WO2021223439A1 - 一种光放大器 - Google Patents
一种光放大器 Download PDFInfo
- Publication number
- WO2021223439A1 WO2021223439A1 PCT/CN2020/135447 CN2020135447W WO2021223439A1 WO 2021223439 A1 WO2021223439 A1 WO 2021223439A1 CN 2020135447 W CN2020135447 W CN 2020135447W WO 2021223439 A1 WO2021223439 A1 WO 2021223439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass body
- cylindrical glass
- optical
- optical amplifier
- gain
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
- H01S3/10023—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
Definitions
- the present invention relates to the field of optical communication technology, in particular to an optical amplifier.
- the traditional single-stage rare-earth-doped fiber optical amplifier is composed of optical splitter 1_1, photodetector 1_2, isolator 1_3, wavelength division multiplexer 1_5, pump light source assembly 61_4 and rare earth-doped fiber 1_6.
- the rare earth-doped fiber 1_6 is respectively provided with a light splitting coupler 1_1, a photodetector 1_2, an isolator 1_3, and a wavelength division multiplexer 1_5 along the upstream and downstream of the optical path.
- Each device is packaged independently, and then connected to each other by means of fiber fusion splicing to form a fiber optical amplifier.
- the traditional dual-stage rare earth-doped fiber amplifier uses two single-stage fiber amplifiers connected in series, and a gain flattening filter isolation component 1_7 is added between the two stages.
- the bending radius of rare-earth-doped fibers and pigtails are on the order of centimeters or more, which limits the minimum volume of fiber amplifiers that need to bend the coiled fiber, and prevents the use of fiber amplifiers in compact modules or products with dense components such as coherent modules. application.
- the fibers and devices used as gain media in traditional fiber amplifiers are generally connected to ordinary fibers.
- the fiber length of the entire device is on the order of several meters to hundreds of meters.
- the optical signal will have a large time delay when passing through the fiber. Applications in scenarios requiring low latency are restricted.
- the embodiments of the present application expect to provide an optical amplifier with a compact structure and low time delay.
- an embodiment of the present application provides an optical amplifier, which includes a pump light source assembly, an input fiber collimator arranged in sequence along the propagation direction of signal light, an input optical isolator core, and an optical signal amplifier.
- the pump light of the rare earth ions in the core region and the signal light enter the gain core region from the axial direction of the cylindrical glass body, and the diameter of the gain core region is greater than or equal to 30 ⁇ m.
- the optical amplifier in the embodiment of the present application since the diameter of the gain core region in the cylindrical glass body is larger than the diameter of the core region of the rare-earth fiber with the same concentration, the total amount of doped rare-earth ions in the gain core region is the same as that in the prior art.
- the length of the cylindrical glass body in the axial direction can be greatly shortened without sacrificing the gain of the cylindrical glass body.
- the optical amplifier of the embodiment of the present application can greatly shorten the length of the gain medium without sacrificing gain, reduce the time delay of the optical signal, greatly reduce the overall size of the optical amplifier, and realize the ultra-small size of the optical amplifier. ,
- the ultra-low delay effect provides convenience for the manufacture of high-speed optical communication systems and the miniaturization of optical communication systems.
- Figure 1 is a simplified schematic diagram of a single-stage erbium-doped fiber amplifier in the prior art
- Figure 2 is a simplified schematic diagram of a two-stage erbium-doped fiber amplifier in the prior art
- FIG. 3 is a simplified schematic diagram of the optical amplifier according to the first embodiment of the application.
- FIG. 4 is a schematic diagram of the structure of the input fiber collimator shown in FIG. 3;
- FIG. 5 is a schematic structural diagram of the input optical isolator chip assembly shown in FIG. 3;
- Fig. 6 is a schematic diagram of the cylindrical glass body along the axis of different embodiments of the application.
- Fig. 7 is a schematic structural diagram of a pump light source assembly according to an embodiment of the application.
- FIG. 8 is a schematic structural diagram of a pump light source assembly according to another embodiment of the application.
- FIG. 9 is a simplified schematic diagram of the optical amplifier according to the second embodiment of the application.
- FIG. 10 is a simplified schematic diagram of the optical amplifier according to the third embodiment of the application.
- FIG. 11 is a simplified schematic diagram of an optical amplifier according to a fourth embodiment of the application.
- FIG. 12 is a simplified schematic diagram of an optical amplifier according to a fifth embodiment of the application.
- FIG. 13 is a simplified schematic diagram of an optical amplifier according to a sixth embodiment of this application.
- 15 is a simplified schematic diagram of an optical amplifier according to an eighth embodiment of this application.
- 16 is a schematic diagram of the package of the cylindrical glass body according to an embodiment of the application.
- Fig. 17 is an exploded schematic diagram of the outer sealing tube and the shaft sealing cap shown in Fig. 16.
- the optical amplifier includes a pump light source assembly 6, an input fiber collimator 21', an input optical isolator core 22', and a cylindrical glass body for realizing optical signal amplification sequentially arranged along the propagation direction of the signal light. 3.
- the pump light of the rare earth ions in the glass body 3, the signal light inputted into the optical isolator core 22' enters the gain core region 31 of the glass body 3 doped with rare earth ions from the axial direction of the cylindrical glass body 3, and the gain core
- the rare earth ions in the region 31 produce a population turnover under the action of the pump light, and form stimulated radiation induced by the signal light, so as to realize the optical amplification of the signal light.
- the diameter of the gain core region 31 doped with rare earth ions in the cylindrical glass body 3 is greater than or equal to 30 ⁇ m (micrometer).
- the core diameter of the ordinary optical fiber in the prior art is about 9-10 micrometers, and the core diameter of the rare-earth-doped fiber is about 5-6 micrometers.
- the diameter of the gain core region 31 in the embodiment of the present application is much larger than the core region diameter of the optical fiber in the prior art.
- the factors that affect the gain of the rare-earth-doped fiber amplifier in the prior art include the power of the pump light, the length of the rare-earth-doped fiber, and the doping concentration of rare-earth ions.
- the pump power is constant, the rare-earth-doped fiber can obtain the maximum gain at a certain optimal length. If the length exceeds this value, the rare-earth-doped fiber after the optimal length point cannot be sufficiently pumped due to the consumption of pump light. , And absorb the signal energy that has been amplified, which will cause the gain to drop quickly. Therefore, the length of the optical fiber doped with rare earth ions needs to have an appropriate length.
- the concentration of doped rare-earth ions in the gain medium should also be kept within a proper range. If the concentration is too small, the pump light cannot be absorbed fully; After the photons do not radiate the same amount of photons, the concentration is quenched, which causes the waste of pump light. The higher the concentration, the more obvious the cluster effect.
- the optical amplifier in the embodiment of the present application since the diameter of the gain core region 31 in the cylindrical glass body 3 is larger than the core region diameter of the rare earth fiber with the same concentration, the total amount of doped rare earth ions in the gain core region 31 is maintained compared with the existing one.
- the length of the cylindrical glass body 3 in the axial direction can be greatly shortened without sacrificing the gain of the cylindrical glass body 3.
- the optical amplifier of the embodiment of the present application can greatly shorten the length of the gain medium without sacrificing gain, reduce the time delay of the optical signal, greatly reduce the overall size of the optical amplifier, and realize the ultra-small size of the optical amplifier. ,
- the ultra-low delay effect provides convenience for the manufacture of high-speed optical communication systems and the miniaturization of optical communication systems.
- the doping concentration of the erbium-doped cylindrical glass body, the background loss, the spot size of the signal light in the erbium-doped glass, and the signal light in the erbium-doped glass can be passed
- the optical path length, the intensity of the incident signal light, the wavelength and spectrum of the pump light, the intensity of the pump light and the efficiency of the signal light spot injected into the erbium-doped cylindrical glass body determine the gain of the signal light and the main part of the noise .
- the optical path length of the signal light in the erbium-doped glass can be changed by changing the length of the erbium-doped cylindrical glass body in the axial direction. That is, by cutting the erbium-doped cylindrical glass body to a suitable thickness to achieve the signal amplification of the set saturation gain, in actual production, the size of the gain can be fine-tuned by changing the spot size of the signal light in the erbium-doped glass.
- the diameter of the gain core region 31 is greater than or equal to 100 ⁇ m.
- the diameter of the light spot of the signal light entering the cylindrical glass body 3 is d1
- the diameter of the gain core region 31 is d2
- the diameter d1 is within the range of plus or minus 5%.
- the diameter d2 of the gain core region 31 is the same as the spot diameter d1, so that all the signal light can enter the gain core region 31 for optical signal amplification without wasting pump light.
- the input fiber collimator 21' is used to transform the signal light into collimated light.
- the output fiber collimator 21" is used to couple the collimated light emitted from the cylindrical glass body 3 doped with rare earth ions into the pigtail, so that the optical signal continues to be transmitted.
- the signal light entering the gain core region 31 is collimated light.
- the signal light transmitted between the input fiber collimator 21' and the output fiber collimator 21" is collimated light.
- the input fiber collimator 21' includes a pigtail 212, a glass pin 213, and a collimating lens 214, and is packaged with a tube body 211 on the outside.
- the tube body 211 may be a glass tube or a metal tube.
- the collimating lens 214 may be G-lens or C-lens.
- the input fiber collimator 21' can also be composed of a pigtail, a fiber-type self-focusing lens, and a protective tube, wherein the pigtail and the fiber-type self-focusing lens are connected by fiber fusion or adhesive bonding.
- the input fiber collimator 21' can also be designed in an array. One way is to use a microlens array, a matching fiber array, and a cylindrical glass body 3 with a multi-gain core, which can further greatly improve The compactness of the device.
- the structure of the input fiber collimator 21' and the output fiber collimator 21" are the same or similar. Similarly, the output fiber collimator 21" can also adopt the structure of the input light collimator described above.
- the function of the first optical isolator core piece 22' and the second optical isolator core piece 22" is to limit the direction of light, so that the optical signal can only be transmitted in one direction, and to avoid the loss of gain in the optical amplifier due to reflections and other reasons. Stabilization or lasing, etc..
- the first optical isolator core member 22' as an example, please refer to FIG. 5.
- the first optical isolator core member 22' includes a crystal wedge 222 and a magnetic ring 221 And a Faraday rotator 223. It should be noted that if a Faraday rotator 223 with a built-in magnetic field is used, the magnetic ring 221 can be eliminated.
- the second optical isolator core member 22" may adopt the structure of the first optical isolator core member 22' described above, which will not be repeated here.
- the type of rare earth ion doped can be erbium, ytterbium, neodymium, thulium, praseodymium, holmium or one or more of other suitable energy level structures. A combination of various elements.
- non-rare earth elements such as aluminum, vanadium, phosphorus and other elements will be doped to improve the gain characteristics in the production of the rare earth ion-doped cylindrical glass body.
- the description is made by taking the doped erbium ion as an example.
- the pump light source assembly 6 can choose the wavelength and can choose the semiconductor laser near the 980nm absorption peak of erbium or the 1480nm absorption peak.
- Semiconductor lasers, semiconductor lasers can work in single-mode or multi-mode, and can be stabilized by means of external frequency stabilization or DFB (Distributed Feedback Laser) and DBR (distributed Bragg reflector) Or directly work in an unstable frequency mode.
- DFB Distributed Feedback Laser
- DBR distributed Bragg reflector
- the above-mentioned cylindrical glass body 3 may be a uniformly doped cylindrical glass body, or a preform with a rare-earth ion-doped gain core in the center produced by the optical fiber production process method.
- OVD Outside Vapour Deposition
- MCVD Modified Chemical Vapor Deposition
- PCVD Phase Change Deposition
- other methods such as single-core or multi-core preforms, in which the preform is doped
- the diameter of the rare earth ion gain core region should match the spot size of the collimator in the designed optical amplifier.
- the cylindrical glass body 3 includes a cladding layer 32 wrapped in the circumferential direction of the gain core region 31, and the refractive index of the gain core region 31 is higher than the refractive index of the cladding layer 32 by more than 0.1%.
- a reflective film for reflecting pump light is provided on the circumferential surface of the cylindrical glass body 3.
- the production process and specific material of the reflective layer are not limited.
- metal can be plated on the circumferential surface of the cylindrical glass body 3 to form a reflective film; in another embodiment, a dielectric reflective film can be plated on the circumferential surface of the cylindrical glass body 3 as the above-mentioned reflective film.
- a dielectric antireflection film or a selective WDM film (Wavelength Division Multiplexing) is coated on the axial end surface of the cylindrical glass body 3 to reduce the signal light. Loss at the end of the cylindrical glass body.
- the cross-sectional shape of the cylindrical glass body 3 is not limited, please refer to FIG.
- the pump light source assembly 6 may use a semiconductor laser or a semiconductor laser chip array.
- the pump light source assembly 6 includes a substrate 61 and a semiconductor laser chip array.
- the semiconductor laser array 62 may be a discrete semiconductor laser chip 62 fixed on the substrate 61 by bonding.
- the wavelengths of different discrete semiconductor laser chips 62 may be the same or different.
- the pump light source assembly 6 includes a substrate 61 and at least one semiconductor laser chip Bar, that is, in some cases, a semiconductor laser chip Bar may be used, and in other cases, a semiconductor laser chip Bar may be used Article group.
- the semiconductor laser chip bar or bar group is fixed on the substrate 61 by bonding, and the laser wavelength of the bar group may be the same or different.
- the above-mentioned substrate 61 may be made of materials with good thermal conductivity such as tungsten copper alloy or aluminum nitride.
- functional elements and circuits such as a thermistor and thermistor used for monitoring temperature are fabricated on the substrate 61 for driving electrodes shared by the semiconductor laser chip 62.
- the manner in which the pump light enters the gain core region 31 is not limited.
- the pump light enters the gain core region 31 from the axial direction of the gain core region 31, that is, the pump light and the signal light are both from The axial direction of the gain core region 31 is incident into the gain core region 31.
- the circumferential surface of the cylindrical glass body 3 has a pump light incident area
- the reflective film is arranged on the axis of the cylindrical glass body 3.
- the pump light of the pump light source assembly 6 is incident into the cylindrical glass body 3 through the pump light incident area. That is to say, no reflective film can be provided in the pump light incident area.
- an anti-reflection film for the pump light should be provided in the pump light incident area so that the pump light can enter the cylindrical glass body 3 with lower loss. .
- the optical amplifier includes a lens unit 65 disposed between the light exit surface of the pump light source assembly and the pump light incident area of the cylindrical glass body 3 to The optical coupling effect between the pump light source assembly and the cylindrical glass body 3 is optimized.
- the lens unit 65 may be one lens or a lens group composed of a plurality of lenses.
- the lens unit may be a cylindrical lens, a spherical lens array, or an aspheric lens array.
- the pump light source assembly 6 includes the above-mentioned substrate 61 and a semiconductor laser chip array.
- the junction area of the semiconductor laser chip array is parallel or perpendicular to the axial direction of the cylindrical glass body 3. According to the far-field radiation characteristics of the laser light emitted by the semiconductor laser or semiconductor laser chip, the cross-section of the entire beam is elliptical.
- the long axis direction of the emitted light spot of each semiconductor laser chip 62 is along the axial direction of the cylindrical glass body 3, and the short axis direction is perpendicular to the axis of the cylindrical glass body 3.
- the order of magnitude of the semiconductor laser chip 62 can be reduced, and the power of a single semiconductor laser chip 62 can be reduced.
- the side of the substrate 61 facing the cylindrical glass body 3 is provided with a plurality of grooves 61 a arranged in the axial direction of the cylindrical glass body 3, and each semiconductor laser chip 62 is arranged in a corresponding groove 61 a.
- Each groove 61a has a mounting surface 61b perpendicular to the axial direction of the cylindrical glass body 3, and one side of the semiconductor laser chip 62 is mounted on the mounting surface 61b, so that the light emitting direction of the semiconductor laser chip 62 can be directed toward the cylindrical glass body 3.
- the specific shape of the groove 61a is not limited.
- the groove 61a is square; please refer to FIG. 8, in another embodiment, the groove 61a is zigzag-shaped.
- the shapes between the plurality of grooves 61a may be the same or different. There is no restriction here.
- the pump light source assembly 6 includes a semiconductor laser bar, and the junction area of the semiconductor laser bar is parallel to the axial direction of the cylindrical glass body 3 to reduce the design of the lens unit between the semiconductor laser chip and the cylindrical glass body 3 Difficulty.
- At least one side of the cylindrical glass body 3 along the axial direction is provided with a pump light source assembly 6, that is, the pump light enters the gain core region 31 along the axial direction of the cylindrical glass body 3.
- the pump light source assembly 6 can be provided at the end of the cylindrical glass body 3 where the signal light is incident, or the pump light source assembly 6 can be provided at the end of the cylindrical glass body 3 where the signal light exits.
- the axially opposite ends of the cylindrical glass body 3 are provided with pump light components.
- the optical amplifier includes a dielectric film filter 43 arranged on the signal light path, and the dielectric film filter 43 pumps the corresponding Light is coupled into the gain core region 31 from the axial direction of the cylindrical glass body 3.
- the specific path of the optical path of the signal light in the optical amplifier is not limited, it can be a straight line, and the signal light will not be deflected during transmission between the input fiber collimator 21' and the output fiber collimator 21"
- the optical path of the signal light in the optical amplifier can also be a bent line, and the signal light will be deflected during transmission between the input fiber collimator 21' and the output fiber collimator 21".
- the input fiber collimator 21' and the output fiber collimator 21" are located on opposite sides of the cylindrical glass body 3 axially, and the input fiber collimator 21' , The output fiber collimator 21" and the optical path in the cylindrical glass body 3 are arranged along a straight line. In this embodiment, the optical path of the signal light in the optical amplifier is straight.
- the number of gain core regions 31 may be one or more.
- the multiple gain core regions 31 are arranged in parallel, and the signal light passes through each gain core region 31 in turn, that is, the multiple gain core regions 31 are sequentially arranged on the optical path.
- the optical amplifier includes a first optical element 41 disposed on the axial side of the cylindrical glass body 3, along the signal light propagation direction. , The light between two adjacent gain core regions 31 is folded back by 180° through the first optical element 41.
- the number of gain core regions 31 is N
- the number of first optical elements is N-1, where N is a positive integer greater than or equal to 2.
- the specific structure type of the first optical element 41 is not limited, for example, it may be a corner mirror prism.
- the input fiber collimator 21' and the output fiber collimator 21" are located on the same side of the cylindrical glass body 3 along the axial direction; the input fiber collimator 21', the input optical isolator core The optical path in the first gain core region 31 along the signal light path is straight line 22' and the optical path; the output fiber collimator 21", the output optical isolator core member 22" and the last gain core along the signal light path The light path in area 31 is straight.
- the input fiber collimator 21' and the output fiber collimator 21" are located on the same side of the cylindrical glass body 3 along the axial direction; the optical amplifier includes a second optical
- the second optical element 42 is arranged on the side of the cylindrical glass body 3 close to the input fiber collimator 21'.
- the second optical element 42 deflects the light emitted from the input optical isolator core 22' to the cylindrical glass body 3 In the gain core region 31, and deflect the light emitted from the last gain core region 31 along the signal light optical path to the output optical isolator core 22".
- the angle at which the second optical element 42 deflects the light path is not limited, and may be 45°, 60°, 90°, and so on.
- the above-mentioned second optical element 42 and the dielectric thin film filter 43 may be the same optical element.
- the above-mentioned multiple gain core regions 31 may be distributed in the same cylindrical glass body 3, that is, the number of the cylindrical glass body 3 is one, and all the gain core regions The regions 31 are all arranged in the cylindrical glass body 3.
- the above-mentioned multiple gain core regions 31 may also be distributed in different cylindrical glass bodies 3. Among them, there may be one gain core region 31 in the cylindrical glass body 3, or there may be multiple gain core regions 31.
- the optical amplifier of the embodiment of the present application may only have one stage of amplification, or a plurality of gain core regions 31 may be connected in series in the direction of the optical path to form a cascaded amplification.
- the optical amplifier includes an intermediate optical isolator core 22'".
- an intermediate optical isolator core piece 22' makes the optical amplifier a cascaded optical amplifier. It should be noted that the above-mentioned intermediate optical isolator core 22'" needs to be provided between two adjacent gain core regions 31 constituting the cascade amplification.
- the optical amplifier includes a cylindrical glass body 3 that propagates along the signal light.
- the gain flatness filter 5 in the downstream direction controls the gain flatness in an appropriate range.
- the optical amplifier is a single-stage optical amplifier.
- the optical amplifier includes a pump light source assembly 6, an input optical fiber collimator 21', an input optical isolator core 22', a cylindrical glass body 3, and an output optical isolator core 22 sequentially arranged on the optical path along the transmission direction of the signal light. "And the output fiber collimator 21".
- the cylindrical glass body 3 has a gain core region 31, an input optical fiber collimator 21', an input optical isolator core 22', a cylindrical glass body 3, an output optical isolator core 22", and an output optical fiber collimator 21" Arrange along a straight line, that is, in this embodiment, the optical path of the signal light is a straight line.
- the pump light source assembly 6 is arranged on one side of the cylindrical glass body 3 in the circumferential direction.
- the pump light source assembly 6 includes a semiconductor laser chip array and a substrate 61.
- the substrate 61 is provided with grooves 61a, and each groove 61a is provided with a semiconductor laser chip 62.
- a cylindrical prism is arranged between the light exit surface of the semiconductor laser chip array and the incident area of the cylindrical glass body 3 to optimize the optical coupling between the laser chip 62 and the cylindrical glass body 3.
- the cross-section of the cylindrical glass body 3 is formed into a trimmed ellipse, wherein the gain core region 31 is located at one focal point of the ellipse, and the semiconductor laser chip array is located at the other focal point of the ellipse.
- the light emitted from the semiconductor laser chip array can be better collected to the gain core region 31 after being reflected by the reflective layer of the cylindrical glass body 3.
- Said semiconductor laser chip array at the other focus of the ellipse refers to virtualizing the ellipse corresponding to the cylindrical glass body 3 into a complete ellipse, and placing the semiconductor laser chip array at the focus of the virtual ellipse.
- the optical amplifier is a two-stage optical amplifier.
- an input fiber collimator 21', an input optical isolator core 22', a first cylindrical glass body 3, a first intermediate optical isolator core 22'", and a second optical fiber collimator are arranged in sequence.
- the corner mirror prism is the specific structure of the above-mentioned first optical element.
- the number of cylindrical glass bodies 3 is two, each of the two cylindrical glass bodies 3 has a gain core region 31, and the gain core regions 31 in the two cylindrical glass bodies 3 are arranged in parallel.
- the number of the pump light source assembly 6 is two, and each cylindrical glass body 3 is correspondingly provided with a pump light source assembly 6.
- the specific structure and location of the pump light source assembly 6 refer to the above-mentioned first embodiment, and will not be repeated here.
- the optical path between the input fiber collimator 21', the input optical isolator core 22' and the first cylindrical glass body 3 is arranged along a straight line.
- the optical path between the second cylindrical glass body 3, the output optical isolator core 22" and the output fiber collimator 21" is arranged along a straight line.
- the signal light is folded back 180° at the corner mirror.
- only one gain flattening filter 5 may be provided. It is also possible to provide only one intermediate optical isolator core piece 22'".
- FIG. 10 the general structure of this embodiment is the same as that of the first embodiment. The difference lies in the structure and installation position of the pump light source assembly 6.
- the pump light source assembly 6 is arranged on one side of the cylindrical glass body 3 in the axial direction, specifically, is arranged between the input optical isolator core 22' and the cylindrical glass body 3, that is, this implementation
- the pumping method is forward pumping.
- the pump light source assembly 6 can also be arranged between the cylindrical glass body 3 and the output optical isolator core 22". In this form, the pumping method is reverse pumping.
- a dielectric thin film filter 43 on the signal light path is also arranged.
- the pump light source assembly 6 includes a laser 63 and a shaping collimating lens assembly 64.
- the laser light emitted by the laser 63 is collimated by the shaping collimating lens assembly 64 and then transmitted to the dielectric thin film filter 43.
- the dielectric thin film filter 43 couples the signal light and pump light together from the axial direction of the cylindrical glass body 3 into the gain core 31 middle.
- the general structure of this embodiment is the same as that of the third embodiment.
- the number of pump light source assemblies 6 and the number of dielectric thin film filters 43 are both two.
- a pump light source assembly 6 and a dielectric thin film filter 43 are provided between the input optical isolator core 22' and the cylindrical glass body 3; there is also a pump light source assembly 6 and a dielectric film filter 43 between the cylindrical glass body 3 and the output optical isolator core 22".
- Pump light source assembly 6 and a dielectric thin film filter 43 is bidirectional pumping.
- the optical amplifier includes an input fiber collimator 21', an input optical isolator core 22', a dielectric thin film filter 43, a cylindrical glass body 3, two gain flattening filters 5, and two pumps
- the corner mirror prism is the specific structure of the first optical element 41 described above.
- the cylindrical glass body 3 has two parallel gain core regions 31, two pump light source components 6 are arranged on the axial side of the cylindrical glass body 3, and one of the pump light source components 6 provides pumping for one gain core region 31 Light, another pump light source assembly 6 provides pump light for another gain core region.
- the dielectric thin film filter 43 couples the signal light and the pump light of the two pump light source assemblies 6 into the corresponding gain core region 31 of the cylindrical glass body 3 together.
- the dielectric film filter 43 has the function of the second optical element 42 to deflect the optical path of the signal light. It should be noted that if the pump light source assembly in this embodiment is arranged in the circumferential direction of the glass body 3, only the deflection function of the second optical element 42 is required, and the dielectric thin film filter 43 may be partially used.
- the signal light is transmitted from the input fiber collimator 21' to the input optical isolator core 22', and then deflected by 90° by the dielectric thin film filter 43 to the first gain core 31, and then transmits along the straight line through the intermediate optical isolator.
- the corner retro prism is folded back 180° into the second gain core 31, and then deflected 90° by the dielectric thin film filter 43 to the output optical isolator core Piece 22".
- only one gain flattening filter 5 may be provided, or multiple ones may be provided.
- the optical amplifier includes an input optical fiber collimator 21', an input optical isolator core 22', a cylindrical glass body 3, two gain flattening filters 5, a corner mirror, and an output optical isolator core 22 "And the output fiber collimator 21".
- the specific structure and installation position of the pump light source assembly 6 can refer to the first embodiment, which will not be repeated here.
- the same pump light source assembly 6 provides pump light for the two gain core regions 31 at the same time.
- optical paths in the input fiber collimator 21', the input optical isolator core 22', the first gain core region 31, and the first gain flattening filter 5 are straight lines.
- optical paths in the second gain flattening filter 5, the second gain core region 31, the output optical isolator core 22", and the output fiber collimator 21" are straight lines.
- the signal light passes through the input fiber collimator 21', the input optical isolator core 22', the first gain core region 31, and the first gain flat filter 5 in turn along the straight line, after passing through the corner mirror prism.
- the prism is folded back 180° to the second gain flattening filter 5, and passes through the second gain core 31, the output optical isolator core 22", and the output fiber collimator 21" in sequence along a straight line.
- the number of gain flattening filters 5 may be only one or multiple.
- the optical amplifier includes an input fiber collimator 21', an input optical isolator core 22', three dielectric film filters 43, a cylindrical glass body 3, two gain flattening filters 5, and output optical isolation Device core 22" and output fiber collimator 21", four pump light source components 6
- the arrangement of the input fiber collimator 21', the input optical isolator core 22', the output optical isolator core 22", the output fiber collimator 21" and one of the dielectric thin film filters 43 please refer to the sixth embodiment. I won't repeat them here. In this embodiment, the arrangement of two pump light source assemblies 6 is the same as that of the sixth embodiment.
- each dielectric thin film filter 43 corresponds to a gain core region 31, and the light of the upstream gain core region 31 After incident on the corresponding one of the dielectric film filters 43, it is deflected by 90° to the other dielectric film filter 43, and then continues to be deflected by 90° before entering the downstream gain core 31.
- the two dielectric film filters 43 are combined It is equivalent to the above-mentioned first optical element. That is, in this embodiment, the specific structure of the first optical element includes two matched dielectric thin film filters 43.
- a pump light source assembly is respectively provided on the side of the two dielectric film filters 43 facing away from the glass body 3.
- the two pump light source assemblies 6 each provide pump light for a gain core region 31.
- the optical amplifier in this embodiment is a two-stage cascaded optical amplifier.
- the structure of this embodiment is substantially the same as that of the fifth embodiment, except that: this embodiment adds an intermediate optical isolator core 22 between the gain flattening filter 5 and the cylindrical glass body 3 of the fifth embodiment. '".
- the optical amplifier includes an outer sealing tube 71 and a shaft sealing cap 72.
- the outer sealing tube 71 includes an insertion portion 72 and an opening
- the surrounding portion 71 is sleeved in the circumferential direction of the cylindrical glass body 3, the plug-in portion 72 extends from opposite sides of the opening toward the shaft sealing cap 72, the plug-in portion 72 forms an open accommodating space 72a, and the pump light source
- the assembly 6 is arranged in the accommodating space 72a, and the shaft sealing cap 72 is arranged on the outer periphery of the plug-in portion 72 and closes the accommodating space 72a.
- the cross-sectional shape of the shaft sealing cap 72 is U-shaped, and the shaft sealing cap 72 has a mounting groove 72 a therein.
- a stepped surface 71b is formed at the junction of the plug-in portion 712 and the surrounding portion 711. The plug-in portion 712 extends into the installation groove 72a. position.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
一种光放大器,包括泵浦光源组件(6)、输入光纤准直器(21')、输入光隔离器芯件(22')、用于实现光信号放大的柱形玻璃体(3)、输出光隔离器芯件(22'')以及输出光纤准直器(21''');柱形玻璃体(3)包括掺有稀土离子的增益芯区(31),泵浦光源组件(6)向柱形玻璃体(3)输出能够激发增益芯区(31)内的稀土离子的泵浦光,信号光从柱形玻璃体(3)的轴向进入增益芯区(31),增益芯区(31)直径大于或等于30μm。由于柱形玻璃体(3)内的增益芯区(31)直径比同浓度稀土光纤的芯区直径大,在保持增益芯区(31)中掺杂稀土离子的总量与现有技术中掺稀土光纤中掺杂稀土离子的总量的数量大致相当的情况下,可以极大地减小光放大器的整体尺寸,能够实现光放大器的超小尺寸、超低时延效果。
Description
相关申请的交叉引用
本申请基于申请号为202010381084.3、申请日为2020年05月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及光通信技术领域,尤其涉及一种光放大器。
请参阅图1,传统的单级掺稀土光纤光放大器是由分光耦合器1_1、光探测器1_2、隔离器1_3、波分复用器1_5、泵浦光源组件61_4及掺稀土光纤1_6组成,在掺稀土光纤1_6沿光路的上下游均各自设置有分光耦合器1_1、光探测器1_2、隔离器1_3和波分复用器1_5。各个器件独立封装,再通过光纤熔接的方式相互连接,组成光纤光放大器。
请参阅图2,传统的双级掺稀土光纤放大器是将两个单级光纤放大器串接使用,在两级之间增设一个增益平坦滤波隔离组件1_7。
掺稀土光纤和尾纤的弯曲半径都在厘米量级以上,这就限制了需要弯曲盘绕光纤的光纤放大器的最小体积,并且阻碍了光纤放大器在相干模块等器件功能密集的紧凑模块或产品中的应用。再者,传统光纤放大器中作为增益介质的光纤和器件一般都是与普通光纤连接,整个器件的光纤长度在数米到数百米量级,光信号通过光纤时会产生较大时延,对要求低时延的场景应用受到限制。
发明内容
有鉴于此,本申请实施例期望提供一种结构紧凑、时延低的光放大器。
为达到上述目的,本申请实施例提供一种光放大器,包括泵浦光源组件、沿信号光的传播方向依次设置的输入光纤准直器、输入光隔离器芯件、用于实现光信号放大的柱形玻璃体、输出光隔离器芯件以及输出光纤准直器;所述柱形玻璃体包括掺有稀土离子的增益芯区,所述泵浦光源组件向所述柱形玻璃体输出能够激发所述增益芯区内的稀土离子的泵浦光,信号光从所述柱形玻璃体的轴向进入所述增益芯区,所述增益芯区直径大于或等于30μm。
本申请实施例中的光放大器,由于将柱形玻璃体内的增益芯区直径比同浓度稀土光纤的芯区直径大,在保持增益芯区中掺杂稀土离子的总量与现有技术中掺稀土光纤中掺杂稀土离子的总量大致相当的情况下,可以在不牺牲柱形玻璃体的增益的情况下极大地缩短柱形玻璃体沿轴向的长度。本申请实施例的光放大器,在不牺牲增益的前提下,能够极大地缩短增益介质的长度,降低光信号的时延,极大地减小光放大器的整体尺寸,能够实现光放大器的超小尺寸、超低时延效果,为高速光通信系统的制造和光通信系统的小型化提供便利。
图1为现有技术中单级掺铒光纤放大器的简化示意图;
图2为现有技术中双级掺铒光纤放大器的简化示意图;
图3为本申请第一实施例的光放大器的简化示意图;
图4为图3所示的输入光纤准直器的结构示意图;
图5为图3所示的输入光隔离器芯片组件的结构示意图;
图6为本申请不同实施例的柱形玻璃体沿轴侧的示意图;
图7为本申请一实施例的泵浦光源组件的结构示意图;
图8为本申请另一实施例的泵浦光源组件的结构示意图;
图9为本申请第二实施例的光放大器的简化示意图;
图10为本申请第三实施例的光放大器的简化示意图;
图11为本申请第四实施例的光放大器的简化示意图;
图12为本申请第五实施例的光放大器的简化示意图;
图13为本申请第六实施例的光放大器的简化示意图;
图14为本申请第七实施例的光放大器的简化示意图;
图15为本申请第八实施例的光放大器的简化示意图;
图16为本申请实施例的柱形玻璃体的封装示意图;
图17为图16所示的外封管和轴封帽的爆炸示意图。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
本申请实施例提供一种光放大器。请参阅图3,光放大器包括泵浦光源组件6、沿信号光的传播方向依次设置的输入光纤准直器21'、输入光隔离器芯件22'、用于实现光信号放大的柱形玻璃体3、输出光隔离器芯件22"、以及输出光纤准直器21'";柱形玻璃体3包括掺有稀土离子的增益芯区31,泵浦光源组件6向柱形玻璃体3输出能够激发柱形玻璃体3内的稀土离子的泵浦光,经过输入光隔离器芯件22'的信号光从柱形玻璃体3的轴向进入柱形玻璃体3掺杂有稀土离子的增益芯区31,增益芯区31中的稀土离子在泵浦光作用下产生粒子数翻转,在信号光诱导下形成受激辐射,实现对信号光的光放大。
柱形玻璃体3中掺杂稀土离子的增益芯区31直径大于或等于30μm(micrometer,微米)。而现有技术中的普通光纤的芯区直径在9~10微 米左右,掺稀土光纤的芯区直径在5~6微米左右。本申请实施例的增益芯区31直径远远大于现有技术中的光纤的芯区直径。
需要说明的是,影响现有技术中掺稀土光纤放大器增益的因素包括泵浦光功率、掺稀土光纤的长度以及稀土离子的掺杂浓度等。当泵浦功率一定时,掺稀土光纤在某一最佳长度时能够获得最大增益,如果长度超过此值,由于泵浦光的消耗,最佳长度点之后的掺稀土光纤不能受到足够的泵浦,而且要吸收已放大的信号能量,会导致增益很快下降。因此,掺杂稀土离子的光纤长度需要有合适的长度。此外,增益介质中掺杂稀土离子的浓度也要保持在合适的范围,如果浓度过小,不能充分吸收泵浦光;如果浓度过高,稀土离子出现团簇效应,导致在吸收泵浦光的光子之后不辐射出等量的光子形成浓度淬灭,造成了泵浦光的浪费,浓度越高,团簇效应越明显。
本申请实施例中的光放大器,由于将柱形玻璃体3内的增益芯区31直径比同浓度稀土光纤的芯区直径大,在保持增益芯区31中掺杂稀土离子的总量与现有技术中掺稀土光纤中掺杂稀土离子的总量的数量级大致相当的情况下,可以在不牺牲柱形玻璃体3的增益的情况下极大地缩短柱形玻璃体3沿轴向的长度。本申请实施例的光放大器,在不牺牲增益的前提下,能够极大地缩短增益介质的长度,降低光信号的时延,极大地减小光放大器的整体尺寸,能够实现光放大器的超小尺寸、超低时延效果,为高速光通信系统的制造和光通信系统的小型化提供便利。
需要说明的是,以掺铒离子为例,在实际的光放大器中可以通过掺铒柱形玻璃体的掺杂浓度,背景损耗,信号光在掺铒玻璃中的光斑大小,信号光在掺铒玻璃中的光程长度,入射信号光的强度,泵浦光的波长及光谱,泵浦光的强度及注入掺铒柱形玻璃体的信号光光斑中的效率来决定信号光的增益及噪声的主要部分。在实际的光放大器的设计制造中,在期望的目 标增益确定和其他因素确定的条件下,可以通过改变掺铒柱形玻璃体沿轴向的长度以改变信号光在掺铒玻璃中的光程长度,亦即通过将掺铒柱形玻璃体切成适宜的厚度来实现设定饱和增益的信号放大,在实际生产中还可以通过改变信号光在掺铒玻璃中的光斑大小来微调增益的大小。
一具体实施例中,根据输入光纤准直器21'的光斑大小,增益芯区31直径大于或等于100μm。
一实施例中,进入柱形玻璃体3的信号光的光斑直径为d1,增益芯区31直径为d2,d2=(0.95~1.05)*d1,也就是说,增益芯区31的直径d2在光斑直径d1的正负5%的范围内。一具体实施例中,增益芯区31直径d2与光斑直径d1相同,如此,既能让所有的信号光进入增益芯区31进行光信号放大,又不浪费泵浦光。
输入光纤准直器21'用于把信号光变为准直光。输出光纤准直器21"用于把从掺杂稀土离子的柱形玻璃体3中出射的准直光耦合至尾纤内,使得光信号继续传输。
本申请实施例中,进入增益芯区31的信号光为准直光。一具体实施例中,输入光纤准直器21'和输出光纤准直器21"之间传输的信号光为准直光。
一实施例中,请参阅图4,输入光纤准直器21'包括尾纤212、玻璃插针213以及准直透镜214,外部用管体211封装。管体211可以是玻璃管或金属管。其中准直透镜214可以为G-lens或C-lens。
另一实施例中,输入光纤准直器21'也可以由尾纤、光纤型自聚焦透镜、以及保护管构成,其中尾纤和光纤型自聚焦透镜通过光纤熔接或胶黏方式连接。再一实施例中,输入光纤准直器21'也可以阵列设计,其中一种方式是使用微透镜阵列以及与之匹配的光纤阵列及多增益芯区的柱形玻璃体3,如此可以进一步大幅提高器件的紧凑程度。
输入光纤准直器21'和输出光纤准直器21"的结构相同或类似,同理, 输出光纤准直器21"也可以采用上述的输入光线准直器的结构形式。
第一光隔离器芯件22'和第二光隔离器芯件22"的作用是对光的方向进行限制,使光信号只能单方向传输,避免因为反射等原因造成光放大器中的增益不稳定或激射等现象。。以第一光隔离器芯件22'为例,请参阅图5,一实施例中,第一光隔离器芯件22'包括晶体楔角片222、磁环221以及法拉第旋转器223。需要说明的是,其中如果采用磁场内置的法拉第旋转器223,则磁环221可以取消。
第二光隔离器芯件22"可以采用上述第一光隔离器芯件22'的结构,在此不再赘述。
需要说明的是,可以根据所要放大的光信号的波长的不同,掺杂的稀土离子的种类可以是铒,镱,钕,铥,镨,钬或其他具有合适的能级结构的一种或多种元素的组合。
需要说明的是,考虑到放大特性和生产工艺,在掺稀土离子的柱形玻璃体的制作中会掺杂其他非稀土元素如铝,钒,磷等元素以改善增益特性。
本申请实施例中,以掺杂铒离子为例进行描述。对于掺铒柱形玻璃体3放大1520nm~1620nm(nanometre,纳米)范围的信号光的光放大器,泵浦光源组件6可以选择波长可以选择铒元素的980nm吸收峰附近区间的半导体激光器或1480nm吸收峰附近的半导体激光器,半导体激光器可以工作在单模或多模,可以通过腔外稳频或DFB(Distributed Feedback Lase,分布式反馈激光器)及DBR(distributed Bragg reflector,分布式布拉格反射激光器)等方式稳频或直接以非稳频方式工作。
上述柱形玻璃体3可以是均匀掺杂的柱形玻璃体,也可以是通过光纤生产制棒工艺方法生产的中心具有掺稀土离子增益芯区的预制棒,例如,采用OVD(Outside Vapour Deposition,外气相沉积法),MCVD(Modified Chemical Vapor Deposition,改进化学气相沉积法),PCVD(Plasma Asisted Chmical Vapor Deposition,等离子体化学气相沉积法)等方法生产的单芯或多芯预制棒,其中预制棒的掺稀土离子增益芯区直径应与设计的光放大器中准直器的光斑尺寸匹配。
请参阅图6,柱形玻璃体3包括包裹在增益芯区31周向的包层32,增益芯区31的折射率比包层32的折射率高0.1%以上。
为提高泵浦光利用效率和光的传输效率,一实施例中,在柱形玻璃体3周向表面设置有用于反射泵浦光的反射膜。反射层的生产工艺和具体材质不限。一实施例中,可以在柱形玻璃体3周向表面镀金属以形成反射膜;另一实施例中,可以在柱形玻璃体3周向表面镀上介质类反射膜作为上述的反射膜。
为了便于光线在柱形玻璃体3中传输,一实施例中,在柱形玻璃体3轴向的端面镀介质增透膜或选择性的WDM膜(Wavelength Division Multiplexing,波分复用)以降低信号光在柱形玻璃体端面的损耗。
柱形玻璃体3的横截面形状不限,请参阅图6,例如,柱形玻璃体3的横截面可以是圆形、“D”型、椭圆形、多边形等。
泵浦光源组件6可以采用半导体激光器或者半导体激光器芯片阵列。例如,一些实施例中,请参阅图7和图8,泵浦光源组件6包括基板61和半导体激光器芯片阵列,半导体激光器阵列62可以是分立的半导体激光器芯片62通过bonding的方式固定在基板61上,不同的分立的半导体激光器芯片62的波长可以相同也可以不相同。
另一实施例中,泵浦光源组件6包括基板61和至少一个半导体激光器芯片Bar条,也就是说,一些情况下,可以采用半导体激光器芯片Bar条,另一些情况下,可以采用半导体激光器芯片Bar条组。半导体激光器芯片Bar条或Bar条组通过bonding的方式固定在基板61上,Bar条组的激光波长可以相同也可以不同。
上述的基板61可以采用钨铜合金或氮化铝等导热良好的材料,基板61上制作半导体激光器芯片62共用的驱动电极以及用于监测温度的热敏电阻等功能元件和电路。
泵浦光进入增益芯区31的方式不限,例如,一些实施例中,请参阅图3、图9以及图13,泵浦光沿柱形玻璃体3的周向进入柱形玻璃体3内,然后从增益芯区31的径向入射至增益芯区31内。另一些实施例中,参阅图10、图11、图12、图14以及图15,泵浦光从增益芯区31的轴向入射至增益芯区31中,即泵浦光与信号光都从增益芯区31的轴向入射至增益芯区31中。
在泵浦光源组件6设置于所述柱形玻璃体3沿周向一侧的实施例中,所述柱形玻璃体3的周向表面具有泵浦光入射区,反射膜设置在柱形玻璃体3轴向表面的非泵浦光入射区,泵浦光源组件6的泵浦光经泵浦光入射区入射至柱形玻璃体3内。也就是说,在泵浦光入射区不能设置反射膜,相应的,在泵浦光入射区要设置针对泵浦光的增透膜,以便泵浦光能够以更低损耗进入柱形玻璃体3内。
为了更好地获得光学耦合效果,一实施例中,请参阅图16,光放大器包括设置于泵浦光源组件的出光面和柱形玻璃体3的泵浦光入射区之间的透镜单元65,以优化泵浦光源组件和柱形玻璃体3之间的光学耦合效果。透镜单元65可以是一个透镜,也可以是由多个透镜构成的透镜组。透镜单元可以为柱透镜、球面透镜阵列、或非球面透镜阵列等。
为了提高泵浦光从柱形玻璃体3的周向入射进入柱形玻璃体3的入射效率,请参阅图7和图8,泵浦光源组件6包括上述的基板61以及半导体激光器芯片阵列,一实施例中,半导体激光器芯片阵列的结区平行或垂直于柱形玻璃体3的轴向。根据半导体激光器或半导体激光器芯片发射的激光的远场辐射特性,整个光束的横截面呈椭圆形。当半导体激光器芯片阵 列的结区垂直于柱形玻璃体3轴向时,每个半导体激光器芯片62出射光斑的长轴方向沿柱形玻璃体3的轴向,短轴方向垂直于柱形玻璃体3的轴向,以降低半导体激光器芯片和柱形玻璃体3之间的透镜单元的设计难度及提高耦合进柱形玻璃体3的增益芯区31的泵浦光的耦合效率,在相同的进入增益芯区31的泵浦光的条件下,可以减少半导体激光器芯片62的数量级,可以降低单个半导体激光器芯片62的功率。
一实施例中,基板61朝向柱形玻璃体3的一侧设置有多个沿柱形玻璃体3轴向排列的凹槽61a,每个半导体激光器芯片62设置于对应的凹槽61a内。每一凹槽61a具有垂直于柱形玻璃体3轴向的安装面61b,半导体激光器芯片62的一侧安装于安装面61b上,如此能够使得半导体激光器芯片62的出光方向朝向柱形玻璃体3,再者,也便于对半导体激光器芯片62散热。
需要说明的是,凹槽61a的具体形状不限,例如,请参阅图7,一实施例中,凹槽61a呈方形;请参阅图8,另一实施例中,凹槽61a呈锯齿形。
多个凹槽61a之间的形状可以相同也可以不同。在此不做限制。
一实施例中,泵浦光源组件6包括半导体激光器巴条,半导体激光器巴条的结区平行于柱形玻璃体3的轴向,以降低半导体激光器芯片和柱形玻璃体3之间的透镜单元的设计难度。
一实施例中,柱形玻璃体3沿轴向的至少一侧设置有泵浦光源组件6,也就是说,泵浦光沿柱形玻璃体3的轴向进入增益芯区31中。可以理解的是,可以是在柱形玻璃体3沿信号光入射的一端设置泵浦光源组件6,也可以是在柱形玻璃体3沿信号光出射的一端设置泵浦光源组件6,还可以是在柱形玻璃体3的轴向相对两端均设置泵浦光组件。
在柱形玻璃体3沿轴向的至少一侧设置有泵浦光源组件6的实施例中,光放大器包括设置于信号光光路上的介质薄膜滤波器43,介质薄膜滤波器43将对应的泵浦光从柱形玻璃体3的轴向耦合进增益芯区31中。
需要说明的是,光放大器内的信号光的光路的具体路径不限,可以是直线,信号光在输入光纤准直器21'至输出光纤准直器21"之间传输过程中不会发生偏转。光放大器内的信号光的光路也可以是弯折的折线,信号光在输入光纤准直器21'至输出光纤准直器21"之间传输过程中会发生偏转。
一些实施例中,请参阅图3、图10以及图11,输入光纤准直器21'和输出光纤准直器21"位于柱形玻璃体3轴向的相对两侧,输入光纤准直器21'、输出光纤准直器21"、以及柱形玻璃体3中的光路沿直线布置。该实施例中,光放大器内的信号光的光路呈直线。
本申请实施例的光放大器,增益芯区31的数量可以是一个,也可以是多个。当增益芯区31的数量有多个时,多个增益芯区31平行设置,信号光依次经过各个增益芯区31,也就是说,多个增益芯区31依序布置在光路上。
为了实现光路在相邻两个增益芯区31之间的180°折返,一些实施例中,光放大器包括设置于的柱形玻璃体3轴向一侧的第一光学元件41,沿信号光传播方向,相邻的两个增益芯区31之间的光线通过第一光学元件41实现180°折返。需要说明的是,如果增益芯区31的数量为N个,则第一光学元件的数量为N-1个,其中,N为大于或等于2的正整数。第一光学元件41的具体结构类型不限,例如,可以是角反棱镜。
一些实施例中,请参阅图13,输入光纤准直器21'和输出光纤准直器21"位于柱形玻璃体3沿轴向的同一侧;输入光纤准直器21'、输入光隔离器芯件22'以及沿信号光光路上的第一个增益芯区31中的光路呈直线;输出光纤准直器21"、输出光隔离器芯件22"以及沿信号光光路上的最后一个增益芯区31中的光路呈直线。
另一些实施例中,请参阅图12、图14以及图15,输入光纤准直器21'和输出光纤准直器21"位于柱形玻璃体3沿轴向的同一侧;光放大器包括第 二光学元件42,第二光学元件42设置于柱形玻璃体3靠近输入光纤准直器21'的一侧,第二光学元件42将输入光隔离器芯件22'出射的光线偏转至柱形玻璃体3的增益芯区31中,以及将沿信号光光路最后一个增益芯区31中发射的光线偏转至输出光隔离器芯件22"。可以理解的是,第二光学元件42偏转光路的角度不限,可以是45°、60°、90°等。
需要说明的是,当泵浦光源组件6设置在柱形玻璃体3的轴向一侧的部分实施例中,上述的第二光学元件42与介质薄膜滤波器43可以是同一个光学元件。
一些实施例中,请参阅图12至图15,上述的多个增益芯区31可以是分布在同一个柱形玻璃体3中,也就是说,柱形玻璃体3的数量为一个,所有的增益芯区31均设置在该柱形玻璃体3内。另一些实施例中,请参阅图9,上述的多个增益芯区31也可以分布在不同的柱形玻璃体3中,其中,柱形玻璃体3中可以有一个增益芯区31,也可以有多个增益芯区31,具体地,可以是所有的柱形玻璃体3中都只有一个增益芯区31;也可以是所有的柱形玻璃体3中都有多个增益芯区31;还可以是部分柱形玻璃体3中有一个增益芯区31,另一部分柱形玻璃体3中有多个增益芯区31。
本申请实施例的光放大器,可以只有一级放大,也可以是多个增益芯区31在光路方向串接构成级联放大。示例性地,一实施例中,请参阅图9和图15,光放大器包括中间光隔离器芯件22'",沿信号光的传播方向,相邻的两增益芯区31之间至少设置有一个中间光隔离器芯件22'",以使得光放大器为级联光放大器。需要说明的是,构成级联放大的相邻两增益芯区31之间需要设置上述的中间光隔离器芯件22'"。
当采用多波长的信号光时,不同信道波长的增益会有所不同,因此,一实施例中,请参阅图9、图12至图15,光放大器包括设置于柱形玻璃体3沿信号光传播方向下游的增益平坦滤波器5,以将增益平坦度控制在合适 的范围。
以下结合附图对本申请多个实施例的光放大器进行描述。
第一实施例
请参阅图3,该实施例中,光放大器为单级光放大器。
光放大器包括泵浦光源组件6、沿信号光的传输方向依次设置于光路上的输入光纤准直器21'、输入光隔离器芯件22'、柱形玻璃体3、输出光隔离器芯件22"以及输出光纤准直器21"。
柱形玻璃体3内具有一个增益芯区31,输入光纤准直器21'、输入光隔离器芯件22'、柱形玻璃体3、输出光隔离器芯件22"以及输出光纤准直器21"沿直线布置,也就是说,该实施例中,信号光的光路为直线。
泵浦光源组件6设置于柱形玻璃体3的周向一侧。泵浦光源组件6包括半导体激光芯片阵列和基板61。基板61上设置有凹槽61a,每一凹槽61a中设置有一个半导体激光芯片62。
请参阅图16,在半导体激光器芯片阵列的出光面和柱形玻璃体3的入射区之间设置有柱棱镜,以优化激光芯片62和柱形玻璃体3之间的光学耦合。
该实施例中,柱形玻璃体3的横截面形成呈切边椭圆形,其中,增益芯区31位于椭圆的一个焦点上,半导体激光芯片阵列位于椭圆的另一个焦点上。如此,从半导体激光芯片阵列发出的光线经柱形玻璃体3的反射层反射后能够较好地汇集到增益芯区31。
需要说明的是,柱形玻璃体3的实际外轮廓形状为椭圆被截去一部分后剩下的部分。所述的半导体激光芯片阵列位于椭圆的另一个焦点指的是,将柱形玻璃体3对应的椭圆进行虚拟成一个完整的椭圆,将半导体激光芯片阵列设置在虚拟的椭圆的焦点上。
第二实施例
请参阅图9,该实施例中,光放大器为二级光放大器。
沿信号光的光路传播方向,依次设置有输入光纤准直器21'、输入光隔离器芯件22'、第一个柱形玻璃体3、第一个中间光隔离器芯件22'"、第一个增益平坦滤波器5、角反棱镜、第二个增益平坦滤波器5、第二个中间光隔离器芯件22'"、第二个柱形玻璃体3、输出光隔离器芯件22"、输出光纤准直器21"。需要说明的是,本实施例中,角反棱镜为上述的第一光学元件的具体结构形式。
该实施例中,柱形玻璃体3的数量为两个,两个柱形玻璃体3中各自具有一个增益芯区31,两个柱形玻璃体3中的增益芯区31平行设置。
相应的,该实施例中,泵浦光源组件6的数量为两个,每个柱形玻璃体3对应设置有一个泵浦光源组件6。泵浦光源组件6的具体结构以及设置位置参照上述的第一实施例,在此不再赘述。
其中,输入光纤准直器21'、输入光隔离器芯件22'以及第一个柱形玻璃体3之间的光路沿直线布置。第二个柱形玻璃体3、输出光隔离器芯件22"以及输出光纤准直器21"之间的光路沿直线布置。信号光在角反棱镜处实现180°折返。
需要说明的是,该实施例中,也可以只采用一个柱形玻璃体3,在一个柱形玻璃体3内设置两个间隔的增益芯区31即可。
需要说明的是,该实施例中,可以只设置一个增益平坦滤波器5。还可以只设置一个中间光隔离器芯件22'"。
第三实施例
请参阅图10,该实施例大体结构与第一实施例相同。不同之处在于泵浦光源组件6的结构和设置位置不同。
该实施例中,泵浦光源组件6设置于柱形玻璃体3沿轴向的一侧,具体地,设置于输入光隔离器芯件22'和柱形玻璃体3之间,也就是说,该实 施例中,泵浦方式为前向泵浦。需要说明的是,该泵浦光源组件6也可以设置在柱形玻璃体3和输出光隔离器芯件22"之间,如此形式,泵浦方式为反向泵浦。
在输入光隔离器芯件22'和柱形玻璃体3之间还设置有位于信号光光路上的介质薄膜滤波器43。
泵浦光源组件6包括激光器63以及整形准直透镜组件64。激光器63发出的激光经整形准直透镜组件64准直后传输至介质薄膜滤波器43,介质薄膜滤波器43将信号光和泵浦光一起从柱形玻璃体3的轴向耦合进增益芯区31中。
第四实施例
参阅图11,该实施例大体结构与第三实施例相同。不同之处在于,本实施例中,泵浦光源组件6的数量和介质薄膜滤波器43的数量均为两个。在输入光隔离器芯件22'和柱形玻璃体3设置有一个泵浦光源组件6和一个介质薄膜滤波器43;在柱形玻璃体3和输出光隔离器芯件22"之间也设置有一个泵浦光源组件6和一个介质薄膜滤波器43。该实施例中,泵浦方式为双向泵浦。
第五实施例
请参阅图12,光放大器包括输入光纤准直器21'、输入光隔离器芯件22'、一个介质薄膜滤波器43、一个柱形玻璃体3、两个增益平坦滤波器5、两个泵浦光源组件6、一个角反棱镜、输出光隔离器芯件22"以及输出光纤准直器21"。需要说明的是,本实施例中,角反棱镜为上述的第一光学元件41的具体结构形式。
柱形玻璃体3内具有两个平行的增益芯区31,两个泵浦光源组件6设置于柱形玻璃体3的轴向一侧,其中一个泵浦光源组件6为一个增益芯区31提供泵浦光,另一个泵浦光源组件6为另一个增益芯区提供泵浦光。
介质薄膜滤波器43将信号光和两个泵浦光源组件6的泵浦光一起耦合进柱形玻璃体3的对应增益芯区31中。该实施例中,介质薄膜滤波器43具有第二光学元件42偏转信号光光路的作用。需要说明的是,如果将该实施例中的泵浦光源组件的设置于玻璃体3的周向,则就只需要第二光学元件42的偏转作用,可以部使用介质薄膜滤波器43。
信号光从输入光纤准直器21'传输至输入光隔离器芯件22',之后经介质薄膜滤波器43偏转90°至第一个增益芯区31中,沿直线传输依次经过中间光隔离器芯件22'"和增益平坦滤波器5后到达角反棱镜,经角反棱镜180°折返至第二个增益芯区31中,再经介质薄膜滤波器43偏转90°至输出光隔离器芯件22"。
需要说明的是,该实施例中,增益平坦滤波器5可以只设置一个,也可以设置多个。
第六实施例
请参阅图13,光放大器包括输入光纤准直器21'、输入光隔离器芯件22'、一个柱形玻璃体3、两个增益平坦滤波器5、角反棱镜、输出光隔离器芯件22"以及输出光纤准直器21"。
泵浦光源组件6的具体结构和安装位置可以参照第一实施例,在此不再赘述。本申请实施例中,同一个泵浦光源组件6同时为两个增益芯区31提供泵浦光。
输入光纤准直器21'、输入光隔离器芯件22'、第一个增益芯区31、以及第一个增益平坦滤波器5中的光路为直线。第二个增益平坦滤波器5、第二个增益芯区31、输出光隔离器芯件22"以及输出光纤准直器21"中的光路为直线。
信号光沿直线依次途经输入光纤准直器21'、输入光隔离器芯件22'、第一个增益芯区31、以及第一个增益平坦滤波器5中至角反棱镜后,经角反 棱镜180°折返至第二个增益平坦滤波器5,并沿直线依次途经第二个增益芯区31、输出光隔离器芯件22"以及输出光纤准直器21"。
该实施例中,增益平坦滤波器5的数量可以只有一个,也可以是多个。
第七实施例
请参阅图14,光放大器包括输入光纤准直器21'、输入光隔离器芯件22'、三个介质薄膜滤波器43、一个柱形玻璃体3、两个增益平坦滤波器5、输出光隔离器芯件22"以及输出光纤准直器21"、四个泵浦光源组件6
输入光纤准直器21'、输入光隔离器芯件22'、输出光隔离器芯件22"、输出光纤准直器21"以及其中一个介质薄膜滤波器43的布置方式参见第六实施例,此处不在赘述。该实施例中,其中两个泵浦光源组件6的设置方式与第六实施例相同。
柱形玻璃体3远离输出光隔离器芯件22"的轴向另一端设置两个介质薄膜滤波器43,每个介质薄膜滤波器43对应一个增益芯区31,上游的一个增益芯区31的光线入射至对应的一个介质薄膜滤波器43后偏转90°至另一个介质薄膜滤波器43,再继续偏转90°后进入下游的增益芯区31。本实施例中,两个介质薄膜滤波器43合起来相当于上述的第一光学元件。也就是说,本实施例中,第一光学元件的具体结构包括两个配合的介质薄膜滤波器43。
上述两个介质薄膜滤波器43背离玻璃体3的一侧各自对应设置一个泵浦光源组件。两个泵浦光源组件6各自为一个增益芯区31提供泵浦光。
第八实施例
请参阅图15,该实施例中的光放大器为二级级联光放大器。该实施例的结构与第五实施例的结构大体相同,不同之处在于:本实施例在第五实施例的增益平坦滤波器5和柱形玻璃体3之间增设了中间光隔离器芯件22'"。
本申请实施例的柱形玻璃体3的封装结构形式请参阅图16和图17,具体地,光放大器包括外封管71以及轴封帽72,外封管71包括插接部72以及具有开口的环绕部71,环绕部71套设在柱形玻璃体3的周向,插接部72从开口的相对两侧朝向轴封帽72延伸,插接部72形成有开放的容纳空间72a,泵浦光源组件6设置于该容纳空间72a内,轴封帽72罩设于插接部72的外周并封闭该容纳空间72a。
具体地,一实施例中,请参阅图17,轴封帽72的横截面形状呈U形,轴封帽72内具有安装槽72a。插接部712与环绕部711的交界处形成有台阶面71b,插接部712伸入安装槽72a,轴封帽72朝向环绕部711的端部与台阶面71b抵接,便于两者的装配定位。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (20)
- 一种光放大器,包括泵浦光源组件;沿信号光的传播方向依次设置的输入光纤准直器、输入光隔离器芯件、用于实现光信号放大的柱形玻璃体、输出光隔离器芯件以及输出光纤准直器;所述柱形玻璃体包括掺有稀土离子的增益芯区,所述泵浦光源组件向所述柱形玻璃体输出能够激发所述增益芯区内的稀土离子的泵浦光,信号光从所述柱形玻璃体的轴向进入所述增益芯区,所述增益芯区直径大于或等于30μm。
- 根据权利要求1所述的光放大器,所述柱形玻璃体沿轴向的端面上镀有增透膜或WDM膜。
- 根据权利要求1所述的光放大器,所述增益芯区直径大于或等于。
- 根据权利要求1所述的光放大器,进入所述增益芯区的信号光的光斑直径为d1,所述增益芯区直径为d2,d2=(0.95~1.05)*d1。
- 根据权利要求1所述的光放大器,进入所述增益芯区的信号光为准直光。
- 根据权利要求1所述的光放大器,所述泵浦光源组件设置于所述柱形玻璃体的周向一侧,所述泵浦光源组件的泵浦光沿所述柱形玻璃体的周向入射至所述柱形玻璃体内。
- 根据权利要求6所述的光放大器,在所述柱形玻璃体周向表面上的泵浦光入射区镀有针对泵浦光的增透膜或WDM膜,在所述柱形玻璃体周向表面上的非泵浦光入射区镀有针对泵浦光的反射膜。
- 根据权利要求6所述的光放大器,所述泵浦光源组件包括半导体激光器芯片阵列,所述半导体激光器芯片阵列的结区平行或垂直于柱形玻璃体的轴向。
- 根据权利要求6所述的光放大器,所述泵浦光源组件包括半导体激光器巴条,所述半导体激光器巴条的结区平行于所述柱形玻璃体的轴向。
- 根据权利要求6所述的光放大器,所述光放大器包括透镜单元,所述透镜单元设置于所述泵浦光源组件的出光面和柱形玻璃体的周向表面之间,以优化所述泵浦光源组件和所述柱形玻璃体之间的光学耦合。
- 根据权利要求1所述的光放大器,所述柱形玻璃体沿轴向的至少一侧设置有所述泵浦光源组件,所述光放大器包括设置于信号光光路上的介质薄膜滤波器,所述介质薄膜滤波器将对应的所述泵浦光从所述柱形玻璃体的轴向耦合进所述增益芯区中。
- 根据权利要求1-11任一项所述的光放大器,所述输入光纤准直器和所述输出光纤准直器位于所述柱形玻璃体轴向的相对两侧,所述输入光纤准直器、所述输出光纤准直器、以及所述柱形玻璃体中的光路沿直线布置。
- 根据权利要求1-5任一项所述的光放大器,所述增益芯区的数量有多个,多个所述增益芯区平行设置,信号光通过折返依次经过各个所述增益芯区,所述光放大器包括设置于所述柱形玻璃体轴向侧的第一光学元件,沿所述信号光传播方向,相邻的两个所述增益芯区之间的光线通过所信号经过第一光学元件实现180°折返。
- 根据权利要求13所述的光放大器,所述输入光纤准直器和所述输出光纤准直器位于所述柱形玻璃体沿轴向的同一侧;所述输入光纤准直器、所述输入光隔离器芯件以及沿信号光光路上的第一个所述增益芯区中的光路呈直线;所述输出光纤准直器、所述输出光隔离器芯件以及沿信号光光路上的最后一个所述增益芯区中的光路呈直线。
- 根据权利要求13所述的光放大器,所述输入光纤准直器和所述输出光纤准直器位于所述柱形玻璃体沿轴向的同一侧;所述光放大器包括第 二光学元件,所述第二光学元件设置于所述柱形玻璃体靠近所述输入光纤准直器的一侧,所述第二光学元件将所述输入光隔离器芯件出射的信号光偏转至所述增益芯区中,以及将沿信号光光路最后一个所述增益芯区中发射的光线偏转至所述输出光隔离器芯件。
- 根据权利要求13所述的光放大器,所述柱形玻璃体的数量为多个,多个所述柱形玻璃体平行设置,所述多个增益芯区分布在所述多个柱形玻璃体中。
- 根据权利要求13所述的光放大器,所述柱形玻璃体的数量为一个,所述多个增益芯区分布在同一个所述柱形玻璃体中。
- 根据权利要求13所述的光放大器,所述光放大器包括中间光隔离器芯件,至少有一个所述中间光隔离器芯件设置在相邻的两所述增益芯区之间,以使得所述光放大器对信号光进行级联放大。
- 根据权利要求1所述的光放大器,所述光放大器包括设置于所述柱形玻璃体沿所述信号光传播方向下游的增益平坦滤波器。
- 根据权利要求1所述的光放大器,所述光放大器包括外封管和轴封帽;所述外封管的内侧形状与所述柱形玻璃体的周向形状匹配,所述外封管包括插接部以及具有开口的环绕部,所述环绕部套设在柱形玻璃体的周向,所述插接部从所述开口的相对两侧朝向轴封帽延伸,所述插接部形成有开放的容纳空间,所述泵浦光源组件设置于该容纳空间内,所述轴封帽罩设于插接部的外以封闭该容纳空间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010381084.3A CN111628396A (zh) | 2020-05-08 | 2020-05-08 | 一种光放大器 |
CN202010381084.3 | 2020-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021223439A1 true WO2021223439A1 (zh) | 2021-11-11 |
Family
ID=72272800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135447 WO2021223439A1 (zh) | 2020-05-08 | 2020-12-10 | 一种光放大器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111628396A (zh) |
WO (1) | WO2021223439A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116865077A (zh) * | 2023-07-07 | 2023-10-10 | 武汉安扬激光技术股份有限公司 | 一种多芯多通棒状光子晶体光纤放大器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111628396A (zh) * | 2020-05-08 | 2020-09-04 | 武汉光迅科技股份有限公司 | 一种光放大器 |
CN115314112A (zh) * | 2021-05-07 | 2022-11-08 | 华为技术有限公司 | 一种光放大器、光信号放大及光放大器增益调节的方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311455A (zh) * | 1999-12-02 | 2001-09-05 | Jds尤尼费斯公司 | 使用光学部件块的低成本放大器 |
US20100103958A1 (en) * | 2008-10-23 | 2010-04-29 | Advalue Photonics, Inc. | Optical fiber with multi section core |
CN101764344A (zh) * | 2010-01-13 | 2010-06-30 | 北京交通大学 | 单模有源纤芯外腔耦合多模有源纤芯超亮度单模激光器 |
US20160099539A1 (en) * | 2014-10-07 | 2016-04-07 | Bae Systems Information And Electronic Systems Integration Inc. | Phosphate photonic crystal fiber and converter for efficient blue generation |
CN105633783A (zh) * | 2016-04-01 | 2016-06-01 | 北京理工大学珠海学院 | 一种光纤光栅作为输出腔镜的块状固体激光器 |
CN111628396A (zh) * | 2020-05-08 | 2020-09-04 | 武汉光迅科技股份有限公司 | 一种光放大器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100352373B1 (ko) * | 1999-12-03 | 2002-09-11 | 한국전자통신연구원 | 복합 희토류 이온을 첨가한 광도파로 |
CN1402051A (zh) * | 2001-08-23 | 2003-03-12 | 三一光电子有限公司 | 一种偏振无关型光隔离器及其制造方法 |
US8294982B2 (en) * | 2008-01-08 | 2012-10-23 | University Of North Carolina At Charlotte | Apparatuses and methods for performing gain guiding |
CN201222106Y (zh) * | 2008-07-30 | 2009-04-15 | 翔光(上海)光通讯器材有限公司 | 紧凑型封装的光隔离器 |
KR101872438B1 (ko) * | 2011-02-18 | 2018-06-28 | 주식회사 이오테크닉스 | 광섬유 증폭기 보호용 멀티코어 광섬유 |
CN203084238U (zh) * | 2012-12-03 | 2013-07-24 | 武汉光迅科技股份有限公司 | 一种集成光器件 |
CN205992068U (zh) * | 2016-08-28 | 2017-03-01 | 福建中策光电股份公司 | 双级隔离器芯 |
-
2020
- 2020-05-08 CN CN202010381084.3A patent/CN111628396A/zh active Pending
- 2020-12-10 WO PCT/CN2020/135447 patent/WO2021223439A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311455A (zh) * | 1999-12-02 | 2001-09-05 | Jds尤尼费斯公司 | 使用光学部件块的低成本放大器 |
US20100103958A1 (en) * | 2008-10-23 | 2010-04-29 | Advalue Photonics, Inc. | Optical fiber with multi section core |
CN101764344A (zh) * | 2010-01-13 | 2010-06-30 | 北京交通大学 | 单模有源纤芯外腔耦合多模有源纤芯超亮度单模激光器 |
US20160099539A1 (en) * | 2014-10-07 | 2016-04-07 | Bae Systems Information And Electronic Systems Integration Inc. | Phosphate photonic crystal fiber and converter for efficient blue generation |
CN105633783A (zh) * | 2016-04-01 | 2016-06-01 | 北京理工大学珠海学院 | 一种光纤光栅作为输出腔镜的块状固体激光器 |
CN111628396A (zh) * | 2020-05-08 | 2020-09-04 | 武汉光迅科技股份有限公司 | 一种光放大器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116865077A (zh) * | 2023-07-07 | 2023-10-10 | 武汉安扬激光技术股份有限公司 | 一种多芯多通棒状光子晶体光纤放大器 |
Also Published As
Publication number | Publication date |
---|---|
CN111628396A (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021223439A1 (zh) | 一种光放大器 | |
US9014220B2 (en) | High-power CW fiber-laser | |
US9083140B2 (en) | High-power CW fiber-laser | |
US6370180B2 (en) | Semiconductor-solid state laser optical waveguide pump | |
US6324326B1 (en) | Tapered fiber laser | |
US6836607B2 (en) | Cladding-pumped 3-level fiber laser/amplifier | |
US20040076197A1 (en) | Fibre laser | |
US6208679B1 (en) | High-power multi-wavelength external cavity laser | |
US6041072A (en) | Apparatus for stabilizing multiple laser sources and their application | |
US5710786A (en) | Optical fibre laser pump source for fibre amplifiers | |
US20070236781A1 (en) | Bi-directionally pumped optical fiber lasers and amplifiers | |
JP2003046165A (ja) | 光ファイバ増幅器デバイスおよび光ファイバ増幅器デバイスを使用する通信システム | |
CN1906818B (zh) | 光学纤维放大器 | |
US20100260210A1 (en) | Ops-laser pumped fiber-laser | |
US6317537B1 (en) | Launch port for pumping fiber lasers and amplifiers | |
US11387619B2 (en) | Micro-optical bench architecture for master oscillator power amplifier (MOPA) | |
JP3228451B2 (ja) | 光ファイバ増幅器 | |
US7038844B2 (en) | High power 938 nanometer fiber laser and amplifier | |
CN118295086A (zh) | 具有波分复用器的光纤耦合激光源泵浦 | |
CN112531448A (zh) | 一种双波长光纤耦合激光泵浦源 | |
CN217362137U (zh) | 激光放大器、激光器及光学系统 | |
WO2024169179A1 (zh) | 光纤、泵浦激光发射装置和光纤放大器 | |
WO2007077419A1 (en) | Optical fibre with angled core | |
CN110663146B (zh) | 大功率包层泵浦单模光纤拉曼激光器 | |
Selvas et al. | Tuning characteristics of cladding-pumped Neodymium-doped fiber laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20934666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20934666 Country of ref document: EP Kind code of ref document: A1 |