WO2021226733A1 - 一种具有棱台状转镜的激光装置 - Google Patents

一种具有棱台状转镜的激光装置 Download PDF

Info

Publication number
WO2021226733A1
WO2021226733A1 PCT/CN2020/000227 CN2020000227W WO2021226733A1 WO 2021226733 A1 WO2021226733 A1 WO 2021226733A1 CN 2020000227 W CN2020000227 W CN 2020000227W WO 2021226733 A1 WO2021226733 A1 WO 2021226733A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
rotating mirror
prism
laser
supporting
Prior art date
Application number
PCT/CN2020/000227
Other languages
English (en)
French (fr)
Inventor
陈中莉
李峰西
高凯
邢振宏
索海生
豪斯特·埃克斯纳
Original Assignee
济南森峰科技有限公司
山东镭鸣数控激光装备有限公司
山东森峰激光装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南森峰科技有限公司, 山东镭鸣数控激光装备有限公司, 山东森峰激光装备有限公司 filed Critical 济南森峰科技有限公司
Publication of WO2021226733A1 publication Critical patent/WO2021226733A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention relates to the field of laser cutting equipment, in particular to a laser device with a prism-shaped rotating mirror.
  • the laser light emitted from the laser is focused into a high-power density laser beam through the optical path system.
  • the laser beam irradiates the surface of the workpiece to make the workpiece reach the melting point or boiling point, and the high-pressure gas coaxial with the beam blows away the molten or vaporized metal.
  • the material will finally form a slit, so as to achieve the purpose of cutting.
  • the patent application number 2019183636.8 discloses a laser cutting device.
  • the rotation speed of the polygon mirror reaches 25m/s ⁇ 100m/s, which is much higher than the swing speed of the galvanometer, thereby improving the efficiency of laser cutting, but its cutting efficiency Still can't meet the demand.
  • the invention provides a laser device with a prism-shaped rotating mirror, which solves the problem of how to improve the efficiency of laser cutting in the prior art.
  • a laser device with a prism-shaped rotating mirror including a supporting drive device.
  • the supporting drive device is provided with a laser generator, a reflecting mirror group, a rotating mirror, a galvanometer and a field lens in sequence along the laser propagation direction.
  • the rotating mirror includes an upper prism
  • the upper prism and the lower prism are in the same shape as a truncated prism, the upper prism and the lower prism are coaxially and fixedly connected, and the smaller bottom surface of the upper prism portion and the smaller bottom surface of the lower prism portion are completely overlapped
  • the rotating mirror and the galvanometer are respectively rotatably connected with the support driving device, and the support driving device is also provided with a driving device for driving the rotating mirror and a driving device for driving the galvanometer.
  • the laser light emitted by the laser generator is reflected by the mirror group and reaches the rotating mirror. After the reflection of the upper prism part and the reflection of the lower prism part, the laser light is reflected on the galvanometer, and then it is focused by the field lens and output to act on the processing object. .
  • the rotation of the rotating mirror and the galvanometer make the laser action point on the working plane move in two mutually perpendicular horizontal directions respectively.
  • the coordinated action of the two mirrors enables the laser to complete linear and various curved movements on the working plane. Since the laser is reflected twice on the rotating mirror, the rotating mirror composed of two prisms is more efficient in deflecting the laser than the prismatic rotating mirror. When the rotating speed of the rotating mirror remains unchanged, the efficiency of laser cutting is improved.
  • the upper prism part and the lower prism part are both octagonal prisms, and the sides of the upper prism part and the lower prism part are both provided with a gold-plated layer. Gold plating on the reflective surface of the rotating mirror can improve the reflectivity.
  • the rotation axis of the rotating mirror is arranged coaxially with the upper prism part and the lower prism part, and the axis of the rotation axis of the rotating mirror is perpendicular to the axis of the rotation axis of the galvanometer mirror.
  • the axis of the rotating mirror of the rotating mirror is perpendicular to the axis of the rotating axis of the galvanometer, so that the laser action point on the working plane can move in two mutually perpendicular horizontal directions respectively, and the two mirrors cooperate to make the laser complete on the working plane. Movement of straight lines and various curves.
  • the rotation axis of the rotating mirror is vertical, and the rotation axis of the galvanometer mirror is horizontal. It is convenient to calculate the rotation speed and angle of the rotating mirror and galvanometer.
  • the reflecting mirror group includes a first flat reflecting mirror and a second flat reflecting mirror, the angle between the first flat reflecting mirror and the horizontal plane is 45°, the second flat reflecting mirror is parallel to the first flat reflecting mirror, and the first plane reflecting The mirror is located directly above the second plane reflecting mirror, and the first plane reflecting mirror and the second plane reflecting mirror are both arranged on the supporting driving device.
  • the horizontally incident laser mirror reflects the first plane mirror and reaches the second plane mirror vertically downwards, and the laser light becomes horizontal after being reflected by the second plane mirror and is incident on the rotating mirror.
  • the supporting driving device includes a supporting horizontal plate and a supporting vertical plate, and the supporting horizontal plate is fixedly connected with the supporting vertical plate.
  • the laser generating device includes a mounting seat and a laser isolation generator, a red light beam combiner and a beam expander arranged in sequence along the optical path.
  • the red light beam combiner is arranged on the mounting seat, and the mounting seat is provided with a beam expander adjustment
  • the beam expander is arranged on the beam expander adjustment frame. Both the laser isolation generator and the mounting base are fixedly connected to the supporting horizontal plate.
  • a first reflector frame is fixedly connected to the support vertical plate, the first plane reflector is arranged on the first reflector frame, and the support vertical plate is provided with a vertical ball screw.
  • a moving seat is provided on the nut, and a second reflecting mirror frame is connected to the moving seat.
  • the second plane reflecting mirror is arranged on the second reflecting mirror frame.
  • the rotating mirror and the galvanometer are respectively connected to the moving seat in rotation through a connecting piece.
  • the field lens is fixedly connected with the movable base through the connecting piece.
  • the ball screw is used to drive the moving base to move up and down, thereby driving the second plane mirror, the rotating mirror, the galvanometer, and the field lens to move up and down.
  • the field lens is an F-theta field lens.
  • the F-theta field lens is used to focus the laser.
  • the supporting vertical plate is provided with a servo motor for driving the ball screw.
  • the efficiency of the rotating mirror composed of two prisms to deflect the laser is higher than that of the prismatic rotating mirror.
  • the efficiency of laser cutting is improved.
  • Figure 1 is a schematic diagram of the structure of the rotating mirror of the present invention.
  • Figure 2 is a cross-sectional view of the present invention.
  • Figure 3 is a perspective view of the present invention.
  • Figure 4 is a perspective view of the present invention.
  • Laser isolation generator 2. Galvanometer, 3. Field lens, 4. Upper prism part, 5. Lower prism part, 6. First plane mirror, 7, Second plane mirror, 8. Support horizontal plate , 9. Support vertical plate, 10. Ball screw, 11. Servo motor.
  • a laser device with a prism-shaped rotating mirror includes a supporting drive device.
  • the supporting drive device is sequentially provided with a laser isolation generator 1, a red light beam combiner, and a beam expander along the laser propagation direction.
  • Mirror, mirror group, rotating mirror, galvanometer 2 and F-theta field lens, F-theta field lens is used to focus the laser.
  • the rotating mirror includes an upper prism part 4 and a lower prism part 5.
  • the upper prism part 4 and the lower prism part 5 are prism-shaped with the same shape.
  • the upper prism part 4 and the lower prism part 5 are coaxially fixedly connected, and the upper prism part 4 is smaller.
  • the bottom surface of the lower prism part 5 is completely overlapped with the smaller bottom surface of the lower prism part 5.
  • the rotating mirror and the galvanometer 2 are respectively connected to the supporting driving device for rotation.
  • the supporting driving device is also provided with a driving device for driving the rotating mirror and a driving device for driving the galvanometer 2 Drive device.
  • the laser light generated by the laser isolation generator 1 undergoes the action of the red light beam combiner and the beam expander to achieve beam expansion, and then is reflected by the mirror group to reach the rotating mirror.
  • the rotating mirror rotates rapidly to reflect the laser Go to the galvanometer 2, and then focus on the F-theta field lens, and then the output will act on the object to be processed.
  • the rotation of the rotating mirror and the galvanometer 2 make the laser action points on the working plane move in two mutually perpendicular horizontal directions respectively, and the two mirrors work together so that the laser can complete linear and various curved movements on the working plane.
  • the mirror surface rotates at an angle of ⁇ , and the angle of rotation of the outgoing light is 2 ⁇ . Since the laser is reflected twice on the rotating mirror, the efficiency of the rotating mirror composed of two prisms to deflect the laser is that of a prismatic rotating mirror. double. When the rotating speed of the rotating mirror remains unchanged, the efficiency of laser cutting is improved.
  • Both the upper prism part 4 and the lower prism part 5 are octagonal prisms, and the sides of the upper prism part 4 and the lower prism part 5 are both provided with a gold-plated layer. Gold plating on the reflective surface of the rotating mirror can improve the reflectivity.
  • the rotating mirror is rotatably connected with the supporting drive device through a rotating shaft.
  • the rotating shaft is arranged coaxially with the upper prism part 4 and the lower prism part 5.
  • the laser action points move in two mutually perpendicular horizontal directions, and the coordinated action of the two mirrors enables the laser to complete linear and various curved movements on the working plane.
  • the rotation axis of the rotating mirror is vertical, and the rotation axis of the galvanometer 2 is horizontal. It is convenient to calculate the rotation speed and angle of the rotating mirror and the galvanometer 2.
  • the reflecting mirror group includes a first flat reflecting mirror 6 and a second flat reflecting mirror 7.
  • the first flat reflecting mirror 6 and the horizontal plane have an angle of 45°
  • the second flat reflecting mirror 7 is parallel to the first flat reflecting mirror 6, and the first plane
  • the reflecting mirror 6 is located directly above the second plane reflecting mirror 7.
  • the horizontally incident laser mirror is reflected by the first plane mirror 6 and reaches the second plane mirror 7 vertically downwards.
  • the laser light is reflected by the second plane mirror 7 and then becomes horizontal and is incident on the rotating mirror.
  • the supporting driving device includes a supporting horizontal plate 8 and a supporting vertical plate 9, and the supporting horizontal plate 8 and the supporting vertical plate 9 are fixedly connected.
  • the laser isolation generator 1 is fixedly connected to the supporting horizontal plate 8.
  • the supporting horizontal plate 8 is fixedly connected with a mounting seat, the red light beam combiner is arranged on the mounting seat, and the mounting seat is provided with a beam expander adjustment frame, and the beam expander is set On the beam expander adjustment frame.
  • the support vertical plate 9 is fixedly connected with a first reflector frame, the first plane reflector 6 is arranged on the first reflector frame, and the support vertical plate 9 is provided with a vertical ball screw 10 and used for driving the balls.
  • the servo motor 11 of the screw 10, the nut of the ball screw 10 is provided with a movable seat, and a second mirror frame is connected to the movable seat.
  • the second plane mirror 7 is arranged on the second mirror frame.
  • the rotating mirror and the galvanometer 2 are respectively rotatably connected with the moving base through a connecting piece, and the F-theta field lens is fixedly connected with the moving base through a connecting piece.
  • the ball screw 10 is used to drive the moving base to move up and down, thereby driving the second plane mirror 7, the rotating mirror, the galvanometer 2, and the F-theta field lens to move up and down.

Abstract

一种具有棱台状转镜的激光装置,包括支撑驱动装置,支撑驱动装置上沿激光传播方向依次设有激光发生装置、反射镜组、转镜、振镜(2)和场镜(3),转镜包括上棱镜部(4)和下棱镜部(5),上棱镜部(4)和下棱镜部(5)为形状相同的棱台状,上棱镜部(4)和下棱镜部(5)同轴固定连接,上棱镜部(4)较小的底面与下棱镜部(5)较小的底面完全重合,转镜和振镜(2)分别与支撑驱动装置转动连接,支撑驱动装置上还设有用于驱动转镜的驱动装置以及用于驱动振镜(2)的驱动装置。由于激光在转镜上经过了两次反射,由两个棱台组成的转镜偏转激光的效率高于棱柱状转镜。在转镜转动速度不变的情况下,提高了激光切割的效率。

Description

一种具有棱台状转镜的激光装置 技术领域
本发明涉及激光切割设备领域,尤其涉及一种具有棱台状转镜的激光装置。
背景技术
从激光器发射出的激光,经光路系统,聚焦成高功率密度的激光束。激光束照射到工件表面,使工件达到熔点或沸点,同时与光束同轴的高压气体将熔化或气化金属吹走。随着光束与工件相对位置的移动,最终使材料形成切缝,从而达到切割的目的。申请号为2019183636.8的专利公开了一种激光切割装置,其多面转镜的转动速度达到25m/s~100m/s,远大于振镜摆动的速度,从而提高了激光切割的效率,但是其切割效率仍不能满足需求。
发明内容
本发明提供一种具有棱台状转镜的激光装置,解决了现有技术中如何提高激光切割效率的问题。
一种具有棱台状转镜的激光装置,包括支撑驱动装置,支撑驱动装置上沿激光传播方向依次设有激光发生装置、反射镜组、转镜、振镜和场镜,转镜包括上棱镜部和下棱镜部,上棱镜部和下棱镜部为形状相同的棱台状,上棱镜部和下棱镜部同轴固定连接,上棱镜部较小的底面与下棱镜部较小的底面完全重合,转镜和振镜分别与支撑驱动装置转动连接,支撑驱动装置上还设有用于驱动转镜的驱动装置以及用于驱动振镜的驱动装置。激光发生装置发出的激光经过反射镜组的反射,到达转镜,经过上棱镜部的反射和下棱镜部的反射,将激光反射到振镜上,然后经场镜聚焦后输出作用于处理对象上。转镜和振镜的转动使工作平面上的激光作用点分别在两个互相垂直的水平方向上移动,两个镜面协同动作使激光可以在工作平面上完成直线和各种曲线的移动。由于激光在转镜上经过了两次反射,由两个棱台组成的转镜偏转激光的效率高于棱柱状转镜。在转镜转动速度不变的情况下,提高了激光切割的效率。
进一步,所述上棱镜部和下棱镜部均为八棱台,上棱镜部和下棱镜部的侧面均设有镀金层。转镜反射面镀金能够提高反射率。
进一步,所述转镜的转动轴与上棱镜部和下棱镜部同轴设置,转镜的转动轴轴线与所述振镜的转动轴轴线垂直。转镜的转动轴轴线与所述振镜的转动轴轴线垂直能够使工作平面上的激光作用点分别在两个互相垂直的水平方向上移动,两个镜面协同动作使激光可以在工作平面上完成直线和各种曲线的移动。
进一步,所述转镜的转动轴竖直,所述振镜的转动轴水平。便于计算转镜和振镜的转动 速度与角度。
进一步,所述反射镜组包括第一平面反射镜和第二平面反射镜,第一平面反射镜与水平面夹角为45°,第二平面反射镜与第一平面反射镜平行,第一平面反射镜位于第二平面反射镜正上方,第一平面反射镜和第二平面反射镜均设置在支撑驱动装置上。水平入射的激光镜第一平面反射镜反射后竖直向下到达第二平面反射镜,激光经过第二平面反射镜反射后变为水平,入射到到转镜上。
进一步,所述支撑驱动装置包括支撑横板和支撑竖板,支撑横板与支撑竖板固定连接。
进一步,所述激光发生装置包括安装座以及沿光路依次设置的激光隔离发生器、红光合束镜和扩束镜,红光合束镜设置在安装座上,安装座上设有扩束调整架,扩束镜设置在扩束调整架上。激光隔离发生器和安装座均固定连接在支撑横板上。
进一步,所述支撑竖板上固定连接有第一反光镜架,所述第一平面反射镜设置在第一反光镜架上,支撑竖板上设有竖直的滚珠丝杠,滚珠丝杠的螺母上设有移动座,移动座上连接有第二反射镜架,所述第二平面反射镜设置在第二反射镜架上,所述转镜和振镜分别通过连接件与移动座转动连接,所述场镜通过连接件与移动座固定连接。滚珠丝杠用于驱动移动座上下移动,进而带动第二平面反射镜、转镜、振镜、场镜上下移动。
进一步,所述场镜为F-theta场镜。F-theta场镜用于聚焦激光。
进一步,所述支撑竖板上设有用于驱动滚珠丝杠的伺服电机。
从以上技术方案可以看出,本发明具有以下优点:
由于激光在转镜上经过了上棱镜部的反射和下棱镜部的反射,因此由两个棱台组成的转镜偏转激光的效率高于棱柱状转镜。在转镜转动速度不变的情况下,提高了激光切割的效率。
附图说明
为了更清楚地说明本发明的技术方案,下面将对描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明转镜结构示意图。
图2为本发明剖视图。
图3为本发明立体图。
图4为本发明立体图。
1、激光隔离发生器,2、振镜,3、场镜,4、上棱镜部,5、下棱镜部,6、第一平面反射镜,7、第二平面反射镜,8、支撑横板,9、支撑竖板,10、滚珠丝杠,11、伺服电机。
具体实施方式
为使得本发明的目的、特征、优点能够更加的明显和易懂,下面将结合本具体实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本专利中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本专利保护的范围。
实施例1
如图1-4所示,一种具有棱台状转镜的激光装置,包括支撑驱动装置,支撑驱动装置上沿激光传播方向依次设有激光隔离发生器1、红光合束镜、扩束镜、反射镜组、转镜、振镜2和F-theta场镜,F-theta场镜用于聚焦激光。转镜包括上棱镜部4和下棱镜部5,上棱镜部4和下棱镜部5为形状相同的棱台状,上棱镜部4和下棱镜部5同轴固定连接,上棱镜部4较小的底面与下棱镜部5较小的底面完全重合,转镜和振镜2分别与支撑驱动装置转动连接,支撑驱动装置上还设有用于驱动转镜的驱动装置以及用于驱动振镜2的驱动装置。激光隔离发生器1产生的激光经过红光合束镜和扩束镜的作用后,实现扩束,然后经反射镜组的反射,到达转镜,转镜在快速旋转的作用下,将激光反射到振镜2上,然后经F-theta场镜聚焦后输出作用于处理对象上。转镜和振镜2的转动使工作平面上的激光作用点分别在两个互相垂直的水平方向上移动,两个镜面协同动作使激光可以在工作平面上完成直线和各种曲线的移动。在一次反射中,反射镜面转动角度α,出射光线转动的角度为2α,由于激光在转镜上经过了两次反射,由两个棱台组成的转镜偏转激光的效率是棱柱状转镜的两倍。在转镜转动速度不变的情况下,提高了激光切割的效率。上棱镜部4和下棱镜部5均为八棱台,上棱镜部4和下棱镜部5的侧面均设有镀金层。转镜反射面镀金能够提高反射率。转镜通过转动轴与支撑驱动装置转动连接,转动轴与上棱镜部4和下棱镜部5同轴设置,转镜的转动轴轴线与所述振镜2的转动轴轴线垂直能够使工作平面上的激光作用点分别在两个互相垂直的水平方向上移动,两个镜面协同动作使激光可以在工作平面上完成直线和各种曲线的移动。转镜的转动轴竖直,振镜2的转动轴水平。便于计算转镜和振镜2的转动速度与角度。
反射镜组包括第一平面反射镜6和第二平面反射镜7,第一平面反射镜6与水平面夹角为45°,第二平面反射镜7与第一平面反射镜6平行,第一平面反射镜6位于第二平面反射镜7正上方。水平入射的激光镜第一平面反射镜6反射后竖直向下到达第二平面反射镜7,激光经过第二平面反射镜7反射后变为水平,入射到到转镜上。支撑驱动装置包括支撑横板8和支撑竖板9,支撑横板8与支撑竖板9固定连接。激光隔离发生器1固定连接在支撑横板8上,支撑横板8上固定连接有安装座,红光合束镜设置在安装座上,安装座上设有扩束 调整架,扩束镜设置在扩束调整架上。支撑竖板9上固定连接有第一反光镜架,所述第一平面反射镜6设置在第一反光镜架上,支撑竖板9上设有竖直的滚珠丝杠10以及用于驱动滚珠丝杠10的伺服电机11,滚珠丝杠10的螺母上设有移动座,移动座上连接有第二反射镜架,所述第二平面反射镜7设置在第二反射镜架上,所述转镜和振镜2分别通过连接件与移动座转动连接,所述F-theta场镜通过连接件与移动座固定连接。滚珠丝杠10用于驱动移动座上下移动,进而带动第二平面反射镜7、转镜、振镜2、F-theta场镜上下移动。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种具有棱台状转镜的激光装置,其特征在于,包括支撑驱动装置,支撑驱动装置上沿激光传播方向依次设有激光发生装置、反射镜组、转镜、振镜(2)和场镜(3),转镜包括上棱镜部(4)和下棱镜部(5),上棱镜部(4)和下棱镜部(5)为形状相同的棱台状,上棱镜部(4)和下棱镜部(5)同轴固定连接,上棱镜部(4)较小的底面与下棱镜部(5)较小的底面完全重合,转镜和振镜(2)分别与支撑驱动装置转动连接,支撑驱动装置上还设有用于驱动转镜的驱动装置以及用于驱动振镜(2)的驱动装置。
  2. 根据权利要求1所述的具有棱台状转镜的激光装置,其特征在于,所述上棱镜部(4)和下棱镜部(5)均为八棱台,上棱镜部(4)和下棱镜部(5)的侧面均设有镀金层。
  3. 根据权利要求1或2所述的具有棱台状转镜的激光装置,其特征在于,所述转镜的转动轴与上棱镜部(4)和下棱镜部(5)同轴设置,转镜的转动轴轴线与所述振镜(2)的转动轴轴线垂直。
  4. 根据权利要求3所述的具有棱台状转镜的激光装置,其特征在于,所述转镜的转动轴竖直,所述振镜(2)的转动轴水平。
  5. 根据权利要求1所述的具有棱台状转镜的激光装置,其特征在于,所述反射镜组包括第一平面反射镜(6)和第二平面反射镜(7),第一平面反射镜(6)与水平面夹角为45°,第二平面反射镜(7)与第一平面反射镜(6)平行,第一平面反射镜(6)位于第二平面反射镜(7)正上方,第一平面反射镜(6)和第二平面反射镜(7)均设置在支撑驱动装置上。
  6. 根据权利要求5所述的具有棱台状转镜的激光装置,其特征在于,所述支撑驱动装置包括支撑横板(8)和支撑竖板(9),支撑横板(8)与支撑竖板(9)固定连接。
  7. 根据权利要求6所述的具有棱台状转镜的激光装置,其特征在于,所述激光发生装置设置在支撑横板(8)上。
  8. 根据权利要求6所述的具有棱台状转镜的激光装置,其特征在于,所述支撑竖板(9)上固定连接有第一反光镜架,所述第一平面反射镜(6)设置在第一反光镜架上,支撑竖板(9)上设有竖直的滚珠丝杠(10),滚珠丝杠(10)的螺母上设有移动座,移动座上连接有第二反射镜架,所述第二平面反射镜(7)设置在第二反射镜架上,所述转镜和振镜(2)分别通过连接件与移动座转动连接,所述场镜(3)通过连接件与移动座固定连接。
  9. 根据权利要求1或8所述的具有棱台状转镜的激光装置,其特征在于,所述场镜(3)为F-theta场镜。
  10. 根据权利要求8所述的具有棱台状转镜的激光装置,其特征在于,所述支撑竖板(9)上设有用于驱动滚珠丝杠(10)的伺服电机(11)。
PCT/CN2020/000227 2020-05-12 2020-09-18 一种具有棱台状转镜的激光装置 WO2021226733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010396981.1 2020-05-12
CN202010396981.1A CN111618425B (zh) 2020-05-12 2020-05-12 一种具有棱台状转镜的激光装置

Publications (1)

Publication Number Publication Date
WO2021226733A1 true WO2021226733A1 (zh) 2021-11-18

Family

ID=72267998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000227 WO2021226733A1 (zh) 2020-05-12 2020-09-18 一种具有棱台状转镜的激光装置

Country Status (2)

Country Link
CN (1) CN111618425B (zh)
WO (1) WO2021226733A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111618425B (zh) * 2020-05-12 2021-03-19 济南森峰科技有限公司 一种具有棱台状转镜的激光装置
CN112769026A (zh) * 2020-12-18 2021-05-07 洛阳鼎铭光电科技有限公司 一种激光反射透镜组及方法
CN113523577A (zh) * 2021-07-09 2021-10-22 济南森峰激光科技股份有限公司 基于转镜的perc电池片高速激光开槽方法、装置及perc电池片
CN113547238B (zh) * 2021-09-23 2022-01-07 济南森峰激光科技股份有限公司 一种增大高速转镜激光加工阵列微孔孔径的方法
CN113664393A (zh) * 2021-09-30 2021-11-19 卡门哈斯激光科技(苏州)有限公司 一种太阳能光伏电池片的无损切割方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2141577A1 (en) * 1992-08-03 1994-02-17 David R. Hennings Method and apparatus for exposing a human eye to a controlled pattern of radiation spots
JP2013086129A (ja) * 2011-10-18 2013-05-13 Mitsuboshi Diamond Industrial Co Ltd レーザビームによるガラス基板加工装置
CN105436704A (zh) * 2016-01-12 2016-03-30 上海理工大学 基于径向偏振光束的双加工头激光加工装置
CN106271118A (zh) * 2016-09-29 2017-01-04 常州英诺激光科技有限公司 一种提高多孔径微孔激光加工质量的装置及方法
CN107309556A (zh) * 2016-04-14 2017-11-03 大族激光科技产业集团股份有限公司 一种激光钻孔装置及方法
CN110625245A (zh) * 2018-06-25 2019-12-31 大族激光科技产业集团股份有限公司 振镜系统、激光焊接方法以及激光焊接设备
CN111618425A (zh) * 2020-05-12 2020-09-04 济南森峰科技有限公司 一种具有棱台状转镜的激光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2098042U (zh) * 1991-05-18 1992-03-04 中国科学院长春光学精密机械研究所 激光转镜式光学扫描系统的光学转镜
JP2000267030A (ja) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd 光走査装置
CN2382034Y (zh) * 1999-06-30 2000-06-07 中国科学院西安光学精密机械研究所 一种激光视频扫描仪
CN2573142Y (zh) * 2002-08-12 2003-09-17 天津工业大学 一种激光宽带扫描转镜
DE102015014143B4 (de) * 2015-11-01 2020-12-17 MOEWE Optical Solutions GmbH Verwendung einer optischen Einrichtung zur Ablenkung und Fokussierung von Laserstrahlung
CN206746166U (zh) * 2017-02-12 2017-12-15 太仓华风环保科技有限公司 万向抽气罩净气一体装置
CN107297365B (zh) * 2017-08-09 2019-06-14 温州职业技术学院 一种双波长复合能量分布的台式激光精密清洗装置
CN209062370U (zh) * 2018-10-17 2019-07-05 歌尔科技有限公司 一种激光加工装置
CN109773331B (zh) * 2018-12-29 2021-02-09 江苏维力安智能科技有限公司 一种带旋转轴的防撞式内导光激光切割装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2141577A1 (en) * 1992-08-03 1994-02-17 David R. Hennings Method and apparatus for exposing a human eye to a controlled pattern of radiation spots
JP2013086129A (ja) * 2011-10-18 2013-05-13 Mitsuboshi Diamond Industrial Co Ltd レーザビームによるガラス基板加工装置
CN105436704A (zh) * 2016-01-12 2016-03-30 上海理工大学 基于径向偏振光束的双加工头激光加工装置
CN107309556A (zh) * 2016-04-14 2017-11-03 大族激光科技产业集团股份有限公司 一种激光钻孔装置及方法
CN106271118A (zh) * 2016-09-29 2017-01-04 常州英诺激光科技有限公司 一种提高多孔径微孔激光加工质量的装置及方法
CN110625245A (zh) * 2018-06-25 2019-12-31 大族激光科技产业集团股份有限公司 振镜系统、激光焊接方法以及激光焊接设备
CN111618425A (zh) * 2020-05-12 2020-09-04 济南森峰科技有限公司 一种具有棱台状转镜的激光装置

Also Published As

Publication number Publication date
CN111618425A (zh) 2020-09-04
CN111618425B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2021226733A1 (zh) 一种具有棱台状转镜的激光装置
KR102509901B1 (ko) 회전 거울을 구비한 레이저 가공 장치
JP4691166B2 (ja) スキャナヘッド及び当該スキャナヘッドを用いた加工機器
JPH11501738A (ja) 反射光学付きレーザー走査装置
CN110681992B (zh) 一种可调变的宽带激光加工光学系统及加工方法
WO2022052162A1 (zh) 一种含双抛物面镜动态聚焦模块的三维扫描系统
JP2002301585A (ja) 遠隔操作によるレーザ溶接システム及び溶接方法
CN210967462U (zh) 一种可调变的宽带激光加工光学系统
CN210548826U (zh) 激光微孔加工的光束扫描系统
CN106735887A (zh) 一种单振镜全反射式位移调焦3d扫描光学系统
CN105904087A (zh) 一种反射式高功率双金属振镜扫描系统
CN204353650U (zh) 光学聚焦结构及激光加工设备
CN206445359U (zh) 一种单振镜全反射式位移调焦3d扫描光学系统
CN115070201A (zh) 一种激光功率连续可分配的分光系统及方法
CN205702846U (zh) 一种反射式高功率双金属振镜扫描系统
RU2782513C1 (ru) Лазерное устройство с призматическим вращающимся зеркалом
CN110524111A (zh) 一种基于动态组合光束的激光焊接装置
CN112705841B (zh) 基于多边形扫描转镜的超快激光高速微纳加工系统
CN115533301A (zh) 一种加工设备
CN212350805U (zh) 一种具有棱台状转镜的激光装置
CN111487764B (zh) 一种基于抛物面反射镜折叠光路的激光动态聚焦系统
CN102649194A (zh) 一种光学盲点的激光加工方法及激光加工装置
CN204353651U (zh) 光学聚焦结构及激光加工设备
RU2283738C1 (ru) Установка для лазерной обработки
CN211554483U (zh) 一种三维动态聚焦振镜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935662

Country of ref document: EP

Kind code of ref document: A1