WO2021223404A1 - 空调的调节方法及装置、电子设备、计算机存储介质 - Google Patents

空调的调节方法及装置、电子设备、计算机存储介质 Download PDF

Info

Publication number
WO2021223404A1
WO2021223404A1 PCT/CN2020/130609 CN2020130609W WO2021223404A1 WO 2021223404 A1 WO2021223404 A1 WO 2021223404A1 CN 2020130609 W CN2020130609 W CN 2020130609W WO 2021223404 A1 WO2021223404 A1 WO 2021223404A1
Authority
WO
WIPO (PCT)
Prior art keywords
house
air conditioner
heat exchange
target
distance
Prior art date
Application number
PCT/CN2020/130609
Other languages
English (en)
French (fr)
Inventor
李文博
陈会敏
杜亮
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021223404A1 publication Critical patent/WO2021223404A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/35Categorising the entire scene, e.g. birthday party or wedding scene
    • G06V20/36Indoor scenes

Definitions

  • This application relates to the technical field of air conditioning adjustment, in particular to an air conditioning adjustment method and device, electronic equipment, and computer storage media.
  • the air conditioner has not only realized control through mobile electronic devices, but also realized automatic adjustment without manual control.
  • the current intelligent automatic adjustment of air conditioners mainly adjusts the parameters according to the current number of people in the house, so that the indoor temperature, humidity, etc. reach the corresponding The numerical value.
  • the more people in the current house the higher the output power of the adjusted air conditioner, so that the current indoor temperature, humidity, etc. can provide a comfortable environment for the current indoor people.
  • the factors that have a greater impact on environmental parameters such as temperature and humidity in the house are not limited to the number of people. Therefore, the current intelligent adjustment methods cannot achieve precise adjustment, so that the air conditioner cannot provide the most comfortable environment for the people in the house.
  • the present application provides an air conditioning adjustment method and device, electronic equipment, and computer storage medium to solve the problem that the existing adjustment methods cannot achieve precise adjustment.
  • the first aspect of the application provides a method for adjusting an air conditioner, including:
  • the multiple target parameters include the floor area of the house, the ventilation area of the house, the number of each type of designated household appliances in the house, and the current amount of the house Number of people
  • the operating parameters of the air conditioner are adjusted according to the output ratio of the air conditioner.
  • the way to obtain the floor area of the house includes:
  • the distance sensor includes installations on the front and left of the air conditioner And the three distance sensors on the right;
  • the manner of obtaining the ventilation area of the house includes:
  • the method before multiplying each of the target parameters by a corresponding coefficient to obtain the heat exchange amount corresponding to each of the target parameters, the method further includes:
  • the multiplying each target parameter by a corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter includes:
  • the adjusting the operating parameter of the air conditioner according to the output ratio of the air conditioner includes:
  • the compressor gear of the air conditioner is adjusted to the target compressor gear.
  • the second aspect of the present application provides an air conditioner adjusting device, including:
  • the acquiring unit is used to acquire multiple target parameters of the house; wherein, the multiple target parameters include the floor area of the house, the ventilation area of the house, the number of each type of designated household appliances in the house, and the current The number of people in said house;
  • the first calculation unit is configured to multiply each target parameter by a corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter
  • the second calculation unit is configured to sum the heat exchange amount corresponding to each of the target parameters to obtain the total heat exchange amount of the house;
  • the third calculation unit is used to calculate the ratio of the total heat exchange demand of the house to the rated heat exchange of the air conditioner to obtain the output ratio of the air conditioner;
  • the adjusting unit is configured to adjust the operating parameters of the air conditioner according to the output ratio of the air conditioner.
  • the acquiring unit acquires the floor area of the house, it is used to:
  • the distance sensor includes installations on the front and left of the air conditioner And the three distance sensors on the right;
  • the acquiring unit acquires the ventilation area of the house, it is used to:
  • the above-mentioned adjusting device of the air conditioner it further includes:
  • the first determining unit is used to determine the current season according to the current date
  • the second acquiring unit is configured to acquire the coefficients in the current season corresponding to each of the target parameters
  • the first calculation unit includes:
  • the first calculation subunit is configured to multiply each of the target parameters by the corresponding coefficient in the current season to obtain the heat exchange amount corresponding to each of the target parameters.
  • the adjusting unit includes:
  • a second determining unit configured to determine a target compressor gear that matches the output ratio of the air conditioner from a plurality of preset compressor gears
  • the adjustment subunit is used to adjust the compressor gear of the air conditioner to the target compressor gear.
  • the third aspect of the present application provides an electronic device, including:
  • the memory is used to store a program
  • the processor is configured to execute the program, and when the program is executed, it is specifically configured to implement the method for adjusting the air conditioner according to any one of the foregoing items.
  • the fourth aspect of the present application provides a computer storage medium for storing a computer program, and when the computer program is executed, it is used to implement the air conditioning adjustment method described in any one of the above items.
  • the air conditioner adjustment method provided by this application obtains the target parameters of the house, and the multiple target parameters include the floor space of the house, the ventilation area of the house, the number of each type of designated household appliances in the house, and the number of people in the current house.
  • Each target parameter is multiplied by the corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter, and the heat exchange amount corresponding to each target parameter is summed to obtain the total heat exchange demand of the house.
  • the ratio of the total heat exchange demand of the house to the rated heat exchange of the air conditioner is calculated to obtain the output ratio of the air conditioner, and then the operating parameters of the air conditioner are adjusted according to the output ratio of the air conditioner.
  • FIG. 1 is a schematic flowchart of a method for adjusting an air conditioner according to an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for obtaining the floor area of a house according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of obtaining the floor area of a house according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for obtaining the ventilation area of a house according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a specific adjustment method provided by another embodiment of this application.
  • FIG. 6 is a schematic structural diagram of an air conditioner adjusting device provided by another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an adjustment unit provided by another embodiment of this application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by another embodiment of this application.
  • relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any difference between these entities or operations.
  • Kind of actual relationship or sequence are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes those that are not explicitly listed.
  • the embodiment of the present application provides a method for adjusting an air conditioner, as shown in FIG. 1, which specifically includes the following steps:
  • the ventilation area of the house mainly refers to the larger area of the house, which is connected to the outside and can exchange a large amount of heat, and usually refers to the ventilation area such as windows and doors in the house.
  • a specified type of home appliance may have a larger output power, and ordinary households have purchased home appliances, such as TVs, TVs, refrigerators, and so on.
  • the current target parameters of the house are obtained.
  • the specific method of acquiring the number of various designated household appliances in the house and the number of people in the current house can be obtained by detecting the image sensor.
  • the method of obtaining the number of people in the house is already a relatively common technical method in the present, and will not be repeated here.
  • the number of people in the house may be relatively volatile, the number of people in the house can be obtained in real time before the air conditioner is turned off, and when the number of people changes, the parameters of the air conditioner can be adjusted accordingly.
  • the specific method for obtaining the floor area of a house includes the following steps:
  • the distance sensor measures the distance between the air conditioner and the front wall, the distance between the air conditioner and the left wall, and the distance between the air conditioner and the right wall.
  • the distance sensor includes three distance sensors installed on the front, left and right of the air conditioner.
  • the front of the air conditioner in the embodiments of the present application refers to the side where the display screen and the air outlet are provided on the air conditioner.
  • the left side in front of the air conditioner is the left side of the air conditioner
  • the right side in front of the air conditioner is the right side of the air conditioner
  • the wall facing the air conditioner is the front wall of the house
  • the wall on the right is the right wall of the house
  • the wall on the left facing the air conditioner is the left wall of the house.
  • the distance y1 between the front of the air conditioner and the front wall of the house is measured by the distance sensor installed in the front of the air conditioner;
  • the distance x1 between the air conditioner and the right wall is measured by the distance sensor installed on the right side of the air conditioner;
  • the distance sensor installed on the left side of the air conditioner measures the distance x2 between the air conditioner and the left wall.
  • step S202 and step S203 are two independent steps. Therefore, step S202 and execution step S203 are only an optional execution sequence in the embodiment of the present application, and both steps can also be executed at the same time, or Step S203 is executed first, and then step S202 is executed.
  • the length of the air conditioner and the width of the air conditioner are pre-stored.
  • the length of the air conditioner is the distance from the left side of the air conditioner to the right side of the air conditioner
  • the width of the air conditioner is the distance from the front of the air conditioner to the back of the air conditioner. distance. Therefore, as shown in Figure 3, the distance between the air conditioner and the left wall x2, the distance between the air conditioner and the right wall x1, and the length of the air conditioner is the sum of L1.
  • the sum of the three is the length of the house.
  • the sum of the distance y1 between the air conditioner and the front wall and the width L2 of the air conditioner is the width of the house.
  • step S204 if it is determined that there is an uploaded area, the calculated floor area of the house is added to the uploaded area to obtain the final floor area of the house.
  • FIG. 4 shows a specific method for obtaining the ventilation area of a house, which specifically includes the following steps:
  • the image sensor can also be arranged on the air conditioner.
  • S402 For each image, identify the number of pixels belonging to the ventilation area from the image.
  • the characteristics of relatively brighter brightness and relatively large area at the ventilation surface can be used to identify the number of pixels in the ventilation area from the image.
  • S403 Determine the ventilation area in each image according to the ratio of the total number of pixels in each image to the number of pixels belonging to the ventilation area in each image.
  • each image calculates the ratio of the number of pixels corresponding to each ventilation area in the image to the total number of pixels in the image, and then multiply the real area corresponding to the image by the calculated ratio to obtain each Ventilation area.
  • S404 Calculate the sum of the ventilation area in each image to obtain the ventilation area of the house.
  • the coefficient corresponding to the floor area of the house is generally based on the cooling capacity of 150-220W per square meter to calculate the cooling capacity of the air conditioner.
  • the human body can have a better experience, so the specific cooling capacity per square meter can be used.
  • the coefficient corresponding to the ventilation area of the house can be determined according to the heat transfer coefficient of the material at the ventilation area and the average temperature difference between indoor and outdoor.
  • the heat transfer coefficient of glass is usually 3.2W/(m2 ⁇ °C).
  • the average temperature difference between indoor and outdoor in summer is 10°C, and the average temperature difference between indoor and outdoor in winter is 20°C.
  • the area heat transfer coefficient is 32W/per square meter ⁇ 64W/per square meter, so the intermediate coefficient 50w/per square meter can be selected as the coefficient corresponding to the ventilation area of the house. If the unit used in the calculation process is kilowatts, the corresponding house’s
  • the coefficient corresponding to the ventilation area is 0.05.
  • the coefficients corresponding to each type of designated home appliance can be calculated in advance according to the average heat dissipation of each type of designated home appliance during operation.
  • the corresponding coefficient for the number of people in the current house can also be determined in advance through experiments, and is usually set to 0.12.
  • the target parameters are adjusted Before multiplying by the corresponding coefficient to obtain the heat exchange amount corresponding to each of the target parameters, it can be further executed:
  • step S102 at this time is: multiply each target parameter by the corresponding coefficient in the current season to obtain the heat exchange amount corresponding to each target parameter.
  • the coefficient corresponding to the glass window can be set to 0.032 in summer and 0.064 in winter to make the indoor temperature better.
  • the air conditioner can be used for cooling or heating. Therefore, optionally, the coefficients corresponding to the target parameters can be positive or negative.
  • the corresponding coefficients for lighting, TV, and refrigerator in summer are: 0.01, 0.02, and 0.08, and in winter, they are: -0.01, -0.02. , -0.08. Therefore, if the total demand heat exchange is positive, it means that the total demand heat exchange is the total demand cooling capacity. If the total demand heat exchange is negative, then the total demand heat exchange is the total demand. Heating capacity.
  • the operating parameters of the air conditioner may specifically be to adjust the output power of the air conditioner, so that the air conditioner outputs the total required heating capacity or the total required cooling capacity calculated.
  • the humidity, wind speed and other parameters of the air conditioner can be further adjusted to values corresponding to the output ratio.
  • step S105 may include the following steps:
  • the output cooling capacity of the air conditioner is determined by the output power of the compressor of the air conditioner, so the output ratio can be pre-installed, and multiple compressor gears can be set, such as: 0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, ten gears.
  • the embodiment of the present application provides an air conditioning adjustment method to obtain target parameters of a house.
  • the multiple target parameters include the floor space of the house, the ventilation area of the house, the number of designated household appliances of each type in the house, and the current number of people in the house.
  • each target parameter is multiplied by the corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter, and the heat exchange amount corresponding to each target parameter is summed to obtain the total heat exchange demand of the house.
  • the four factors including the floor space of the house, the ventilation area of the house, the number of designated household appliances in the house, and the number of people in the house, are comprehensively considered, and the precise adjustment of the air conditioner is realized, so that the air conditioner can be used by the people in the house. Provide the most comfortable environment.
  • FIG. 6 Another embodiment of the present application provides an air conditioner adjusting device, as shown in FIG. 6, including the following units:
  • the acquiring unit 601 is used to acquire multiple target parameters of the house.
  • multiple target parameters include the floor area of the house, the ventilation area of the house, the number of each type of designated household appliance in the house, and the number of people in the current house.
  • the first calculation unit 602 is configured to multiply each target parameter by a corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter.
  • the second calculation unit 603 is used to sum the heat exchange amount corresponding to each target parameter to obtain the total heat exchange amount of the house.
  • the third calculation unit 604 is used to calculate the ratio of the total heat exchange demand of the house to the rated heat exchange of the air conditioner to obtain the output ratio of the air conditioner.
  • the adjusting unit 605 is used to adjust the operating parameters of the air conditioner according to the output ratio of the air conditioner.
  • the acquiring unit in the air conditioning adjusting device acquires the floor area of the house, it is specifically used for:
  • the distance sensor includes three distance sensors installed on the front, left and right of the air conditioner.
  • the acquiring unit in the air conditioning adjusting device acquires the ventilation area of the house, it is used to:
  • the number of pixels belonging to the ventilation area is identified from the image.
  • the ventilation area in each image is determined.
  • the air conditioning adjusting device in another embodiment of the present application may further include the following units:
  • the first determining unit is used to determine the current season according to the current date.
  • the second acquiring unit is used to acquire the coefficients in the current season corresponding to each target parameter.
  • the first calculation unit in the embodiment of the present application includes:
  • the first calculation subunit is used to multiply each target parameter by the corresponding coefficient in the current season to obtain the heat exchange amount corresponding to each target parameter.
  • the adjusting unit in the air conditioning adjusting device of another embodiment of the present application includes the following units:
  • the second determining unit 701 is configured to determine a target compressor gear that matches the output ratio of the air conditioner from a plurality of preset compressor gears.
  • the adjustment subunit 702 is used to adjust the compressor gear of the air conditioner to the target compressor gear.
  • the first obtaining unit obtains target parameters of the house, and the multiple target parameters include the floor space of the house, the ventilation area of the house, the number of each type of designated household appliance in the house, and the current house The number of people, then the first calculation unit multiplies each target parameter by the corresponding coefficient to obtain the heat exchange amount corresponding to each target parameter, and the second calculation unit sums the heat exchange amount corresponding to each target parameter to obtain the house’s The total demand for heat exchange. Then, the third calculation unit calculates the ratio of the total required heat exchange of the house to the rated heat exchange of the air conditioner to obtain the output ratio of the air conditioner, and then the adjustment unit adjusts the operating parameters of the air conditioner according to the output ratio of the air conditioner.
  • the four factors including the floor space of the house, the ventilation area of the house, the number of designated household appliances in the house, and the number of people in the house, are comprehensively considered, and the precise adjustment of the air conditioner is realized, so that the air conditioner can be used by the people in the house. Provide the most comfortable environment.
  • Another embodiment of the present application provides an air conditioner, including the air conditioner adjusting device, image sensor, and distance sensor provided in the above embodiments.
  • the specific working process and functions of the air conditioning adjusting device, the image sensor, and the distance sensor can be referred to the specific description of the foregoing method embodiment and device embodiment, and will not be repeated here.
  • FIG. 8 Another embodiment of the present application provides an electronic device, as shown in FIG. 8, including:
  • the memory 801 is used to store a program, and the processor 802 is used to execute a program stored in the memory 801. When the program is executed, it is specifically used to implement the air conditioning adjustment method provided by any one of the foregoing embodiments.
  • Another embodiment of the present application provides a computer storage medium for storing a computer program, and when the computer program is executed, it is used to implement the air conditioning adjustment method described in any one of the above items.
  • Computer storage media includes permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, CD-ROM, digital versatile disc (DVD) or other optical storage, magnetic Cassette tape, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种空调的调节方法及装置、电子设备、计算机存储介质,其特征在于,其中,所述方法包括:获取房屋的多个目标参数;其中,所述多个目标参数包括所述房屋的占地面积、所述房屋的通风面积、以及所述房屋内每类指定家电的数量、当前所述房屋内的人数;将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量;对各个所述目标参数对应的换热量进行求和,得到所述房屋的总需求换热量;计算所述房屋的总需求换热量与空调的额定换热量的比值,得到所述空调的输出比率;根据所述空调的输出比率调节所述空调的运行参数。综合考虑占地面积、通风面积、多类指定家电的数量、人数四个因素,实现对空调的精确调节。

Description

空调的调节方法及装置、电子设备、计算机存储介质
本申请基于申请号为202011103467.0、申请日为2020年10月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调调节技术领域,特别涉及一种空调的调节方法及装置、电子设备、计算机存储介质。
背景技术
随着智能家居理念的不断推广,许多家居设备都开始实现了智能化控制。空调作为当前家居设备中至关重要的一个电器,不仅已实现了通过移动电子设备进行控制,而且已实现了自动化调节,不需要人工进行控制。
由于,房屋内的人数越多,所需要的制冷量或制热量越多,所以当前空调的智能化自动调节,主要是根据当前房屋内的人数调节参数,以使得室内的温度、湿度等达到相应的数值。其中,当前房屋内的人数越多,则调节空调的输出功率越高,从而使得当前室内的温度、湿度等可以给当前室内的人数提供舒适的环境。
但是,对房屋内的温度、湿度等环境参数造成较大影响的因素不仅限于人数,因此当前智能化调节方式,无法做到精确调节,从而不能使得空调为房屋内的人员提供最舒适的环境。
发明内容
基于上述现有技术的不足,本申请提供了一种空调的调节方法及装置、电子设备、计算机存储介质,以解决现有的调节方式,无法实现精确调节的问题。
为了实现上述目的,本申请提供了以下技术方案:
本申请第一方面提供了一种空调的调节方法,包括:
获取房屋的多个目标参数;其中,所述多个目标参数包括所述房屋的占地面积、所述房屋的通风面积、以及所述房屋内每类指定家电的数量、当前所述房屋内的人数;
将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量;
对各个所述目标参数对应的换热量进行求和,得到所述房屋的总需求换热量;
计算所述房屋的总需求换热量与空调的额定换热量的比值,得到所述空调的输出比率;
根据所述空调的输出比率调节所述空调的运行参数。
可选地,在上述的空调的调节方法中,获取所述房屋的占地面积的方式,包括:
获取距离传感器测得的所述空调与前墙的距离、所述空调与左墙的距离、以及所述空调与右墙的距离;其中,所述距离传感器包括安装在所述空调的前面、左面以及右面的三个距离传感器;
计算所述空调与左墙的距离、所述空调与右墙的距离以及所述空调的长度的总和,得到所述房屋的长;
将所述空调与前墙的距离加上所述空调的宽度,得到所述房屋的宽;
将所述房屋的长乘以所述房屋的宽,得到所述房屋的占地面积。
可选地,在上述的空调的调节方法中,获取所述房屋的通风面积的方式,包括:
获取图像传感器拍摄的所述房屋的多张图像;
分别针对每张所述图像,从所述图像中识别出属于通风面积的像素的数量;
根据每张所述图像的像素的总数量与每张所述图像中属于通风面积的像素的数量比值,确定各张所述图像中的通风面积;
计算各张所述图像中的通风面积的总和,得到所述房屋的通风面积。
可选地,在上述的空调的调节方法中,所述将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量之前,还包括:
根据当前日期确定当前季节;
获取各个所述目标参数对应的所述当前季节下的系数;
其中,所述将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量,包括:
将各个所述目标参数乘以对应的所述当前季节下的系数,得到各个所述目标参数对应的换热量。
可选地,在上述的空调的调节方法中,所述根据所述空调的输出比率调节所述空调的运行参数,包括:
从多个预设的压缩机档位中,确定出与所述空调的输出比率匹配的目标压缩机档位;
将所述空调的压缩机档位调整至所述目标压缩机档位。
本申请第二方面提供了一种空调的调节装置,包括:
获取单元,用于获取房屋的多个目标参数;其中,所述多个目标参数包括所述房屋的占地面积、所述房屋的通风面积、以及所述房屋内每类指定家电的数量、当前所述房屋内的人数;
第一计算单元,用于将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量;
第二计算单元,用于对各个所述目标参数对应的换热量进行求和,得到所述房屋的总需求换热量;
第三计算单元,用于计算所述房屋的总需求换热量与空调的额定换热量的比值,得到所述空调的输出比率;
调节单元,用于根据所述空调的输出比率调节所述空调的运行参数。
可选地,在上述的空调的调节装置中,所述获取单元获取所述房屋的占地面积时,用于:
获取距离传感器测得的所述空调与前墙的距离、所述空调与左墙的距离、以及所述空调与右墙的距离;其中,所述距离传感器包括安装在所述空调的前面、左面以及右面的三个距离传感器;
计算所述空调与左墙的距离、所述空调与右墙的距离以及所述空调的长度的总和,得到所述房屋的长;
将所述空调与前墙的距离加上所述空调的宽度,得到所述房屋的宽;
将所述房屋的长乘以所述房屋的宽,得到所述房屋的占地面积。
可选地,在上述的空调的调节装置中,所述获取单元获取所述房屋的通风面积时,用于:
获取图像传感器拍摄的所述房屋的多张图像;
分别针对每张所述图像,从所述图像中识别出属于通风面积的像素的数量;
根据每张所述图像的像素的总数量与每张所述图像中属于通风面积的像素的数量比值,确定各张所述图像中的通风面积;
计算各张所述图像中的通风面积的总和,得到所述房屋的通风面积。
可选地,在上述的空调的调节装置中,还包括:
第一确定单元,用于根据当前日期确定当前季节;
第二获取单元,用于获取各个所述目标参数对应的所述当前季节下的系数;
其中,所述第一计算单元,包括:
第一计算子单元,用于将各个所述目标参数乘以对应的所述当前季节下的系数,得到各个所述目标参数对应的换热量。
可选地,在上述的空调的调节装置中,所述调节单元,包括:
第二确定单元,用于从多个预设的压缩机档位中,确定出与所述空调的输出比率匹配的目标压缩机档位;
调节子单元,用于将所述空调的压缩机档位调整至所述目标压缩机档位。
本申请第三方面提供了一种电子设备,包括:
存储器和处理器;
其中,所述存储器用于存储程序;
所述处理器用于执行所述程序,所述程序被执行时,具体用于实现如上述任意一项所述的空调的调节方法。
本申请第四方面提供了一种计算机存储介质,用于存储计算机程序,所述计算机程序被执行时,用于实现如上述任意一项所述的空调的调节方法。
本申请提供的一种空调的调节方法,获取房屋的目标参数,多个目标参数包括房屋的 占地面积房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数,然后将各个目标参数乘以对应的系数,得到各个目标参数对应的换热量,并对各个目标参数对应的换热量进行求和,从而得到房屋的总需求换热量。然后,计算房屋的总需求换热量与空调的额定换热量的比值,得到空调的输出比率,进而根据空调的输出比率调节空调的运行参数。从而综合考虑了房屋的占地面积、房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数四个因素,实现对空调的精确调节,使得空调可以为房屋内的人员提供最舒适的环境。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种空调的调节方法的流程示意图;
图2为本申请实施例提供的一种获取房屋的占地面积的方法的流程示意图;
图3为本申请实施例提供的一种获取房屋的占地面积的示意图;
图4为本申请实施例提供的一种获取房屋的通风面积的方法的流程示意图;
图5为本申请另一实施例提供的一种具体调节方法的流程示意图;
图6为本申请另一实施例提供的一种空调的调节装置的结构示意图;
图7为本申请另一实施例提供的一种调节单元的结构示意图;
图8为本申请另一实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例提供了一种空调的调节方法,如图1所示,具体包括以下步骤:
S101、获取房屋的多个目标参数,多个目标参数包括房屋的占地面积、房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数。
需要说明的是,房屋的通风面积主要指的房屋中面积较大的,与外界相通且可进行大量热量交换的面积,通常指的是房屋中的窗户以及门等通风面积。指定类型的家电可以是具有较大输出功率的,且一般家庭都具有购买的家电,例如电视、电视、冰箱等。
具体的,在启动空调时,获取房屋当前的各个目标参数。具体获取房屋内的各类指定家电的数量以及当前房屋内的人数的方式,可以是通过图像传感器检测得到。对于获取房屋内的人数的方式,已是现有中相对常用的技术手段,此处不再赘述。但是,由于房屋内的人数变动性可能比较大,所以对于房屋内的人数可以在关闭空调前,实时获取并在人数出现变化时,相应地调节空调的参数。对于,获取房屋内的各类指定家电的数量,可以是通过图像传感器获取房屋的图像,并输入预先通过多张包含指定类型家电的图像训练得到的模型中,从而识别出获取到的房屋的图像中包含的各类指定家电,进而确定出各类指定家电的数量。
可选地,如图2所示,获取房屋的占地面积的具体方式,包括以下步骤:
S201、获取距离传感器测得空调与前墙的距离、空调与左墙的距离、以及空调与右墙的距离,距离传感器包括安装在空调的前面、左面以及右面的三个距离传感器。
需要说明的是,本申请实施例中空调的前面指的是在空调设置有显示屏、出风口的一面。相应的,以空调的前面为基准,在前面左边的一面为空调的左面,在空调前面的右边的一面为空调的右面,而对着空调的前面的墙面为房屋的前墙;对着空调的右面的墙面为房屋的右墙;对着空调的左面的墙面为房屋的左墙。
具体如图3所示,通过安装在空调的前面的距离传感器测得空调的前面与房屋的前墙的距离y1;通过安装在空调的右面的距离传感器测得空调与右墙的距离x1;通过安装在空调的左面的距离传感器测得空调与左墙的距离x2。
S202、计算空调与左墙的距离、空调与右墙的距离以及空调的长度的总和,得到房屋的长。
S203、将空调与前墙的距离加上空调的宽度,得到房屋的宽。
需要说明的是,步骤S202和步骤S203是两个独立的步骤,因此在步骤S202和执行步骤S203仅是本申请实施例中的一种可选地执行顺序,也可以同时执行两个步骤,或者先执行步骤S203,再执行步骤S202。
具体的,在本申请实施例中,预先存储有空调的长度以及空调的宽度,其中,空调的长度为空调的左面到空调右面的距离,而空调的宽度则为空调的前面至空调的后面的距离。所以具体同样如图3,空调与左墙的距离x2、空调与右墙的距离x1以及空调的长度的总和L1,三者的总和为房屋的长度。而空调与前墙的距离y1与空调的宽度L2的和,为房屋的宽度。
S204、将房屋的长乘以房屋的宽,得到房屋的占地面积。
需要说明的是,一般的房屋都为矩形或等同于矩形,所以通过本申请实施例的方式,可以准确获取到的房屋面积。当然,若房屋为非矩形,存在距离传感无法准确测量到的面积,则允许通过人工测量得到这部分面积并上传。从而可以在执行步骤S204后,若判断出存在有上传的面积,则将计算得到的房屋的占地面积加上传的面积,得到最终的房屋的占地面积。
可选地,图4示出了一种具体获取房屋的通风面积的方法,具体包括以下步骤:
S401、获取图像传感器拍摄的房屋的多张图像。
可选地,图像传感器同样可以设置于空调上。
S402、分别针对每张图像,从图像中识别出属于通风面积的像素的数量。
可选地,可以利用通风面处的亮度相对较亮,且面积相对较大的特点,从图像中识别出通风面积的像素的数量。
S403、根据每张图像的像素的总数量与每张图像中属于通风面积的像素的数量比值,确定各张图像中的通风面积。
具体的,针对每张图像,计算该图像中的各个通风面积对应的像素的数量与该图像的像素的总数量的比值,然后将该图像对应的真实面积乘以计算得到的比值,从而得到各个通风面积。
需要说明的是,这只是其中一种可选地的方式,可以是先确定出图像中通风面积长度以及宽度上的像素的数量,然后计算通风面积长度以及宽度上的像素的数量与相应的整个图像的长度以及宽度的比值,最后根据计算得到的比值,以及图像对应的房屋内的真实长度和宽度,得到通风面积的长度和宽度,进而计算得到通风面积。又或者直接根据图像的大小与房屋的实际大小的比例,计算得到通风面积的大小。
S404、计算各张图像中的通风面积的总和,得到房屋的通风面积。
S102、将各个目标参数乘以对应的系数,得到各个目标参数对应的换热量。
可选地,房屋的占地面积对应的系数,一般来说是以每平方米配制冷量150-220W计算空调的制冷量,人体能具有较好的体验,所以具体可以采用每平方米配制冷量150-220W范围中的一个制冷量,来确定房屋的占地面积对应的系数,例如采用该范围中的中间数值170W,由于计算过程主要采用的单位为千瓦,所以房屋的占地面积对应的系数为0.17。当然,这也会受气所处的环境有影响,比如密封保温条件差的,制冷量应适当大一些,密封保温条件好的,制冷量可小一些,因此允许用户对该系数进行上调或下调。
对于房屋的通风面积对应的系数,则可以根据通风面积处的材料的换热系数,以及室内外间的平均温差确定。例如,对于房屋的窗户,玻璃的换热系数通常为3.2W/(m2·℃),夏季的室内外温差平均为10℃,冬季的室内外温差平均则为20℃,则玻璃窗户一年内的面积换热系数为32W/每平方米~64W/每平方米,所以可以选取中间系数50w/每平方米作为房屋的通风面积对应的系数,若计算过程采用的单位为千瓦,则相应的房屋的通风面积对应的系数为0.05。
对于各类型的指定家电对应的系数,则可以预先根据各个类型的指定家电工作时的平均散热量计算得到。而对于当前房屋内的人数对应系数,则同样可以预先通过实验确定,通常设置为0.12。
由于各个季节的环境温度不同,并且对于房屋的温度、湿度等要求也不相同,因此在不同季节可以设置不同的系数,以实现对空调进行相应季节下的调节,因此在将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量之前,还可以先进一步执行:
根据当前日期确定当前季节,并获取各个目标参数对应的当前季节下的系数。
相应的,此时步骤S102的具体实施方式为:将各个目标参数乘以对应的当前季节下的系数,得到各个目标参数对应的换热量。
例如,依据上述通风面积对应的系数的确定方法的示例,玻璃窗户在夏季对应的系数可以设置为0.032,在冬季则可以设置为0.064,从而使得室内的温度更佳。
S103、对各个目标参数对应的换热量进行求和,得到房屋的总需求换热量。
还需要说明的是,由于空调可以制冷也可以制热。因此可选地,目标参数对应的系数可以是正数,也可以是负数,例如点灯、电视、冰箱在夏季对应的分别为:0.01、0.02、0.08,而在冬季在分别为:-0.01、-0.02、-0.08。所以,若得到的总需求换热量为正数,则说明该总需求换热量为总需求制冷量,若得到的总需求换热量为负数,则说明该总需求换热量为总需求制热量。
S104、计算房屋的总需求换热量与空调的额定换热量的比值,得到空调的输出比率。
S105、根据空调的输出比率调节空调的运行参数。
具体的,根据输出比例,空调的运行参数,具体可以是调节空调的输出功率,从而使得空调输出计算得到的总需求制热量或总需求制冷量。相应的,可以进一步调节空调的湿度、风速等参数为与该输出比率相对应的数值。
可选地,在进行制冷时,如图5所示,步骤S105的一种具体实施方式,可以包括以下步骤:
S501、从多个预设的压缩机档位中,确定出与空调的输出比率匹配的目标压缩机档位。
空调输出的制冷量由空调的压缩机的输出功率决定,因此可以预先安装输出比率,设置有多个压缩机档位,如设置有:0%,20%,30%,40%,50%,60%,70%,80%,90%,100%,十个档位。
S502、将空调的压缩机档位调整至目标压缩机档位。
本申请实施例提供了一种空调的调节方法,获取房屋的目标参数,多个目标参数包括房屋的占地面积房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数,然后将各个目标参数乘以对应的系数,得到各个目标参数对应的换热量,并对各个目标参数对应的换热量进行求和,从而得到房屋的总需求换热量。然后,计算房屋的总需求换热量与空调的额定换热量的比值,得到空调的输出比率,进而根据空调的输出比率调节空调 的运行参数。从而综合考虑了房屋的占地面积房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数四个因素,实现了对空调的精确调节,使得空调可以为房屋内的人员提供最舒适的环境。
本申请另一实施例提供了一种空调的调节装置,如图6所示,包括以下单元:
获取单元601,用于获取房屋的多个目标参数。
其中,多个目标参数包括房屋的占地面积、房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数。
第一计算单元602,用于将各个目标参数乘以对应的系数,得到各个目标参数对应的换热量。
第二计算单元603,用于对各个目标参数对应的换热量进行求和,得到房屋的总需求换热量。
第三计算单元604,用于计算房屋的总需求换热量与空调的额定换热量的比值,得到空调的输出比率。
调节单元605,用于根据空调的输出比率调节空调的运行参数。
可选地,空调的调节装置中的获取单元获取房屋的占地面积时,具体用于:
获取距离传感器测得的空调与前墙的距离、空调与左墙的距离、以及空调与右墙的距离。其中,距离传感器包括安装在空调的前面、左面以及右面的三个距离传感器。
计算空调与左墙的距离、空调与右墙的距离以及空调的长度的总和,得到房屋的长。
将空调与前墙的距离加上空调的宽度,得到房屋的宽。
将房屋的长乘以房屋的宽,得到房屋的占地面积。
可选地,空调的调节装置中的获取单元获取房屋的通风面积时,用于:
获取图像传感器拍摄的房屋的多张图像。
分别针对每张图像,从图像中识别出属于通风面积的像素的数量。
根据每张图像的像素的总数量与每张图像中属于通风面积的像素的数量比值,确定各张图像中的通风面积。
计算各张图像中的通风面积的总和,得到房屋的通风面积。
可选地,本申请另一实施例中的空调的调节装置中,还可以进一步包括以下单元:
第一确定单元,用于根据当前日期确定当前季节。
第二获取单元,用于获取各个目标参数对应的当前季节下的系数。
其中,本申请实施例中的第一计算单元,包括:
第一计算子单元,用于将各个目标参数乘以对应的当前季节下的系数,得到各个目标参数对应的换热量。
可选地,本申请另一实施例的空调的调节装置中的调节单元,如图7所示,包括以下单元:
第二确定单元701,用于从多个预设的压缩机档位中,确定出与空调的输出比率匹配 的目标压缩机档位。
调节子单元702,用于将空调的压缩机档位调整至目标压缩机档位。
需要说明的是,本申请上述实施例提供的各个单元的具体工作过程可相应地参考上述方法实施例中的对应的步骤的实施方式,此处不再赘述。
本申请提供的一种空调的调节装置,第一获取单元获取房屋的目标参数,多个目标参数包括房屋的占地面积房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数,然后第一计算单元将各个目标参数乘以对应的系数,得到各个目标参数对应的换热量,并由第二计算单元对各个目标参数对应的换热量进行求和,从而得到房屋的总需求换热量。然后,第三计算单元计算房屋的总需求换热量与空调的额定换热量的比值,得到空调的输出比率,进而由调节单元根据空调的输出比率调节空调的运行参数。从而综合考虑了房屋的占地面积房屋的通风面积、以及房屋内每类指定家电的数量、当前房屋内的人数四个因素,实现了对空调的精确调节,使得空调可以为房屋内的人员提供最舒适的环境。
本申请另一实施例提供了一种空调,包括上述实施例提供的空调的调节装置、图像传感器、距离传感器。其中,空调的调节装置、图像传感器、距离传感器的具体工作过程及作用,可相应的参考上述方法实施例以及装置实施例的具体说明,此处不再赘述。
本申请另一实施例提供了一种电子设备,如图8所示,包括:
存储器801和处理器802。
其中,存储器801用于存储程序,处理器802用于执行存储器801存储的程序,该程序被执行时,具体用于实现如上述任意一个实施例提供的空调的调节方法。
本申请另一实施例提供了一种计算机存储介质,用于存储计算机程序,所述计算机程序被执行时,用于实现如上述任意一项所述的空调的调节方法。
计算机存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认 为超出本申请的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种空调的调节方法,其特征在于,包括:
    获取房屋的多个目标参数;其中,所述多个目标参数包括所述房屋的占地面积、所述房屋的通风面积、以及所述房屋内每类指定家电的数量、当前所述房屋内的人数;
    将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量;
    对各个所述目标参数对应的换热量进行求和,得到所述房屋的总需求换热量;
    计算所述房屋的总需求换热量与空调的额定换热量的比值,得到所述空调的输出比率;
    根据所述空调的输出比率调节所述空调的运行参数。
  2. 根据权利要求1所述的方法,其特征在于,获取所述房屋的占地面积的方式,包括:
    获取距离传感器测得的所述空调与前墙的距离、所述空调与左墙的距离、以及所述空调与右墙的距离;其中,所述距离传感器包括安装在所述空调的前面、左面以及右面的三个距离传感器;
    计算所述空调与左墙的距离、所述空调与右墙的距离以及所述空调的长度的总和,得到所述房屋的长;
    将所述空调与前墙的距离加上所述空调的宽度,得到所述房屋的宽;
    将所述房屋的长乘以所述房屋的宽,得到所述房屋的占地面积。
  3. 根据权利要求1所述的方法,其特征在于,获取所述房屋的通风面积的方式,包括:
    获取图像传感器拍摄的所述房屋的多张图像;
    分别针对每张所述图像,从所述图像中识别出属于通风面积的像素的数量;
    根据每张所述图像的像素的总数量与每张所述图像中属于通风面积的像素的数量比值,确定各张所述图像中的通风面积;
    计算各张所述图像中的通风面积的总和,得到所述房屋的通风面积。
  4. 根据权利要求1所述的方法,其特征在于,所述将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量之前,还包括:
    根据当前日期确定当前季节;
    获取各个所述目标参数对应的所述当前季节下的系数;
    其中,所述将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量,包括:
    将各个所述目标参数乘以对应的所述当前季节下的系数,得到各个所述目标参数对应的换热量。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述空调的输出比率调节所述空调的运行参数,包括:
    从多个预设的压缩机档位中,确定出与所述空调的输出比率匹配的目标压缩机档位;
    将所述空调的压缩机档位调整至所述目标压缩机档位。
  6. 一种空调的调节装置,其特征在于,包括:
    获取单元,用于获取房屋的多个目标参数;其中,所述多个目标参数包括所述房屋的占地面积、所述房屋的通风面积、以及所述房屋内每类指定家电的数量、当前所述房屋内的人数;
    第一计算单元,用于将各个所述目标参数乘以对应的系数,得到各个所述目标参数对应的换热量;
    第二计算单元,用于对各个所述目标参数对应的换热量进行求和,得到所述房屋的总需求换热量;
    第三计算单元,用于计算所述房屋的总需求换热量与空调的额定换热量的比值,得到所述空调的输出比率;
    调节单元,用于根据所述空调的输出比率调节所述空调的运行参数。
  7. 根据权利要求6所述的装置,其特征在于,还包括:
    第一确定单元,用于根据当前日期确定当前季节;
    第二获取单元,用于获取各个所述目标参数对应的所述当前季节下的系数;
    其中,所述第一计算单元,包括:
    第一计算子单元,用于将各个所述目标参数乘以对应的所述当前季节下的系数,得到各个所述目标参数对应的换热量。
  8. 根据权利要求6所述的装置,其特征在于,所述调节单元,包括:
    第二确定单元,用于从多个预设的压缩机档位中,确定出与所述空调的输出比率匹配的目标压缩机档位;
    调节子单元,用于将所述空调的压缩机档位调整至所述目标压缩机档位。
  9. 一种电子设备,其特征在于,包括:
    存储器和处理器;
    其中,所述存储器用于存储程序;
    所述处理器用于执行所述程序,所述程序被执行时,具体用于实现如权利要求1至5任意一项所述的空调的调节方法。
  10. 一种计算机存储介质,其特征在于,用于存储计算机程序,所述计算机程序被执行时,用于实现如权利要求1至5任意一项所述的空调的调节方法。
PCT/CN2020/130609 2020-10-15 2020-11-20 空调的调节方法及装置、电子设备、计算机存储介质 WO2021223404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011103467.0A CN112268352A (zh) 2020-10-15 2020-10-15 空调的调节方法及装置、电子设备、计算机存储介质
CN202011103467.0 2020-10-15

Publications (1)

Publication Number Publication Date
WO2021223404A1 true WO2021223404A1 (zh) 2021-11-11

Family

ID=74338547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130609 WO2021223404A1 (zh) 2020-10-15 2020-11-20 空调的调节方法及装置、电子设备、计算机存储介质

Country Status (2)

Country Link
CN (1) CN112268352A (zh)
WO (1) WO2021223404A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11893080B2 (en) * 2021-02-12 2024-02-06 Distech Controls Inc. Computing device and method using a neural network to determine whether or not to process images of an image flow
CN113819596B (zh) * 2021-08-23 2023-01-13 青岛海尔空调器有限总公司 一种空调控制方法及空调器
CN114995543B (zh) * 2022-05-31 2024-05-10 深圳市宏电技术股份有限公司 一种通过人工智能ai控制环境调节设备的方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128481A (zh) * 2010-01-20 2011-07-20 珠海格力电器股份有限公司 空调器及其控制方法及装置
JP2012107778A (ja) * 2010-11-15 2012-06-07 Shimizu Corp 空調制御装置、空調制御方法、空調制御プログラム
CN103839283A (zh) * 2014-03-11 2014-06-04 浙江省特种设备检验研究院 一种小型不规则物体的面积周长无损测量方法
JP2015087092A (ja) * 2013-11-01 2015-05-07 株式会社日立製作所 運転計画作成装置及び運転計画作成方法
CN104976741A (zh) * 2015-07-23 2015-10-14 魏强 一种中央空调控制方法
CN108444064A (zh) * 2018-04-19 2018-08-24 广东美的暖通设备有限公司 空调系统及其控制方法
CN108761473A (zh) * 2018-03-29 2018-11-06 广东美的制冷设备有限公司 空调器的房间大小检测方法、空调器和计算机存储介质
CN110986287A (zh) * 2019-10-31 2020-04-10 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143970A (zh) * 2017-04-18 2017-09-08 珠海格力电器股份有限公司 空调选型方法和装置
EP3502582B1 (en) * 2017-12-22 2023-05-10 Mitsubishi Electric Corporation Method for controlling a hvac-apparatus, control unit and use of a control unit
CN108679800B (zh) * 2018-03-29 2020-02-07 珠海格力电器股份有限公司 空调的控制方法和装置
CN109668264B (zh) * 2018-12-25 2021-06-18 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109899930B (zh) * 2019-01-29 2020-11-24 国家电网有限公司 大规模公共楼宇中央空调参与电网调峰的组合调控方法
CN110111382B (zh) * 2019-03-21 2021-09-14 北京弘和中科健康科技发展有限公司 不规则区域面积计算方法、装置、计算机设备和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128481A (zh) * 2010-01-20 2011-07-20 珠海格力电器股份有限公司 空调器及其控制方法及装置
JP2012107778A (ja) * 2010-11-15 2012-06-07 Shimizu Corp 空調制御装置、空調制御方法、空調制御プログラム
JP2015087092A (ja) * 2013-11-01 2015-05-07 株式会社日立製作所 運転計画作成装置及び運転計画作成方法
CN103839283A (zh) * 2014-03-11 2014-06-04 浙江省特种设备检验研究院 一种小型不规则物体的面积周长无损测量方法
CN104976741A (zh) * 2015-07-23 2015-10-14 魏强 一种中央空调控制方法
CN108761473A (zh) * 2018-03-29 2018-11-06 广东美的制冷设备有限公司 空调器的房间大小检测方法、空调器和计算机存储介质
CN108444064A (zh) * 2018-04-19 2018-08-24 广东美的暖通设备有限公司 空调系统及其控制方法
CN110986287A (zh) * 2019-10-31 2020-04-10 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调

Also Published As

Publication number Publication date
CN112268352A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2021223404A1 (zh) 空调的调节方法及装置、电子设备、计算机存储介质
Vanhoutteghem et al. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses
CN107084478B (zh) 空调器制冷运行控制方法
CN107084477B (zh) 空调器制热运行控制方法
Ye et al. The energy saving index and the performance evaluation of thermochromic windows in passive buildings
CN108679800B (zh) 空调的控制方法和装置
CN107355941A (zh) 空调控制方法及装置
CN107560113A (zh) 一种智能空调器控制方法及空调器
US20150148976A1 (en) Method of Predicting the Energy Consumption of a Building
Sobhani et al. Optimization of the renewable energy system for nearly zero energy buildings: A future-oriented approach
CN108534315B (zh) 空调控制方法、装置、空调系统、存储介质及控制设备
US20130066585A1 (en) Predicted mean vote estimating device and computer program product
CN107192085B (zh) 一种空调器制冷运行控制方法
WO2018188522A1 (zh) 一种空调器制热运行控制方法
CN108302732A (zh) 空调控制方法及空调器
CN109711643B (zh) 一种建筑物的负荷预测方法、装置、可读介质及电子设备
Franchini et al. Monitored performance of the first energy+ autonomous building in Dubai
Medved et al. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system
Aktacir et al. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments
WO2018188430A1 (zh) 在线检测空调制热能效比和制热量的方法
US20150276251A1 (en) Computer-Implemented System And Method For Externally Evaluating Sizing Of An Indoor Climate Control System In A Building
TWI524293B (zh) 環境控制方法及其系統
CN112944615A (zh) 一种空调控制方法、装置、设备及存储介质
Michailidis et al. Optimization-based active techniques for energy efficient building control part ii: Real-life experimental results
Bertagnolio et al. Building and HVAC System simulation with the help of an engineering equation solver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934662

Country of ref document: EP

Kind code of ref document: A1