WO2021226197A1 - Systèmes et procédés de modulation de la fonctionnalité d'un cerveau d'animal à l'aide de réseaux de bobines planaires - Google Patents

Systèmes et procédés de modulation de la fonctionnalité d'un cerveau d'animal à l'aide de réseaux de bobines planaires Download PDF

Info

Publication number
WO2021226197A1
WO2021226197A1 PCT/US2021/030826 US2021030826W WO2021226197A1 WO 2021226197 A1 WO2021226197 A1 WO 2021226197A1 US 2021030826 W US2021030826 W US 2021030826W WO 2021226197 A1 WO2021226197 A1 WO 2021226197A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar
arrays
array
controller
user
Prior art date
Application number
PCT/US2021/030826
Other languages
English (en)
Inventor
Kamran Ansari
Nadia Ansari
Original Assignee
Kamran Ansari
Nadia Ansari
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2020/031467 external-priority patent/WO2020227288A1/fr
Priority claimed from US17/065,412 external-priority patent/US11020603B2/en
Application filed by Kamran Ansari, Nadia Ansari filed Critical Kamran Ansari
Publication of WO2021226197A1 publication Critical patent/WO2021226197A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/008Magnetotherapy specially adapted for a specific therapy for pain treatment or analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Definitions

  • the present invention is directed toward modulating brain waves, generated by the brain of an animal, such as a human being, using discrete arrays planar coils. More specifically, the present invention is directed toward the design, creation and use of clothing products, and other devices, that integrate configurations of arrays of planar coils to generate pulsed electromagnetic fields to treat various medical conditions, such as chronic sinus inflammation, anxiety, insomnia, sleep disorders, depression, pain, food cravings, drug dependency, drug addiction, dementia, chronic pain, and/or memory loss and to effectuate improved mood, decreased sinus congestion, increased feelings of well-being, increased energy levels, increased memory, increased creative thinking, decreased anxiety, decreased depression, decreased pain, and/or improved sleep quality of an animal.
  • various medical conditions such as chronic sinus inflammation, anxiety, insomnia, sleep disorders, depression, pain, food cravings, drug dependency, drug addiction, dementia, chronic pain, and/or memory loss and to effectuate improved mood, decreased sinus congestion, increased feelings of well-being, increased energy levels, increased memory, increased creative thinking, decreased anxiety, decreased depression, decreased pain, and/or improved
  • EEGs electroencephalograms
  • Certain brain wave profiles are indicative of healthy brain function and may be measured, tracking, and quantified using EEGs.
  • beta waves or rhythms which are in the range of 13 to 35 Hz, are associated with consciousness, brain activities, and motor behaviors.
  • Alpha waves or rhythms which are in the range of 7 to 13 Hz, originate from occipital lobes during wakeful relaxation and are associated with relaxation or a meditative state.
  • Theta waves or rhythms, which are in the range of 4 to 7 Hz are typically recorded when an individual is experiencing low brain activity, sleep, or drowsiness.
  • Delta waves or rhythms which are in the range of 0 to 4 Hz, are typically recorded during very low activities of the brain and deep sleep.
  • Gamma waves or rhythms which are in the range of 30 to 100 Hz, are produced by different populations of neurons firing together in a neural network during certain motor or cognitive functions.
  • mental disorders such as obsessive-compulsive disorder (OCD) can be detected through an EEG, and studies have revealed a decrease in alpha and beta rhythms and an increase in the theta wave in the EGG of OCD patients
  • anxiety has EEG manifestations including an increased activity of rapid brain waves (beta rhythm), especially in the central part of frontal cortex and the activity of the alpha rhythm is decreased in patients with chronic anxiety
  • PTSD posttraumatic stress disorder
  • ADHD patients show a decreased beta activity in comparison with normal children, an increase in theta to beta (q/b) rhythm and missing alpha
  • TENS units which require a patient to attach leads to his or her ear, connect to an external stimulator, and periodically apply a current.
  • the application of a current particularly to the vagus nerve of the patient, may modulate electrical impulses in the brain and, accordingly, modulate brain wave activity.
  • this is intimidating, impractical (particularly in public situations or on the job), and psychologically difficult to do on a regular basis.
  • PEMF pulsed electromagnetic field therapy
  • patient compliance is low and extended treatment periods, such as one or more hours, tends to be unrealistic for most active patients.
  • they generate highly localized magnetic fields which tend to only over a small portion of the brain or are substantially non-homogenous across their surface areas.
  • the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields, often yielding asymmetrical responses in the patient’s anatomy. This can be particularly problematic in the brain where asymmetrically modulating brain wave activity may hurt, rather than help, a patient.
  • these devices often fail to inconspicuously conform to particular body parts, are difficult to position or wear for long periods of time and are challenging to use consistently.
  • a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • chronic pain affects more than 100 million people in the US.
  • the most common underlying biological causes for chronic pain include decreased blood circulation, damaged nerves, and/or increased inflammation.
  • opioids have been a widely used way of alleviating chronic pain, the medical community now recognizes the substantial disadvantages of prescribing opioids.
  • the Centers for Disease Control and Prevention estimates that the total economic burden of prescription opioid misuse alone in the United States is $78.5 billion a year, including the costs of healthcare, lost productivity, addiction treatment, and criminal justice involvement. Therefore, the search is on for a better way to treat pain without relying on highly addictive drugs.
  • PEMF therapy uses bursts of low-level electromagnetic radiation to heal damaged tissues and bone and to relieve injury -related pain.
  • the idea is that, when low frequency pulses pass through the skin and penetrate into muscle, nerves, bone and/or tendons, the body’s natural repair mechanisms are activated, possibly by normalizing electrical charge distribution in cells, increasing blood perfusion in the affected areas, or improving signaling and/or conduction in nerves.
  • PEMF therapy has been shown to be effective in regenerating nerves, treating back pain, improving wound healing, countering the effects of Parkinson’s disease, and treating peripheral neuropathy, using magnetic fields ranging from picoTesla to Tesla levels.
  • PEMF is a recognized therapy for treating pseudoarthrosis, diabetes mellitus induced complications, delayed wound healing, pain and neurodegenerative disorders and arthritis, and for regenerating musculoskeletal tissues such as cartilage, bone, tendon and ligaments.
  • PEMF therapy is delivered by a mat, ring or a small disc device that generates a pulsing electromagnetic field using large cylindrically shaped, non- planar coils, such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis.
  • large cylindrically shaped, non- planar coils such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis.
  • the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields.
  • Patients are unaware of what surface areas emit therapeutic doses and what surface areas emit non-therapeutic doses, resulting in suboptimal therapy. For example, a patient with a need for PEMF therapy in his or her feet may lay on a mat in a way that the feet are not sufficiently exposed to the requisite magnetic field dose levels.
  • these devices are not specifically designed to treat, or be applied to, specific parts of the body. As such, they often fail to conform to particular body parts, are difficult to position or wear for long periods of time and are to use consistently.
  • PEMF devices designed for at home use, to treat anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson’s disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer’s disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, and sleep apnea are simply not available and have generally been deemed to be untreatable using PEMF devices.
  • a pulse electromagnetic field device that can generate substantially homogenous magnetic fields across large surface areas. It is further desirable to have a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • a pulsed electromagnetic field device configured to direct pulsed electromagnetic fields toward a user’s brain, comprising: a hat comprising a crown having an internal surface configured to receive the user’s head; a controller configured to be attached to a surface of the hat and configured to generate an electrical current; and at least two planar flexible arrays, wherein: each of the at least two planar flexible arrays comprises at least two planar microcoils integrated into a flexible substrate; the at least two planar microcoils are positioned in a same plane and the plane does not intersect a surface of the user’s head; each array of the at least two planar flexible arrays is physically separate and coupled to the internal surface of the crown; each array of the at least two planar flexible arrays is in electrical communication with the controller; and each of the at least two planar microcoils on each of the at least two planar flexible arrays is configured to receive the electrical current to generate separate pulsed electromagnetic fields.
  • the controller is configured to direct the electrical current to each of the at least two planar flexible arrays at different times.
  • the controller is configured to direct the electrical current to each of the at least two planar microcoils in each of the at least two planar flexible arrays in parallel.
  • the controller is configured to direct the electrical current to each of the at least two planar microcoils in each of the at least two planar flexible arrays serially.
  • the controller is configured to direct the electrical current to each of the at least two planar flexible arrays at the same time.
  • the single treatment session is less than 6 contiguous hours.
  • the controller is configured to direct the electrical current to each of the at least two planar flexible arrays such that, over a single treatment session, a same volume of the user’s brain is exposed to pulsed electromagnetic fields that change directions depending on which of the at least two planar flexible arrays is receiving the electrical current.
  • the controller is adapted to generate an electrical pulse train having a frequency in a range of 0.1 Hz to 60 Hz and to deliver the electrical pulse train to each array of the at least two planar flexible arrays.
  • the electrical pulse train comprises at least two pulses having different peak levels of current wherein the different peak levels of current are in a range of 5mA to 500mA.
  • a shape of each of the at least two pulses is rectangular.
  • each array of the at least two planar flexible arrays comprises at least 4 spiral shaped planar microcoils that are each embedded into the flexible substrate.
  • the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 planar microcoils concurrently.
  • the at least two planar flexible arrays comprises at least 5 planar flexible arrays and wherein: a first array of the at least 5 planar flexible arrays is positioned at a front portion of the crown such that, when the hat is worn on the user’s head, the first array of the at least 5 planar flexible arrays is positioned adjacent a frontal lobe of the brain within the user’s head; a second array of the at least 5 planar flexible arrays is positioned at a right side portion of the crown such that, when the hat is worn on the user’s head, the second array of the at least 5 planar flexible arrays is positioned adjacent a right temporal lobe of the brain within the user’s head; a third array of the at least 5 planar flexible arrays is positioned at a left side portion of the crown such that, when the hat is worn on the user’s head, the third array of the at least 5 planar flexible arrays is positioned adjacent a left temporal lobe of the brain within the user’s head;
  • the controller is adapted to generate an electrical pulse train having a frequency in a range of 0.1 Hz to 100 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar flexible arrays.
  • the controller is adapted to generate an electrical pulse train having a frequency in a range of 0.1 Hz to 100 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar flexible arrays.
  • the hat comprises two or more layers of material wherein each of the at least 5 planar flexible arrays is positioned between the two or more layers of material.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the at least 5 planar flexible arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • each of the first pulse, second pulse, and third pulse has a substantially rectangular shape.
  • each array of the at least 5 planar flexible arrays comprises an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the at least two planar microcoils positioned on each of the at least 5 planar flexible arrays to the input terminal and the output terminal.
  • each array of the at least 5 planar flexible arrays comprises at least four planar microcoils integrated therein, wherein each of the at least four planar microcoils is positioned in the same plane that does not intersect a surface of the user’s head.
  • a pulsed electromagnetic field device comprising: a hat comprising a crown having an internal surface configured to receive a human head; a controller configured to be attached to an external surface of the hat; and a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • each array of the plurality of planar microcoil arrays is physically separate and configured to independently receive an electrical current from the controller.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays.
  • the electrical pulse train comprises at least two pulses having different peak levels of current and wherein the different peak levels of current are in a range of 5mA to 500mA.
  • a shape of each of the at least two pulses may be rectangular.
  • the frequency may be in a range of 1 Hz to 60 Hz.
  • each array of the plurality of planar microcoil arrays comprises at least 4 spiral shaped microcoils.
  • the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 microcoils concurrently.
  • the plurality of planar microcoil arrays comprises at least 5 planar microcoil arrays wherein: a first array of the at least 5 planar microcoil arrays is positioned at a front portion of the crown such that, when the hat is worn on the human head, the first array of the at least 5 planar microcoil arrays is positioned adjacent a frontal lobe of a brain within the human head; a second array of the at least 5 planar microcoil arrays is positioned at a right side portion of the crown such that, when the hat is worn on the human head, the second array of the at least 5 planar microcoil arrays is positioned adjacent a right temporal lobe of the brain within the human head; a third array of the at least 5 planar microcoil arrays is positioned at a left side portion of the crown such that, when the hat is worn on the human head, the third array of the at least 5 planar microcoil arrays is positioned adjacent a left temporal lobe of the brain within the
  • the controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar microcoil arrays.
  • the controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar microcoil arrays.
  • the hat comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • Each of the first pulse, second pulse, and third pulse may have a substantially rectangular shape.
  • each array of the plurality of planar microcoil arrays is configured to generate a magnetic field in a range of 100 microTesla to 300 microTesla as measured 1mm or less from a surface of the each array of the plurality of planar microcoils arrays.
  • the generated magnetic field may be adapted to degrade in air to less than 80 microTesla over a distance of at least 10 mm.
  • each array of the plurality of planar microcoil arrays comprises an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the microcoils positioned on each array of the plurality of planar microcoil arrays to the input terminal and the output terminal.
  • a first set of each of the microcoils may be configured to direct current clockwise and a second set of each of the microcoils may be configured to direct current counterclockwise.
  • Each of the microcoils may be configured to direct current in a same direction.
  • Each of the microcoils may be at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a physiological state, wherein the physiological state is representative of at least one of the user’s state of stress, state of anxiety, state of relaxation or whether the user has a headache.
  • the controller is adapted to generate an electrical pulse train having a frequency, to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays in accordance with a programmed time period, and to automatically terminate generating the electrical pulse train after the programmed time period elapses.
  • the pulsed electromagnetic field device further comprises a liner configured to be attached to the internal surface of the crown, wherein the liner comprises a plurality of cells and wherein each cell of the plurality of cells is defined by a pocket made of a first material bounded by a second material, and wherein the first material is more flexible than the second material.
  • the plurality of cells may be divided into a first set of cells and a second set of cells, wherein each cell of the first set of cells comprises one array of the plurality of planar microcoils arrays and a cushioning material, and wherein each cell of the second set of cells comprises cushioning material without any array of the plurality of planar microcoils arrays.
  • the substrate is flexible and each of the at least one planar microcoil is embedded, layered, or printed on the flexible substrate.
  • the hat further comprises a brim attached to the crown and the controller is adapted to be coupled to a portion of the brim.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, or improved mental acuity.
  • the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, or improved mental acuity.
  • the controller may be adapted to receive the data indicative of the desired type of treatment from the separate computing device, to generate an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • the programmed time period may be based on the data indicative of the desired type of treatment.
  • the controller comprises a switch, wherein a position of the switch is representative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, or improved mental acuity, and wherein the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, or improved mental acuity
  • the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each array of the plurality
  • the present specification also discloses a pulsed electromagnetic field device comprising: an article of clothing; a controller removably attachable to the article of clothing; and a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • the pulsed electromagnetic field device further comprises a docking station, wherein the docking station is configured to releasably receive the controller.
  • the docking station comprises a first mechanical connector and a first electrical interface
  • the controller comprises a second mechanical connector and a second electrical interface, and wherein, upon the first mechanical connector and the second mechanical connector latching, the first electrical interface is automatically placed in electrical communication with the second electrical interface.
  • the article of clothing comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • the article of clothing is at least one of a sock, a shoe, a shirt, a pant, a glove, a mask, a neck covering, a head covering, a headband, a sleeve, or a brace configured to fit over an elbow, an ankle, or a knee.
  • the controller is configured to generate a pulse train, wherein each pulse train comprises a plurality of pulses having an amplitude in a range of 1mA to 200mA.
  • the pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • Each of the first pulse, second pulse, and third pulse may have a square shape.
  • Each of the two or more planar microcoils may be configured to generate a magnetic field in a range of 1 microTesla to 100 microTesla upon receiving the pulse train.
  • each of the plurality of planar microcoil arrays comprises at least six planar microcoils.
  • Each of the plurality of planar microcoil arrays may comprise an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the at least six planar microcoils to the input terminal and the output terminal.
  • a first set of the at least six planar microcoils is configured to direct current clockwise and a second set of the at least six planar microcoils is configured to direct current counterclockwise.
  • the first set of the at least six planar microcoils is less than the second set of the at least six planar microcoils.
  • the first set of the at least six planar microcoils is equal to the second set of the at least six planar microcoils. All of the at least six planar microcoils may be configured to direct current in a same direction.
  • each of the two or more planar microcoils is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • each of the plurality of planar microcoil arrays is physically separate and a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • each of the plurality of planar microcoil arrays is physically separate and has a same surface area.
  • the controller may be configured to generate a time varying current in order to create a time varying magnetic field at each of the plurality of planar microcoil arrays.
  • the time varying current is defined by square waves having substantially equal peak amplitude values.
  • the time varying current is defined by sinusoidal waves having substantially equal peak amplitude values.
  • the time varying current is defined by square waves having substantially different peak amplitude values.
  • the time varying current is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak amplitude value to a higher peak amplitude value.
  • the controller may be configured to cause an electrical current to be concurrently transmitted to all of the plurality of planar microcoil arrays.
  • the controller may be configured to cause an electrical current to be transmitted to all of the plurality of planar microcoil arrays at different times.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain.
  • the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain.
  • the programmatic instructions when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain and transmit the data to the controller.
  • the controller generates an electrical current based on the data and in a predefined pattern based on at least one of the pain level or the locus of pain.
  • the pulsed electromagnetic field device further comprises a plurality of traces integrated into the article of clothing and extending from each of the plurality of planar microcoil arrays to the controller.
  • the present specification also discloses a method of treating a condition, comprising: attaching an article of clothing to a portion of a patient’s body, wherein the article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing; attaching a controller to the docking station, wherein the controller comprises a circuit and a power source; and activating the controller to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • the method condition may be at least one of an anxiety disorder, an obsessive compulsive disorder, a post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson’s disease, stroke rehabilitation, drug addiction, drug cravings, depression, depression-related conditions, post-partum depression, bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer’s disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, or sleep apnea.
  • the method further comprises attaching the article of clothing such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient’s body.
  • the circuit upon attaching the controller to the docking station, automatically electrically interfaces with at least one of the plurality of planar microcoil arrays.
  • the present specification also discloses a pulsed electromagnetic field system comprising: a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate and wherein one of the plurality of planar microcoil arrays is connected to another of the plurality of planar microcoil arrays; and a controller configured to generate an electrical current and transmit that electrical current, in accordance with a particular stimulation protocol, to each of the plurality of planar microcoil arrays.
  • the planar microcoil is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • each of the plurality of planar microcoil arrays has a same surface area.
  • the stimulation protocol comprises a time varying magnetic field.
  • the time varying magnetic field is defined by square waves having substantially equal peak values.
  • the time varying magnetic field is defined by a sinusoidal wave.
  • the time varying magnetic field is defined by square waves having different peak values.
  • the time varying magnetic field is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak value to a higher peak value.
  • the controller is configured to cause an electrical current to be transmitted substantially currently to all of the plurality of planar microcoil arrays.
  • the controller is configured to cause an electrical current to be transmitted to the plurality of planar microcoil arrays at different times.
  • the pulsed electromagnetic field system further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain.
  • the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain.
  • the programmatic instructions when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain and transmit said data to the controller.
  • the controller generates an electrical current based on said data and in a predefined pattern based on the pain level and/or locus of pain.
  • the present specification also discloses a sock, shirt, pant, glove, head covering, head band, helmet, mask, neck covering, sleeve, and garment comprising the pulsed electromagnetic field system described above.
  • the present specification also describes a repetitive transcranial magnetic stimulation system for detecting and suppressing epileptic seizures
  • a hat comprising a crown having an internal surface configured to receive a human head, a controller configured to be attached to an external surface of the hat, electroencephalogram (EEG) sensors distributed around, and coupled to the internal surface, and a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown in positions where the EEG sensors are not located, and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller, wherein the controller is configured to receive data from the EEG sensors, determine if a seizure is occurring or is imminent based on the EEG sensor data, and based on said determination, direct current to at least one of the plurality of planar microcoil arrays.
  • each array of the plurality of planar microcoil arrays is physically separate and configured to independently receive an electrical current from the controller.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays.
  • the electrical pulse train comprises at least two pulses having different peak levels of current and wherein the different peak levels of current are in a range of 5mA to 500mA.
  • the shape of each of the at least two pulses is rectangular.
  • the frequency is in a range of 0.1 Hz to 5 Hz.
  • each array of the plurality of planar microcoil arrays comprises at least 4 spiral-shaped microcoils.
  • the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 microcoils concurrently.
  • the controller is adapted to generate an electrical pulse train having a frequency in a range of 0.1 Hz to 5 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar microcoil arrays.
  • the controller is adapted to generate an electrical pulse train having a frequency in a range of 0.1 Hz to 5 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar microcoil arrays.
  • the hat comprises two or more layers of material and wherein the plurality of planar microcoil arrays and EEG sensors are positioned between the two or more layers of material.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • each of the first pulse, second pulse, and third pulse has a substantially rectangular shape.
  • the present specification discloses a method of increasing cerebral oxygenation levels in a person undergoing cardiac arrest, comprising: acquiring a disposable repetitive transcranial magnetic stimulation system for detecting and suppressing epileptic seizures comprising a cap that has a crown having an internal surface configured to receive a human head, a controller configured to be attached to an external surface of the cap, and a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown, and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller, and activating the controller to initiate current to one or more of the plurality of planar microcoil arrays.
  • Figure 1 A depicts an exemplary planar microcoil in a first circular configuration
  • Figure IB depicts an exemplary planar microcoil in a first rectangular configuration
  • Figure 2A depicts an exemplary planar microcoil in a second circular configuration
  • Figure 2B depicts an exemplary planar microcoil in a second rectangular configuration
  • Figure 3 A depicts an exemplary planar microcoil in a third circular configuration
  • Figure 3B depicts an exemplary planar microcoil in a third rectangular configuration
  • Figure 3C depicts an exemplary planar microcoil in a fourth configuration
  • Figure 4A depicts an exemplary planar microcoil in a first alternative configuration
  • Figure 4B depicts an exemplary planar microcoil in a second alternative configuration
  • Figure 4C depicts an exemplary planar microcoil in a third alternative configuration
  • Figure 5A depicts a first exemplary set of dimensions associated with an exemplary rectangular planar microcoil
  • Figure 5B depicts a second exemplary set of dimensions associated with an exemplary rectangular planar microcoil
  • Figure 6 depicts an exemplary planar microcoil system with multiple arrays of microcoils
  • Figure 7A depicts an exemplary planar microcoil positioned on a substrate
  • Figure 7B depicts an exemplary set of planar microcoils positioned on a substrate
  • Figure 8 depicts exemplary planar microcoils positioned on a second substrate
  • Figure 9 depicts an exemplary planar microcoil circuit diagram
  • Figure 10A depicts a first pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure 10B depicts a second pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure IOC depicts a third pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure 10D depicts a fourth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein
  • Figure 10E depicts a fifth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure 10F depicts a sixth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure 10G depicts a seventh pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • Figure 11 A depicts a shirt with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • Figure 1 IB depicts a pair of socks with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • Figure 11C depicts a head covering with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • Figure 1 ID depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • Figure 1 IE depicts a glove with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • Figure 12A depicts a shirt with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • Figure 12B depicts a pair of socks with embedded planar microcoil arrays, in accordance with other embodiments of the present specification
  • Figure 12C depicts a head covering with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • Figure 12D depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with other embodiments of the present specification
  • Figure 12E depicts a glove with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • Figure 13 is a flowchart showing an exemplary use of the system
  • Figure 14 is an exemplary footwear system
  • Figure 15 is an exemplary array of planar coils
  • Figure 16 is an exemplary current directionality of a coil array
  • Figure 17 is an exemplary docking station configured to interface with a controller
  • Figure 18A is an exemplary head covering with planar microcoil arrays integrated therein;
  • Figure 18B is another exemplary head covering with planar microcoil arrays integrated therein;
  • Figure 19 is a side view of an article of clothing with planar microcoil arrays integrated therein;
  • Figure 20 shows an exemplary method of using the PEMF device
  • Figure 21 A shows an exemplary EEG profile of a human brain without exposure to an pulsed electromagnetic field using planar coils
  • Figure 2 IB shows an exemplary EEG profile of a human brain during exposure to an pulsed electromagnetic field using planar coils
  • Figure 22A shows a magnetic field profile of a preferred planar microcoil array approximately 1 mm from the surface of the array
  • Figure 22B shows a magnetic field profile of a preferred planar microcoil array approximately 3 mm from the surface of the array
  • Figure 22C shows a magnetic field profile of a preferred planar microcoil array approximately 5 mm from the surface of the array
  • Figure 22D shows a magnetic field profile of a preferred planar microcoil array approximately 7 mm from the surface of the array
  • Figure 22E shows a magnetic field profile of a preferred planar microcoil array approximately 9 mm from the surface of the array
  • Figure 22F shows a magnetic field profile of a preferred planar microcoil array approximately 11 mm from the surface of the array
  • Figure 23 shows an exemplary method of treating a person’s brain
  • Figure 24 shows an exemplary method of treating pain in various parts of a person’s body
  • Figure 25A shows a first view of an exemplary liner configured to be positioned between headwear and a patient’s head;
  • Figure 25B shows a second view of an exemplary liner configured to be positioned between headwear and a patient’s head
  • Figure 26 shows a therapeutic process for treating an individual experiencing cardiac arrest
  • Figure 27A shows front view of a disposable headwear embodiment
  • Figure 27B shows a side view of a disposable headwear embodiment
  • Figure 28 shows an embodiment with both EEG electrodes and microcoil arrays
  • Figure 29 shows a placement of microcoil arrays relative to a 10-10 and 10-20 EEG electrode placement map
  • Figure 30 shows a process for automatically detecting and treating an epileptic seizure
  • Figure 31A shows a first exemplary device for treating symptoms related to metabolic syndrome, high glucose, and viral infections, among other conditions
  • Figure 3 IB shows a second exemplary device for treating symptoms related to metabolic syndrome, high glucose, and viral infections, among other conditions
  • Figure 32 shows an exemplary method for treating symptoms related to metabolic syndrome
  • Figure 33A shows a first exemplary graphical user interface in the software program configured to program and/or control the controller
  • Figure 33B shows a second exemplary graphical user interface in the software program configured to program and/or control the controller
  • Figure 33C shows a third exemplary graphical user interface in the software program configured to program and/or control the controller.
  • Figure 33D shows a fourth exemplary graphical user interface in the software program configured to program and/or control the controller.
  • each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
  • planar coil or “planar microcoil” both refer to a conductive pathway with curves or turns where the entirety of the conductive pathway is substantially positioned within the same plane. Stated differently, the turns, curves, or coils of the conductive pathway occupy varied positions within an X-Y plane but are of the same thickness or have a thickness within a range of 20% of each other. Accordingly, such a planar microcoil is differentiated from conventional coil structures because the windings or turns of the coil do not extend substantially upward or outward from the innermost or first coil in the Z direction or normal to the X-Y plane defined by the innermost or first coil.
  • the terms “extend substantially upward or outward”, “within the same plane”, or “within the same X-Y plane” are defined as within +/- 20 mm, within +/- 15 mm, within +/- 10 mm, or more preferably within +/- 5mm of a 0 point on the Z axis and therefore includes a coil that winds upwards through layers of a thin flexible substrate, where the thickness of the thin flexible substate is less than 20mm, less than 15mm, less than 10mm, or preferably less than 5mm.
  • the planar footprint area of a “planar coil” or “planar microcoil” is preferably greater than 1 cm 2 , more preferably between 1 cm 2 and 9 cm 2 , and even more preferably between 2 cm 2 and 4 cm 2 .
  • magnetic flux refers to a quantity or strength of magnetic lines produced by a current passing through one or more planar coils and the term “magnetic flux density” refers to the amount of that magnetic flux in an area taken perpendicular to the magnetic flux’s direction, typically measured in Tesla. It should be appreciated that, throughout this specification and in each embodiment taught here, all magnetic fields, and corresponding magnetic flux and magnetic flux densities, are generated by a current passing through one or more planar coils and are not generated by one or more permanent magnets unless otherwise stated. It should further be appreciated that each embodiment described herein may further include an optional version which expressly does not include, incorporate, or otherwise use permanent magnets but, yet, which still generate magnetic fields.
  • the planar microcoils may have a plurality of different shapes and dimensions.
  • Figure 1 A shows a spiral circular planar microcoil 100a having six turns where the conductive pathway follows a spiral shape from a first part of the circuit 102a, or where the spiral coil conductive pathway begins, to a second part of the circuit 104a, or where the spiral coil conductive pathway terminates. Each turn forms a circle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway 106a is substantially entirely positioned within the same X-Y plane.
  • Figure IB shows a spiral rectangular planar microcoil 100b having 10 turns where the conductive pathway follows a spiral shape from a first part of the circuit 102b, or where the spiral coil conductive pathway begins, to a second part of the circuit 104b, or where the spiral coil conductive pathway terminates.
  • Each turn forms a rectangle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway 106b is substantially entirely positioned within the same X-Y plane.
  • the present invention is directed toward any spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a spiral shape from a first part of the circuit, or where the spiral coil conductive pathway begins, to a second part of the circuit, or where the spiral coil conductive pathway terminates.
  • each turn would form the same polygonal, elliptical, or other shape, except that the beginning and end of the shape are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway would also be substantially entirely positioned within the same X-Y plane.
  • Figure 2A shows a non-spiral circular planar microcoil 200a having three turns where the conductive pathway follows a curved, or circular, shape from a first part of the circuit 202a, or where the coil conductive pathway begins, to a second part of the circuit 204a, or where the coil conductive pathway terminates.
  • Each turn forms an incomplete circle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete circles, each in electrical communication with a common electrical input 202a and electrical output 204a and each having a progressively smaller (or larger) radius.
  • the conductive pathway of nested incomplete circles 206a is substantially entirely positioned within the same X- Y plane.
  • Figure 2B shows a non-spiral rectangular planar microcoil 200b having four turns where the conductive pathway follows a polygonal, or rectangular, shape from a first part of the circuit 202b, or where the coil conductive pathway begins, to a second part of the circuit 204b, or where the coil conductive pathway terminates.
  • Each turn forms an incomplete rectangle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete rectangles, each in electrical communication with a common electrical input 202b and electrical output 204b and each having a progressively smaller (or larger) length and width.
  • the conductive pathway of nested incomplete rectangles 206b is substantially entirely positioned within the same X-Y plane.
  • the present invention is directed toward any non-spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a polygonal, elliptical, or other shape from a first part of the circuit, or where the coil conductive pathway begins, to a second part of the circuit, or where the coil conductive pathway terminates.
  • each turn would form the same incomplete polygonal, elliptical, or other shape and would share a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete polygonal, elliptical, or other shapes, each in electrical communication with a common electrical input and electrical output and each having a progressively smaller (or larger) length and width or radius.
  • the conductive pathway of nested incomplete polygonal, elliptical, or other shapes would be substantially entirely positioned within the same X-Y plane
  • Figures 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 7A, 7B and 8 show additional exemplary microcoil embodiments and configurations.
  • a circular spiral coil is shown 300a with a current input 305a and current output 310a on the same side and parallel to each other.
  • Figure 3B shows a rectangular spiral coil 300b with a current input or output 305b in the interior of the coil 300b.
  • Figure 3C shows a high-density spiral coil with an interior, wireless region 320c that is rectangular with curved comers.
  • Figures 4A-4C show less preferred embodiments where 400a shows a two pronged coil with the two parallel ends of the coil separated by an open space 405a, 400b shows a two pronged coil with the two parallel ends of the coil separated by a zig-zag coil 405b, and 400c shows a two pronged coil with the two parallel ends of the coil separated by a zig-zag coil and having a conductive material positioned therein 405c.
  • a multi-coil planar array 800 may include two or more pronged coils 810 with the two ends of the coil separated by a zig-zag coil 805.
  • Figure 5 A shows a side perspective view of a planar coil 500a with coil depth in the Z the direction, as denoted by the variable “h”.
  • the variable D denotes a dimension indicative of the distance from one exterior side of the coil to the opposing exterior side of the coil.
  • the variable b denotes a dimension indicative of the thickness of the coil.
  • the variable p denotes a dimension indicative of the distance between coils, referred to as a pitch.
  • the variable Di denotes a dimension indicative of the distance from one interior side of the innermost coil to the opposing interior side of the innermost coil.
  • the variable g also shows a spacing between coils.
  • the arrow indicates a flow of current from an outside current coil connection to an inside current coil output.
  • FIG 7B six coil 700a mounted on a substrate 730a, where the coil is rectangular and has an input/output, 720a, 725a, on the exterior of the coil and in the interior of the coil.
  • Figure 7B represents the preferred embodiment of a planar multi-coil array 700b and is discussed in greater detail with respect to Figure 15.
  • Six circular planar coils, 740b, 741b, are mounted on a flexible substrate 730b.
  • Three coils 740b are on a top side and three coils 741b are on a bottom side. All coils are electrically connected, via traces 750b which run across the substrate, and 760b which connect from trace 750b to an individual coil, to a current input 720b and a current output 725b.
  • the current input 720b and output 725b are on the same side of the substrate 730b. In another embodiment, the current input 720b and output 725b may be on the different sides of the substrate 730b.
  • Table 1 has a list of preferred attributes of each of the spiral circular coil (Figure 1 A), spiral rectangular coil (Figure IB), non-spiral circular coil (Figure 2A), and non-spiral rectangular coil (Figure 2B). It should be appreciated that one or more of the other coils, as described herein, may have one or more of the preferred attributes described in Table 1 below. Table 1: Coil Attributes
  • a copper coil 305c that is substantially circular with a substantially rectangular inner air core (having rounded internal edges) is provided. In one embodiment, it has the following attributes: 1.
  • the coil, including any hard-plastic backing, has a footprint no greater than 2cm by 2cm, preferably no greater than 1.65 by 1.65 centimeters.
  • the coil comprises a plurality of wire turns, where the diameter of the coil in the plane of the coil is 0.04mm.
  • the coil will have a minimum of 100 turns, preferably 175 windings, and even more preferably greater than 150 windings.
  • Each comer of the coil will have 1 quarter-circle with a radius of 0.18125 cm.
  • the inductance is in a range of 200 to 700 pH, preferably around 373 pH and the resistance is in a range of 50 to 800 ohms, preferably around 144 ohms.
  • the inner air core has dimensions in a range of 0.2 cm by 0.2 cm with each comer of the inner air core being 1 quarter-circle with a radius of 0.00625cm.
  • preferred planar microcoil arrays preferably generate high intensity, sharply peaking fields at a small vertical distance from the surface of the planar microcoil that rapidly flatten and decrease in intensity as the vertical distance from the surface of the planar microcoil array increases.
  • each coil on the planar microcoil array concurrently generates a field which, at a 40 mA current and measured using an AC field measurement of lkHz, that decreases in a non-linear manner as the vertical distance increases from the surface of the array.
  • each of the coils generates a field 2230A in a range of 120 to 160 microTesla approximately 1mm above the array and coil surface.
  • each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 20% of the average peak intensity of all the coils measured at the same given distance. More preferably, each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 10%, or any whole number increment therein, of the average peak intensity of all the coils measured at the same given distance.
  • the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases at a certain rate as the distance increases from the surface of the planar microcoil array.
  • the average peak intensity of the magnetic field measured 1 mm normal to the surface of the planar microcoil array decreases from a first value, such as in a range of 200 to 300 microTesla, to a second value measured 2 mm normal to the surface of the planar microcoil array, such as in a range of 80 to 130 microTesla, to a third value measured 3 mm normal to the surface of the planar microcoil array, such as in a range of 50 to 90 microTesla, to a fourth value measured 4 mm normal to the surface of the planar microcoil array, such as in a range of 30 to 70 microTesla, to a fifth value measured 5 mm normal to the surface of the planar microcoil array, such as in a range of 20 to 50 microTesla, to a sixth value measured 6 mm normal to the surface of the planar microcoil array, such as in a range of 10 to 40 microTesla, to a seventh value measured 7 mm normal
  • the magnitude of the decrease lessens as one moves further away from the planar microcoil array.
  • the preferred magnetic field generated by the planar microcoil arrays are defined by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays.
  • each embodiment described herein generates a magnetic field by: a) Using a planar microcoil array having at least one coil positioned thereon, from 2 to 100 coils positioned thereon, and preferably from 4-10 coils where each of the coils may be one or more of the embodiments described herein; b) Driving a current to the coils positioned on a single array where the current is in the form of a pulse train, where the pulse train may be one or more of the embodiments described herein, and, more preferably, where the pulse train may be a ramping rectangular or sinusoidal pulse having a first pulse, a first time interval, a second pulse, and optionally a second time interval and a third (or more) pulses, as follows: a.
  • the first pulse and second pulse (and the optional third or more pulses) have pulse widths in a range of 0.001 to 0.2 seconds and preferably in a range of 0.01 to 0.02 seconds where the first time interval and optional additional time intervals are in a range of 0.01 to 0.04 seconds (preferably a 0.025 second interval), and where the second pulse is greater than the first pulse (or vice- versa) and have current levels in a range of 5mA to 200 mA; or b.
  • each pulse width may be defined as a function of the period (which is the inverse of the frequency) where each pulse width is in a range of 1 ⁇ 2 to 1/50 the period length (preferably 1/5 to 1/7 the period length), where each interval between the pulses in the pulse train is in a range of 1 ⁇ 2 to 1/50 the period length (preferably 1/5 to 1/9), where the dead time between each pulse burst or train is in a range of 1 ⁇ 2 to 1/20 the period length (preferably 1/3 to 1/5), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5mA to 200 mA; c) Activating the pulse train in accordance with a programmed frequency, where the programmed frequency is in a range of 0.01 Hz to 200 Hz and preferably in a range of 1 Hz to 60 Hz; and d) Activating each of the microcoil arrays in parallel or in series (or a combination thereof) such that the peak intensity generated by each coil on the planar
  • the preferred embodiments generate a magnetic field having at least four vectors of variation, resulting in a rapidly changing magnetic field profile across human tissue: a) the individual pulse shape in a given pulse train (rectangular, sinusoidal or other shaped pulse), b) the ramping (or decreasing) peak intensity between individual pulses in a pulse train, c) the frequency of the pulse train/bursts, and d) the degradation profile of the field from each of the coils over a distance.
  • the combination of these various vectors results in a rapidly varying magnetic field profile (over both time and distance) that results in the beneficial therapeutic effects described herein.
  • the magnetic field vectors defining the dominant direction of the magnetic fields of the plurality of planar microcoil arrays be non-coplanar. Specifically, it is preferred that: 1. A first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction, a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction, and a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are different directions.
  • a first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction
  • a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction
  • a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are transverse to each other.
  • a first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction
  • a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction
  • a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein if the first vector and second vector were to intersect each other, they would form an angle having a value greater than 15 degrees and if the second vector and third vector were to intersect each other, they would form an angle having a value greater than 15 degrees.
  • a first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction
  • a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction
  • a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are non-parallel and intersect each other.
  • the therapeutic system 600 comprises a flexible patch or substrate 620 having one or more planar microcoils 620 positioned thereon.
  • the flexible patch or substrate 620 comprises a flexible material, such as Kapton, polyimide, or any other suitable non-conductive flexible material.
  • a single patch 620 comprising a plurality of planar microcoils 615 constitutes a planar microcoil array 630, as shown in Figures 7B and 15.
  • Each of the arrays is connected in parallel or in series to a controller 605.
  • the set of patches 620 in column 603 may be connected serially, while the patches in columns adjacent to column 603 may be connected in parallel to the patches in column 603 via wires, or electrical communication pathways, 610.
  • the single patch 620 comprises two or more planar microcoils 615 or between 2 and 100 microcoils or more than 2 planar microcoils.
  • the set of patches used in any specific application, including in any piece of clothing may have different sizes (e.g. surface areas), and therefore different numbers of planar microcoils, in order to better fit or suit different parts of a person’s anatomy.
  • clothing positioned adjacent to the patient’s torso may have larger patches, and more planar microcoils, integrated into a single patch than clothing positioned near the patient’ s toes or fingers, which may have smaller patches to better contour to the curves and crevices near the patient’ s toes or fingers, as further discussed in relation to Figures 12A to 12E.
  • planar microcoils integrated into the same array or patch are positioned in the same plane relative to the body surface being treated.
  • more than one planar microcoil integrated into a single substrate or array are positioned in the same plane relative to the surface of the user’s brain.
  • a single array 2810 has a plurality (2 or more) discrete planar microcoils 2871 (which are serially energized or energized in parallel) embedded therein and configured such that the plurality of discrete planar microcoils 2871 (which are serially energized or energized in parallel) are in the same plane relative to the user’s brain surface, where that same plane does not intersect or pass through the user’s brain surface.
  • This “same planar” approach is used on any and all body parts subject to treatment, including arms, legs, feet, ankles, joints, torso, neck, face, or any other anatomical area.
  • Controller 605 may be programmed to concurrently stimulate all the planar microcoils in all the patches, all planar microcoils on a subset of the patches, or a subset of planar microcoils on a subset of the patches. Further, the controller 605 may be optionally configured to removably interface with a docking station 675.
  • a docking system 1700 is comprised of a controller 1705 having circuitry 1710 configured to generate current signals in accordance with the stimulation protocols described herein, a first mechanical connection 1722, and a power source, such as a battery 1720, and a docking station 1730, having an electrical connection 1740 configured to mate to the circuitry 1710 and a second mechanical connection 1745 configured to mate with the first mechanical connection 1722.
  • the electrical connection 1740 comprises one or more pins having data stored therein indicative of the type of clothing, device, or application the docking station 1730 is integrated into.
  • the planar microcoil arrays are integrated into clothing and, preferably, the docking station 1730 is as well.
  • the controller 1705 is removably attachable to the docking station 1730 such, upon connecting the first mechanical connection 1722 to the second mechanical connection 1745, the circuit 1710 is automatically placed in electrical communication with, and is therefore capable of driving a current through, electrical interface 1740. Further, upon being automatically interfaced with electrical interface 1740, the circuit 1710 is configured to read the data indicative of the type of clothing or planar array configuration to which the docking station 1730 is connected, thereby allowing a user to use one controller 1705 with multiple different clothing types and further allowing the controller 1705 to be charged or serviced separate from the docking station 1730, planar microcoil arrays, and clothing into which both are integrated.
  • the mechanical connection may be a male/female latch combination, a male/female snap combination, or any other male/female mechanical combination.
  • programmatic instructions on a separate computing device are executed to capture pain data from the patient, analyze the pain data to determine which areas of the patient’s anatomy requires pulsed electromagnetic field therapy, and, depending on the garment being worn by the patient, activate one or more planar microcoils on one or more patches to target the determined areas requiring pulsed electromagnetic field therapy. More specifically, referring to Figure 13, a patient first acquires a specific piece of clothing with the patches and planar microcoil arrays integrated therein, as further described below. The patient downloads an app onto his or her phone 635, creates an account, and inputs a clothing identifier, using a QR code, RFID tag, serial number or another identifier.
  • the app determines the type of clothing (shirt, pant, sock, etc.) and generates a set of clearance questions specific to that type of clothing 1305. Clearance questions may be directed toward making sure the device is not used proximate to implanted devices, metal or other structures that, if positioned on the patient’s skin, could experience induced electrical currents if pulsed electromagnetic fields are applied thereto.
  • the app determines if there are any contraindications to use (i.e. a pacemaker, spinal implants, pins, or other implanted devices) 1310 and, depending upon the determination, generates an activation code which is transmitted to the controller 605.
  • the app recommends the user first activate the device under the supervision of a physician.
  • An override code which would require the user to actively acknowledge the risks involved, may be provided by the app and either wirelessly transmitted to the controller 605 or displayed to the user who may manually input it into the controller 605.
  • the app then prompts the user to input data indicative of the patient’s pain level and location of the pain 1315.
  • the app may do so by generating a visual analog scale that the user may use to indicate a level of pain being experienced (i.e. on a scale of 1 to 10 or using graphical emojis) and a graphical image of a human body, or portions thereof, to allow the user to identify, by pointing to the right location on the graphical image, the locus of pain.
  • the graphical image used is specific to the type of clothing identified using the original code indicative of the clothing acquired.
  • the app may determine which set of patches and/or set of planar microcoils should be energized in order to treat the inputted level and location of pain 1320 and transmit such data to the controller. For other conditions, other questions may be posed, such as degree and timing of memory lapses, degree and timing of tremors, or degree and timing of other symptoms.
  • Figure 9 describes an exemplary circuit 900 configured to generate electrical currents, in accordance with stimulation protocols described below. The exemplary circuit may be in the controller 605 or distributed between the controller 605 and patches 620.
  • the coil array 1500 may comprise a flexible substrate 1502 upon which a plurality of coil pieces 1504 are attached.
  • Each coil piece 1504 comprises a backing, such as a hard-plastic backing 1506, upon which a coil 1508 is wound or molded.
  • the coils may be any of the rectangular spiral, rectangular non-spiral, circular spiral, circular non-spiral or other shaped coils.
  • the coil pieces 1504 are preferably spaced from each other in a range of 0.1 cm to 10 cm, preferably 0.5 cm to 2 cm, and preferably less than 15 cm, or any numerical increment therein.
  • Each coil 1508 comprises an input lead and an output lead.
  • each coil 1508 may be routed to one side of the array 1510 and may be kept separate from each other by one or more layers of insulation tape 1512.
  • the input leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an input terminal 1522 to which electrical current from the controller and energy source may be directed. Accordingly, all the coils 1508 of the array 1500 may be concurrently energized by directing current from a single energy or battery source to just one input terminal 1522.
  • each coil 1508 may be routed to one side of the array 1514 and may be kept separate from each other by one or more layers of insulation tape 1512.
  • the output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current from the controller and energy source may be directed. Accordingly, the output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current may be directed from the array to the controller and energy source. Further, all the coils 1508 of the array 1500 may form a closed circuit by directing current from the array to the single energy or battery source via the one output terminal 1524.
  • each coil piece 1504 or coil 1508 is a material that may act as a cushion, barrier, or padding 1518 that functions to both prevent the coil pieces from 1504 shifting and to gently position the array 1500 against the user’ s skin.
  • area 1518 may include an adhesive to attach, secure, or otherwise fixedly position the array 1500 against the user’s skin.
  • area 1518 may include an attachment mechanism, such as Velcro or snaps, to attach area 1518, and therefore array 1500, to another substrate or material to form a piece of clothing, as further discussed below.
  • the directionality of the current of each coil may be modified to achieve a desired magnetic flux level by properly routing its input lead or output lead to the input or output side of the array 1500.
  • the top coils 1632 and the bottom coils 1636 have counterclockwise currents.
  • the directionality of the current of a coil may be modified by changing which lead, extending from that coil, is routed to the input terminal and is routed to the output terminal. For example, if lead A is directed to the input terminal and lead B is directed to the output terminal, the current directionality of the corresponding coil may be clockwise. That current directionality may be switched to become counterclockwise by routing lead A to the output terminal and lead B to the input terminal
  • the form factor and range of coil sizes and relative separation between coil pieces are important to achieving two core objectives.
  • the coil footprint should not be too large, and the coil separation should not be too small, otherwise the array will not be flexible enough to conform to uneven or non-planar portions of a user’s body.
  • the coil footprint should not be too small, and the coil separation should not be too large, otherwise the array will not generate a sufficiently large magnetic flux for therapeutic purposes.
  • the dimensions and distances disclosed herein have a distinct utility and are not merely aesthetic in nature.
  • the controller is configured to generate an electrical current, and selectively transmit the electrical current to all of the plurality of planar microcoils, or a subset of the plurality of planar microcoils, in order to generate pulsed electromagnetic fields in accordance with one or more of Figures 10A to 10G.
  • the electrical current may be a sinusoidal curve 1000a defined by a first period, a sinusoidal curve 1000b defined by a second period, or a sinusoidal curve 1000c defined by a third period where each of the three periods are of different lengths.
  • the electrical current may also be a sinusoidal curve lOOOd having a varying amplitude.
  • the electrical current pulse may be a trapezoidal lOOOe, a spike lOOOf, or square shaped lOOOg.
  • the stimulation pulse, or shape of the electrical current pulse may comprise a series of pulse trains lOOOg, each defined by a set of ramping square pulses, 1005g, 1015g, 1020g.
  • each pulse train lOOOg may be initiated at a frequency in a range from 5 Hz to 200 Hz, preferably in a range of 8 to 30 Hz.
  • Each pulse train lOOOg comprises at least 1 square pulse, typically having an amplitude of between 20 and 100mA.
  • each pulse train lOOOg comprises a series of ramping square pulses, 1005g, 1015g, 1020g, that increase in amplitude from a first pulse in a range of 20 to 50 mA, to a second pulse in a range of 40 to 70 mA, to a third pulse in a range of 60 to 100mA.
  • ramping configurations could be implemented, including a down ramping pulse that, in the course of the pulse train, decreases in amplitude.
  • a stimulation session may go from 1 minute to 24 hours. As described above, within a given stimulations session, you may have a series of pulse bursts.
  • a pulse burst may have one or more pulses. Each pulse in the pulse burst may have the same or different pulse shapes, as shown in Figures 10A-10F. Each pulse in the pulse burst may have the same or different amplitude.
  • there are multiple pulses in a pulse burst where the amplitude of each pulse burst ramps from low to high or ramps from high to low.
  • Each pulse amplitude causes a generation of a field in the range of 1 to 10000 microTesla, preferably 3 to 500 microTesla, preferably 10 to 200 microTesla.
  • the frequency of the pulse burst is in a range of 1 to 500 Hz, preferably 5 to 30 Hz, and more preferably 6 to 15 Hz. Amperage is dependent on the selected planar microcoil design but is in a range of ImAmp to 5Amp. In embodiments, the pulse bursts may have characteristics as described with reference to Table 2 below:
  • each of the treatment systems disclosed herein including the coils, coil arrays, and controller circuit configured to generate and deliver electrical current to the coils and coil arrays, are controlled, directly or indirectly, by a software application configured to be installed and execute on a separate computing device, such as a mobile phone, laptop, or external controller, that is in wired or wireless communication with the controller circuit.
  • a software application configured to be installed and execute on a separate computing device, such as a mobile phone, laptop, or external controller, that is in wired or wireless communication with the controller circuit.
  • the software application is configured to identify a type of coil system being used by a patient.
  • the controller application may be installed on a mobile phone and be configured to use a camera functionality of the mobile phone to capture a bar code, QR code, or other identification or be configured to generate a graphical user interface to receive an alphanumeric identifier of the coil system.
  • the controller application may 1) validate the coil system as being a legitimate, authorized, or otherwise acceptable coil system, 2) determine what type of coil system is being used and whether that coil system is specific to a particular anatomical region, e.g.
  • the generated graphical user interfaces visually display a neck
  • the generated graphical user interfaces visually display a torso
  • the generated graphical user interfaces visually display a torso
  • the generated graphical user interfaces visually display a back region
  • the generated graphical user interfaces visually display a back region
  • the coil system is specific to a leg region
  • the generated graphical user interfaces visually display a leg region
  • the coil system is specific to a foot region the generated graphical user interfaces visually display one or more feet
  • the coil system is specific to an arm region the generated graphical user interfaces visually display one or more arms
  • the generated graphical user interfaces visually display a head region.
  • the generated GUIs are configured to receive an input from a patient as to a locus or loci of pain relative to the displayed anatomical region. For example, upon displaying the anatomical region in a GUI, a patient may paint, using a stylet or finger pressed upon a display, an area of the anatomical region that may be in pain. One or more GUIs may then be presented to prompt from a patient, and receive from the patient, an indication of the level of the pain via, for example, a visual analog scale where a user may indicate using numbers or icons a degree of the pain.
  • the controller software determines 1) a desired level of magnetic flux to be delivered, 2) a corresponding set of coils to be energized in what order and at what frequency, and 3) a level of current to be delivered to each coil or coil array to generate the desired level of magnetic flux in the right location and at the right frequency.
  • different locus or loci of pain may require an increased or decreased intensity or frequency of magnetic flux to be delivered at nerves located upstream or downstream from the locus or loci of pain.
  • the controller software therefore comprises programmatic instructions, and supporting data, that correlates anatomical locations of pain with nerve areas that are co-located with the locus or loci of pain, upstream from the locus or loci of pain and/or downstream from the locus or loci of pain.
  • the controller software becomes aware of the location of specific coils or coil arrays based on at least one of 1) a preset relationship of the coils/coil arrays that is stored and known to the controller software based on identifying the type of coil system or 2) input by a user that indicates to the controller software where each of the coils are being positioned on a patient — such an indication being provided through a GUI that presents possible anatomical locations either through text or graphically.
  • the software application or controller application, is configured to generate instructions that, when communicated to and executed by the controller circuit, causes the controller circuit to generate electrical current and deliver that electrical current to different coils and/or coil arrays based on the desired frequency, intensity level, order, and location, as described above.
  • the controller software may determine that coil arrays positioned on top of his or her right foot need to generate a magnetic flux in a range of 100 microTesla at a frequency of 10 Hz while coils positioned in the sole of the footwear, proximate the bottom of the patient’s foot, need only be activated to generate a magnetic flux in a range of 20 microTesla at a frequency of 30Hz.
  • the controller circuit may be configured to electrically connect with a coil array or coils and upon making such a connection, to detect and store an identifier of the coil array or coil.
  • the controller circuit preferably stores each of the identifiers and communicates it to the controller software upon connecting. These identifiers may be further used to identify the validity and/or type of coils or coil arrays being used.
  • the controller software may include a set of programmatic instructions for dose training.
  • the controller software operates in a training mode in which 1) a user is prompted to provide real-time feedback on pain levels using a visual analog scale, 2) the controller software modulates, over predefined periods of time, the frequency of pulse signals, the amount of current (and therefore magnetic flux intensity level) and/or the shape of the pulse signals in various combinations over the predefined period of time, and 3) as the parameters change, the user is prompted to input feedback on pain levels through the visual analog scale.
  • a user identifies a locus of loci of pain, it initiates a cycling process starting with a set of frequency and modulating the current level and therefore the magnetic flux level up and down, prompting the user for feedback on pain levels during the cycling process.
  • the controller software may then change frequency settings and repeat the up and down modulation of current level and magnetic flux level, again concurrently prompting the user for feedback on pain levels during the cycling process.
  • the controller software analyzes the user’s feedback to determine an optimal combination of frequency and current level for a given locus or loci of pain.
  • the controller may be programmed by a) inputting data into a separate computing device configured to execute a set of programmatic instructions that, when executed by the separate computing device, generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, weight loss, or improved mental acuity, b) wirelessly transmitting the inputted data to the controller, c) receiving, in the controller, the inputted data and generating an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, d) delivering the generated electrical pulse train to each of the plurality of planar microcoil arrays, and e) automatically terminating the electrical pulse train after a programmed time period elapses, wherein the programmed time period is based on the data indicative of the desired type of treatment.
  • the desired type of treatment includes at least
  • the controller may comprise a switch (which could be a button, slide switch, or any physical input means), where a position of the switch is representative of a desired type of treatment, where the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state), improved memory, or improved mental acuity, and where the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • a switch which could be a button, slide switch, or any physical input means
  • a position of the switch is representative of a desired type of treatment
  • the desired type of treatment includes at least one of relaxation, improved sleep or sleep assist (which assists a user in falling asleep), mediation assist (which assists a user into getting into a meditative state),
  • the software program is configured to generate a plurality of graphical user interfaces.
  • a first graphical user interface 3310 visually presents a first area 3311 which would visually identify or present a last program, treatment or experience that the user programmed the device with and a second area 3323 that shows all the available programs, treatments, or experiences the user can choose from, such as a relaxation program, meditation program, pain relief program, sleep improvement program, memory improvement program, or sinus decongestion program. It should be appreciated that a plurality of other programs may be listed directed to treating any of the conditions listed in this specification or to treating any of the symptoms of the conditions listed in this specification.
  • Each listed program 3323 has a play icon that, when triggered, leads to a second graphical user interface 3330.
  • a continuation of the first graphical user interface 3310 is shown with a third area 3325 directed to a listing of custom experiences, programs or treatments.
  • the software program provides the user with the option of customizing his or her own treatment through, for example, pressing on an icon in the home menu 3302 or an icon option 3337 in the second graphical user interface 3330.
  • a third graphical user interface 3340 is displayed which provides a user with the ability to name the program 3341, adjust the amount of time the therapy would run 3343, adjust the intensity or level of current sent to the microcoils (and therefore the strength of the magnetic field generated) 3345, and/or adjust the frequency of the magnetic field pulse 3347, and, finally, save the new program 3349. While slider bars are shown as the user input mechanism, one of ordinary skill in the art would appreciate that any other mechanism may be used, including dialog boxes, wheels, visual icons or any other input techniques.
  • the controller and the software program are already in wireless communication through, for example, a Bluetooth connection, and the connected state of the controller is actively displayed 3321.
  • the controller or software program automatically terminates the Bluetooth connection, the Bluetooth transceiver component integrated into the controller goes into hibernation such that it does not emit any wireless frequencies during the treatment session, and, after the treatment session is complete, the controller is configured to awaken the Bluetooth transceiver to initiate communicate with the software program again. This would enable the software program to receive accurate data from the controller such as length of actual use and compare it with the chosen treatment session.
  • the software program provides a recommendation, in the form of a notification when the user changes the time period or selects a treatment program, based on the user’s age. Specifically, if a user is older than a threshold age, e.g. an age in the range of 50 to 100 or any increment therein or, more specifically, older than 60, the software program will generate a visual notification, warning, or recommendation that the treatment time should be longer than an average or standard treatment time. Therefore, if a standard or average treatment time is 30 minutes and the user is over 60 years old, the software will generate a graphical user interface informing the user that he or she should operate the device for a longer period of time, such as 1 hour.
  • a threshold age e.g. an age in the range of 50 to 100 or any increment therein or, more specifically, older than 60
  • the software program will generate a visual notification, warning, or recommendation that the treatment time should be longer than an average or standard treatment time. Therefore, if a standard or average treatment time is 30 minutes and the user is over
  • the software program automatically recommends an experience or treatment program, as described above, that is longer than the average treatment if the person is older in age. Therefore, the software will recommend a treatment time that is shorter for younger people (i.e. younger than a threshold age in a range of 50-100) and longer for older people (i.e. older than that same threshold age).
  • the patches comprising planar microcoil arrays are integrated into clothing.
  • the patches 1105, 1205 are sandwiched between a first outer layer and a second inner layer (closer to body) where the second layer is the same material as the first layer but thinner or is of a different material and thicker or thinner than the first layer.
  • the patches are connected to a controller strip 1115, 1215 positioned at the base of the shirt (11 A, 12A), top of the socks (1 IB, 12B), the base of a mask or neck covering (11C, 12C), top of pants (11D, 12D), or base of a glove (11E, 12E).
  • the controller comprises a rechargeable battery.
  • the patches may be connected to a docking station to which a controller may be removably attached, as described above.
  • the array sizes may be variable.
  • one may have a plurality of planar microcoils integrated onto a small substrate surface area 1207, i.e. in a range of 0.5 in 2 to 2 in 2 , or onto a larger substrate surface area 1209, i.e. in a range of 2.01 in 2 to 120 in 2 .
  • the smaller substrate surface areas 1207 are designed to be positioned near crevices, curves, or other non-planar anatomical areas of the patient, such as the areas in or around the toes.
  • the larger substrate surface areas 1209 are designed to be positioned on substantially planar surface areas, such as portions of the arms, legs, and back.
  • planar microcoil arrays are preferably integrated into a layer of the clothing and are not directly exposed to the user’s skin or to the outside environment.
  • the planar microcoil arrays and associated traces may be incorporated into a layer positioned between an innermost layer of clothing, which touches the user’s skin, and an outermost layer of clothing, which is exposed to the outside environment.
  • the present invention is directed toward the integration of coils and/or coil arrays into footwear, such as a shoe, boot, sock, or other foot covering.
  • the sole or base of the footwear 1401 comprises a plurality of individual coils, such as Coil Si, Coil S2, and Coil S3, and/or coil arrays, such as Array Si that are distributed on a surface of the sole or base.
  • the individual coils, such as Coil Si, Coil S2, and Coil S3, and/or coil arrays, such as Array Si may be of the type described herein or
  • Coil Si 6 by 5 cm
  • inner air core 0.2 by 1.2 cm
  • 800 to 1,500 turns preferably 1200- 1300 turns
  • Coil S2 7 by 5.1 cm
  • inner air core 0.2 by 2.3 cm
  • Coil S3 3 by 4.5 cm, inner air core: 0.2 by 1.7 cm, 700 turns, 0.04mm wire thickness
  • the individual coils such as Coil Si, Coil S2, and Coil S3, and/or coil arrays, such as Array Si are configured to be of different sizes with Coil Si being larger or having more windings than Coil S2 or Coil S3 and where a distance between the Coil Si, Coil S2, and Coil S3 is between 1cm and 3cm, preferably around 2cm.
  • Each of the Coil Si, Coil S2, and Coil S3 are in electrical communication with the controller 1403.
  • the controller 1403 is also in electrical communication with a plurality of coil arrays Ui, U2, U3, U4, U5, and/or U 6 1402 that are integrated into the upper of the footwear and configured to cover the entirety of the user’s foot.
  • each of the coil arrays may be energized and/or controller as described above to address a user’s foot pain.
  • the ankle region of the footwear device may comprise two large coils which are positioned on opposing sides of the ankle region and are spaced and sized to function as Helmholtz coils.
  • a PEMF device 1800a configured to comfortably conform to a patient’s head is shown.
  • a flexible material 1880a configured as a headband and made out of cotton, terry cloth, polyester, or other materials.
  • Integrated into a layer of the headband 1880a are a plurality of planar microcoil arrays 1805a which are in electrical communication with a docking station and controller 1870a, as described above.
  • the headband may be adjustable by having an attachment mechanism 1890a which permits for the relative circumferential extent of the headband to be adjusted.
  • the attachment mechanism 1890a can use, for example, a Velcro connection which can thereby adjust to the size of the user’s head.
  • a plurality of planar microcoil arrays 1805b is positioned in distributed positions around headwear 1885b, shown as a cap.
  • headwear 1885b is shown as a baseball cap, it may also be any of form of headwear, including a head scarf, cowboy hat, fedora hat, sun hat, flat cap hat, newsboy hat, trilby hat, pork pie hat, homburg hat, bowler hat, panama hat, western hat, stockman hat, watch cap, trapper hat, Stormy Kromer® hat, astrakhan hat, hijab scarf, beanie hat, beret hat, bucket hat, cloche hat, cocktail hat, deerstalker hat, cocktail hat, fascinator hat, gatsby hat, visor, or pillbox hat or any other configurations of material adapted to cover portions of a person’s skull, including at least one
  • the plurality of planar microcoil arrays 1805b are positioned about the crown of the headwear 1885b such that, when worn, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate at least one or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer’s skull.
  • the plurality of planar microcoil arrays 1805b are positioned about the crown of the headwear 1885b such that, when worn, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate at least two or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer’s skull.
  • planar microcoils integrated into the same array are positioned in the same plane relative to the user’s brain.
  • a single array has a plurality (2 or more) discrete planar microcoils embedded into the same substrate and configured such that the plurality of discrete planar microcoils (which are serially energized or energized in parallel) are in the same plane relative to the user’s brain surface, where that same plane does not intersect or pass through the user’s brain surface.
  • the plurality of planar microcoil arrays 1805b are positioned about the crown of the headwear 1885b such that, when worn, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate at least the frontal bone and the parietal bone of the wearer’s skull.
  • the plurality of planar microcoil arrays 1805b are positioned about the crown of the headwear 1885b such that, when worn, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate at least the frontal bone and the parietal bone and at least one of the sphenoid bone and/or temporal bone of the wearer’s skull.
  • the plurality of planar microcoil arrays 1805b are positioned such that they are symmetrically distributed about the crown of the headwear 1885b such that, when worn, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate a left side of the wearer’s frontal bone, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate a right side of the wearer’s frontal bone, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate at a top side of the wearer’s parietal bone, at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate a left side of the wearer’s parietal bone, and at least one of the plurality of planar microcoil arrays 1805b is externally positioned proximate a right side of the wearer’s parie
  • the plurality of planar microcoil arrays 1805b is positioned such that they are symmetrically distributed about the crown of the headwear 1885b such that, when worn, at least two of the plurality of planar microcoil arrays 1805b are externally positioned proximate the wearer’s frontal bone and at least three of the plurality of planar microcoil arrays 1805b are externally positioned proximate the wearer’s parietal bone.
  • the plurality of planar microcoil arrays 1805b is positioned such that they are symmetrically distributed about the crown of the headwear 1885b such that, when worn, at least four (and preferably between 4 and 10) of the plurality of planar microcoil arrays 1805b are externally positioned proximate at least the wearer’s frontal bone and the wearer’s parietal bone and optionally the temporal bone and occipital bone.
  • the plurality of planar microcoil arrays 1805b is positioned such that one or more arrays are a) positioned between the front of the crown of the headwear 1885b and the right and/or left frontal lobe, b) positioned between the right side of the crown of the headwear 1885b and the right temporal lobe, c) positioned between the left side of the crown of the headwear 1885b and the left temporal lobe, d) positioned between the top side of the crown of the headwear 1885b and the cerebral cortex, e) positioned between the top side of the crown of the headwear 1885b and the parietal lobe, and/or f) positioned between the back side of the crown of the headwear 1885b and the occipital lobe,
  • the plurality of planar microcoil arrays are integrated into a liner 2500 having a plurality of cells 2505 wherein each cell is defined by a protrusion from a base material 2525 extending toward a patient’s head and where the base material positioned between cells comprises plastic, cardboard, or other rigid non-metallic material to which the material covering the protrusion is attached.
  • a microcoil array 2525 is positioned with the emitting coil surface 2526 directed inward toward the patient’s head.
  • cushioning material 2535 such as cotton or foam, to keep the microcoil array in place.
  • Each cell 2505 is distributed around the liner such that, when the liner is attached to the crown 2510 of the head garment and the head garment plus liner is worn, at least one cell 2505 with an array 2525 is positioned between the front of the crown 2510 of the headwear and the right and/or left frontal lobe, at least one cell 2505 with an array 2525 is positioned between the right side of the crown 2510 of the headwear and the right temporal lobe, at least one cell 2505 with an array 2525 is positioned between the left side of the crown 2510 of the headwear and the left temporal lobe, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the cerebral cortex, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the parietal lobe, and/or at least one cell 2505 with an array
  • one cell 2505 with an array 2525 is positioned in the front of the crown, 2510 adjacent the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward right section of the crown 2510, adjacent the right top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward left section of the crown 2510, adjacent the left top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back right section of the crown 2510, adjacent the right top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back left section of the crown 2510, adjacent the left top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the right-side section of the crown 2510, adjacent the right temporal lobe when worn; one cell 2505 with an array 2525 is positioned in the left-side section of the crown
  • a controller 1870b is in electrical communication with each of the plurality of planar microcoil arrays 1805b and is programmed to direct an electrical current to each of the plurality of planar microcoil arrays 1805b in accordance with a certain frequency, a certain current intensity, a certain pulse width or shape, and a certain sequence, as described throughout this specification. More specifically, the controller 1870b directs an electrical current from an energy source, such as a battery, to each of the plurality of planar microcoil arrays 1805b in accordance with stored programmatic instructions.
  • an energy source such as a battery
  • the stored programmatic instructions define a current level (preferably in a range of 5mA to 200mA), define a pulse shape (preferably rectangular, sinusoidal, or a flat pulse with a sloped activation and deactivation), define a pulse frequency (preferably in a range of 0.1 Hz to 200Hz), and define a sequence of activating each of the plurality of planar microcoil arrays 1805b such as clockwise around the wearer’s skull, counterclockwise around the wearer’s skull, sequentially such that only one of the plurality of planar microcoil arrays 1805b has current driven thereto at one time, concurrently such that at least two of the plurality of planar microcoil arrays 1805b has current driven thereto at one time, concurrently such that at least three of the plurality of planar microcoil arrays 1805b has current driven thereto at one time, concurrently such that all of the plurality of planar microcoil arrays 1805b has current driven thereto at one time, concurrently such that planar microcoil arrays 18
  • the controller 1870b and energy source may be integrated into the brim of the headwear 1885b such that the controller and energy source lay flat along a surface of the brim and largely perpendicular to the crown. By doing so, the controller 1870b and energy source will seamlessly integrate into the headwear 1885b and not be conspicuous.
  • the controller 1870b and energy source may increase the thickness of the brim, but, otherwise, the brim will appear to be normal and the controller and energy source will not be visible on the crown of the headwear 1885b.
  • the controller 1870b and energy source is at least partially encased in silicone at a top surface and its bottom surface is in physical contact with the brim material, which may comprise plastic and/or fabric.
  • the controller is programmed to generate a magnetic field via the planar microcoil arrays by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays.
  • each embodiment described herein generates a magnetic field by: a) Using a planar microcoil array having at least one coil positioned thereon, from 2 to 100 coils positioned thereon, and preferably from 4-10 coils where each of the coils may be one or more of the embodiments described herein; b) Driving a current to the coils positioned on a single array where the current is in the form of a pulse train, where the pulse train may be one or more of the embodiments described herein, and, more preferably, where the pulse train may be a ramping rectangular or sinusoidal pulse having a first pulse, a first time interval, a second pulse, and optionally a second time interval and a third (or more) pulses, as follows: a.
  • the first pulse and second pulse (and the optional third or more pulses) have pulse widths in a range of 0.001 to 0.2 seconds and preferably in a range of 0.01 to 0.02 seconds where the first time interval and optional additional time intervals are in a range of 0.01 to 0.04 seconds (preferably a 0.025 second interval), and where the second pulse is greater than the first pulse (or vice- versa) and have current levels in a range of 5mA to 200 mA; or b.
  • each pulse width may be defined as a function of the period (which is the inverse of the frequency) where each pulse width is in a range of 1 ⁇ 2 to 1/50 the period length (preferably 1/5 to 1/7 the period length), where each interval between the pulses in the pulse train is in a range of 1 ⁇ 2 to 1/50 the period length (preferably 1/5 to 1/9), where the dead time between each pulse burst or train is in a range of 1 ⁇ 2 to 1/20 the period length (preferably 1/3 to 1/5), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5mA to 200 mA; c) Activating the pulse train in accordance with a programmed frequency, where the programmed frequency is in a range of 0.01 Hz to 200 Hz and preferably in a range of 1 Hz to 60 Hz; and d) Activating each of the microcoil arrays in parallel or in series (or a combination thereof) such that the peak intensity generated by each coil on the planar
  • magnetic fields are generated in accordance with the stimulation protocols described above. Conventionally, it is believed that very large magnetic fields have to be directed into the brain to have any tangible therapeutic effects on certain conditions, such as depression. However, it is believed that, by modulating a position, configuration, orientation, or movement, of magnetite chains in one or more brain cells or neurons, which may be effectuated by magnetic fields less than 200 microTesla or by applying a sufficient magnetic field gradient, which is determined by the frequency and shape of pulse, one can cause a normalization of brain function, at least during the application of the magnetic fields.
  • Normalization of brain function may thereby enable at least a partial alleviation of symptoms associated with sinus inflammation, sinusitis, anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, attention deficient disorder, autism, Parkinson’s disease, ischemic stroke treatment, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, erectile dysfunction, improved weight management, multiple sclerosis, fibromyalgia, Alzheimer’s disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic pain, insomnia, vasculature degeneration or disorders, sleep disorders, memory disorders, relaxation, stress, sexual function dysfunction, chronic tinnitus, high blood pressure, or sleep apnea while the magnetic fields are being applied to the brain.
  • a software program configured to execute on a mobile device, as further described herein, is adapted to generate one or more graphical user interfaces.
  • the one or more graphical user interfaces is configured to receive data inputted from a wearer, wherein the data is indicative of a health state of the wearer.
  • the graphical user interfaces preferably prompts the wearer to input data indicative of whether the wearer:
  • Has one or more contraindications of use including having had a seizure, headache or migraine within the last 48 hours, having a history of seizures, having ferromagnetic or metallic material in or around his or her head;
  • the degree of intensity of the treatment be set to one or more levels, such as mild, medium, strong or very strong.
  • the software program configured to execute on the mobile device is adapted to generate a plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current.
  • the programmatic instructions are adapted to be transmitted, whether by a wired connection or wirelessly, to the controller integrated into the headwear 1885b and the controller is adapted to modify the generation and transmission of current in accordance with the plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current.
  • Exemplary combinations of current level, pulse shape, pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current are provided below:
  • any of the aforementioned conditions may be treated by placing a hat, as described above, on a user’s head 2305, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 60 Hz, preferably 6 to 12 Hz 2310, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths) 2315, having the controller shut off the pulse train automatically after the treatment period 2320, and repeating the process daily or weekly over several months 2330.
  • this treatment causes the user’s brain to decrease or increase alpha wave generation, to increase blood circulation, decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, and/or any combination of the above.
  • chronic pain, peripheral neuropathy, in a person’s feet, legs, back, chest, torso, arms, hands, shoulders, or any other body part other than the person’s head can be treated by a) placing a hat, as described above, on a user’s head 2405, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 100 Hz, preferably 4 to 50 Hz 2410, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths) 2415, having the controller shut off the pulse train automatically after the treatment period 2420, and repeating the process daily or weekly over several months 2430 while concurrently, or partially concurrently , b) placing another piece of clothing with integrated microcoil arrays, as described herein, on the portion of the user’s body with pain 2455, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 100
  • this treatment causes the user’s brain to increase blood circulation, decrease or increase alpha wave generation, to decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, and/or any combination of the above while concurrently causing in the other body part with pain a decrease in the level of pain and/or increasing blood circulation.
  • the headwear embodiment disclosed herein may be used to treat Parkinson’s disease by applying the stimulation protocols, using the hat and integrated planar microcoils, described above to direct magnetic fields toward the substantia nigra of a patient.
  • a patient with Parkinson’s disease may be treated by placing a hat, as described above, on a user’s head, programming the controller to deliver a series of pulses (preferably rectangular, ramping pulse bursts) at a frequency of 0.1 Hz to 60 Hz, preferably 0.1 to 50 Hz 2310, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths), having the controller shut off the pulse train automatically after the treatment period, and repeating the process daily or weekly.
  • a series of pulses preferably rectangular, ramping pulse bursts
  • this treatment causes the user’s brain to decrease or increase alpha wave generation, to increase blood circulation, decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, to modulate dopamine production in the substantia nigra and/or any combination of the above.
  • a first pre-treatment brainwave frequency band 2105a is modulated in both amplitude and frequency after treatment, as shown by a corresponding first post-treatment brainwave frequency band 2105b.
  • a second pre treatment brainwave frequency band 2125a is modulated in both amplitude and frequency after treatment, as shown by a corresponding second post-treatment brainwave frequency band 2125b.
  • a third pre-treatment brainwave frequency band 2135a is modulated in both amplitude and frequency after treatment, as shown by a corresponding third post-treatment brainwave frequency band 2135b.
  • a fourth pre-treatment brainwave frequency band 2145a is modulated in both amplitude and frequency after treatment, as shown by a corresponding fourth post-treatment brainwave frequency band 2145b.
  • a fifth pre-treatment brainwave frequency band 2155a is modulated in both amplitude and frequency after treatment, as shown by a corresponding fifth post-treatment brainwave frequency band 2155b.
  • a user may be instructed, through one or more programmatic instructions executing on a separate computing device (such as a phone), to keep his or her eyes open (for pain relief, for example) or to keep his or her eyes closed (for relaxation).
  • a separate computing device such as a phone
  • Different treatment objectives i.e. treating any one of the conditions described herein
  • a user may be instructed, through one or more programmatic instructions executing on a separate computing device (such as a phone), to avoid visual stimulation, to seek visual stimulation, to avoid auditory stimulation, to seek auditory stimulation, to avoid taste or smell sensations, or to seek taste or smell sensations.
  • a separate computing device such as a phone
  • the present invention is directed toward treating an individual experiencing cardiac arrest or a hindering or stoppage of blood flow to the individual’s brain.
  • cardiac arrest blood flow decreases and global cerebral ischemia may starting occurring within 2-3 minutes, leading to brain injury and, if not addressed immediately, causing severe and irreversible brain injury. It would be beneficial to have a device that can be immediately and easily applied to a person undergoing cardiac arrest that will increase blood flow in the brain.
  • Such a device preferably a) will not interfere with other therapies which would have to be implemented by emergency personnel when treating cardiac arrest, b) will be extremely easy and fast to apply so as to avoid distracting personnel in the treatment of cardiac arrest, c) will increase brain blood volume without potentially causing adverse side effects to other organs, and d) will help maintain an acceptable level of blood perfusion in the brain, despite decreasing blood flow to the brain due to cardiac arrest.
  • the headwear device described herein may be used to prevent, protect against, or otherwise decrease the possibility or extent of brain injury due to blood flow decreasing, referred to as cerebral ischemia, during cardiac arrest.
  • the application of pulsed electromagnetic fields, using the headwear described herein and programmed with the pulsing magnetic field parameters described herein, can increase cerebral blood (particularly micro-vascular) perfusion by at least 1%, preferably at least 5%, and more preferably at least by 10% relative to an individual who does not receive the applied pulsed electromagnetic fields.
  • the application of pulsed electromagnetic fields can also increase the dilation of cerebral arterioles, as measured by the diameter of one or more cerebral arterioles or an average thereof, by at least 1%, preferably at least 5%, and more preferably at least by 10% relative to an individual who does not receive the applied pulsed electromagnetic fields.
  • the application of pulsed electromagnetic fields, using the headwear described herein and programmed with the pulsing magnetic field parameters described herein can also increase cerebral blood oxygenation by at least 1%, preferably at least 5%, and more preferably at least by 10% relative to an individual who does not receive the applied pulsed electromagnetic fields.
  • the application of pulsed electromagnetic fields can also increase cerebral blood flow velocity by at least 1%, preferably at least 5%, and more preferably at least by 10% relative to an individual who does not receive the applied pulsed electromagnetic fields.
  • the application of pulsed electromagnetic fields, using the headwear described herein and programmed with the pulsing magnetic field parameters described herein can also increase cerebral blood flow volumes by at least 1%, preferably at least 5%, and more preferably at least by 10% relative to an individual who does not receive the applied pulsed electromagnetic fields.
  • Headwear such as the one shown in Figures 18A or 18B (with or without a brim), is placed on the individual’ s head and activated 2604.
  • the headwear 2700a, 2700b comprises a controller 2702 programmed to increase at least one of cerebral blood vessel dilation, cerebral blood flow volumes, cerebral tissue oxygenation, cerebral blood flow velocity, or cerebral blood perfusion using a pulse train having a plurality of rectangular ramping pulse bursts (as described elsewhere in this specification) where the pulse train is applied using a frequency in a range of 0.1 Hz to 300 Hz, and more preferably 10 Hz to 60 Hz, and where the pulse train is generated at each of a plurality of distributed microarrays 2705 sequentially, partially concurrently or fully concurrently (step 2606 in Figure 26).
  • a controller 2702 programmed to increase at least one of cerebral blood vessel dilation, cerebral blood flow volumes, cerebral tissue oxygenation, cerebral blood flow velocity, or cerebral blood perfusion using a pulse train having a plurality of rectangular ramping pulse bursts (as described elsewhere in this specification) where the pulse train is applied using a frequency in a range of 0.1 Hz to 300 Hz, and more preferably 10 Hz
  • the headwear is a single-use, disposable device with a non-rechargeable energy source. In one embodiment, the headwear is a multi-use device with a rechargeable or changeable energy source.
  • the headwear continues to operate for a predefined period of time 2608 which preferably overlaps with the period during which the individual is experiencing cardiac arrest or the immediate treatment period thereafter, after which is automatically terminates based on an internal clock in data communication with the controller.
  • the predefined period of time is from 1 minute to 10 hours, or any time increment therein, of substantially continuous use.
  • the headwear may be activated and applied for a 24 hour period, or a period of time less than 24 hours, with some off periods, resulting in alternating on-periods in a range of 1 minute to 12 hours (or any time increment therein) and off-periods in a range of 1 minute to 12 hours (or any time increment therein).
  • the headwear may be automatically reactivated 2610 when a cerebral oxygenation reading is below a predefined level.
  • a cerebral oxygenation monitor such as a regional oximeter, is connected to sensors attached to one or more positions on a patient’s forehead.
  • the cerebral oxygenation monitor Upon sensing the cerebral oxygenation level is below a predefined level, wherein such level may be programmed by a user, the cerebral oxygenation monitor transmits a trigger signal that would cause the headwear to re-activate.
  • the headwear in this case, would not have microcoil arrays positioned in the areas proximal the frontal lobe where the cerebral oxygenation sensors are located.
  • the headwear would integrate cerebral oxygenation sensors into the same substrate as the microcoil arrays and position the microcoil arrays around the sensors, keeping them off when the sensors are operating and keeping the sensors off when the arrays are generating magnetic fields.
  • the headwear disclosed herein may be used to induce vasodilation, increase vascular blood flow velocity, increase brain tissue oxygenation, and/or increase blood volume circulation in the user’s brain in order to treat, or protect against, one or more of encephalopathy, seizure, stroke, traumatic brain injury, neuronal damage or death, brain edema, blood-brain barrier damage, or hypoxic/ischemic injury to the brain.
  • controllers for each of the headwear embodiments may be programmed with one or more of the following treatment protocol(s), depending on the therapeutic objective:
  • the controller may be programmed to operate at a first current intensity for a first period of time. After operating for the first period of time, the controller would shut off, terminating current flow. After a first off period, the controller may be programmed to operate at a second current intensity for a second period of time, where the second current intensity is less than the first current intensity and/or the second period of time is less than the first period of time. For example, in one embodiment, the controller is programmed to operate at a current intensity of 60mA for an on-period of at least 20 minutes. After the on-period, the controller terminates current flow, resulting in an off period. The off period may extend from 30 minutes to seven days.
  • the controller may a) initiate current flow at an intensity of less than 60mA, such as 45mA, for any period of time, b) initiate current flow at any intensity for less than 20 minutes, or c) initiate current flow at an intensity of less than 60mA, such as 45mA, for less than 20 minutes.
  • This approach of having a larger initial current level and/or longer initial treatment period, decreasing to a lower current level and/or shorter treatment period may be automatically repeated over a number of subsequent treatment sessions and may be programmed expressly or implicitly by identifying a specific desired mode of treatment which provides for the differential current flow.
  • the controller may be programmed to operate at a first frequency for a first period of time. After operating for the first period of time, the controller would shut off, terminating current flow. After a first off period, the controller may be programmed to operate at a second frequency for a second period of time, where the second frequency is less than or greater than the first frequency and/or the second period of time is less than the first period of time. For example, in one embodiment, the controller is programmed to operate at a first frequency of 10 Hz for an on-period of at least 10 minutes. After the on-period, the controller terminates current flow, resulting in an off period. The off period may extend from 5 minutes to seven days, or any time increment therein.
  • the controller may initiate a pulse at a frequency of less than 10 Hz or greater than 10 Hz for any period of time.
  • This approach of having different frequencies (where each subsequent treatment session has a greater or lesser frequency than the preceding treatment session after an off-period) automatically delivered may be repeated over a number of subsequent treatment sessions and may be programmed expressly or implicitly by identifying a specific desired mode of treatment which provides for the differential current flow.
  • Identifying a specific mode of treatment (through one or more of the switches or graphical user interfaces described above), such as anxiety, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, attention deficient disorder, autism, Parkinson’s disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, erectile dysfunction, improved weight management, multiple sclerosis, fibromyalgia, Alzheimer’s disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic pain, promoting neuroprotection, improved sleep, improved memory, relaxation, decreased stress, improved sexual function, chronic tinnitus, or sleep apnea, would result in the automated activation of any of the treatment protocols described in this specification or any combination of such treatment protocols.
  • a plurality of EEG sensors may be integrated into the headwear.
  • the headwear 2800 comprising a substrate 2820 with a plurality of EEG electrodes 2820, such as dry or semi-dry electrodes (as opposed to wet electrodes), and the microcoil arrays 2810, as previously described.
  • the EEG electrodes 2920 are preferably positioned such that they do not overlap or physically interfere with the microcoil arrays 2910.
  • the EEG sensors capture data indicative of the varying magnitude of electric fields originating from the brain, including, but not limited to, delta brain waves (0.5 to 3 Hz), theta brain waves (3 to 8 Hz), alpha brain waves (8 to 12 Hz), beta brain waves (12 to 38 Hz), and gamma brain waves (38 to 42 Hz), and data indicative of a degree of coherence between different areas of the brain.
  • the controller is configured to activate and/or obtain readings from EEG sensors only when current is not being generated and transmitted to the microcoil arrays.
  • a plurality of programmatic instructions stored on a memory and configured to execute in a computing device, such as a mobile phone, may generate, when executed by a processor, a visual analog scale.
  • the visual analog scale solicits one or more of the following data inputs from a user of the headwear: degree of craving, degree of headache, degree of anxiety, degree of stress, degree of sleepiness, degree of pain in one or more anatomical locations, or one or more other emotions, physiological sensations, or symptoms.
  • the visual analog scale may prompt the user for the data input using any graphical user interface that enables a user to designate an amount or degree, such as a numerical scale, graphical icons representing different levels, textual descriptions, or a color scale.
  • At least one of the data generated by the VAS or the EEG sensors is used to modulate, change, or otherwise modify one or more of the stimulation parameters described in this specification, including which arrays are activated and in what sequence, the frequency of a pulse train, the shape of each pulse in the pulse train, the number of pulses in the pulse train, the amplitude of the current used in the pulse train, the ramping (including the rate of increase or decrease) of sequential pulses in the pulse train, when to activate, how long to operate, and when to terminate, based on a deep learning or neural network model applied to the acquired data.
  • the controller is configured to apply a trained neural network or deep learning model on the data.
  • That model is configured to relate various combinations of VAS or EEG values to various treatment protocols. Accordingly, as the VAS or EEG values change, the model determines whether the stimulation parameters, as described above, should modify and, if so, how and to what extent.
  • the controller is configured to modify one or more of the stimulation parameters based on a degree of coherence determined based at least on EEG sensor measurements.
  • the controller is configured to modify stimulation parameters to obtain a desired degree of coherence, such as increased coherence or decreased coherence, across one or more, or all of the, regions of the brain.
  • the controller is configured to modify a treatment session time based on data from prior treatment sessions, including VAS data, EEG data, or simply based on the length of time the prior treatment session ran for.
  • the system may be used as a repetitive transcranial magnetic stimulation system to detect epileptic seizures and, in response, generate magnetic fields that suppress an epileptic seizure.
  • the controller When the EEG-based detection system detects a possible seizure, the controller generates a current, directed to each of the microcoil arrays concurrently or sequentially, resulting in pulsed, multi-directional magnetic fields having a frequency that is below 5 Hz, preferably at or below 1 Hz, and more preferably 0.5 Hz.
  • the EEG electrodes are configured to detect brain waves and generate corresponding analog signals 3002. The analog signals are transmitted to the controller, which converts it to digital signals, samples the digital signals, and segments the sampled signals into short windows (5 seconds or less) 3004.
  • each channel of EEG data is treated as individual node or oscillator in a synchronization network. Patterns are found by estimating the coupling intensity functions (both power and phase related coupling coefficients) between the individual nodes (EEG channels) of the network during seizure onsets.
  • a Fast Fourier transform is applied on short epochs (0.25-1 seconds) segmented from each channel of the EEG data.
  • the resulting sets of coupling intensities are then transposed onto a Laplacian matrix, where eigenvalues are computed at each time step and used as a key extracted feature to determine seizure state.
  • the value of that extracted feature is compared to a threshold value to determine if a seizure is occurring or is imminent.
  • the gamma value parameter can be tuned to increase the accuracy and resistance to noise/artifact interference.
  • this dynamic graph-theoretic approach of analyzing synchronicity allows for the accurate and computationally light detection of seizure with possibly noisy measurement data from dry or semi-dry systems.
  • a clinician would determine the threshold value on a patient-by-patient basis, tuning the sensitivity of the detection system to each specific patient.
  • a signal is generated to initiate current flow to the microcoil arrays, in any one of the treatment protocols described herein 3008, at a frequency of 5 Hz or less, preferably 1 Hz or less, and most preferably at 0.5 Hz.
  • all the microarrays are activated concurrently.
  • the microarrays are activated in groups (with more than 1 but not all of the arrays concurrently activated) or sequentially (with only one array on at a time).
  • the controller of the integrated seizure detection and repetitive transcranial magnetic stimulation system is configured to turn off the current being directed to the microcoil arrays and reinitiate the detection model to continue monitoring for seizures 3010.
  • the embodiments described herein achieve an alleviation of symptoms related to anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, attention deficient disorder, autism, Parkinson’s disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, erectile dysfunction, improved weight management, multiple sclerosis, fibromyalgia, Alzheimer’s disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, sinus inflammation, sinusitis, chronic pain, sleep disorders, insomnia, memory disorders, stress, sexual function dysfunction, chronic tinnitus, high blood pressure, or sleep apnea while the magnetic fields are being applied to the brain by increasing a user’ s feelings of calm or relaxation, decreasing the user’s feelings of anxiety, depression,
  • embodiments may be specifically designed to be directed toward 1) treating osteoporosis by, for example, positioning a plurality of arrays along a length of substrate configured to extend over an entire length of a user’s spine, each of said arrays being in electrical communication with a controller, 2) effectuating an activation of acupoints that may be distributed over various areas of the user’s body, where at each acupoint an array is positioned and where all of the arrays are in electrical communication with a controller; optionally, a coil that aligns with an acupoint may be configured to receive a higher level of current and generate a higher magnetic flux than the rest of the coils which are not aligned with an acupoint, 3) treating a neck region to reduce increase and increase a collagen framework, where a plurality of arrays are configured to extend around a neck region of the user, each of the arrays being in electrical communication with a controller, and 4) treating one or more broken bones by providing a plurality of arrays configured to be positioned
  • an article of clothing with a set of planar microcoils integrated therein 1900 A layer of clothing 1910b, which faces the outside environment, has, positioned on top of it, and opposing the outside layer, a set of planar microcoil arrays 1920 that are connected by traces.
  • the layer of clothing 1910a is contiguous and uniform.
  • the layer of clothing 1910a has a window that exposes the coils of the arrays, and therefore the generated magnetic fields, to the skin of the user.
  • the window may be just a space or made of a different material, such as a clear plastic or a thinner material than the rest of layer 1910a.
  • a buffer material 1930 may be positioned between the arrays to keep the arrays 1920 in position and physically separated from each other.
  • the buffer material may be any non-conductive material, including cotton, polyester, or wool.
  • the article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing.
  • a controller is attached 2010 to the docking station, wherein the controller comprises a circuit and a power source.
  • the circuit automatically electrically interfaces with at least one of the plurality of planar microcoil arrays.
  • the docking station is optional.
  • the controller may be directly integrated into the article of clothing.
  • the controller is activated 2015 to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • the article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient’s body. Additionally, prior to attaching the article of clothing, a skin impedance measurement may be made and, based on the level of impedance, the article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an area of impedance that exceeds a predefined threshold value. Accordingly, an impedance measurement sensor and circuit may also be integrated into the article of clothing.
  • any of the arrays 3105a, 3105b described in this specification may be integrated into a belt, torso wrap, or other fabric configured to encircle a human torso 3110a or simply lay across an area of the patient’s body 3110b, i.e. in the form of a largely linear fabric.
  • the device 3100b may be linear and configured to just lay over a portion of the user’s body or attach, using thread, Velcro, snaps, or any other attachment means, to another article of clothing such that the fabric 3110b is positioned at the right location on the user’s body.
  • the arrays 3105a, 3105b are integrated into the fabric 3110a, 3110b such that the coils face, and are directed to, the user.
  • the coil arrays 3105a are distributed around the fabric 3110a such that they are distributed around, and therefore encircle the entirety of, the user’s torso or distributed across the length of the substrate 3110b such that the arrays 3105b are positioned adjacent each other.
  • the arrays are electrically coupled to a controller 3115a, 3115b that is integrated into a surface of the substrate 3110a, 3110b or separate from the substrate 3110a, 3110b.
  • the device 3100a, 3100b When worn, the device 3100a, 3100b is positioned such that it is proximate (within at least 20 inches, within at least 15 inches, within at least 10 inches or within at least 5 inches) one or more of the following organs, or portions thereof: the user’s liver, gall bladder, heart, lung, stomach, colon, kidneys, spleen, pancreas, large intestine, small intestine.
  • the substrate 3110a, 3110b integrated with the microcoil arrays are positioned around the user’s torso 3202.
  • the controller 3115a, 3115b is activated such that a current is driven to the one or more microcoils in accordance with any of the pulse trains or stimulation protocols 3204 described in this specification.
  • one or more physiological parameters including a glucose level, a blood pressure, pulse rate, SpCh level, core temperature, cortisol level, or lymphocyte activity, are subsequently tracked and recorded 3206.
  • Using an encircling belt or a linear length of fabric placed over a) the front upper torso and upper back of the user and/or b) around the neck of the user can have several benefits. First, it may help improve user’s metabolic rate, thereby helping increase weight loss and increase the rate of calories being expended by the user. Second, it may help the metabolism of glucose, thereby decreasing the user’s blood sugar relative to the user’s blood sugar level without the device. It should be appreciated that any of the frequencies, current intensities, pulse shapes, pulse widths, or time of treatment session disclosed in this specification may be used.
  • Nitric oxide serves as a vasodilator and can improve the endothelial function of vessels. This is a similar mechanism of action that leads to improved cerebral oxygenation levels, as described above. Nitric oxide expression may also serve to suppress the coronaviruses responsible for COVID, such as SARS-CoV or SARS-CoV-2.
  • the present specification discloses systems and methods for treating symptoms of SARS-CoV-2 infection by a) placing a device with the aforementioned arrays comprising microcoils and a controller on the upper torso of the patient and preferably on the upper back of the patient, b) concurrently initiating a treatment session defined by any of the frequencies, current intensities, pulse shapes, pulse widths, or time of treatment session disclosed in this specification and more particularly defined by a frequency in a range of 8-60 Hz, a treatment time in a range of 10 minutes to 2 hours, a rectangular ramping pulse, and a field intensity in range of 500 microTesla and below, and c) tracking blood oxygenation level and pulse rate of the patient. If the pulse rate increases and exceeds 100 beats per minute, the controller is turned off and therapy is terminated. If the blood oxygenation level decreases, the controller is turned off and therapy is terminated.
  • the unexpectedly effective therapies are enabled by a unique device design having one or more of the following features which, when taken together, efficiently enable an intelligent direction shifting (Intelligent Directional Shifting or IDS) of magnetic field lines:
  • Two or more flexible substrates each comprising two or more non-linear electrically conductive structures (preferably spiral or coiled structures) integrated or embedded therein such that, when electrical current is passed therethrough, each of the two or more non-linear electrically conductive structures independently, yet concurrently, generate separate and distinct magnetic fields.
  • a center point of the two or more non-linear electrically conductive structures are positioned sufficient proximate to each other on the same flexible substrate, e.g. on the order of less than 5 inches and preferably less than 1 inch.
  • the two or more flexible substrates are not integrally formed or directly attached, thereby allowing them to be spaced apart and allowing for the two or more non-linear electrically conductive structures to generate magnetic fields in different directions.
  • the two or more flexible substrates encircle an organ or set of organs to be modulated by pulsed electromagnetic fields, thereby ensuring the same volume of tissue is exposed to magnetic field lines that directionally vary or shift in space over a single treatment session.
  • the flexible substrates are positioned around the front, left side, right side, top, and back of the user’s head, thereby ensuring that the same volume of the user’s brain experiences magnetic field lines traveling from, and to, at least five different directions over a single treatment session.
  • the same volume of tissue experiences field lines traveling from, and to, at least two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty or more than twenty different directions during one treatment session which typically lasts for less than 6 hours, preferably less than 2 hours, more preferably less than 1 hour and even more preferably less than 30 minutes.
  • a controller that selectively activates each of the two or more flexible substrates sequentially, concurrently, or selectively such that the same volume of tissue is exposed to magnetic field traveling from, and to, only a subset (and not all) of the available magnetic field directions, such as two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty different directions during a single treatment session, which may last for less than 6 hours, less than 1 hour, less than 30 minutes, or less than 10 minutes or every time increment therein.
  • the controller selectively activates each of the two or more flexible substrates sequentially. For example, where there are between 4 and 25 separate and distinct flexible substrates, each having two or more coils that are serially energized or energized in parallel to generate a magnetic field, a first subset of the flexible substrates would be positioned proximate the user’s frontal lobe, a second subset of the flexible substrates would be positioned proximate the user’s left temporal lobe, a third subset of the flexible substrates would be positioned proximate the user’s right temporal lobe, a fourth subset of the flexible substrates would be positioned proximate the user’s parietal lobe, and a fifth subset of the flexible substrates would be positioned proximate the user’s occipital lobe.
  • the controller is programmed to drive current to the flexible substrates such that the current is directed to each of the first, second, third, fourth, and fifth subsets, in any order, and such that each of the subsets receives the current for less than 5 continuous minutes each, preferably less than 3 continuous minutes each, and preferably less than 1 continuous minute each.
  • the controller repeats this sequence (sequentially directing current to each of the first, second, third, fourth, and fifth subsets, in any order, such that each of the subsets receives the current for less than 5 continuous minutes each, preferably less than 3 continuous minutes each, and preferably less than 1 continuous minute each) throughout the entire treatment session.
  • a charging base configured to fit on or within the article of clothing, such as a dome or any convex surface that is shaped to receive the hat, cap, or face covering described herein, a shoe tree to receive the footwear described herein, or any other shape configured to mimic an anatomical surface.
  • a protective case configured to fit over the article of clothing, such as a dome or any convex surface that is shaped to cover the hat, cap, or face covering described herein, a shoe box to receive the footwear described herein, or any other shape configured to cover the device.
  • Disposable liners made of mesh-like cloth, woven cotton, woven polyester, or viscose rayon, that have the same shape as the article of clothing and useful to act as an intermediate layer between the user and the article of clothing, like a dome shaped liner to cover the user’s head when he or she puts on the hat, cap, or face covering described herein. For example, a user may first put on the disposable liner and then put on one or more of the articles of clothing described herein.
  • Elastic bands extending around one or more positions of the article of clothing to secure the article of clothing to the user, such as an elastic band attached to the crown of the hat and extending downward below the user’s chin or skull base.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

La présente invention concerne un système de champ électromagnétique pulsé ayant des réseaux de microbobines planaires intégrés dans des vêtements. Chacun des réseaux de microbobines planaires comporte au moins deux microbobines planaires positionnées sur un substrat flexible. Les réseaux de microbobines planaires sont connectés à un dispositif de commande configuré pour générer un courant électrique et transmettre ce courant électrique, conformément à un protocole de stimulation particulier, à chacun des réseaux de microbobines planaires. Le système peut être utilisé pour supprimer des crises d'épilepsie ou pour fournir une neuroprotection à une personne subissant un arrêt cardiaque ou un accident vasculaire cérébral.
PCT/US2021/030826 2020-05-05 2021-05-05 Systèmes et procédés de modulation de la fonctionnalité d'un cerveau d'animal à l'aide de réseaux de bobines planaires WO2021226197A1 (fr)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US16/867,130 2020-05-05
USPCT/US2020/031467 2020-05-05
PCT/US2020/031467 WO2020227288A1 (fr) 2019-05-06 2020-05-05 Réseaux thérapeutiques de bobines planaires conçues pour générer des champs électromagnétiques pulsés et intégrés dans des vêtements
US16/867,130 US11517760B2 (en) 2019-05-06 2020-05-05 Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US17/065,412 2020-10-07
US17/065,412 US11020603B2 (en) 2019-05-06 2020-10-07 Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US202063132756P 2020-12-31 2020-12-31
US63/132,756 2020-12-31
US202163147861P 2021-02-10 2021-02-10
US63/147,861 2021-02-10

Publications (1)

Publication Number Publication Date
WO2021226197A1 true WO2021226197A1 (fr) 2021-11-11

Family

ID=78468483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/030826 WO2021226197A1 (fr) 2020-05-05 2021-05-05 Systèmes et procédés de modulation de la fonctionnalité d'un cerveau d'animal à l'aide de réseaux de bobines planaires

Country Status (1)

Country Link
WO (1) WO2021226197A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112352A1 (en) * 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US20130289433A1 (en) * 2012-04-06 2013-10-31 Newport Brain Research Laboratory Inc. rTMS Device
US20170151442A1 (en) * 2015-11-05 2017-06-01 Warren Winslow Walborn Hair loss regrowth and hair treatment device
US20200353274A1 (en) * 2019-05-06 2020-11-12 Kamran Ansari Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Clothing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112352A1 (en) * 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US20130289433A1 (en) * 2012-04-06 2013-10-31 Newport Brain Research Laboratory Inc. rTMS Device
US20170151442A1 (en) * 2015-11-05 2017-06-01 Warren Winslow Walborn Hair loss regrowth and hair treatment device
US20200353274A1 (en) * 2019-05-06 2020-11-12 Kamran Ansari Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Clothing

Similar Documents

Publication Publication Date Title
US20210346711A1 (en) Systems and Methods of Modulating Functionality of an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Headwear
US11020603B2 (en) Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US11331480B2 (en) Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US10994132B1 (en) Wearable, unsupervised transcranial direct current stimulation (tDCS) device for movement disorder or memory therapy
CN108697890B (zh) 一种通过同步激活神经治疗各种神经疾病的系统和方法
JP7133543B2 (ja) 末梢神経刺激による心機能不全の治療のためのシステムおよび方法
US10695568B1 (en) Device and method for the treatment of substance use disorders
US20140303425A1 (en) Method and apparatus for electromagnetic treatment of cognition and neurological injury
US11517760B2 (en) Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US10765879B2 (en) Electromagnetic treatment of brain and body disorders
US20170113059A1 (en) Wrist worn sensor
KR102118530B1 (ko) 펄스 자기장을 이용한 미주신경 자극 방법 및 장치
CN114423490A (zh) 使用耳状刺激设备递送疗法的系统和方法
US20240189594A1 (en) Auricular device for nerve stimulation and methods of operating same
JP2023002436A (ja) 部位別電気刺激に基づく生体信号測定装置
US20230104434A1 (en) Pulsed Electromagnetic Field Devices Integrated into Adjustable Clothing
WO2021226197A1 (fr) Systèmes et procédés de modulation de la fonctionnalité d'un cerveau d'animal à l'aide de réseaux de bobines planaires
TW202319090A (zh) 可穿戴神經刺激系統
EP3848090A2 (fr) Dispositif de stimulation de point d'acupuncture et procédé de stimulation de point d'acupuncture l'utilisant
KR20210091030A (ko) 경혈 자극 장치 및 이를 이용한 경혈 자극 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800130

Country of ref document: EP

Kind code of ref document: A1