WO2021226751A1 - 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备 - Google Patents

一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备 Download PDF

Info

Publication number
WO2021226751A1
WO2021226751A1 PCT/CN2020/089416 CN2020089416W WO2021226751A1 WO 2021226751 A1 WO2021226751 A1 WO 2021226751A1 CN 2020089416 W CN2020089416 W CN 2020089416W WO 2021226751 A1 WO2021226751 A1 WO 2021226751A1
Authority
WO
WIPO (PCT)
Prior art keywords
disinfection
sterilization
plasma
module
pressure
Prior art date
Application number
PCT/CN2020/089416
Other languages
English (en)
French (fr)
Inventor
张麟德
Original Assignee
蒂森灭菌科技(孝感)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒂森灭菌科技(孝感)有限公司 filed Critical 蒂森灭菌科技(孝感)有限公司
Priority to EP20935355.6A priority Critical patent/EP4147728A4/en
Priority to JP2023512257A priority patent/JP2023525408A/ja
Priority to PCT/CN2020/089416 priority patent/WO2021226751A1/zh
Priority to US17/921,728 priority patent/US20230165990A1/en
Publication of WO2021226751A1 publication Critical patent/WO2021226751A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail

Definitions

  • the invention relates to the field of disinfection and sterilization.
  • the present invention also relates to the above-mentioned equipment and devices in the field of disinfection and sterilization.
  • microorganisms such as bacteria, fungi, and viruses are one of the important components of the natural environment.
  • the transformation, degradation and synthesis of a large number of substances in the natural environment depend on these microorganisms.
  • Specific genetically modified microorganisms such as Escherichia coli transplanted with penicillin synthesis genes, can convert the carbon source, nitrogen source and sulfur source in the fermentation broth into small molecules with a specific structure of penicillin.
  • the effects of microorganisms are harmful in some cases, even fatal and difficult to solve.
  • Super bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), multi-drug resistant Streptococcus pneumoniae (MDRSP), Acinetobacter, Pseudomonas and various common bacteria of Enterobacteriaceae, SARS-CoV- 2, Ebola (Ebola) virus and other highly harmful viruses, Candida auris (Candida Auris) and other highly drug-resistant and highly lethal fungi, etc., the biological safety problems caused by these microorganisms have constituted a problem for humans. The greatest threat to health.
  • the temperature level is generally 100-200°C, and the time ranges from several minutes to several hours, depending on the change of the disinfection object.
  • Radiation disinfection is mainly through ionizing radiation and non-ionizing radiation. Two types of radiation are used to achieve disinfection by irradiation.
  • non-ionizing radiation includes ultraviolet, infrared and microwave, while ionizing radiation includes cathode ray, Co-60 radiation source irradiation and other methods; chemical disinfection is mainly through different disinfectants, Including phenol, ethanol, ethylene oxide, bleaching powder, chlorine dioxide, sodium dichloroisocyanurate, peracetic acid, hydrogen peroxide, glutaraldehyde, quaternary ammonium salts, etc., by putting these disinfectants in the environment Spraying, atomizing and scrubbing to achieve disinfection of the environment.
  • disinfectants Including phenol, ethanol, ethylene oxide, bleaching powder, chlorine dioxide, sodium dichloroisocyanurate, peracetic acid, hydrogen peroxide, glutaraldehyde, quaternary ammonium salts, etc.
  • the above-mentioned different disinfection technologies have their own suitable scenarios and environments, and their disinfection levels have different positions depending on the killing rate of microorganisms in the environment. If all microorganisms can be killed or removed, the level of disinfection at this time can be called sterilization.
  • ethylene oxide disinfection high-pressure steam disinfection, dry heat disinfection, ionizing radiation disinfection, etc.
  • Sterilization is an absolute concept, which means to completely kill the processed microorganisms.
  • the sterilized items can directly enter the sterile tissues of the human body without infection. Therefore, sterilization can be considered the most thorough disinfection.
  • the general international method stipulates that the sterilization process must reduce the survival probability of the contaminated microorganisms to 10-6 (sterilization assurance level), in other words, the target Only when the microbial killing rate reaches 99.9999% can the technical requirements for sterilization be achieved.
  • the disinfection technology that reaches the level of sterilization can also be considered the most effective disinfection technology.
  • the disinfection intensity is as high as possible, and the microbial killing rate can reach 99.9999%, which is the sterilization level; the disinfection speed is as fast as possible, the time consumed is as short as possible, and no post-treatment is required. If there is residue, it should be harmless
  • the disinfection process can realize the disinfection of a large area of the environment, especially the aerosol environment, and does not damage the instruments and objects in the environment; the cost of the consumables in the disinfection process is as low as possible, and no or less manpower is introduced.
  • the mainstream plasma disinfection technology still uses vacuum or negative pressure plasma for disinfection.
  • this type of plasma belongs to vacuum negative pressure plasma, and generally belongs to low temperature plasma.
  • the atomic temperature is relatively low, about 10 2 K-10 3 K
  • the electron temperature is generally 10 4 K
  • the degree of ionization is low, generally ⁇ 1%. This determines that only a small part of the particles in the cold plasma are ionized, and the formed plasma is also a low-energy excited state. Therefore, other additives are often needed to make the active components in the plasma have higher activity.
  • the plasma assists the ionization of hydrogen peroxide, so as to obtain a high concentration of oxygen free Base, and realize the disinfection of the enclosed chamber. It is sealed for a period of time under negative pressure for disinfection. When the disinfection is completed, it is filled with clean gas at normal pressure to restore the cavity to normal pressure to complete the disinfection.
  • This kind of cold plasma-assisted hydrogen peroxide ionization and disinfection technology generally has a cavity pressure of several Pa to tens of Pa, and a working temperature of about 35-45°C. It can achieve non-destructive effects on general equipment and polymer materials. Sterilization, the sterilization cycle is generally 30-60 minutes, and the efficiency is much higher than other methods.
  • Low-temperature plasma disinfection technology currently has many mature cases.
  • Starrad 100S hydrogen peroxide plasma sterilizer which was approved by the US FDA in 1997 by Johnson & Johnson, has entered the Chinese market since 2004 and has been widely accepted.
  • this does not mean that low-temperature plasma disinfection technology has reached the peak of disinfection technology.
  • the most direct problem is that this type of plasma is negative pressure or vacuum plasma, which cannot be used for large-scale disinfection and sterilization.
  • Even in the cavity since there is no pressure difference in the plasma environment, the flow is blocked, and it is difficult to form a large-scale uniform plasma atmosphere. Once the cavity size increases, the corresponding vacuum requirements become higher and more difficult to achieve.
  • the present invention proposes an adjustable continuous-flow plasma disinfection and sterilization method with superior performance, and a corresponding disinfection and sterilization equipment.
  • the present invention provides an adjustable continuous flow plasma disinfection and sterilization method, including:
  • the sterilization chamber with adjustable inlet and outlet pressure atmospheric plasma is excited. After the atmospheric pressure plasma is stabilized, the pressure difference between the inlet and outlet of the sterilization chamber is adjusted according to the requirements of the corresponding sterilization or sterilization process, so as to realize the adjustment of the plasma density in the chamber. Subsequently, the microbial carrier to be disinfected and sterilized is continuously sent into the disinfection and sterilization chamber for disinfection and sterilization. After the treatment is completed, the carrier is sent out of the sterilization chamber, and the carrier can be disinfected or sterilized according to the requirements of different levels of microbial killing rate.
  • the atmospheric pressure plasma includes capacitively coupled plasma, inductively coupled plasma, high voltage direct current arc, high voltage alternating current arc, microwave plasma, and surface coupling induced plasma.
  • the atmospheric pressure plasma has a plasma density of 1.0 ⁇ 10 3 particles/cm 3 to 1.0 ⁇ 10 30 particles/cm 3 .
  • the atomic temperature of the atmospheric pressure plasma is 1.0 ⁇ 10 0 K to 1.0 ⁇ 10 12 K.
  • the electron temperature of the atmospheric pressure plasma is 1.0 ⁇ 10 0 K to 1.0 ⁇ 10 12 K.
  • microorganisms carried by the microbial carrier include bacteria (and their spores), archaea, fungi, actinomycetes, protozoa, algae, viruses, mycoplasma, chlamydia, viroids, viroids, prions .
  • the range of the microbial killing rate is 90% to 99.9999%.
  • the excitation of atmospheric pressure plasma in the sterilization chamber with adjustable inlet and outlet pressures specifically includes the following steps: 1S1, inject working fluid gas into the atmospheric pressure plasma unit, and wait for the atmospheric pressure plasma After the body is saturated with the working fluid gas, it starts to supply energy to the plasma power source until the plasma is successfully ignited to form a plasma torch; 1S2, on the basis that the plasma can be maintained stable, gradually adjust the input power of the plasma source until The input power of the plasma reaches the target power.
  • the working fluid gas in the step 1S1 includes hydrogen, oxygen, nitrogen, artificial air, helium, neon, argon, krypton, xenon, chlorine, fluorine, bromine vapor, hydrogen fluoride gas, hydrogen chloride gas , Hydrogen iodide gas, hydrogen bromide gas, nitrogen dioxide gas, nitrous oxide gas, nitrogen trifluoride gas, carbon monoxide gas, carbon dioxide gas, ammonia, sulfur hexafluoride gas, carbon tetrafluoride gas, silane One or more mixtures of gas, germane gas, and organic gas.
  • the power of the plasma power source in the step 1S1 is 0.5W-100kW.
  • the method of gradually adjusting the input power in step 1S2 includes two methods: first increasing the power and then reducing the power to the target power, or gradually adding the power to the target power.
  • the pressure difference between the inlet and outlet of the sterilization chamber is adjusted according to the process requirements of the corresponding sterilization or sterilization, so as to realize the adjustment of the plasma density in the chamber, which specifically includes the following steps : 2S1, on the basis that the plasma can be maintained stable, adjust the outlet pressure of the sterilization chamber through the outlet pressure adjustment module in the pressure adjustment unit connected to the sterilization chamber; 2S2, the basis that the plasma can maintain stability Above, the inlet pressure of the sterilization chamber is adjusted through the inlet pressure adjustment module in the pressure adjustment unit of the sterilization chamber.
  • the pressure difference between the inlet and outlet of the sterilization chamber is 0Pa ⁇ 120Mpa.
  • the inlet pressure of the sterilization chamber is 0.0000001Pa ⁇ 120Mpa.
  • outlet pressure of the sterilization chamber is 0.0000001Pa ⁇ 120Mpa.
  • the outlet pressure adjustment module in step 2S1 includes a vortex fan, a centrifugal fan, an axial fan, a negative pressure Roots fan, a venturi, an air compressor, a gas pressure reducing pump, a piston compressor, and a jet
  • vacuum pumps screw vacuum pumps, liquid ring vacuum pumps, rotary vane vacuum pumps, claw vacuum pumps, roots vacuum pumps, reciprocating vacuum pumps, molecular pumps, diffusion pumps, ion transfer pumps, adsorption pumps, sublimation pumps, cryopumps .
  • the inlet pressure adjustment module in step 2S2 includes one or more of a vortex fan, a centrifugal fan, an axial fan, a roots fan, a venturi, a gas booster pump, a piston compressor, and a gas cylinder kind.
  • the continuous delivery of the microorganism carrier to be disinfected and sterilized into the disinfection and sterilization cabin for disinfection and sterilization includes the following steps: 3S1, the microorganism carrier is sent into the disinfection and sterilization cabin at a certain speed, and according to The size of the sterilization chamber and the power of the plasma source adjust the movement speed and form of the microbial carrier in the sterilization chamber to ensure that the microbial carrier can stay in the sterilization chamber for the working time required for disinfection or sterilization.
  • the microorganism carrier in the step 3S1 includes an air flow carrier, a liquid flow carrier, a multi-phase flow carrier, and a solid carrier with a conveying movement mechanism.
  • the microbial carrier is an air flow carrier
  • its movement speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min to 100000 m 3 /min.
  • the microbial carrier is a liquid flow carrier
  • its movement speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min to 100000 m 3 /min.
  • the microbial carrier is a multiphase flow carrier
  • its moving speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min to 100000 m 3 /min.
  • the microbial carrier is a solid carrier with a conveying movement mechanism
  • its movement speed in the sterilization chamber is a linear speed of 0.0001m/min-60m/min.
  • the motion form of the microbial carrier in the sterilization chamber in step 3S1 includes one or more of linear motion, spiral motion, vortex motion, rotary motion, reciprocating motion, and random motion.
  • the working time required for disinfection or sterilization in the disinfection and sterilization chamber in step 3S1 is 0.5s-24h.
  • the carrier is sent out of the sterilization chamber, and the carrier can be disinfected or sterilized according to the requirements of different levels of microbial killing rate, which specifically includes the following steps: 4S1.
  • the microbial carrier is disinfected and sterilized
  • the microbial carrier is sent out of the disinfection and sterilization cabin to complete the disinfection process.
  • the present invention also provides a disinfection and sterilization equipment, which includes a disinfection and sterilization chamber unit, a pressure adjustment unit, an atmospheric pressure plasma unit, a microorganism carrier conveying unit, a state measurement and control unit, and a temperature control unit.
  • the disinfection and sterilization cabin unit contains the ignition module of the atmospheric pressure plasma unit, and the inlet and outlet of the disinfection and sterilization cabin unit are in communication with the pressure regulating unit, so as to realize the control of the interior of the disinfection and sterilization cabin.
  • Pressure regulation The microbial carrier conveying unit is in communication with the pressure regulating unit, so that the microbial carrier can be sent into the sterilization chamber under different pressure environments, and sent out after the sterilization is completed.
  • the temperature control unit is connected with the disinfection and sterilization chamber unit, the atmospheric pressure plasma unit, and the microorganism carrier conveying unit, so as to realize the adjustment and constant temperature of the working temperature of each unit.
  • the state measurement and control unit controls the states of the disinfection and sterilization chamber unit, the atmospheric pressure plasma torch unit, the microorganism carrier conveying unit, and the pressure adjustment unit, so as to continuously measure, control and adjust the disinfection process .
  • the sterilization and sterilization cabin unit includes a sterilization and sterilization cabin module and an optical measurement interface, an electrical measurement interface, and a temperature measurement interface.
  • the structure of the sterilization cabin module includes a rectangular cabin structure, a cylindrical cabin structure, a spherical cabin structure, a conical cabin structure, an ellipsoidal cabin structure, a parabolic cabin structure, a hyperboloid cabin structure, and a spiral cabin structure.
  • a rectangular cabin structure a cylindrical cabin structure, a spherical cabin structure, a conical cabin structure, an ellipsoidal cabin structure, a parabolic cabin structure, a hyperboloid cabin structure, and a spiral cabin structure.
  • the pressure adjustment unit includes an outlet pressure adjustment module, an inlet pressure adjustment module, a pressure measurement interface, and a flow measurement interface.
  • both the outlet pressure adjustment module and the inlet pressure adjustment module are equipped with a pressure measurement interface and a flow measurement interface.
  • the atmospheric plasma unit includes a plasma source power module, a working fluid intake module, an ignition module, and a power feedback measurement interface.
  • the plasma source ignition module is installed in the sterilization chamber module
  • the working fluid intake module is installed at the back end of the ignition module
  • the plasma source power module itself has a power feedback measurement interface that can be monitored by the state measurement and control unit.
  • the temperature control unit includes a heat dissipation module and a heat exchange module.
  • the heat exchange module is connected to the sterilization chamber unit, the atmospheric pressure plasma unit and the microbial carrier conveying unit to ensure that the heat generated during the operation of the above units can be quickly transferred out.
  • the heat exchange module is connected to the heat dissipation module , To ensure that the heat can quickly contact the environment or the refrigerant/heating medium, so that the temperature can be controlled.
  • the microbial carrier conveying unit includes an air flow conveying module, or a liquid flow conveying module, or a multiphase flow conveying module, or a solid carrier module with a conveying movement mechanism.
  • the state measurement and control unit includes a control panel, a master control module, an optical measurement module, an electrical measurement module, a temperature measurement module, a pressure measurement module, a flow measurement module, and a plasma source power feedback measurement module.
  • the disinfection and sterilization method can work in the atmospheric pressure range, and can process continuous flow of aerosol, multiphase flow and other fluids in the environment, so as to realize the operation in the open, semi-closed and closed environment. Sterilization and disinfection directly solve the space limitation problem of plasma disinfection.
  • continuous entry and exit can also be achieved through solid carrier modules under normal pressure, so that large quantities of surgical instruments, implants and other materials can be disinfected on the surface.
  • the present invention also provides a corresponding disinfection and sterilization equipment. Since the aforementioned disinfection and sterilization method has the above-mentioned technical effects, the disinfection and sterilization equipment also has corresponding technical effects.
  • Figure 1 is a schematic structural diagram of a specific implementation of the disinfection and sterilization equipment provided by the present invention
  • Equipment shell 1: top cover; 4&10&11&16: structural frame plate; 19: frame; 9: access port; 13: fixed component;
  • Disinfection and sterilization cabin unit 21: Disinfection and sterilization cabin module (rectangular cabin structure, containing surface coupling induction plasma source ignition module, working fluid inlet module, optical measurement interface, electrical measurement interface); 20: temperature measurement interface;
  • Pressure adjustment unit 14: blower as outlet pressure adjustment module (with pressure measurement interface and flow measurement interface); 15: gas cylinder as inlet pressure adjustment module (with pressure measurement interface); 8: flow measurement interface;
  • Atmospheric plasma unit 17: plasma source power module and power feedback measurement interface; 6: working fluid intake module;
  • Temperature control unit 5: Temperature control unit
  • Microbial carrier conveying unit 7: fluid conveying module
  • Status measurement and control unit 2&3: control panel; 18: master control module;
  • Figure 2 is a simple flow chart.
  • the invention provides a disinfection and sterilization method based on adjustable continuous flow plasma, and corresponding disinfection and sterilization equipment.
  • the disinfection and sterilization method based on the adjustable continuous flow plasma of the present invention refers to the high-energy plasma and the heat of the plasma generated by the atmospheric pressure plasma in the working process, and the deep ultraviolet generated during the de-excitation process.
  • Extreme ultraviolet and even soft X-ray radiation combined with plasma itself colliding with oxygen molecules in the air, or oxygen molecules in the air absorb deep ultraviolet, extreme ultraviolet and even soft X-ray radiation, a series of advanced oxidation media produced , Such as ozone, singlet oxygen molecules, hydroxyl free radicals, peroxide free radicals, oxygen atoms, etc., as a disinfection factor, complete and thorough disinfection or sterilization of the medium to be treated.
  • a new generation of atmospheric pressure plasma technology, especially surface-coupled plasma technology it can achieve high-efficiency large-scale continuous disinfection or sterilization.
  • the inventor of the present application innovatively combines atmospheric pressure plasma with inlet and outlet pressure to further diffuse the working range of atmospheric pressure plasma in a non-vacuum environment.
  • Continuous plasma sterilization is realized in the body, which can allow sample injection under normal pressure or positive pressure environment, which ensures that the sterilization process can be directly opened in the atmosphere and work continuously without a dedicated vacuum chamber.
  • the microbial carrier conveying unit can go through different strokes in the cabin, thereby controlling its residence time in the disinfection cabin, further improving its disinfection efficiency, and making the microorganisms on the surface of the microbial carrier conveying unit complete. It is killed, reaching a high-level disinfection or sterilization level.
  • the atmospheric pressure plasma includes capacitively coupled plasma, inductively coupled plasma, high voltage DC arc, high voltage AC arc, microwave plasma, surface coupling induced plasma, preferably surface coupling induced plasma, high voltage AC arc, microwave plasma body.
  • the plasma needs to be excited to a higher excited state to ensure that deep ultraviolet radiation and even soft X-ray radiation are generated when the radiation is de-excited. That is, the high-efficiency plasma excitation method can ensure the energy feed efficiency High, ideal working parameters of the plasma.
  • the plasma density of the atmospheric pressure plasma is 1.0 ⁇ 10 3 pieces/cm 3 ⁇ 1.0 ⁇ 10 30 pieces/cm 3 , preferably 1.0 ⁇ 10 5 pieces/cm 3 to 1.0 ⁇ 10 15 pieces/cm 3 ;
  • the atomic temperature of the atmospheric pressure plasma is 1.0 ⁇ 10 0 K to 1.0 ⁇ 10 12 K, preferably 3.5 ⁇ 10 1 K to 1.0 ⁇ 10 7 K;
  • the electron temperature of the atmospheric pressure plasma is 1.0 ⁇ 10 10 0 K ⁇ 1.0 ⁇ 10 12 K, preferably from 3.5 ⁇ 10 1 K ⁇ 1.0 ⁇ 10 7 K.
  • the microbial carrier is a gas, liquid or multiphase flow during disinfection
  • the residence time in the disinfection chamber is limited, and rapid disinfection is required, and this type of carrier can withstand high density
  • Plasma bombardment requires the highest possible plasma excited state, that is, the overall ionization degree of the plasma is high, the density is high, and the corresponding electron temperature and atomic temperature are high, so as to ensure a good disinfection effect; and when disinfecting microorganisms
  • the carrier is a solid carrier with a conveying movement mechanism
  • its plasma bombardment tolerance is weak, but the residence time in the cabin is long, that is, low-density plasma is required to act for a long time, and the plasma density is required to be low.
  • the electron temperature and atomic temperature are also low. Therefore, in the plasma disinfection scene, the applicable plasma density, atomic temperature, and electron temperature are different depending on the disinfection object, and a wide adjustment range is required.
  • the said microbial carrier includes bacteria (and its spores), archaea, fungi, actinomycetes, protozoa, algae, viruses, mycoplasma, chlamydia, viroids, viroids, and prions.
  • the range of the microbial killing rate is 90% ⁇ 99.9999%.
  • the disinfection factor is not a chemical factor used in the traditional disinfection process, but more is based on ultraviolet radiation, ion irradiation for disinfection, its disinfection intensity is high enough, even for most of the gaseous state. Organic matter can be efficiently cracked to CH x fragments.
  • the working fluid gas in the step 1S1 includes hydrogen, oxygen, nitrogen, artificial air, helium, neon, argon, krypton, xenon, chlorine, fluorine, bromine vapor, hydrogen fluoride gas, hydrogen chloride gas, and iodide Hydrogen gas, hydrogen bromide gas, nitrogen dioxide gas, nitrous oxide gas, nitrogen trifluoride gas, carbon monoxide gas, carbon dioxide gas, ammonia gas, sulfur hexafluoride gas, carbon tetrafluoride gas, silane gas, germanium Alkane gas, one or more mixtures of organic gases, preferably one or more mixtures of hydrogen, oxygen, nitrogen, argon, helium, ammonia, and carbon tetrafluoride gas.
  • the working fluid has a wide range of ionization energies, and various excimer excitation modes are permitted in the mixture, so the aforementioned required plasma density can be achieved.
  • the power of the plasma power source in the step 1S1 is 0.5W-100kW, preferably 1W-5kW. Choosing the power range can avoid excessive energy consumption in the disinfection process.
  • the method of gradually adjusting the input power in the step 1S2 includes two methods: first increasing the power and then reducing the power to the target power, or gradually adding the power to the target power.
  • the two adjustment methods described have different effects for different power source adjustments.
  • the adjustment method of first increasing the power and then reducing the power to the target power is used, the energy consumption of the disinfection equipment will increase, and the components of the disinfection equipment There will be some damage, but the formed plasma is stable and easy to maintain; when the adjustment method of gradually increasing the power to the target power is used, the energy consumption is relatively low, and the working life of the whole machine can be extended, but The plasma has poor stability and is easy to extinguish during work. Therefore, the specific adjustment method should be judged and selected according to the specific working conditions at work.
  • the inlet and outlet pressure difference of the sterilization chamber is 0Pa ⁇ 120Mpa, preferably 0pa ⁇ 200,000Pa; the inlet pressure of the sterilization chamber is 0.0000001Pa ⁇ 120Mpa, preferably 100000Pa ⁇ 200,000Pa; The outlet pressure of the bacteria chamber is 0.0000001Pa ⁇ 120Mpa, preferably 0.01Pa ⁇ 100000Pa; the atmospheric pressure in a general environment is 100000Pa, that is, 0.1Mpa.
  • the pressure difference of the sterilization chamber can be controlled within the atmospheric pressure range, so that the sterilization process of the entire equipment can be opened for sterilization under normal pressure, and the mean free path of the plasma can be further extended , So that the scope of work is improved, and the length of work is shortened.
  • the outlet pressure adjustment module in step 2S1 includes vortex fans, centrifugal fans, axial fans, negative pressure Roots fans, Venturi tubes, air compressors, gas pressure reducing pumps, piston compressors, jet vacuum pumps, One or more of screw vacuum pumps, liquid ring vacuum pumps, rotary vane vacuum pumps, claw vacuum pumps, roots vacuum pumps, reciprocating vacuum pumps, molecular pumps, diffusion pumps, ion transfer pumps, adsorption pumps, sublimation pumps, cryopumps, preferably One or more of vortex fan, negative pressure Roots blower, venturi, piston compressor, jet vacuum pump, liquid ring vacuum pump. Choosing the outlet pressure adjustment module can achieve the aforementioned outlet pressure requirements, with low requirements for working conditions and high tolerance, which is suitable for the functional requirements involved in the present invention.
  • the inlet pressure adjustment module in step 2S2 includes one or more of a vortex fan, a centrifugal fan, an axial fan, a roots fan, a venturi, a gas booster pump, a piston compressor, and a gas cylinder, Preferably, it is one or more of a vortex fan, a gas booster pump, and a centrifugal fan.
  • Choosing the inlet pressure adjustment module can achieve the aforementioned inlet pressure requirements, with low energy consumption and high efficiency, which is suitable for the functional requirements involved in the present invention.
  • the microorganism carrier in the step 3S1 includes an air flow carrier, a liquid flow carrier, a multiphase flow carrier, and a solid carrier with a conveying movement mechanism.
  • the microbial carrier is an airflow carrier
  • its moving speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min to 100000 m 3 /min, preferably 0.5 m 3 /min to 20 m 3 /min
  • the microbial carrier is a liquid flow carrier
  • its moving speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min ⁇ 100000 m 3 /min, preferably 0.5 m 3 /min ⁇ 10 m 3 /min
  • the microbial carrier is a multiphase flow carrier
  • its moving speed in the sterilization chamber is a flow rate of 0.0001 m 3 /min ⁇ 100000 m 3 /min, preferably 0.5 m 3 /min ⁇ 20 m 3 /min
  • the microbial carrier is
  • the said microbial carrier determines the working object involved in this application.
  • the working object is a fluid, that is, airflow, liquid flow, or multiphase flow
  • its adaptive flow rate is often high and can quickly pass through the sterilization chamber.
  • the working object is a non-fluid, that is, a solid carrier with a conveying movement mechanism, because the speed of the mechanical movement is too fast, the load on the moving mechanical part will be large, and it is easy to cause abrasion, so the working speed is selected.
  • the movement form of the microorganism carrier in the sterilization chamber in step 3S1 includes one or more of linear movement, spiral movement, vortex movement, rotational movement, reciprocating movement, and random movement, preferably linear movement. , Vortex motion, rotating motion, one or more of random motion.
  • the motion form can extend the stroke of the microbial carrier in the sterilization chamber, and avoid excessive pipe damage and bending damage, causing unexpected pressure drop in the chamber.
  • the working time required for disinfection or sterilization in the disinfection and sterilization chamber in step 3S1 is 0.5s-24h.
  • the expected disinfection effect can be achieved within the stated working time.
  • the present invention also relates to disinfection and sterilization equipment corresponding to the disinfection and sterilization method.
  • the present invention will be further described in detail with reference to FIG. 1 below.
  • FIG. 1 is a schematic structural diagram of a specific embodiment of the disinfection and sterilization equipment provided by the present invention.
  • the present invention provides a disinfection and sterilization equipment, including:
  • Equipment shell top cover 1, structural frame plate 4&10&11&16, frame 19, access port 9, fixed assembly 13; disinfection and sterilization cabin unit: disinfection and sterilization cabin module (rectangular cabin structure, containing surface coupling induction plasma source ignition module, engineering Quality air inlet module, optical measurement interface, electrical measurement interface) 21, temperature measurement interface 20; pressure adjustment unit: fan as outlet pressure adjustment module (with pressure measurement interface and flow measurement interface) 14, as inlet pressure adjustment module Gas cylinder (with pressure measurement interface) 15, flow measurement interface 8; atmospheric plasma unit: plasma source power module and power feedback measurement interface 17, working fluid intake module 6; temperature control unit: temperature control unit 5; Microbial carrier delivery unit: fluid delivery module 7; status measurement and control unit: control panel 2&3, master control module 18;
  • disinfection and sterilization cabin unit disinfection and sterilization cabin module (rectangular cabin structure, containing surface coupling induction plasma source ignition module, engineering Quality air inlet module, optical measurement interface, electrical measurement interface) 21, temperature measurement interface 20; pressure adjustment unit: fan as outlet pressure adjustment module (with pressure measurement interface and
  • the microorganism carrier to be disinfected is sent to the disinfection and sterilization cabin module 21 in the disinfection and sterilization cabin unit through the fluid delivery module 7 in the microorganism carrier delivery unit, and at the same time, passes through the outlet in the pressure regulation unit.
  • the fan of the pressure regulation module (with pressure measurement interface and flow measurement interface) 14 and the gas cylinder of the inlet pressure regulation module (with pressure measurement interface) 15 adjust the working pressure of the sterilization chamber module 21, and perform sterilization and sterilization.
  • the cabin module 21 contains an ignition module (not shown) of a normal pressure plasma unit.
  • the intake of the ignition module passes through the working fluid intake module 6, and its power input passes through the plasma source power module and the power feedback measurement interface 17 Make an entry.
  • the temperature control of the whole system adjusts the working temperature of the whole machine through the temperature control module 5.
  • the temperature measurement interface 20, the optical measurement interface and electrical measurement interface on the sterilization chamber module 21, the pressure measurement interface and flow measurement interface 14 of the outlet pressure adjustment module, and the pressure measurement interface 15 of the inlet pressure adjustment module , Flow measurement interface 8, and power feedback measurement interface 17 on the plasma source power module and at the same time provide the measurement value of each quantity to the main control module 18 of the state measurement and control unit, and the main control module 18 according to the control requirements input by the control panel 2&3 , Carry out open-loop or closed-loop adjustment of the control volume of each unit.
  • the disinfection and sterilization equipment can work in the atmospheric pressure range, and can process continuous flow of aerosols, multiphase flow and other fluids in the environment, so as to realize the operation in the open, semi-closed and closed environment. Sterilization and disinfection directly solve the space limitation problem of plasma disinfection.
  • continuous surface sterilization and disinfection continuous access can also be achieved by replacing the solid carrier module under normal pressure, so that large quantities of surgical instruments, implants and other materials can be disinfected on the surface.
  • Other related equipment that is satisfied with the disinfection and sterilization method involved in the present application also has corresponding beneficial effects.
  • the plasma power source 17 starts to supply power to the plasma unit.
  • 1500W is input as the plasma ignition power through the control panel 2&3, and the output power of the plasma source 17 is adjusted by the master control module 18.
  • the plasma is stabilized by adjusting to 1000W through the control panel 2&3, and the optical measurement interface and electrical measurement interface on the sterilization chamber module 21 are used to measure the plasma parameters to determine the plasma
  • the bulk density is 5 ⁇ 10 12 /cm 3
  • the atomic temperature is 4.3 ⁇ 10 5 K
  • the electron temperature is 2.0 ⁇ 10 4 K.
  • the outlet pressure of the outlet pressure adjustment module (with pressure measurement interface and flow measurement interface) 14 of the pressure adjustment unit is adjusted to the sterilization chamber module 21 to adjust the outlet pressure to 50000 Pa, and the inlet pressure is adjusted
  • the gas cylinder (with pressure measurement interface) 15 of the module adjusts the inlet pressure to 100000Pa to the sterilization chamber module 21.
  • the pressure difference between the inlet and outlet of the sterilization chamber module 21 is 50000Pa.
  • the bacteria Staphylococcus albicans 8320 is used as the test microorganism object, and the airflow carrier is used as the microorganism carrier, and it is sent into the sterilization chamber module 21 through the fluid delivery module 7, and the overall flow rate is measured through the flow measurement interface of the outlet pressure module 14.
  • the surface-coupled induced plasma is used as the atmospheric plasma, the plasma density is 3.7 ⁇ 10 11 particles/cm 3 , the atomic temperature is 4.3 ⁇ 10 5 K, and the electron temperature is 2.0 ⁇ 10 4 K.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a vortex fan to adjust the inlet pressure.
  • the air flow carrier is sent to the disinfection and sterilization chamber for disinfection.
  • the flow rate of the air flow carrier through the disinfection and sterilization chamber is controlled at 1 m 3 /min.
  • the air flow carrier vortexes in the disinfection and sterilization chamber.
  • the working time reaches 20s, and the disinfection is completed after leaving the disinfection and sterilization chamber.
  • the culture test was performed. Compared with the blank control group, the killing rate of Staphylococcus albicans 8320 in this experimental group reached 99.9999%.
  • the inductively coupled plasma is used as the atmospheric plasma, the plasma density is 3.5 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5 ⁇ 10 5 K, and the electron temperature is 3.2 ⁇ 10 4 K.
  • the artificial air is introduced into the working fluid intake module of the atmospheric pressure plasma unit as the working fluid gas until the artificial air is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source is used to supply energy to the plasma unit.
  • 1000W is used as the plasma ignition power. After the plasma torch is formed, the power is gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a Roots blower to adjust the inlet pressure.
  • A/Califonia/07/2009 subtype swine influenza cold-adapted attenuated vaccine strain was used as the test microorganism, and a solid carrier with a transporting movement mechanism was used as the microorganism carrier.
  • the solid carrier is sent to the sterilization chamber for disinfection, and the linear speed of the sterilization chamber is controlled at 1 m/min.
  • the solid carrier moves linearly in the sterilization chamber and stays in the sterilization chamber.
  • the time reaches 60s the disinfection is completed after leaving the disinfection and sterilization chamber.
  • the sterilized solid carrier surface was cultured and tested. Compared with the blank control group, the inactivation rate of the cold-adapted attenuated vaccine strain of A/Califonia/07/2009 subtype swine influenza in this experimental group reached 99.9991%.
  • Microwave plasma is used as atmospheric plasma, the plasma density is 4 ⁇ 10 12 particles/cm3, the atomic temperature is 5 ⁇ 10 5 K, and the electron temperature is 5 ⁇ 10 4 K.
  • Nitrogen gas is introduced into the working fluid intake module of the atmospheric pressure plasma unit as the working fluid gas until the nitrogen is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source is used to supply energy to the plasma unit.
  • 1000W is used as the plasma ignition power. After the plasma torch is formed, the power is gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a centrifugal fan to adjust the inlet pressure.
  • the liquid carrier is sent to the disinfection and sterilization cabin for disinfection.
  • the flow rate of the liquid carrier through the disinfection and sterilization cabin is controlled at 1.5 m 3 /min.
  • the liquid carrier vortexes in the disinfection and sterilization cabin.
  • the working time reaches 100s, and the disinfection is completed after leaving the disinfection and sterilization chamber.
  • the liquid flow after the detoxification was completed was subjected to a culture test. Compared with the blank control group, the killing rate of Mycobacterium tuberculosis ATCC25177 in this experimental group reached 99.999%.
  • the surface coupling induced plasma is used as the atmospheric plasma, the plasma density is 3.2 ⁇ 10 15 particles/cm 3 , the atomic temperature is 3.4 ⁇ 10 7 K, and the electron temperature is 3.5 ⁇ 10 5 K.
  • the helium gas is introduced as the working medium gas into the working medium gas inlet module of the atmospheric pressure plasma unit until the helium gas is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source starts to supply energy to the plasma unit. At the beginning, 5kW was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to a target power of 3kW to maintain the plasma.
  • the outlet pressure adjustment unit uses a screw vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a gas booster pump to adjust the inlet pressure.
  • the multiphase flow carrier is sent to the sterilization chamber for disinfection.
  • the flow rate of the multiphase flow carrier through the sterilization chamber is controlled at 1.5 m 3 /min.
  • the staying working time reaches 1s, that is, leaving the sterilization chamber to complete the sterilization.
  • the multiphase flow after the completion of the detoxification was cultured and tested. Compared with the blank control group, the killing rate of Fusarium moniliforme BNCC186247 in this experimental group reached 99.99%.
  • the capacitively coupled plasma is used as the atmospheric plasma, the plasma density is 7.1 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5.6 ⁇ 10 5 K, and the electron temperature is 5.5 ⁇ 10 4 K.
  • 1200W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a jet vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses an air compressor to adjust the inlet pressure.
  • the jet vacuum pump is turned on to adjust the outlet pressure of the sterilization chamber to 5000 Pa
  • the air compressor is turned on to make the inlet pressure of the sterilization chamber to 0.3 MPa.
  • the pressure difference between the inlet and outlet of the sterilization chamber is 295000Pa.
  • the porcine circovirus type 2 virus was used as the test microorganism, and the airflow carrier was used as the microorganism carrier.
  • the airflow is sent to the sterilization chamber for disinfection, the flow rate of the sterilization chamber is controlled at 2 m 3 /min, the airflow carrier moves randomly in the sterilization chamber, and the working time of staying in the sterilization chamber When it reaches 10h, it leaves the sterilization chamber to complete the sterilization.
  • the airflow after the detoxification was completed was subjected to a culture test. Compared with the blank control group, the inactivation rate of the porcine circovirus type 2 virus in this experimental group reached 99.98%.
  • the surface coupling induced plasma is used as the atmospheric plasma, the plasma density is 7.1 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5.6 ⁇ 10 5 K, and the electron temperature is 5.5 ⁇ 10 4 K.
  • 1200W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a negative pressure Roots blower to adjust the outlet pressure
  • the inlet pressure adjustment unit uses an air compressor to adjust the inlet pressure.
  • the airflow is sent to the sterilization chamber for disinfection, the flow rate of the sterilization chamber is controlled at 0.2 m 3 /min, the airflow carrier moves randomly in the sterilization chamber, and the working time of staying in the sterilization chamber When it reaches 1h, it leaves the sterilization chamber to complete the sterilization.
  • the airflow after the detoxification was completed was subjected to a culture test. Compared with the blank control group, the killing rate of Bacillus subtilis black variant ATCC9732 spores in this experimental group reached 99.9999%.
  • the capacitively coupled plasma is used as the atmospheric plasma, the plasma density is 7.2 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5.5 ⁇ 10 5 K, and the electron temperature is 5.3 ⁇ 10 4 K.
  • Nitrogen gas is introduced into the working fluid intake module of the atmospheric pressure plasma unit as the working fluid gas until the nitrogen is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source is used to supply energy to the plasma unit.
  • 1200W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a piston compressor to adjust the inlet pressure.
  • the liquid phase is sent to the disinfection and sterilization cabin for disinfection, the flow rate of the disinfection and sterilization cabin is controlled at 2 m 3 /min, and the air flow carrier vortexes in the disinfection and sterilization cabin.
  • the working time reaches 100s, it leaves the sterilization chamber to complete the sterilization.
  • the culture test was performed. Compared with the blank control group, the H1N1 subtype influenza virus attenuated vaccine species in this experimental group had an inactivation rate of 99.91%.
  • the capacitively coupled plasma is used as the atmospheric plasma, the plasma density is 7.2 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5.5 ⁇ 10 5 K, and the electron temperature is 5.3 ⁇ 10 4 K.
  • Nitrogen gas is introduced into the working fluid intake module of the atmospheric pressure plasma unit as the working fluid gas until the nitrogen is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source is used to supply energy to the plasma unit.
  • 1200W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump, a roots vacuum pump and a molecular pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a vortex fan to adjust the inlet pressure.
  • a spore of Bacillus stearothermophilus ATCC7953 was used as the test microorganism, and a solid carrier with a conveying movement mechanism was used as the microorganism carrier.
  • the solid carrier is sent to the sterilization chamber for disinfection, and the linear speed of the sterilization chamber is controlled at 1m/min.
  • the solid carrier moves linearly in the sterilization chamber and stays in the sterilization chamber. When it reaches 40min, it leaves the sterilization chamber to complete the sterilization.
  • the sterilized solid carrier surface was cultured and tested. Compared with the blank control group, the killing rate of the Bacillus stearothermophilus ATCC7953 spores in this experimental group reached 99.9999%.
  • the capacitively coupled plasma is used as the atmospheric plasma, the plasma density is 7.1 ⁇ 10 12 particles/cm 3 , the atomic temperature is 5.6 ⁇ 10 5 K, and the electron temperature is 5.5 ⁇ 10 4 K.
  • Nitrogen gas is introduced into the working fluid intake module of the atmospheric pressure plasma unit as the working fluid gas until the nitrogen is saturated to replace the atmosphere environment of the plasma unit, and then the plasma power source is used to supply energy to the plasma unit.
  • 1200W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 800W to maintain the plasma.
  • the outlet pressure adjustment unit uses an axial flow fan to adjust the outlet pressure
  • the inlet pressure adjustment unit uses an axial flow fan to adjust the inlet pressure.
  • the liquid stream is sent to the disinfection and sterilization chamber for disinfection.
  • the flow rate of the liquid flow through the disinfection and sterilization chamber is controlled at 2 m 3 /min.
  • the working time reaches 20min, it leaves the sterilization chamber to complete the sterilization.
  • the airflow after the detoxification was completed was subjected to a culture test. Compared with the blank control group, the killing rate of Aspergillus flavus BNCC185691 in this experimental group reached 99.6%.
  • a high-voltage AC arc is used as the atmospheric plasma, the plasma density is 5.5 ⁇ 10 12 particles/cm3, the atomic temperature is 4.4 ⁇ 10 5 K, and the electron temperature is 3.5 ⁇ 10 4 K.
  • 1000W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 650W to maintain the plasma.
  • the outlet pressure adjustment unit uses a venturi tube to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a centrifugal fan to adjust the inlet pressure.
  • the venturi tube is opened to adjust the outlet pressure of the sterilization chamber to 50000Pa, and then the centrifugal fan is turned on to make the inlet pressure of the sterilization chamber to 0.2MPa.
  • the pressure difference between the inlet and outlet of the sterilization chamber is 150,000 Pa.
  • the poliovirus type I vaccine was used as the test microorganism, and the multiphase flow carrier was used as the microorganism carrier.
  • the multiphase flow carrier is sent to the disinfection and sterilization cabin for disinfection, and the flow rate of the disinfection and sterilization cabin is controlled at 20 m3/min.
  • the air flow carrier vortexes in the disinfection and sterilization cabin and stays in the disinfection and sterilization cabin.
  • the working time reaches 0.5s, that is, it leaves the disinfection and sterilization chamber to complete the disinfection.
  • the culture test was performed. Compared with the blank control group, the inactivation rate of the poliovirus type I vaccine species in this experimental group reached 91%.
  • a high-voltage AC arc is used as the atmospheric plasma, the plasma density is 5.5 ⁇ 10 12 particles/cm3, the atomic temperature is 4.4 ⁇ 10 5 K, and the electron temperature is 3.5 ⁇ 10 4 K.
  • 1000W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 650W to maintain the plasma.
  • the outlet pressure adjustment unit uses a liquid ring vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a centrifugal fan to adjust the inlet pressure.
  • the multiphase flow carrier is sent to the disinfection and sterilization cabin for disinfection, and the flow rate of the disinfection and sterilization cabin is controlled at 1.5 m3/min.
  • the air flow carrier vortexes in the disinfection and sterilization cabin and stays in the disinfection and sterilization cabin.
  • the working time reaches 400s, that is, it leaves the sterilization chamber to complete the sterilization.
  • the airflow after the detoxification was completed was subjected to a culture test. Compared with the blank control group, the killing rate of Staphylococcus aureus ATCC 6538 species in this experimental group reached 99.99%.
  • a high-voltage AC arc is used as the atmospheric plasma, the plasma density is 5.5 ⁇ 10 12 particles/cm3, the atomic temperature is 4.4 ⁇ 10 5 K, and the electron temperature is 3.5 ⁇ 10 4 K.
  • 1000W was used as the plasma ignition power. After the plasma torch was formed, the power was gradually reduced to the target power of 650W to maintain the plasma.
  • the outlet pressure adjustment unit uses a rotary vane vacuum pump to adjust the outlet pressure
  • the inlet pressure adjustment unit uses a piston compressor to adjust the inlet pressure.
  • the plasma can be maintained stable, turn on the rotary vane vacuum pump to adjust the outlet pressure of the sterilization chamber to 5000Pa, and then turn on the piston compressor to make the inlet pressure of the sterilization chamber to 0.2MPa.
  • the pressure difference between the inlet and outlet of the sterilization chamber is 195000Pa.
  • the solid carrier is sent to the sterilization chamber for disinfection, and its linear speed through the sterilization chamber is controlled at 0.5m/min.
  • the solid carrier vortexes in the sterilization chamber and stays in the sterilization chamber. When the working time reaches 1h, it leaves the sterilization chamber to complete the sterilization.
  • the sterilized solid carrier surface was cultured and tested. Compared with the blank control group, 8739 species of Escherichia coli ATCC in this experimental group had a killing rate of 99.99%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Plasma Technology (AREA)

Abstract

一种可调连续流等离子体消毒灭菌方法和灭菌消毒设备。可调连续流等离子体消毒灭菌方法包括:(1)在进出口压差可调的消毒灭菌舱内励激期常压等离子体;(2)待常压等离子体稳定后调整消毒灭菌舱的进出口压差,从而实现对舱内等离子体密度的调节;(3)将载有待消毒灭菌的微生物载体连续送入消毒灭菌舱,进行消毒或灭菌;(4)将载体连续送出消毒灭菌舱,完成消毒或灭菌。该方法可在大气压下连续工作,能够对封闭、半开放或开放空间进行消毒或灭菌。

Description

一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备 技术领域
本发明涉及消毒灭菌领域。此外,本发明还涉及上述消毒灭菌领域的设备与器件。
背景技术
细菌、真菌与病毒等各类微生物,是自然环境的重要组成部分之一,大量自然环境中的物质转化、降解与合成,都依赖于这些微生物。经过基因修饰的特定微生物,如移植了青霉素合成基因的大肠杆菌,可以定向的将发酵液中的碳源、氮源与硫源转化为青霉素这种特定结构的小分子。然而,对于人类而言,微生物的影响有些情况下是有害的,甚至是致命而难以解决的。诸如耐甲氧西林金黄色葡萄球菌(MRSA)、耐多药肺炎链球菌(MDRSP)等超级细菌,不动杆菌属、假单胞菌属和各种肠杆菌科的常见细菌,SARS-CoV-2,、埃博拉(Ebola)病毒等危害性极强的病毒,耳念珠菌(Candida Auris)等抗药性强致死性高的真菌等等,这类微生物引起的生物安全问题已经构成了对人类健康最大的威胁。在体内环境中,这些细菌、病毒与真菌难以通过常规的抗生素或抗病毒药起到抑制生长的作用;在体外环境中,这些微生物的传染性极强,传统的消毒手段对这些微生物的灭活能力有限。这也引起了大量的公共安全事件,使人类社会的经济运行、社会组织等各个方面受到了巨大的影响。不仅如此,各种微生物自身还存在着变异与拮抗能力的遗传,使已有的抗生素与消毒技术效力下降乃至于不再起效,这一点决定了人类与这些致病微生物间的战争,一定是一场长期的拉锯战,总是需要更大范围,更广谱、更强力的消毒技术,去应对这些微生物的进犯。
正因如此,消毒技术,也就是通过化学或物理的方法杀灭或消除传播媒介上的病原微生物,并使之达到无传播感染水平的处理,其技术水平的提高,往往需要通过基础研究领域的技术突破,并在微生物研究领域得到转化。传统的消毒技术包括机械消毒,热力消毒,辐射消毒与化学消毒等方法。其中的机械消毒,即通过流水冲洗、无菌气流层流冲刷等方式,实现环境的消毒;热力消毒,则是通过火烧、煮沸、流动蒸汽或高压蒸汽、干热等不同的加热手段,对所消毒的物件进行热处理,从而杀灭细菌,其温度水平一般在100-200℃,时间从数分钟到数小时不等,随消毒对象的改变而不同;辐射消毒,主要是通过电离辐射与非电离辐射两类进行辐照而实现消毒,其中,非电离辐射包括紫外、红外与微波,而电离辐射包括阴极射线、Co-60辐射源辐照等方式;化学消毒,主要是通过不同的消毒剂,包括苯酚、乙醇、环氧乙烷、漂白粉、二氧化氯、二氯异氰尿酸钠、过氧乙酸、过氧化氢、戊二醛、季铵盐类等,通过将这些消毒剂在环境中进行喷洒、雾化与擦洗,实现对环境的消毒。
总的来说,上述不同的消毒技术,各有其合适的场景与环境,其消毒水平随着环境中微生物的杀灭率不同,也有着不同的定位。如能够实现一切微生物的杀灭或去除,此时的消毒水平可以被称之为灭菌。
上述的技术中,如环氧乙烷消毒、高压蒸汽消毒、干热消毒、电离辐射消毒等方法,都可以达到灭菌水平。灭菌是一个绝对概念,意为完全杀灭所处理的微生物,经过灭菌处理的物品可直接进入人体的无菌组织而不会发生感染。因此,灭菌可以被认为是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到10-6(灭菌保证水平),换句话说,要将目标微生物杀灭率达到99.9999%,才能够实现灭菌的技术要求。达到灭菌水平的消毒技术,也可以被认为是最有效的消毒技术。
然而,能够实现灭菌的技术,往往也存在着应用上的限制。最基础的灭菌是通过高压蒸汽灭菌,在温度高达120摄氏度的蒸汽中,处理30min或者更长的时间。纵览各种不同的消毒技术,可以看出,一项消毒技术如能达到灭菌的消毒水平,往往要付出其他的成本,如无法大范围实行,或对人体可能产生巨大的伤害;反之,如过于温和,又无法达到灭菌的消毒水平。也因此,不难推想,理想的消毒技术应具有下述特点:
消毒强度尽可能的高,其微生物杀灭率可达到99.9999%,即灭菌水平;消毒速度尽可能快,所消耗的时间尽可能短,且无需后处理,如有残留物亦应当是无害的残留物;消毒过程能够实现对大面积环境的消毒,尤其是对气溶胶环境,且不损伤环境中的器械与物品;消毒过程的耗材成本尽可能低,且不引入或少引入人力。
上述特点正是已有的消毒技术所无法同时具备的,反之,一项从基础研究中转化的新技术要引入消毒灭菌领域,就应当尽可能的靠近这些指标和特点。目前而言,最接近于理想的消毒技术,应当属于等离子体消毒技术。
目前,主流的等离子体消毒技术,还是使用真空或负压的等离子体进行消毒。这也就直接决定了,这类等离子体均属于真空负压等离子体,且一般都属于低温等离子体。一般的低温等离子体,其原子温度较低,在10 2K-10 3K左右,电子温度一般均为10 4K,且电离程度低,一般<1%。这决定了冷等离子体中只有很少一部分粒子离化,且形成的等离子体亦属于低能态的激发态。因此,往往需要其他的助剂,使等离子体中的活性组分具有较高的活性,例如,使用过氧化氢注入的方式,通过等离子体辅助过氧化氢离化,从而获得高浓度的氧自由基,并实现对封闭腔室内的消毒。在负压下密封一段时间进行消毒,当消毒完成后,再充入常压的洁净气体,使腔体恢复到常压,即完成消毒。这类的冷等离子体辅助过氧化氢离化消毒的技术,一般腔内压力在数Pa到数十Pa,工作温度约为35-45℃,对一般的器械和高分子材料都能达到无损的灭菌,其灭菌周期一般在30-60分钟,效率要远高于其他方式。
低温等离子体消毒技术目前已经具有许多成熟的案例。如美国强生公司于1997年获得FDA批准上市的过氧化氢等离子体灭菌器Starrad 100S,从2004年开始就已经进入中国市场,并获得了广泛的接受。然而,这并不代表低温等离子体消毒技术就已经达到了消毒技术的顶峰,目前为止,等离子体消毒技术还存在着一些困境。最直接的一个问题,就是这类等离子体均是负压或真空等离子体,无法进行大范围消毒灭菌。即使在腔内,等离子体环境由于没有压差,因此流动受阻,难以形成大规模均匀的等离子体氛围。一旦腔体尺寸增大,对应的真空度要求就变得更高,更难以达到。
可以直白的说,等离子体消毒技术进入大规模应用的最大阻碍,正是真空度的要求导致的,因此大量的研究着手于实现常压环境下等离子体的形成,也即等离子体炬的形成。在常压下形成稳定的等离子体并不容易,这是因为常压下的粒子平均自由程往往较低,粒子间通过碰撞,能量会快速的传递出去,除非起始的非平衡态程度高,不然很难形成稳定的等离子体。常压等离子体,尤其是表面耦合等离子体,其具有更高馈能效率,更宽的电子温度与离子温度的可调温度范围,更高的能量密度。这类常压等离子体被研究出来,使高温常压等离子体技术在消毒技术领域的应用得到了可能。
技术问题
有鉴于此,本发明提出一种性能优越的可调连续流等离子体消毒灭菌方法,以及对应的消毒灭菌设备。
技术解决方案
一方面,本发明提供了一种可调连续流等离子体消毒灭菌方法,包括:
在进出口压差可调的消毒灭菌舱内,励激起常压等离子体。待常压等离子体稳定后,视对应消毒或灭菌的工艺要求调整消毒灭菌舱的进出口压差,从而实现对舱内的等离子体密度的调节。随后,将载有待消毒灭菌的微生物载体连续送入消毒灭菌舱,进行消毒灭菌。完成处理后,载体即送出消毒灭菌舱,按照不同水平的微生物杀灭率的要求实现对载体的消毒或灭菌。
进一步地,所述的常压等离子体包括电容耦合等离子体,电感耦合等离子体,高压直流电弧,高压交流电弧,微波等离子体,表面耦合诱导等离子体。
进一步地,所述的常压等离子体其等离子体密度为1.0×10 3个/cm 3 ~1.0×10 30个/cm 3
进一步地,所述的常压等离子体其原子温度为1.0×10 0K ~1.0×10 12K。
进一步地,所述的常压等离子体其电子温度为1.0×10 0K ~1.0×10 12K。
进一步地,所述的微生物载体,其担载的微生物包括细菌(及其芽孢)、古菌、真菌、放线菌、原生动物、藻类、病毒、支原体、衣原体、类病毒、拟病毒、朊病毒。
进一步地,所述的微生物杀灭率的范围为90% ~ 99.9999%。
进一步地,所述在进出口压差可调的消毒灭菌舱内,励激起常压等离子体,具体包括如下步骤:1S1、向常压等离子体单元通入工质气体,待常压等离子体被工质气体饱和后,开始向等离子体功率源供能,直至等离子体成功点火,形成等离子体炬;1S2、在等离子体能够维持稳定的基础上,逐渐调节等离子体源的输入功率,直至等离子体的输入功率达到目标功率。
进一步地,所述步骤1S1中的工质气体,包括氢气,氧气,氮气,人造空气,氦气,氖气,氩气,氪气,氙气,氯气,氟气,溴蒸汽,氟化氢气体,氯化氢气体,碘化氢气体,溴化氢气体,二氧化氮气体,一氧化二氮气体,三氟化氮气体,一氧化碳气体,二氧化碳气体,氨气,六氟化硫气体,四氟化碳气体,硅烷气体,锗烷气体,有机气体中的一种或多种混合物。
进一步地,所述步骤1S1中的等离子体功率源,其功率为0.5W ~ 100kW。
进一步地,所述步骤1S2中的逐渐调节输入功率的方式,包括先调高功率再降低功率至目标功率,或逐渐将功率加至目标功率两种方式。
进一步地,所述在待常压等离子体稳定后,视对应消毒或灭菌的工艺要求调整消毒灭菌舱的进出口压差,从而实现对舱内的等离子体密度的调节,具体包括如下步骤:2S1、在等离子体能够维持稳定的基础上,通过消毒灭菌舱接入的压力调节单元中的出口压力调节模块,调节消毒灭菌舱的出口压力;2S2、在等离子体能够维持稳定的基础上,通过消毒灭菌舱的压力调节单元中的入口压力调节模块,调节消毒灭菌舱的入口压力。
进一步地,所述的消毒灭菌舱的进出口压差为0Pa ~ 120Mpa。
进一步地,所述的消毒灭菌舱的进口压力为0.0000001Pa ~ 120Mpa。
进一步地,所述的消毒灭菌舱的出口压力为0.0000001Pa ~ 120Mpa。
进一步地,所述步骤2S1中的出口压力调节模块,包括漩涡风机,离心风机,轴流风机,负压罗茨风机,文丘里管,空压机,气体减压泵,活塞式压缩机,射流真空泵,螺杆真空泵,液环真空泵,旋片真空泵,爪式真空泵,罗茨真空泵,往复式真空泵,分子泵,扩散泵,离子传输泵,吸附泵,升华泵,低温泵中的一种或多种。
进一步地,所述步骤2S2中入口压力调节模块,包括漩涡风机,离心风机,轴流风机,罗茨风机,文丘里管,气体增压泵,活塞式压缩机,气体钢瓶中的一种或多种。
进一步地,所述将载有待消毒灭菌的微生物载体连续送入消毒灭菌舱,进行消毒灭菌,具体包括如下步骤:3S1、将微生物载体以一定的速度送入消毒灭菌舱,并根据消毒灭菌舱的尺寸与等离子体源的功率,调节微生物载体在消毒灭菌舱内的运动速度与运动形式,以确保微生物载体在消毒舱内能够停留消毒或灭菌需求的工作时间。
进一步地,所述步骤3S1中的微生物载体,包括气流载体,液流载体,多相流载体,带有输送运动机构的固体载体。
进一步地,所述的微生物载体为气流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
进一步地,所述的微生物载体为液流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
进一步地,所述的微生物载体为多相流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
进一步地,所述的微生物载体为带有输送运动机构的固体载体时,其在消毒灭菌舱内的运动速度为线速度0.0001m/min ~ 60m/min。
进一步地,所述步骤3S1中的微生物载体在消毒灭菌舱内的运动形式,包括线性运动,螺线运动,涡旋运动,旋转运动,往复运动,随机运动中的一种或多种。
进一步地,所述步骤3S1中的消毒灭菌舱内能够停留消毒或灭菌需求的工作时间,为0.5s ~ 24h。
进一步地,所述完成处理后,载体即送出消毒灭菌舱,按照不同水平的微生物杀灭率的要求实现对载体的消毒或灭菌,具体包括如下步骤:4S1、当微生物载体在消毒灭菌舱内经过消毒或灭菌需求的工作时间后,将微生物载体送出消毒灭菌舱,即完成消毒过程。
另一方面,本发明还提供了一种消毒灭菌设备,包括消毒灭菌舱单元,压力调节单元,常压等离子体单元,微生物载体输送单元,状态测控单元,控温单元。所述消毒灭菌舱单元内含所述常压等离子体单元的点火模块,所述消毒灭菌舱单元进口与出口与所述压力调节单元连通,从而实现对所述消毒灭菌舱的舱内压力调控。所述微生物载体输送单元与所述压力调节单元连通,使微生物载体可在不同压力环境下送入所述消毒灭菌舱,并在完成消毒后送出。所述控温单元与消毒灭菌舱单元、常压等离子体单元、微生物载体输送单元接驳,从而实现对上述各单元的工作温度调节与恒温。所述状态测控单元控制所述消毒灭菌舱单元、所述常压等离子体炬单元、所述微生物载体输送单元与所述压力调节单元的状态,从而对消毒过程进行连续的测量,控制与调节。
进一步地,所述的消毒灭菌舱单元,包括消毒灭菌舱模块与光学测量接口、电学测量接口、温度测量接口。
进一步地,所述的消毒灭菌舱模块,其结构包括矩形舱结构,圆柱形舱结构,球型舱结构,锥形舱结构,椭球型舱结构,抛物面舱结构,双曲面舱结构,螺旋形舱结构,螺壳型舱结构,异型舱结构中的一种或多种组合。
进一步地,所述的压力调节单元,包括出口压力调节模块、入口压力调节模块、压力测量接口、流量测量接口。其中,出口压力调节模块与入口压力调节模块上都安装有压力测量接口与流量测量接口。
进一步地,所述的常压等离子体单元,包括等离子体源功率模块、工质进气模块、点火模块、功率反馈测量接口。其中,等离子源点火模块安置于消毒灭菌舱模块内,工质进气模块安装于点火模块后端,等离子体源功率模块其自身带有功率反馈测量接口,可受状态测控单元监控。
进一步地,所述的控温单元,包括散热模块与换热模块。其中,换热模块接驳与消毒灭菌舱单元、常压等离子体单元和微生物载体输送单元,确保上述单元的工作时产生的热量能够快速传递出去,同时,换热模块又与散热模块接驳,确保热量能够快速与环境或冷媒/热媒接触,从而使温度得到控制。
进一步地,所述的微生物载体输送单元,包括气流输送模块、或液流输送模块、或多相流输送模块、或带有输送运动机构的固体载体模块。
进一步地,所述的状态测控单元,包括控制面板、总控模块、光学测量模块、电学测量模块、温度测量模块、压力测量模块、流量测量模块、等离子体源功率反馈测量模块。
有益效果
与现有技术相比,该消毒灭菌方法可工作于大气压范围,可通过对环境内的气溶胶、多相流等流体进行连续流的处理,从而实现对开放、半封闭与封闭环境内进行杀菌与消毒,使等离子体消毒的空间限制问题直接获得了解决。此外,对于连续的表面杀菌与消毒,也可以通过常压下的固体载体模块,实现连续进出,从而可大批量的对手术器械、植入体等材料进行表面的消毒处理。
本发明还提供了对应的消毒灭菌设备,由于前述的消毒灭菌方法具有上述技术效果,故该消毒灭菌设备也具有相应的技术效果。
附图说明
图1为本发明所提供的消毒灭菌设备一种具体实施方式的结构示意图;
其中,图1中的附图标记和部件名称之间的对应关系如下:
设备外壳:1:顶盖;4&10&11&16:结构框架板;19:框架;9:检修口;13:固定组件;
消毒灭菌舱单元:21:消毒灭菌舱模块(矩形舱结构,内含表面耦合诱导等离子源点火模块,工质进气模块,光学测量接口、电学测量接口);20:温度测量接口;
压力调节单元:14:作为出口压力调节模块的风机(带有压力测量接口与流量测量接口);15:作为入口压力调节模块的气体钢瓶(带有压力测量接口);8:流量测量接口;
常压等离子体单元:17:等离子体源功率模块及功率反馈测量接口;6:工质进气模块;
控温单元:5:控温单元;
微生物载体输送单元:7:流体输送模块;
状态测控单元:2&3:控制面板;18:总控模块;
图2为简易流程图。
本发明的实施方式
了使本发明的目的、技术方案及优点更加清楚明白,以下对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明提供了一种基于可调连续流等离子体的消毒灭菌方法,以及对应的消毒灭菌设备。
本发明所述的基于可调连续流等离子体的消毒灭菌方法,是指通过常压等离子体在工作过程中产生的高能等离子体与等离子体的热量,及其退激发过程中产生的深紫外,极紫外乃至于软X射线辐射,结合等离子体本身与空气中的氧气分子碰撞、或空气中的氧气分子吸收了深紫外,极紫外乃至于软X射线辐射后,产生的一系列高级氧化介质,如臭氧、单线态氧分子、羟基自由基、过氧化物自由基、氧原子等,作为消毒因子,对所接触到的待处理介质进行全面、彻底的消毒或灭菌。结合新一代的常压等离子体技术,特别是表面耦合等离子体技术,能够实现高效的大范围连续消毒或灭菌。
相对于已有的技术而言,本申请发明人首次创新的将常压等离子体结合进出口压差,在非真空环境下将常压等离子体的工作范围进一步扩散,在一定规格和尺寸的舱体内实现了连续的等离子体消毒,可以允许在常压或正压环境下进样,这就保证了消毒过程能够直接敞开在大气环境中连续工作,无需专用的真空腔室。
基于此发明构思,本申请中选用了一系列不同类型的常压等离子体与压差实现形式来维持等离子体的扩散工作。此外,通过舱体内的运动形式调控,可以使微生物载体输送单元在舱体内经过不同的行程,从而控制其在消毒舱内的停留时间,进一步提高其消毒效率,使微生物载体输送单元表面的微生物完全被杀灭,达到高水平消毒或灭菌的消毒等级。
所述的常压等离子体包括电容耦合等离子体,电感耦合等离子体,高压直流电弧,高压交流电弧,微波等离子体,表面耦合诱导等离子体,优选为表面耦合诱导等离子体,高压交流电弧,微波等离子体。以紫外等辐射条件作为消毒因子时,等离子体需要激发到较高的激发态,确保辐射退激发时产生深紫外辐射乃至软X射线辐射,即高效率的等离子体激发方式可确保能量馈入效率高,等离子体的工作参数理想。
所述的常压等离子体其等离子体密度为1.0×10 3个/cm 3 ~ 1.0×10 30个/cm 3,优选为1.0×10 5个/cm 3~1.0×10 15个/cm 3;所述的常压等离子体其原子温度为1.0×10 0K ~1.0×10 12K,优选为3.5×10 1K ~1.0×10 7K;所述的常压等离子体其电子温度为1.0×10 0K ~1.0×10 12K,优选为3.5×10 1K ~1.0×10 7K。在本申请涉及的等离子体消毒过程中,当消毒时微生物载体为气体、液体或多相流的情况下,其消毒舱室内的停留时间有限,需要快速消毒,且此类载体能够承受高密度的等离子体轰击,故需要尽可能高的等离子体激发态,即需要所述等离子体整体的电离程度高,密度大,对应电子温度与原子温度高,从而确保良好的消毒效果;而当消毒时微生物载体为带有输送运动机构的固体载体的情况下,其等离子体轰击的耐受能力弱,但舱内停留时间长,即需低密度的等离子体长时间作用于,要求等离子体密度低,对应电子温度与原子温度亦较低。故,在等离子体消毒的场景下,随消毒对象不同,适用的等离子体密度、原子温度与电子温度都不同,需要宽泛的调节范围。
所述的微生物载体,其担载的微生物包括细菌(及其芽孢)、古菌、真菌、放线菌、原生动物、藻类、病毒、支原体、衣原体、类病毒、拟病毒、朊病毒。所述的微生物杀灭率的范围为90% ~ 99.9999%。对于本项申请的消毒方法,由于其消毒因子并非是传统消毒过程中使用的化学因子,而更多是基于紫外辐照、离子辐照进行消毒,其消毒强度足够高,甚至对于大部分的气态有机物都能实现高效的裂解至CH x碎片。因此,对于常见的各种微生物都能够有效灭除,其典型指示菌如嗜热脂肪杆菌芽孢、枯草杆菌芽孢、白色葡萄球菌等,均具良好的消毒灭菌效果。故认为其消毒对象具广谱性,微生物杀灭率可达高水平消毒及灭菌的消毒水平。
所述步骤1S1中的工质气体,包括氢气,氧气,氮气,人造空气,氦气,氖气,氩气,氪气,氙气,氯气,氟气,溴蒸汽,氟化氢气体,氯化氢气体,碘化氢气体,溴化氢气体,二氧化氮气体,一氧化二氮气体,三氟化氮气体,一氧化碳气体,二氧化碳气体,氨气,六氟化硫气体,四氟化碳气体,硅烷气体,锗烷气体,有机气体中的一种或多种混合物,优选为氢气,氧气,氮气,氩气,氦气,氨气,四氟化碳气体中的一种或多种混合物。所述工质具有宽范围的电离能,其混合物中许可各种准分子的激发模式,故可实现前述要求的等离子体密度。
所述步骤1S1中的等离子体功率源,其功率为0.5W ~ 100kW,优选为1W  ~ 5kW。选择所述功率范围,可避免消毒过程的能耗过高。
所述步骤1S2中的逐渐调节输入功率的方式,包括先调高功率再降低功率至目标功率,或逐渐将功率加至目标功率两种方式。所述的两种调节方式对于不同的功率源调节而言效果不同,当使用先调高功率再降低功率至目标功率的调节方式时,对于消毒设备的能耗会提高,对消毒设备的零部件也会有一定损伤,但是形成的等离子体稳定性好,易于维持;当使用逐渐将功率加至目标功率的调节方式时,能耗相对较低,且对整机工作寿命能够有所延长,但是等离子体的稳定性差,容易在工作中熄灭。因此,具体调节方式应当根据工作时的具体工况来判断和选择。
所述的消毒灭菌舱的进出口压差为 0Pa ~ 120Mpa,优选为0pa ~ 200000Pa;所述的消毒灭菌舱的进口压力为0.0000001Pa ~ 120Mpa,优选为100000Pa~ 200000Pa;所述的消毒灭菌舱的出口压力为0.0000001Pa ~ 120Mpa,优选为 0.01Pa~100000Pa;一般环境下的大气压力为100000Pa,也即0.1Mpa。在所述的进口压力与出口压力下,消毒灭菌舱的压差可以控制在大气压范围内,使整个设备的消毒过程可以在常压下开放进行消毒,且等离子体的平均自由程能够进一步延长,使工作范围得到提高,工作时长缩短。
所述的步骤2S1中的出口压力调节模块,包括漩涡风机,离心风机,轴流风机,负压罗茨风机,文丘里管,空压机,气体减压泵,活塞式压缩机,射流真空泵,螺杆真空泵,液环真空泵,旋片真空泵,爪式真空泵,罗茨真空泵,往复式真空泵,分子泵,扩散泵,离子传输泵,吸附泵,升华泵,低温泵中的一种或多种,优选为漩涡风机,负压罗茨风机,文丘里管,活塞式压缩机,射流真空泵,液环真空泵中的一种或多种。选择所述的出口压力调节模块,可以实现前述的出口压力要求,且对工况要求低,耐受性高,适用于本发明涉及的功能要求。
所述步骤2S2中的入口压力调节模块,包括漩涡风机,离心风机,轴流风机,罗茨风机,文丘里管,气体增压泵,活塞式压缩机,气体钢瓶中的一种或多种,优选为漩涡风机,气体增压泵,离心风机中的一种或多种。选择所述的入口压力调节模块,可以实现前述的入口压力要求,且能耗低,效率高,适用于本发明涉及的功能要求。
所述步骤3S1中的微生物载体,包括气流载体,液流载体,多相流载体,带有输送运动机构的固体载体。所述的微生物载体为气流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min ~ 100000 m 3/min,优选为0.5 m 3/min ~ 20 m 3/min;所述的微生物载体为液流载体时,其在消毒灭菌舱内的运动速度为流速 0.0001 m 3/min ~ 100000 m 3/min,优选为0.5 m 3/min ~ 10 m 3/min;所述的微生物载体为多相流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min ~ 100000 m 3/min,优选为0.5 m 3/min ~ 20 m 3/min;所述的微生物载体为带有输送运动机构的固体载体时,其在消毒灭菌舱内的运动速度为线速度0.0001m/min ~ 60m/min,优选为;0.01m/min ~ 1m/min。所述的微生物载体决定了本申请涉及的工作对象,当工作对象为流体,即气流、液流、多相流时,其适应的流速往往较高,能够快速通过消毒灭菌舱。而工作对象为非流体,即带有输送运动机构的固体载体时,由于机械运动的速度过快会对运动机械部分的负荷较大,容易引起磨损,故选择所述的工作速度。
所述步骤3S1中的微生物载体在消毒灭菌舱内的运动形式,包括线性运动,螺线运动,涡旋运动,旋转运动,往复运动,随机运动中的一种或多种,优选为线性运动,涡旋运动,旋转运动,随机运动中的一种或多种。所述的运动形式可以延长微生物载体在消毒灭菌舱内的行程,并避免过高的管损与弯损,使舱内出现非预期的压降。
所述步骤3S1中的消毒灭菌舱内能够停留消毒或灭菌需求的工作时间,为0.5s ~ 24h。所述的工作时间即内可达到预期的消毒效力。
另外,在本发明中还涉及到消毒灭菌方法对应的消毒灭菌设备。为了使本技术领域的人员更好地理解本发明方案,下面结合附图1对本发明作进一步的详细说明。
请参考附图1,图1为本发明所提供的消毒灭菌设备的一种具体实施方式的结构示意图。
在一种具体的实施方式中,本发明提供了一种消毒灭菌设备,包括:
设备外壳:顶盖1,结构框架板4&10&11&16,框架19,检修口9,固定组件13;消毒灭菌舱单元:消毒灭菌舱模块(矩形舱结构,内含表面耦合诱导等离子源点火模块,工质进气模块,光学测量接口、电学测量接口)21,温度测量接口20;压力调节单元:作为出口压力调节模块的风机(带有压力测量接口与流量测量接口)14,作为入口压力调节模块的气体钢瓶(带有压力测量接口)15,流量测量接口8;常压等离子体单元:等离子体源功率模块及功率反馈测量接口17,工质进气模块6;控温单元:控温单元5;微生物载体输送单元:流体输送模块7;状态测控单元:控制面板2&3,总控模块18;
该消毒灭菌设备工作时,待消毒的微生物载体经过微生物载体输送单元中的流体输送模块7向消毒灭菌舱单元中的消毒灭菌舱模块21送去,同时,通过压力调节单元中的出口压力调节模块的风机(带有压力测量接口与流量测量接口)14与入口压力调节模块的气体钢瓶(带有压力测量接口)15对消毒灭菌舱模块21的工作压力进行调节,在消毒灭菌舱模块21中包含有常压等离子体单元的点火模块(未画出),该点火模块的进气通过工质进气模块6进气,其功率输入通过等离子体源功率模块及功率反馈测量接口17进行输入。整套系统的控温通过控温模块5对整机的工作温度进行调节。在工作的过程中,温度测量接口20,消毒灭菌舱模块21上的光学测量接口、电学测量接口,出口压力调节模块的压力测量接口、流量测量接口14,入口压力调节模块的压力测量接口15,流量测量接口8,以及等离子体源功率模块上的功率反馈测量接口17,同时向状态测控单元的总控模块18提供各个量的测量值,经总控模块18按照控制面板2&3输入的控制要求,进行各个单元控制量的开环或闭环调节。
与现有技术相比,该消毒灭菌设备可工作于大气压范围,可通过对环境内的气溶胶、多相流等流体进行连续流的处理,从而实现对开放、半封闭与封闭环境内进行杀菌与消毒,使等离子体消毒的空间限制问题直接获得了解决。此外,对于连续的表面杀菌与消毒,也可以通过更换常压下的固体载体模块,实现连续进出,从而可大批量的对手术器械、植入体等材料进行表面的消毒处理。满足于本申请涉及的消毒灭菌方法的其他相关设备也具有相应的有益效果,其他相关设备请参考现有技术,本文不再赘述。
下面结合具体的实施例对本发明的方案进一步描述。
实施例 1
打开消毒灭菌设备,通过工质进气模块6向消毒灭菌舱模块21中的常压等离子体单元的点火模块通入氩气作为工质气体,直至氩气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源17向等离子体单元供能。起始时,通过控制面板2&3输入1500W作为等离子体点火功率,由总控模块18对等离子体源17的输出功率进行调节。当输入功率完成,等离子体炬形成后,再通过通过控制面板2&3调节至1000W维持等离子体稳定,通过消毒灭菌舱模块21上的光学测量接口、电学测量接口,测量等离子体参数,可判断等离子体密度为5×10 12个/cm 3,原子温度为4.3×10 5K,电子温度为2.0×10 4K。
待等离子体稳定后,通过压力调节单元中的出口压力调节模块的涡旋风机(带有压力测量接口与流量测量接口)14向消毒灭菌舱模块21调节出口压力至50000Pa,并通过入口压力调节模块的气体钢瓶(带有压力测量接口)15向消毒灭菌舱模块21调节入口压力至100000Pa。完成后,消毒灭菌舱模块21的进出口压差为50000Pa。使用细菌中的白色葡萄球菌8320作为测试微生物对象,以气流载体作为微生物载体,经流体输送模块7送入消毒灭菌舱模块21中,通过出口压力模块14带有的流量测量接口测定整体的流量,控制气流载体在消毒灭菌舱21内的流速至1 m 3/min,并在消毒灭菌舱21内进行直线运动,在消毒灭菌舱内停留的工作时间达到5s,离开消毒灭菌舱21即完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的白色葡萄球菌8320杀灭率达到了99.95%。
实施例 2
使用表面耦合诱导等离子体作为常压等离子体,其等离子体密度为3.7×10 11个/cm 3,原子温度为4.3×10 5K,电子温度为2.0×10 4K。向常压等离子体单元的工质进气模块通入氩气作为工质气体,直至氩气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用800W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到500W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵调节出口压力,入口压力调节单元使用漩涡风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵调节消毒灭菌舱的出口压力至2000Pa,再打开漩涡风机,使消毒灭菌舱的入口压力至0.1MPa。完成后,消毒灭菌舱的进出口压差为98000Pa。使用细菌中的白色葡萄球菌8320作为测试微生物对象,以气流载体作为微生物载体。将该气流载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在1 m 3/min,气流载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到20s,离开消毒灭菌舱即完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的白色葡萄球菌8320杀灭率达到了99.9999%。
实施例 3
使用电感耦合等离子体作为常压等离子体,其等离子体密度为3.5×10 12个/cm 3,原子温度为5×10 5K,电子温度为3.2×10 4K。向常压等离子体单元的工质进气模块通入人造空气作为工质气体,直至人造空气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1000W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵调节出口压力,入口压力调节单元使用罗茨风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵调节消毒灭菌舱的出口压力至4000Pa,再打开罗茨风机,使消毒灭菌舱的入口压力至0.1MPa。完成后,消毒灭菌舱的进出口压差为96000Pa。使用A/Califonia/07/2009亚型猪流感冷适应减毒疫苗株作为测试微生物对象,以带有输送运动机构的固体载体作为微生物载体。将该固体载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的线速度控制在1 m/min,固体载体在消毒灭菌舱内进行直线运动,在消毒灭菌舱内停留的工作时间达到60s,离开消毒灭菌舱即完成消毒。对消毒完成后的固体载体表面进行培养测试,相对于空白对照组而言,本实验组的A/Califonia/07/2009亚型猪流感冷适应减毒疫苗株灭活率达到了99.9991%。
实施例 4
使用微波等离子体作为常压等离子体,其等离子体密度为4×10 12个/cm3,原子温度为5×10 5K,电子温度为5×10 4K。向常压等离子体单元的工质进气模块通入氮气作为工质气体,直至氮气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1000W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵调节出口压力,入口压力调节单元使用离心风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开离心风机,使消毒灭菌舱的入口压力至0.1MPa。完成后,消毒灭菌舱的进出口压差为95000Pa。使用结核分枝杆菌 ATCC25177作为测试微生物对象,以液体载体作为微生物载体。将该液体载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在1.5 m 3/min,液体载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到100s,离开消毒灭菌舱即完成消毒。截取消毒完成后的液流进行培养测试,相对于空白对照组而言,本实验组的结核分枝杆菌 ATCC25177杀灭率达到了99.999%。
实施例 5
使用表面耦合诱导等离子体作为常压等离子体,其等离子体密度为3.2×10 15个/cm 3,原子温度为3.4×10 7K,电子温度为3.5×10 5K。向常压等离子体单元的工质进气模块通入氦气作为工质气体,直至氦气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用5kW作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到3kW的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用螺杆真空泵调节出口压力,入口压力调节单元使用气体增压泵调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开螺杆真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开气体增压泵,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为195000Pa。使用串珠镰刀菌BNCC186247种作为测试微生物对象,以多相流载体作为微生物载体。将该多相流载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在1.5 m 3/min,多相流载体在消毒灭菌舱内进行直线,在消毒灭菌舱内停留的工作时间达到1s,即离开消毒灭菌舱完成消毒。截取消毒完成后的多相流进行培养测试,相对于空白对照组而言,本实验组的串珠镰刀菌BNCC186247杀灭率达到了99.99%。
实施例 6
使用电容耦合等离子体作为常压等离子体,其等离子体密度为7.1×10 12个/cm 3,原子温度为5.6×10 5K,电子温度为5.5×10 4K。向常压等离子体单元的工质进气模块通入二氧化碳作为工质气体,直至二氧化碳饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1200W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用射流真空泵调节出口压力,入口压力调节单元使用空压机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开射流真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开空压机,使消毒灭菌舱的入口压力至0.3MPa。完成后,消毒灭菌舱的进出口压差为295000Pa。使用猪圆环病毒2型病毒作为测试微生物对象,以气流载体作为微生物载体。将该气流送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在2 m 3/min,气流载体在消毒灭菌舱内进行随机运动,在消毒灭菌舱内停留的工作时间达到10h,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的猪圆环病毒2型病毒,灭活率达到了99.98 %。
实施例 7
使用表面耦合诱导等离子体作为常压等离子体,其等离子体密度为7.1×10 12个/cm 3,原子温度为5.6×10 5K,电子温度为5.5×10 4K。向常压等离子体单元的工质进气模块通入二氧化碳作为工质气体,直至二氧化碳饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1200W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用负压罗茨风机调节出口压力,入口压力调节单元使用空压机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开负压罗茨风机调节消毒灭菌舱的出口压力至5000Pa,再打开空压机,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为195000Pa。使用枯草杆菌黑色变种ATCC9732芽孢作为测试微生物对象,以气流载体作为微生物载体。将该气流送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在0.2 m 3/min,气流载体在消毒灭菌舱内进行随机运动,在消毒灭菌舱内停留的工作时间达到1h,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的枯草杆菌黑色变种ATCC9732芽孢,杀灭率达到了99.9999 %。
实施例 8
使用电容耦合等离子体作为常压等离子体,其等离子体密度为7.2×10 12个/cm 3,原子温度为5.5×10 5K,电子温度为5.3×10 4K。向常压等离子体单元的工质进气模块通入氮气作为工质气体,直至氮气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1200W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵调节出口压力,入口压力调节单元使用活塞式压缩机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开活塞式压缩机,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为195000Pa。使用H1N1亚型流感病毒减毒疫苗种作为测试微生物对象,以液相流载体作为微生物载体。将该液相送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在2 m 3/min,气流载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到100s,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的H1N1亚型流感病毒减毒疫苗种,灭活率达到了99.91%。
实施例 9
使用电容耦合等离子体作为常压等离子体,其等离子体密度为7.2×10 12个/cm 3,原子温度为5.5×10 5K,电子温度为5.3×10 4K。向常压等离子体单元的工质进气模块通入氮气作为工质气体,直至氮气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1200W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵、罗茨真空泵与分子泵调节出口压力,入口压力调节单元使用漩涡风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵、罗茨真空泵与分子泵调节消毒灭菌舱的出口压力至0.00001Pa,再打开轴流风机,使消毒灭菌舱的入口压力至0.1MPa。完成后,消毒灭菌舱的进出口压差为99999.99999Pa。使用嗜热脂肪杆菌ATCC7953芽孢作为测试微生物对象,以带有输送运动机构的固体载体作为微生物载体。将该固体载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的线速度控制在1m/min,固体载体在消毒灭菌舱内进行直线运动,在消毒灭菌舱内停留的工作时间达到40min,即离开消毒灭菌舱完成消毒。对消毒完成后的固体载体表面进行培养测试,相对于空白对照组而言,本实验组的嗜热脂肪杆菌ATCC7953芽孢,杀灭率达到了99.9999%。
实施例 10
使用电容耦合等离子体作为常压等离子体,其等离子体密度为7.1×10 12个/cm 3,原子温度为5.6×10 5K,电子温度为5.5×10 4K。向常压等离子体单元的工质进气模块通入氮气作为工质气体,直至氮气饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1200W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到800W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用轴流风机调节出口压力,入口压力调节单元使用轴流风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开轴流风机调节消毒灭菌舱的出口压力至95000Pa,再打开轴流风机,使消毒灭菌舱的入口压力至0.1MPa。完成后,消毒灭菌舱的进出口压差为5000Pa。使用黄曲霉菌BNCC185691种作为测试微生物对象,以液流载体作为微生物载体。将该液流送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在2 m 3/min,液流载体在消毒灭菌舱内进行旋转运动,在消毒灭菌舱内停留的工作时间达到20min,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的黄曲霉菌BNCC185691种,杀灭率达到了99.6%。
实施例 11
使用高压交流电弧作为常压等离子体,其等离子体密度为5.5×10 12个/cm3,原子温度为4.4×10 5K,电子温度为3.5×10 4K。向常压等离子体单元的工质进气模块通入二氧化碳作为工质气体,直至二氧化碳饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1000W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到650W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用文丘里管调节出口压力,入口压力调节单元使用离心风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开文丘里管调节消毒灭菌舱的出口压力至50000Pa,再打开离心风机,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为150000Pa。使用脊髓灰质炎病毒I型疫苗种作为测试微生物对象,以多相流载体作为微生物载体。将该多相流载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在20 m3/min,气流载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到0.5s,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的脊髓灰质炎病毒I型疫苗种,灭活率达到了91%。
实施例 12
使用高压交流电弧作为常压等离子体,其等离子体密度为5.5×10 12个/cm3,原子温度为4.4×10 5K,电子温度为3.5×10 4K。向常压等离子体单元的工质进气模块通入二氧化碳作为工质气体,直至二氧化碳饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1000W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到650W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用液环真空泵调节出口压力,入口压力调节单元使用离心风机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开液环真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开漩涡风机,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为195000Pa。使用金黄色葡萄球菌ATCC6538种作为测试微生物对象,以多相流载体作为微生物载体。将该多相流载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的流速控制在1.5 m3/min,气流载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到400s,即离开消毒灭菌舱完成消毒。截取消毒完成后的气流进行培养测试,相对于空白对照组而言,本实验组的金黄色葡萄球菌ATCC6538种,杀灭率达到了99.99%。
实施例 13
使用高压交流电弧作为常压等离子体,其等离子体密度为5.5×10 12个/cm3,原子温度为4.4×10 5K,电子温度为3.5×10 4K。向常压等离子体单元的工质进气模块通入二氧化碳作为工质气体,直至二氧化碳饱和置换等离子体单元的气氛环境后,开始通过等离子体功率源向等离子体单元供能。起始时,使用1000W作为等离子体点火功率,当等离子体炬形成后,逐渐将功率降到650W的目标功率维持等离子体。
在消毒灭菌舱接入的压力调节单元中,其出口压力调节单元使用旋片真空泵调节出口压力,入口压力调节单元使用活塞式压缩机调节入口压力。在点火完成后,等离子体能够维持稳定的基础上,打开旋片真空泵调节消毒灭菌舱的出口压力至5000Pa,再打开活塞式压缩机,使消毒灭菌舱的入口压力至0.2MPa。完成后,消毒灭菌舱的进出口压差为195000Pa。使用大肠埃希氏菌ATCC8739种作为测试微生物对象,以带有输送运动机构的固体载体作为微生物载体。将该固体载体送入消毒灭菌舱进行消毒,其经过消毒灭菌舱的线速度控制在0.5m/min,固体载体在消毒灭菌舱内进行涡旋运动,在消毒灭菌舱内停留的工作时间达到1h,即离开消毒灭菌舱完成消毒。对消毒完成后的固体载体表面进行培养测试,相对于空白对照组而言,本实验组的大肠埃希氏菌ATCC8739种,杀灭率达到了99.99%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (40)

  1. 一种可调连续流等离子体消毒灭菌方法,包括以下步骤:
    (1)在进出口压差可调的消毒灭菌舱内,励激起常压等离子体 ;
    (2)待常压等离子体稳定后,调整消毒灭菌舱的进出口压差,从而实现对舱内的等离子体密度的调节;
    (3)将载有待消毒灭菌的微生物载体连续送入消毒灭菌舱,进行消毒灭菌;
    (4)将载体送出消毒灭菌舱,即完成消毒或灭菌。
  2. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于所述的常压等离子体包括电容耦合等离子体,电感耦合等离子体,高压直流电弧,高压交流电弧,微波等离子体,表面耦合诱导等离子体中的一种或多种。
  3. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的常压等离子体其等离子体密度为1.0×10 3个/cm 3 ~1.0×10 30个/cm 3
  4. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的常压等离子体其原子温度为1.0×10 0K ~1.0×10 12K。
  5. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的常压等离子体其电子温度为1.0×10 0K ~1.0×10 12K。
  6. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物载体,其担载的微生物包括细菌(及其芽孢)、古菌、真菌、放线菌、原生动物、藻类、病毒、支原体、衣原体、类病毒、拟病毒、朊病毒。
  7. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物杀灭率的范围为90% ~ 99.9999%。
  8. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述在进出口压差可调的消毒灭菌舱内,励激起常压等离子体,具体包括如下步骤:
    1S1、向常压等离子体单元通入工质气体,待常压等离子体被工质气体饱和后,开始向等离子体功率源供能,直至等离子体成功点火,形成等离子体炬;
    1S2、在等离子体能够维持稳定的基础上,逐渐调节等离子体源的输入功率,直至等离子体的输入功率达到目标功率。
  9. 根据权利要求8所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤1S1中的工质气体,包括氢气,氧气,氮气,人造空气,氦气,氖气,氩气,氪气,氙气,氯气,氟气,溴蒸汽,氟化氢气体,氯化氢气体,碘化氢气体,溴化氢气体,二氧化氮气体,一氧化二氮气体,三氟化氮气体,一氧化碳气体,二氧化碳气体,氨气,六氟化硫气体,四氟化碳气体,硅烷气体,锗烷气体,有机气体中的一种或多种混合物。
  10. 根据权利要求8所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤1S1中的等离子体功率源,其功率为0.5W ~ 100kW。
  11. 根据权利要求8所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤1S2中的逐渐调节输入功率的方式,包括先调高功率再降低功率至目标功率,或逐渐将功率加至目标功率两种方式。
  12. 根据权利要求8所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述待常压等离子体稳定后,调整消毒灭菌舱的进出口压差,从而实现对舱内的等离子体密度的调节,具体包括如下步骤:
    2S1:在等离子体能够维持稳定的基础上,通过消毒灭菌舱接入的压力调节单元中的出口压力调节模块,调节消毒灭菌舱的出口压力;
    2S2:在等离子体能够维持稳定的基础上,通过消毒灭菌舱的压力调节单元中的入口压力调节模块,调节消毒灭菌舱的入口压力。
  13. 根据权利要求12所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的消毒灭菌舱的进出口压差为0Pa ~ 120Mpa。
  14. 根据权利要求12所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的消毒灭菌舱的进口压力为0.0000001Pa ~ 120Mpa。
  15. 根据权利要求12所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的消毒灭菌舱的出口压力为0.0000001Pa ~ 120Mpa。
  16. 根据权利要求12所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所属步骤2S1中的出口压力调节模块,包括漩涡风机,离心风机,轴流风机,负压罗茨风机,文丘里管,空压机,气体减压泵,活塞式压缩机,射流真空泵,螺杆真空泵,液环真空泵,旋片真空泵,爪式真空泵,罗茨真空泵,往复式真空泵,分子泵,扩散泵,离子传输泵,吸附泵,升华泵,低温泵中的一种或多种。
  17. 根据权利要求12所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤2S2中的压力调节单元调节入口压力,包括漩涡风机,离心风机,轴流风机,罗茨风机,文丘里管,气体增压泵,活塞式压缩机,气体钢瓶中的一种或多种。
  18. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述将载有待消毒灭菌的微生物载体连续送入消毒灭菌舱,进行消毒灭菌,具体包括如下步骤:
    3S1:将微生物载体以一定的速度送入消毒灭菌舱,并根据消毒灭菌舱的尺寸与等离子体源的功率,调节微生物载体在消毒灭菌舱内的运动速度与运动形式,以确保微生物载体在消毒舱内能够停留消毒或灭菌需求的工作时间。
  19. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤3S1中的微生物载体,包括气流载体,液流载体,多相流载体,带有输送运动机构的固体载体中的一种或多种。
  20. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物载体为气流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
  21. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物载体为液流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
  22. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物载体为多相流载体时,其在消毒灭菌舱内的运动速度为流速0.0001 m 3/min~ 100000 m 3/min。
  23. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述的微生物载体为带有输送运动机构的固体载体时,其在消毒灭菌舱内的运动速度为线速度0.0001m/min ~ 60m/min。
  24. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤3S1中的微生物载体在消毒灭菌舱内的运动形式,包括线性运动,螺线运动,涡旋运动,旋转运动,往复运动,随机运动中的一种或多种。
  25. 根据权利要求18所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述步骤3S1中的消毒灭菌舱内能够停留消毒或灭菌需求的工作时间,为0.5s ~ 24h。
  26. 根据权利要求1所述的一种可调连续流等离子体消毒灭菌方法,其特征在于,所述完成处理后,载体即送出消毒灭菌舱,按照不同水平的微生物杀灭率的要求实现对载体的消毒或灭菌,具体包括如下步骤:
    4S1:当微生物载体在消毒灭菌舱内经过消毒或灭菌需求的工作时间后,将微生物载体送出消毒灭菌舱,即完成消毒过程。
  27. 一种消毒灭菌设备,可执行权利要求1-26任意一种可调连续流等离子体消毒灭菌方法。
  28. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,包括消毒灭菌舱单元,压力调节单元,常压等离子体单元,微生物载体输送单元,状态测控单元,控温单元。
  29. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述消毒灭菌舱单元内含所述常压等离子体单元的点火模块,所述消毒灭菌舱单元进口与出口与所述压力调节单元连通,从而实现对所述消毒灭菌舱的舱内压力调控。
  30. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述微生物载体输送单元与所述压力调节单元连通,使微生物载体可在不同压力环境下送入所述消毒灭菌舱,并在完成消毒后送出。
  31. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述控温单元与消毒灭菌舱单元、常压等离子体单元、微生物载体输送单元接驳,从而实现对上述各单元的工作温度调节与恒温。
  32. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述状态测控单元控制所述消毒灭菌舱单元、所述常压等离子体炬单元。
  33. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述微生物载体输送单元与所述压力调节单元的状态,从而对消毒过程进行连续的测量,控制与调节。
  34. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的消毒灭菌舱单元,包括消毒灭菌舱模块与光学测量接口、电学测量接口、温度测量接口。
  35. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的消毒灭菌舱模块,其结构包括矩形舱结构,圆柱形舱结构,球型舱结构,锥形舱结构,椭球型舱结构,抛物面舱结构,双曲面舱结构,螺旋形舱结构,螺壳型舱结构,异型舱结构中的一种或多种组合。
  36. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的压力调节单元,包括出口压力调节模块、入口压力调节模块、压力测量接口、流量测量接口。其中,出口压力调节模块与入口压力调节模块上都安装有压力测量接口与流量测量接口。
  37. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的常压等离子体单元,包括等离子体源功率模块、工质进气模块、点火模块、功率反馈测量接口。其中,等离子源点火模块安置于消毒灭菌舱模块内,工质进气模块安装于点火模块后端,等离子体源功率模块其自身带有功率反馈测量接口,可受状态测控单元监控。
  38. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的控温单元,包括散热模块与换热模块。其中,换热模块接驳与消毒灭菌舱单元、常压等离子体单元和微生物载体输送单元,确保上述单元的工作时产生的热量能够快速传递出去,同时,换热模块又与散热模块接驳,确保热量能够快速与环境或冷媒/热媒接触,从而使温度得到控制。
  39. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的微生物载体输送单元,包括气流输送模块、或液流输送模块、或多相流输送模块、或带有输送运动机构的固体载体模块中的一种或多种。
  40. 根据权利要求27所述的一种消毒灭菌设备,其特征在于,所述消毒灭菌设备,所述的状态测控单元,包括控制面板、总控模块、光学测量模块、电学测量模块、温度测量模块、压力测量模块、流量测量模块、等离子体源功率反馈测量模块。
PCT/CN2020/089416 2020-05-09 2020-05-09 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备 WO2021226751A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20935355.6A EP4147728A4 (en) 2020-05-09 2020-05-09 METHOD FOR DISINFECTION AND STERILIZATION WITH ADJUSTABLE CONTINUOUS FLOW AND DISINFECTION AND STERILIZATION DEVICE THEREFOR
JP2023512257A JP2023525408A (ja) 2020-05-09 2020-05-09 調整可能な連続流プラズマによる消毒滅菌方法及びそれに対応する消毒滅菌装置
PCT/CN2020/089416 WO2021226751A1 (zh) 2020-05-09 2020-05-09 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备
US17/921,728 US20230165990A1 (en) 2020-05-09 2020-05-09 Adjustable continuous-flow plasma disinfection and sterilization method and corresponding disinfection and sterilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089416 WO2021226751A1 (zh) 2020-05-09 2020-05-09 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备

Publications (1)

Publication Number Publication Date
WO2021226751A1 true WO2021226751A1 (zh) 2021-11-18

Family

ID=78526076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089416 WO2021226751A1 (zh) 2020-05-09 2020-05-09 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备

Country Status (4)

Country Link
US (1) US20230165990A1 (zh)
EP (1) EP4147728A4 (zh)
JP (1) JP2023525408A (zh)
WO (1) WO2021226751A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604847Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形内射冷等离子体发生器
CN1525803A (zh) * 2003-02-27 2004-09-01 王守国 常压射频和直流混合型冷等离子体系统及其喷枪
CN2682773Y (zh) * 2004-03-18 2005-03-02 中国科学院微电子研究所 常压射频低温冷等离子体放电通道装置
JP2006020950A (ja) * 2004-07-09 2006-01-26 Saga Univ プラズマ滅菌装置
CN101583233A (zh) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 一种常压等离子体装置
WO2011147595A1 (en) * 2010-05-27 2011-12-01 Arann Healthcare Ltd. Method and apparatus for the sterilisation of articles
CN104623704A (zh) * 2015-03-03 2015-05-20 湖北新方向医药有限公司 一种腔式常压低温等离子体消毒灭菌装置
KR101972094B1 (ko) * 2018-06-05 2019-04-24 국방과학연구소 저온 플라즈마 살균이 가능한 전자렌지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604847Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形内射冷等离子体发生器
CN1525803A (zh) * 2003-02-27 2004-09-01 王守国 常压射频和直流混合型冷等离子体系统及其喷枪
CN2682773Y (zh) * 2004-03-18 2005-03-02 中国科学院微电子研究所 常压射频低温冷等离子体放电通道装置
JP2006020950A (ja) * 2004-07-09 2006-01-26 Saga Univ プラズマ滅菌装置
CN101583233A (zh) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 一种常压等离子体装置
WO2011147595A1 (en) * 2010-05-27 2011-12-01 Arann Healthcare Ltd. Method and apparatus for the sterilisation of articles
CN104623704A (zh) * 2015-03-03 2015-05-20 湖北新方向医药有限公司 一种腔式常压低温等离子体消毒灭菌装置
KR101972094B1 (ko) * 2018-06-05 2019-04-24 국방과학연구소 저온 플라즈마 살균이 가능한 전자렌지

Also Published As

Publication number Publication date
EP4147728A1 (en) 2023-03-15
JP2023525408A (ja) 2023-06-15
US20230165990A1 (en) 2023-06-01
EP4147728A4 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
Moreau et al. Non-thermal plasma technologies: new tools for bio-decontamination
US5645796A (en) Process for plasma sterilizing with pulsed antimicrobial agent treatment
US5413758A (en) Apparatus for plasma sterilizing with pulsed antimicrobial agent treatment
US5413760A (en) Plasma sterilizer and method
Zhang et al. Bactericidal effects of plasma induced reactive species in dielectric barrier gas–liquid discharge
US5115166A (en) Plasma sterilizer and method
EP0835141B1 (en) Plasma water vapor sterilizer and method
JP2774193B2 (ja) プラズマ循環殺菌方法
KR20120130768A (ko) 액체에 대한 플라즈마 입자를 적용하기 위한 방법 및 장치와 물을 소독하는 방법
Sen et al. Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces
Singh et al. Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture
JP2013537433A (ja) プラズマ生成ガス滅菌法
Chiang et al. Inactivation of E. coli and B. subtilis by a parallel-plate dielectric barrier discharge jet
US20080112846A1 (en) Device for Sterilizing with Gaseous Plasma Formed from a Mixture of Nitrogen and Hydrogen
Abuzairi et al. Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization
US20130230426A1 (en) Device for cold plasma sterilization of an object, such as medical device, particularly an implant, and method of using this device
Mok et al. Afterglow corona discharge air plasma (ACDAP) for inactivation of common food-borne pathogens
JPH09510640A (ja) 滅菌装置および滅菌方法のためのプラズマ混合ガス
Lin et al. Ar/O 2 argon-based round atmospheric-pressure plasma jet on sterilizing bacteria and endospores
Tanino et al. Sterilization using dielectric barrier discharge at atmospheric pressure
CN113101389B (zh) 一种等离子体杀菌装置、杀菌气体的制备方法及杀菌方法
Du et al. Decontamination of Bacteria by Gas-Liquid Gliding Arc Discharge: Application to $ Escherichia~ coli$
WO2021226751A1 (zh) 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备
CN111544623B (zh) 一种可调连续流等离子体消毒灭菌方法及其对应的消毒灭菌设备
JP7039849B2 (ja) 処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512257

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020935355

Country of ref document: EP

Effective date: 20221209

NENP Non-entry into the national phase

Ref country code: DE