WO2021224102A1 - Composés microbiocides - Google Patents

Composés microbiocides Download PDF

Info

Publication number
WO2021224102A1
WO2021224102A1 PCT/EP2021/061259 EP2021061259W WO2021224102A1 WO 2021224102 A1 WO2021224102 A1 WO 2021224102A1 EP 2021061259 W EP2021061259 W EP 2021061259W WO 2021224102 A1 WO2021224102 A1 WO 2021224102A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
formula
group
phenyl
compound
Prior art date
Application number
PCT/EP2021/061259
Other languages
English (en)
Inventor
Thomas James HOFFMAN
Simon Williams
Matthias Weiss
Farhan BOU HAMDAN
Laura Quaranta
Stefano RENDINE
Original Assignee
Syngenta Crop Protection Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Crop Protection Ag filed Critical Syngenta Crop Protection Ag
Publication of WO2021224102A1 publication Critical patent/WO2021224102A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/10Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring

Definitions

  • the present invention relates to microbiocidal indoline, dihydrobenzothiophene and dihydrobenzofuran derivatives, e.g., as active ingredients, which have microbiocidal activity, in particular, fungicidal activity.
  • the invention also relates to agrochemical compositions which comprise at least one of the indoline, dihydrobenzothiophene and dihydrobenzofuran derivatives, to processes of preparation of these compounds and to uses of the indoline, dihydrobenzothiophene and dihydrobenzofuran derivatives or compositions in agriculture or horticulture for controlling or preventing infestation of plants, harvested food crops, seeds or non-living materials by phytopathogenic microorganisms, preferably fungi.
  • T is selected from the group consisting of a group of formula Ti, T 2 and T3 below
  • a 1 , A 2 and A 3 are each independently O or NH;
  • Y is selected from N or CR 5 ;
  • Z is selected from the group consisting of S, O and CR 6a R 6b ;
  • R 1 is selected from the group consisting of hydrogen, halogen, methyl, methoxy and cyclopropyl;
  • R 2 is selected from the group consisting of hydrogen, halogen, cyano and methyl
  • R 3 is selected from the group consisting of hydrogen, phenyl, heteroaryl, wherein the heteroaryl moiety is a 5- or 6-membered monocyclic aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and heterodiaryl, wherein the heterodiaryl moiety is a 9- or 10-membered aromatic fused bicyclic ring system which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein any of said phenyl, heteroaryl or heterodiaryl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different;
  • R 4a and R 4b are independently selected from the group consisting of hydrogen, halogen, methyl and cyano;
  • R 5 is selected from the group consisting of hydrogen, halogen, cyano and methyl
  • R 6a and R 6b are independently selected from the group consisting of hydrogen, halogen, cyano and methyl; or
  • R 6a and R 6b together with the carbon atom to which they are attached form a C3-C6cycloalkyl group; and each R 7 is independently selected from the group consisting of halogen, cyano, hydroxy, Ci-C 4 alkyl, Ci- C 4 haloalkyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, Ci-C 4 alkylcarbonyl, cyanoCi-C 4 alkyl-, C3-C6cycloalkyl, C3- C6cycloalkenyl, -S(0) 2 Ci-C 4 alkyl, -C(0)NR 8 R 9 , phenyl, phenoxy, heterocyclyl, wherein the heterocyclyl moiety is a 5- or 6-membered non-aromatic ring which comprises 1 , 2 or 3 heteroatoms individually selected from N, O and S, heteroaryl, heteroaryloxy, wherein the heteroaryl moiety is a 5- or 6- membered monocyclic aromatic
  • R 8 and R 9 are independently selected from the group consisting of hydrogen, methyl and ethyl; or R 8 and R 9 together with the nitrogen atom to which they are attached form an azetidine, pyrrolidine or piperidine ring; and each R 10 is independently selected from the group consisting of halogen, methyl, ethyl, cyano, difluoromethyl, difluoromethoxy and trifluoromethyl; or an agronomically acceptable salt thereof; or an N-oxide thereof.
  • an agrochemical composition comprising a fungicidally effective amount of a compound of formula (I) and an agrochemically- acceptable diluent or carrier.
  • Such an agricultural composition may further comprise at least one additional active ingredient.
  • a method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms wherein a fungicidally effective amount of a compound of formula (I), or a composition comprising this compound as active ingredient, is applied to the plants, to parts thereof or the locus thereof.
  • a compound of formula (I) as a fungicide.
  • the use may exclude methods for the treatment of the human or animal body by surgery or therapy.
  • halogen refers to fluorine (fluoro), chlorine (chloro), bromine (bromo) or iodine (iodo), preferably fluorine, chlorine or bromine.
  • cyano means a -CN group.
  • hydroxy means a -OH group.
  • Ci-C 4 alkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to four carbon atoms, and which is attached to the rest of the molecule by a single bond.
  • Ci-C2alkyl is to be construed accordingly. Examples of Ci-C 4 alkyl include, but are not limited to, methyl, ethyl, n-propyl, 1- methylethyl (iso-propyl), n-butyl, and 1-dimethylethyl (f-butyl).
  • cyanoCi-C 4 alkyl- refers to a Ci-C 4 alkyl radical as generally defined above substituted by one or more cyano groups.
  • Ci-C 4 alkoxy refers to a radical of the formula -OR a where R a is a Ci-C 4 alkyl radical as generally defined above.
  • Examples of Ci-C 4 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, iso-propoxy and f-butoxy.
  • Ci-C 4 haloalkyl refers to a Ci-C 4 alkyl radical, as generally defined above, substituted by one or more of the same or different halogen atoms.
  • Ci-C 4 haloalkyl include, but are not limited to chloromethyl, fluoromethyl, fluoroethyl, difluoromethyl, trifluoromethyl and 2,2,2- trifluoroethyl.
  • Ci-C 4 haloalkoxy refers to a Ci-C 4 alkoxy group, as defined above, substituted by one or more of the same or different halogen atoms. Examples of Ci-C 4 haloalkoxy include, but are not limited to, fluoromethoxy, difluoromethoxy, fluoroethoxy, trifluoromethoxy and trifluoroethoxy.
  • C 2 -C 4 alkenyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing at least one double bond that can be of either the (E)- or ( ⁇ -configuration, having from two to four carbon atoms, which is attached to the rest of the molecule by a single bond.
  • C 2 -C3alkenyl is to be construed accordingly.
  • Examples of C 2 -C 4 alkenyl include, but are not limited to, prop-1 -enyl, allyl (prop-2-enyl) and but-1-enyl.
  • C 2 -C 4 alkynyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to four carbon atoms, and which is attached to the rest of the molecule by a single bond.
  • Examples of C2- C 4 alkynyl include, but are not limited to, prop-1 -ynyl and propargyl (prop-2-ynyl).
  • Ci-C 4 alkylcarbonyl refers to a radical of the formula -C(0)R a where R a is a Ci-C 4 alkyl radical as generally defined above. Ci-C3alkylcarbonyl is to be construed accordingly.
  • C3-C6cycloalkyl refers to a stable, monocyclic ring radical which is fully saturated and contains 3 to 6 carbon atoms.
  • C3-C 4 cycloalkyl is to be construed accordingly.
  • Examples of C3-C6cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • C3-C6cycloalkenyl refers to a stable, monocyclic ring radical which is partially unsaturated and contains 3 to 6 carbon atoms.
  • C3-C 4 cycloalkyl is to be construed accordingly.
  • Examples of C3-C6cycloalkyl include, but are not limited to, cyclopentenyl and cyclohexenyl.
  • phenoxy refers to a phenyl ring attached to the rest of the molecule via an oxygen atom.
  • heterocyclyl refers to a stable 3- to 6-membered non-aromatic monocyclic ring radical which comprises 1 , 2, or 3 heteroatoms individually selected from nitrogen, oxygen and sulfur.
  • the heterocyclyl radical may be bonded to the rest of the molecule via a carbon atom or heteroatom.
  • heterocyclyl examples include, but are not limited to, pyrrolinyl, pyrrolidyl, tetrahydrofuryl, tetrahydrothienyl, tetrahydrothiopyranyl, piperidyl, piperazinyl, tetrahydropyranyl, dihydroisoxazolyl, dioxolanyl, morpholinyl or d-lactamyl.
  • heteroaryl refers to a 5- or 6-membered monocyclic aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from nitrogen, oxygen and sulfur.
  • the heteroaryl radical may be bonded to the rest of the molecule via a carbon atom or heteroatom.
  • heteroaryl include, furyl, pyrrolyl, imidazolyl, thienyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazinyl, pyridazinyl, pyrimidyl or pyridyl.
  • heteroaryloxy refers to a heteroaryl ring as defined above attached to the rest of the molecule via an oxygen atom.
  • heteroodiaryl refers to a 9 or 10-membered aromatic fused bicyclic ring radical which comprises 1 , 2, 3 or 4 heteroatoms individually selected from nitrogen, oxygen and sulfur.
  • the heteroaryl radical may be bonded to the rest of the molecule via a carbon atom or heteroatom.
  • heterodiaryl include, indolyl, indazolyl, benzimidazolyl, pyrrolopyridinyl or triazolopyridinyl.
  • asymmetric carbon atoms in a compound of formula (I) means that the compounds may occur in chiral isomeric forms, i.e. , enantiomeric or diastereomeric forms. Also atropisomers may occur as a result of restricted rotation about a single bond.
  • Formula (I) is intended to include all those possible isomeric forms and mixtures thereof.
  • the present invention includes all those possible isomeric forms and mixtures thereof for a compound of formula (I).
  • formula (I) is intended to include all possible tautomers (including lactam-lactim tautomerism and keto-enol tautomerism) where present.
  • the present invention includes all possible tautomeric forms for a compound of formula (I).
  • the compounds of formula (I) according to the invention are in free form, in covalently hydrated form, or in salt form, e.g., an agronomically usable or agrochemically acceptable salt form.
  • N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book “Heterocyclic N-oxides” by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.
  • T is selected from the group consisting of a group of formula Ti, T 2 and T3 below wherein the jagged line defines the point of attachment to the remaining part of a compound of formula
  • T is selected from a group of formula Ti or T2. More preferably, T is a group of formula Ti.
  • T is selected from the group consisting of formula Ti a , T 2a and T3a (preferably Tia or T 2a , more preferably Tia) below wherein the jagged line defines the point of attachment to the remaining part of a compound of formula
  • a 1 , A 2 and A 3 are each independently O or NH.
  • a 2 is NH and A 1 and A 3 are O.
  • Y is selected from N or CR 5 .
  • Y is selected from N or CH.
  • Z is selected from the group consisting of S, O and CR 6a R 6b .
  • Z is selected from the group consisting of S, O and Chh. More preferably, Z is selected from S and Chh.
  • Y is N and Z is CR 6a R 6b (preferably, CH2). In another embodiment of the invention Y is CR 5 and Z is S or O. Preferably, Y is CH and Z is S or O. More preferably, Y is CH and Z is S.
  • R 1 is selected from the group consisting of hydrogen, halogen, methyl, methoxy and cyclopropyl.
  • R 1 is selected from the group consisting of hydrogen, chloro, fluoro, methyl, methoxy and cyclopropyl. More preferably, R 1 is selected from the group consisting of hydrogen, chloro, fluoro and methyl. Even more preferably, R 1 is selected from the group consisting of hydrogen, fluoro and methyl. Even more preferably still, R 1 is selected from hydrogen or methyl. Most preferably, R 1 is hydrogen.
  • R 2 is selected from the group consisting of hydrogen, halogen, cyano and methyl.
  • R 2 is selected from the group consisting of hydrogen, chloro, fluoro, cyano and methyl. More preferably, R 2 is hydrogen or methyl. Most preferably, R 2 is hydrogen.
  • R 3 is selected from the group consisting of hydrogen, phenyl, heteroaryl, wherein the heteroaryl moiety is a 5- or 6-membered monocyclic aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and heterodiaryl, wherein the heterodiaryl moiety is a 9- or 10-membered aromatic fused bicyclic ring system which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein any of said phenyl, heteroaryl or heterodiaryl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different.
  • R 3 is selected from phenyl or heteroaryl, wherein the heteroaryl moiety is a 5- or 6-membered monocyclic aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein any of said phenyl or heteroaryl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different.
  • R 3 is selected from the group consisting of phenyl, furyl, thienyl, pyrazolyl, oxazolyl, imidazolyl, thiazolyl, isothiazolyl, thiadiazolyl, isoxazolyl, triazolyl, oxadiazolyl, pyrimidyl and pyridyl, and wherein any of said phenyl, furyl, thienyl, pyrazolyl, oxazolyl, imidazolyl, thiazolyl, isothiazolyl, thiadiazolyl, isoxazolyl, triazolyl, oxadiazolyl, pyrimidyl or pyridyl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different.
  • R 3 is selected from the group consisting of phenyl, pyridyl, pyrazyl and thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different.
  • R 3 is selected from the group consisting of phenyl, 2-pyridyl, 5-pyrazyl and 5-thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2 R 7 substituents, which may be the same or different. Yet even more preferably still, R 3 is phenyl optionally substituted by 1 or 2 R 7 substituents, which may be the same or different.
  • R 3 is phenyl
  • R 4a and R 4b are independently selected from the group consisting of hydrogen, halogen, methyl and cyano.
  • R 4a and R 4b are independently selected from the group consisting of hydrogen, chloro, methyl and cyano.
  • R 4a and R 4b are hydrogen.
  • R 5 is selected from the group consisting of hydrogen, halogen, cyano and methyl.
  • R 5 is selected from the group consisting of hydrogen, chloro, fluoro and methyl. More preferably, R 5 is hydrogen or methyl. Most preferably, R 5 is hydrogen.
  • R 6a and R 6b are independently selected from the group consisting of hydrogen, halogen, cyano and methyl.
  • R 6a and R 6b are independently selected from the group consisting of hydrogen, chloro, fluoro and methyl. More preferably, R 6a and R 6b are independently hydrogen or methyl. Most preferably, R 6a and R 6b are hydrogen.
  • R 6a and R 6b together with the carbon atom to which they are attached form a C3- C6cycloalkyl group.
  • R 6a and R 6b together with the carbon atom to which they are attached form a cyclopropyl, cyclopentyl or cyclohexyl group.
  • Each R 7 is independently selected from the group consisting of halogen, cyano, hydroxy, Ci-C 4 alkyl, Ci- C 4 haloalkyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, Ci-C 4 alkylcarbonyl, cyanoCi-C 4 alkyl-, C3-C6cycloalkyl, C3- C6cycloalkenyl, -S(0) 2 Ci-C 4 alkyl, -C(0)NR 8 R 9 , phenyl, phenoxy, heterocyclyl, wherein the heterocyclyl moiety is a 5- or 6-membered non-aromatic ring which comprises 1 , 2 or 3 heteroatoms individually selected from N, O and S, heteroaryl, heteroaryloxy, wherein the heteroaryl moiety is a 5- or 6- membered monocyclic aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein any of said phenyl,
  • each R 7 is independently selected from the group consisting of of halogen, cyano, hydroxy, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, Ci-C 4 alkylcarbonyl, cyanoCi-C 4 alkyl-, C3- C6cycloalkyl, C3-C6cycloalkenyl, -S(0) 2 Ci-C 4 alkyl, -C(0)NR 8 R 9 , phenyl, phenoxy, morpholinyl and pyrazolyl, and wherein any of said phenyl, morpholinyl, or pyrazolyl moieties are optionally substituted by 1 or 2 R 10 substituents, which may be the same or different.
  • each R 7 is independently selected from the group consisting of halogen, cyano, hydroxy, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, Ci-C 4 alkylcarbonyl, cyanoCi- C 4 alkyl-, Cs-Cecycloalkyl, -S(0) 2 Me and -C(0)NR 8 R 9 .
  • each R 7 is independently selected from the group consisting of chloro, fluoro, Ci- C 4 alkyl, Ci-C 4 haloalkyl and Ci-C 4 alkoxy.
  • each R 7 is independently selected from the group consisting of chloro, fluoro, methyl, trifluoromethyl and methoxy.
  • each R 7 is independently selected from the group consisting of chloro, fluoro, methyl and methoxy.
  • each R 7 is independently selected from fluoro and methoxy.
  • R 8 and R 9 are independently selected from the group consisting of hydrogen, methyl and ethyl. Preferably, R 8 and R 9 are independently selected from hydrogen or methyl.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form an azetidine, pyrrolidine or piperidine ring.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form a pyrrolidine ring.
  • Each R 10 is independently selected from the group consisting of halogen, methyl, ethyl, cyano, difluoromethyl, difluoromethoxy and trifluoromethyl.
  • each R 10 is independently selected from the group consisting of chloro, fluoro, methyl, ethyl, cyano, difluoromethyl, difluoromethoxy and trifluoromethyl. More preferably, each R 10 is independently selected from the group consisting of chloro, fluoro, methyl and trifluoromethyl. Most preferably each R 10 is methyl.
  • T is a group of formula Ti a or T2a;
  • Y is CH
  • Z is S or O
  • R 1 is selected from the group consisting of hydrogen, fluoro and methyl
  • R 2 is hydrogen
  • R 3 is selected from the group consisting of phenyl, pyridyl, pyrazyl and thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2
  • R 7 substituents, which may be the same or different
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, Ci-C 4 alkyl, Ci-C 4 haloalkyl and Ci-C 4 alkoxy. More preferably, in a compound according to formula (I) of the invention;
  • T is a group of formula Ti a or T2a (preferably, Ti a );
  • Y is CH
  • R 1 is selected from the group consisting of hydrogen, fluoro and methyl
  • R 2 is hydrogen
  • R 3 is selected from the group consisting of phenyl, pyridyl, pyrazyl and thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2
  • R 7 substituents, which may be the same or different
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, methyl, trifluoromethyl and methoxy.
  • T is a group of formula Ti a ;
  • Y is CH
  • R 1 is hydrogen
  • R 2 is hydrogen
  • R 3 is phenyl optionally substituted by 1 or 2 R 7 substituents, which may be the same or different;
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, methyl, trifluoromethyl and methoxy.
  • T is a group of formula Ti a or T2 a ;
  • Y is N
  • Z is CH 2 ;
  • R 1 is selected from the group consisting of hydrogen, fluoro and methyl
  • R 2 is hydrogen
  • R 3 is selected from the group consisting of phenyl, pyridyl, pyrazyl and thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2
  • R 7 substituents, which may be the same or different
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, Ci-C 4 alkyl, Ci-C 4 haloalkyl and Ci-C 4 alkoxy.
  • T is a group of formula Ti a or T2 a (preferably, Ti a );
  • Y is N
  • Z is CH 2 ;
  • R 1 is selected from the group consisting of hydrogen, fluoro and methyl;
  • R 2 is hydrogen
  • R 3 is selected from the group consisting of phenyl, pyridyl, pyrazyl and thiazoyl, and wherein any of said phenyl, pyridyl, pyrazyl or thiazoyl moieties are optionally substituted by 1 or 2
  • R 7 substituents, which may be the same or different
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, methyl, trifluoromethyl and methoxy.
  • T is a group of formula Ti a ;
  • Y is N
  • Z is CH 2 ;
  • R 1 is hydrogen
  • R 2 is hydrogen
  • R 3 is phenyl optionally substituted by 1 or 2 R 7 substituents, which may be the same or different;
  • R 4a and R 4b are both hydrogen; and each R 7 is independently selected from the group consisting of chloro, fluoro, methyl, trifluoromethyl and methoxy.
  • the compound according to formula (I) is a compound 11 or I2 listed in Table I (below).
  • the compounds of formula (I) according to the invention may be useful for combating phytopathogenic fungi (e.g Altemaria alternata, Phakopsora pachyrhizi, Plasmopara viticola, Sclerotinia sclerotiorum or Septoha tritici also known as Mycosphaerella graminicola) containing a mutation in the mitochondrial cytochrome b conferring resistance to Qo inhibitors (e.g strobilurins such as azoxystrobin, pyraclostrobin and trifloxystrobin or fenamidone or famoxadone).
  • phytopathogenic fungi e.g Altemaria alternata, Phakopsora pachyrhizi, Plasmopara viticola, Sclerotinia sclerotiorum or Septoha tritici also known as Mycosphaerella graminicola
  • Qo inhibitors e.g strobilurins such as
  • the compounds of formula (I) according to the invention may be useful for combating phytopathogenic fungi (e.g Altemaria alternata, Plasmopara viticola, Sclerotinia sclerotiorum or Septoria tritici also known as Mycosphaerella graminicola) containing a mutation in the mitochondrial cytochrome b conferring resistance to Qo inhibitors (e.g strobilurins such as azoxystrobin, pyraclostrobin and trifloxystrobin or fenamidone or famoxadone), wherein the mutation is G143A.
  • phytopathogenic fungi e.g Altemaria alternata, Plasmopara viticola, Sclerotinia sclerotiorum or Septoria tritici also known as Mycosphaerella graminicola
  • Qo inhibitors e.g strobilurins such as azoxystrobin, pyraclostrobin and tri
  • the compounds of formula (I) according to the invention may be useful for combating phytopathogenic fungi (e.g Phakopsora pachyrhizi ) containing a mutation in the mitochondrial cytochrome b conferring resistance to Qo inhibitors (e.g strobilurins such as azoxystrobin, pyraclostrobin and trifloxystrobin or fenamidone or famoxadone), wherein the mutation is F129L.
  • phytopathogenic fungi e.g Phakopsora pachyrhizi
  • Qo inhibitors e.g strobilurins such as azoxystrobin, pyraclostrobin and trifloxystrobin or fenamidone or famoxadone
  • the invention also relates to a method of controlling or preventing infestation by phytopathogenic fungi in a plant (e.g Altemaria alternate, Phakopsora pachyrhizi Plasmopara viticola, Sclerotinia sclerotiorum or Septoria tritici also known as Mycosphaerella graminicola, preferably Phakopsora pachyrhizi ), wherein said phytopathogenic fungi contains a mutation in the mitochondrial cytochrome b conferring resistance to Qo inhibitors (e.g strobliurins such as azoxystrobin, pyraclostrobin and trifloxystrobin orfenamidone or famoxadone), said method comprising applying to the plant, to parts thereof or the locus thereof, a fungicidally effective amount of a compound of formula (I).
  • a plant e.g Altemaria alternate, Phakopsora pachyrhizi Plasmopara viticola
  • the level of resistance and therefore the impact on the performance of the fungicide can be measured by the use of a 'Resistance Factor' (RF).
  • RF EC50 value of the resistant strain/EC50 value of the sensitive strain.
  • resistant fungal strains In order to obtain resistant fungal strains, a researcher is to locate a host crop and geographical region where the relevant resistance had been reported in literature. Leaf samples infected by the target disease are then collected from the locations/host crops and sent to a laboratory, where pure cultures would be isolated. The resistant phenotype of the fungal cultures is determined either by conducting a full dose response bioassay and comparing the bioassay results to similar bioassay results for a known susceptible strain of the same species. Alternatively the resistance genotype of the fungal strain can be determined by molecular techniques (e.g. qPCR) if the resistance mechanism for the relevant species is known.
  • molecular techniques e.g. qPCR
  • R 4a and R 4b are as defined for compounds of formula (I) and M is a metalloid species (e.g. B(OH)2,
  • BPin or ZnCI by coupling with a species of formula (III), wherein T is as described for compounds of formula (I) and R 12 is a halogen or pseudohalogen (e.g. Br, I, OTf), in the presence of a suitable catalyst such as palladium diacetate and optionally a supporting ligand (e.g. CatCXiumA®) and base (e.g. potassium phosphate) in a suitable solvent such as 1 ,4-dioxane, dimethylformamide or toluene at temperatures between 20°C - 150°C.
  • a suitable catalyst such as palladium diacetate and optionally a supporting ligand (e.g. CatCXiumA®) and base (e.g. potassium phosphate) in a suitable solvent such as 1 ,4-dioxane, dimethylformamide or toluene at temperatures between 20°C - 150°C.
  • a suitable catalyst such as palladium diacetate and optionally
  • Compounds of formula (II) can be prepared from compounds of formula (IV) wherein R 13 is a halogen or pseudohalogen (e.g. Br, I, OTf) by treatment with a suitable metallating agent (e.g. bis- pinacolatodiboron) optionally in the presence of a suitable catalyst (e.g. Pd(dppf)Cl2) and base (e.g.
  • a suitable metallating agent e.g. bis- pinacolatodiboron
  • a suitable catalyst e.g. Pd(dppf)Cl2
  • base e.g.
  • Certain compounds of formula (IV) wherein R 4b and R 5 or R 6b are H, namely compounds of formula (IVa) wherein Y is N and Z is CHR 6a , or Y is CH and Z is S or O can be prepared by reduction of compounds of formula (V) wherein P is N and Q is CR 6a or P is C and Q is O or S, using a reducing agent such as hydrogen or sodium cyanoborohydride, optionally in the presence of a metal catalyst (e.g. palladium or platinum) in a solvent such as ethyl acetate, acetic acid, or methanol at temperatures between 0°C and 100°C and pressures between atmospheric pressure and 10 bar.
  • a metal catalyst e.g. palladium or platinum
  • certain compounds of Formula (IVb) can be prepared from compounds of formula (VI) by reaction with an aromatic compound (VII) wherein R 7 is as defined for compounds of formula (I) in the presence of a Lewis acid (e.g. aluminium trichloride). This is shown in scheme 4 and described in Journal of Chemical Research, Miniprint, 1981 , 10, 3863.
  • a Lewis acid e.g. aluminium trichloride
  • a separation is generally not necessarily required because in some cases the individual isomers can be interconverted during work-up for use or during application (e. g. under the action of light, acids or bases). Such conversions may also take place after use, e. g. in the treatment of plants in the treated plant, or in the harmful fungus to be controlled.
  • the compounds of formula (I) of the present invention have, for practical purposes, a very advantageous level of biological activity for protecting plants against diseases that are caused by fungi.
  • the compounds of formula (I) can be used in the agricultural sector and related fields of use, e.g., as active ingredients for controlling plant pests or on non-living materials for the control of spoilage microorganisms or organisms potentially harmful to man.
  • the novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and can be used for protecting numerous cultivated plants.
  • the compounds of formula (I) can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later, e.g., from phytopathogenic microorganisms.
  • the present invention further relates to a method for controlling or preventing infestation of plants or plant propagation material and/or harvested food crops susceptible to microbial attack by treating plants or plant propagation material and/or harvested food crops wherein an effective amount a compound of formula (I) is applied to the plants, to parts thereof or the locus thereof.
  • fungicide as used herein means a compound that controls, modifies, or prevents the growth of fungi.
  • fungicidally effective amount where used means the quantity of such a compound or combination of such compounds that is capable of producing an effect on the growth of fungi. Controlling or modifying effects include all deviation from natural development, such as killing, retardation and the like, and prevention includes barrier or other defensive formation in or on a plant to prevent fungal infection.
  • compounds of formula (I) as dressing agents for the treatment of plant propagation material, e.g., seed, such as fruits, tubers or grains, or plant cuttings, for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.
  • the propagation material can be treated with a composition comprising a compound of formula (I) before planting: seed, for example, can be dressed before being sown.
  • the active compounds of formula (I) can also be applied to grains (coating), either by impregnating the seeds in a liquid formulation or by coating them with a solid formulation.
  • the composition can also be applied to the planting site when the propagation material is being planted, for example, to the seed furrow during sowing.
  • the invention relates also to such methods of treating plant propagation material and to the plant propagation material so treated.
  • the compounds of formula (I) can be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management.
  • the invention could be used to protect non-living materials from fungal attack, e.g. lumber, wall boards and paint.
  • the compounds of formula (I) are for example, effective against fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses.
  • These fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses are for example:
  • Absidia corymbifera Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terms, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp. including B. dothidea, B. obtusa, Botrytis spp. comprising B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C.
  • Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P. philippinensis and P. sorghi, Peronospora spp, Phaeosphaeria nodorum, Phakopsora pachyrhizi, Phellinus igniarus, Phialophora spp, Phoma spp, Phomopsis viticola, Phytophthora spp.
  • P. infestans Plasmopara spp. including P. halstedii, P. viticola, Pleospora spp., Podosphaera spp. including P. leucotricha, Polymyxa graminis, Polymyxa betae, Pseudocercosporella herpotrichoides, Pseudomonas spp, Pseudoperonospora spp. including P. cubensis, P. humuli, Pseudopeziza tracheiphila, Puccinia Spp. including P. hordei, P. recondita, P. striiformis, P.
  • the compounds of formula (I) may be used for example on turf, ornamentals, such as flowers, shrubs, broad-leaved trees or evergreens, for example conifers, as well as for tree injection, pest management and the like.
  • target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St.
  • perennial and annual crops such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries
  • cereals for example barley, maize (corn), millet, oats
  • Augustine grass and Zoysia grass herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
  • herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme
  • legumes for example beans, lentils, peas and soya beans
  • useful plants is to be understood as also including useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl- shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • EPSPS (5-enol-pyrovyl- shikimate-3-phosphate-synthase) inhibitors
  • GS glutamine synthetase
  • PPO protoporphyrinogen-oxidase
  • imazamox by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola).
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady®, Herculex I® and LibertyLink®.
  • useful plants is to be understood as also including useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • YieldGard® (maize variety that expresses a CrylA(b) toxin); YieldGard Rootworm® (maize variety that expresses a Cryll IB(b1 ) toxin); YieldGard Plus® (maize variety that expresses a CrylA(b) and a Cryll IB(b1 ) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N- acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylA(c) toxin); Bollgard I® (cotton variety that expresses a CrylA(c) toxin); Bollgard II® (cott
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 5- endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins from Bacillus cereus or Bacillus popilliae or insecticidal proteins from Bacillus thuringiensis, such as 5- endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1
  • orXenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosomeinactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdy
  • d-endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 orCry9C, orvegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A
  • Vip insecticidal proteins
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • amino acid replacements preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G- recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO93/07278, W095/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 c MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1 Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • the compounds of formula (I) (including any one of compounds 11 or I2) or fungicidal compositions according to the present invention comprising a compound of formula (I) may be used in controlling or preventing phytopathogenic diseases, especially phytopathogenic fungi (such as Phakopsora pachyrhizi ) on soy bean plants.
  • phytopathogenic diseases especially phytopathogenic fungi (such as Phakopsora pachyrhizi ) on soy bean plants.
  • transgenic soybean plants expressing toxins for example insecticidal proteins such as delta-endotoxins, e.g. CrylAc (CrylAc Bt protein).
  • toxins for example insecticidal proteins such as delta-endotoxins, e.g. CrylAc (CrylAc Bt protein).
  • this may include transgenic soybean plants comprising event MON87701 (see U.S. Patent No. 8,049,071 and related applications and patents, as well as WO 2014/170327 A1 (eg, see paragraph [008] reference to Intacta RR2 PROTM soybean)), event MON87751 (US. Patent Application Publication No. 2014/0373191) or event DAS- 81419 (U.S. Patent No. 8632978 and related applications and patents).
  • event MON87701 see U.S. Patent No. 8,049,071 and related applications and patents, as well as WO 2014/170327 A1 (eg, see paragraph [008] reference to Intact
  • transgenic soybean plants may comprise event SYHT0H2 - HPPD tolerance (U.S. Patent Application Publication No. 2014/0201860 and related applications and patents), event MON89788 - glyphosate tolerance (U.S. Pat. No. 7,632,985 and related applications and patents), event MON87708
  • event DAS-40278-9 - tolerance to 2,4- dichlorophenoxyacetic acid and aryloxyphenoxypropionate see WO 2011/022469, WO 2011/022470, WO 2011/022471 , and related applications and patents
  • event 127 - ALS tolerance WO 2010/080829 and related applications and patents
  • event GTS 40-3-2 - glyphosate tolerance event DAS-68416-4- 2,4-dichlorophenoxyacetic acid and glufosinate tolerance
  • event FG72 - glyphosate and isoxaflutole tolerance event BPS-CV127-9 - ALS tolerance and GU262 - glufosinate tolerance or event SYHT04R
  • the compounds of formula (I) may be used in controlling or preventing phytopathogenic diseases, especially phytopathogenic fungi (such as Phakopsora pachyrhizi ) on soy bean plants.
  • phytopathogenic diseases especially phytopathogenic fungi (such as Phakopsora pachyrhizi ) on soy bean plants.
  • phytopathogenic fungi such as Phakopsora pachyrhizi
  • R-gene stacks conferring a degree of immunity or resistance to specific Phakopsora pachyrhizi, have been been introgressed in the plant genome, see for example: “Fighting Asian Soybean Rust, Langenbach C, et al, Front Plant Science 7(797) 2016).
  • An elite plant is any plant from an elite line, such that an elite plant is a representative plant from an elite variety.
  • elite soybean varieties that are commercially available to farmers or soybean breeders include: AG00802, A0868, AG0902, A1923, AG2403, A2824, A3704, A4324, A5404, AG5903, AG6202 AG0934; AG1435; AG2031 ; AG2035; AG2433; AG2733; AG2933; AG3334; AG3832; AG4135; AG4632; AG4934; AG5831 ; AG6534; and AG7231 (Asgrow Seeds, Des Moines, Iowa, USA); BPR0144RR, BPR 4077NRR and BPR 4390NRR (Bio Plant Research, Camp Point, III., USA); DKB17- 51 and DKB37-51 (DeKalb Genetics, DeKalb, III., USA); DP 4546 RR, and DP 7870 RR (Delta & Pine Land Company, Lubbock,
  • the compounds of formula (I) are used to control Phakopsora pachyrhizi, (including fungicidally-resistant strains thereof, as outlined herein) on Elite soybean plant varieties where R-gene stacks, conferring a degree of immunity or resistance to specific Phakopsora pachyrhizi, have been been introgressed in the plant genome.
  • Numerous benefits may be expected to ensue from said use, e.g. improved biological activity, an advantageous or broader spectrum of activity (inc.
  • Phakopsora pachyrhizi sensitive and resistant strains of Phakopsora pachyrhizi
  • an increased safety profile improved crop tolerance, synergistic interactions or potentiating properties, improved onset of action or a longer lasting residual activity, a reduction in the number of applications and/or a reduction in the application rate of the compounds and compositions required for effective control of the phytopathogen (Phakopsora pachyrhizi), thereby enabling beneficial resistance- management practices, reduced environmental impact and reduced operator exposure.
  • Fungicidal-resistant strains of Phakopsora pachyrhizi have been reported in the scientific literature, with strains resistant to one or more fungicides from at least each of the following fungicidal mode of action classes being observed: sterol demethylation-inhibitors (DMI), quinone-outside-inhibitors (Qol) and succinate dehydrogenase inhibitors (SDHI).
  • DMI sterol demethylation-inhibitors
  • Qol quinone-outside-inhibitors
  • SDHI succinate dehydrogenase inhibitors
  • the compounds of formula (I) (including any one of compounds 11 or I2), or fungicidal compositions according to the present invention comprising a compound of formula (I), are used to control Phakopsora pachyrhizi which are resistant to one or more fungicides from any of the following fungicidal MoA classes: sterol demethylation-inhibitors (DMI), quinone-outside-inhibitors (Qol) and succinate dehydrogenase inhibitors (SDHI).
  • DMI sterol demethylation-inhibitors
  • Qol quinone-outside-inhibitors
  • SDHI succinate dehydrogenase inhibitors
  • locus means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • plant propagation material is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes.
  • vegetative material such as cuttings or tubers, for example potatoes.
  • seeds in the strict sense
  • roots in the strict sense
  • fruits in the tubers
  • bulbs rhizomes
  • parts of plants there can be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants.
  • Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil may also be mentioned. These young plants can be protected before transplantation by a total or partial treatment by immersion.
  • plant propagation material is understood to denote seeds.
  • the compounds of formula (I) may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they may be conveniently Formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders ortackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.
  • Such carriers are for example described in WO 97/33890.
  • Suspension concentrates are aqueous formulations in which finely divided solid particles of the active compound are suspended. Such formulations include anti-settling agents and dispersing agents and may further include a wetting agent to enhance activity as well an anti-foam and a crystal growth inhibitor. In use, these concentrates are diluted in water and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate. Wettable powders are in the form of finely divided particles which disperse readily in water or other liquid carriers. The particles contain the active ingredient retained in a solid matrix. Typical solid matrices include fuller’s earth, kaolin clays, silicas and other readily wet organic or inorganic solids. Wettable powders normally contain from 5% to 95% of the active ingredient plus a small amount of wetting, dispersing or emulsifying agent.
  • Emulsifiable concentrates are homogeneous liquid compositions dispersible in water or other liquid and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isophorone and other non-volatile organic solvents. In use, these concentrates are dispersed in water or other liquid and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
  • Granular formulations include both extrudates and relatively coarse particles and are usually applied without dilution to the area in which treatment is required.
  • Typical carriers for granular Formulations include sand, fuller’s earth, attapulgite clay, bentonite clays, montmorillonite clay, vermiculite, perlite, calcium carbonate, brick, pumice, pyrophyllite, kaolin, dolomite, plaster, wood flour, ground corn cobs, ground peanut hulls, sugars, sodium chloride, sodium sulphate, sodium silicate, sodium borate, magnesia, mica, iron oxide, zinc oxide, titanium oxide, antimony oxide, cryolite, gypsum, diatomaceous earth, calcium sulphate and other organic or inorganic materials which absorb or which can be coated with the active compound.
  • Granular Formulations normally contain 5% to 25% of active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene and other petroleum fractions, or vegetable oils
  • Dusts are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers.
  • Microcapsules are typically droplets or granules of the active ingredient enclosed in an inert porous shell which allows escape of the enclosed material to the surroundings at controlled rates.
  • Encapsulated droplets are typically 1 to 50 microns in diameter.
  • the enclosed liquid typically constitutes 50 to 95% of the weight of the capsule and may include solvent in addition to the active compound.
  • Encapsulated granules are generally porous granules with porous membranes sealing the granule pore openings, retaining the active species in liquid form inside the granule pores.
  • Granules typically range from 1 millimetre to 1 centimetre and preferably 1 to 2 millimetres in diameter. Granules are formed by extrusion, agglomeration or prilling, or are naturally occurring.
  • Shell or membrane materials include natural and synthetic rubbers, cellulosic materials, styrene-butadiene copolymers, polyacrylonitriles, polyacrylates, polyesters, polyamides, polyureas, polyurethanes and starch xanthates.
  • Other useful formulations for agrochemical applications include simple solutions of the active ingredient in a solvent in which it is completely soluble at the desired concentration, such as acetone, alkylated naphthalenes, xylene and other organic solvents. Pressurised sprayers, wherein the active ingredient is dispersed in finely-divided form as a result of vaporisation of a low boiling dispersant solvent carrier, may also be used.
  • Suitable agricultural adjuvants and carriers that are useful in formulating the compositions of the invention in the formulation types described above are well known to those skilled in the art.
  • Liquid carriers that can be employed include, for example, water, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, acetic anhydride, acetonitrile, acetophenone, amyl acetate, 2-butanone, chlorobenzene, cyclohexane, cyclohexanol, alkyl acetates, diacetonalcohol, 1 ,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethyl formamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol
  • Suitable solid carriers include, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, chalk, diatomaxeous earth, lime, calcium carbonate, bentonite clay, fuller’s earth, cotton seed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour and lignin.
  • a broad range of surface-active agents are advantageously employed in both said liquid and solid compositions, especially those designed to be diluted with carrier before application. These agents, when used, normally comprise from 0.1% to 15% by weight of the formulation. They can be anionic, cationic, non-ionic or polymeric in character and can be employed as emulsifying agents, wetting agents, suspending agents or for other purposes.
  • Typical surface active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulphate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol-C.sub.
  • alcohol-alkylene oxide addition products such as tridecyl alcohol-C.sub. 16 ethoxylate
  • soaps such as sodium stearate
  • alkylnaphthalenesulfonate salts such as sodium dibutylnaphthalenesulfonate
  • dialkyl esters of sulfosu coin ate salts such as sodium di(2-ethylhexyl) sulfosu coin ate
  • sorbitol esters such as sorbitol oleate
  • quaternary amines such as lauryl trimethylammonium chloride
  • polyethylene glycol esters of fatty acids such as polyethylene glycol stearate
  • salts of mono and dialkyl phosphate esters such as mono and dialkyl phosphate esters.
  • adjuvants commonly utilized in agricultural compositions include crystallisation inhibitors, viscosity modifiers, suspending agents, spray droplet modifiers, pigments, antioxidants, foaming agents, antifoaming agents, light-blocking agents, compatibilizing agents, antifoam agents, sequestering agents, neutralising agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, micronutrients, emollients, lubricants and sticking agents.
  • biocidally active ingredients or compositions may be combined with the compositions of the invention and used in the methods of the invention and applied simultaneously or sequentially with the compositions of the invention. When applied simultaneously, these further active ingredients may be formulated together with the compositions of the invention or mixed in, for example, the spray tank. These further biocidally active ingredients may be fungicides, herbicides, insecticides, bactericides, acaricides, nematicides and/or plant growth regulators.
  • Pesticidal agents are referred to herein using their common name are known, for example, from “The Pesticide Manual”, 15th Ed., British Crop Protection Council 2009.
  • compositions of the invention may also be applied with one or more systemically acquired resistance inducers (“SAR” inducer).
  • SAR inducers are known and described in, for example, United States Patent No. US 6,919,298 and include, for example, salicylates and the commercial SAR inducer acibenzolar-S-methyl.
  • the compounds of formula (I) are normally used in the form of agrochemical compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds.
  • further compounds can be e.g. fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • the compounds of formula (I) may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising as active ingredient at least one compound of formula (I) or of at least one preferred individual compound as defined herein, in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
  • the invention therefore provides a composition, preferably a fungicidal composition, comprising at least one compound formula (I) an agriculturally acceptable carrier and optionally an adjuvant.
  • An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use.
  • Agricultural carriers are well known in the art.
  • said composition may comprise at least one or more pesticidally-active compounds, for example an additional fungicidal active ingredient in addition to the compound of formula
  • the compound of formula (I) may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may, in some cases, result in unexpected synergistic activities.
  • Suitable additional active ingredients include the following: acycloamino acid fungicides, aliphatic nitrogen fungicides, amide fungicides, anilide fungicides, antibiotic fungicides, aromatic fungicides, arsenical fungicides, aryl phenyl ketone fungicides, benzamide fungicides, benzanilide fungicides, benzimidazole fungicides, benzothiazole fungicides, botanical fungicides, bridged diphenyl fungicides, carbamate fungicides, carbanilate fungicides, conazole fungicides, copper fungicides, dicarboximide fungicides, dinitrophenol fungicides, dithiocarbamate fungicides, dithiolane fungicides, furamide fungicides, furanilide fungicides, hydrazide fungicides, imidazole fungicides, mercury fungicides, morpholine fung
  • suitable additional active ingredients also include the following: 3-difluoromethyl-1-methyl- 1 H-pyrazole-4-carboxylic acid (9-dichloromethylene-1 ,2,3,4-tetrahydro-1 ,4-methano-naphthalen-5-yl)- amide , 3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxylic acid methoxy-[1-methyl-2-(2,4,6- trichlorophenyl)-ethyl]-amide , 1-methyl-3-difluoromethyl-1 H-pyrazole-4-carboxylic acid (2- dichloromethylene-3-ethyl-1-methyl-indan-4-yl)-amide (1072957-71-1), 1-methyl-3-difluoromethyl-1 H- pyrazole-4-carboxylic acid (4'-methylsulfanyl-biphenyl-2-yl)-amide, 1-methyl-3-difluoromethyl-4H- pyr
  • the compounds of the invention may also be used in combination with anthelmintic agents.
  • anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP- 357460, EP-444964 and EP- 594291 .
  • Additional anthelmintic agents include semisynthetic and biosynthetic avermectin/milbemycin derivatives such as those described in US-5015630, WO-9415944 and WO-9522552. Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
  • the compounds of the invention may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE-19520936.
  • the compounds of the invention may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO 96/15121 and also with anthelmintic active cyclic depsipeptides such as those described in WO 96/11945, WO 93/19053, WO 93/25543, EP 0626 375, EP 0 382 173, WO 94/19334, EP 0 382 173, and EP 0503 538.
  • the compounds of the invention may be used in combination with other ectoparasiticides; for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • ectoparasiticides for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • terpene alkaloids for example those described in International Patent Application Publication Numbers WO 95/19363 or WO 04/72086, particularly the compounds disclosed therein.
  • Organophosphates acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton-S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, me
  • Carbamates alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m-cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
  • Pyrethroids acrinathin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E) -(1 R)-cis-2,2-dimethyl-3-(2- oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, bifenthrin, beta -cyfluthrin, cyfluthrin, a- cypermethrin, beta -cypermethrin, bioallethrin, bioallethrin((S)-cyclopentylisomer), bioresmethrin, bifenthrin, NCI-85193, cycloprothrin, cyhalothrin, cythithrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, ethofenprox, fenfluthrin, fenpropathrin,
  • Arthropod growth regulators a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron, buprofezin, diofenolan, hexythiazox, etoxazole, chlorfentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide; c) juvenoids: pyriproxyfen, methoprene (including S-methoprene), fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen.
  • antiparasitics acequinocyl, amitraz, AKD-1022, ANS-118, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG-505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, endosulfan, ethiprole, ethofenprox, fenazaquin, flumite, MTI- 800, fenpyroximate, fluacrypyrim, flubenzimine, flubrocythrinate, flufenzine, flufenprox, fluproxyfen, halofenprox, hydr
  • Biological agents Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi.
  • Bactericides chlortetracycline, oxytetracycline, streptomycin.
  • compounds of formula (I) can be used in combination with one or more other active ingeredients to provide various fungicidal mixtures.
  • specific examples of such mixtures include (wherein “I” represents a compound of formula (I)): a compound selected from the group of substances consisting of petroleum oils + 1, 1 ,1-bis(4-chloro-phenyl)-2-ethoxyethanol + I, 2,4-dichlorophenyl benzenesulfonate + I, 2-fluoro-N-methyl-N-1-naphthylacetamide + I, 4-chlorophenyl phenyl sulfone + I, acetoprole + I, aldoxycarb + I, amidithion + I, amidothioate + I, amiton + I, amiton hydrogen oxalate + I, amitraz + I, aramite + I, arsenous oxide + I, azobenzene + I, azothoate + I, benom
  • the compounds in this paragraph may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689; 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4- triazol-1-yl)propan-2-ol + I (this compound may be prepared from the methods described in WO 2017/029179); 2-[6-(4-bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol + I (this compound may be prepared from the methods described in WO 2017/029179); 3-[2-(1- chlorocyclopropyl)-3-(2-fluorophenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile + I (this compound may be prepared from the methods described in WO 2016/156
  • the active ingredient mixture of the compounds of formula (I) and an active ingredient as described above are preferably in a mixing ratio of from 100:1 to 1 :6000, especially from 50:1 to 1 :50, more especially in a ratio of from 20:1 to 1 :20, even more especially from 10:1 to 1 :10, very especially from 5:1 and 1 :5, special preference being given to a ratio of from 2:1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 :1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4:1 , or 4:2, or 4:3, or 3:1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1 :600, or 1 :300, or 1 :150, or 1 :35, or 2:35, or 4:35, or
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
  • the mixtures comprising a compound of formula (I) and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying the compounds of formula (I) and the active ingredients) as described above, is not essential for working the present invention.
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • Another aspect of the invention is related to the use of a compound of formula (I) or of a preferred individual compound as defined herein, of a composition comprising at least one compound of formula (I) or at least one preferred individual compound as above-defined, or of a fungicidal or insecticidal mixture comprising at least one compound of formula (I) or at least one preferred individual compound as above-defined, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • a further aspect of the invention is related to a method of controlling or preventing an infestation of plants, e.g., useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g., harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g., harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms
  • a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts
  • Controlling or preventing means reducing infestation by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
  • a preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application.
  • the frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect.
  • the compounds of formula (I) can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granularform (soil application). In crops of water rice such granulates can be applied to the flooded rice field.
  • the compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • a formulation e.g. a composition containing the compound of formula (I), and, if desired, a solid or liquid adjuvant or monomers for encapsulating the compound of formula (I), may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • extenders for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • Advantageous rates of application are normally from 5g to 2kg of active ingredient (a.i.) per hectare (ha), preferably from 10g to 1 kg a.i./ha, most preferably from 20g to 600g a.i./ha.
  • convenient dosages are from 10mg to 1g of active substance per kg of seeds.
  • rates of 0.001 to 50 g of a compound of formula I per kg of seed preferably from 0.01 to 10g per kg of seed are generally sufficient.
  • composition comprising a compound of formula (I) according to the present invention is applied either preventative, meaning prior to disease development or curative, meaning after disease development.
  • compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK
  • compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects).
  • appropriate formulation inerts diiluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects.
  • conventional slow release formulations may be employed where long lasting efficacy is intended.
  • Particularly formulations to be applied in spraying forms such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g.
  • a seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • suitable seed dressing formulation form e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • seed dressing formulations are known in the art.
  • Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
  • the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula (I) optionally together with other active agents, particularly microbiocides or conservatives or the like.
  • Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent.
  • Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
  • Table A-1 provides 110 compounds A-1 .001 to A- 1.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is hydrogen, Z is S and R 3 are as defined in table B.
  • Table A-2 provides 110 compounds A-2.001 to A-2.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is hydrogen, Z is O and R 3 are as defined in table B.
  • Table A-3 provides 110 compounds A-3.001 to A-3.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is fluoro, Z is S and R 3 are as defined in table B.
  • Table A-4 provides 110 compounds A-4.001 to A-4.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is fluoro, Z is O and R 3 are as defined in table B.
  • Table A- 5 provides 110 compounds A-5.001 to A-5.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is methyl, Z is S and R 3 are as defined in table B.
  • Table A-6 provides 110 compounds A-6.001 to A-6.111 of formula (la) wherein T is Ti, A 1 is O, R 1 is methyl, Z is O and R 3 are as defined in table B.
  • Table A- 7 provides 110 compounds A-7.001 to A-7.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is hydrogen, Z is S and R 3 are as defined in table B.
  • Table A-8 provides 110 compounds A-8.001 to A-8.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is hydrogen, Z is O and R 3 are as defined in table B.
  • Table A-9 provides 110 compounds A-9.001 to A-9.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is fluoro, Z is S and R 3 are as defined in table B.
  • Table A-10 provides 110 compounds A-10.001 to A- 10.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is fluoro, Z is O and R 3 are as defined in table B.
  • Table A-11 provides 110 compounds A-11 .001 to A-11.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is methyl, Z is S and R 3 are as defined in table B.
  • Table A-12 provides 110 compounds A-12.001 to A- 12.111 of formula (la) wherein T is T2, A 2 is NH, R 1 is methyl, Z is O and R 3 are as defined in table B.
  • Table A-13 provides 110 compounds A-13.001 to A- 13.111 of formula (la) wherein T is T2, A 2 is O, R 1 is hydrogen, Z is S and R 3 are as defined in table B.
  • Table A-14 provides 110 compounds A-14.001 to A- 14.111 of formula (la) wherein T is T2, A 2 is O, R 1 is hydrogen, Z is O and R 3 are as defined in table B.
  • Table A-15 provides 110 compounds A-15.001 to A-15.111 of formula (la) wherein T is T2, A 2 is O, R 1 is fluoro, Z is S and R 3 are as defined in table B.
  • Table A-16 provides 110 compounds A-16.001 to A- 16.111 of formula (la) wherein T is T2, A 2 is O, R 1 is fluoro, Z is O and R 3 are as defined in table B.
  • Table A-17 provides 110 compounds A-17.001 to A-17.111 of formula (la) wherein T is T2, A 2 is O, R 1 is methyl, Z is S and R 3 are as defined in table B.
  • Table A-18 provides 110 compounds A-18.001 to A-18.111 of formula (la) wherein T is T2, A 2 is O, R 1 is methyl, Z is O and R 3 are as defined in table B.
  • Table A-19 provides 110 compounds A-19.001 to A-19.111 of formula (la) wherein T is T3, A 3 is O, R 1 is hydrogen, Z is S and R 3 are as defined in table B.
  • Table A-20 provides 110 compounds A-20.001 to A-20.111 of formula (la) wherein T is T3, A 3 is O, R 1 is hydrogen, Z is O and R 3 are as defined in table B.
  • Table A-21 provides 110 compounds A-21 .001 to A-21 .111 of formula (la) wherein T is T3, A 3 is O, R 1 is fluoro, Z is S and R 3 are as defined in table B.
  • Table A-22 provides 110 compounds A-22.001 to A-22.111 of formula (la) wherein T is T3, A 3 is O, R 1 is fluoro, Z is O and R 3 are as defined in table B.
  • Table A-23 provides 110 compounds A-23.001 to A-23.111 of formula (la) wherein T is T3, A 3 is O, R 1 is methyl, Z is S and R 3 are as defined in table B.
  • Table A-24 provides 110 compounds A-24.001 to A-24.111 of formula (la) wherein T is T3, A 3 is O, 1 is methyl, Z is O and R 3 are as defined in table B.
  • Table C-1 provides 109 compounds C-1 .001 to C-1 .110 of formula (lb) wherein T is T 1 , A 1 is O, R 1 is hydrogen and R 3 are as defined in table D.
  • Table D Substituent definitions of R 3 :
  • Table C-2 provides 109 compounds C-2.001 to C-2.110 of formula (lb) wherein T is Ti, A 1 is O, R 1 is fluoro and R 3 are as defined in table D.
  • Table C-3 provides 109 compounds C-3.001 to C-3.110 of formula (lb) wherein T is Ti, A 1 is O, R 1 is methyl and R 3 are as defined in table D.
  • Table C-4 provides 109 compounds C-4.001 to C-4.110 of formula (lb) wherein T is T2, A 2 is NH, R 1 is hydrogen and R 3 are as defined in table D.
  • Table C-5 provides 109 compounds C-5.001 to C-5.110 of formula (lb) wherein T is T2, A 2 is NH, R 1 is fluoro and R 3 are as defined in table D.
  • Table C-6 provides 109 compounds C-6.001 to C-6.110 of formula (lb) wherein T is T2, A 2 is NH, R 1 is methyl and R 3 are as defined in table D.
  • Table C-7 provides 109 compounds C-7.001 to C-7.110 of formula (lb) wherein T is T2, A 2 is O, R 1 is hydrogen and R 3 are as defined in table D.
  • Table C-8 provides 109 compounds C-8.001 to C-8.110 of formula (lb) wherein T is T2, A 2 is O, R 1 is fluoro and R 3 are as defined in table D.
  • Table C-9 provides 109 compounds C-9.001 to C-9.110 of formula (lb) wherein T is T2, A 2 is O, R 1 is methyl and R 3 are as defined in table D.
  • Table C-10 provides 109 compounds C-10.001 to C-10.110 of formula (lb) wherein T is T3, A 3 is O, R 1 is hydrogen and R 3 are as defined in table D.
  • Table C-11 provides 109 compounds C-11 .001 to C-11.110 of formula (lb) wherein T is T3, A 3 is O, R 1 is fluoro and R 3 are as defined in table D.
  • Table C-12 provides 109 compounds C-12.001 to C-12.110 of formula (lb) wherein T is T3, A 3 is O, R 1 is methyl and R 3 are as defined in table D.
  • the compounds of the invention can be distinguished from known compounds by virtue of greater efficacy at low application rates, which can be verified by the person skilled in the art using the experimental procedures outlined in the Examples, using lower application rates if necessary, for example 50 ppm, 12.5 ppm, 6 ppm, 3 ppm, 1 .5 ppm, 0.8 ppm or 0.2 ppm.
  • Compounds of formula (I) may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against diseases that are caused by fungi or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile (including improved crop tolerance), improved physicochemical properties, or increased biodegradability).
  • LC/MS Liquid Chromatography Mass Spectrometry and the description of the apparatus and the methods is as follows:
  • enantiomerically pure final compounds may be obtained from racemic materials as appropriate via standard physical separation techniques, such as reverse phase chiral chromatography, or through stereoselective synthetic techniques, eg, by using chiral starting materials.
  • Active ingredient [compound of Formula (I)] 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % 5 % sodium diisobutylnaphthalenesulfonate 6 % 10 % phenol polyethylene glycol ether 2 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with waterto give suspensions of the desired concentration.
  • Active ingredient [compound of Formula (I)] 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsifiable concentrate active ingredient [compound of Formula (I)] 10 % octylphenol polyethylene glycol ether 3 %
  • Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water. Dusts a) b) c)
  • Active ingredient [compound of Formula (I)] 5 % 6 % 4 %
  • Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • Active ingredient 15 % sodium lignosulfonate 2 %
  • the active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • Active ingredient 8 % polyethylene glycol (mol. wt. 200) 3 %
  • the finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
  • Active ingredient 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
  • Silicone oil (in the form of a 75 % emulsion in water) 1 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • Active ingredient [compound of Formula (I)] 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
  • Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of a combination of the compound of Formula (I) are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
  • This mixture is emulsified in a mixture of 1 .2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved.
  • To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension Formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • LCMS Liquid Chromatography Mass Spectrometry (description of the apparatus and the methods used for LC/MS analysis are given above)
  • Step 1 Preparation of 5-bromo-3-phenyl-2,3-dihvdrobenzothiophene
  • the crude material was purified by chromatography on silica gel eluting with a gradient of 0% EtOAc/cyclohexane to 5% EtOAc/cyclohexane to yield 5-bromo-3-phenyl-2,3- dihydrobenzothiophene as a white solid.
  • Step 2 Preparation of 4.4.5.5-tetramethyl-2-(3-phenyl-2.3-dihvdrobenzothiophen-5-vD-1 ,3,2- dioxaborolane
  • Step 2b Preparation of methyl (Z)-2-iodo-3-methoxy-prop-2-enoate
  • methyl trans-3-methoxyacrylate 20.0 g, 18.7 ml_, 172.2 mmol
  • dichloromethane 350 ml_
  • N-iodo succinimide 43.94 g, 189.5 mmol
  • Acetic acid (19.9 ml_, 344.5 mmol) was then added dropwise at room temperature and the resulting suspension was stirred for 22 hours at room temperature.
  • Triethyl amine (72.2 ml_, 516.7 mmol) was then added dropwise at room temperature while keeping the temperature constant with a water bath.
  • reaction mixture was degassed with an argon flux for 5 min.
  • the resulting brown suspension was stirred at 100°C for 1 hour, cooled to RT and diluted with EtOAc and NaHCC>3.
  • the layers were separated, and the organic phase was washed with brine, dried over anhydrous Na 2 SC> 4 , filtered and concentrated in vacuo.
  • the crude material was purified by chromatography on silica gel eluting with a gradient of 0% EtOAc/cyclohexane to 20% EtOAc/cyclohexane, and with reverse phase chromatography on Ci8-modified silica eluting with a gradient 30% acetonitrile/water to 80% acetonitrile/water to yield methyl (E)-3-methoxy-2-(3-phenyl-2,3- dihydrobenzothiophen-5-yl)prop-2-enoate as a yellow gum.
  • Step 1 Preparation of 6-bromo-1 -phenyl-indole
  • Step 2 Preparation of methyl 6-bromo-1-phenyl-indoline
  • acetic acid 6.6 ml_
  • sodium cyanoborohydride 0.544 g, 8.82 mmol
  • the solution was stirred at RT for 6 days. It was diluted with TBME and slowly quenched at 0°C with NaOH (30%) until basic. Extraction with TBME and the organic phase was washed with water and with brine, dried over anhydrous Na 2 SC> 4 , filtered and concentrated in vacuo.
  • the crude material was purified by chromatography on silica gel eluting with pure cyclohexane to yield methyl 6-bromo-1-phenyl-indoline as a colorless liquid.
  • Step 3 preparation of 1-phenyl-6-(4,4.5.5-tetramethyl-1 ,3.2-dioxaborolan-2-yl)indoline
  • Step 4 preparation of methyl (E)-3-methoxy-2-(1-phenylindolin-6-vDprop-2-enoate
  • Example B Biological examples/test methods:
  • Tomato leaf disks cv. Baby are placed on agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf disks are inoculated with a spore suspension of the fungus 2 days after application.
  • the inoculated leaf disks are incubated at 23 °C / 21 °C (day/night) and 80 % rh under a light regime of 12/12 h (light/dark) in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears on untreated check disk leaf disks (5 - 7 days after application).
  • Botrvotinia fuckeliana Botrvtis cinerea
  • liquid culture Granular mould
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • DMSO fetal sulfate
  • Glomerella laqenarium (Colletotrichum laqenarium) / liquid culture (Anthracnose)
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is measured photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 4-5 days after application.
  • nutrient broth PDB potato dextrose broth
  • Mvcosphaerella arachidis (Cercospora arachidicola) / liquid culture (early leaf spot)
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 4-5 days after application.
  • nutrient broth PDB potato dextrose broth
  • Soybean leaf disks are placed on water agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water. One day after application leaf discs are inoculated by spraying a spore suspension on the lower leaf surface. After an incubation period in a climate cabinet of 24-36 hours in darkness at 20 °C and 75 % rh leaf disc are kept at 20 °C with 12 h light/day and 75 % rh. The activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf disks (12 - 14 days after application).
  • Tomato leaf disks are placed on water agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf disks are inoculated with a spore suspension of the fungus 1 day after application.
  • the inoculated leaf disks are incubated at 16 °C and 75 % rh under a light regime of 24 h darkness followed by 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf disks (5 - 7 days after application).
  • Grape vine leaf disks are placed on water agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf disks are inoculated with a spore suspension of the fungus 1 day after application.
  • the inoculated leaf disks are incubated at 19 °C and 80 % rh under a light regime of 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf disks (6 - 8 days after application).
  • Wheat leaf segments cv. Kanzler are placed on agar in multiwell plates (24-well format). The leaf segments are inoculated with a spore suspension of the fungus. Plates are stored in darkness at 19 °C and 75 % rh. The formulated test compound diluted in water is applied 1 day after inoculation. The leaf segments are incubated at 19 °C and 75 % rh under a light regime of 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (6 - 8 days after application).
  • Wheat leaf segments cv. Kanzler are placed on agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf disks are inoculated with a spore suspension of the fungus 1 day after application.
  • the inoculated leaf segments are incubated at 19 °C and 75 % rh under a light regime of 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (7 - 9 days after application).
  • Rice leaf segments cv. Ballila are placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf segments are inoculated with a spore suspension of the fungus 2 days after application.
  • the inoculated leaf segments are incubated at 22 °C and 80 % rh under a light regime of 24 h darkness followed by 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (5 - 7 days after application).
  • Barley leaf segments cv. Hasso are placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water.
  • the leaf segments are inoculated with a spore suspension of the fungus 2 days after application.
  • the inoculated leaf segments are incubated at 20 °C and 65 % rh under a light regime of 12 h light / 12 h darkness in a climate cabinet and the activity of a compound is assessed as disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (5 - 7 days after application).
  • Mycelia fragments of a newly grown liquid culture of the fungus are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format), the nutrient broth containing the fungal material is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Mycelia fragments of a newly grown liquid culture of the fungus are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format) the nutrient broth containing the fungal material is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Mvcosphaerella qraminicola (Septoria tritici) / liquid culture (Septoria blotch) Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 4-5 days after application.
  • DMSO DMSO
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth).
  • a DMSO solution of the test compounds was placed into a microtiter plate (96-well format) and the nutrient broth containing the fungal spores was added to it.
  • the test plates were incubated at 24 C and the inhibition of growth was determined photometrically after 3-4 days at 620 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des composés de formule (I), dans laquelle les substituants sont tels que définis dans la revendication 1, qui sont utiles en tant que pesticides, en particulier en tant que fongicides.
PCT/EP2021/061259 2020-05-05 2021-04-29 Composés microbiocides WO2021224102A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB2006606.4A GB202006606D0 (en) 2020-05-05 2020-05-05 Microbiocidal compounds
GB2006606.4 2020-05-05

Publications (1)

Publication Number Publication Date
WO2021224102A1 true WO2021224102A1 (fr) 2021-11-11

Family

ID=71080401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/061259 WO2021224102A1 (fr) 2020-05-05 2021-04-29 Composés microbiocides

Country Status (2)

Country Link
GB (1) GB202006606D0 (fr)
WO (1) WO2021224102A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980824A (zh) * 2021-12-15 2022-01-28 浙江龙游东方阿纳萨克作物科技有限公司 一种哈茨木霉菌剂稳定剂及其应用
WO2022186377A1 (fr) * 2021-03-05 2022-09-09 住友化学株式会社 Composé à cycles condensés et son utilisation
CN115363026A (zh) * 2022-08-31 2022-11-22 硅羿科技(上海)有限公司 用于防治植物寄生线虫的纳米微囊农药制剂及其制备方法

Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0357460A2 (fr) 1988-09-02 1990-03-07 Sankyo Company Limited Dérivés de la milbémycine, leur préparation et leur utilisation
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
EP0382173A2 (fr) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. Substance PF 1022, procédé pour sa préparation et composition anthelmintique contenant cette substance
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
EP0444964A1 (fr) 1990-03-01 1991-09-04 Sankyo Company Limited Dérivés d'éthers milbémycine, leur préparation et leur utilisation comme anthelmintiques
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
EP0503538A1 (fr) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Composition médicale contenant un dépepsipeptide cyclique ayant une activité anthelminthique
US5182295A (en) * 1990-10-02 1993-01-26 Roussel Uclaf Insecticidal benzofuran derivatives
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1993019053A1 (fr) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Derive de depsipeptide, production et utilisation
WO1993025543A2 (fr) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines et derives d'enniatines utilises dans la lutte contre les endoparasites
EP0594291A1 (fr) 1992-09-01 1994-04-27 Sankyo Company Limited Procédés pour la préparation de dérivés des milbémycines ayant un groupe d'éther sur la position 13
WO1994015944A1 (fr) 1993-01-18 1994-07-21 Pfizer Limited Nouveaux agents antiparasitaires apparentes aux milbemycines et aux avermectines
WO1994019334A1 (fr) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Derive du pf 1022 utilise comme depsipeptide cyclqiue
EP0626375A1 (fr) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides ayant une activité endoparasiticide
WO1995019363A1 (fr) 1994-01-14 1995-07-20 Pfizer Inc. COMPOSéS ANTIPARASITAIRES A BASE DE PYRROLOBENZOXAZINE
WO1995022552A1 (fr) 1994-02-16 1995-08-24 Pfizer Limited Agents antiparasitaires
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1996011945A2 (fr) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Procede de sulfonylation, de sulfenylation et de phosphorylation de depsipeptides cycliques
WO1996015121A1 (fr) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Utilisation de dioxomorpholines pour lutter contre les endoparasites, nouvelles dioxomorpholines et leur procede de production
DE19520936A1 (de) 1995-06-08 1996-12-12 Bayer Ag Ektoparasitizide Mittel
WO1997033890A1 (fr) 1996-03-11 1997-09-18 Novartis Ag Derives de pyrimidine-4-one utilises comme pesticide
US6225334B1 (en) * 1996-07-22 2001-05-01 Bayer Aktiengesellschaft Glyoxylic acid derivatives
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
WO2004072086A2 (fr) 2003-02-14 2004-08-26 Pfizer Limited Terpene alcaloides antiparasitiques
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
US20080196127A1 (en) 2005-04-11 2008-08-14 Bayer Bioscience N.V. Elite Event A5547-127 and Methods and Kits For Identifying Such Event in Biological Samples
US20080312082A1 (en) 2006-10-31 2008-12-18 Kinney Anthony J Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
US20080320616A1 (en) 2005-04-08 2008-12-25 Bayer Bioscience N.V. Elite Event A2407-12 and Methods and Kits for Identifying Such Event in Biological Samples
US7632985B2 (en) 2005-05-27 2009-12-15 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
WO2010080829A1 (fr) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Évènement de soja 127 et procédés apparentés
US20100184079A1 (en) 2006-06-28 2010-07-22 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof
WO2011022470A1 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Contrôle de volontaires monocotylédones aad-1 dans des champs de dicotylédones
WO2011022471A1 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Détection d’événement aad-1 das-40278-9
WO2011022469A2 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Événement das-40278-9 d'aad-1, lignées transgéniques de maïs connexes et identification spécifique d'événement de celui-ci
US20110067134A1 (en) 2009-09-17 2011-03-17 Brinker Ronald J Soybean transgenic event mon 87708 and methods of use thereof
US8049071B2 (en) 2007-11-15 2011-11-01 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof
WO2011138281A2 (fr) 2010-05-06 2011-11-10 Bayer Cropscience Ag Procédé de production de dithiine-tétracarboxy-diimides
WO2014006945A1 (fr) 2012-07-04 2014-01-09 アグロカネショウ株式会社 Dérivé d'ester d'acide 2-aminonicotinique et bactéricide le contenant comme principe actif
US8632978B2 (en) 2011-07-26 2014-01-21 Dow Agrosciences, Llc. Soybean event pDAB9582.814.19.1 detection method
WO2014095675A1 (fr) 2012-12-19 2014-06-26 Bayer Cropscience Ag Utilisation de carboxamides difluorométhyl-nicotinique-indanyle comme fongicides
US20140201860A1 (en) 2010-12-15 2014-07-17 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2014170327A1 (fr) 2013-04-19 2014-10-23 Bayer Cropscience Ag Procédé de lutte contre les organismes nuisibles
US20140373191A1 (en) 2013-06-14 2014-12-18 Monsanto Technology, Llc Soybean transgenic event mon87751 and methods for detection and use thereof
WO2015155075A1 (fr) 2014-04-11 2015-10-15 Syngenta Participations Ag Dérivés fongicide de n'- [2-méthyl -6- [2-alcoxy-éthoxy]-3-pyridyl]-n-alkyl-formamidine destinés à être utilisés dans l'agriculture
WO2016156290A1 (fr) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Nouveaux dérivés d'imidazole à substitution en position 5
WO2016156085A1 (fr) 2015-03-27 2016-10-06 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2016202742A1 (fr) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Phénoxyphénylamidines à substitution halogène et utilisation de celles-ci en tant que fongicides
WO2017025510A1 (fr) 2015-08-12 2017-02-16 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2017029179A1 (fr) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Dérivés de triazole, leurs intermédiaires et leur utilisation comme fongicides
WO2017055473A1 (fr) 2015-10-02 2017-04-06 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017055469A1 (fr) 2015-10-02 2017-04-06 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017093348A1 (fr) 2015-12-02 2017-06-08 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017118689A1 (fr) 2016-01-08 2017-07-13 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017153380A1 (fr) 2016-03-10 2017-09-14 Syngenta Participations Ag Dérivés microbiocides de quinoléine (thio)carboxamide
WO2017220485A1 (fr) 2016-06-21 2017-12-28 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018065414A1 (fr) 2016-10-06 2018-04-12 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018153707A1 (fr) 2017-02-22 2018-08-30 Basf Se Formes cristallines d'un composé de type strobilurine pour lutter contre des champignons phytopathogènes
WO2018158365A1 (fr) 2017-03-03 2018-09-07 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018202428A1 (fr) 2017-05-02 2018-11-08 Basf Se Mélange fongicide comprenant des 3-phényl-5-(trifluorométhyl)-1,2,4-oxadiazoles substitués
WO2018228896A1 (fr) 2017-06-14 2018-12-20 Syngenta Participations Ag Compositions fongicides
WO2019068783A1 (fr) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited Dérivés de benzofurane et leur utilisation en tant qu'inhibiteurs de bromodomaine
WO2019110427A1 (fr) 2017-12-04 2019-06-13 Syngenta Participations Ag Dérivés de phénylamidine microbiocides

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
EP0357460A2 (fr) 1988-09-02 1990-03-07 Sankyo Company Limited Dérivés de la milbémycine, leur préparation et leur utilisation
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0382173A2 (fr) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. Substance PF 1022, procédé pour sa préparation et composition anthelmintique contenant cette substance
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
EP0444964A1 (fr) 1990-03-01 1991-09-04 Sankyo Company Limited Dérivés d'éthers milbémycine, leur préparation et leur utilisation comme anthelmintiques
US5182295A (en) * 1990-10-02 1993-01-26 Roussel Uclaf Insecticidal benzofuran derivatives
EP0503538A1 (fr) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Composition médicale contenant un dépepsipeptide cyclique ayant une activité anthelminthique
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1993019053A1 (fr) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Derive de depsipeptide, production et utilisation
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1993025543A2 (fr) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines et derives d'enniatines utilises dans la lutte contre les endoparasites
EP0594291A1 (fr) 1992-09-01 1994-04-27 Sankyo Company Limited Procédés pour la préparation de dérivés des milbémycines ayant un groupe d'éther sur la position 13
WO1994015944A1 (fr) 1993-01-18 1994-07-21 Pfizer Limited Nouveaux agents antiparasitaires apparentes aux milbemycines et aux avermectines
WO1994019334A1 (fr) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Derive du pf 1022 utilise comme depsipeptide cyclqiue
EP0626375A1 (fr) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides ayant une activité endoparasiticide
WO1995019363A1 (fr) 1994-01-14 1995-07-20 Pfizer Inc. COMPOSéS ANTIPARASITAIRES A BASE DE PYRROLOBENZOXAZINE
WO1995022552A1 (fr) 1994-02-16 1995-08-24 Pfizer Limited Agents antiparasitaires
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
WO1996011945A2 (fr) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Procede de sulfonylation, de sulfenylation et de phosphorylation de depsipeptides cycliques
WO1996015121A1 (fr) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Utilisation de dioxomorpholines pour lutter contre les endoparasites, nouvelles dioxomorpholines et leur procede de production
DE19520936A1 (de) 1995-06-08 1996-12-12 Bayer Ag Ektoparasitizide Mittel
WO1997033890A1 (fr) 1996-03-11 1997-09-18 Novartis Ag Derives de pyrimidine-4-one utilises comme pesticide
US6225334B1 (en) * 1996-07-22 2001-05-01 Bayer Aktiengesellschaft Glyoxylic acid derivatives
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
WO2004072086A2 (fr) 2003-02-14 2004-08-26 Pfizer Limited Terpene alcaloides antiparasitiques
US20080320616A1 (en) 2005-04-08 2008-12-25 Bayer Bioscience N.V. Elite Event A2407-12 and Methods and Kits for Identifying Such Event in Biological Samples
US20080196127A1 (en) 2005-04-11 2008-08-14 Bayer Bioscience N.V. Elite Event A5547-127 and Methods and Kits For Identifying Such Event in Biological Samples
US7632985B2 (en) 2005-05-27 2009-12-15 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
US20100184079A1 (en) 2006-06-28 2010-07-22 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof
US20080312082A1 (en) 2006-10-31 2008-12-18 Kinney Anthony J Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
US8049071B2 (en) 2007-11-15 2011-11-01 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof
WO2010080829A1 (fr) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Évènement de soja 127 et procédés apparentés
WO2011022470A1 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Contrôle de volontaires monocotylédones aad-1 dans des champs de dicotylédones
WO2011022469A2 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Événement das-40278-9 d'aad-1, lignées transgéniques de maïs connexes et identification spécifique d'événement de celui-ci
WO2011022471A1 (fr) 2009-08-19 2011-02-24 Dow Agrosciences Llc Détection d’événement aad-1 das-40278-9
US20110067134A1 (en) 2009-09-17 2011-03-17 Brinker Ronald J Soybean transgenic event mon 87708 and methods of use thereof
WO2011138281A2 (fr) 2010-05-06 2011-11-10 Bayer Cropscience Ag Procédé de production de dithiine-tétracarboxy-diimides
US20140201860A1 (en) 2010-12-15 2014-07-17 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
US8632978B2 (en) 2011-07-26 2014-01-21 Dow Agrosciences, Llc. Soybean event pDAB9582.814.19.1 detection method
WO2014006945A1 (fr) 2012-07-04 2014-01-09 アグロカネショウ株式会社 Dérivé d'ester d'acide 2-aminonicotinique et bactéricide le contenant comme principe actif
WO2014095675A1 (fr) 2012-12-19 2014-06-26 Bayer Cropscience Ag Utilisation de carboxamides difluorométhyl-nicotinique-indanyle comme fongicides
WO2014170327A1 (fr) 2013-04-19 2014-10-23 Bayer Cropscience Ag Procédé de lutte contre les organismes nuisibles
US20140373191A1 (en) 2013-06-14 2014-12-18 Monsanto Technology, Llc Soybean transgenic event mon87751 and methods for detection and use thereof
WO2015155075A1 (fr) 2014-04-11 2015-10-15 Syngenta Participations Ag Dérivés fongicide de n'- [2-méthyl -6- [2-alcoxy-éthoxy]-3-pyridyl]-n-alkyl-formamidine destinés à être utilisés dans l'agriculture
WO2016156085A1 (fr) 2015-03-27 2016-10-06 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2016156290A1 (fr) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Nouveaux dérivés d'imidazole à substitution en position 5
WO2016202742A1 (fr) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Phénoxyphénylamidines à substitution halogène et utilisation de celles-ci en tant que fongicides
WO2017025510A1 (fr) 2015-08-12 2017-02-16 Syngenta Participations Ag Dérivés hétérobicycliques microbiocides
WO2017029179A1 (fr) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Dérivés de triazole, leurs intermédiaires et leur utilisation comme fongicides
WO2017055473A1 (fr) 2015-10-02 2017-04-06 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017055469A1 (fr) 2015-10-02 2017-04-06 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017093348A1 (fr) 2015-12-02 2017-06-08 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017118689A1 (fr) 2016-01-08 2017-07-13 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2017153380A1 (fr) 2016-03-10 2017-09-14 Syngenta Participations Ag Dérivés microbiocides de quinoléine (thio)carboxamide
WO2017220485A1 (fr) 2016-06-21 2017-12-28 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018065414A1 (fr) 2016-10-06 2018-04-12 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018153707A1 (fr) 2017-02-22 2018-08-30 Basf Se Formes cristallines d'un composé de type strobilurine pour lutter contre des champignons phytopathogènes
WO2018158365A1 (fr) 2017-03-03 2018-09-07 Syngenta Participations Ag Dérivés d'oxadiazole microbiocides
WO2018202428A1 (fr) 2017-05-02 2018-11-08 Basf Se Mélange fongicide comprenant des 3-phényl-5-(trifluorométhyl)-1,2,4-oxadiazoles substitués
WO2018228896A1 (fr) 2017-06-14 2018-12-20 Syngenta Participations Ag Compositions fongicides
WO2019068783A1 (fr) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited Dérivés de benzofurane et leur utilisation en tant qu'inhibiteurs de bromodomaine
WO2019110427A1 (fr) 2017-12-04 2019-06-13 Syngenta Participations Ag Dérivés de phénylamidine microbiocides

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"The Pesticide Manual", 2009, THE BRITISH CROP PROTECTION COUNCIL, article "The Pesticide Manual - A World Compendium"
A. WOOD, COMPENDIUM OF PESTICIDE COMMON NAMES, 1995
ADVANCED SYNTHESIS AND CATALYSIS, vol. 359, 2017, pages 3865
ANGEW. CHEM. INT. ED., vol. 53, 2014, pages 1809
HETEROCYCLES, vol. 92, 2016, pages 103
J. MED. CHEM, vol. 40, 1997, pages 1049
J. MED. CHEM, vol. 56, 2013, pages 5514 - 5540
J. MED. CHEM, vol. 61, 2018, pages 5623 - 5642
J. MED. CHEM., vol. 55, 2012, pages 10972
J. MED. CHEM., vol. 57, 2014, pages 7244
JOURNAL OF CHEMICAL RESEARCH, vol. 10, 1981, pages 3863
KLOSOWSKI AC ET AL.: "Competitive fitness of Phakopsora pachyrhizi isolates with mutations in the CYP51 and CYTB genes", PHYTOPATHOLOGY, vol. 106, 2016, pages 1278 - 1284
KLOSOWSKI AC ET AL.: "Detection of the F129L mutation in the cytochrome b gene in Phakopsora pachyrhizi", PEST MANAG SCI, vol. 72, 2016, pages 1211 - 1215, XP055720325, DOI: 10.1002/ps.4099
LANGENBACH C ET AL.: "Fighting Asian Soybean Rust", FRONT PLANT SCIENCE, vol. 7, no. 797, 2016
ROSSI ET AL.: "NEW EFFICIENT PROCEDURES FOR DIRECT INTRODUCTION OF THA AGROCHEMICALLY IMPORTANT BETA-METHOXYPROPENOATE UNIT INTO SUBSTITUTED AROMATIC DERIVATIVES", SYNLETT, vol. 4, 1996, pages 356 - 358, XP001084292, ISSN: 0936-5214, DOI: 10.1055/S-1996-5403 *
SCHMITZ HK: "Sensitivity of Phakopsora pachyrhizi towards quinone-outside-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms", PEST MANAG SCI, vol. 70, 2014, pages 378 - 388, XP055521613, DOI: 10.1002/ps.3562
SIMÕES K ET AL.: "First detection of a SDH variant with reduced SDHI sensitivity in Phakopsora pachyrhizf", J PLANT DIS PROT, vol. 125, 2018, pages 21 - 2
SYNLETT., vol. 26, 2015, pages 531
SYNTHETIC COMMUNICATIONS, vol. 40, 2010, pages 3603
TETRAHEDRON LETT., vol. 60, 2019, pages 151061
TETRAHEDRON, vol. 67, 2011, pages 624

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186377A1 (fr) * 2021-03-05 2022-09-09 住友化学株式会社 Composé à cycles condensés et son utilisation
CN113980824A (zh) * 2021-12-15 2022-01-28 浙江龙游东方阿纳萨克作物科技有限公司 一种哈茨木霉菌剂稳定剂及其应用
CN113980824B (zh) * 2021-12-15 2023-07-14 浙江龙游东方阿纳萨克作物科技有限公司 一种哈茨木霉菌剂稳定剂及其应用
CN115363026A (zh) * 2022-08-31 2022-11-22 硅羿科技(上海)有限公司 用于防治植物寄生线虫的纳米微囊农药制剂及其制备方法
CN115363026B (zh) * 2022-08-31 2023-09-29 硅羿科技(上海)有限公司 用于防治植物寄生线虫的纳米微囊农药制剂及其制备方法

Also Published As

Publication number Publication date
GB202006606D0 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
EP3941898B1 (fr) Composés fongicides
WO2020079111A1 (fr) Composés microbiocides
US20220183295A1 (en) Microbiocidal 2-acylamino-thiazole-4-carboxamide derivatives
US20220017501A1 (en) Microbiocidal thiazole derivatives
WO2020208095A1 (fr) Dérivés de picolinamide microbiocides
WO2021224102A1 (fr) Composés microbiocides
US11629129B2 (en) Microbiocidal picolinamide derivatives
WO2020165403A1 (fr) Dérivés de thiazole substitués par phényle en tant que composés microbiocides
EP3947371A1 (fr) Dérivés de thiazole microbiocides
WO2021219780A1 (fr) Composés microbiocides
WO2021219778A1 (fr) Composés microbiocides
WO2021219775A1 (fr) Composés microbiocides
CA3213300A1 (fr) Derives de quinoline/quinoxaline benzothiazine microbiocides
WO2020078732A1 (fr) Dérivés d'oxadiazole microbiocides
WO2020025807A1 (fr) Dérivés de 1,2,5-oxadiazol-3(2h)-one microbiocides
RU2817796C2 (ru) Фунгицидные соединения
WO2022058580A1 (fr) Composés microbiocides
WO2021009026A1 (fr) Dérivés de méthyl 2-[(4-méthoxyimino-tétraline-6-yl]prop-2-énoate, chromane, isochromane,6,7,8,9-tétrahydrobenzo[7]annulène, 1h-isobenzofurane et analogues d'indane correspondants, et composés similaires servant de fongicides agrochimiques
OA21382A (en) Fungicidal compounds.
WO2023118011A1 (fr) Dérivés d'aza-hétérobiaryle microbiocides
WO2024132895A1 (fr) Composés microbiocides de dihydrooxadiazinyl pyridazinone
WO2023094304A1 (fr) Dérivés amides hétérobiaryles microbiocides
WO2023148206A1 (fr) Dérivés de n-amide microbiocides
WO2023094303A1 (fr) Dérivés d'amide d'hétérobiaryle microbiocides
WO2022207479A1 (fr) Dérivés d'amide isonicotinique microbiocides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21723676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21723676

Country of ref document: EP

Kind code of ref document: A1