WO2021223379A1 - 石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用 - Google Patents

石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用 Download PDF

Info

Publication number
WO2021223379A1
WO2021223379A1 PCT/CN2020/124356 CN2020124356W WO2021223379A1 WO 2021223379 A1 WO2021223379 A1 WO 2021223379A1 CN 2020124356 W CN2020124356 W CN 2020124356W WO 2021223379 A1 WO2021223379 A1 WO 2021223379A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
condenser
cylinder
turbine
Prior art date
Application number
PCT/CN2020/124356
Other languages
English (en)
French (fr)
Inventor
周文杰
文磊
方心骑
甘智华
Original Assignee
杭州电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010372890.4A external-priority patent/CN111664611B/zh
Priority claimed from CN202010372889.1A external-priority patent/CN111692781A/zh
Application filed by 杭州电子科技大学 filed Critical 杭州电子科技大学
Publication of WO2021223379A1 publication Critical patent/WO2021223379A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type

Definitions

  • the invention belongs to the technical field of oil exploitation, in particular to cooling of drilling tools in oil exploitation operations, relates to a circulating cooling device for oil exploitation drilling tools, and the application of n-octane as a refrigerant in a refrigeration cycle.
  • oil drilling equipment In oil extraction operations, it is necessary to use oil drilling equipment to drill through multiple sets of formations from the ground along the designed track to reach a predetermined oil and gas layer that is thousands of meters deep underground.
  • the average temperature gradient of the earth is 3°C/100m, that is, every 100 meters deep from the surface, the temperature will increase by about 3°C.
  • the bottom hole temperature can reach 200-250°C.
  • the drilling fluid passing through the drilling tool is affected by the formation temperature, and the temperature is often as high as about 200°C.
  • the outside is a drill collar with a larger inner diameter
  • the inside is a pressure-resistant cylinder
  • the outside of the pressure-resistant cylinder is coated with heat insulation
  • the inside is a probe pipe.
  • the tool while drilling is placed on the probe pipe support.
  • the drilling fluid passes through the gap between the drill collar and the compression cylinder from top to bottom, and then flows upward from the outside of the drill collar.
  • the electronic equipment while drilling is generally installed in a pressure-resistant barrel near the drill bit.
  • the normal operation of the drill bit requires a large amount of drilling fluid to lubricate the drill bit.
  • the drilling fluid flows between the drill collar and the pressure-resistant barrel.
  • the temperature of the drilling fluid is as high as about 200°C.
  • the thermal insulation coating on the outside of the pressure cylinder alone cannot be insulated for a long time, which will cause the probe pipe in the drill tool to be damaged due to long-term high working temperature. , Can not operate normally.
  • high-pressure coolant generally It is high-pressure water
  • the high-pressure coolant is transported from the ground through pipelines to the vicinity of the drill bit which is thousands of meters underground. The construction and operation are difficult, and there are technical difficulties and the operating cost is relatively high. High, unable to achieve long-term efficient operation.
  • a refrigeration cycle device in a special temperature zone of 150°C ⁇ 250°C can be installed near the drilling tool.
  • the high-speed flow of drilling fluid is used to drive the turbine, and the rotation of the turbine is used to provide driving force to pressurize the gas. Power on to achieve cooling.
  • the refrigeration cycle device completes the thermodynamic cycle through the refrigerant.
  • the refrigerant absorbs heat from the object to be cooled at a low temperature, and then transfers it to cooling water or air at a higher temperature.
  • refrigerants that can be liquefied at room temperature or lower temperature are used, such as Freon (fluorine, chlorine, and bromine derivatives of saturated hydrocarbons), and azeotropic mixture of refrigerants (from two Kinds of Freon mixed in a certain proportion), hydrocarbons (propane, ethylene, etc.), ammonia, etc.; in gas compression refrigerators, gas refrigerants, such as air, hydrogen, helium, etc., are used.
  • the gas is always gaseous in the refrigeration cycle; in the absorption chiller, a binary solution composed of absorbent and refrigerant is used as the working fluid, such as ammonia and water, lithium bromide and water, etc.; the steam jet chiller uses water for refrigeration Agent.
  • the main technical indicators of refrigerants include saturated vapor pressure, specific heat, viscosity, thermal conductivity, surface tension, etc.
  • non-azeotropic mixtures After 1960, people have conducted a lot of experimental research on the application of non-azeotropic mixtures, and they have been used in the liquefaction and separation of natural gas.
  • the application of single-stage compression of non-azeotropic mixed working fluid can obtain very low evaporation temperature, and can increase the refrigeration capacity and reduce the power consumption. Its nature is directly related to the refrigeration effect, economy, safety and operation management of the refrigeration device, so the understanding of the nature of refrigerant requirements cannot be ignored.
  • the more common working media in traditional industry and daily life are some halogenated hydrocarbons (especially chlorofluorocarbons), but they are gradually eliminated because they will cause the ozone layer to void.
  • Other widely used working media include ammonia, sulfur dioxide and methane.
  • the refrigerant its performance requirements include: (1) It has excellent thermodynamic characteristics, so that it can operate in a given temperature region with a higher cycle efficiency.
  • the specific requirements are: the critical temperature is higher than the condensing temperature, the saturation pressure corresponding to the condensing temperature should not be too high, the standard boiling point is low, the specific heat capacity of the fluid is small, the adiabatic index is low, the heating capacity per unit volume is large, etc.; (2) Excellent heat Physical properties, specific requirements are: higher heat transfer coefficient, lower viscosity and lower density; (3) have good chemical stability, requiring working fluid to have good chemical stability at high temperatures to ensure the highest The working fluid does not decompose under working temperature; (4) It has good mutual solubility with lubricating oil; (5) The safe working fluid should be non-toxic, non-irritating, non-flammable and explosive; (6) Good electrical insulation ; (7) Economical requirements are low in working quality and easy to obtain.
  • An object of the present invention is to provide a circulating cooling device for oil extraction drilling tools, which utilizes high-speed flowing drilling fluid to drive the refrigeration circulating device to achieve cooling under the condition that the underground is not energized.
  • the present invention includes a turbine, a compressor, a condenser, an expansion mechanism, an evaporator and a heat insulation cylinder; wherein the turbine, the compressor and the condenser are arranged outside the heat insulation cylinder, and the expansion mechanism and the evaporator are arranged inside the heat insulation cylinder.
  • the turbine and the compressor are arranged above the pressure-resistant cylinder, the rotation plane of the turbine is basically perpendicular to the flow direction of the drilling fluid, the turbine and the compressor are arranged coaxially, the high-speed flowing drilling fluid drives the turbine to rotate, and the turbine drives the compressor to work.
  • the condenser is arranged around the outer wall of the heat-insulating cylinder and is arranged between the drill collar and the heat-insulating cylinder; the outlet of the compressor is connected to the inlet of the condenser, and the outlet of the condenser is connected to the expansion mechanism through a pipeline passing through the heat-insulating cylinder Of imports.
  • the evaporator is arranged around the outer wall of the pressure cylinder to cool the pressure cylinder in the heat insulation cylinder and the electronic equipment while drilling inside; the inlet of the evaporator is connected to the outlet of the expansion mechanism, and the outlet of the evaporator passes through the heat insulation
  • the pipe of the cylinder is connected to the inlet of the compressor.
  • the compressor, the condenser, the expansion mechanism, and the evaporator constitute a refrigerant circuit for the refrigerant cycle.
  • the refrigeration cycle uses n-octane as the refrigerant.
  • Another object of the present invention is to provide a method for cooling drilling tools in oil extraction operations, in particular the application of n-octane as a refrigerant in a refrigeration cycle for cooling drilling tools.
  • n-Octane molecular formula C8H18
  • solvent gasoline and industrial gasoline as well as a solvent for printing inks, diluents for coating solvents, and butyl rubber
  • solvents and solvents for organic reactions such as olefin polymerization, or as solvents and chromatographic analysis standard materials, and also used in organic synthesis.
  • n-octane The boiling point of n-octane under normal pressure is 125.6°C, and it is in the state of superheated steam at 150°C ⁇ 250°C, and n-octane is an organic polymer with non-polarity, non-conductivity and corrosiveness. It is used as a refrigeration cycle working fluid. Can make the system run efficiently for a long time. In addition, the enthalpy difference after adiabatic expansion of n-octane is relatively high, reaching 100000 J/kg, which is suitable for the refrigerant of this high temperature cycle.
  • n-octane Specific physical properties include: melting point -56.8°C, boiling point 125-127°C, relative density 0.703g/ml, critical temperature 296°C, critical pressure 2.49MPa, viscosity 0.5466mPa ⁇ s (20°C), viscosity 0.5151mPa ⁇ s(25°C), surface tension 22.6dyne/cm.
  • the heat of evaporation of n-octane is 41.512kJ/mol (25°C)
  • the heat of fusion is 20.754kJ/mol
  • the heat of liquid generation is -250.12kJ ⁇ mol
  • the heat of gas generation is -208.59kJ ⁇ mol
  • the specific heat capacity (ideal liquid, 25°C, constant pressure )1.65kJ/(kg ⁇ K)
  • specific heat capacity liquid, 25°C, 101.3kPa) 2.23kJ/(kg ⁇ K)
  • thermal conductivity (30 °C) 128.250Mw/(m ⁇ K).
  • the gas-phase standard of n-octane claims heat (enthalpy) -208.5kJ/mol, gas-phase standard entropy 467.35J/mol ⁇ K, gas-phase standard free energy of formation 16.6kJ/mol, gas-phase standard hot melt 187.78J/mol ⁇ K,
  • the infrared spectrum of n-octane is shown in Figure 1.
  • n-octane when used as a refrigerant in a refrigeration cycle in a temperature range of 150°C to 250°C, n-octane is in a superheated vapor state in this temperature zone, and its boiling point is relatively low, and it has a stronger temperature in this temperature zone. Cooling potential.
  • the specific heat capacity, density and viscosity of n-octane are small, which meets the requirements of being used as a refrigerant.
  • a vapor compression refrigeration cycle which includes a compressor, a condenser, an expansion mechanism, an evaporator, a turbine, and a heat insulation tube.
  • the outlet of the compressor is connected to the inlet of the condenser
  • the outlet of the condenser is connected to the inlet of the expansion mechanism
  • the outlet of the expansion mechanism is connected to the inlet of the evaporator
  • the outlet of the evaporator is connected to the inlet of the compressor to form a refrigerant circuit for refrigerant circulation.
  • the turbine is coaxial with the compressor, the high-speed flowing drilling fluid drives the turbine to rotate, and the turbine drives the compressor to work.
  • the evaporator, the pressure-resistant cylinder that needs to be cooled, and the tool while drilling are arranged in the heat-insulating cylinder, and the condenser is arranged between the drill collar and the heat-insulating cylinder.
  • the expansion mechanism is an expansion valve or capillary tube.
  • the invention cools the drill tools that are mined through the refrigeration cycle, uses n-octane as the refrigeration cycle working medium, and is applied in the refrigeration cycle in the high temperature zone of 150°C to 250°C, which fills in the cooling of the oil extraction drill tools.
  • the technical vacancy meets the refrigeration needs of scenes such as oil drilling tools while drilling.
  • Figure 1 is the infrared spectrum of n-octane
  • Figure 2 is a schematic diagram of the structure of the circulating cooling device in the present invention.
  • Figure 3 is the T-s diagram of the theoretical cycle of n-octane working fluid. .
  • the oil extraction drilling tool includes a drill collar 1 and a pressure-resistant barrel 2.
  • the pressure-resistant barrel 2 is arranged in the drill collar 1, and the pressure-resistant barrel 2 is provided with a while-drilling electronic device 3.
  • the drilling fluid is poured down from the ground, reaches the position of the pressure-resistant cylinder 2, and flows through the gap between the drill collar 1 and the pressure-resistant cylinder 2.
  • the drilling fluid is maintained in circulation by the mud pump.
  • the high-pressure drilling fluid discharged from the mud pump passes through the ground high-pressure manifold, riser, hose, faucet, drill pipe, drill collar to the drill bit, and is sprayed from the drill nozzle to clean the bottom of the well and carry it.
  • the cuttings then flow upward along the annular space formed by the drill string and the well wall or casing, and flow into the mud pool after reaching the ground, and finally the mud pump is recycled.
  • the hollow arrow in Figure 1 is the flow direction of the drilling fluid.
  • the flow rate of the drilling fluid in the drill collar 1 is related to the consistency and density of the drilling fluid, and the drilling speed. The flow rate of the drilling fluid is extremely fast during work.
  • the refrigeration cycle device for cooling the drilling tool includes a turbine 4, a compressor 5, a condenser 6, an expansion mechanism 7, an evaporator 8 and a heat insulation cylinder 9.
  • the turbine 4, the compressor 5 and the condenser 6 are arranged outside the heat-insulating cylinder 9, and the expansion mechanism 7 and the evaporator 8 are arranged in the heat-insulating cylinder 6.
  • the turbine 4 and the compressor 5 are arranged above the pressure-resistant cylinder 2.
  • the rotation plane of the turbine 4 is substantially perpendicular to the flow direction of the drilling fluid.
  • the turbine 4 and the compressor 5 are arranged coaxially.
  • the high-speed flowing drilling fluid drives the turbine 4 to rotate.
  • the compressor 5 is driven to work.
  • the condenser 6 adopts a plate type condenser or a tube type condenser, is arranged around the heat insulation cylinder 9 and is arranged at a position between the drill collar 1 and the heat insulation cylinder 9.
  • the outlet of the compressor 5 is connected to the inlet of the condenser 6, and the outlet of the condenser 6 is connected to the inlet of the expansion mechanism 3 through a pipeline passing through the heat insulation cylinder 9, and the expansion mechanism 3 adopts an expansion valve or a capillary tube.
  • the evaporator 8 adopts a coil type evaporator and is arranged around the outer wall of the pressure-resistant cylinder 2 to cool the pressure-resistant cylinder 2 in the heat-insulating cylinder 9 and the electronic while drilling 3 inside.
  • the inlet of the evaporator 8 is connected to the outlet of the expansion mechanism 3, and the outlet of the evaporator 8 is connected to the inlet of the compressor 5 through a pipeline passing through the heat insulation cylinder 9.
  • the compressor 5, the condenser 6, the expansion mechanism 7, and the evaporator 8 constitute a refrigerant circuit for refrigerant circulation, and the refrigeration cycle uses n-octane as a refrigerant cycle working medium.
  • the arrow in the refrigerant circuit in FIG. 2 indicates the direction of the refrigerant n-octane.
  • the compressor compresses the sucked refrigerant vapor, and discharges the refrigerant vapor into a high-temperature and high-pressure gas state.
  • the condenser serves as a liquid heat exchanger for heat exchange between the refrigerant and the drilling fluid.
  • the condenser releases the heat of the high-temperature gas refrigerant discharged from the compressor into the drilling fluid, and the refrigerant reaches a high-pressure liquid state at the outlet of the condenser.
  • the expansion mechanism makes the refrigerant flowing out of the condenser expand and decompress into a low-temperature and low-pressure gas-liquid mixed state.
  • the evaporator is maintained at a set temperature in order to obtain heat exchange between the cooling target and the refrigerant, and evaporates the liquid refrigerant flowing in the system circuit to become a gaseous refrigerant.
  • the refrigerant in the evaporator absorbs heat to evaporate and vaporize.
  • the cooling target the pressure-resistant cylinder 2 and the electronic while-drilling device 3 inside
  • the refrigerant is cooled by heat exchange with the refrigerant.
  • the refrigeration cycle device uses n-octane as a refrigerant.
  • n-Octane molecular formula C8H18
  • n-octane molecular formula C8H18
  • the n-octane is organic high Molecule is non-polar, non-conductive and corrosive. It can be used as a refrigerant in the refrigeration cycle to make the system run efficiently for a long time.
  • the enthalpy difference after adiabatic expansion of n-octane is relatively high, reaching 100000 J/kg, so it is suitable for this high-temperature cycle refrigerant.
  • h 1 represents the specific enthalpy of the working fluid in the gas state at the compressor inlet
  • h 2 represents the specific enthalpy of the working fluid in the gas state at the compressor outlet
  • h 4 represents the specific enthalpy of the working fluid at the outlet of the expansion mechanism The specific enthalpy of the working fluid of the gas-liquid mixture.
  • the applicable temperature range is 150°C to 250°C
  • the refrigerant circulating in the refrigerant circuit 6 is n-octane
  • the boiling point of the n-octane working fluid at normal pressure is 125.6°C. It is in the state of superheated steam at 150°C ⁇ 250°C, which can meet the refrigeration needs in this temperature zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics (AREA)
  • Lubricants (AREA)

Abstract

石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用。所述冷却装置包括制冷剂回路和隔热筒(9),制冷剂回路中的涡轮(4)、压缩机(5)和冷凝器(6)设置在隔热筒(9)外,膨胀机构(7)和蒸发器(8)设置在隔热筒(9)内,涡轮(4)和压缩机(5)设置在抗压筒(2)上方,钻井液驱动涡轮(4)转动,涡轮(4)驱动压缩机(5)工作,冷凝器(6)设置在钻铤(1)与隔热筒(9)之间位置,蒸发器(8)环绕抗压筒(2)外壁设置,对抗压筒(2)内的随钻电子设备进行冷却。所述冷却装置在150℃~250℃高温温区采用正辛烷作为制冷循环工质,通过制冷循环对钻具进行冷却,满足了如石油钻井随钻仪器等场景的制冷需要。

Description

石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用 技术领域
本发明属于石油开采技术领域,具体是在石油开采作业中的对钻具的冷却,涉及了一种石油开采钻具循环冷却装置,以及正辛烷在的制冷循环中作为制冷剂的应用。
背景技术
在石油开采作业中,需要利用石油钻井设备从地面开始沿设计轨道钻穿多套地层到达地下数千米深的预定油气层。地球的平均地温梯度为3℃/100m,即从地表开始每深入100米,温度会提高约3摄氏度。以7000~8000m的深井为例,井底温度可达200~250℃。在钻井设备运行过程中,钻具中通过的钻井液受地层温度影响,温度往往高达200℃左右。在钻具结构中,外部为内径较大的钻铤,内部为抗压筒,抗压筒外部有隔热涂层,内部为探管,探管支架上放置随钻仪器。钻井液由钻铤和抗压筒之间的间隙自上而下通过,再从钻铤外部向上回流。随钻电子设备一般安装在钻头附近的抗压筒内,钻头正常工作需要大量钻井液润滑钻头,钻井液由钻铤与抗压筒之间流过。由于探管上的随钻仪器工作温度一般不能超过175℃,而钻井液的温度则高达200℃左右。在这种情况下,若不采取一些措施,单凭抗压筒外部的隔热涂层,是不能长时间隔热,会导致钻具中探管等仪器因长期处于过高工作温度下而损坏、无法正常运行。目前,行业中解决此问题的方法主要有两种:一种是定期更换钻具中的探管等随钻电子元器件,但是这种方法成本过高;另一种是利用高压冷却液(一般是高压水)对钻具中的随钻仪器进行冷却,高压冷却液从地面通过管道运输到地下数千米的的钻头附近,施工和运行难度均较大,存在技术上的困难并且运行成本较高,无法实现长时间高效运行。
可使用一种处于150℃~250℃特殊温区的制冷循环装置安装于钻具附近,利用钻井液的高速流动驱动涡轮,利用涡轮的转动提供驱动力对气体进行加压,即可实现井下不通电实现制冷。
制冷循环装置通过制冷剂完成热力循环。制冷剂在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,如氟利昂(饱和碳氢化合物的氟、氯、溴衍生物),共沸混合工质(由两种氟利昂按一定比例混合而成的共沸溶液)、碳氢化合物(丙烷、乙烯等)、氨 等;在气体压缩式制冷机中,使用气体制冷剂,如空气、氢气、氦气等,这些气体在制冷循环中始终为气态;在吸收式制冷机中,使用由吸收剂和制冷剂组成的二元溶液作为工质,如氨和水、溴化锂和水等;蒸汽喷射式制冷机用水作为制冷剂。制冷剂的主要技术指标有饱和蒸气压强、比热、粘度、导热系数、表面张力等。
1960年以后,人们对非共沸混合工质的应用进行了大量的试验研究,并已将其用于天然气的液化和分离等方面。应用非共沸混合工质单级压缩可得到很低的蒸发温度,且可增加制冷量,减少功耗。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。传统工业及生活中较常见的工作介质是部分卤代烃(尤其是氯氟烃),但由于它们会造成臭氧层空洞而逐渐被淘汰。其他应用较广的工作介质有氨气、二氧化硫和甲烷等。
对于制冷剂,其性能要求包括:(1)具有优良的热力学特性,以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等;(2)具有优良的热物理性能,具体要求为:较高的传热系数、较低的粘度及较小的密度;(3)具有良好的化学稳定性,要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解;(4)与润滑油有良好互溶性;(5)安全性工质应无毒、无刺激性、无燃烧性及爆炸性;(6)有良好的电气绝缘性;(7)经济性要求工质低廉,易于获得。
发明内容
本发明的一个目的是提供一种石油开采钻具循环冷却装置,利用高速流动的钻井液驱动制冷循环装置,实现井下不通电情况下完成制冷。
本发明包括涡轮、压缩机、冷凝器、膨胀机构、蒸发器和隔热筒;其中,涡轮、压缩机和冷凝器设置在隔热筒外,膨胀机构和蒸发器设置在隔热筒内。
所述的涡轮和压缩机设置在抗压筒上方,涡轮的转动平面基本垂直于钻井液的流动方向,涡轮与压缩机同轴设置,高速流动的钻井液驱动涡轮转动,涡轮驱动压缩机工作。
所述的冷凝器环绕隔热筒外壁设置,设置在钻铤与隔热筒之间位置;压缩机的出口连接冷凝器的进口,冷凝器的出口通过穿过隔热筒的管路连接膨胀机构的进口。
所述的蒸发器环绕抗压筒外壁设置,对隔热筒内的抗压筒以及内部的随钻电子设备进行冷却;蒸发器的进口连接膨胀机构的出口,蒸发器的出口通过穿过隔热筒的管路连接压缩机的进口。
压缩机、冷凝器、膨胀机构和蒸发器构成供制冷剂循环的制冷剂回路,该制冷循环采 用正辛烷作为制冷剂。
本发明的另一个目的就是提供一种方法实现对石油开采作业中的钻具进行冷却,具体是正辛烷在对钻具进行冷却的制冷循环中作为制冷剂的应用。
正辛烷(n-Octane,分子式C8H18)的外观与性状为无色透明液体,主要用作溶剂汽油、工业用汽油的成分,以及用作印刷油墨溶剂、涂料用溶剂的稀释剂、丁基橡胶用溶剂以及烯烃聚合等有机反应的溶剂,或用作溶剂及色谱分析标准物质,也用于有机合成。
正辛烷在常压下沸点为125.6℃,在150℃~250℃下处于过热蒸汽状态,并且正辛烷为有机高分子,具有无极性,无导电性和腐蚀性,用作制冷循环工质能够使系统长时间高效运行。另外,正辛烷绝热膨胀后的焓差值较高,达到100000J/kg,适合做此高温循环的制冷剂。
正辛烷具体物理特性包括:熔点-56.8℃、沸点125~127℃、相对密度0.703g/ml、临界温度296℃、临界压力2.49MPa、黏度0.5466mPa·s(20℃)、黏度0.5151mPa·s(25℃)、表面张力22.6dyne/cm。
正辛烷的蒸发热41.512kJ/mol(25℃),溶化热20.754kJ/mol,液体生成热-250.12kJ·mol,气体生成热-208.59kJ·mol,比热容(理想液体,25℃,定压)1.65kJ/(kg·K),比热容(液体,25℃,101.3kPa)2.23kJ/(kg·K),热导率(20℃)131.047Mw/(m·K),热导率(30℃)128.250Mw/(m·K)。
此外,正辛烷的气相标准声称热(焓)-208.5kJ/mol、气相标准熵467.35J/mol·K、气相标准生成自由能16.6kJ/mol、气相标准热熔187.78J/mol·K,液相标准声称热(焓)-250.04kJ/mol、液相标准熵361.12J/mol·K、液相标准生成自由能6.32kJ/mol、液相标准热熔255.68J/mol·K。正辛烷红外图谱如图1所示。
由此可见,将正辛烷作为150℃~250℃温区制冷循环的制冷剂,在该温区内正辛烷处于过热蒸汽状态,且其本身沸点较低,在该温区内有较强的制冷潜力。正辛烷的比热容、密度、黏度较小,符合用作制冷剂的要求。
以正辛烷作为工质,采用蒸汽压缩式制冷循环,该制冷循环包括压缩机、冷凝器、膨胀机构、蒸发器、涡轮、隔热筒。压缩机的出口连接冷凝器的进口,冷凝器的出口连接膨胀机构的进口,膨胀机构的出口连接蒸发器的进口,蒸发器的出口连接压缩机的进口,构成供制冷剂循环的制冷剂回路。涡轮与压缩机同轴,高速流动的钻井液驱动涡轮转动,涡轮驱动压缩机工作。蒸发器和需要冷却的抗压筒以及随钻仪器设置在隔热筒内,冷凝器设置在钻铤与隔热筒之间。膨胀机构为膨胀阀或毛细管。
本发明通过制冷循环对是由开采的钻具进行冷却,采用正辛烷作为制冷循环工质,应用在150℃~250℃高温温区的制冷循环中,填补了对石油开采钻具进行冷却的技术空缺,满足了如石油钻井随钻仪器等场景的制冷需要。
附图说明
图1为正辛烷红外图谱;
图2为本发明中循环冷却装置的结构示意图;
图3为正辛烷工质理论循环的T-s图。。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述地实施例仅仅是本发明一部分实施例,而不是全部地实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,石油开采钻具包括钻铤1和抗压筒2,抗压筒2设置在钻铤1内,抗压筒2内设置有随钻电子设备3。钻井液由地面向下灌入,到达抗压筒2位置,由钻铤1与抗压筒2之间的间隙流过。钻井液通过泥浆泵维持循环,从泥浆泵排出的高压钻井液经过地面高压管汇、立管、水龙带、水龙头、钻杆、钻铤到钻头,从钻头喷嘴喷出,以清洗井底并携带岩屑,然后再沿钻柱与井壁或套管形成的环形空间向上流动,在到达地面后流入泥浆池,最后进行泥浆泵循环使用。如图1中空心箭头即为钻井液的流向。钻井液在钻铤1内的流速与钻井液的稠度、密度,以及钻井速度有关,工作中钻井液流速极快。
对钻具(尤其是随钻电子设备3)进行冷却的制冷循环装置包括涡轮4、压缩机5、冷凝器6、膨胀机构7、蒸发器8和隔热筒9。其中,涡轮4、压缩机5和冷凝器6设置在隔热筒9外,膨胀机构7和蒸发器8设置在隔热筒6内。
涡轮4和压缩机5设置在抗压筒2上方,涡轮4的转动平面基本垂直于钻井液的流动方向,涡轮4与压缩机5同轴设置,高速流动的钻井液驱动涡轮4转动,涡轮4驱动压缩机5工作。
冷凝器6采用板式冷凝器或管式冷凝器,环绕隔热筒9设置,设置在钻铤1与隔热筒9之间位置。压缩机5的出口连接冷凝器6的进口,冷凝器6的出口通过穿过隔热筒9的管路连接膨胀机构3的进口,膨胀机构3采用膨胀阀或毛细管。
蒸发器8采用盘管式蒸发器,环绕抗压筒2外壁设置,对隔热筒9内的抗压筒2以及内部的随钻电子设备3进行冷却。蒸发器8的进口连接膨胀机构3的出口,蒸发器8的出 口通过穿过隔热筒9的管路连接压缩机5的进口。
压缩机5、冷凝器6、膨胀机构7、蒸发器8构成供制冷剂循环的制冷剂回路,该制冷循环采用正辛烷作为制冷循环工质。
图2中制冷剂回路的箭头表示制冷剂正辛烷的走向。压缩机对吸入的制冷剂蒸汽进行压缩,使制冷剂蒸汽成为高温高压的气体的状态并排出。冷凝器作为制冷剂与钻井液进行热交换的液体热交换器。冷凝器将压缩机排出的高温气体制冷剂的热量释放到钻井液中,制冷剂在冷凝器的出口达到高压液体状态。膨胀机构使得流出冷凝器的制冷剂膨胀减压变为低温低压的气体液体混合状态。蒸发器为了获得冷却对象与制冷剂的热交换而维持在设定温度,而使在系统回路中流动的液态制冷剂蒸发而成为气体状的制冷剂。蒸发器中制冷剂吸热蒸发而气化。在蒸发器中,冷却对象(抗压筒2以及内部的随钻电子设备3)通过与制冷剂的热交换而被冷却。
该制冷循环装置以正辛烷作为制冷剂。作为制冷剂的正辛烷(n-Octane,分子式C8H18),为无色透明液体,在常压下沸点为125.6℃,在150℃~250℃下处于过热蒸汽状态,并且正辛烷为有机高分子,具有无极性,无导电性和腐蚀性,用作制冷循环工质能够使系统长时间高效运行。另外,正辛烷绝热膨胀后的焓差值较高,达到100000J/kg,因此适合做此高温循环的制冷剂。
正辛烷工质在高温区制冷循环中的理论循环过程如附图3所示。
该循环的压缩机输入功率:
Figure PCTCN2020124356-appb-000001
该循环的制冷量
Figure PCTCN2020124356-appb-000002
该循环的制冷系数
Figure PCTCN2020124356-appb-000003
其中,
Figure PCTCN2020124356-appb-000004
为工质流量,单位kg/s;h 1表示压缩机入口处的气体状态的工质比焓,h 2表示压缩机出口处的气体状态的工质比焓,h 4表示膨胀机构出口处的气液混合物的工质比焓。
在正辛烷流量
Figure PCTCN2020124356-appb-000005
为0.026kg/s的条件下,理论计算可以获得271.8W的制冷量,需要输入压缩机的功率为544.0W,理论制冷系数COP为0.4996。
由表格1~9,可见压缩机吸气温度从150℃变化到190℃导致的系统制冷量271.8W到512.6W变化:
表1
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 271.8
表2
T(℃) h(J/kg) P(Pa) s(J/kg-K)
155 366516 107000 909.6
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 301.0
表3
T(℃) h(J/kg) P(Pa) s(J/kg-K)
160 377855 107000 936.0
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 330.5
表4
T(℃) h(J/kg) P(Pa) s(J/kg-K)
165 389290 107000 962.2
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 360.0
表5
T(℃) h(J/kg) P(Pa) s(J/kg-K)
170 400821 107000 988.4
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 390.0
表6
T(℃) h(J/kg) P(Pa) s(J/kg-K)
175 412448 107000 1014
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 420.5
表7
T(℃) h(J/kg) P(Pa) s(J/kg-K)
180 424170 107000 1040
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 450.9
表8
T(℃) h(J/kg) P(Pa) s(J/kg-K)
185 435988 107000 1066
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 481.7
表9
T(℃) h(J/kg) P(Pa) s(J/kg-K)
190 447901 107000 1092
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 512.6
由表10~17,可见冷凝温度从213℃变化到180℃导致的系统制冷量271.8W到529.9W变化:
表10
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
213 250733 1.05E+06 563.3
150 250733   586.3
    q_cool(W) 271.8
表11
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
208 235247 1.05E+06 531.3
150 235247   559.3
    q_cool(W) 312
表12
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
205 226037 1.05E+06 512.1
150 226037   539.1
    q_cool(W) 336
表13
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
200 210819 1.05E+06 480.1
150 210819   503.1
    q_cool(W) 375.6
表14
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
195 195757 1.05E+06 448.1
150 195757   467.1
    q_cool(W) 414.7
表15
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
190 180845 1.05E+06 416.0
150 180845   435.0
    q_cool(W) 453.5
表16
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
185 166077 1.05E+06 384.0
150 166077   399.5
    q_cool(W) 491.9
表17
T(℃) h(J/kg) P(Pa) s(J/kg-K)
150 355273 107000 883.2
250 564348 1.05E+06 1181
180 151450 1.05E+06 351.9
150 151450   366.4
    q_cool(W) 529.9
在本实施方式的制冷循环中,适用的温区为150℃~250℃,在制冷剂回路6中循环的制冷剂是正辛烷,正辛烷工质在常压下的沸点为125.6℃,在150℃~250℃下处于过热蒸汽状态,能够满足该温区下的制冷需要。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 石油开采钻具循环冷却装置,其特征在于:包括涡轮、压缩机、冷凝器、膨胀机构、蒸发器和隔热筒;其中,涡轮、压缩机和冷凝器设置在隔热筒外,膨胀机构和蒸发器设置在隔热筒内;
    所述的涡轮和压缩机设置在抗压筒上方,涡轮的转动平面基本垂直于钻井液的流动方向,涡轮与压缩机同轴设置,高速流动的钻井液驱动涡轮转动,涡轮驱动压缩机工作;
    所述的冷凝器环绕隔热筒外壁设置,设置在钻铤与隔热筒之间位置;压缩机的出口连接冷凝器的进口,冷凝器的出口通过穿过隔热筒的管路连接膨胀机构的进口;
    所述的蒸发器环绕抗压筒外壁设置,对隔热筒内的抗压筒以及内部的随钻电子设备进行冷却;蒸发器的进口连接膨胀机构的出口,蒸发器的出口通过穿过隔热筒的管路连接压缩机的进口;
    压缩机、冷凝器、膨胀机构和蒸发器构成供制冷剂循环的制冷剂回路。
  2. 如权利要求1所述的石油开采钻具循环冷却装置,其特征在于:所述的冷凝器采用板式冷凝器或管式冷凝器。
  3. 如权利要求1所述的石油开采钻具循环冷却装置,其特征在于:所述的蒸发器采用盘管式蒸发器。
  4. 如权利要求1所述的石油开采钻具循环冷却装置,其特征在于:所述的膨胀机构采用膨胀阀或毛细管。
  5. 如权利要求1所述的石油开采钻具循环冷却装置,其特征在于:所述的制冷循环采用正辛烷作为制冷剂。
  6. 正辛烷在对石油开采钻具进行冷却的制冷循环中作为制冷剂的应用。
  7. 如权利要求6所述的正辛烷作为制冷剂的应用,其特征在于:所述制冷循环为蒸汽压缩式制冷循环。
  8. 如权利要求7所述的正辛烷作为制冷剂的应用,其特征在于:所述制冷循环利用高速流动的钻井液进行驱动。
PCT/CN2020/124356 2020-05-06 2020-10-28 石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用 WO2021223379A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010372890.4 2020-05-06
CN202010372890.4A CN111664611B (zh) 2020-05-06 2020-05-06 一种对石油开采钻具进行冷却的制冷循环装置
CN202010372889.1A CN111692781A (zh) 2020-05-06 2020-05-06 正辛烷在对钻具进行冷却的制冷循环中作为制冷剂的应用
CN202010372889.1 2020-05-06

Publications (1)

Publication Number Publication Date
WO2021223379A1 true WO2021223379A1 (zh) 2021-11-11

Family

ID=78467783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124356 WO2021223379A1 (zh) 2020-05-06 2020-10-28 石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用

Country Status (1)

Country Link
WO (1) WO2021223379A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
EP2246523A1 (en) * 2009-04-30 2010-11-03 Services Pétroliers Schlumberger A cooling apparatus of a downhole tool
CN102494428A (zh) * 2011-12-06 2012-06-13 吉林大学 液动潜孔制冷机
CN103238019A (zh) * 2010-06-15 2013-08-07 生物膜Ip有限责任公司 从导热金属管道撤出热能的方法、装置和系统
CN104685164A (zh) * 2012-05-17 2015-06-03 N·A·阿塔拉 高效发电装置、制冷/热泵装置及其方法和系统
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
CN107989549A (zh) * 2017-11-26 2018-05-04 四川启兴电子有限公司 一种钻头工况控制系统
CN109577914A (zh) * 2018-12-05 2019-04-05 西安石油大学 一种井下高温环境中的主动冷却系统及方法
CN109653708A (zh) * 2018-12-05 2019-04-19 西安石油大学 一种基于蒸汽压缩循环的冷却井下工具的部件的装置
CN111664611A (zh) * 2020-05-06 2020-09-15 杭州电子科技大学 一种对石油开采钻具进行冷却的制冷循环装置
CN111692781A (zh) * 2020-05-06 2020-09-22 杭州电子科技大学 正辛烷在对钻具进行冷却的制冷循环中作为制冷剂的应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
EP2246523A1 (en) * 2009-04-30 2010-11-03 Services Pétroliers Schlumberger A cooling apparatus of a downhole tool
CN103238019A (zh) * 2010-06-15 2013-08-07 生物膜Ip有限责任公司 从导热金属管道撤出热能的方法、装置和系统
CN102494428A (zh) * 2011-12-06 2012-06-13 吉林大学 液动潜孔制冷机
CN104685164A (zh) * 2012-05-17 2015-06-03 N·A·阿塔拉 高效发电装置、制冷/热泵装置及其方法和系统
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
US20180230793A1 (en) * 2017-02-10 2018-08-16 Vierko Enterprises, LLC of Texas Tool and method for actively cooling downhole electronics
CN107989549A (zh) * 2017-11-26 2018-05-04 四川启兴电子有限公司 一种钻头工况控制系统
CN109577914A (zh) * 2018-12-05 2019-04-05 西安石油大学 一种井下高温环境中的主动冷却系统及方法
CN109653708A (zh) * 2018-12-05 2019-04-19 西安石油大学 一种基于蒸汽压缩循环的冷却井下工具的部件的装置
CN111664611A (zh) * 2020-05-06 2020-09-15 杭州电子科技大学 一种对石油开采钻具进行冷却的制冷循环装置
CN111692781A (zh) * 2020-05-06 2020-09-22 杭州电子科技大学 正辛烷在对钻具进行冷却的制冷循环中作为制冷剂的应用

Similar Documents

Publication Publication Date Title
CN101120218B (zh) 利用混合惰性成份制冷剂的制冷循环
CN102016451B (zh) 使用lgwp制冷剂的吸收式制冷循环
CN103808068B (zh) 一种制冷系统
CN102906515B (zh) 使用lgwp制冷剂的吸收式制冷循环
JPH01500215A (ja) 非共沸作動流体混合物を利用する高性能蒸気圧縮ヒートポンプサイクル
CN204460650U (zh) 一种冷凝器冷却装置
WO2020238207A1 (zh) 一种环保型热管工质
CN107407510A (zh) 使用lgwp制冷剂的吸收式制冷循环
Liang et al. The latent application of ionic liquids in absorption refrigeration
CN111664611B (zh) 一种对石油开采钻具进行冷却的制冷循环装置
CN101275790A (zh) 利用二氧化碳作为循环工质的低温制冷方法及其热泵系统
WO2021223379A1 (zh) 石油开采钻具循环冷却装置及正辛烷作为制冷剂的应用
CN101285664A (zh) 一种超临界相变强化传热方法及其传热介质及应用
CN111692781A (zh) 正辛烷在对钻具进行冷却的制冷循环中作为制冷剂的应用
Deymi‐Dashtebayaz et al. Experimental optimization of replacing R22 with R417A without any other changes in configuration of residential air‐conditioning systems based on energy and exergy analysis
CN1141535C (zh) 深度冷冻吸收制冷装置
He et al. Analyses of an improved double-absorber absorption refrigeration system at low temperatures
CN106524592A (zh) 节能制冷设备及其系统和工艺
CN207335226U (zh) 油田污水热能回收与伴生气发电综合利用的热电联产系统
Kim et al. Development of a thermodynamic performance-analysis program for CO2 geothermal heat pump system
CN107364564A (zh) 吸收式与热电制冷协同辅助过冷的co2船用制冷系统
CN206954483U (zh) 吸收式与热电制冷协同辅助过冷的co2船用制冷系统
CN206739669U (zh) 一种轻烃回收装置的丙烷制冷系统
CN201866974U (zh) 超临界co2制冷冷凝机组
CN1031834C (zh) 节能制冷剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934817

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20934817

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20934817

Country of ref document: EP

Kind code of ref document: A1