topography of the measured object can be located by the peak of the interference signal intensity.
  • a measurement system including: a light source configured to generate an original light beam, wherein the original light beam returned from a measured area of an object to be measured forms a return light beam; an optical assembly, Is configured to obtain the beam to be processed according to the return beam, wherein at least part of the beam to be processed is a first beam; a first detection device is configured to obtain first detection information according to the first beam; a mobile device is Configured to make the optical component and the object to be measured relatively move along the optical axis direction of the optical component; The detection information determines the actual distance between the optical component and the fixed plane of the measured object at each first moment.
  • the optical assembly includes: a first beam splitter configured to divide the original beam into a reference beam and an object beam incident on the measured area, wherein the return from the measured area The object beam of the optical assembly forms the return beam; and a reference mirror configured to make the reference beam propagate along a preset trajectory to obtain a pre-interference beam, wherein the pre-interference beam and the return beam Interference to obtain the light beam to be processed; the first detection information includes the intensity of light of a predetermined wavelength in the light beam to be processed.
  • the processing system being configured to determine the actual distance between the optical component and the fixed plane of the measured object at each first moment includes: controlling the mobile device to make the optical component Move relative to the measured object along the optical axis direction, so as to make the optical assembly and the fixed plane have a desired plurality of predetermined distances at a plurality of second moments; obtain the plurality of second The first detection information at each second time of the time; and according to the plurality of predetermined distances and the plurality of first detection information at each second time, determine the first detection information at each first time The actual distance between the optical component and the fixed plane.
  • the processing system is configured to determine, based on the plurality of predetermined distances and the plurality of first detection information at each second moment, that the optical assembly is connected to each other at each first moment.
  • the actual distance between the fixed planes includes: linear processing is performed on each of the plurality of predetermined distances to obtain a movement parameter; and the movement parameter at each second moment and the waiting parameter The difference between the two is an independent variable, and the first detection information at each second moment is used as the dependent variable to fit the fitting function to obtain a fitting function; and according to the fitting function and the multiple The first detection information at the first moment determines the actual distance between the optical component and the fixed plane at each first moment.
  • the optical assembly includes: a first beam splitter configured to divide the original beam into a reference beam and an object beam incident on the measured area, wherein the return from the measured area The object beam of the optical assembly forms the return beam; and a reference mirror configured to make the reference beam propagate along a preset trajectory to obtain a pre-interference beam, wherein the pre-interference beam and the return beam Interference to obtain the beam to be processed;
  • the first detection information includes the intensity of light of a predetermined wavelength in the beam to be processed;
  • the processing system is configured to The difference between the movement parameter and the parameter to be determined at each second moment is used as an independent variable, and the first detection information at each second moment is used as the dependent variable to fit the
  • the reference mirror is configured to reflect the reference beam and cause the reference beam to propagate along a preset trajectory to obtain a pre-interference beam;
  • the reference mirror and the first beam splitter are both half A transflective mirror, and the reference mirror and the first beam splitter are arranged in parallel; or, the reference mirror is a reflecting mirror.
  • the first detection device includes: one of a grating and a filter; and a light intensity detector.
  • the measurement system further includes: a first aperture configured to block the angle between the beam to be processed and the central axis of the beam to be measured from being greater than a first preset angle The part enters the first detection device.
  • the measurement system further includes: a second detection device configured to obtain second detection information according to a second light beam, the second light beam being part of the return beam or part of the beam to be processed,
  • the second detection information characterizes the relative distance between the optical component and the measured area in the optical axis direction of the optical component
  • the processing system is also configured to acquire the second detection information as a preliminary Set the first moment when detecting information as the characteristic moment; obtain the actual distance between the optical component and the fixed plane at the characteristic moment; The actual distance between the fixed planes determines the height information of the measured area.
  • configuring the second detection device to obtain second detection information according to a second light beam includes: obtaining a detection image according to the second light beam; and obtaining the second detection information according to the detection image,
  • the second detection information includes at least one of the light intensity of the second light beam and the contrast of the detection image.
  • the measurement system further includes a second beam splitter configured to split the return beam or the beam to be processed to obtain the second beam.
  • the optical assembly further includes: a first lens configured to collect the return light beam, the first light beam being formed by at least part of the return light beam collected by the first lens; or, The first lens is configured to collect the light beam to be processed, and the first light beam is formed by at least part of the light beam to be processed collected by the first lens.
  • the second beam splitter when the first lens is configured to collect the return beam, the second beam splitter is configured to split the return beam collected by the first lens to form the The second light beam and the third light beam, the optical component is configured to obtain the light beam to be processed according to the third light beam; when the first lens is configured to collect the light beam to be processed, the second light splitting The device is configured to split the light beam to be processed collected by the first lens to form the first light beam and the second light beam.
  • the optical assembly further includes: a second lens configured to collect the second light beam.
  • the second beam splitter is configured to split the return beam to obtain the second beam, and the second lens makes the central axis of the second beam parallel to the optical beam.
  • the moving direction of the component; the second beam splitter is fixedly connected to the optical component.
  • the optical assembly is configured to move relative to the second beam splitter.
  • the second beam splitter is configured to split the return beam to obtain the second beam;
  • the optical assembly includes a lens configured to collect the return beam and The return beam is propagated to the second beam splitter, or the lens is configured to collect the second beam;
  • the measurement system further includes: a second diaphragm configured to block the second beam The part where the included angle with the central axis of the second light beam is greater than the second preset angle enters the second detection device, and the second diaphragm and the second detection device are both connected to the lens The focal plane is conjugate.
  • the original light beam includes a first original light beam and a second original light beam
  • the light source includes: a first sub-light source configured to generate the first original light beam, and a second sub-light source configured to In order to generate the second original beam
  • the return beam includes a first return beam and a second return beam, the first return beam is the first original beam returned from the measured area, and the second The return beam is the second original beam returned from the measured area
  • the optical component includes: a first optical component configured to form the to-be-processed beam according to the first return beam, the first The beam is the beam to be processed, and a second optical component is configured to collect the second return beam, the second beam is the second return beam, and the first optical component and the second optical component are fixed connect.
  • the first optical component is further configured to collect the first original light beam and make the first original light beam reach the measured area; the first optical component includes: a dispersive prism, It is configured to converge light of different wavelengths in the first original light beam to different positions of the optical axis of the first optical component.
  • the measurement system further includes: a data acquisition system configured to issue a synchronization trigger signal at each first moment; and the first detection device is configured to respond to the synchronization trigger signal according to the synchronization trigger signal.
  • the first light beam obtains the first detection information; the second detection device is configured to obtain the second detection information according to the second light beam in response to the synchronization trigger signal.
  • the second detection information includes the light intensity of the second light beam; the light intensity of the second light beam at the characteristic moment is stronger than the light intensity of the second beam at the first moments. The light intensity of the second light beam at any first moment other than the characteristic moment.
  • the detected area includes at least one sub-area
  • the detection image includes at least one pixel corresponding to the at least one sub-area, and each pixel is configured to obtain a second light beam of one sub-area
  • the second detection information includes the light intensity of the second light beam formed by each sub-region, wherein, at the characteristic moment of any sub-region, the gray scale value of the pixel of the sub-region is greater than that at the multiple first moments.
  • Determining the height information of the measured area includes: determining the height information of the sub-area according to the actual distance between the optical component and the fixed plane at the characteristic time of each sub-area, so as to obtain the sub-area Height information of the measurement area.
  • a measurement method including: a light source generates an original light beam, wherein the original light beam returned from the measured area of the measured object is a return light beam; and the optical assembly is based on the return light beam Obtain the light beam to be processed, at least part of the light beam to be processed is the first light beam; obtain first detection information according to the first light beam; make the optical component and the object to be measured face each other along the optical axis of the optical component Moving; and determining the actual distance between the optical component and the fixed plane at each first time according to the first detection information at each first time in a plurality of first time.
  • determining the actual distance between the optical assembly and the measured object at each first moment includes: relatively moving the optical assembly and the measured object along the optical axis to A plurality of predetermined distances between the optical component and the fixed plane are desired at a plurality of second moments; the first detection information at each second moment of the plurality of second moments is acquired And according to the plurality of predetermined distances and the plurality of first detection information at each second moment, determine the actual distance between the optical assembly and the fixed plane at each first moment .
  • the distance between the optical component and the fixed plane at each first moment is determined
  • the actual distance includes: linearly processing each of the plurality of predetermined distances to obtain a movement parameter; taking the difference between the movement parameter and the parameter to be determined at each second moment as an independent variable, Fitting the function to be fitted with the first detection information at each second moment as a dependent variable to obtain a fitting function; and according to the fitting function and the plurality of first moments
  • the first detection information determines the actual distance between the optical component and the fixed plane at each first moment.
  • the optical component includes a first beam splitter and a mirror
  • the measurement method further includes: the first beam splitter divides the original beam into a reference beam and a beam incident on the measured area.
  • An object beam wherein the object beam returning to the optical assembly from the measured area is the return beam; and the reference mirror causes the reference beam to propagate along a preset trajectory to obtain a pre-interference beam, wherein, The pre-interference beam and the return beam interfere to obtain the beam to be processed;
  • the first detection information includes the intensity of light of a predetermined wavelength in the beam to be processed;
  • the difference between the moving parameter and the parameter to be determined at each second moment is used as the independent variable, and the first detection information at each second moment is used as the dependent
  • the measurement method further includes: obtaining second detection information according to a second light beam, where the second light beam is part of the return beam or part of the beam to be processed, and the second detection information represents The relative position between the optical component and the measured area; the first time when the second detection information is the preset detection information is acquired as the characteristic time; the optical component and the measured area at the characteristic time are acquired The actual distance between the fixed planes; and the height information of the measured area is determined according to the actual distance between the optical component and the fixed plane at the characteristic moment.
  • obtaining the second detection information according to the second light beam includes: obtaining the detection image according to the second light beam; and obtaining the second detection information according to the detection image, the second detection information including the second At least one of the light intensity of the light beam and the contrast of the detection image.
  • the second detection information includes the light intensity of the second light beam; the light intensity of the second light beam at the characteristic moment is stronger than the light intensity of the second beam at the first moments. The light intensity of the second light beam at any first moment other than the characteristic moment.
  • the measurement method further includes: acquiring the topography of the measured object according to the height information of the plurality of measured regions relative to the same reference plane.
  • Fig. 1 is a schematic structural diagram of a measurement system according to some embodiments of the present disclosure
  • Fig. 2 is a schematic structural diagram of a measurement system according to other embodiments of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a measurement system according to still other embodiments of the present disclosure.
  • FIG. 4 is a schematic flowchart of determining the actual distance between the optical component and the fixed plane of the object under test at each first moment according to some implementations of the present disclosure
  • FIG. 5 shows a specific implementation of step 406 in FIG. 4
  • Fig. 6 is a schematic structural diagram of a measurement system according to still other embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a measurement system according to still other embodiments of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a measurement system according to some other embodiments of the present disclosure.
  • FIG. 9 is a schematic flowchart of a measurement method according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic flowchart of measurement methods according to other embodiments of the present disclosure.
  • a specific component when it is described that a specific component is located between the first component and the second component, there may or may not be an intermediate component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to another component, the specific component may be directly connected to the other component without an intervening component, or may not be directly connected to the other component but with an intervening component.
  • Fig. 1 is a schematic structural diagram of a measurement system according to some embodiments of the present disclosure.
  • the measurement system may include a light source 101, an optical assembly 102, a first detection device 103, a mobile device 104 and a processing system 105.
  • the light source 101 is configured to generate an original light beam.
  • the original light beam may be a broad-spectrum light beam, such as one or a combination of white light, infrared light, and ultraviolet light.
  • the original beam returning from the measured area of the measured object A is the returning beam.
  • the original light beam generated by the light source 101 can be directly incident on the object A to be measured.
  • the original light beam generated by the light source 101 may be incident on the object A to be measured via the optical component 102.
  • the original light beam generated by the light source 101 may be shaped by the shaping lens group 201 and then incident on the beam splitter 202, reflected by the beam splitter 202, and incident on the optical component 102, and then incident on the measured object A through the optical component 102.
  • the shaping lens group 201 can perform shaping operations such as collimating and filtering the original light beam generated by the light source 101.
  • the optical assembly 102 is configured to obtain the beam to be processed according to the returned beam.
  • at least part of the light beam to be processed is the first light beam.
  • the optical component 102 may be an interference objective lens.
  • the beam to be processed may be an interference beam.
  • the optical component 102 may be a confocal objective lens.
  • the beam to be processed may be the return beam returned from the object A to be measured.
  • the optical component 102 is configured to divide the original beam into a reference beam and an object beam incident on the measured area, wherein the object beam returning from the measured area to the optical component forms a return beam, and the optical component 102 is also configured to make the reference beam and The returning beam interferes.
  • the optical assembly 102 includes a first beam splitter 112 and a reference mirror 122.
  • the first beam splitter 112 is configured to divide the original beam into a reference beam and an object beam incident on the measured area of the measured object A;
  • the reference mirror 122 is It is configured to make the reference beam propagate along the preset trajectory to obtain the pre-interference beam, wherein the pre-interference beam and the return beam interfere to obtain the beam to be processed.
  • the first beam splitter 112 is configured to divide the original beam into a reference beam and an object beam incident on the measured area of the measured object A.
  • the object light beam returning from the measurement area of the measurement object A to the optical assembly 102 is a return light beam.
  • the reference mirror 122 is configured to propagate the reference beam along a preset trajectory by reflecting the reference beam to obtain the pre-interference beam.
  • the pre-interference beam and the return beam interfere to obtain the beam to be processed.
  • the reference mirror 122 and the first beam splitter 112 are both half mirrors, and the reference mirror 122 and the first beam splitter 112 are arranged in parallel.
  • the embodiments of the present disclosure are not limited thereto.
  • the reference mirror 122 may be a reflecting mirror (for example, the embodiment shown in FIG. 6).
  • the reference mirror 122 is configured to refract or diffract the reference beam to obtain the pre-interference beam.
  • the reference mirror 122 is a refractive element or a diffractive element.
  • the first detection device 103 is configured to obtain first detection information according to the first light beam.
  • the beam to be processed is an interference beam obtained by the interference of the above-mentioned reflected beam and the returning beam.
  • the first detection information may include the intensity of light of a predetermined wavelength in the beam to be processed.
  • the beam to be processed includes light of multiple wavelengths.
  • the light of the predetermined wavelength may be light of any one of the multiple wavelengths of light.
  • the moving device 104 is configured to relatively move the optical assembly 102 and the measured object A along the optical axis direction of the optical assembly 102.
  • the mobile device 104 can drive the optical assembly 102 to move relative to the measured object A along the optical axis direction of the optical assembly 102 under the control of the processing system 105.
  • the mobile device 104 can drive the measured object A to move relative to the optical assembly 102 along the optical axis direction of the optical assembly 102 under the control of the processing system 105.
  • the optical axis direction of the optical component 102 can be understood as the central axis direction of the return beam entering the optical component 102, for example, the direction indicated by the double-headed arrow in FIG. 1.
  • the mobile device 104 may be a phase shifter.
  • Moving relative to the measured object A along the optical axis direction of the optical component 102 means that the moving direction of the optical component 102 and the measured object A has a component along the optical axis direction of the optical component 102, as long as the optical component 102 and the measured object A It is sufficient that the moving direction of the optical component 102 is not perpendicular to the optical axis direction of the optical component 102.
  • the processing system 105 is configured to determine the actual distance between the optical assembly 102 and the fixed plane of the measured object A at each first time according to the first detection information at each of the plurality of first time.
  • the fixed plane of the measured object A may be a plane determined by any area of the surface of the measured object A.
  • an arbitrary plane of the measured object A can be used as the fixed plane of the measured object A.
  • the processing system 105 may subsequently determine the height information of the measured area according to the actual distance between the optical component 102 and the fixed plane of the measured object A at each first moment.
  • the processing system 105 may be a computer or other equipment capable of processing.
  • the processing system 105 may include a memory and a processor coupled to the memory.
  • the processor may perform various operations based on instructions stored on the memory, for example, determining that the optical assembly 102 and the The actual distance between the fixed planes of the measured object A and the operations mentioned later.
  • the memory may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory may store an operating system, an application program, a boot loader (Boot Loader), and other programs, for example.
  • the optical component 102 obtains the beam to be processed according to the return beam
  • the first detection device 103 obtains the first detection information according to at least a part of the beam to be processed (ie, the first beam).
  • the processing system 105 determines the actual distance between the optical assembly 102 and the fixed plane of the measured object A at each first time according to the first detection information at each first time in the plurality of first time points. In this manner, the actual distance between the optical assembly 102 and the fixed plane of the object A to be measured at each first time can be obtained by using multiple first detection information at the first time. Based on the actual distance between the optical component 102 and the fixed plane of the measured object A at each first moment, subsequent operations can be performed more accurately, for example, the height information of the measured area of the measured object A can be determined more accurately Wait.
  • the measurement system may further include a second detection device 106.
  • the second detection device 106 is configured to obtain second detection information according to the second light beam.
  • the second beam is part of the beam to be processed.
  • the measurement system further includes a second beam splitter 107 configured to split the beam to be processed to obtain the second beam.
  • the beam to be processed passing through the second beam splitter 107 is the first beam
  • the beam to be processed reflected by the second beam splitter 107 is the second beam, and vice versa.
  • the second beam may be a partial return beam.
  • the second beam splitter 107 is configured to split the returning beam to obtain the second beam. The following will be described in conjunction with other embodiments (for example, the embodiment shown in FIG. 6).
  • the second detection information can characterize the relative distance between the optical component 102 and the measured area of the object A along the optical axis of the optical component, that is, the second detection information changes with the relative distance; the second detection information can The relative distance between the optical component 102 and the measured area of the measured object A of the measured object A is obtained.
  • the second detection device 106 may obtain a detection image (for example, an interference image or an image of the detected area of the detected object A) according to the second light beam, and then obtain the second detection information according to the detection image.
  • the second detection device 106 may be, for example, a camera, a video camera, or the like. In other embodiments, the second detection device 106 may be a single photodiode or a photomultiplier tube.
  • the second detection information may include at least one of the light intensity of the second light beam and the contrast of the detection image.
  • the second detection information may include the light intensity of the second light beam.
  • the second detection information may include the contrast of the detection image obtained according to the second light beam.
  • the second detection information may include the light intensity of the second light beam and the contrast of the detection image.
  • the processing system 105 is also configured to obtain the first moment when the second detection information is the preset detection information as the characteristic moment; to obtain the actual distance between the optical component 102 and the fixed plane of the measured object A at the characteristic moment; The actual distance between the optical component 102 and the fixed plane of the measured object A at the moment determines the height information of the measured area.
  • the second detection information may include the light intensity of the second light beam.
  • the light intensity of the second light beam at the characteristic moment is stronger than the light intensity of the second light beam at any one of the plurality of first moments except the characteristic moment. In other words, the light intensity of the second light beam at the characteristic moment is the largest.
  • the optical path of the reference beam is equal to the optical path of the object beam.
  • the distance between the optical component 102 and the measured area of the measured object A is equal to the focal length of the optical component 102.
  • the distance between the optical component 102 and the different measured areas is the same at a characteristic moment. Therefore, the actual distance between the optical component 102 and the fixed plane of the measured object A at the characteristic moment can reflect the height of the measured area.
  • the actual distance between the optical component 102 and the fixed plane of the measured object A at the characteristic time is h1; for the measured area A2, the optical component 102 and the fixed plane at the characteristic time are h1.
  • the actual distance between the fixed planes of the object A is h2.
  • the difference between h1 and h2 is the height difference between the measured area A1 and the measured area A2.
  • the detected area includes at least one sub-area
  • the detection image includes at least one pixel corresponding to the at least one sub-area.
  • the detected area includes a plurality of sub-areas
  • the detection image includes a plurality of pixels corresponding to the plurality of sub-areas in a one-to-one manner.
  • the second detection information may include the light intensity of the second light beam acquired by each pixel.
  • the preset detection information is the maximum gray value of the pixel.
  • the characteristic moment is the first moment when the gray value is the largest.
  • Each pixel has a characteristic moment, that is, each sub-region corresponds to a characteristic moment.
  • the grayscale value of the pixel corresponding to the subregion is greater than the grayscale value of the pixel at any one of the plurality of first moments except the characteristic moment. In other words, for a certain pixel, the grayscale value of the pixel at the characteristic moment is the largest.
  • the preset detection information is the value when the average value or the sum of the grayscale values of the multiple pixels is the maximum; the characteristic time is the first time when the average or the sum of the grayscale values of the multiple pixels is the maximum .
  • the processing system 105 is configured to determine the height information of the sub-region corresponding to each pixel according to the actual distance between the optical component 102 and the fixed plane at the characteristic moment. After obtaining the height information of the sub-area corresponding to each pixel, the height information of the measured area is obtained.
  • the actual distance between the optical component 102 and the fixed plane of the measured object A at the characteristic moment corresponding to the sub-region can reflect the height of the sub-region.
  • the actual distance between the optical component 102 and the fixed plane of the measured object A at the characteristic moment is h11;
  • the actual distance between the optical component 102 and the fixed plane of the measured object A at the moment is h12.
  • the difference between h11 and h12 is the height difference between sub-area A11 and sub-area A12.
  • a measurement system may be used to measure multiple measured areas of the measured object, so as to obtain height information of each measured area relative to the same reference plane. After obtaining the height information of each measured area relative to the same reference plane, the three-dimensional shape of the measured object can be obtained. For example, the height information of multiple measured areas can be spliced to form the three-dimensional shape of the measured object.
  • the measurement system further includes a data acquisition system 108 configured to issue a synchronization trigger signal at each of the plurality of first moments.
  • the first detection device 103 is configured to obtain first detection information according to the first light beam in response to the synchronization trigger signal.
  • the second detection device 106 is configured to obtain second detection information according to the second light beam in response to the synchronization trigger signal.
  • the first detection device 103 can obtain multiple first detection information at the first time
  • the second detection device 106 can obtain multiple second detection information at the first time.
  • the data collection system 108 can collect multiple first detection information at the first time from the first detection device 103, and collect multiple second detection information at the first time from the second detection device 106, and transmit it to the processing system 105 .
  • Fig. 2 is a schematic structural diagram of a measurement system according to other embodiments of the present disclosure.
  • the first detection device 103 is a spectrometer.
  • the first detection device 103 may include a grating 113 and a light intensity detector 123 (for example, a photodetector).
  • the grating 113 is configured such that light of different wavelengths in the first light beam is incident on different areas of the light intensity detector 123, that is, the grating 113 has a light-splitting effect.
  • the light intensity detector 123 is configured to detect the light intensity of light of multiple wavelengths in the first light beam.
  • the processing system 105 may perform subsequent analysis according to the intensity of light of a predetermined wavelength (that is, the first detection information) among the lights of multiple wavelengths.
  • Fig. 3 is a schematic structural diagram of a measurement system according to other embodiments of the present disclosure.
  • the first detection device 103 may include a filter 113' and a light intensity detector 123.
  • the filter 113' is configured to allow light of a predetermined wavelength among the light of multiple wavelengths in the first beam to reach the light intensity detector 123, and light of other wavelengths among the multiple wavelengths will not reach the light intensity detector 123.
  • the filter 113' only allows light of a predetermined wavelength to pass.
  • the light intensity detector 123 can directly detect the intensity of light of a predetermined wavelength.
  • the measurement system may further include a first diaphragm 109, such as an aperture diaphragm.
  • the first aperture 109 is configured to block the portion of the beam to be processed with an included angle greater than the first preset included angle from the central axis of the processed beam to be measured from entering the first detection device 103.
  • the part of the beam to be processed whose included angle with the central axis of the beam to be measured is less than or equal to the first preset included angle can enter the first detection device 103.
  • the first preset included angle can be determined according to actual conditions. In this case, the first detection device 103 does not need to detect the entire beam to be processed, which reduces the adverse effects of light at the edge of the beam to be processed, and improves the detection accuracy.
  • FIG. 4 is a schematic flowchart of determining the actual distance between the optical component and the fixed plane of the object under test at each first moment according to some implementations of the present disclosure.
  • step 402 the mobile device is controlled to relatively move the optical component and the measured object along the optical axis direction, so as to make the optical component and the fixed plane have a plurality of desired predetermined distances at a plurality of second moments.
  • the multiple second moments may be the same or different from the multiple first moments, or may be partially the same.
  • Controlling the moving device to move the optical component and the measured object relative to the optical axis direction includes: moving the optical component by the moving device, or moving the measured object by the moving device, or a combination of both.
  • step 404 first detection information at each second time in a plurality of second time points is acquired.
  • step 406 according to a plurality of predetermined distances and a plurality of first detection information at each second moment, the actual distance between the optical assembly and the fixed plane of the measured object at each first moment is determined.
  • determining the actual distance between the optical component and the fixed plane of the object under test at each first moment includes determining the distance between the optical component and any fixed plane at each first moment.
  • determining the actual distance between the optical component and the fixed plane of the measured object at each first moment includes determining the optical component and any The distance between the fixed planes.
  • step 406 may be implemented through step 416 to step 436 shown in FIG. 5.
  • step 416 linear processing is performed on each of the plurality of predetermined distances to obtain a movement parameter. For example, each predetermined distance is multiplied by a certain constant to obtain the movement parameter.
  • step 426 the difference between the movement parameter at each second moment and the parameter to be determined is used as the independent variable, and the first detection information at each second moment is used as the dependent variable to fit the function to be fitted, and Get the fitting function.
  • the function to be fitted may include, for example, trigonometric function expansion, polynomial, Fourier expansion, and the like.
  • step 436 the actual distance between the optical component and the fixed plane at each first time is determined according to the fitting function and the multiple first detection information at the first time.
  • the first detection information includes the intensity of light of a predetermined wavelength in the light beam to be processed.
  • A is the amplitude of the light intensity of the light of the predetermined wavelength
  • x 0 is the parameter to be obtained
  • B is the average intensity of the light of the predetermined wavelength
  • r is 1 or 2 ⁇ / ⁇
  • is the wavelength of the light of the predetermined wavelength.
  • the intensities of light with predetermined wavelengths at multiple second moments are respectively I 1 , I 2 , I 3
  • the movement parameters at multiple second moments are x 01 , x 02 , x 03 .
  • B the fitting function is obtained.
  • the relationship between the light intensity I of the light of the predetermined wavelength and the movement parameter x is obtained. After that, the intensity of the light of the predetermined wavelength at each first moment is used as I in the fitting function, and x in the fitting function is calculated as the movement parameter at each first moment.
  • the actual distance between the optical component and the fixed plane at each first moment is determined.
  • the actual distance between the optical component and the fixed plane at each first moment is equal to the movement parameter at each first moment.
  • the actual distance between the optical component and the fixed plane at each first moment is equal to the ratio of the movement parameter at each first moment to 2 ⁇ / ⁇ .
  • the relationship between the light intensity of the light of the predetermined wavelength and the movement parameter conforms to the above formula, so the above formula is the function to be fitted, which can simplify the calculation process and improve the detection speed.
  • the processing system 105 when the processing system 105 measures each measured area, it can fit the corresponding A, x 0 and B in the above-mentioned manner, and then perform subsequent processing.
  • the actual distance between the optical component and the fixed plane at the first moment obtained in this way is more accurate, so that more accurate height information of the measured area can be obtained.
  • the function to be fitted is a trigonometric function expansion, a polynomial, or a Fourier expansion
  • the function to be fitted can be fitted with trigonometric function, polynomial or Fourier series fitting.
  • Fig. 6 is a schematic structural diagram of a measurement system according to still other embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a measurement system according to still other embodiments of the present disclosure.
  • the optical assembly 102 may include a first lens 132.
  • the first lens 132 may be configured to collect the returning beam or the beam to be processed. The description will be given below in combination with different embodiments.
  • the optical assembly 102 further includes a first lens 132 configured to collect the returning light beam.
  • the first light beam is formed by at least part of the return light beam collected by the first lens 132.
  • the second beam splitter 107 is configured to split the return beam collected by the first lens 132 to form a second beam and a second beam.
  • the optical assembly 102 is configured to obtain the light beam to be processed according to the third light beam.
  • the second detection device 106 obtains second detection information according to the second light beam. For example, the third beam passing through the first beam splitter 112 interferes with the reflected beam reflected by the first beam splitter 112 to obtain the beam to be processed.
  • the optical assembly 102 in the case where the first lens 132 is configured to collect the returning light beam, the optical assembly 102 is configured to move relative to the second beam splitter 107.
  • the second beam splitter 107 is relatively stationary.
  • the optical assembly 102 further includes a first lens 132 configured to collect the light beam to be processed.
  • the first light beam is formed by at least part of the light beam to be processed collected by the first lens 132.
  • the second beam splitter 107 is configured to split the beam to be processed collected by the first lens 132 to form The first beam and the second beam.
  • the first detection device 102 obtains first detection information according to the first light beam
  • the second detection device 106 obtains second detection information according to the second light beam.
  • the optical component 102 is configured to move relative to the second beam splitter 107. For example, when the mobile device 104 drives the optical component 102 to move, the second beam splitter 107 is relatively stationary.
  • the light beam to be processed from the first lens 132 may enter the second beam splitter 107 after being converged by the transmission of the beam splitter 202 and the converging lens 203.
  • the light beam to be processed from the first lens 132 may be incident on the second beam splitter 107 after being reflected by the beam splitter 202 and converged by the converging lens 203.
  • the optical assembly may further include a second lens 110 configured to collect the second light beam.
  • the second beam splitter 107 is configured to split the returning beam to obtain the second beam.
  • the second light beam may be collected by the second lens 110 after being reflected by the mirror 304.
  • the second lens 110 makes the central axis of the second light beam parallel to the moving direction of the optical assembly 102, and the second beam splitter 107 is fixedly connected to the optical assembly 102. In this case, when the optical assembly 102 moves, the second lens 110 and the second beam splitter 107 can move at the same time.
  • the optical assembly includes a lens (for example, the lens 132 of FIG. 6 or the lens 110 of FIG. 7), and the lens is configured to collect the returned light and propagate the returned light to the second beam splitter 107 , Or the lens is configured to collect the second light beam.
  • the second beam splitter 107 is configured to split the returning beam to obtain a second beam.
  • the measurement system may further include a second aperture 109 configured to block the portion of the second light beam with an included angle greater than the second predetermined included angle from the central axis of the second light beam from entering the second detection device 106.
  • the second detection device 106 only the part of the second light beam whose included angle with the central axis of the second light beam is less than or equal to the second predetermined included angle can enter the second detection device 106.
  • the second preset included angle may be determined according to actual conditions.
  • the second diaphragm 109 and the second detection device 106 are both conjugate to the focal plane of the lens 132 or the lens 110.
  • the lens when the lens is configured to collect the return light and propagate the return light to the second beam splitter, that is, in the embodiment shown in FIG. 6, the lens is the first lens 132; when the lens is configured to collect the second light beam, that is, In the embodiment shown in FIG. 7, the lens is a second lens 110.
  • the second light beam is condensed by the condenser lens 301 and then enters the second aperture 109.
  • the second light beam passing through the second aperture 109 enters the condenser lens 302, and then is condensed by the condenser lens 303 and enters the second aperture.
  • Two detection device 106 Two detection device 106.
  • the second light beam collected by the second lens 110 is reflected by the reflector 305 and then enters the converging lens 306.
  • the second light beam is condensed by the converging lens 306 and enters the second aperture 109, passing through the second aperture.
  • the second light beam 109 is incident on the condensing lens 307, and then is condensed by the condensing lens 307 and then incident to the second detection device 106.
  • the second detection device 106 is an imaging device or a light intensity detection component.
  • the imaging device includes a camera or a video camera, and the light intensity detection component includes a single photodiode or photomultiplier light.
  • the second detection information includes the light intensity of the second light beam.
  • the second detection information includes: a detection image of the detected area.
  • the second detection information includes one or a combination of the light intensity of the second light beam, the contrast of the detection image, and the dispersion of the detection image.
  • the dispersion degree at the characteristic time is less than the dispersion degree at any first time except the characteristic time.
  • the detected area detected by the first detection device 103 and the second detection device 106 is the same, which is determined based on the first detection information obtained by the first detection device 103
  • the actual distance can indicate the height of the measured area, which can improve the detection accuracy.
  • Fig. 8 is a schematic structural diagram of a measurement system according to some other embodiments of the present disclosure.
  • the light source 101 includes a first sub-light source 111 and a second sub-light source 121.
  • the first sub-light source 111 is configured to generate a first original light beam.
  • the second sub-light source 121 is configured to generate a second original light beam.
  • the original light beam generated by the light source 101 includes the first original light beam and the second original light beam.
  • the return beam returned from the measured area of the measured object A includes a first return beam and a second return beam.
  • the first returning beam is the first original beam returning from the measured area of the measured object A.
  • the second returning beam is the second original beam returning from the measured area of the measured object A.
  • the optical component 102 includes a first optical component 1021 and a second optical component 1022 that are fixedly connected.
  • the first optical assembly 1021 is configured to form a beam to be processed according to the first return beam. In this case, the first beam is the beam to be processed.
  • the second optical assembly 1022 is configured to collect the second return beam. In this case, the second beam is the second return beam.
  • the first detection device 103 is configured to obtain first detection information according to the first light beam.
  • the second detection device 106 is configured to obtain second detection information according to the second light beam.
  • the first optical component 1021 is further configured to collect the first original light beam and make the first original light beam reach the measured area of the measured object A.
  • the first optical component 1021 includes a dispersive prism configured to converge light of different wavelengths in the first original beam to different positions on the optical axis of the first optical component 1021.
  • the optical axis of the first optical component 1021 is the central axis of the first return beam.
  • the second optical assembly 1022 is also configured to collect the second original light beam and make the second original light beam reach the measured area.
  • the second optical component 1022 includes a dispersive prism configured to converge light of different wavelengths in the second original light beam to different positions of the optical axis of the second optical component 1022.
  • the second optical assembly 1022 may include an interference objective lens configured to obtain an interference beam according to the second return beam, and use the interference beam as the second beam.
  • the first detection device 103 is a spectrometer.
  • the processing system 105 is configured to determine the actual distance between the optical component 102 and the fixed plane of the measured object A at each first time according to the first detection information at each first time in the plurality of first time, Including: for a certain first moment, the first detection device 103 obtains the light intensity of each wavelength in the first light beam at the first moment; according to the wavelength corresponding to the light intensity with the largest light intensity, obtains the actual light intensity at the first moment distance.
  • FIG. 9 is a schematic flowchart of a measurement method according to some embodiments of the present disclosure.
  • the measurement method can be implemented based on the measurement system of any one of the above embodiments.
  • the light source generates the original light beam.
  • the original beam returning from the measured area of the measured object is the returning beam.
  • the original light beam may include one or a combination of white light, ultraviolet light, and infrared light.
  • step 904 the optical component obtains the beam to be processed according to the returned beam.
  • at least part of the light beam to be processed is the first light beam.
  • the optical component may include an interference objective lens or a confocal objective lens.
  • step 906 first detection information is obtained according to the first light beam.
  • the first detection device obtains the first detection information according to the first light beam.
  • the first detection information includes the light intensity of light of a predetermined wavelength in the light beam to be processed.
  • step 908 the optical component and the measured object are relatively moved along the optical axis direction of the optical component.
  • step 910 the actual distance between the optical component and the fixed plane at each first time is determined according to the first detection information at each first time in the plurality of first time.
  • step 910 For the implementation of step 910, reference may be made to the above description, which will not be repeated here.
  • the actual distance between the optical component and the fixed plane of the measured object at each first time can be obtained by using multiple first detection information at the first time.
  • the subsequent operations can be performed more accurately based on the actual distance between the optical component and the fixed plane of the measured object at each first moment, for example, the height information of the measured area of the measured object can be determined more accurately.
  • the measurement method shown in FIG. 9 further includes step 912 to step 918 shown in FIG. 10.
  • FIG. 10 is a schematic flowchart of measurement methods according to other embodiments of the present disclosure.
  • step 912 second detection information is obtained according to the second light beam.
  • the second light beam is part of the return beam or part of the beam to be processed, and the second detection information represents the relative position between the optical component and the measured area.
  • obtaining the second detection information according to the second light beam includes: obtaining the detection image according to the second light beam; and obtaining the second detection information according to the detection image, and the second detection information includes at least one of the intensity of the second light beam and the contrast of the detection image.
  • the second detection information includes the light intensity of the second light beam; the light intensity of the second light beam at the characteristic moment is stronger than the light intensity of the second light beam at any one of the plurality of first moments except the characteristic moment. The intensity of the beam.
  • step 914 the first time when the second detection information is the preset detection information is acquired as the characteristic time.
  • step 916 the actual distance between the optical component and the fixed plane at the characteristic moment is obtained.
  • step 918 the height information of the measured area is determined according to the actual distance between the optical component and the fixed plane at the characteristic moment.
  • the measurement method further includes: obtaining the topography of the object to be measured according to the height information of the multiple measured regions relative to the same reference plane.
  • obtaining the shape of the object to be measured according to the height information of the multiple measured areas relative to the same reference plane includes: repeating the above-mentioned light source for each measured area to generate the original light beam; Steps to determine the height information of the measured area by the actual distance between the fixed surfaces; obtain the height information of each measured area relative to the same reference surface; obtain the height information of each measured area relative to the same reference surface The morphology of the object.
  • the step of obtaining the height information of each measured area relative to the same reference plane includes: repeating the steps from step 902 to step 918 to obtain the height of each measured area relative to the initial reference plane;
  • the initial datum plane of is unified to the same datum plane.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes. .

Abstract

一种测量系统和方法,涉及测量技术领域,测量系统包括:光源(101),被配置为产生原始光束,其中,从被测物体(A)的被测区域返回的原始光束为返回光束;光学组件(102),被配置为根据返回光束得到待处理光束,其中,至少部分待处理光束为第一光束;第一探测装置(103),被配置为根据第一光束得到第一探测信息;移动设备(104),被配置为使光学组件(102)与被测物体(A)沿光学组件(102)的光轴方向相对移动;和处理系统(105),被配置为根据多个第一时刻中每个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件(102)与被测物体(A)的固定平面之间的实际距离。

Description

测量系统和方法 技术领域
本公开涉及测量技术领域,尤其涉及一种测量系统和方法。
背景技术
在集成电路制造领域,为提高产品良率,需要对晶圆的三维形貌进行测量,以检查晶圆制造的工艺过程是否符合标准。基于白光干涉技术的三维形貌测量方式以其无接触、快速、高精度等特点在集成电路检测领域广泛使用。
白光干涉技术以相干长度很短的白光作为光源,通过干涉信号强度的峰值可以定位被测物体的表面形貌。
发明内容
根据本公开实施例的一方面,提供一种测量系统,包括:光源,被配置为产生原始光束,其中,从被测物体的被测区域返回的所述原始光束形成返回光束;光学组件,被配置为根据所述返回光束得到待处理光束,其中,至少部分所述待处理光束为第一光束;第一探测装置,被配置为根据所述第一光束得到第一探测信息;移动设备,被配置为使所述光学组件与所述被测物体沿所述光学组件的光轴方向相对移动;和处理系统,被配置为根据多个第一时刻中每个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述被测物体的固定平面之间的实际距离。
在一些实施例中,所述光学组件包括:第一分光器,被配置为将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束形成所述返回光束;和参考镜,被配置为使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;所述第一探测信息包括所述待处理光束中预定波长的光的强度。
在一些实施例中,所述处理系统被配置为确定在每个第一时刻下所述光学组件与被测物体的固定平面之间的实际距离包括:控制所述移动设备以使所述光学组件与所述被测物体沿所述光轴方向相对移动,以在多个第二时刻下使所述光学组件与所述固定平面之间具有期望的多个预定距离;获取所述多个第二时刻中的每个第二时刻下的所述第一探测信息;和根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定 在每个第一时刻下所述光学组件与所述固定平面之间的所述实际距离。
在一些实施例中,所述处理系统被配置为根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:对所述多个预定距离中的每个预定距离进行线性处理,以得到移动参量;以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数;和根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
在一些实施例中,所述光学组件包括:第一分光器,被配置为将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束形成所述返回光束;和参考镜,被配置为使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;所述第一探测信息包括所述待处理光束中预定波长的光的强度;所述待拟合函数为:I=A+cosr(x-x 0)+B,其中,所述线性处理包括乘以2Π/λ,r=1;或者,所述线性处理包括乘以1,r=2Π/λ,λ为所述预定波长光的波长;所述处理系统被配置为以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数包括:以每个第二时刻下的所述移动参量作为所述待拟合函数中的x、以每个第二时刻下所述预定波长的光的强度作为所述待拟合函数中的I,对所述待拟合函数进行拟合,以得到A、所述待求参量x 0和B,从而得到所述拟合函数;根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:以每个第一时刻下所述预定波长的光的强度作为所述拟合函数中的I,计算所述拟合函数中的x作为每个第一时刻下的所述移动参量;和根据每个第一时刻下的所述移动参量,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
在一些实施例中,所述参考镜被配置为通过反射所述参考光束,使所述参考光束沿预设轨迹传播以得到预干涉光束;所述参考镜和所述第一分光器均为半透半反镜,并且,所述参考镜和所述第一分光器平行设置;或者,所述参考镜为反射镜。
在一些实施例中,所述第一探测装置包括:光栅和滤波片中的一个;和光强探测器。
在一些实施例中,所述测量系统还包括:第一光阑,被配置为阻挡所述待处理光束中与所述待测处理光束的中心轴之间的夹角大于第一预设夹角的部分进入所述第一探测 装置。
在一些实施例中,所述测量系统还包括:第二探测装置,被配置为根据第二光束得到第二探测信息,所述第二光束为部分所述返回光束或部分所述待处理光束,所述第二探测信息表征所述光学组件与所述被测区域之间在所述光学组件的光轴方向上的相对距离;所述处理系统还被配置为获取所述第二探测信息为预设探测信息时的第一时刻作为特征时刻;获取所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离;根据所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息。
在一些实施例中,所述第二探测装置被配置为根据第二光束得到第二探测信息包括:根据所述第二光束得到探测图像;和根据所述探测图像得到所述第二探测信息,所述第二探测信息包括第二光束的光强和所述探测图像的对比度中的至少一项。
在一些实施例中,所述测量系统还包括:第二分光器,被配置为对所述返回光束或所述待处理光束进行分光,以得到所述第二光束。
在一些实施例中,所述光学组件还包括:第一镜头,被配置为收集所述返回光束,所述第一光束由至少部分所述第一镜头收集的所述返回光束形成;或者,所述第一镜头被配置为收集所述待处理光束,所述第一光束由至少部分所述第一镜头收集的所述待处理光束形成。
在一些实施例中,当所述第一镜头被配置为收集所述返回光束时,所述第二分光器被配置为将所述第一镜头收集的所述返回光束进行分光,以形成所述第二光束和第三光束,所述光学组件被配置为根据所述第三光束得到所述待处理光束;当所述第一镜头被配置为收集所述待处理光束时,所述第二分光器被配置为对所述第一镜头收集的所述待处理光束进行分光,以形成所述第一光束和所述第二光束。
在一些实施例中,所述光学组件还包括:第二镜头,被配置为收集所述第二光束。
在一些实施例中,所述第二分光器被配置为对所述返回光束进行分光,以得到所述第二光束,所述第二镜头使所述第二光束的中心轴平行于所述光学组件的移动方向;所述第二分光器与所述光学组件固定连接。
在一些实施例中,所述光学组件被配置为相对于所述第二分光器移动。
在一些实施例中,所述第二分光器被配置为将所述返回光束进行分光,以得到所述第二光束;所述光学组件包括镜头,所述镜头被配置为收集所述返回光束并使所述返回光束传播至所述第二分光器,或者所述镜头被配置为收集所述第二光束;所述测量系统 还包括:第二光阑,被配置为阻挡所述第二光束中与所述第二光束的中心轴之间的夹角大于第二预设夹角的部分进入所述第二探测装置,所述第二光阑和所述第二探测装置均与所述镜头的焦平面共轭。
在一些实施例中,所述原始光束包括第一原始光束和第二原始光束;所述光源包括:第一子光源,被配置为产生所述第一原始光束,和第二子光源,被配置为产生所述第二原始光束;所述返回光束包括第一返回光束和第二返回光束,所述第一返回光束为从所述被测区域返回的所述第一原始光束,所述第二返回光束为从所述被测区域返回的所述第二原始光束;所述光学组件包括:第一光学组件,被配置为根据所述第一返回光束形成所述待处理光束,所述第一光束为所述待处理光束,和第二光学组件,被配置为收集所述第二返回光束,所述第二光束为所述第二返回光束,所述第一光学组件和第二光学组件固定连接。
在一些实施例中,所述第一光学组件还被配置为收集所述第一原始光束,并使所述第一原始光束到达所述被测区域;所述第一光学组件包括:色散棱镜,被配置为使所述第一原始光束中不同波长的光汇聚至所述第一光学组件的光轴的不同位置。
在一些实施例中,所述测量系统还包括:数据采集系统,被配置为在每个第一时刻发出同步触发信号;所述第一探测装置被配置为响应于所述同步触发信号,根据所述第一光束得到所述第一探测信息;所述第二探测装置被配置为响应于所述同步触发信号,根据所述第二光束得到所述第二探测信息。
在一些实施例中,所述第二探测信息包括所述第二光束的光强;在所述特征时刻下的所述第二光束的光强大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下所述第二光束的光强。
在一些实施例中,所述被测区域包括至少一个子区域,所述探测图像包括与所述至少一个子区域对应的至少一个像素,每个像素被配置为获取一个子区域的第二光束;所述第二探测信息包括每个子区域形成的第二光束的光强,其中,在任一子区域的所述特征时刻下,该子区域的像素的灰阶值大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下该像素的灰阶值;所述处理系统被配置为根据所述特征时刻下所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息包括:根据每个子区域的特征时刻下所述光学组件与所述固定平面之间的所述实际距离,确定该子区域的高度信息,从而得到所述被测区域的高度信息。
根据本公开实施例的另一方面,提供一种测量方法,包括:光源产生原始光束,其 中,从被测物体的被测区域返回的所述原始光束为返回光束;光学组件根据所述返回光束得到待处理光束,至少部分所述待处理光束为第一光束;根据所述第一光束得到第一探测信息;使所述光学组件与所述被测物体沿所述光学组件的光轴方向相对移动;和根据多个第一时刻中每个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
在一些实施例中,确定在每个第一时刻下所述光学组件与被测物体之间的实际距离包括:使所述光学组件与所述被测物体沿所述光轴方向相对移动,以在多个第二时刻下使所述光学组件与所述固定平面之间具有期望的多个预定距离;获取所述多个第二时刻中的每个第二时刻下的所述第一探测信息;和根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的所述实际距离。
在一些实施例中,根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:对所述多个预定距离中的每个预定距离进行线性处理,以得到移动参量;以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数;和根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
在一些实施例中,所述光学组件包括第一分光器和反射镜,所述测量方法还包括:所述第一分光器将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束为所述返回光束;和所述参考镜使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;所述第一探测信息包括所述待处理光束中预定波长的光的强度;所述待拟合函数为:I=A+cosr(x-x 0)+B,其中,所述线性处理包括乘以2Π/λ,r=1;或者,所述线性处理包括乘以1,r=2Π/λ,λ为所述预定波长光的波长;以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数包括:以每个第二时刻下的所述移动参量作为所述待拟合函数中的x、以每个第二时刻下所述预定波长的光的强度作为所述待拟合函数中的I,对所述待拟合函数进行拟合,以得到A、所述待求参量x 0和B,从而得到所述拟合函数;根据所述拟合函数和所述多个第一时刻下的所述第一探 测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:以每个第一时刻下所述预定波长的光的强度作为所述拟合函数中的I,计算所述拟合函数中的x作为每个第一时刻下的所述移动参量;和根据每个第一时刻下的所述移动参量,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
在一些实施例中,所述测量方法还包括:根据第二光束得到第二探测信息,所述第二光束为部分所述返回光束或部分所述待处理光束,所述第二探测信息表征所述光学组件与所述被测区域之间的相对位置;获取所述第二探测信息为预设探测信息时的第一时刻作为特征时刻;获取所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离;和根据所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息。
在一些实施例中,根据第二光束得到第二探测信息包括:根据所述第二光束得到探测图像;和根据所述探测图像得到所述第二探测信息,所述第二探测信息包括第二光束的光强和所述探测图像的对比度中的至少一项。
在一些实施例中,所述第二探测信息包括所述第二光束的光强;在所述特征时刻下的所述第二光束的光强大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下所述第二光束的光强。
在一些实施例中,所述测量方法还包括:根据多个所述被测区域相对于同一基准面的所述高度信息获取所述被测物体的形貌。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征、方面及其优点将会变得清楚。
附图说明
附图构成本说明书的一部分,其描述了本公开的示例性实施例,并且连同说明书一起用于解释本公开的原理,在附图中:
图1是根据本公开一些实施例的测量系统的结构示意图;
图2是根据本公开另一些实施例的测量系统的结构示意图;
图3是根据本公开又一些实施例的测量系统的结构示意图;
图4是根据本公开一些实现方式的确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离的流程示意图;
图5示出了图4中的步骤406的一个具体实现方式;
图6是根据本公开又一些实施例的测量系统的结构示意图;
图7是根据本公开再一些实施例的测量系统的结构示意图;
图8是根据本公开还一些实施例的测量系统的结构示意图;
图9是根据本公开一些实施例的测量方法的流程示意图;
图10是根据本公开另一些实施例的测量方法的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在 适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人注意到,带动光学组件和被测物体相对移动时,由于移动误差、测量系统的振动、环境振动等因素,期望使光学组件与被测物体的固定平面之间具有的预定距离往往与光学组件与被测物体的固定平面之间的实际距离并不相同。因此,根据预定距离来测量被测物体的高度信息,将导致测量结果不准确。
有鉴于此,本公开实施例提供了如下技术方案。
图1是根据本公开一些实施例的测量系统的结构示意图。
如图1所示,测量系统可以包括光源101、光学组件102、第一探测装置103、移动设备104和处理系统105。
光源101被配置为产生原始光束。在一些实施例中,原始光束可以为宽光谱光束,例如白光、红外光、紫外光中的一者或多者组合。这里,从被测物体A(例如晶圆等)的被测区域返回的原始光束为返回光束。
在一些实施例中,光源101产生的原始光束可以直接入射到被测物体A。在另一些实施例中,参见图1,光源101产生的原始光束可以经由光学组件102入射到被测物体A。例如,光源101产生的原始光束可以经整形镜组201整形后入射到分光器202,经分光器202反射后入射到光学组件102,进而经由光学组件102入射到被测物体A。例如,整形镜组201可以对光源101产生的原始光束进行准直、滤波等整形操作。
光学组件102被配置为根据返回光束得到待处理光束。这里,至少部分待处理光束为第一光束。
在一些实施例中,光学组件102可以为干涉物镜。这种情况下,待处理光束可以是干涉光束。在另一些实施例中,光学组件102可以为共聚焦物镜。这种情况下,待处理光束可以是从被测物体A返回的返回光束。光学组件102被配置为将原始光束分为参考光束和入射到被测区域的物光束,其中,从被测区域返回光学组件的物光束形成返回光束,光学组件102还被配置为使参考光束与返回光束干涉。
例如,光学组件102包括第一分光器112和参考镜122,第一分光器112被配置为将原始光束分为参考光束和入射到被测物体A的被测区域的物光束;参考镜122被配置为使参考光束沿预设轨迹传播,以得到预干涉光束,其中,预干涉光束和返回光束干涉以得到待处理光束。
在一个实施例中,第一分光器112被配置为将原始光束分为参考光束和入射到被测物体A的被测区域的物光束。这里,从被测物体A的被测区域返回光学组件102的物光 束为返回光束。参考镜122被配置为通过反射参考光束使参考光束沿预设轨迹传播以得到预干涉光束。这里,预干涉光束和返回光束干涉以得到待处理光束。例如,参考镜122和第一分光器112均为半透半反镜,并且,参考镜122和第一分光器112平行设置。然而,本公开实施例并不限于此。例如,在其他的实施例中,参考镜122可以是反射镜(例如图6所示实施例)。
在其他实施例中,参考镜122被配置为折射或衍射参考光束以得到预干涉光束。例如,参考镜122为折射元件或衍射元件。
第一探测装置103被配置为根据第一光束得到第一探测信息。在一些实施例中,待处理光束是由上述反射光束和返回光束干涉得到的干涉光束。这种情况下,第一探测信息可以包括待处理光束中预定波长的光的强度。例如,待处理光束包括多个波长的光。预定波长的光可以是多个波长的光中的任意一个波长的光。
移动设备104被配置为使光学组件102与被测物体A沿光学组件102的光轴方向相对移动。
例如,移动设备104可以在处理系统105的控制下带动光学组件102沿光学组件102的光轴方向相对于被测物体A移动。又例如,移动设备104可以在处理系统105的控制下带动被测物体A沿光学组件102的光轴方向相对于光学组件102移动。这里,光学组件102的光轴方向可以理解为进入光学组件102的返回光束的中心轴方向,例如图1中的双向箭头所指方向。在一些实施例中,移动设备104可以是相移器。
沿光学组件102的光轴方向相对于被测物体A移动指的是光学组件102和被测物体A的移动方向具有沿光学组件102的光轴方向的分量,只要光学组件102和被测物体A的移动方向与光学组件102的光轴方向不垂直即可。
处理系统105被配置为根据多个第一时刻中每个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离。这里,被测物体A的固定平面可以是被测物体A的表面的任意区域所确定的平面。换言之,可以以被测物体A的任意平面作为被测物体A的固定平面。
应理解,在不同的第一时刻下,光学组件102与被测物体A的固定平面之间的实际距离不同。例如,处理系统105后续可以根据在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离,确定被测区域的高度信息。
处理系统105可以是计算机等其他能够进行处理的设备。在一些实施例中,处理系统105可以包括存储器和耦接至存储器的处理器,处理器可以基于存储在存储器上的指 令执行各种操作,例如,确定在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离以及后文提到的操作。存储器例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如可以存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
上述实施例中,光学组件102根据返回光束得到待处理光束,第一探测装置103根据待处理光束的至少一部分(即第一光束)得到第一探测信息。处理系统105根据多个第一时刻中每个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离。这样的方式下,利用多个第一时刻下的第一探测信息可以得到在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离。基于在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离可以更准确地进行后续操作,例如,可以更准确地确定被测物体A的被测区域的高度信息等。
在一些实施例中,参见图1,测量系统还可以包括第二探测装置106。第二探测装置106被配置为根据第二光束得到第二探测信息。这里,第二光束为部分待处理光束。例如,测量系统还包括第二分光器107,被配置为对待处理光束进行分光,以得到第二光束。例如,透过第二分光器107的待处理光束为第一光束,而被第二分光器107反射的待处理光束为第二光束,反之亦可。在其他的实施例中,第二光束可以为部分返回光束。这种情况下,第二分光器107被配置为对返回光束进行分光,以得到第二光束。后文将结合其他实施例(例如图6所示实施例)进行说明。
第二探测信息能够表征光学组件102与被测物体A的被测区域之间沿光学组件光轴方向的相对距离,即,第二探测信息随相对距离的变化而变化;根据第二探测信息可以得到光学组件102与被测物体A的被测物体A的被测区域之间的相对距离。
在一些实施例中,第二探测装置106可以根据第二光束得到探测图像(例如干涉图像或被测物体A的被测区域的图像),进而根据探测图像得到第二探测信息。第二探测装置106例如可以是照相机、摄像机等。在其他实施例中,所述第二探测装置106可以为单个光电二极管或光电倍增管。
这里,第二探测信息可以包括第二光束的光强和探测图像的对比度中的至少一项。例如,第二探测信息可以包括第二光束的光强。又例如,第二探测信息可以包括根据第二光束得到的探测图像的对比度。再例如,第二探测信息可以包括第二光束的光强和探测图像的对比度。
处理系统105还被配置为获取第二探测信息为预设探测信息时的第一时刻作为特征 时刻;获取特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离;根据特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离,确定被测区域的高度信息。
在一些实施例中,第二探测信息可以包括第二光束的光强。在特征时刻下的第二光束的光强大于在多个第一时刻中除特征时刻外的任意一个第一时刻下第二光束的光强。换言之,在特征时刻下的第二光束的光强最大。例如,在特征时刻下,参考光束的光程与物光束的光程相等。又例如,在特征时刻下,光学组件102与被测物体A的被测区域之间的距离等于光学组件102的焦距。
对于不同的被测区域来说,在特征时刻下,光学组件102与不同的被测区域之间的距离相同。故,特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离可以反应被测区域的高度。例如,对于被测区域A1来说,特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离为h1;对于被测区域A2来说,特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离为h2。h1与h2之间的差值即为被测区域A1和被测区域A2的高度差。
在一些实施例中,被测区域包括至少一个子区域,探测图像包括与至少一个子区域对应的至少一个像素。例如,被测区域包括多个子区域,探测图像包括与多个子区域一一对应的多个像素。第二探测信息可以包括每个像素获取的第二光束的光强。这种情况下,预设探测信息为像素的最大灰度值。特征时刻为灰度值最大的第一时刻。每个像素均具有一个特征时刻,即每个子区域对应一个特征时刻。在每个子区域的特征时刻下,该子区域对应的像素的灰阶值大于在多个第一时刻中除特征时刻外的任意一个第一时刻下该像素的灰阶值。换言之,对于某个像素来说,在特征时刻下的该像素的灰阶值最大。
在另一些实施例中,预设探测信息为多个像素的灰阶值的均值或总和值最大时的值;特征时刻为多个像素的灰阶值的均值或总和值最大时的第一时刻。
处理系统105被配置为根据特征时刻下光学组件102与固定平面之间的实际距离,确定每个像素对应的子区域的高度信息。在得到每个像素对应的子区域的高度信息后即得到了被测区域的高度信息。
子区域对应的特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离可以反应该子区域的高度。例如,对于被测区域A的子区域A11来说,特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离为h11;对于被测区域A的子区域A12来说,特征时刻下的光学组件102与被测物体A的固定平面之间的实际距离为h12。 h11与h12之间的差值即为子区域A11和子区域A12之间的高度差。
在一些实施例中,可以利用测量系统对被测物体的多个被测区域进行测量,从而得到每个被测区域相对于同一基准面的高度信息。在得到每个被测区域相对于同一基准面的高度信息后,可以得到被测物体的三维形貌。例如,可以将多个被测区域的高度信息拼接,以被测物体的三维形貌。
在一些实施例中,参见图1,测量系统还包括数据采集系统108,被配置为在多个第一时刻中的每个第一时刻发出同步触发信号。第一探测装置103被配置为响应于同步触发信号,根据第一光束得到第一探测信息。第二探测装置106被配置为响应于同步触发信号,根据第二光束得到第二探测信息。这样,第一探测装置103可以得到多个第一时刻下的第一探测信息,第二探测装置106可以得到多个第一时刻下的第二探测信息。数据采集系统108可以从第一探测装置103采集多个第一时刻下的第一探测信息,并从第二探测装置106采集多个第一时刻下的第二探测信息,并传输至处理系统105。
下面结合图2和图3介绍第一探测装置103的不同实现方式。需要说明的是,本说明书中各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似的部分相互参见即可。
图2是根据本公开另一些实施例的测量系统的结构示意图。
如图2所示,第一探测装置103为光谱仪。例如,第一探测装置103可以包括光栅113和光强探测器123(例如光电探测器)。光栅113被配置为使得第一光束中不同波长的光入射到光强探测器123的不同区域,即光栅113具有分光作用。光强探测器123被配置为探测第一光束中多个波长的光的光强。处理系统105可以根据多个波长的光中预定波长的光的强度(即第一探测信息)进行后续分析。
图3是根据本公开另一些实施例的测量系统的结构示意图。
如图3所示,第一探测装置103可以包括滤波片113’和光强探测器123。滤波片113’被配置为使第一光束中的多个波长的光中预定波长的光到达光强探测器123,而多个波长中其他波长的光不会到达光强探测器123。换言之,滤波片113’仅允许预定波长的光通过。这种情况下,光强探测器123可以直接探测到预定波长的光的强度。
在一些实施例中,参见图2和图3,测量系统还可以包括第一光阑109,例如孔径光阑。第一光阑109被配置为阻挡待处理光束中与待测处理光束的中心轴之间的夹角大于第一预设夹角的部分进入第一探测装置103。换言之,待处理光束中与待测处理光束的中心轴之间的夹角小于或等于第一预设夹角的部分才能进入第一探测装置103。应理解,第 一预设夹角可以根据实际情况确定。这种情况下,第一探测装置103无需探测整个待处理光束,减小了待处理光束边缘的光的不利影响,提高了检测精度。
下面结合图4和图5介绍处理系统确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离的一些具体实现方式。
图4是根据本公开一些实现方式的确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离的流程示意图。
在步骤402,控制移动设备以使光学组件与被测物体沿光轴方向相对移动,以在多个第二时刻下使光学组件与固定平面之间具有期望的多个预定距离。
这里,多个第二时刻与多个第一时刻可以相同、也可以不同,或者,可以部分相同。
控制移动设备以使光学组件与被测物体沿光轴方向相对移动包括:移动设备使光学组件移动,或者移动设备使被测物体移动中的一者或两者组合。
在步骤404,获取多个第二时刻中的每个第二时刻下的第一探测信息。
在步骤406,根据多个预定距离和每个第二时刻下的多个第一探测信息,确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离。
当所述移动设备仅使光学组件移动时,确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离包括确定每个第一时刻下光学组件与任一固定平面之间的距离;当移动设备仅使被测物体移动时,确定在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离包括确定每个第一时刻下光学组件与任一固定平面之间的距离。
例如,步骤406可以通过图5所示步骤416-步骤436来实现。
在步骤416,对多个预定距离中的每个预定距离进行线性处理,以得到移动参量。例如,对每个预定距离乘以某个常量,以得到移动参量。
在步骤426,以每个第二时刻下的移动参量和待求参量之间的差为自变量,以每个第二时刻下的第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数。
例如,待拟合函数例如可以包括三角函数展开式、多项式、傅里叶展开式等。
在步骤436,根据拟合函数和多个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件与固定平面之间的实际距离。
下面以光学组件102包括第一分光器112和参考镜122、待拟合函数为三角函数为例,介绍步骤416-步骤436的一些具体实现方式。第一分光器112和参考镜122的功能可以参照上文的描述,在此不再赘述。
该实现方式中,第一探测信息包括待处理光束中预定波长的光的强度。待拟合函数 为:I=A+cosr(x-x 0)+B。这里,A为预定波长的光的光强的幅度,x 0为待求参量,B为预定波长的光的光强的平均强度,r为1或2Π/λ,λ为预定波长光的波长。在步骤416中的线性处理为乘以2Π/λ的情况下,r=1,移动参量为相移量;在步骤416中的线性处理为乘以1的情况下,r=2Π/λ,移动参量等于预定距离。
例如,以每个第二时刻下的移动参量作为待拟合函数中的x、以每个第二时刻下预定波长的光的强度作为待拟合函数中的I,对待拟合函数进行拟合,以得到A、待求参量x 0和B,从而得到拟合函数。
例如,多个第二时刻下预定波长的光的强度分别为I 1、I 2、I 3…,多个第二时刻下的移动参量为x 01、x 02、x 03…。以x 01、x 02、x 03…分别作为x、以I 1、I 2、I 3…分别作为I,对上式进行拟合,例如最小二乘法拟合等,从而可以得到A、x 0和B,即得到了拟合函数。
在得到A、x 0和B后,即得到了预定波长的光的光强I与移动参量x的关系式。之后,以每个第一时刻下预定波长的光的强度作为拟合函数中的I,计算拟合函数中的x作为每个第一时刻下的移动参量。
例如,将多个第一时刻下预定波长的光的强度I 1’、I 2’、I 3’…代入拟合函数,即可得到多个移动参量x 11、x1 2、x 13…。
然后,根据每个第一时刻下的移动参量,确定在每个第一时刻下光学组件与固定平面之间的实际距离。
例如,每个第一时刻下光学组件与固定平面之间的实际距离等于每个第一时刻下的移动参量。又例如,每个第一时刻下光学组件与固定平面之间的实际距离等于每个第一时刻下的移动参量与2Π/λ的比值。
预定波长的光的光强与移动参量之间的关系符合上式,故以上式为待拟合函数能够简化计算过程,提高检测速度。
需要说明的是,处理系统105在对每个被测区域进行测量时,均可以按照上述方式拟合出相应的A、x 0和B,然后进行后续处理。这样的方式得到的第一时刻下光学组件与固定平面之间的实际距离更准确,从而可以得到更准确的被测区域的高度信息。
还需要说明的是,当待拟合函数为三角函数展开式、多项式、傅里叶展开式时,可以对待拟合函数进行三角函数拟合、多项式拟合或傅里叶级数拟合。
图6是根据本公开又一些实施例的测量系统的结构示意图。图7是根据本公开再一些实施例的测量系统的结构示意图。
下面结合图1-图3、以及图6-图7介绍根据本公开一些实施例的测量系统。需要说 明的是,在后面的描述中,不同实施例中相同或类似的部件的功能不再赘述。
在一些实施例中,光学组件102可以包括第一镜头132。第一镜头132可以被配置为收集返回光束或待处理光束。下面结合不同实施例进行说明。
在一些实施例中,参见图6,光学组件102还包括第一镜头132,被配置为收集返回光束。这种情况下,第一光束由至少部分第一镜头132收集的返回光束形成。
在一些实施例中,参见图6,当第一镜头132被配置为收集返回光束时,第二分光器107被配置为将第一镜头132收集的返回光束进行分光,以形成第二光束和第三光束。光学组件102被配置为根据第三光束得到待处理光束。第二探测装置106根据第二光束得到第二探测信息。例如,透过第一分光器112的第三光束与被第一分光器112反射的反射光束干涉以得到待处理光束。
在一些实施例中,参见图6,在第一镜头132被配置为收集返回光束的情况下,光学组件102被配置为相对于第二分光器107移动。例如,移动设备104带动光学组件102移动的情况下,第二分光器107相对静止。
在另一些实施例中,参见图1-图3、以及图7,光学组件102还包括第一镜头132,被配置为收集待处理光束。这种情况下,第一光束由至少部分第一镜头132收集的待处理光束形成。
在一些实施例中,参见图1-图3,当第一镜头132被配置为收集待处理光束时,第二分光器107被配置为对第一镜头132收集的待处理光束进行分光,以形成第一光束和第二光束。第一探测装置102根据第一光束得到第一探测信息,第二探测装置106根据第二光束得到第二探测信息。光学组件102被配置为相对于第二分光器107移动,例如,移动设备104带动光学组件102移动的情况下,第二分光器107相对静止。在一些实施例中,来自第一镜头132的待处理光束可以经分光器202的透射和汇聚透镜203的汇聚后入射到第二分光器107。或者,来自第一镜头132的待处理光束可以经分光器202的反射和汇聚透镜203的汇聚后入射到第二分光器107。
在一些实施例中,参见图7,光学组件还可以包括第二镜头110,被配置为收集第二光束。这种情况下,第二分光器107被配置为对返回光束进行分光,以得到第二光束。例如,第二光束可以由反射镜304反射后被第二镜头110收集。
在一些实施例中,参见图7,第二镜头110使第二光束的中心轴平行于光学组件102的移动方向,第二分光器107与光学组件102固定连接。这种情况下,光学组件102移动的情况下,第二镜头110和第二分光器107可以同时移动。
在一些实施例中,参见图6或图7,光学组件包括镜头(例如图6的镜头132或图7的镜头110),镜头被配置为收集返回光并使返回光传播至第二分光器107,或者镜头被配置为收集第二光束。第二分光器107被配置为将返回光束进行分光,以得到第二光束。测量系统还可以包括第二光阑109,被配置为阻挡第二光束中与第二光束的中心轴之间的夹角大于第二预设夹角的部分进入第二探测装置106。换言之,第二光束中与第二光束的中心轴之间的夹角小于或等于第二预设夹角的部分才能进入第二探测装置106。应理解,第二预设夹角可以根据实际情况确定。这里,第二光阑109和第二探测装置106均与镜头132或镜头110的焦平面共轭。
具体的,当镜头被配置为收集返回光并使返回光传播至第二分光器时,即图6所示实施例,镜头为第一镜头132;当镜头被配置为收集第二光束时,即图7所示实施例,镜头为第二镜头110。
例如,参见图6,第二光束被汇聚透镜301汇聚后入射到第二光阑109,透过第二光阑109的第二光束入射到汇聚透镜302,进而由汇聚透镜303汇聚后入射到第二探测装置106。
例如,参见图7,第二镜头110收集的第二光束经反射镜305反射后入射到汇聚透镜306,第二光束被汇聚透镜306汇聚后入射到第二光阑109,透过第二光阑109的第二光束入射到汇聚透镜307,进而由汇聚透镜307汇聚后入射到第二探测装置106。
第二探测装置106为成像装置或光强探测部件。成像装置包括:相机或摄像机,光强探测部件包括单个光电二极管或光电倍增光。
在图6、图7所示实施例中,第二探测装置106为成像装置或光强探测部件时,第二探测信息包括第二光束的光强。
当第二探测装置106为成像装置时,第二探测信息包括:被测区域的探测图像。第二探测信息包括第二光束的光强、探测图像的对比度、探测图像的弥散度中的一者或多者组合。
第二探测信息为探测图像的弥散度时,特征时刻的弥散度小于除特征时刻之外的任意一个第一时刻的弥散度。
图1-图3、图6和图7所示实施例中,第一探测装置103与第二探测装置106探测的的被测区域相同,根据第一探测装置103获取的第一探测信息确定的实际距离能够表示被测区域的高度,从而能够提高检测精度。
图8是根据本公开还一些实施例的测量系统的结构示意图。
如图8所示,光源101包括第一子光源111和第二子光源121。第一子光源111被配置为产生第一原始光束。第二子光源121被配置为产生第二原始光束。换言之,光源101产生的原始光束包括第一原始光束和第二原始光束。
从被测物体A的被测区域返回的返回光束包括第一返回光束和第二返回光束。第一返回光束为从被测物体A的被测区域返回的第一原始光束。第二返回光束为从被测物体A的被测区域返回的第二原始光束。
光学组件102包括固定连接的第一光学组件1021和第二光学组件1022。第一光学组件1021被配置为根据第一返回光束形成待处理光束。这种情况下,第一光束为待处理光束。第二光学组件1022被配置为收集第二返回光束。这种情况下,第二光束为第二返回光束。
第一探测装置103被配置为根据第一光束得到第一探测信息。第二探测装置106被配置为根据第二光束得到第二探测信息。
在一些实施例中,第一光学组件1021还被配置为收集第一原始光束,并使第一原始光束到达被测物体A的被测区域。第一光学组件1021包括色散棱镜,被配置为使第一原始光束中不同波长的光汇聚至第一光学组件1021的光轴的不同位置。
第一光学组件1021的光轴为第一返回光束的中心轴。
在一些实施例中,第二光学组件1022还被配置为收集第二原始光束,并使第二原始光束到达被测区域。第二光学组件1022包括色散棱镜,被配置为使第二原始光束中不同波长的光汇聚至第二光学组件1022的光轴的不同位置。在另一些实施例中,第二光学组件1022可以包括干涉物镜,被配置为根据第二返回光束得到干涉光束,以干涉光束作为第二光束。
图8所示实施例中,第一探测装置103为光谱仪。
处理系统105被配置为根据多个第一时刻中每个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件102与被测物体A的固定平面之间的实际距离,包括:对于某一第一时刻,通过第一探测装置103获取该第一时刻下第一光束中各波长的光强;根据光强最大的光强对应的波长,获取该第一时刻下的实际距离。
图9是根据本公开一些实施例的测量方法的流程示意图。该测量方法可以基于上述任意一个实施例的测量系统来实现。
在步骤902,光源产生原始光束。这里,从被测物体的被测区域返回的原始光束为返回光束。例如,原始光束可以包括白光、紫外光、红外光中的一者或多者组合。
在步骤904,光学组件根据返回光束得到待处理光束。这里,至少部分待处理光束为第一光束。
例如,光学组件可以包括干涉物镜或共聚焦物镜。
在步骤906,根据第一光束得到第一探测信息。
例如,第一探测装置根据第一光束得到第一探测信息。例如,第一探测信息包括待处理光束中预定波长的光的光强。
在步骤908,使光学组件与被测物体沿光学组件的光轴方向相对移动。
例如,通过控制移动设备带动光学组件和被测物体中的至少一个移动。
在步骤910,根据多个第一时刻中每个第一时刻下的第一探测信息,确定在每个第一时刻下光学组件与固定平面之间的实际距离。
步骤910的实现方式可以参照以上描述,在此不再赘述。
上述实施例中,利用多个第一时刻下的第一探测信息可以得到在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离。基于在每个第一时刻下光学组件与被测物体的固定平面之间的实际距离可以更准确地进行后续操作,例如,可以更准确地确定被测物体的被测区域的高度信息等。
在一些实施例中,图9所示测量方法还包括图10所示步骤912-步骤918。图10是根据本公开另一些实施例的测量方法的流程示意图。
在步骤912,根据第二光束得到第二探测信息,第二光束为部分返回光束或部分待处理光束,第二探测信息表征光学组件与被测区域之间的相对位置。
例如,根据第二光束得到第二探测信息包括:根据第二光束得到探测图像;和根据探测图像得到第二探测信息,第二探测信息包括第二光束的光强和探测图像的对比度中的至少一项。
在一些实施例中,第二探测信息包括第二光束的光强;在特征时刻下的第二光束的光强大于在多个第一时刻中除特征时刻外的任意一个第一时刻下第二光束的光强。
在步骤914,获取第二探测信息为预设探测信息时的第一时刻作为特征时刻。
在步骤916,获取特征时刻下的光学组件与固定平面之间的实际距离。
在步骤918,根据特征时刻下的光学组件与固定平面之间的实际距离,确定被测区域的高度信息。
在一些实施例中,测量方法还包括:根据多个被测区域相对于同一基准面的高度信息获取待测物的形貌。
在一些实施例中,根据多个被测区域相对于同一基准面的高度信息获取待测物的形貌包括:对于每个被测区域重复上述光源产生原始光束;根据特征时刻下的光学组件与固定表面之间的实际距离,确定被测区域的高度信息的步骤;获取每个被测区域相对于同一基准面的高度信息;根据每个被测区域相对于同一基准面的高度信息获取待测物的形貌。
例如,获取每个被测区域相对于同一基准面的高度信息的步骤包括:重复步骤902至步骤918的步骤,以获取每个被测区域相对于初始基准面的高度;将每个被测区的初始基准面统一至同一基准面。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (30)

  1. 一种测量系统,包括:
    光源,被配置为产生原始光束,其中,从被测物体的被测区域返回的所述原始光束形成返回光束;
    光学组件,被配置为根据所述返回光束得到待处理光束,其中,至少部分所述待处理光束为第一光束;
    第一探测装置,被配置为根据所述第一光束得到第一探测信息;
    移动设备,被配置为使所述光学组件与所述被测物体沿所述光学组件的光轴方向相对移动;和
    处理系统,被配置为根据多个第一时刻中每个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述被测物体的固定平面之间的实际距离。
  2. 根据权利要求1所述的测量系统,其中,所述光学组件包括:
    第一分光器,被配置为将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束形成所述返回光束;和
    参考镜,被配置为使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;
    所述第一探测信息包括所述待处理光束中预定波长的光的强度。
  3. 根据权利要求1或2所述的测量系统,其中,所述处理系统被配置为确定在每个第一时刻下所述光学组件与被测物体的固定平面之间的实际距离包括:
    控制所述移动设备以使所述光学组件与所述被测物体沿所述光轴方向相对移动,以在多个第二时刻下使所述光学组件与所述固定平面之间具有期望的多个预定距离;
    获取所述多个第二时刻中的每个第二时刻下的所述第一探测信息;和
    根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的所述实际距离。
  4. 根据权利要求3所述的测量系统,其中,所述处理系统被配置为根据所述多个预 定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:
    对所述多个预定距离中的每个预定距离进行线性处理,以得到移动参量;
    以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数;和
    根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
  5. 根据权利要求4所述的测量系统,其中,所述光学组件包括:
    第一分光器,被配置为将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束形成所述返回光束;和
    参考镜,被配置为使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;
    所述第一探测信息包括所述待处理光束中预定波长的光的强度;
    所述待拟合函数为:I=A+cos r(x-x 0)+B,其中,所述线性处理包括乘以2Π/λ,r=1;或者,所述线性处理包括乘以1,r=2Π/λ,λ为所述预定波长光的波长;
    所述处理系统被配置为以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数包括:
    以每个第二时刻下的所述移动参量作为所述待拟合函数中的x、以每个第二时刻下所述预定波长的光的强度作为所述待拟合函数中的I,对所述待拟合函数进行拟合,以得到A、所述待求参量x 0和B,从而得到所述拟合函数;
    根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:
    以每个第一时刻下所述预定波长的光的强度作为所述拟合函数中的I,计算所述拟合函数中的x作为每个第一时刻下的所述移动参量;和
    根据每个第一时刻下的所述移动参量,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
  6. 根据权利要求2所述的测量系统,其中:
    所述参考镜被配置为通过反射所述参考光束,使所述参考光束沿预设轨迹传播以得到预干涉光束;
    所述参考镜和所述第一分光器均为半透半反镜,并且,所述参考镜和所述第一分光器平行设置;
    或者,所述参考镜为反射镜。
  7. 根据权利要求1所述的测量系统,其中,所述第一探测装置包括:
    光栅和滤波片中的一个;和
    光强探测器。
  8. 根据权利要求1所述的测量系统,还包括:
    第一光阑,被配置为阻挡所述待处理光束中与所述待测处理光束的中心轴之间的夹角大于第一预设夹角的部分进入所述第一探测装置。
  9. 根据权利要求1或2所述的测量系统,还包括:
    第二探测装置,被配置为根据第二光束得到第二探测信息,所述第二光束为部分所述返回光束或部分所述待处理光束,所述第二探测信息表征所述光学组件与所述被测区域之间在所述光学组件的光轴方向上的相对距离;
    所述处理系统还被配置为获取所述第二探测信息为预设探测信息时的第一时刻作为特征时刻;获取所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离;根据所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息。
  10. 根据权利要求9所述的测量系统,其中,所述第二探测装置被配置为根据第二光束得到第二探测信息包括:
    根据所述第二光束得到探测图像;和
    根据所述探测图像得到所述第二探测信息,所述第二探测信息包括第二光束的光强和所述探测图像的对比度中的至少一项。
  11. 根据权利要求9所述的测量系统,还包括:
    第二分光器,被配置为对所述返回光束或所述待处理光束进行分光,以得到所述第二光束。
  12. 根据权利要求11所述的测量系统,其中,所述光学组件还包括:
    第一镜头,被配置为收集所述返回光束,所述第一光束由至少部分所述第一镜头收集的所述返回光束形成;或者,所述第一镜头被配置为收集所述待处理光束,所述第一光束由至少部分所述第一镜头收集的所述待处理光束形成。
  13. 根据权利要求12所述的测量系统,其中:
    当所述第一镜头被配置为收集所述返回光束时,所述第二分光器被配置为将所述第一镜头收集的所述返回光束进行分光,以形成所述第二光束和第三光束,所述光学组件被配置为根据所述第三光束得到所述待处理光束;
    当所述第一镜头被配置为收集所述待处理光束时,所述第二分光器被配置为对所述第一镜头收集的所述待处理光束进行分光,以形成所述第一光束和所述第二光束。
  14. 根据权利要求12所述的测量系统,所述光学组件还包括:
    第二镜头,被配置为收集所述第二光束。
  15. 根据权利要求14所述的测量系统,其中:
    所述第二分光器被配置为对所述返回光束进行分光,以得到所述第二光束,所述第二镜头使所述第二光束的中心轴平行于所述光学组件的移动方向;
    所述第二分光器与所述光学组件固定连接。
  16. 根据权利要求13所述的测量系统,其中:
    所述光学组件被配置为相对于所述第二分光器移动。
  17. 根据权利要求11所述的测量系统,其中:
    所述第二分光器被配置为将所述返回光束进行分光,以得到所述第二光束;
    所述光学组件包括镜头,所述镜头被配置为收集所述返回光束并使所述返回光束传播至所述第二分光器,或者所述镜头被配置为收集所述第二光束;
    所述测量系统还包括:
    第二光阑,被配置为阻挡所述第二光束中与所述第二光束的中心轴之间的夹角大于第二预设夹角的部分进入所述第二探测装置,所述第二光阑和所述第二探测装置均与所述镜头的焦平面共轭。
  18. 根据权利要求9所述的测量系统,其中:
    所述原始光束包括第一原始光束和第二原始光束;
    所述光源包括:
    第一子光源,被配置为产生所述第一原始光束,和
    第二子光源,被配置为产生所述第二原始光束;
    所述返回光束包括第一返回光束和第二返回光束,所述第一返回光束为从所述被测区域返回的所述第一原始光束,所述第二返回光束为从所述被测区域返回的所述第二原始光束;
    所述光学组件包括:
    第一光学组件,被配置为根据所述第一返回光束形成所述待处理光束,所述第一光束为所述待处理光束,和
    第二光学组件,被配置为收集所述第二返回光束,所述第二光束为所述第二返回光束,所述第一光学组件和第二光学组件固定连接。
  19. 根据权利要求18所述的测量系统,其中:
    所述第一光学组件还被配置为收集所述第一原始光束,并使所述第一原始光束到达所述被测区域;
    所述第一光学组件包括:色散棱镜,被配置为使所述第一原始光束中不同波长的光汇聚至所述第一光学组件的光轴的不同位置。
  20. 根据权利要求9所述的测量系统,还包括:
    数据采集系统,被配置为在每个第一时刻发出同步触发信号;
    所述第一探测装置被配置为响应于所述同步触发信号,根据所述第一光束得到所述第一探测信息;
    所述第二探测装置被配置为响应于所述同步触发信号,根据所述第二光束得到所述 第二探测信息。
  21. 根据权利要求10所述的测量系统,其中:
    所述第二探测信息包括所述第二光束的光强;
    在所述特征时刻下的所述第二光束的光强大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下所述第二光束的光强。
  22. 根据权利要求21所述的测量系统,其中:
    所述被测区域包括至少一个子区域,所述探测图像包括与所述至少一个子区域对应的至少一个像素,每个像素被配置为获取一个子区域的第二光束;所述第二探测信息包括每个子区域形成的第二光束的光强,其中,
    在任一子区域的所述特征时刻下,该子区域的像素的灰阶值大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下该像素的灰阶值;
    所述处理系统被配置为根据所述特征时刻下所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息包括:
    根据每个子区域的特征时刻下所述光学组件与所述固定平面之间的所述实际距离,确定该子区域的高度信息,从而得到所述被测区域的高度信息。
  23. 一种测量方法,包括:
    光源产生原始光束,其中,从被测物体的被测区域返回的所述原始光束为返回光束;
    光学组件根据所述返回光束得到待处理光束,至少部分所述待处理光束为第一光束;
    根据所述第一光束得到第一探测信息;
    使所述光学组件与所述被测物体沿所述光学组件的光轴方向相对移动;和
    根据多个第一时刻中每个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
  24. 根据权利要求23所述的测量方法,其中,确定在每个第一时刻下所述光学组件与被测物体之间的实际距离包括:
    使所述光学组件与所述被测物体沿所述光轴方向相对移动,以在多个第二时刻下使所述光学组件与所述固定平面之间具有期望的多个预定距离;
    获取所述多个第二时刻中的每个第二时刻下的所述第一探测信息;和
    根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的所述实际距离。
  25. 根据权利要求24所述的测量方法,其中,根据所述多个预定距离和每个第二时刻下的所述多个第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:
    对所述多个预定距离中的每个预定距离进行线性处理,以得到移动参量;
    以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数;和
    根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
  26. 根据权利要求25所述的测量方法,其中,所述光学组件包括第一分光器和反射镜,所述测量方法还包括:
    所述第一分光器将所述原始光束分为参考光束和入射到所述被测区域的物光束,其中,从所述被测区域返回所述光学组件的所述物光束为所述返回光束;和
    所述参考镜使所述参考光束沿预设轨迹传播以得到预干涉光束,其中,所述预干涉光束和所述返回光束干涉以得到所述待处理光束;
    所述第一探测信息包括所述待处理光束中预定波长的光的强度;
    所述待拟合函数为:I=A+cos r(x-x 0)+B,其中,所述线性处理包括乘以2Π/λ,r=1;或者,所述线性处理包括乘以1,r=2Π/λ,λ为所述预定波长光的波长;
    以每个第二时刻下的所述移动参量和待求参量之间的差为自变量,以每个第二时刻下的所述第一探测信息为因变量对待拟合函数进行拟合,以得到拟合函数包括:
    以每个第二时刻下的所述移动参量作为所述待拟合函数中的x、以每个第二时刻下所述预定波长的光的强度作为所述待拟合函数中的I,对所述待拟合函数进行拟合,以得到A、所述待求参量x 0和B,从而得到所述拟合函数;
    根据所述拟合函数和所述多个第一时刻下的所述第一探测信息,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离包括:
    以每个第一时刻下所述预定波长的光的强度作为所述拟合函数中的I,计算所述拟合 函数中的x作为每个第一时刻下的所述移动参量;和
    根据每个第一时刻下的所述移动参量,确定在每个第一时刻下所述光学组件与所述固定平面之间的实际距离。
  27. 根据权利要求23所述的测量方法,还包括:
    根据第二光束得到第二探测信息,所述第二光束为部分所述返回光束或部分所述待处理光束,所述第二探测信息表征所述光学组件与所述被测区域之间的相对位置;
    获取所述第二探测信息为预设探测信息时的第一时刻作为特征时刻;
    获取所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离;和
    根据所述特征时刻下的所述光学组件与所述固定平面之间的所述实际距离,确定所述被测区域的高度信息。
  28. 根据权利要求27所述的测量方法,其中,根据第二光束得到第二探测信息包括:
    根据所述第二光束得到探测图像;和
    根据所述探测图像得到所述第二探测信息,所述第二探测信息包括第二光束的光强和所述探测图像的对比度中的至少一项。
  29. 根据权利要求28所述的测量方法,其中:
    所述第二探测信息包括所述第二光束的光强;
    在所述特征时刻下的所述第二光束的光强大于在所述多个第一时刻中除所述特征时刻外的任意一个第一时刻下所述第二光束的光强。
  30. 根据权利要求27所述的测量方法,还包括:
    根据多个所述被测区域相对于同一基准面的所述高度信息获取所述被测物体的形貌。
PCT/CN2020/089487 2020-05-09 2020-05-09 测量系统和方法 WO2021226765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/089487 WO2021226765A1 (zh) 2020-05-09 2020-05-09 测量系统和方法
US17/924,032 US20230175980A1 (en) 2020-05-09 2020-05-09 Measurement system and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089487 WO2021226765A1 (zh) 2020-05-09 2020-05-09 测量系统和方法

Publications (1)

Publication Number Publication Date
WO2021226765A1 true WO2021226765A1 (zh) 2021-11-18

Family

ID=78526109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089487 WO2021226765A1 (zh) 2020-05-09 2020-05-09 测量系统和方法

Country Status (2)

Country Link
US (1) US20230175980A1 (zh)
WO (1) WO2021226765A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050949A (zh) * 2007-05-22 2007-10-10 天津大学 大视场物体微观表面三维形貌的测量系统及其测量方法
CN101275822A (zh) * 2008-05-06 2008-10-01 哈尔滨工业大学 基于移相干涉的二次共焦测量方法与装置
US20110122420A1 (en) * 2009-11-20 2011-05-26 Mitutoyo Corporation Method and apparatus for determining a height of a number of spatial positions on a sample
CN102589463A (zh) * 2012-01-10 2012-07-18 合肥工业大学 二维和三维一体化成像测量系统
CN108917626A (zh) * 2018-08-01 2018-11-30 深圳中科飞测科技有限公司 一种检测装置及检测方法
CN109084678A (zh) * 2018-09-03 2018-12-25 深圳中科飞测科技有限公司 一种光学检测装置和光学检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050949A (zh) * 2007-05-22 2007-10-10 天津大学 大视场物体微观表面三维形貌的测量系统及其测量方法
CN101275822A (zh) * 2008-05-06 2008-10-01 哈尔滨工业大学 基于移相干涉的二次共焦测量方法与装置
US20110122420A1 (en) * 2009-11-20 2011-05-26 Mitutoyo Corporation Method and apparatus for determining a height of a number of spatial positions on a sample
CN102589463A (zh) * 2012-01-10 2012-07-18 合肥工业大学 二维和三维一体化成像测量系统
CN108917626A (zh) * 2018-08-01 2018-11-30 深圳中科飞测科技有限公司 一种检测装置及检测方法
CN109084678A (zh) * 2018-09-03 2018-12-25 深圳中科飞测科技有限公司 一种光学检测装置和光学检测方法

Also Published As

Publication number Publication date
US20230175980A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US7728961B2 (en) Surface height and focus sensor
CN109975820B (zh) 基于Linnik型干涉显微镜的同步偏振相移检焦系统
US10969299B2 (en) Lens refractive index detection device and method
US20080100850A1 (en) Surface height and focus sensor
US20150153165A1 (en) Optical metrology with multiple angles of incidence and/or azumith angles
JP6112909B2 (ja) シャック・ハルトマンセンサーを用いた形状計測装置、形状計測方法
KR101891182B1 (ko) 자동초점 조절장치
CN109406105B (zh) 虚像检测方法及检测系统
CN111220088B (zh) 测量系统和方法
US20080137061A1 (en) Displacement Measurement Sensor Using the Confocal Principle
CN109580182B (zh) 基于布儒斯特定律的曲面光学元件折射率测量方法和装置
KR101716452B1 (ko) 디지털 홀로그래피 마이크로스코프를 이용한 고단차 측정 방법
US20210356591A1 (en) Measurement apparatus and measurement method
KR100769214B1 (ko) 광빔 측정장치
WO2021226765A1 (zh) 测量系统和方法
CN110631510B (zh) 一种基于迈克尔逊结构的高精度测角装置及测角方法
TWI783228B (zh) 測量系統和方法
JP7145030B2 (ja) 測定方法及び測定装置
KR101505745B1 (ko) 이중 검출 반사 공초점 현미경 및 이를 사용하는 시편의 높이의 정보를 검출하는 방법
JP2002296018A (ja) 3次元形状計測装置
JP2007093288A (ja) 光計測装置及び光計測方法
JP2002048673A (ja) 光学素子又は光学系の物理量測定方法
TW201415153A (zh) 自動對焦系統與自動對焦方法
RU2769305C1 (ru) Автоколлиматор
CN213456056U (zh) 检测组件和检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935625

Country of ref document: EP

Kind code of ref document: A1