WO2021223633A1 - 电光调制器、电光调制电路以及光通信设备 - Google Patents

电光调制器、电光调制电路以及光通信设备 Download PDF

Info

Publication number
WO2021223633A1
WO2021223633A1 PCT/CN2021/090321 CN2021090321W WO2021223633A1 WO 2021223633 A1 WO2021223633 A1 WO 2021223633A1 CN 2021090321 W CN2021090321 W CN 2021090321W WO 2021223633 A1 WO2021223633 A1 WO 2021223633A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
optical
modulator
electrode
resistor
Prior art date
Application number
PCT/CN2021/090321
Other languages
English (en)
French (fr)
Inventor
孙旭
李心白
马静言
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021223633A1 publication Critical patent/WO2021223633A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • This application relates to the field of optical communication, and in particular to an electro-optical modulator, an electro-optical modulation circuit and an optical communication device.
  • the electro-optical modulator is a modulating device that modulates an optical carrier according to an electric signal, thereby loading the electric signal on the optical carrier, and is often used in optical communication equipment.
  • the electro-optic modulator is usually driven by a T-type DC bias (bias-tee).
  • the T-type DC biaser has a radio frequency port, a DC bias port, and a radio frequency DC port, and the T-type DC biaser may include a capacitor, a magnetic bead, and an inductor. Wherein, the two ends of the capacitor are respectively connected to the radio frequency port and the radio frequency direct current port, and the magnetic bead and the inductor are connected in series between the direct current bias port and the radio frequency direct current port.
  • the T-type DC biaser can load the RF signal (ie, high-frequency electrical signal) input by the signal source through the RF port and the bias voltage input by the bias voltage source through the DC bias port through the RF DC port To the electro-optic modulator.
  • the present application provides an electro-optical modulator, an electro-optical modulation circuit, and an optical communication device, which can solve the problem of large size of the electro-optical modulation circuit in related technologies.
  • the technical solution is as follows:
  • the electro-optical modulator includes a first capacitive impedance silicon optical modulator and a resistor.
  • the first capacitive impedance silicon light modulator has a first electrode and a second electrode, the first electrode is used to connect the signal source and the bias voltage source through the resistor, and the second electrode is used to connect the reference power terminal .
  • the resistance can realize the function of the magnetic beads and the inductor in the T-type DC biaser, that is, realize the isolation between the signal source and the bias voltage source, so the electro-optic modulator does not need to be driven by the T-type DC biaser. Therefore, the size of the electro-optical modulation circuit is effectively reduced, and the integration degree of the electro-optical modulation circuit is improved.
  • the electro-optic modulator further includes a second capacitive impedance silicon optical modulator, and the first electrode of the second capacitive impedance silicon optical modulator is also used to connect the bias voltage source through the resistor.
  • Two capacitive impedance silicon optical modulators share a resistor, which can reduce the number of resistors required to be set in the electro-optical modulator under the premise of ensuring effective isolation between the signal source and the bias voltage source, thereby simplifying the electro-optical modulator Structure and reduce the cost of electro-optic modulators.
  • the first capacitive impedance silicon optical modulator and the second capacitive impedance silicon optical modulator in the electro-optical modulator are both micro-ring modulators.
  • the micro-ring modulator has many advantages such as small size and wavelength sensitivity.
  • the electro-optical modulator includes a first capacitive impedance silicon light modulator, a first resistor, and a second resistor, wherein: the first capacitive impedance silicon light modulator has a first electrode and a second electrode, the first electrode and the The second electrodes are both used for connecting a signal source; and the first electrode is also used for connecting a bias voltage source through the first resistor, and the second electrode is also used for connecting a reference power terminal through the second resistor.
  • the electro-optical modulator does not need to be driven by the T-type DC bias, thereby effectively reducing the cost of the electro-optical modulation circuit.
  • the size improves the integration level of the electro-optic modulation circuit.
  • the electro-optic modulator further includes a second capacitive impedance silicon optical modulator; the first electrode of the second capacitive impedance silicon optical modulator is also used to connect the bias voltage source through the first resistor; the The second electrode of the second capacitive impedance silicon light modulator is also used to connect to the reference power terminal through the second resistor.
  • Two capacitive impedance silicon optical modulators share a first resistor and share a second resistor, which can reduce the number of resistors that need to be set in the electro-optical modulator.
  • the first capacitive impedance silicon optical modulator and the second capacitive impedance silicon optical modulator in the electro-optical modulator are both micro-ring modulators.
  • a single-ended electro-optic modulation circuit includes: a signal source, a bias voltage source, a capacitor, and the single-ended electro-optic modulator provided in the above aspect; the capacitor is connected in series with the signal Between the source and the first electrode; the bias voltage source is connected to the first electrode through the resistor.
  • the electro-optic modulator in the electro-optic modulation circuit does not need to be driven by a T-type DC biaser, the size of the electro-optic modulation circuit is effectively reduced, and the integration degree of the electro-optic modulation circuit is improved.
  • the signal source is a driver chip
  • the electro-optic modulator is an electro-optic modulation chip
  • the driver chip and the electro-optic modulation chip can be wired, flip-chip, or stacked. Way to connect.
  • the above-mentioned direct interconnection method is not only simple, but also can effectively reduce the fan-out area of the signal line and reduce the size of the electro-optic modulation circuit.
  • the signal source and the capacitor are integrated in the driving chip, thereby further improving the integration degree of the electro-optic modulation circuit.
  • a differentially driven electro-optical modulation circuit which includes: a signal source, a bias voltage source, a first capacitor, a second capacitor, and the differentially driven electro-optical modulator provided in the above aspect; wherein the The first capacitor is connected in series between the signal source and the first electrode; the second capacitor is connected in series between the signal source and the second electrode; the bias voltage source is connected to the first electrode through the first resistor .
  • the signal source is a driving chip
  • the electro-optic modulator is an electro-optic modulating chip
  • the driving chip and the electro-optic modulating chip may be connected by wire bonding, flip chip or chip stacking.
  • the signal source, the first capacitor, and the second capacitor are all integrated in a driving chip, thereby further improving the degree of integration of the electro-optic modulation circuit.
  • an optical communication device in yet another aspect, includes a light source, and the electro-optical modulation circuit provided in the above-mentioned aspect.
  • the capacitive impedance silicon optical modulator in the electro-optical modulation circuit has an optical waveguide; the light source and the light The waveguide is connected and used to provide an optical carrier for the optical waveguide, and the electro-optical modulation circuit is used to perform electro-optical modulation on the optical carrier.
  • the present application provides an electro-optic modulator, an electro-optic modulation circuit, and an optical communication device.
  • the electro-optic modulator in the electro-optic modulation circuit includes a first capacitive impedance silicon optical modulator and a resistor, and the first capacitor In the resistance silicon light modulator, the first electrode used to connect the signal source is also connected to the bias voltage source through the resistor. Since the resistor can realize the functions of the magnetic beads and the inductor in the T-type DC bias, that is, realize the isolation between the signal source and the bias voltage source, the electro-optic modulator provided in the embodiment of the present application does not need to use the T-type DC bias. The device is driven, thereby effectively reducing the size of the electro-optic modulation circuit and improving the integration level of the electro-optic modulation circuit.
  • Fig. 1 is a structural diagram of an electro-optical modulation circuit using a micro-ring modulator in the related art
  • FIG. 2a is a schematic structural diagram of a single-ended electro-optic modulator provided by an embodiment of the present application
  • Fig. 2b is an equivalent circuit diagram of the electro-optical modulator shown in Fig. 2a;
  • FIG. 3 is a schematic structural diagram of another single-ended electro-optical modulator provided by an embodiment of the present application.
  • 4a is a schematic structural diagram of a differentially driven electro-optic modulator provided by an embodiment of the present application.
  • Fig. 4b is an equivalent circuit diagram of the electro-optical modulator shown in Fig. 4a;
  • FIG. 5 is a schematic structural diagram of another electro-optical modulator driven by a differential according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another differentially driven electro-optic modulator provided by an embodiment of the present application.
  • FIG. 7a is a schematic structural diagram of a single-ended electro-optical modulation circuit provided by an embodiment of the present application.
  • Fig. 7b is an equivalent circuit diagram of the electro-optical modulation circuit shown in Fig. 7a;
  • FIG. 8 is a schematic structural diagram of another single-ended electro-optical modulation circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another single-ended electro-optic modulation circuit provided by an embodiment of the present application.
  • FIG. 10a is a schematic structural diagram of a differentially driven electro-optic modulation circuit provided by an embodiment of the present application.
  • Fig. 10b is an equivalent circuit diagram of the electro-optical modulation circuit shown in Fig. 10a;
  • FIG. 11 is a schematic structural diagram of another electro-optical modulation circuit for differential drive provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the leakage power of a high-frequency electrical signal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical communication device provided by an embodiment of the present application.
  • Capacitive impedance silicon optics is an electro-optic modulator commonly used in Si photonics technology, such as micro-ring modulators or lumped Mach-Zehnder modulators, which use carrier bias effects to achieve electro-optic The modulation function, and due to the high integration advantages of silicon photonics itself, has been widely used in multiple transceiver systems.
  • Fig. 1 is a schematic structural diagram of an electro-optical modulation circuit using a capacitive impedance silicon optical modulator in the related art.
  • the capacitive impedance silicon optical modulator 01 needs to be driven by a T-type DC biaser 02.
  • the T-type DC biaser 02 includes: a capacitor C, a magnetic bead LB, and an inductor L.
  • One end of the capacitor C can be connected to the signal source 03, and the other end can be connected to the signal electrode of the capacitive impedance silicon light modulator 01.
  • the magnetic bead LB and the inductor L are connected in series between the bias voltage source 04 and the signal electrode.
  • the branch where the capacitor C in the T-type DC biaser 02 is located can be called a high-frequency branch, which is used to transmit a high-frequency electrical signal to the signal electrode, and is used to modulate the optical carrier.
  • the branch where the magnetic bead LB and the inductor L are located can be called a low-frequency branch, which is used to transmit a bias voltage to the signal electrode, so that the capacitive impedance silicon light modulator 01 can achieve an ideal working state.
  • the low-frequency branch can present high impedance to high-frequency electrical signals, thereby preventing high-frequency electrical signals from leaking to the bias voltage source 04, that is, the low-frequency branch can realize the signal source 03 and the bias voltage source 04. Isolation of the voltage source 04.
  • the capacitive impedance silicon light modulator 01 is generally integrated in a chip through a complementary metal oxide semiconductor (CMOS) process, and the chip may be called a silicon optical chip.
  • the signal source 03 can also be integrated in a chip through a CMOS process, and the chip can be called a driver chip.
  • CMOS complementary metal oxide semiconductor
  • the chip can be called a driver chip.
  • the structure of the electro-optic modulator provided by the embodiment of the present application does not need to be driven by a T-type DC bias, so that the size of the electro-optic modulation circuit can be effectively reduced, and the integration degree of the electro-optic modulation circuit can be improved.
  • FIG. 2a is a schematic structural diagram of a single-ended electro-optic modulator provided by an embodiment of the present application.
  • the electro-optical modulator includes: a first capacitive impedance silicon optical modulator 100 and a resistor R11.
  • Fig. 2b is an equivalent circuit diagram of the electro-optical modulator shown in Fig. 2a.
  • the first capacitive impedance silicon optical modulator 100 is equivalent to a resistor R10 and a capacitor C10.
  • the first capacitive impedance silicon light modulator 100 has a first electrode P11 and a second electrode P12, the first electrode P11 is used for connecting a signal source, and the second electrode P12 is used for Connect the reference power terminal.
  • the signal source is used to provide a high-frequency electrical signal to the first capacitive impedance silicon optical modulator 100, and the first capacitive impedance silicon optical modulator 100 modulates the received optical carrier based on the electrical signal.
  • the reference power terminal is used to provide a reference potential for the first capacitive impedance silicon optical modulator 100.
  • the reference power terminal may be the ground terminal GND, and the reference potential may be 0 volts (V).
  • the electrical signal provided by the signal source is a single-ended signal, so the first capacitive impedance silicon optical modulator 100 only receives the electrical signal provided by the signal source through the first electrode P11.
  • the first electrode P11 may also be referred to as a signal (signal, S) electrode.
  • the second electrode P12 may also be referred to as a ground (G) electrode.
  • the first electrode P11 is also used to connect a bias voltage source through the resistor R11. That is, one end of the resistor R11 is connected to the first electrode P11, and the other end is used to connect a bias voltage source.
  • the bias voltage source is used to provide a bias voltage for the first capacitive impedance silicon light modulator 100 to ensure that the first capacitive impedance silicon light modulator 100 can be in an ideal working state.
  • the resistor R11 can prevent the high-frequency electrical signal provided by the signal source from leaking to the bias voltage source, thereby realizing effective isolation between the signal source and the bias voltage source, thereby ensuring the first capacitive impedance silicon optical modulator 100 normal work.
  • the resistance of the resistor R11 may be of the kiloohm (K ⁇ ) level.
  • the resistance of the resistor R11 can be greater than or equal to 0.5K ⁇ .
  • the first capacitive impedance silicon optical modulator 100 refers to a capacitive electro-optical modulator using silicon photonics technology.
  • a micro-ring modulator For example, a micro-ring modulator.
  • Microring modulators have many advantages such as small size and wavelength sensitivity.
  • its unique filtering characteristics can simplify the architecture of a wavelength division multiplexing (WDM) system, providing a single-fiber multi-wavelength solution for short-distance communication systems.
  • WDM wavelength division multiplexing
  • the microring modulator 100 includes a microring 101, a first doped region 102 located inside the microring 101, and a second doped region 103 located outside the microring 101.
  • one of the first doped region 102 and the second doped region 103 is an N-type doped region, and the other doped region is a P-type doped region.
  • the first electrode P11 is connected to the first doped region 102, and the second electrode P12 is connected to the second doped region 103.
  • the first electrode P11 is connected to the second doped region 103, and the second electrode P12 is connected to the first doped region 102.
  • the microring modulator 100 may include two second electrodes P12 arranged symmetrically.
  • the first capacitive impedance silicon optical modulator 100 can also be a lumped mach-zehnder modulator, a micro-disk modulator, or a photonic crystal modulator, and other types that use silicon photonic technology.
  • Capacitive electro-optic modulator The embodiment of the present application does not limit the type of the first capacitive impedance silicon light modulator.
  • the structure of the microdisk modulator is similar to that of the microring modulator. The difference is that there is no gap between the microring in the microdisk modulator and the first doped region, that is, the microring and the first doped region form one Solid disc structure.
  • the first capacitive impedance silicon light modulator 100 is a micro-ring modulator as an example for description.
  • the first electrode P11 and the resistor R11 are not directly connected, and the resistor R11 is connected to the doped region connected to the first electrode P11, so as to realize the connection with the first electrode P11.
  • One electrode P11 connection For example, as shown in FIG. 2a, the first electrode P11 is connected to the first doped region 102, and the resistor R11 is also connected to the first doped region 102.
  • the first electrode P11 and the resistor R11 may also be directly connected.
  • FIG. 3 is a schematic structural diagram of another electro-optical modulator provided by an embodiment of the present application.
  • the electro-optical modulator further includes a second capacitive impedance silicon optical modulator 200.
  • the structure of the second capacitive impedance silicon light modulator 200 is the same as the structure of the first capacitive impedance silicon light modulator 100, that is, the second capacitive impedance silicon light modulator 200 also includes a second capacitive impedance silicon light modulator 200 for connecting a signal source.
  • One electrode P11, and a second electrode P12 for connecting to the reference power terminal.
  • the first electrode P11 of the second capacitive impedance silicon light modulator 200 is also connected to the bias voltage source through the resistor R11. That is, the first capacitive impedance silicon light modulator 100 and the second capacitive impedance silicon light modulator 200 share the same resistor R11.
  • the electro-optical modulator includes a plurality of second capacitive impedance silicon optical modulators 200, and the first electrodes P11 of the plurality of second capacitive impedance silicon optical modulators 200 are all connected to the resistor. R11 connection. That is, the first capacitive impedance silicon light modulator 100 and the plurality of second capacitive impedance silicon light modulators 200 share the same resistor R11.
  • the number of resistors required to be set in the electro-optical modulator can be effectively reduced under the premise of ensuring effective isolation between the signal source and the bias voltage source, thereby simplifying The structure of the electro-optic modulator, and reduce the cost of the electro-optic modulator.
  • the electro-optical modulator may further include a plurality of first capacitive impedance silicon optical modulators 100 and a plurality of resistors R11.
  • each resistor R11 is connected to a first electrode P11 in a first capacitive impedance silicon light modulator 100. That is, the resistors R11 connected to the plurality of first capacitive impedance silicon light modulators 100 are independent of each other.
  • each capacitive impedance silicon optical modulator and resistor included in the electro-optical modulator can be integrated into an electro-optical modulation chip, thereby realizing a multi-channel electro-optical modulation chip.
  • eight capacitive impedance silicon optical modulators can be integrated in the electro-optical modulation chip, that is, the electro-optical modulation chip is an 8-channel electro-optical modulation chip, which can modulate 8 optical carriers.
  • the types of the multiple capacitive impedance silicon optical modulators included in the single-ended electro-optical modulator provided in the embodiment of the present application may be the same.
  • they can all be micro-ring modulators.
  • the embodiment of the present application provides a single-ended driving electro-optic modulator.
  • the electro-optic modulator includes a first capacitive impedance silicon optical modulator and a resistor, and the first capacitive impedance silicon optical modulator includes ,
  • the first electrode for connecting the signal source is also connected to the bias voltage source through the resistor. Since the resistor can realize the isolation between the signal source and the bias voltage source, the electro-optic modulator provided in the embodiments of the present application does not need to be driven by a T-type DC biaser, thereby effectively reducing the size of the electro-optic modulation circuit and improving The integration level of the electro-optic modulation circuit is improved.
  • Fig. 4a is a schematic structural diagram of a differentially driven electro-optic modulator provided by an embodiment of the present application.
  • the differentially driven electro-optical modulator includes a first capacitive impedance silicon optical modulator 300, a first resistor R21 and a second resistor R22.
  • Fig. 4b is an equivalent circuit diagram of the electro-optical modulator shown in Fig. 4a.
  • the first capacitive impedance silicon light modulator 300 is equivalent to a resistor R20 and a capacitor C20.
  • the first capacitive impedance silicon light modulator 300 has a first electrode P21 and a second electrode P22, and the first electrode P21 and the second electrode P22 are both used to connect a signal source.
  • the electrical signal provided by the signal source is a differential signal. Therefore, the first capacitive impedance silicon light modulator 300 needs to receive the differential signal through the first electrode P21 and the second electrode P22.
  • the first electrode P21 may also be referred to as a positive (P) electrode
  • the second electrode P22 may also be referred to as a negative (N) electrode.
  • the first electrode P21 is also connected to a bias voltage source through the first resistor R21. That is, one end of the first resistor R21 is connected to the first electrode P21, and the other end is used to connect a bias voltage source.
  • the second electrode P22 is also connected to the reference power terminal through the second resistor R22. That is, one end of the second resistor R22 is connected to the second electrode P22, and the other end is used to connect to the reference power terminal.
  • the first electrode P21 and the second electrode P22 are both used to receive the high-frequency electrical signal provided by the signal source, it is necessary to set two resistors to be connected to the two electrodes respectively to achieve the Effective isolation of high-frequency electrical signals to avoid leakage of such high-frequency electrical signals.
  • the resistance of each of the first resistor R21 and the second resistor R22 may be of the K ⁇ level.
  • the resistance of each resistor can be greater than or equal to 0.5K ⁇ .
  • the first capacitive impedance silicon optical modulator 300 may be a micro-ring modulator, a lumped Mach-Zehnder modulator, a micro-disk modulator or a photonic crystal modulator, etc., a capacitive type using silicon photonic technology. Electro-optical modulator.
  • the embodiment of the present application takes the first capacitive impedance silicon light modulator 300 as a microring modulator as an example for description.
  • the first capacitive impedance silicon light modulator 300 includes a microring 301 and a first doped region. 302 and the second doped region 303.
  • the first resistor R21 may be directly connected to the first electrode P21, or as shown in FIG. 4a, the first resistor R21 may also be connected to the first electrode P21 through the first doped region 302.
  • the second resistor R22 can be directly connected to the second electrode P22, or as shown in FIG. 4a, the second resistor R22 can also be connected to the second electrode P22 through the second doped region 303.
  • FIG. 5 is a schematic structural diagram of another electro-optic modulator with differential drive provided by an embodiment of the present application.
  • the electro-optic modulator further includes a second capacitive impedance silicon optical modulator 400.
  • the structure of the second capacitive impedance silicon light modulator 400 is the same as the structure of the first capacitive impedance silicon light modulator 300, that is, the second capacitive impedance silicon light modulator 400 also includes a second capacitive impedance silicon light modulator for connecting a signal source.
  • the first electrode P21 of the second capacitive impedance silicon light modulator 400 is also connected to the bias voltage source through the first resistor R21; the second electrode P22 of the second capacitive impedance silicon light modulator 400 also passes through The second resistor R22 is connected to the reference power terminal. That is, the first capacitive impedance silicon light modulator 300 and the second capacitive impedance silicon light modulator 400 share the same first resistor R21 and share the same second resistor R22.
  • the electro-optical modulator may include a plurality of second capacitive impedance silicon optical modulators 400 and a plurality of second resistors R22.
  • the first electrodes P21 of the plurality of second capacitive impedance silicon light modulators 400 are all connected to the first resistor R21.
  • the plurality of second capacitive impedance silicon light modulators 400 are linearly arranged, wherein every two adjacent second capacitive impedance silicon light modulators 400 are connected to the same second resistor R22, that is, every two adjacent second capacitive impedance silicon light modulators 400 are connected to the same second resistor R22.
  • the second capacitive impedance silicon light modulator 400 shares a second resistor R22.
  • the differentially driven electro-optic modulator provided in the embodiment of the present application may include a plurality of first capacitive impedance silicon optical modulators 300, a plurality of first resistors R21, and a plurality of second resistors R22.
  • the first electrode P21 of each first capacitive impedance silicon light modulator 300 is connected to a first resistor R21
  • the first resistor R21 is connected to the first electrode P21 of each first capacitive impedance silicon light modulator 300 R21 are independent of each other.
  • the number of first resistors R21 included in the electro-optic modulator is equal to the number of first capacitive impedance silicon optical modulators 300.
  • the plurality of first capacitive impedance silicon light modulators 300 are linearly arranged, and every two adjacent first capacitive impedance silicon light modulators 300 are connected to the same second
  • the resistor R22 is connected, that is, every two adjacent first capacitive impedance silicon light modulators 300 share a second resistor R22.
  • the number of second resistors R22 included in the electro-optical modulator is smaller than that of the first capacitive impedance silicon optical modulator 300.
  • the second electrode P22 of each first capacitive impedance silicon light modulator 300 is connected to a second resistor R22, and the second electrode P22 of each first capacitive impedance silicon light modulator 300
  • the connected second resistors R22 are independent of each other.
  • the number of second resistors R22 included in the electro-optic modulator is equal to the number of first capacitive impedance silicon optical modulators 300.
  • the types of the multiple capacitive impedance silicon optical modulators included in the differentially driven electro-optical modulator provided in the embodiment of the present application may be the same.
  • they can all be micro-ring modulators.
  • the embodiment of the present application provides a differentially driven electro-optic modulator.
  • the electro-optic modulator includes a first capacitive impedance silicon optical modulator, a first resistor, and a second resistor, and the first capacitive impedance
  • the first electrode for connecting the signal source is connected to the bias voltage source through the first resistor
  • the second electrode for connecting the signal source is connected to the reference power source through the second resistor. Since the first resistor and the second resistor can realize the isolation between the signal source and the bias voltage source, the electro-optical modulator provided in the embodiment of the present application does not need to be driven by a T-type DC biaser, thereby effectively reducing the electro-optical modulator.
  • the size of the modulation circuit improves the integration level of the electro-optic modulation circuit.
  • Fig. 7a is a schematic structural diagram of a single-ended electro-optical modulation circuit provided by an embodiment of the present application.
  • the circuit includes: a single-ended electro-optical modulator 10, a signal source 20, a bias voltage source 30, and a capacitor C11.
  • the electro-optical modulator 10 may be any one of the modulators shown in FIGS. 2a to 3.
  • Fig. 7b is an equivalent circuit diagram of the electro-optical modulation circuit shown in Fig. 7a. With reference to Figs. 7a and 7b, it can be seen that the capacitor C11 is connected in series between the signal source 20 and the first electrode P11. The bias voltage source 30 is connected to the first electrode P11 through the first resistor R11.
  • the electro-optic modulator 10 further includes one or more second capacitive impedance silicon optical modulators 200, or includes a plurality of first capacitive impedance silicon optical modulators 100.
  • the electro-optical modulator 10 includes a plurality of capacitive impedance silicon optical modulators, as shown in FIG. Between one of the first electrodes P11 of the device 10.
  • the signal source 20 is connected to a plurality of capacitors C11 and provides high-frequency electrical signals for a plurality of capacitive impedance silicon light modulators.
  • the signal source 20 provides four first capacitive impedance silicon light modulators 100 with high frequency electrical signals through four capacitors C11. That is, the signal source 20 is a four-channel signal source.
  • the electro-optical modulator 10 may include a plurality of first capacitive impedance silicon optical modulators 100 and a plurality of resistors R11.
  • the electro-optical modulation circuit may include only one bias voltage source 30, and the one bias voltage source 30 is connected to the plurality of resistors R11, and is unified into each first capacitive impedance through the plurality of resistors R11.
  • the silicon light modulator 100 provides a bias voltage. Since only one bias voltage source 30 needs to be provided in the electro-optical modulation circuit, the circuit cost can be effectively reduced, and the circuit structure can be simplified.
  • the electro-optical modulation circuit may also include a plurality of bias voltage sources 30, wherein each bias voltage source 30 is connected to a resistor R11, and the resistor R11 becomes a first capacitive
  • the impedance silicon light modulator 100 provides a bias voltage.
  • the resistors R11 connected to any two bias voltage sources 30 are different.
  • the signal source 20 is a driving chip
  • the electro-optic modulator 10 is an electro-optic modulating chip.
  • the driving chip 20 and the electro-optical modulation chip 10 may be connected by wire bonding, flip chip or chip stacking. Compared with connecting two chips through a high-speed signal line, the above-mentioned connection method can not only avoid the impact of high-speed signal line transmission on the quality of the electric signal, but also effectively reduce the size of the electro-optic modulation circuit and realize the miniaturization of the electro-optic modulation circuit. design.
  • the driving chip 20 and the electro-optic modulation chip 10 can also be connected through a high-speed signal line.
  • the routing distance of the high-speed signal line can be effectively shortened, and the high frequency can be reduced. The loss of the electrical signal.
  • the capacitor C11 may also be integrated in the driving chip 20, that is, the signal source and the capacitor may be integrated in the same chip, thereby further improving the integration degree of the electro-optic modulation circuit.
  • the number of channels of the electro-optic modulator chip 10 may be greater than or equal to the number of channels of the driving chip 20. If the number of channels of the electro-optic modulator chip 10 is greater than the number of channels of the driving chip 20, the electro-optic modulator chip 10 is connected to a plurality of driving chips 20. For example, referring to FIG. 9, the number of channels of the electro-optic modulator chip 10 is 8 and the number of channels of the driving chip 20 is 4, then the electro-optic modulator chip 10 is connected to two driving chips 20.
  • the embodiment of the present application provides an electro-optical modulation circuit driven by a single end.
  • the electro-optical modulator in the electro-optical modulation circuit includes a first capacitive impedance silicon optical modulator and a resistor, and in the first capacitive impedance silicon optical modulator, the first electrode connected to the signal source passes through the resistor and the bias voltage Source connection. Since the resistor can realize the functions of the magnetic beads and the inductor in the T-type DC bias device, that is, realize the isolation between the signal source and the bias voltage source, there is no need to use the T-type DC in the electro-optical modulation circuit provided in the embodiment of the present application.
  • the biaser effectively reduces the size of the electro-optic modulation circuit and improves the integration level of the electro-optic modulation circuit.
  • FIG. 10a is a schematic structural diagram of a differentially driven electro-optical modulation circuit provided by an embodiment of the present application.
  • the circuit includes: a differentially driven electro-optical modulator 40, a signal source 50, and a bias voltage source 60, The first capacitor C21, and the second capacitor C22.
  • the electro-optical modulator 40 can be any one of the modulators shown in FIGS. 4a to 6.
  • Fig. 10b is an equivalent circuit diagram of the electro-optical modulation circuit shown in Fig. 10a.
  • the first capacitor C21 is connected in series between the signal source 50 and the first electrode P1.
  • the second capacitor C22 is connected in series between the signal source 50 and the second electrode P2.
  • the bias voltage source 60 is connected to the first electrode P21 through the first resistor R21, and the reference power terminal (for example, the ground terminal GND shown in FIGS. 10a and 10b) is connected to the second electrode P22 through a second resistor R22.
  • the electro-optical modulator 40 further includes one or more second capacitive impedance silicon optical modulators 400, or may include a plurality of first capacitive impedance silicon optical modulators 300.
  • the electro-optical modulation circuit includes a plurality of first capacitors C21 and a plurality of second capacitors C22. Each first capacitor C21 is connected in series between the signal source 50 and a first electrode P21, and each second capacitor C22 is connected in series between the signal source 50 and a second electrode P22.
  • the signal source 50 is connected to a plurality of first capacitors C21 and a plurality of second capacitors C22, and provides high-frequency electrical signals for a plurality of capacitive impedance silicon light modulators.
  • the signal source 50 provides high-frequency electrical signals for four capacitive impedance silicon light modulators, that is, the signal source 50 is a four-channel signal source.
  • the electro-optic modulator 40 may include a plurality of first capacitive impedance silicon optical modulators 300 and a plurality of first resistors R21.
  • the electro-optic modulator circuit includes only one bias voltage source 60, and the one bias voltage source 60 is connected to the plurality of first resistors R21, and uniformly provides a bias voltage for each first capacitive impedance silicon light modulator 300 through the plurality of first resistors R21. Since only one bias voltage source 60 needs to be provided in the electro-optical modulation circuit, the circuit cost can be effectively reduced and the circuit structure can be simplified.
  • the electro-optical modulator circuit may also include a plurality of bias voltage sources 60, and each bias voltage source 60 is connected to one The first resistor R21 is connected, and a first capacitive impedance silicon light modulator 400 is provided with a bias voltage through the first resistor R21.
  • the first resistors R21 connected to any two bias voltage sources 60 are different.
  • the signal source 50 is a driving chip
  • the electro-optic modulator 40 is an electro-optic modulating chip.
  • the driving chip 50 and the electro-optic modulation chip 40 may be connected in a wire bonding manner, a flip chip manner, or a chip stacking manner.
  • the driving chip 50 and the electro-optic modulation chip 40 can also be connected by a high-speed signal line.
  • the first capacitor C21 and the second capacitor C22 may also be integrated in the driving chip 50, that is, the signal source, the first capacitor C21 and the second capacitor C22 are all integrated in the same chip middle. As a result, the degree of integration of the electro-optical modulation circuit can be further improved.
  • the embodiment of the present application provides a differentially driven electro-optic modulation circuit.
  • the electro-optic modulator in the electro-optic modulation circuit includes a first capacitive impedance silicon optical modulator, a first resistor, and a second resistor.
  • the first electrode connected to the signal source is connected to the bias voltage source through the first resistor
  • the second electrode connected to the signal source is connected to the reference power source through the second resistor. Since the first resistor and the second resistor can achieve isolation between the signal source and the bias voltage source, there is no need to use a T-type DC bias in the electro-optical modulation circuit provided in the embodiment of the present application, thereby effectively reducing the electro-optical modulation.
  • the size of the circuit improves the integration level of the electro-optic modulation circuit.
  • the bias voltage source can be directly connected to the electro-optic modulation chip, so the setting position of the bias voltage source is no longer affected by the T-type
  • the setting position of the DC bias device is limited, and the setting position of the bias voltage source is more flexible.
  • the driving chip 20 is arranged on the first side of the electro-optical modulation chip 10
  • the bias voltage source 30 is arranged on the second side of the electro-optical modulation chip 10.
  • the first and second sides are electro-optical modulation chips. Different sides of chip 10. It can be seen that the layout flexibility of the components in the electro-optic modulation circuit provided by the embodiments of the present application is relatively high, and the overall size of the electro-optic modulation circuit can be effectively reduced.
  • the embodiment of the present application also simulates the power of the high-frequency electrical signal leaked by the signal source in the electro-optical modulation circuit.
  • the resistance R11 used in the electro-optic modulation circuit is a 1k ⁇ resistance wire.
  • the first resistor R21 and the second resistor R22 adopted by the electro-optical modulator 40 are both 1k ⁇ resistor wires.
  • the simulation results are shown in Figure 12.
  • the horizontal axis in Figure 12 is the frequency of the high-frequency electrical signal provided by the signal source, in gigahertz (GHz), and the vertical axis is the power of the leaked high-frequency electrical signal, in decibels.
  • the power of the leaked electrical signal is detected on the side of the bias voltage source 30.
  • the power of the leaked electrical signal is detected on the side of the bias voltage source 60 or the side of the reference power supply terminal.
  • the solution provided by the embodiment of the present application can realize the function of the low-frequency branch in the T-type DC biaser by adding a resistor in the electro-optic modulator, that is, the resistor can effectively isolate the high-frequency electricity provided by the signal source. Signal to ensure the normal operation of the electro-optic modulator.
  • FIG. 13 is a schematic structural diagram of an optical communication device provided by an embodiment of the present application.
  • the optical communication device includes: an electro-optical modulation circuit 001 and a light source 002.
  • the electro-optical modulation circuit 001 can be any one of the circuits shown in FIGS. 7a to 11.
  • the electro-optical modulation circuit 001 in the device shown in FIG. 13 may be the single-ended electro-optical modulation circuit provided in the above-mentioned embodiment.
  • the capacitive impedance silicon optical modulator 100 in the electro-optical modulation circuit 001 also has an optical waveguide 104.
  • the light source 002 is connected to the optical waveguide 104 to provide an optical carrier for the optical waveguide 104.
  • the electro-optical modulator The circuit 001 can further electro-optically modulate the optical carrier.
  • the electro-optical modulation circuit 001 may include a plurality of first capacitive impedance silicon optical modulators, or may include one or more second capacitive impedance silicon optical modulators.
  • the light source 002 is connected to the optical waveguide 004 of each capacitive impedance silicon optical modulator, and is respectively connected to each capacitive impedance silicon optical modulator.
  • the modulator provides the optical carrier.
  • the light source 002 can provide multiple optical carriers of different wavelengths for each capacitive impedance silicon optical modulator.
  • Each capacitive impedance silicon optical modulator is used to modulate the optical carrier of one wavelength, and each capacitive impedance silicon optical modulator is used to modulate the optical carrier of one wavelength.
  • the wavelength of the optical carrier modulated by the optical modulator is different.
  • the embodiments of the present application provide an optical communication device.
  • the electro-optical modulation circuit in the optical communication device has a small size and high integration, thereby effectively improving the integration of the optical communication device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种电光调制器、电光调制电路以及光通信设备,电光调制器包括第一容性阻抗硅光调制器(100)和电阻(R11)。第一容性阻抗硅光调制器(100)具有第一电极(P11)和第二电极(P12)。第一电极(P11)用于连接信号源,以及用于通过电阻(R11)连接偏置电压源。第二电极(P12)用于连接参考电源端。由于电阻(R11)可以实现T型直流偏置器中磁珠和电感的作用,即实现信号源与偏置电压源之间的隔离,因此电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。

Description

电光调制器、电光调制电路以及光通信设备
本申请要求于2020年5月7日提交的申请号为202010377368.5、发明名称为“电光调制器、电光调制电路以及光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,特别涉及一种电光调制器、电光调制电路以及光通信设备。
背景技术
电光调制器是一种根据电信号调制光载波,从而将电信号加载至光载波上的调制器件,常用于光通信设备中。
相关技术中,电光调制器通常采用T型直流偏置器(bias-tee)进行驱动。该T型直流偏置器具有射频端口、直流偏置端口和射频直流端口,且该T型直流偏置器可以包括:电容、磁珠和电感。其中,该电容的两端分别与射频端口和射频直流端口连接,该磁珠和电感串联在直流偏置端口和射频直流端口之间。该T型直流偏置器能够将信号源通过该射频端口输入的射频信号(即高频的电信号),以及偏置电压源通过该直流偏置端口输入的偏置电压,通过射频直流端口加载至电光调制器。
但是,由于T型直流偏置器中的磁珠和电感的尺寸较大,导致该T型直流偏置器难以与电光调制器集成,进而导致光通信设备中的电光调制电路的整体尺寸较大。
发明内容
本申请提供了一种电光调制器、电光调制电路以及光通信设备,可以解决相关技术中的电光调制电路尺寸较大的问题,技术方案如下:
一方面,提供了一种单端驱动的电光调制器。该电光调制器包括第一容性阻抗硅光调制器和电阻。其中,该第一容性阻抗硅光调制器具有第一电极和第二电极,该第一电极用于连接信号源以及通过该电阻连接偏置电压源,该第二电极用于连接参考电源端。
由于该电阻可以实现T型直流偏置器中磁珠和电感的作用,即实现信号源与偏置电压源之间的隔离,因此该电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
可选地,该电光调制器还包括第二容性阻抗硅光调制器,该第二容性阻抗硅光调制器的第一电极也用于通过该电阻连接该偏置电压源。
两个容性阻抗硅光调制器共用一个电阻,可以在确保信号源与偏置电压源之间的有效隔离的前提下,减少电光调制器中所需设置的电阻的数量,进而简化电光调制器的结构,并降低电光调制器的成本。
可选地,该电光调制器中的第一容性阻抗硅光调制器和第二容性阻抗硅光调制器均为微 环调制器。该微环调制器具有尺寸小以及波长敏感等诸多优势。
另一方面,提供了一种差分驱动的电光调制器。该电光调制器包括第一容性阻抗硅光调制器、第一电阻和第二电阻,其中:该第一容性阻抗硅光调制器具有第一电极和第二电极,该第一电极和该第二电极均用于连接信号源;并且该第一电极还用于通过该第一电阻连接偏置电压源,该第二电极还用于通过该第二电阻连接参考电源端。
由于该第一电阻和第二电阻可以实现T型直流偏置器中磁珠和电感的作用,因此该电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
可选地,该电光调制器还包括第二容性阻抗硅光调制器;该第二容性阻抗硅光调制器的第一电极也用于通过该第一电阻连接该偏置电压源;该第二容性阻抗硅光调制器的第二电极也用于通过该第二电阻连接该参考电源端。两个容性阻抗硅光调制器共用一个第一电阻,且共用一个第二电阻,可以减少电光调制器中所需设置的电阻的数量。
可选地,该电光调制器中的第一容性阻抗硅光调制器和第二容性阻抗硅光调制器均为微环调制器。
又一方面,提供了一种单端驱动的电光调制电路,该电路包括:信号源,偏置电压源,电容,以及如上述方面提供的单端驱动的电光调制器;该电容串联在该信号源和第一电极之间;该偏置电压源通过该电阻与该第一电极连接。
由于该电光调制电路中的电光调制器无需再采用T型直流偏置器进行驱动,因此有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
可选地,该信号源为驱动芯片,该电光调制器为电光调制芯片;该驱动芯片与该电光调制芯片可以通过打线(wire bonding)方式、倒装芯片(flip-chip)方式或者芯片堆叠方式连接。相比于通过高速信号线连接,上述直接互连的方式不仅简单,而且可以有效减少信号线的扇出面积,缩减电光调制电路的尺寸。
可选地,该信号源和该电容均集成在驱动芯片中,由此可以进一步提高该电光调制电路的集成度。
再一方面,提供了一种差分驱动的电光调制电路,该电路包括:信号源,偏置电压源,第一电容,第二电容,以及如上述方面提供的差分驱动的电光调制器;其中该第一电容串联在该信号源和该第一电极之间;该第二电容串联在该信号源和该第二电极之间;该偏置电压源则通过该第一电阻与该第一电极连接。
可选地,该信号源为驱动芯片,该电光调制器为电光调制芯片;该驱动芯片与该电光调制芯片可以通过打线式、倒装芯片方式或者芯片堆叠方式连接。
可选地,该信号源、该第一电容和该第二电容均集成在驱动芯片中,由此可以进一步提高该电光调制电路的集成度。
再一方面,提供了一种光通信设备,该设备包括:光源,以及如上述方面提供的电光调制电路,该电光调制电路中的容性阻抗硅光调制器具有光波导;该光源与该光波导连接,并用于为该光波导提供光载波,该电光调制电路用于对该光载波进行电光调制。
综上所述,本申请提供了一种电光调制器、电光调制电路以及光通信设备,该电光调制电路中的电光调制器包括第一容性阻抗硅光调制器和电阻,且该第一容性阻抗硅光调制器中,用于连接信号源的第一电极还通过该电阻与偏置电压源连接。由于该电阻可以实现T型 直流偏置器中磁珠和电感的作用,即实现信号源与偏置电压源之间的隔离,因此本申请实施例提供的电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
附图说明
图1是相关技术中的一种采用微环调制器的电光调制电路的结构示意图;
图2a是本申请实施例提供的一种单端驱动的电光调制器的结构示意图;
图2b是图2a所示的电光调制器的等效电路图;
图3是本申请实施例提供的另一种单端驱动的电光调制器的结构示意图;
图4a是本申请实施例提供的一种差分驱动的电光调制器的结构示意图;
图4b是图4a所示的电光调制器的等效电路图;
图5是本申请实施例提供的另一种差分驱动的电光调制器的结构示意图;
图6是本申请实施例提供的又一种差分驱动的电光调制器的结构示意图;
图7a是本申请实施例提供的一种单端驱动的电光调制电路的结构示意图;
图7b是图7a所示的电光调制电路的等效电路图;
图8是本申请实施例提供的另一种单端驱动的电光调制电路的结构示意图;
图9是本申请实施例提供的又一种单端驱动的电光调制电路的结构示意图;
图10a是本申请实施例提供的一种差分驱动的电光调制电路的结构示意图;
图10b是图10a所示的电光调制电路的等效电路图;
图11是本申请实施例提供的另一种差分驱动的电光调制电路的结构示意图;
图12是本申请实施例提供的一种高频的电信号的泄露功率的示意图;
图13是本申请实施例提供的一种光通信设备的结构示意图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的电光调制器、电光调制电路以及光通信设备。
容性阻抗硅光是硅光子(Si photonics)技术中普遍采用的一种电光调制器,如微环调制器或集总型马赫曾德调制器等,其利用载流子偏置效应来实现电光调制的功能,同时由于硅光子本身具有的高集成度的优势,在多路收发系统中得到了广泛的应用。
图1是相关技术中的一种采用容性阻抗硅光调制器的电光调制电路的结构示意图。如图1所示,该容性阻抗硅光调制器01需要采用T型直流偏置器02进行驱动。T型直流偏置器02包括:电容C、磁珠LB和电感L。该电容C的一端可以与信号源03连接,另一端可以与容性阻抗硅光调制器01的信号电极连接。磁珠LB和电感L则串联在偏置电压源04与信号电极之间。
其中,T型直流偏置器02中电容C所在的分支可以称为高频分支,用于向信号电极传输高频的电信号,用于调制光载波。磁珠LB和电感L所在分支可以称为低频分支,用于向信号电极传输偏置电压,从而使得该容性阻抗硅光调制器01能够达到理想的工作状态。并且,该低频分支对于高频的电信号能够呈现出较高的阻抗,从而能够防止高频的电信号泄露至偏置电压源04,也即是,该低频分支可以实现信号源03与偏置电压源04的隔离。
相关技术中,容性阻抗硅光调制器01一般通过互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺集成在芯片中,该芯片可以称为硅光芯片。信号源03也可以通过CMOS工艺集成在芯片中,该芯片可以称为驱动芯片。但由于T型直流偏置器02中的磁珠LB和电感L的尺寸较大,导致该T型直流偏置器02难以集成于硅光芯片或驱动芯片中,进而导致电光调制电路的整体尺寸较大,小型化程度不足。
本申请实施例提供的电光调制器结构无需通过T型直流偏置器进行驱动,从而可以有效缩减电光调制电路的尺寸,提高电光调制电路的集成度。
图2a是本申请实施例提供的一种单端驱动的电光调制器的结构示意图。如图2a所示,该电光调制器包括:第一容性阻抗硅光调制器100和电阻R11。图2b是图2a所示的电光调制器的等效电路图。如图2b所示,第一容性阻抗硅光调制器100等效为电阻R10和电容C10。
结合图2a和图2b可以看出,该第一容性阻抗硅光调制器100具有第一电极P11和第二电极P12,该第一电极P11用于连接信号源,该第二电极P12用于连接参考电源端。
其中,该信号源用于为该第一容性阻抗硅光调制器100提供高频的电信号,第一容性阻抗硅光调制器100基于该电信号对接收到的光载波进行调制。该参考电源端用于为该第一容性阻抗硅光调制器100提供参考电位。例如,该参考电源端可以为地端GND,则该参考电位可以为0伏特(V)。
本申请实施例提供的方案中,该信号源提供的电信号为单端信号,因此该第一容性阻抗硅光调制器100仅通过第一电极P11接收信号源提供的电信号。相应的,第一电极P11也可以称为信号(signal,S)电极。该第二电极P12也可以称为地(ground,G)电极。
在本申请实施例中,该第一电极P11还用于通过该电阻R11连接偏置电压源。也即是,该电阻R11的一端与该第一电极P11连接,另一端用于连接偏置电压源。该偏置电压源用于为该第一容性阻抗硅光调制器100提供偏置电压,以确保该第一容性阻抗硅光调制器100能够处于理想的工作状态。该电阻R11可以避免信号源提供的高频的电信号泄露至偏置电压源,从而可以实现对信号源和偏置电压源的有效隔离,进而可以确保第一容性阻抗硅光调制器100的正常工作。
其中,为了确保对高频的电信号的有效隔离,该电阻R11的阻值可以为千欧(KΩ)级别。例如电阻R11的阻值可以大于或等于0.5KΩ。
在本申请实施例中,该第一容性阻抗硅光调制器100是指采用硅光子技术的电容型的电光调制器。例如,微环调制器。微环调制器具有尺寸小和波长敏感等诸多优势。并且,其独特的滤波特性可以简化波分复用(wavelength division multiplexing,WDM)系统的架构,为短距通信系统提供了单纤多波长的解决方案。
参考图2a,该微环调制器100包括微环101、位于该微环101内侧的第一掺杂区域102以及位于该微环101外侧的第二掺杂区域103。其中,该第一掺杂区域102和第二掺杂区域103中的一个掺杂区域为N型掺杂区域,另一个掺杂区域为P型掺杂区域。
第一电极P11与第一掺杂区域102连接,第二电极P12与第二掺杂区域103连接。或者,第一电极P11与第二掺杂区域103连接,第二电极P12与第一掺杂区域102连接。并且,从图2a可以看出,该微环调制器100可以包括对称设置的两个第二电极P12。
可选地,该第一容性阻抗硅光调制器100还可以为集总型马赫曾德调制器(lumped mach- zehnder modulator)、微盘调制器或光子晶体调制器等其他类型的采用硅光子技术的电容型电光调制器。本申请实施例对该第一容性阻抗硅光调制器的类型不做限定。
其中,该微盘调制器的结构与微环调制器的结构类似,区别在于微盘调制器中的微环与第一掺杂区域之间不存在间隙,即该微环与第一掺杂区域组成一个实心的盘状结构。
本申请实施例以第一容性阻抗硅光调制器100为微环调制器为例进行说明。作为一种可选地实现方式,如图2a所述,该第一电极P11和电阻R11并未直接连接,该电阻R11与该第一电极P11所连接的掺杂区域连接,从而实现与该第一电极P11的连接。例如,如图2a所示,第一电极P11与第一掺杂区域102连接,则电阻R11也与该第一掺杂区域102连接。作为另一种可选地实现方式,该第一电极P11和电阻R11也可以直接连接。
图3是本申请实施例提供的另一种电光调制器的结构示意图,如图3所示,该电光调制器还包括第二容性阻抗硅光调制器200。该第二容性阻抗硅光调制器200的结构与该第一容性阻抗硅光调制器100的结构相同,即该第二容性阻抗硅光调制器200也包括用于连接信号源的第一电极P11,以及用于连接参考电源端的第二电极P12。
其中,该第二容性阻抗硅光调制器200的第一电极P11也通过该电阻R11连接该偏置电压源。也即是,该第一容性阻抗硅光调制器100和第二容性阻抗硅光调制器200共用同一个电阻R11。
可选地,如图3所示,该电光调制器包括多个第二容性阻抗硅光调制器200,该多个第二容性阻抗硅光调制器200的第一电极P11均与该电阻R11连接。也即是,该第一容性阻抗硅光调制器100与多个第二容性阻抗硅光调制器200共用同一个电阻R11。
通过使多个容性阻抗硅光调制器共用一个电阻,可以在确保信号源与偏置电压源之间的有效隔离的前提下,有效减少电光调制器中所需设置的电阻的数量,进而简化电光调制器的结构,并降低电光调制器的成本。
在本申请实施例中,该电光调制器还可以包括多个第一容性阻抗硅光调制器100和多个电阻R11。其中,每个电阻R11与一个第一容性阻抗硅光调制器100中的第一电极P11连接。也即是,该多个第一容性阻抗硅光调制器100所连接的电阻R11相互独立。
由于电阻的尺寸较小,因此该电光调制器包括的各个容性阻抗硅光调制器和电阻可以集成在一个电光调制芯片中,从而实现一个多通道的电光调制芯片。例如,该电光调制芯片中可以集成有8个容性阻抗硅光调制器,即该电光调制芯片为8通道的电光调制芯片,能够实现对8路光载波的调制。
需要说明的是,本申请实施例提供的单端驱动的电光调制器包括的多个容性阻抗硅光调制器的类型可以相同。例如,可以均为微环调制器。
综上所述,本申请实施例提供了一种单端驱动的电光调制器,该电光调制器包括第一容性阻抗硅光调制器和电阻,且该第一容性阻抗硅光调制器中,用于连接信号源的第一电极还通过该电阻与偏置电压源连接。由于该电阻可以实现信号源与偏置电压源之间的隔离,因此本申请实施例提供的电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
图4a是本申请实施例提供的一种差分驱动的电光调制器的结构示意图。如图4a所示,该差分驱动的电光调制器包括第一容性阻抗硅光调制器300、第一电阻R21和第二电阻R22。图4b是图4a所示的电光调制器的等效电路图。如图4b所示,第一容性阻抗硅光调制器300 等效为电阻R20和电容C20。
结合图4a和图4b可以看出,该第一容性阻抗硅光调制器300具有第一电极P21和第二电极P22,该第一电极P21和该第二电极P22均用于连接信号源。
其中,该信号源提供的电信号为差分信号,因此该第一容性阻抗硅光调制器300需通过第一电极P21和第二电极P22接收该差分信号。该第一电极P21也可以称为正(positive,P)电极,该第二电极P22也可以称为负(negative,N)电极。
参考图4a和图4b,该第一电极P21还通过该第一电阻R21连接偏置电压源。也即是,该第一电阻R21的一端与该第一电极P21连接,另一端用于连接偏置电压源。该第二电极P22还通过该第二电阻R22连接参考电源端。也即是,该第二电阻R22的一端与该第二电极P22连接,另一端用于连接参考电源端。
由于差分驱动的方案中,该第一电极P21和第二电极P22均用于接收信号源提供的高频的电信号,因此需要设置两个电阻分别与该两个电极连接,以实现对该高频的电信号的有效隔离,避免该高频的电信号泄露。其中,该第一电阻R21和第二电阻R22中的每个电阻的阻值均可以为KΩ级别。例如每个电阻的阻值均可以大于或等于0.5KΩ。
在本申请实施例中,该第一容性阻抗硅光调制器300可以为微环调制器、集总型马赫曾德调制器、微盘调制器或者光子晶体调制器等采用硅光子技术的电容型电光调制器。
本申请实施例以第一容性阻抗硅光调制器300为微环调制器为例进行说明,参考图4a,该第一容性阻抗硅光调制器300包括微环301、第一掺杂区域302和第二掺杂区域303。
可选地,该第一电阻R21可以与该第一电极P21直接连接,或者如图4a所示,该第一电阻R21也可以通过第一掺杂区域302与该第一电极P21连接。同理,该第二电阻R22可以与该第二电极P22直接连接,或者如图4a所示,该第二电阻R22也可以通过第二掺杂区域303与该第二电极P22连接。
图5是本申请实施例提供的另一种差分驱动的电光调制器的结构示意图,如图5所示,该电光调制器还包括第二容性阻抗硅光调制器400。该第二容性阻抗硅光调制器400的结构与该第一容性阻抗硅光调制器300的结构相同,即该第二容性阻抗硅光调制器400也包括用于连接信号源的第一电极P21和第二电极P22。
其中,该第二容性阻抗硅光调制器400的第一电极P21也通过该第一电阻R21连接该偏置电压源;该第二容性阻抗硅光调制器400的第二电极P22也通过该第二电阻R22连接该参考电源端。也即是,该第一容性阻抗硅光调制器300和第二容性阻抗硅光调制器400共用同一个第一电阻R21,且共用同一个第二电阻R22。
如图5所示,该电光调制器可以包括多个第二容性阻抗硅光调制器400以及多个第二电阻R22。该多个第二容性阻抗硅光调制器400的第一电极P21均与该第一电阻R21连接。并且,该多个第二容性阻抗硅光调制器400呈线性排列,其中每相邻两个第二容性阻抗硅光调制器400与同一个第二电阻R22连接,即每相邻两个第二容性阻抗硅光调制器400共用一个第二电阻R22。
通过使多个容性阻抗硅光调制器共用一个第一电阻,并共用同一个第二电阻,可以在确保有效隔离信号源提供的高频的电信号的前提下,有效减少电光调制器中所需设置的电阻的数量,进而简化电光调制器的结构,并降低电光调制器的成本。
可选地,本申请实施例提供的该差分驱动的电光调制器可以包括多个第一容性阻抗硅光 调制器300、多个第一电阻R21以及多个第二电阻R22。其中,每个第一容性阻抗硅光调制器300的第一电极P21与一个第一电阻R21连接,且各个第一容性阻抗硅光调制器300的第一电极P21所连接的第一电阻R21相互独立。相应的,该电光调制器中包括的第一电阻R21的数量等于该第一容性阻抗硅光调制器300的数量。
在一种实现方式中,如图6所示,该多个第一容性阻抗硅光调制器300呈线性排列,每相邻两个第一容性阻抗硅光调制器300与同一个第二电阻R22连接,即每相邻两个第一容性阻抗硅光调制器300共用一个第二电阻R22。在该实现方式中,该电光调制器中包括的第二电阻R22的数量小于该第一容性阻抗硅光调制器300。
在另一种实现方式中,每个第一容性阻抗硅光调制器300的第二电极P22与一个第二电阻R22连接,且各个第一容性阻抗硅光调制器300的第二电极P22所连接的第二电阻R22相互独立。在该实现方式中,该电光调制器中包括的第二电阻R22的数量等于第一容性阻抗硅光调制器300的数量。
需要说明的是,本申请实施例提供的差分驱动的电光调制器包括的多个容性阻抗硅光调制器的类型可以相同。例如,可以均为微环调制器。
综上所述,本申请实施例提供了一种差分驱动的电光调制器,该电光调制器包括第一容性阻抗硅光调制器、第一电阻和第二电阻,且该第一容性阻抗硅光调制器中,用于连接信号源的第一电极通过该第一电阻与偏置电压源连接,用于连接信号源的第二电极通过该第二电阻与参考电源连接。由于该第一电阻和第二电阻可以实现信号源与偏置电压源之间的隔离,因此本申请实施例提供的电光调制器无需再采用T型直流偏置器进行驱动,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
图7a是本申请实施例提供的一种单端驱动的电光调制电路的结构示意图,参考图7a,该电路包括:单端驱动的电光调制器10,信号源20,偏置电压源30以及电容C11。其中,该电光调制器10可以为图2a至图3任一所示的调制器。
图7b是图7a所示的电光调制电路的等效电路图,参考图7a和图7b可以看出,该电容C11串联在该信号源20和第一电极P11之间。该偏置电压源30通过该第一电阻R11与该第一电极P11连接。
可选地,该电光调制器10还包括一个或多个第二容性阻抗硅光调制器200,或者包括多个第一容性阻抗硅光调制器100。对于该电光调制器10包括多个容性阻抗硅光调制器的场景,如图8所示,该电光调制电路包括多个电容C11,其中每个电容C11串联在该信号源20和该电光调制器10的一个第一电极P11之间。
并且,从图8可以看出,该信号源20与多个电容C11连接,并为多个容性阻抗硅光调制器提供高频的电信号。例如,如图8所示,该信号源20通过四个电容C11为四个第一容性阻抗硅光调制器100提供高频的电信号。即该信号源20为四通道的信号源。
可选地,电光调制器10可以包括多个第一容性阻抗硅光调制器100,以及多个电阻R11。如图8所示,该电光调制电路可以仅包括一个偏置电压源30,该一个偏置电压源30与该多个电阻R11连接,并通过该多个电阻R11统一为各个第一容性阻抗硅光调制器100提供偏置电压。由于电光调制电路中仅需设置一个偏置电压源30,因此可以有效降低电路成本,简化电路结构。作为另一种可选地实现方式,该电光调制电路也可以包括多个偏置电压源30,其中每个偏置电压源30与一个电阻R11连接,并通过该电阻R11为一个第一容性阻抗 硅光调制器100提供偏置电压。其中,任意两个偏置电压源30所连接的电阻R11不同。通过设置多个偏置电压源30,可以实现对每个第一容性阻抗硅光调制器100的偏置电压的独立调节,从而有效提高了该电光调制电路工作时的灵活性。
可选地,如图9所示,在本申请实施例中,该信号源20为驱动芯片,该电光调制器10为电光调制芯片。该驱动芯片20与该电光调制芯片10之间可以通过打线方式、倒装芯片方式或者芯片堆叠方式连接。相比于通过高速信号线连接两个芯片,上述连接方式不仅可以避免高速信号线传输电信号对电信号的质量造成影响,还可以有效减小电光调制电路的尺寸,实现电光调制电路的小型化设计。
当然,该驱动芯片20与该电光调制芯片10之间也可以通过高速信号线连接。并且在本申请实施例中,由于无需在驱动芯片20和电光调制芯片10之间设置T型直流偏置器,因此相比于相关技术,可以有效缩短高速信号线的走线距离,减少高频的电信号的损耗。
在本申请实施例中,电容C11也可以集成在驱动芯片20中,也即是,该信号源和电容可以集成在同一个芯片中,由此可以进一步提高该电光调制电路的集成度。
需要说明的是,该电光调制器芯片10的通道数可以大于或等于驱动芯片20的通道数。若该电光调制器芯片10的通道数大于该驱动芯片20的通道数,则该电光调制器芯片10与多个驱动芯片20连接。例如,参考图9,该电光调制器芯片10的通道数为8,该驱动芯片20的通道数为4,则该电光调制器芯片10与两个驱动芯片20连接。
综上所述,本申请实施例提供了一种单端驱动的电光调制电路。该电光调制电路中的电光调制器包括第一容性阻抗硅光调制器以及电阻,且该第一容性阻抗硅光调制器中,与信号源连接的第一电极通过该电阻与偏置电压源连接。由于该电阻可以实现T型直流偏置器中磁珠和电感的作用,即实现信号源与偏置电压源之间的隔离,因此本申请实施例提供的电光调制电路中无需再采用T型直流偏置器,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
图10a是本申请实施例提供的一种差分驱动的电光调制电路的结构示意图,如图10a所示,该电路包括:差分端驱动的电光调制器40,信号源50,偏置电压源60,第一电容C21,以及第二电容C22。其中,该电光调制器40可以为图4a至图6任一所示的调制器。
图10b是图10a所示的电光调制电路的等效电路图,参考图10a和图10b可以看出,该第一电容C21串联在该信号源50和该第一电极P1之间。该第二电容C22串联在该信号源50和该第二电极P2之间。该偏置电压源60通过该第一电阻R21与该第一电极P21连接,参考电源端(例如图10a和图10b所示的地端GND)通过第二电阻R22与该第二电极P22连接。
可选地,电光调制器40还包括一个或多个第二容性阻抗硅光调制器400,或者可以包括多个第一容性阻抗硅光调制器300。则对于该电光调制器40包括多个容性阻抗硅光调制器的场景,如图11所示,该电光调制电路包括多个第一电容C21以及多个第二电容C22。其中,每个第一电容C21串联在该信号源50和一个第一电极P21之间,每个第二电容C22串联在该信号源50和一个第二电极P22之间。
并且,参考图11可以看出,该信号源50与多个第一电容C21和多个第二电容C22连接,并为多个容性阻抗硅光调制器提供高频的电信号。例如,如图11所示,该信号源50为四个容性阻抗硅光调制器提供高频的电信号,即该信号源50为四通道的信号源。
可选地,该电光调制器40可以包括多个第一容性阻抗硅光调制器300,以及多个第一电阻R21。对于该电光调制器40包括多个第一电阻R21的场景,作为一种可选地实现方式,如图11所示,该电光调制电路仅包括一个偏置电压源60,该一个偏置电压源60与该多个第一电阻R21连接,并通过该多个第一电阻R21统一为各个第一容性阻抗硅光调制器300提供偏置电压。由于该电光调制电路中仅需设置一个偏置电压源60,因此可以有效降低电路成本,简化电路结构。
对于该电光调制器40包括多个第一电阻R21的场景,作为另一种可选地实现方式,该电光调制电路也可以包括多个偏置电压源60,每个偏置电压源60与一个第一电阻R21连接,并通过该第一电阻R21为一个第一容性阻抗硅光调制器400提供偏置电压。其中,任意两个偏置电压源60所连接的第一电阻R21不同。由此,可以实现对每个第一容性阻抗硅光调制器400的偏置电压的独立调节,从而有效提高了该电光调制电路工作时的灵活性。
可选地,在本申请实施例中,该信号源50为驱动芯片,该电光调制器40为电光调制芯片。该驱动芯片50与该电光调制芯片40之间可以通打线方式、倒装芯片方式或者芯片堆叠方式连接。当然,该驱动芯片50与该电光调制芯片40之间也可以通过高速信号线连接。
在本申请实施例中,该第一电容C21和第二电容C22也可以均集成在驱动芯片50中,也即是,该信号源、第一电容C21和第二电容C22均集成在同一个芯片中。由此可以进一步提高该电光调制电路的集成度。
综上所述,本申请实施例提供了一种差分驱动的电光调制电路,该电光调制电路中的电光调制器包括第一容性阻抗硅光调制器、第一电阻和第二电阻,且该第一容性阻抗硅光调制器中,与信号源连接的第一电极通过该第一电阻与偏置电压源连接,与信号源连接的第二电极通过该第二电阻与参考电源连接。由于该第一电阻和第二电阻可以实现信号源与偏置电压源之间的隔离,因此本申请实施例提供的电光调制电路中无需再采用T型直流偏置器,从而有效缩减了电光调制电路的尺寸,提高了电光调制电路的集成度。
需要说明的是,由于本申请实施例提供的单端驱动以及差分驱动的电光调制电路中,偏置电压源可以直接与电光调制芯片连接,因此该偏置电压源的设置位置不再受到T型直流偏置器的设置位置的限定,该偏置电压源的设置位置较为灵活。例如,参考图9,驱动芯片20设置于电光调制芯片10的第一侧,而该偏置电压源30则设置于电光调制芯片10的第二侧,该第一侧和第二侧为电光调制芯片10的不同侧。由此可知,本申请实施例提供的电光调制电路中各元器件的布局灵活性较高,可以有效缩减电光调制电路的整体尺寸。
本申请实施例还对该电光调制电路中,信号源泄露的高频的电信号的功率进行了仿真。对单端驱动的电光调制电路进行仿真时,该电光调制电路所采用的电阻R11为1kΩ的电阻丝。对差分驱动的电光调制电路进行仿真时,该电光调制器40所采用的第一电阻R21和第二电阻R22均为1kΩ的电阻丝。仿真结果如图12所示,图12中横轴为信号源提供的高频的电信号的频率,单位为吉赫兹(GHz),纵轴为泄露的高频的电信号的功率,单位为分贝(dB)。对于单端驱动的电光调制电路,该泄露的电信号的功率是在偏置电压源30侧检测得到的。对于差分驱动的电光调制电路,该泄露的电信号的功率是在偏置电压源60侧或者参考电源端侧检测得到的。
如图12所示,随着信号源提供的高频的电信号的频率的变化,该信号源泄露的电信号的功率始终小于-46dB。由此可知,本申请实施例提供的方案,通过在电光调制器中增加电 阻,即可实现T型直流偏置器中低频分支的作用,即该电阻可以有效隔离信号源提供的高频的电信号,确保电光调制器的正常工作。
图13是本申请实施例提供的一种光通信设备的结构示意图,如图13所示,该光通信设备包括:电光调制电路001以及光源002。其中,电光调制电路001可以为如图7a至图11任一所示的电路。例如,图13所示设备中的电光调制电路001可以为上述实施例提供的单端驱动的电光调制电路。
如图13所示,电光调制电路001中的容性阻抗硅光调制器100还具有光波导104,该光源002与该光波导104连接,用于为该光波导104提供光载波,该电光调制电路001进而可以对该光载波进行电光调制。
可选地,参考上述实施例可知,该电光调制电路001中可以包括多个第一容性阻抗硅光调制器,或者可以包括一个或多个第二容性阻抗硅光调制器。对于该电光调制电路001中包括多个容性阻抗硅光调制器的场景,该光源002分别与每个容性阻抗硅光调制器的光波导004连接,并分别为每个容性阻抗硅光调制器提供光载波。
其中,光源002可以为每个容性阻抗硅光调制器提供多个不同波长的光载波,每个容性阻抗硅光调制器用于对其中一个波长的光载波进行调制,且各个容性阻抗硅光调制器所调制的光载波的波长不同。
综上所述,本申请实施例提供了一种光通信设备,该光通信设备中的电光调制电路的尺寸较小,集成度较高,从而有效提高了该光通信设备的集成度。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种电光调制器,其特征在于,所述电光调制器包括第一容性阻抗硅光调制器和电阻,其中:
    所述第一容性阻抗硅光调制器具有第一电极和第二电极;
    所述第一电极用于连接信号源,以及用于通过所述电阻连接偏置电压源;
    所述第二电极用于连接参考电源端。
  2. 根据权利要求1所述的电光调制器,其特征在于,所述电光调制器还包括第二容性阻抗硅光调制器;
    所述第二容性阻抗硅光调制器的第一电极也用于通过所述电阻连接所述偏置电压源。
  3. 根据权利要求1或2所述的电光调制器,其特征在于,所述电光调制器中的容性阻抗硅光调制器为微环调制器。
  4. 一种电光调制器,其特征在于,所述电光调制器包括第一容性阻抗硅光调制器、第一电阻和第二电阻,其中:
    所述第一容性阻抗硅光调制器具有第一电极和第二电极,所述第一电极和所述第二电极均用于连接信号源;
    所述第一电极还用于通过所述第一电阻连接偏置电压源;
    所述第二电极还用于通过所述第二电阻连接参考电源端。
  5. 根据权利要求4所述的电光调制器,其特征在于,所述电光调制器还包括第二容性阻抗硅光调制器;
    所述第二容性阻抗硅光调制器的第一电极也用于通过所述第一电阻连接所述偏置电压源;
    所述第二容性阻抗硅光调制器的第二电极也用于通过所述第二电阻连接所述参考电源端。
  6. 根据权利要求4或5所述的电光调制器,其特征在于,所述电光调制器中的容性阻抗硅光调制器为微环调制器。
  7. 一种电光调制电路,其特征在于,所述电路包括:信号源,偏置电压源,电容,以及如权利要求1至3任一所述的电光调制器;
    所述电容串联在所述信号源和所述第一电极之间;
    所述偏置电压源通过所述电阻与所述第一电极连接。
  8. 根据权利要求7所述的电路,其特征在于,所述信号源为驱动芯片,所述电光调制器为电光调制芯片;
    所述驱动芯片与所述电光调制芯片通过打线方式、倒装芯片方式或芯片堆叠方式连接。
  9. 根据权利要求7所述的电路,其特征在于,所述信号源和所述电容集成在驱动芯片中。
  10. 一种电光调制电路,其特征在于,所述电路包括:信号源,偏置电压源,第一电容,第二电容,以及如权利要求4至6任一所述的电光调制器;
    所述第一电容串联在所述信号源和所述第一电极之间;
    所述第二电容串联在所述信号源和所述第二电极之间;
    所述偏置电压源通过所述第一电阻与所述第一电极连接。
  11. 根据权利要求10所述的电路,其特征在于,所述信号源为驱动芯片,所述电光调制器为电光调制芯片;
    所述驱动芯片与所述电光调制芯片通过打线方式、倒装芯片方式或芯片堆叠方式连接。
  12. 根据权利要求10所述的电路,其特征在于,所述信号源、所述第一电容和所述第二电容集成在驱动芯片中。
  13. 一种光通信设备,其特征在于,所述设备包括:光源,以及如权利要求7至12任一所述的电光调制电路,所述电光调制电路中的容性阻抗硅光调制器还具有光波导;
    所述光源与所述光波导连接,用于为所述光波导提供光载波,所述电光调制电路用于对所述光载波进行电光调制。
PCT/CN2021/090321 2020-05-07 2021-04-27 电光调制器、电光调制电路以及光通信设备 WO2021223633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010377368.5A CN113625476B (zh) 2020-05-07 2020-05-07 电光调制器、电光调制电路以及光通信设备
CN202010377368.5 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021223633A1 true WO2021223633A1 (zh) 2021-11-11

Family

ID=78376838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090321 WO2021223633A1 (zh) 2020-05-07 2021-04-27 电光调制器、电光调制电路以及光通信设备

Country Status (2)

Country Link
CN (1) CN113625476B (zh)
WO (1) WO2021223633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109741A1 (zh) * 2022-11-24 2024-05-30 华为技术有限公司 射频传输电路和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741762B2 (en) * 2001-12-05 2004-05-25 Pacific Wave Industries, Inc. Back biased electro-optical modulator
CN101281301A (zh) * 2008-05-22 2008-10-08 上海交通大学 基于双面金属反射型偏振无关晶体电光调制器
CN201289553Y (zh) * 2008-09-24 2009-08-12 广州南沙慧视通讯科技有限公司 一种新型电光调制器
CN104297947A (zh) * 2013-07-18 2015-01-21 富士通株式会社 光调制设备、光发射器及用于光调制器的控制方法
CN109154728A (zh) * 2016-06-03 2019-01-04 三菱电机株式会社 光调制器
US20200073197A1 (en) * 2018-08-31 2020-03-05 Sifotonics Technologies Co., Ltd. Monolithic Electro-Optical Modulator Having RCBC Electrode Structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812142B2 (ja) * 2014-03-28 2015-11-11 住友大阪セメント株式会社 光導波路素子モジュール
CN107238951B (zh) * 2017-07-05 2023-10-27 浙江大学 低偏压大带宽电光调制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741762B2 (en) * 2001-12-05 2004-05-25 Pacific Wave Industries, Inc. Back biased electro-optical modulator
CN101281301A (zh) * 2008-05-22 2008-10-08 上海交通大学 基于双面金属反射型偏振无关晶体电光调制器
CN201289553Y (zh) * 2008-09-24 2009-08-12 广州南沙慧视通讯科技有限公司 一种新型电光调制器
CN104297947A (zh) * 2013-07-18 2015-01-21 富士通株式会社 光调制设备、光发射器及用于光调制器的控制方法
CN109154728A (zh) * 2016-06-03 2019-01-04 三菱电机株式会社 光调制器
US20200073197A1 (en) * 2018-08-31 2020-03-05 Sifotonics Technologies Co., Ltd. Monolithic Electro-Optical Modulator Having RCBC Electrode Structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109741A1 (zh) * 2022-11-24 2024-05-30 华为技术有限公司 射频传输电路和电子设备

Also Published As

Publication number Publication date
CN113625476B (zh) 2024-06-18
CN113625476A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
EP3079007B1 (en) Mach-zehnder modulator arrangement and method for operating a mach-zehnder modulator arrangement
US10534239B2 (en) Optical modulator
Cignoli et al. 22.9 A 1310nm 3D-integrated silicon photonics Mach-Zehnder-based transmitter with 275mW multistage CMOS driver achieving 6dB extinction ratio at 25Gb/s
US7099596B2 (en) Optical transmitter
US6590691B1 (en) Hybridly integrated optical modulation devices
CN111326599B (zh) 一种硅基光电集成芯片装置及带有该硅基光电集成芯片装置的发射系统
WO2022029855A1 (ja) 半導体iq変調器
CA3159066A1 (en) Optical module
WO2021223633A1 (zh) 电光调制器、电光调制电路以及光通信设备
Rosenberg et al. Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver
CN111342903A (zh) 异质集成cwdm4光发射芯片
US10684497B2 (en) Electro-optic modulator
WO2023160482A1 (zh) 一种马赫曾德调制器、电光调制方法和光发射装置
Moralis-Pegios et al. A 160 Gb/s (4× 40) WDM O-band Tx subassembly using a 4-ch array of Silicon Rings co-packaged with a SiGe BiCMOS IC driver
CN104518833B (zh) 光调制器和光调制方法
US20190187495A1 (en) Optical modulator and a driving circuit therefor
JP7388021B2 (ja) 光デバイス
Liu et al. A 100 Gb/s DC-coupled optical modulator driver for 3D photonic electronic wafer-scale packaging
US20230358955A1 (en) Silicon photonics-based optical modulation device with two metal layers
CN118112827A (zh) 调制器、光模块、光通信设备及系统
JP6639375B2 (ja) 光変調器
JP3560470B2 (ja) 光スイッチング素子及び光スイッチング素子集積回路
CN114063321A (zh) 一种双差分电极的硅光子推挽麦克詹达调制器
JP2004325495A (ja) 光半導体装置、これを備える光通信用ボード及び光通信用モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800896

Country of ref document: EP

Kind code of ref document: A1