WO2021223164A1 - 电池的降压控制电路、方法、系统、电池和可移动平台 - Google Patents

电池的降压控制电路、方法、系统、电池和可移动平台 Download PDF

Info

Publication number
WO2021223164A1
WO2021223164A1 PCT/CN2020/089000 CN2020089000W WO2021223164A1 WO 2021223164 A1 WO2021223164 A1 WO 2021223164A1 CN 2020089000 W CN2020089000 W CN 2020089000W WO 2021223164 A1 WO2021223164 A1 WO 2021223164A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
down circuit
circuit
electronic component
switch unit
Prior art date
Application number
PCT/CN2020/089000
Other languages
English (en)
French (fr)
Inventor
李鹏
林宋荣
许柏皋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080032196.6A priority Critical patent/CN113906646A/zh
Priority to PCT/CN2020/089000 priority patent/WO2021223164A1/zh
Publication of WO2021223164A1 publication Critical patent/WO2021223164A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output

Definitions

  • the embodiments of the present application relate to the field of battery technology, and in particular, to a step-down control circuit, method, system, battery, and movable platform of a battery.
  • high-string batteries for example, more than 10 batteries in series
  • the more batteries in series the more power the battery can store.
  • the more batteries connected in series the higher the output voltage of the battery, so the output voltage of the battery needs to be lowered.
  • a single-tube non-isolated DC converter (Buck) step-down circuit is used to step down the voltage output by the battery to a lower voltage, and then output to a microcontroller unit (MCU) through a linear regulator. powered by.
  • MCU microcontroller unit
  • the Buck step-down circuit needs to support a larger power output. If the switching power supply is always turned on during long-term storage of the battery, the battery has high storage power consumption and is easily over-discharged.
  • the embodiments of the present application provide a battery step-down control circuit, method, system, battery, and movable platform, which are used to reduce the power consumption of the battery, avoid over-discharge of the battery, and improve the service life of the battery.
  • an embodiment of the present application provides a battery step-down control circuit, including:
  • a controller for controlling the on-off of at least one of the first step-down circuit and the second step-down circuit
  • the first step-down circuit can perform step-down processing on the output voltage of the cell of the battery; wherein, the first input terminal of the first step-down circuit can be connected to the cell to receive the The output voltage of the cell, and the first output terminal of the first step-down circuit outputs a first output voltage; the first output voltage is lower than the output voltage of the cell;
  • the second step-down circuit can perform step-down processing on the output voltage of the cell of the battery; wherein, the second input terminal of the second step-down circuit can be connected to the cell to receive the The output voltage of the battery cell, and the second output terminal of the second step-down circuit outputs a second output voltage; the second output voltage is lower than the output voltage of the battery core;
  • the output current of the first step-down circuit is greater than the output current of the second step-down circuit
  • the controller controls the battery cell to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit according to the state information of the battery.
  • an embodiment of the present application provides a battery management system, including the step-down control circuit described in the embodiment of the present application in the first aspect.
  • an embodiment of the present application provides a battery including at least one battery cell and the battery management system according to the embodiment of the present application in the second aspect, and the battery management system is connected to the battery core and configured to The output voltage of the cell is reduced.
  • an embodiment of the present application provides a movable platform, including a body, a battery compartment, and the battery according to the embodiment of the present application in the third aspect, the battery compartment is disposed on the body, and the battery accommodates It is in the battery compartment and is electrically connected to the body to supply power to the body.
  • an embodiment of the present application provides a method for controlling the voltage drop of a battery, which is applied to a battery, and the method includes:
  • the battery cell is controlled to pass through the first step-down circuit or the second step-down circuit.
  • the circuit supplies power to at least one electronic component
  • the first step-down circuit can perform step-down processing on the output voltage of the battery cell; the first input terminal of the first step-down circuit can be connected to the cell to receive the The output voltage of the cell, and the first output terminal of the first step-down circuit outputs a first output voltage; the first output voltage is lower than the output voltage of the cell;
  • the second step-down circuit can perform step-down processing on the output voltage of the cell of the battery; wherein, the second input terminal of the second step-down circuit can be connected to the cell to receive the The output voltage of the battery cell, and the second output terminal of the second step-down circuit outputs a second output voltage; the second output voltage is lower than the output voltage of the battery core;
  • the output current of the first step-down circuit is greater than the output current of the second step-down circuit.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes at least one piece of code, the at least one piece of code can be executed by a computer to control the The computer executes the battery step-down control method described in the embodiment of the present application in the fifth aspect.
  • an embodiment of the present application provides a program product.
  • the program product includes a computer program.
  • the computer program is stored in a readable storage medium.
  • At least one controller can read the program product from the readable storage medium.
  • a computer program, and the at least one controller executes the computer program to implement the battery step-down control method according to the embodiment of the present application in the sixth aspect.
  • the first step-down circuit and the second step-down circuit can both perform step-down processing on the output voltage of the battery cell.
  • the difference is ,
  • the output current of the first step-down circuit is greater than the output current of the second step-down circuit.
  • the controller controls the on and off of at least one of the first step-down circuit and the second step-down circuit according to the state information of the battery, so as to control the battery core to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit .
  • the cell it is not necessary to always control the cell to reduce the output voltage of the cell through the first step-down circuit with a larger output current, and it can selectively control the cell through the second step-down circuit with a smaller output current to reduce the output voltage of the cell.
  • the output voltage is stepped down. It is ensured that the current output by the battery's step-down control circuit will not always be at a high value, which reduces the power consumption of the battery, avoids the over-discharge phenomenon of the battery, and improves the service life of the battery.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a step-down control circuit of a battery provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a step-down control circuit of a battery providing power to at least one electronic component according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a step-down control circuit of a battery provided by another embodiment of the application.
  • FIG. 5 is a schematic diagram of a step-down control circuit of a battery provided by another embodiment of the application.
  • FIG. 6 is a schematic diagram of a single-tube non-isolated DC converter provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a source follower provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a step-down control circuit of a battery provided by another embodiment of the application.
  • FIG. 9 is a schematic diagram of a battery management system provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a battery provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a movable platform provided by an embodiment of this application.
  • FIG. 12 is a flowchart of a method for controlling battery voltage reduction according to an embodiment of the application.
  • the embodiments of the present application provide a battery step-down control circuit, method, system, battery, and movable platform.
  • the movable platform can be a handheld phone, a handheld PTZ, unmanned aerial vehicle, unmanned vehicle, unmanned boat, robot, or self-driving car, etc.
  • the following description of the mobile platform of this application uses drones as an example. It will be obvious to those skilled in the art that other types of drones can be used without restriction. In other words, the embodiments of the present application can be applied to various types of drones.
  • the drone can be a small or large drone.
  • the drone may be a rotorcraft, for example, a multi-rotor drone that is propelled through the air by a plurality of propulsion devices.
  • the embodiments of the present application are not limited to this, and the drone It can also be other types of drones.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application.
  • a rotary wing drone is taken as an example for description.
  • the unmanned aerial system 100 may include a drone 110, a display device 130, and a remote control device 140.
  • the UAV 110 may include a power system 150, a flight control system 160, a frame, and a pan/tilt 120 carried on the frame.
  • the drone 110 can wirelessly communicate with the remote control device 140 and the display device 130.
  • the drone 110 further includes a battery (not shown in the figure), and the battery provides electrical energy for the power system 150.
  • the frame may include a fuselage and a tripod (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage and used for supporting the UAV 110 when it is landed.
  • the power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, wherein the motors 152 are connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the arm of the UAV 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal Current is supplied to the motor 152 to control the speed of the motor 152.
  • the motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 110, and the power enables the drone 110 to realize one or more degrees of freedom of movement.
  • the drone 110 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • the flight control system 160 may include a flight controller 161 and a sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the drone 110, for example, it can control the flight of the drone 110 according to the attitude information measured by the sensor system 162. It should be understood that the flight controller 161 can control the drone 110 according to pre-programmed program instructions, and can also control the drone 110 by responding to one or more remote control signals from the remote control device 140.
  • the pan/tilt head 120 may include a motor 122.
  • the pan/tilt is used to carry the camera 123.
  • the flight controller 161 can control the movement of the pan-tilt 120 through the motor 122.
  • the pan/tilt head 120 may further include a controller for controlling the movement of the pan/tilt head 120 by controlling the motor 122.
  • the pan-tilt 120 may be independent of the drone 110 or a part of the drone 110.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the pan/tilt may be located on the top of the drone or on the bottom of the drone.
  • the photographing device 123 may be, for example, a device for capturing images, such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and take pictures under the control of the flight controller.
  • the imaging device 123 of this embodiment at least includes a photosensitive element, and the photosensitive element is, for example, a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor. It can be understood that the camera 123 can also be directly fixed to the drone 110, so the pan/tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the display device 130 is located on the ground end of the unmanned aerial vehicle 100, can communicate with the drone 110 in a wireless manner, and can be used to display the attitude information of the drone 110.
  • the image photographed by the photographing device 123 may also be displayed on the display device 130. It should be understood that the display device 130 may be an independent device or integrated in the remote control device 140.
  • the remote control device 140 is located at the ground end of the unmanned aerial system 100, and can communicate with the drone 110 in a wireless manner for remote control of the drone 110.
  • a Buck step-down circuit is used to reduce the output voltage of the battery cell, and then the reduced voltage is output.
  • the Buck step-down circuit needs to support a larger power output. If the switching power supply is always turned on during long-term storage of the battery, the battery has high storage power consumption and is easily over-discharged. Therefore, the embodiment of this application proposes to provide two step-down circuits, namely the first step-down circuit and the second step-down circuit.
  • a step-down circuit is not always used to step down the output voltage of the battery cell.
  • the first step-down circuit is used to step-down the output voltage of the cell.
  • the second step-down circuit is used to step-down the output voltage of the cell. Wherein, the output current of the second step-down circuit is smaller than the output current of the first step-down circuit. Since the currents of the two step-down circuits are different, the power consumption of the battery can be saved and over-discharge can be avoided.
  • the battery step-down control circuit 200 of this embodiment may include: a controller 210, a first step-down circuit 220, and The second step-down circuit 230.
  • An input terminal (referred to as the first input terminal for distinction) of the first step-down circuit 220 can be connected to the cell of the battery, as shown in FIG. 2.
  • the cell outputs voltage to the outside, and the first input terminal of the first step-down circuit 220 can receive the output voltage of the cell.
  • the first step-down circuit 220 receives the output voltage of the battery cell through the first input terminal.
  • the first step-down circuit 220 then performs step-down processing on the output voltage of the cell to obtain a first output voltage, where the first output voltage is lower than the output voltage of the cell.
  • an output terminal of the first step-down circuit 220 (referred to as the first output terminal for distinction) outputs the above-mentioned first output voltage. So as to achieve a step-down effect on the output voltage of the battery cell.
  • the output first output voltage can supply power to at least one electronic component.
  • An input terminal of the second step-down circuit 230 (referred to as the second input terminal for distinguishing purposes) can be connected to the battery cell, as shown in FIG. 2 at the end connected to the cell.
  • the cell outputs voltage to the outside, and the second input terminal of the second step-down circuit 230 can receive the output voltage of the cell.
  • the second step-down circuit 230 receives the output voltage of the battery cell through the second input terminal.
  • the second step-down circuit 230 then performs step-down processing on the output voltage of the cell to obtain a second output voltage, where the second output voltage is lower than the output voltage of the cell.
  • an output terminal (referred to as a second output terminal for distinction) of the second step-down circuit 230 outputs the above-mentioned second output voltage. So as to achieve a step-down effect on the output voltage of the battery cell.
  • the output second output voltage can supply power to at least one electronic component.
  • the difference between the first step-down circuit 220 and the second step-down circuit 230 includes: the above-mentioned output current of the first step-down circuit 220 is greater than the output current of the second step-down circuit 230.
  • the above-mentioned first controller 210 is used to control the on and off of at least one of the first step-down circuit 220 and the second step-down circuit 230.
  • the first step-down circuit 220 When the first step-down circuit 220 is turned on, the first step-down circuit 220 outputs the above-mentioned first output voltage through the first output terminal, and the first output voltage can supply power to at least one electronic component. When the first step-down circuit 220 is disconnected, the first step-down circuit 220 cannot achieve a step-down effect on the output voltage of the cell, and the first output terminal of the first step-down circuit 220 does not output the first output voltage.
  • the second step-down circuit 230 When the second step-down circuit 230 is turned on, the second step-down circuit 230 outputs the above-mentioned second output voltage through the second output terminal, and the second output voltage can supply power to at least one electronic component. When the second step-down circuit 230 is disconnected, the second step-down circuit 230 cannot achieve a step-down effect on the output voltage of the cell, and the second output terminal of the second step-down circuit 230 will not output the second output voltage.
  • the controller 210 determines according to the battery status information that it is necessary for the battery cell to supply power to at least one electronic component through the first step-down circuit 220, that is, the first step-down circuit 220 is used to step down the output voltage of the battery cell and When the first output voltage is output, so that the first output voltage supplies power to at least one electronic component, the controller 210 controls the first step-down circuit 220 to be turned on.
  • the controller 210 may also control the second step-down circuit 230 to turn off. In this way, the controller 210 controls the battery cell to supply power to at least one electronic component through the first step-down circuit 220.
  • the controller 210 requires the battery cell to supply power to at least one electronic component through the second step-down circuit 230 according to the battery status information, that is, the second step-down circuit 230 is used to step down the output voltage of the battery cell and output the second The output voltage enables the second output voltage to supply power to at least one electronic component, and the controller 210 controls the second step-down circuit 230 to be turned on.
  • the controller 210 may also control the first step-down circuit 220 to turn off. In this way, the controller 210 controls the battery cell to supply power to at least one electronic component through the second step-down circuit 230.
  • both the first step-down circuit and the second step-down circuit in this embodiment can step down the output voltage of the cell.
  • the difference is that the output current of the first step-down circuit is greater than that of the second step-down circuit.
  • Current The controller controls the on and off of at least one of the first step-down circuit and the second step-down circuit according to the state information of the battery, so as to control the electric core to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit. . Therefore, it is not necessary to always control the cell to reduce the output voltage of the cell through the first step-down circuit with a larger output current, and it can selectively control the cell through the second step-down circuit with a smaller output current to reduce the output voltage of the cell.
  • the output voltage is stepped down. It is ensured that the current output by the battery's step-down control circuit will not always be at a high value, which reduces the power consumption of the battery, avoids the over-discharge phenomenon of the battery, and improves the service life of the battery.
  • the state information of the battery includes first state information, and the first state information indicates whether the battery is switched from the standby state to the working state.
  • the controller 210 controls the cells of the battery to supply power to at least one electronic component through the first step-down circuit.
  • the working state of the battery refers to a state in which the battery can supply power to external devices other than the controller in the battery and/or power consuming devices other than the battery.
  • Other external devices refer to devices inside the battery other than the controller.
  • these devices refer to various chips in the battery (such as communication chips, memory chips, etc.), light-emitting diode (Light Emitting Diode, LED) arrays, etc. .
  • the electrical equipment outside the battery taking drones as an example, the electrical equipment such as flight controllers, power systems, etc., these devices have relatively large power consumption, and the battery discharge current is large.
  • the standby state of the battery refers to the state in which the battery does not supply power to external devices other than the controller in the battery and/or power-consuming devices other than the battery.
  • the standby state may also be referred to as the hibernation state.
  • the step-down control circuit of the battery needs to output a larger current, so the controller 210 controls the first step-down circuit that can output a relatively larger current.
  • the cell uses the first step-down circuit to supply power to other external devices in the battery except the controller and/or Powered by electrical equipment outside the battery.
  • the step-down control circuit 200 of the battery does not need to output a large current, and the controller 210 does not need to control the battery cell to pass through the first step-down circuit 220. At least one electronic component is powered. If the controller 210 controls the first step-down circuit 220 to be turned on, and the output current of the first step-down circuit 220 is larger, higher power consumption will result. Therefore, the step-down control circuit 200 of the battery in this embodiment only needs to output a smaller current. That is, the controller 210 controls the second step-down circuit with a relatively smaller output current to be turned on, so as to control the cells to supply power to at least one electronic component through the second step-down circuit 230 to reduce power consumption.
  • the state information of the battery includes second state information, and the second state information indicates whether the battery is switched from the working state to the standby state.
  • the controller 210 controls the cells of the battery to supply power to at least one electronic component through the second step-down circuit.
  • the step-down control circuit of the battery does not need to output a large current, and the controller 210 does not need to control the battery cell to supply power to at least one electronic component through the first step-down circuit 220. If the controller 210 controls the first step-down circuit 220 to be turned on, and the output current of the first step-down circuit 220 is larger, higher power consumption will result. Therefore, the step-down control circuit of the battery in this embodiment only needs to output a smaller current.
  • the controller 210 controls the second step-down circuit with a relatively smaller output current to turn on, so as to control the cells to supply power to at least one electronic component through the second step-down circuit 230.
  • the controller 210 controls the output The second step-down circuit with a relatively smaller current is turned on to control the cells to supply power to the controller 210 through the second step-down circuit 230.
  • the step-down control circuit of the battery needs to output a larger current, so the controller 210 controls the second that can output a relatively larger current.
  • a step-down circuit is turned on to control the battery to supply power to at least one electronic component through the first step-down circuit 220.
  • the state information of the battery includes third state information, and the third state information indicates that the output voltage of the battery cell or the output current of the battery cell is lower than a preset value.
  • the controller 210 controls the cell to supply power to at least one electronic component through the second step-down circuit 230.
  • the controller 210 controls the battery cell to supply power to at least one electronic component through the first step-down circuit 220, since the output current of the first step-down circuit 220 is relatively large, the power consumption of the battery core is faster, which will cause the battery core to be overpowered. Discharge. Therefore, the controller 210 in this embodiment controls the cell to supply power to at least one electronic component through the second step-down circuit 230. Since the output current of the second step-down circuit 230 is relatively small, the power consumption of the cell is slower. Avoid battery over-discharge and battery damage.
  • the third status information indicates that the output voltage of the battery core is not lower than the preset value corresponding to the voltage, or if the third status information indicates that the output current of the battery core is not lower than the preset value corresponding to the current, it means that the battery The power of the core may not be lower than a certain power value, and may be enough.
  • the controller 210 controls the battery to supply power to at least one electronic component through the first step-down circuit 220. Since the output current of the first step-down circuit 220 is relatively large, the normal operation of the at least one electronic component is ensured.
  • the state information of the battery includes fourth state information, and the fourth state information indicates whether the battery is switched from the starting state to the working state.
  • the controller 210 controls the battery cell to supply power to at least one electronic component through the second step-down circuit 230.
  • the controller 210 controls the battery cell to supply power to at least one electronic component through the first step-down circuit 220.
  • the startup state of the battery refers to the state in which the battery cell is connected to the battery management system in the battery during battery production, and is the state in which the controller 210 is powered on for the first time.
  • the battery cell When the battery cell is electrically connected to the battery management system, the battery cell supplies power to the controller 210 through the second step-down circuit 230, so that the controller 210 is powered on.
  • the controller 210 controls the first step-down circuit to be turned on, so as to control the cells to supply power to at least one electronic component through the first step-down circuit 220.
  • the battery when the battery is in the activated state for a predetermined period of time, the battery is switched from the activated state to the working state.
  • the controller 210 is powered on when the battery is in the starting state as an example for description.
  • the controller 210 is powered on and the battery is in the starting state.
  • the battery switches from the starting state to working.
  • the controller 210 controls the first step-down circuit 220 to supply power to at least one electronic component after the power-on of the controller is completed and a predetermined time period has elapsed.
  • the controller 210 controls the first step-down circuit 220 to turn on, so that the cells can supply power to the controller through the first step-down circuit.
  • the predetermined duration is, for example, a duration of milliseconds.
  • the battery when the battery is in the starting state and the controller completes the initialization process, the battery is switched from the starting state to the working state.
  • the controller 210 is powered on when the battery is in the starting state as an example for description. After the battery is powered on, in order to make the battery enter the working state, the controller also needs to complete the initialization process, and the controller 210 completes the power on. The process is for the controller 210 to complete the initialization process, so that the battery enters a normal working state. Therefore, when the battery is in the starting state and the controller completes the initialization process, it means that the controller 210 has been powered on at this time and can be switched to the working state. That is, the controller 210 controls the first step-down circuit 220 to supply power to at least one electronic component.
  • the controller 210 controls the battery cell to supply power to at least one electronic component (including the controller 210) through the first step-down circuit.
  • the controller 210 controls the battery cell to only supply power to the controller 210) through the first step-down circuit.
  • the status information of the battery includes fifth status information, and the fifth status information indicates whether the battery is in a high power consumption state or a low power consumption state; if the output power of the battery is greater than A threshold, the battery is in a high power consumption state, and if the output power of the battery is less than or equal to the threshold, the battery is in a low power consumption state.
  • the controller 210 can control the battery to connect at least one of the cells through the first step-down circuit or the second step-down circuit according to whether the battery is in a high power consumption state or a low power consumption state, that is, according to the output power of the battery. Power supply for electronic components.
  • the controller 210 controls the battery cell to supply power to at least one electronic component through the first step-down circuit 220 capable of outputting a relatively larger current, so as to support the battery in a high power consumption state.
  • the step-down control circuit of the battery is required to output a lower current
  • the controller 210 controls the battery cell to supply power to at least one electronic component through the second step-down circuit 230 to meet the requirement that the battery is in a low power consumption state.
  • the controller 210 controls the battery cell to pass through the first step-down circuit 220 or the second step-down circuit at different times according to the range of the output power of the battery cell.
  • 230 supplies power to at least one electronic component.
  • the output power of the battery cell may change, and the value range of the output power of the battery cell may be different at different times. For example, in the process of discharging the battery, if the battery discharges more power, the remaining battery power of the battery is lower, which will reduce the output voltage of the battery, which in turn reduces the output power of the battery. If the output power of the battery cell has a large value range, in order to meet the larger output power of the battery cell, the step-down control circuit of the battery needs to output a larger current. Therefore, the controller 210 controls the battery cell to output a relatively higher output.
  • the first step-down circuit 220 with a large current supplies power to at least one electronic component, so as to support the output power of the battery cell in a larger value range.
  • the step-down control circuit of the battery needs to output a small current, and the controller 210 controls the cell to pass through the second step-down circuit 230. At least one electronic component is powered to support the output power of the battery cell in a smaller value range.
  • the controller 210 controls the electric core to conduct at least one electronic component through the first step-down circuit or the second step-down circuit at different times according to the power of the at least one electronic component.
  • Component power supply
  • the power of at least one electronic component may change at different times, or the at least one electronic component that needs to be powered may be different at different times. Due to different electronic components, the power of at least one component may also be different. If the power of at least one electronic component is different, the output power of the battery to these at least one electronic component also changes accordingly. If the power of at least one electronic component is large, in order to adapt to the large output power of one less electronic component, the step-down control circuit of the battery needs to output a large current. Therefore, the controller 210 controls the battery cell to output a relatively large current. The first step-down circuit 220 with a larger current supplies power to at least one electronic component to ensure that the at least one electronic component works normally.
  • the step-down control circuit without the battery can ensure the normal operation of the at least one electronic component. Therefore, the controller 210 controls the battery cell to connect the at least one electronic component through the second step-down circuit 230.
  • the electronic components are powered to save power consumption.
  • the step-down control circuit prohibits the battery core from supplying power to at least one electronic component through the second step-down circuit 230.
  • the electronic component supplies power; and when the battery core supplies power to at least one electronic component through the second step-down circuit 230, the step-down control circuit prohibits the battery core from supplying power to the at least one electronic component through the first step-down circuit 220.
  • the first step-down circuit and the second step-down circuit will not supply power to at least one electronic component at the same time. Since the output currents of the first step-down circuit and the second step-down circuit are different, different ones are selected under different conditions.
  • the step-down circuit performs step-down processing on the output voltage of the cell, which can not only ensure the normal operation of at least one electronic component, but also save power consumption.
  • the at least one electronic component when the battery cell supplies power to at least one electronic component through the first step-down circuit 220, the at least one electronic component includes the aforementioned controller 210 and at least one external device.
  • at least one external device is an external device relative to the controller 210.
  • the at least one external device may be a device belonging to a battery.
  • the at least one external device includes one or more of an LED array, a memory chip, and a communication chip. Since the output current of the first step-down circuit 220 is relatively large, the relatively large current can drive at least one external device to work, which can ensure the normal operation of the battery.
  • FIG. 3 is a schematic diagram of the step-down control circuit of the battery provided in an embodiment of the application supplying power to at least one electronic component.
  • the battery of this embodiment The step-down control circuit 200 also includes a first switch unit 240 and a second switch unit 250.
  • the at least one electronic component includes a first electronic component and a second electronic component (that is, the controller 210 in the foregoing embodiments).
  • the input terminal of the first electronic component is connected between the first output terminal of the first step-down circuit 220 and the first switch unit 240.
  • the controller 210 is connected to the first step-down circuit 220 through the first switch unit 240.
  • the controller 210 When the controller 210 needs to control the cell to supply power to at least one electronic component through the first step-down circuit 220, the controller 210 controls the first step-down circuit 220 to turn on, and the first step-down circuit 220 steps down the output voltage of the cell. After voltage processing, the first output voltage is output through the first output terminal. Since the input terminal of the first electronic component is connected to the first output terminal of the first step-down circuit 220, the input terminal of the first electronic component receives the first output voltage. , To realize that the battery core supplies power to the first electronic component through the first step-down circuit.
  • the first switch unit 240 when the first switch unit 240 is closed, it indicates that the electrical connection between the first step-down circuit 220 and the controller 210 is turned on, and the controller 210 also receives the first output voltage output by the first step-down circuit 220, so that the cell can pass through
  • the first step-down circuit supplies power to the controller 210.
  • the first step-down circuit 220 when the first step-down circuit 220 is turned on, the first step-down circuit 220 outputs the first output voltage. Since the first switch unit 240 is connected to the first output terminal of the first step-down circuit 220, the first switch unit 240 receives The first output voltage, under the action of the first output voltage, the first switch unit 240 is closed.
  • the first switch unit 240 is, for example, a diode or a transistor, and the transistor is, for example, a Metal Oxide Semiconductor Field Effect Transistor (MOS tube) or an insulated gate bipolar transistor (IGBT).
  • MOS tube Metal Oxide Semiconductor Field
  • the controller 210 is also connected to the second step-down circuit 230 through the second switch unit 250.
  • the second switch unit 250 When the second switch unit 250 is closed, it indicates that the electrical connection between the second step-down circuit 230 and the controller 210 is turned on, and the controller 210 receives the second output voltage output by the second step-down circuit 230, so that the cells pass through the second The step-down circuit supplies power to the controller 210.
  • the second step-down circuit 230 when the second step-down circuit 230 is turned on, the second step-down circuit 230 outputs the second output voltage. Since the second switch unit 250 is connected to the second output terminal of the second step-down circuit 230, the second switch unit 250 receives With the second output voltage, the second switch unit 250 is closed under the action of the second output voltage.
  • the second switch unit 250 is, for example, a diode or a transistor, and the transistor is, for example, a MOS tube or an IGBT.
  • the first step-down circuit 220 and the second step-down circuit 230 are connected in parallel. To ensure as far as possible that the first output voltage output by the first step-down circuit 220 will not affect the second step-down circuit 230, and the second output voltage output by the second step-down circuit 230 will not affect the first step-down circuit 220 . Based on this, the voltage step-down control circuit of the battery in the present application will be described in detail below.
  • FIG. 4 is a schematic diagram of the step-down control circuit of the battery provided by another embodiment of the application.
  • the aforementioned first step-down circuit 220 includes a third switch unit 221 and a first step-down sub-circuit 222.
  • the third switch unit 221 is electrically connected between the output terminal of the cell and the input terminal of the first step-down sub-circuit 222.
  • the controller 210 controls the on and off of the first step-down circuit 220 by controlling the third switch unit 221 to turn on or off.
  • the end of the third switch unit 221 connected to the battery core may be referred to as the first input end of the first step-down circuit.
  • the third switch unit 221 is electrically connected to the output terminal of the cell and the first step-down sub-circuit 222, whether the electrical connection between the cell and the first step-down sub-circuit 222 is conducted depends on whether the third switch unit 221 is Closed or closed. If the controller 210 controls the third switch unit 221 to close, so that the electrical connection between the battery cell and the first step-down sub-circuit 222 is conducted, the first step-down sub-circuit 222 can receive the output voltage of the battery core, which is The controller 210 controls the first step-down circuit 220 to be turned on. Then the first step-down sub-circuit 222 performs step-down processing on the output voltage of the cell to obtain the first output voltage. The first output voltage is output through the first output terminal, and the first output voltage supplies power to the at least one electronic component mentioned above. In this way, the electric core can supply power to at least one electronic component through the first step-down circuit 220.
  • the controller 210 controls the third switch unit 221 to turn off, so that the electrical connection between the battery cell and the first step-down sub-circuit 222 is disconnected, the first step-down sub-circuit 222 cannot receive the output voltage of the battery cell.
  • the controller 210 controls the first step-down circuit 220 to turn off.
  • the first output terminal cannot output the first output voltage. Therefore, the battery cell cannot supply power to at least one electronic component through the first step-down circuit 220.
  • the controller 210 is configured to output an enable signal to the third switch unit 221, and the enable signal is used to instruct the third switch unit 221 to turn on or turn off. If the controller 210 needs to control the battery cell to supply power to at least one electronic component through the first step-down circuit 220, the controller 210 outputs an enable signal for instructing the third switch unit 221 to close to the third switch unit 221.
  • the third switch unit 221 receives the enable information for indicating that it is closed, and the third switch unit 221 is closed. In this way, the first step-down circuit 220 is turned on, so that the battery core supplies power to at least one electronic component through the first step-down circuit 220.
  • the controller 210 If the controller 210 does not need to control the cells to supply power to at least one electronic component through the first step-down circuit 220, the controller 210 outputs to the third switch unit 221 an enable signal for instructing the third switch unit 221 to turn off.
  • the third switch unit 221 receives the enable information for instructing it to be turned off, and the third switch unit 221 is turned off. In this way, the first step-down circuit 220 is disconnected, so that the battery cell cannot supply power to at least one electronic component through the first step-down circuit 220.
  • the enable signal when the enable signal is a high-level signal, the enable signal instructs the third switch unit 221 to turn on, and when the enable signal is a low-level signal, the enable signal instructs the third switch unit 221 to turn off. Therefore, if the third switch unit 221 receives a high-level signal sent by the controller, the third switch unit 221 is closed. If the third switch unit 221 receives a low-level signal sent by the controller, the third switch unit 221 is closed.
  • the above-mentioned third switch unit 221 is, for example, a transistor.
  • the third switch unit 221 may be a MOS transistor or an IGBT.
  • the aforementioned first step-down circuit 220 further includes a fourth switch unit 223.
  • the input terminal of at least one electronic component is connected between the output terminal of the first step-down sub-circuit 222 and the fourth switch unit 223.
  • the fourth switch unit 223 prohibits the second step-down circuit from supplying power to at least one electronic component.
  • the output terminal of the first step-down sub-circuit 222 may also be referred to as the first output terminal of the first step-down circuit.
  • the input terminal of at least one electronic component is connected to the output terminal of the first buck sub-circuit 222, so the input terminal of the at least one electronic component receives the first output voltage output by the output terminal of the first buck sub-circuit 222 , In order to realize that the battery core supplies power to at least one electronic component through the first step-down circuit 220.
  • the second step-down circuit 230 Since the second step-down circuit 230 is connected in parallel with the first step-down circuit 220, the second output voltage output by the second step-down circuit 230 may be output to the first step-down sub-circuit 222, and due to the input terminal of at least one electronic component Connected to the first step-down sub-circuit 222, the second output voltage may be output to at least one electronic component, causing the second step-down circuit to supply power to the at least one electronic component. In order to avoid this situation, it is necessary to block the second output voltage from being output to at least one electronic component, so the input terminal of the at least one electronic component is connected between the output terminal of the first step-down sub-circuit 222 and the fourth switch unit 223.
  • the second output voltage is first output to the fourth switch unit 223 before being output to at least one electronic component. If the fourth switch unit 223 is turned off, the second output voltage will not be output to at least one electronic component. Therefore, the fourth switch unit 223 prohibits the second step-down circuit 230 from supplying power to the at least one electronic component.
  • the above-mentioned fourth switch unit 223 is a diode or a transistor.
  • the fourth switch unit 223 is turned off Off.
  • the output terminal of the first step-down sub-circuit 222 is electrically connected to the controller 210 through the fourth switch unit 223. Therefore, when the fourth switch unit 223 is closed, the first output voltage output by the output terminal of the first step-down sub-circuit 222 is output to the controller 210, so that the battery cell supplies power to the controller 210 through the first step-down circuit. When the fourth switch unit 223 is turned off, the first output voltage output by the output terminal of the first step-down sub-circuit 222 is output to the controller 210, so that the battery cell supplies power to the controller 210 through the first step-down circuit.
  • FIG. 5 is a schematic diagram of the step-down control circuit of the battery provided by another embodiment of the application.
  • the aforementioned second step-down circuit 230 includes a second step-down sub-circuit 231 and a fifth switch unit 232.
  • the output terminal of the second step-down sub-circuit 231 is electrically connected to the controller 210 through the fifth switch unit 232.
  • the fifth switch unit 232 prohibits the battery core from supplying power to at least one electronic component via the second step-down circuit 230.
  • the second input terminal of the second step-down circuit 230 receives the output voltage of the cell, and then the second step-down sub-circuit 231 performs step-down processing on the output voltage of the cell to obtain the second output voltage. Since the fifth switch unit 232 is connected between the output terminal of the second step-down sub-circuit 231 and the controller 210, the second output voltage will be output to the fifth switch unit 232. If the fifth switch unit 232 is closed, the second output voltage will be output to the controller 210 through the fifth switch unit 232, so that the cells can supply power to at least one electronic component through the second step-down circuit 230.
  • the output terminal of the second step-down sub-circuit 231 will not output the second output voltage through the fifth switch unit 232, and the second output voltage is blocked by the fifth switch unit 232 in the fifth switch unit Before 232.
  • the battery cell supplies power to at least one electronic element through the first step-down circuit 220, it is no longer necessary to supply power to the at least one electrical element through the second step-down circuit 230, and the fifth switch unit 232 can be controlled to be turned off, so that the fifth switch unit The second output voltage of 232 will not be output to at least one electronic component, so that the cell is prohibited from supplying power to the at least one electronic component through the second step-down circuit 230, thereby saving power consumption through the second step-down circuit 230.
  • the fifth switch unit 232 is a diode or a transistor, and the transistor is, for example, a MOS tube or an IGBT.
  • the fifth switch unit 232 prohibits the cells from supplying power to the controller 210 through the second step-down circuit 230.
  • the first The five switch unit 232 is closed. If the voltage of the end connected to the second output end of the second step-down circuit 230 in the fifth switch unit 232 is less than or equal to the voltage of the end connected to the first output end of the first step-down circuit 220, the fifth switch unit 232 shuts down.
  • the fifth switch unit 232 is turned off, thereby prohibiting the cells from communicating with the controller 210 through the second step-down circuit 230. powered by.
  • the embodiment shown in FIG. 4 and the embodiment shown in FIG. 5 may be combined.
  • the foregoing first step-down circuit 220 includes a single-tube non-isolated DC converter, wherein the output voltage of the single-tube non-isolated DC converter is less than the input voltage.
  • the first step-down circuit 220 in this embodiment implements the step-down processing of the output voltage of the cell through a single-tube non-isolated DC converter.
  • the first step-down sub-circuit involved in FIG. 4 is a single-tube non-isolated DC converter.
  • FIG. 6 shows a schematic diagram of a Buck circuit.
  • the Buck circuit refers to a single-tube non-isolated DC converter whose output voltage is less than the input voltage.
  • the Buck circuit is a step-down chopper, the output voltage is less than the output voltage, and the polarity is the same.
  • Q1 is a switch tube, and its driving voltage is generally a pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • the switching tube Q1 When the switching tube Q1 is driven to a high level, the switching tube is turned on, the energy storage inductor L1 is magnetized, and the current flowing through the inductor increases linearly. At the same time, the capacitor C1 is charged and the load R1 is provided with energy.
  • the switching tube Q1 When the switching tube Q1 is driven to a low level, the switching tube is turned off, the energy storage inductor L1 is discharged through the freewheeling diode, the inductor current is linearly reduced, and the output voltage is maintained by the discharge of the output filter capacitor C1 and the reduced inductor current.
  • the second step-down circuit 230 includes a source follower or a linear regulator.
  • the output voltage of the source follower is less than the input voltage.
  • the output voltage of the linear regulator is less than the input voltage.
  • the second step-down circuit 230 in this embodiment implements a step-down process for the output voltage of the cell through a source follower or a linear regulator.
  • the output current of the source follower or linear regulator is smaller than the output current of a single-tube non-isolated DC converter.
  • the source output of the source follower changes with the change of the gate input. If the gate input does not change, the source output also does not change.
  • the input voltage V in ⁇ the voltage threshold V th
  • the transistor M1 is in the load stop state, and the output voltage V out is equal to zero.
  • V in >V th M1 is turned on and enters the saturation region, and the output voltage follows the change of the input voltage.
  • V in further increases, and the output voltage V out follows the change of the input voltage.
  • Rs is infinite, and the voltage gain of the source follower will not be equal to 1.
  • FIG. 8 is a schematic diagram of a battery step-down control circuit provided by another embodiment of the application.
  • the step-down control circuit of this embodiment further includes a voltage stabilizing circuit 260.
  • One end of the voltage stabilizing circuit 260 is connected to the controller 210, and the other end of the voltage stabilizing circuit 260 is connected to the first step-down circuit 220 and the second step-down circuit 230.
  • the voltage stabilizing circuit 260 performs voltage stabilization processing on the first output voltage or the second output voltage and then outputs it to the controller 210.
  • one end of the voltage stabilizing circuit 260 is connected to the controller 210, and the other end is connected to the first step-down circuit 220 and the second step-down circuit 230, so the first output voltage output by the first step-down circuit 220 to the controller will be It passes through the voltage stabilizing circuit 260 first, and then is output to the controller 210.
  • the second output voltage output by the second step-down circuit 230 to the controller 210 will also pass through the voltage stabilizing circuit, and then output to the controller 210.
  • the voltage received by the controller 210 is not the voltage processed by the voltage stabilizing circuit, so as to ensure that the voltage received by the controller 210 The voltage will not affect the normal operation of the controller 210.
  • the voltage output by the voltage stabilizing circuit 260 to the controller 210 is equal to the operating voltage of the controller 210.
  • the aforementioned voltage stabilizing circuit 260 includes a linear voltage regulator.
  • FIG. 9 is a schematic diagram of a battery management system provided by an embodiment of the application.
  • the battery management system 900 of this embodiment includes a battery step-down control circuit 901.
  • the structure of the step-down control circuit 901 of the battery can refer to the structure shown in any one of FIG. 2 to FIG. 5 and FIG.
  • the battery management system 900 may include at least one electronic component involved in the foregoing embodiment.
  • FIG. 10 is a schematic diagram of a battery provided by an embodiment of the application.
  • the battery 1000 of this embodiment includes at least one battery cell 1001 and a battery management system 1002.
  • the battery management system 1002 is connected to the battery cell 1001, and is used for stepping down the output voltage of the battery cell 1001.
  • the battery management system 1002 can refer to the structure shown in FIG. 9, and its implementation principle and technical effect are similar, and will not be repeated here. or,
  • the battery management system 1002 includes a step-down control circuit of the battery, and the step-down control circuit of the battery is connected to the battery cell 1001 and is used to perform a step-down process on the output voltage of the battery cell 1001.
  • the structure of the step-down control circuit of the battery can refer to the structure shown in any one of FIG. 2 to FIG. 5 and FIG.
  • the battery includes at least 10 strings of battery cells, which increases the capacity of the battery and also ensures that the voltage provided by the battery to the electrical equipment meets the requirements of the electrical equipment without burning the electrical equipment.
  • FIG. 11 is a schematic diagram of a movable platform provided by an embodiment of this application.
  • the movable platform 1100 of this embodiment includes a body 1101, a battery compartment 1102 and a battery 1103.
  • the battery compartment 1102 is disposed on the body 1101, and the battery 1103 is accommodated in the battery compartment 1102 and is electrically connected to the body 1101 to supply power to the body 1101.
  • the battery 1103 can refer to the structure shown in FIG. 10, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 12 is a flowchart of a battery step-down control method according to an embodiment of the application. As shown in FIG. 12, the method of this embodiment can be used in the above-mentioned battery. Based on the structure of the above-mentioned battery, the method of this embodiment Can include:
  • Step S1201 Obtain status information of the battery.
  • Step S1202 according to the state information of the battery, by controlling the on and off of at least one of the first step-down circuit and the second step-down circuit, to control the cell to control the at least one electron through the first step-down circuit or the second step-down circuit.
  • Component power supply
  • the first step-down circuit can perform step-down processing on the output voltage of the battery cell; the first input terminal of the first step-down circuit can be connected to the cell to receive the The output voltage of the cell, and the first output terminal of the first step-down circuit outputs a first output voltage; the first output voltage is lower than the output voltage of the cell;
  • the second step-down circuit can perform step-down processing on the output voltage of the cell of the battery; wherein, the second input terminal of the second step-down circuit can be connected to the cell to receive the The output voltage of the battery cell, and the second output terminal of the second step-down circuit outputs a second output voltage; the second output voltage is lower than the output voltage of the battery core;
  • the output current of the first step-down circuit is greater than the output current of the second step-down circuit.
  • the difference is that the output current of the first step-down circuit is greater than that of the first step-down circuit. 2.
  • the output current of the step-down circuit Therefore, according to the state information of the battery, by controlling the on and off of at least one of the first step-down circuit and the second step-down circuit, the control cell can be controlled to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit.
  • the state information of the battery includes first state information, and the first state information indicates whether the battery is switched from a standby state to a working state.
  • a possible implementation manner of controlling the battery cell to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is: when the first status information indicates that the battery is free When the standby state is switched to the working state, the battery is controlled to supply power to at least one electronic component through the first step-down circuit.
  • the state information of the battery includes second state information, and the second state information indicates whether the battery is switched from a working state to a standby state;
  • a possible implementation manner of controlling the battery core to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is:
  • the state information of the battery includes third state information, and the third state information indicates whether the output voltage of the battery cell or the output current of the battery cell is lower than default value.
  • a possible implementation manner of controlling the battery core to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is: when the third status information indicates the battery core When the output voltage of the cell or the output current of the cell is lower than the preset value, the cell is controlled to supply power to the at least one electronic component through the second step-down circuit.
  • the state information of the battery includes fourth state information, and the fourth state information indicates whether the battery is switched from the starting state to the working state.
  • a possible implementation manner of controlling the battery core to supply power to at least one electronic component through the second step-down circuit is:
  • the controller controls the battery to supply power to the at least one electronic component through the second step-down circuit
  • the controlling the battery core to supply power to at least one electronic component through the first step-down circuit includes:
  • the controller controls the battery to supply power to the at least one electronic component through the first step-down circuit.
  • the battery is switched from the activated state to the working state.
  • the battery when the battery is in the starting state and the controller completes the initialization process, the battery is switched from the starting state to the working state.
  • the state information of the battery includes fifth state information, and the fifth state information indicates whether the battery is in a high power consumption state or a low power consumption state. If the output power of the battery is greater than a threshold, the battery is in a high power consumption state, and if the output power of the battery is less than or equal to the threshold, the battery is in a low power consumption state.
  • a possible implementation manner of controlling the battery cell to supply power to at least one electronic component through the first step-down circuit is: when the fifth status information indicates that the battery is in the high power In a consumption state, the battery is controlled to supply power to the at least one electronic component through the first step-down circuit.
  • a possible implementation manner of controlling the battery cell to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is: when the fifth status information indicates that the battery is In the low power consumption state, the controller controls the battery to supply power to the at least one electronic component through the second step-down circuit.
  • a possible implementation manner of controlling the battery to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is as follows:
  • the value range of the output power of the battery core is controlled to supply power to the at least one electronic component through the first step-down circuit or the second step-down circuit at different times.
  • a possible implementation manner of controlling the battery to supply power to at least one electronic component through the first step-down circuit or the second step-down circuit is as follows: The power of the at least one electronic component is controlled to supply power to the at least one electronic component through the first step-down circuit or the second step-down circuit at different times by the battery cell.
  • the method further includes: when the battery core supplies power to the at least one electronic component through the first step-down circuit, prohibiting the battery core from passing through the second The step-down circuit supplies power to the at least one electronic component; and when the battery core supplies power to the at least one electronic component through the second step-down circuit, prohibiting the battery core from passing through the first step-down circuit
  • the at least one electronic component supplies power.
  • the at least one electronic component when the battery core supplies power to the at least one electronic component through the first step-down circuit, the at least one electronic component includes the controller and at least one external device.
  • the at least one external device includes: an LED array, a memory chip, and a communication chip.
  • the at least one electronic component includes a first electronic component and a second electronic component.
  • the input terminal of the first electronic component is connected between the first output terminal of the first step-down circuit and the first switch unit; and the second electronic component includes the controller, and The second electronic component is connected to the first step-down circuit through the first switch unit and is connected to the second step-down circuit through the second switch unit.
  • a possible implementation manner of controlling the battery core to supply power to at least one electronic component through the first step-down circuit is: controlling the battery core to supply power to the first electronic component through the first step-down circuit Supplying power, and controlling the electric core to supply power to the controller through the first step-down circuit through the first switch unit.
  • a possible implementation manner of controlling the battery core to supply power to at least one electronic component through the second step-down circuit is:
  • the battery is controlled to supply power to the controller through the second step-down circuit.
  • the first step-down circuit and the second step-down circuit are connected in parallel.
  • the first step-down circuit further includes a third switch unit and a first step-down sub-circuit, wherein the third switch unit is electrically connected to the output terminal of the cell and the first step-down circuit. Between the input terminals of a step-down sub-circuit;
  • An implementation manner of controlling the on-off of the first step-down circuit is to control the on-off of the first step-down circuit by controlling the third switch unit to turn on or off.
  • a possible implementation manner of controlling the closing or turning off of the third switch unit is: outputting an enable signal to the third switch unit, and the enable signal is used to indicate the third switch unit.
  • the switch unit is closed or off.
  • the enable signal when the enable signal is a high-level signal, the enable signal instructs the third switch unit to be closed, and when the enable signal is a low-level signal, the enable signal Instruct the third switch unit to turn off.
  • the first step-down circuit further includes a fourth switch unit.
  • the input terminal of the at least one electronic component is connected between the output terminal of the first step-down sub-circuit and the fourth switch unit.
  • the fourth switch unit prohibits the second step-down circuit from supplying power to the at least one electronic component.
  • the fourth switch unit is a diode or a transistor.
  • the output terminal of the first step-down sub-circuit is electrically connected to the controller through the fourth switch unit.
  • the second step-down circuit includes a second step-down sub-circuit and a fifth switch unit, and the output terminal of the second step-down sub-circuit communicates with the controller through the fifth switch unit.
  • the fifth switch unit prohibits the battery core from supplying power to the at least one electronic component via the second step-down circuit.
  • the fifth switch unit is a diode or a transistor. Wherein, when the first output voltage of the first step-down circuit is greater than the second output voltage of the second step-down circuit, the fifth switch unit prohibits the cell from passing through the second The step-down circuit supplies power to the controller.
  • the first step-down circuit includes a single-tube non-isolated DC converter.
  • the output voltage of the single-tube non-isolated DC converter is less than the input voltage.
  • the second step-down circuit includes a source follower or a linear regulator.
  • the step-down control circuit further includes a voltage stabilizing circuit.
  • One end of the voltage stabilizing circuit is connected to the controller, and the other end of the voltage stabilizing circuit is connected to the first step-down circuit and the second step-down circuit.
  • the voltage stabilizing circuit performs voltage stabilization processing on the first output voltage or the second output voltage and then outputs it to the controller.
  • the voltage stabilizing circuit includes a linear voltage regulator.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池的降压控制电路、方法、系统、电池和可移动平台,电池的降压控制电路(200)中的第一降压电路(220)和第二降压电路(230)均能对电芯的输出电压进行降压处理,第一降压电路(220)的输出电流大于第二降压电路(230)的输出电流。控制器(210)根据电池的状态信息通过控制第一降压电路(220)和第二降压电路(230)中至少一个的通断,来实现控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。所以可以有选择性地控制电芯通过输出电流更小的第二降压电路对电芯的输出电压降压。保证电池的降压控制电路输出的电流不会始终处于高值,降低了电池的功耗,避免电池的过放电现象,提高电池的使用寿命。

Description

电池的降压控制电路、方法、系统、电池和可移动平台 技术领域
本申请实施例涉及电池技术领域,尤其涉及一种电池的降压控制电路、方法、系统、电池和可移动平台。
背景技术
移动平台行业中,随着可移动平台进入的行业越多(比如农业,电力以及很多特殊场景应用),可移动平台的使用也越频繁。可移动平台(例如无人机、机器人、无人车等)的结构越来越复杂,并且不断集成新开发的功能。由于新功能的增加,各行业对于可移动平台的电源的质量和电源管理的要求也随之提高。以无人机为例,无人机采用电池供电,电池输出的电能作为无人机的飞控供电和动力来源。在一些大型无人机上,比如载有药箱的农业无人机上,这些无人机在执行任务消耗的电量更多,因此需要电池具有更高的蓄电量。所以目前电池中可以采用高串电芯(比如10个以上的电芯串联),串联的电芯越多,电池的蓄电量越多。而串联的电芯越多,电池输出的电压会越高,所以需要将电池的输出电压降低。
现有技术中采用单管不隔离直流变换器(Buck)降压电路将电池输出的电压降压到较低电压,然后再经过线性稳压器输出给微控制单元(Microcontroller Unit,MCU)等设备供电。但是Buck降压电路需要支持较大电量输出,如果电池长期存储时一直开启开关电源,电池存储功耗高,很容易过放电。
发明内容
本申请实施例提供一种电池的降压控制电路、方法、系统、电池和可移动平台,用于减少电池的功耗,避免电池过放电,提高电池使用寿命。
第一方面,本申请实施例提供一种电池的降压控制电路,包括:
控制器,用于控制第一降压电路和第二降压电路中的至少一个的通断;
所述第一降压电路,能够对所述电池的电芯的输出电压进行降压处理; 其中,所述第一降压电路的第一输入端能够连接于所述电芯,以接收所述电芯的输出电压,并且所述第一降压电路的第一输出端输出第一输出电压;所述第一输出电压低于所述电芯的所述输出电压;
所述第二降压电路,能够对所述电池的电芯的输出电压进行降压处理;其中,所述第二降压电路的第二输入端能够连接于所述电芯,以接收所述电芯的所述输出电压,并且所述第二降压电路的第二输出端输出第二输出电压;所述第二输出电压低于所述电芯的所述输出电压;
其中,所述第一降压电路的输出电流大于所述第二降压电路的输出电流;以及
所述控制器根据所述电池的状态信息,控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电。
第二方面,本申请实施例提供一种电池管理系统,包括如第一方面本申请实施例所述的降压控制电路。
第三方面,本申请实施例提供一种电池,包括至少一电芯和如第二方面本申请实施例所述的电池管理系统,所述电池管理系统与所述电芯连接,用于对所述电芯的输出电压进行降压处理。
第四方面,本申请实施例提供一种可移动平台,包括机体、电池仓和如第三方面本申请实施例所述的电池,所述电池仓设置于所述机体上,所述电池容置于所述电池仓内,并与所述机体电连接,为所述机体供电。
第五方面,本申请实施例提供一种电池的降压控制方法,用于电池,所述方法包括:
获取所述电池的状态信息;
根据所述电池的状态信息,通过控制第一降压电路和第二降压电路中的至少一个的通断,来控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电;
其中,所述第一降压电路,能够对所述电池的电芯的输出电压进行降压处理;所述第一降压电路的第一输入端能够连接于所述电芯,以接收所述电芯的输出电压,并且所述第一降压电路的第一输出端输出第一输出电压;所述第一输出电压低于所述电芯的所述输出电压;
所述第二降压电路,能够对所述电池的电芯的输出电压进行降压处理; 其中,所述第二降压电路的第二输入端能够连接于所述电芯,以接收所述电芯的所述输出电压,并且所述第二降压电路的第二输出端输出第二输出电压;所述第二输出电压低于所述电芯的所述输出电压;
其中,所述第一降压电路的输出电流大于所述第二降压电路的输出电流。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行第五方面本申请实施例所述的电池的降压控制方法。
第七方面,本申请实施例提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,至少一个控制器可以从所述可读存储介质读取所述计算机程序,所述至少一个控制器执行所述计算机程序以实施如第六方面本申请实施例所述的电池的降压控制方法。
本申请实施例提供的电池的降压控制电路、方法、系统、电池和可移动平台,第一降压电路和第二降压电路均能对电芯的输出电压进行降压处理,不同的是,第一降压电路的输出电流大于第二降压电路的输出电流。控制器根据电池的状态信息通过控制第一降压电路和第二降压电路中至少一个的通断,来实现控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。所以无需一直控制电芯通过输出电流更大的第一降压电路对电芯的输出电压进行降压处理,可以有选择性地控制电芯通过输出电流更小的第二降压电路对电芯的输出电压进行降压处理。保证电池的降压控制电路输出的电流不会始终处于高值,降低了电池的功耗,避免电池的过放电现象,提高电池的使用寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请的实施例的无人飞行系统的示意性架构图;
图2为本申请一实施例提供的电池的降压控制电路的示意图;
图3为本申请一实施例提供的电池的降压控制电路向至少一电子元件供电的示意图;
图4为本申请另一实施例提供的电池的降压控制电路的示意图;
图5为本申请另一实施例提供的电池的降压控制电路的示意图;
图6为本申请一实施例提供的单管不隔离直流变换器的示意图;
图7为本申请一实施例提供的源极跟随器的示意图;
图8为本申请另一实施例提供的电池的降压控制电路的示意图;
图9为本申请一实施例提供的电池管理系统的示意图;
图10为本申请一实施例提供的电池的示意图;
图11为本申请一实施例提供的可移动平台的示意图;
图12为本申请一实施例提供的电池的降压控制方法的流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施例提供了电池的降压控制电路、方法、系统、电池和可移动平台。其中,可移动平台可以是手持电话、手持云台、无人机、无人车、无人船、机器人或自动驾驶汽车等。以下对本申请可移动平台的描述使用无人机作为示例。对于本领域技术人员将会显而易见的是,可以不受限制地使用其他类型的无人机。也就是说,本申请的实施例可以应用于各种类型的无人机。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本申请的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本申请的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人飞行系统100可以包括无人机110、显示设备130和遥控设备140。 其中,无人机110可以包括动力系统150、飞行控制系统160、机架和承载在机架上的云台120。无人机110可以与遥控设备140和显示设备130进行无线通信。其中,无人机110还包括电池(图中未示出),电池为动力系统150提供电能。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人机110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自遥控设备140的一个或多个遥控信号对无人机110进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器 161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,拍摄装置123也可直接固定于无人机110上,从而云台120可以省略。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示拍摄装置123拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在遥控设备140中。
遥控设备140位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
现有技术中采用Buck降压电路将电池的电芯的输出电压降低,然后将降低的电压输出。但是Buck降压电路需要支持较大电量输出,如果电池长期存储时一直开启开关电源,电池存储功耗高,很容易过放电。所以本申请实施例提出了设置两种降压电路,分别为第一降压电路和第二降压电路,本申请中并不是一直使用一种降压电路对电芯的输出电压进行降压处理。在一些情况下使用第一降压电路对电芯的输出电压进行降压处理。在另一些情况下使用第二降压电路对电芯的输出电压进行降压处理。其中,第二降压电路的输出电流小于第一降压电路的输出电流。由于两种降压电路的电流不同,所以可以节省电池的功耗,避免过放电。
下面采用几个实施例对本申请的方案进行详细描述。
图2为本申请一实施例提供的电池的降压控制电路的示意图,如图2所示,本实施例的电池的降压控制电路200可以包括:控制器210、第一降压电路220和第二降压电路230。
第一降压电路220的一输入端(为了区分,称为第一输入端)能够连接于电池的电芯,如图2中所示与电芯连接的一端。电芯向外输出电压,第一降压电路220的第一输入端能接收电芯的输出电压。相应地,第一降压电路220通过第一输入端接收电芯的输出电压。第一降压电路220再对该电芯的输出电压进行降压处理,获得第一输出电压,其中第一输出电压低于电芯的输出电压。然后第一降压电路220的一输出端(为了区分,称为第一输出端)输出上述第一输出电压。从而实现对电芯的输出电压的降压作用。输出的第一输出电压可以对至少一电子元件供电。
第二降压电路230的一输入端(为了区分,称为第二输入端)能够连接于电池的电芯,如图2中所示与电芯连接的一端。电芯向外输出电压,第二降压电路230的第二输入端能接收电芯的输出电压。相应地,第二降压电路230通过第二输入端接收电芯的输出电压。第二降压电路230再对该电芯的输出电压进行降压处理,获得第二输出电压,其中第二输出电压低于电芯的输出电压。然后第二降压电路230的一输出端(为了区分,称为第二输出端)输出上述第二输出电压。从而实现对电芯的输出电压的降压作用。输出的第二输出电压可以对至少一电子元件供电。
其中,第一降压电路220与第二降压电路230的不同之处包括:上述的第一降压电路220的输出电流大于第二降压电路230的输出电流。
上述第一控制器210用于控制第一降压电路220和第二降压电路230中的至少一个的通断。
第一降压电路220导通时,第一降压电路220通过第一输出端输出上述第一输出电压,第一输出电压可以对至少一电子元件供电。第一降压电路220断开时,第一降压电路220无法实现对电芯的输出电压的降压作用,第一降压电路220的第一输出端不会输出第一输出电压。
第二降压电路230导通时,第二降压电路230通过第二输出端输出上述第二输出电压,第二输出电压可以对至少一电子元件供电。第二降压电路230断开时,第二降压电路230无法实现对电芯的输出电压的降压作用,第二降 压电路230的第二输出端不会输出第二输出电压。
因此,如果控制器210根据电池的状态信息确定需要电芯通过第一降压电路220对至少一电子元件供电,也就是,使用第一降压电路220对电芯的输出电压进行降压处理并输出第一输出电压,使第一输出电压对至少一电子元件供电,则控制器210控制第一降压电路220导通。可选的,控制器210还可以控制第二降压电路230断开。从而实现控制器210控制电芯通过第一降压电路220对至少一电子元件供电。
如果控制器210根据电池的状态信息需要电芯通过第二降压电路230对至少一电子元件供电,也就是,使用第二降压电路230对电芯的输出电压进行降压处理并输出第二输出电压,使第二输出电压对至少一电子元件供电,则控制器210控制第二降压电路230导通。可选的,控制器210还可以控制第一降压电路220断开。从而实现控制器210控制电芯通过第二降压电路230对至少一电子元件供电。
因此,本实施例中第一降压电路和第二降压电路均能对电芯的输出电压进行降压处理,不同的是,第一降压电路的输出电流大于第二降压电路的输出电流。控制器根据电池的状态信息通过控制第一降压电路和第二降压电路中至少一个的通断,来实现控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。所以无需一直控制电芯通过输出电流更大的第一降压电路对电芯的输出电压进行降压处理,可以有选择性地控制电芯通过输出电流更小的第二降压电路对电芯的输出电压进行降压处理。保证电池的降压控制电路输出的电流不会始终处于高值,降低了电池的功耗,避免电池的过放电现象,提高电池的使用寿命。
在图2所示实施例的基础上,在一实施例中,上述电池的状态信息包括第一状态信息,第一状态信息指示电池是否自待机状态切换至工作状态。当第一状态信息指示电池自待机状态切换至工作状态时,控制器210控制电池的电芯通过第一降压电路对至少一电子元件供电。
在一些实施例中,电池的工作状态是指电池能够对电池内除控制器之外的其它外部设备供电和/或电池外的用电设备供电的状态。其它外部设备是指相对于控制器之外的处于电池内部的设备,这些设备例如是指电池内的各种芯片(比如通信芯片、存储芯片等)、发光二极管(Light Emitting Diode, LED)阵列等。电池外的用电设备,以无人机为例,用电设备例如是飞行控制器、动力系统等,这些设备的功耗比较大,电芯放电的电流大。
电池的待机状态指电池不对电池内除控制器之外的其它外部设备供电和/或电池外的用电设备供电的状态。待机状态也可称为休眠状态。
如果电池自待机状态切换为工作状态,为了满足上述设备的用电要求,电池的降压控制电路需要输出更大的电流,所以控制器210控制能够输出电流相对更大的第一降压电路导通,以控制电芯通过第一降压电路220对至少一电子元件供电,在本实施例中,电芯通过第一降压电路对电池内除控制器之外的其它外部设备供电和/或电池外的用电设备供电。
可选的,如果电池没有自待机状态切换为工作状态,说明无需为上述设备供电,电池的降压控制电路200无需输出大的电流,控制器210无需控制电芯通过第一降压电路220对至少一电子元件供电。如果控制器210控制第一降压电路220导通,而且第一降压电路220输出的电流更大,会造成更高的功耗。所以本实施例中的电池的降压控制电路200输出更小的电流即可。也就是,控制器210控制输出电流相对更小的第二降压电路导通,以控制电芯通过第二降压电路230对至少一电子元件供电,降低功耗。
在图2所示实施例的基础上,在一实施例中,上述电池的状态信息包括第二状态信息,第二状态信息指示电池是否自工作状态切换至待机状态。当第二状态信息指示电池自工作状态切换至待机状态时,控制器210控制电池的电芯通过第二降压电路对至少一电子元件供电。
如果电池自工作状态切换为待机状态,说明无需为上述设备供电,电池的降压控制电路无需输出大的电流,控制器210无需控制电芯通过第一降压电路220对至少一电子元件供电。如果控制器210控制第一降压电路220导通,而且第一降压电路220输出的电流更大,会造成更高的功耗。所以本实施例中的电池的降压控制电路输出更小的电流即可。也就是,控制器210控制输出电流相对更小的第二降压电路导通,以控制电芯通过第二降压电路230对至少一电子元件供电,在本实施例中,控制器210控制输出电流相对更小的第二降压电路导通,以控制电芯通过第二降压电路230对该控制器210供电。
可选的,如果电池没有自工作状态切换为待机状态,为了满足上述设备 的用电要求,电池的降压控制电路需要输出更大的电流,所以控制器210控制能够输出电流相对更大的第一降压电路导通,以控制电芯通过第一降压电路220对至少一电子元件供电。
在图2所示实施例的基础上,在一实施例中,上述电池的状态信息包括第三状态信息,第三状态信息指示电芯的输出电压或者电芯的输出电流低于预设值。
当所述第三状态信息指示电芯的输出电压或者电芯的输出电流低于预设值时,控制器210控制电芯通过第二降压电路230对至少一电子元件供电。
本实施例中,如果第三状态信息指示电芯的输出电压低于电压对应的预设值,或者,如果第三状态信息指示电芯的输出电流低于电流对应的预设值,表示电芯的电量可能低于一定电量值。假如控制器210控制电芯通过第一降压电路220对至少一电子元件供电,由于第一降压电路220的输出电流相对较大,所以使得电芯的电量消耗较快,会使得电芯过放电。所以本实施例中的控制器210控制电芯通过第二降压电路230对至少一电子元件供电,由于第二降压电路230的输出电流相对较小,所以使得电芯的电量消耗较慢,避免电芯出现过放电的现象,避免电池损坏。
可选的,如果第三状态信息指示电芯的输出电压不低于电压对应的预设值,或者,如果第三状态信息指示电芯的输出电流不低于电流对应的预设值,表示电芯的电量可能不低于一定的电量值,可能足够多。控制器210控制电芯通过第一降压电路220对至少一电子元件供电,由于第一降压电路220的输出电流相对较大,以保障至少一电子元件的正常工作。
在上述各实施例的基础上,在一实施例中,电池的状态信息包括第四状态信息,第四状态信息指示电池是否自启动状态切换至工作状态。当启动电池时,控制器210控制电芯通过第二降压电路230对至少一电子元件供电。当电池自启动状态切换至工作状态时,控制器210控制电芯通过第一降压电路220对至少一电子元件供电。
电池的启动状态比如是指电池生产时,电芯与电池内的电池管理系统连接的状态,为控制器210首次上电的状态。当电芯与电池管理系统电电连接时,电芯通过第二降压电路230为控制器210供电,以使控制器210上电。
如果电池自启动状态切换至工作状态(此处的工作状态例如可以是指上 述实施例中的工作状态,或者,是指电芯通过第一降压电路输出电压的状态)。所以控制器210控制第一降压电路导通,以控制电芯通过第一降压电路220对至少一电子元件供电。
可选的,当所述电池处于启动状态的时长达到预定时长时,电池自启动状态切换至工作状态。
本实施例中,以电池处于启动状态为控制器210上电的状态作为例子进行说明,控制器210上电完成使得电池处于启动状态,此时经过预定的时长后,电池自启动状态切换至工作状态,也就是,控制器上电完成并经预定时长后,控制器210控制第一降压电路220导通向至少一电子元件供电,在一实施例中,控制器上电完成并经预定时长后,控制器210控制第一降压电路220导通,以使得电芯能通过第一降压电路为控制器供电。预定时长例如为毫秒级的时长。
可选的,当电池处于启动状态并且控制器完成初始化处理时,电池自启动状态切换至工作状态。
本实施例中,以电池处于启动状态为控制器210上电的状态作为例子进行说明,控制上电后,为了能够使得电池进入工作状态,控制器还需要完成初始化处理,控制器210完成上电的过程是为了让控制器210完成初始化处理,使得电池进入正常工作的状态。所以电池处于启动状态并且控制器完成初始化处理时,说明此时控制器210已完成上电,可以切换至工作状态。也就是,控制器210控制第一降压电路220向至少一电子元件供电。
所以,根据上述两个例子,在电池出厂后,用户使用电池向外供电之前,控制器210控制电芯通过第一降压电路对至少一电子元件(包括控制器210)供电。比如,控制器210控制电芯通过第一降压电路只对控制器210)供电。
在图2所示实施例的基础上,在一实施例中,电池的状态信息包括第五状态信息,第五状态信息指示电池处于高功耗状态还是低功耗状态;若电池的输出功率大于一阈值,则电池处于高功耗状态,以及若电池的输出功率小于或等于该阈值,则电池处于低功耗状态。
本实施例中,控制器210可以根据电池处于高功耗状态还是低功耗状态,也就是,根据电池的输出功率,来控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。
具体的,当所述第五状态信息指示电池处于高功耗状态时,也就是电池的输出功率大于阈值,为了满足电池的较大的输出功率,需要电池的降压控制电路输出较大的电流,所以控制器210控制电池的电芯通过能够输出相对更大电流的第一降压电路220对至少一电子元件供电,以支持电池处于高功耗状态。
当所述第五状态信息指示电池处于低功耗状态时,也就是电池的输出功率小于或等于阈值,为了满足电池的较小的输出功率,需要电池的降压控制电路输出较小的电流,控制器210控制电芯通过第二降压电路230对至少一电子元件供电,以符合电池处于低功耗状态的要求。
在图2所示实施例的基础上,在一实施例中,控制器210根据电芯的输出功率的取值范围,控制电芯在不同时刻通过第一降压电路220或第二降压电路230对至少一电子元件供电。
本实施例中,电芯的输出功率可能会发生变化,电芯的输出功率在不同时间,其取值范围可能不同。比如,电芯在放电的过程中,如果放的电量较多,电芯的剩余电量较低,会使得电芯的输出电压降低,进而使得电芯的输出功率降低。如果电芯的输出功率的取值范围较大,为了满足电芯较大的输出功率,需要电池的降压控制电路输出较大的电流,所以控制器210控制电池的电芯通过能够输出相对更大电流的第一降压电路220对至少一电子元件供电,以支持电芯的输出功率处于较大的取值范围。如果电芯的输出功率的取值范围较小,为了满足电池的较小的输出功率,需要电池的降压控制电路输出较小的电流,控制器210控制电芯通过第二降压电路230对至少一电子元件供电,以支持电芯的输出功率处于较小的取值范围。
在图2所示实施例的基础上,在一实施例中,控制器210根据至少一电子元件的功率,控制电芯在不同时刻通过第一降压电路或第二降压电路对至少一电子元件供电。
本实施例中,至少一电子元件的功率在不同时间可能会发生变化,或者,需要供电的至少一电子元件在不同时间可能不同,由于电子元件不同,使得至少一元件的功率也可能不同。如果至少一电子元件的功率不同,所以电芯给这些至少一电子元件的输出功率也随之变化。如果至少一电子元件的功率较大,为了适配于少一电子元件较大的输出功率,需要电池的降压控制电路 输出较大的电流,所以控制器210控制电池的电芯通过能够输出相对更大电流的第一降压电路220对至少一电子元件供电,以确保至少一电子元件正常工作。如果至少一电子元件的功率较小,无需电池的降压控制电路输出较大的电流也能确保至少一电子元件的正常工作,所以控制器210控制电芯通过第二降压电路230对至少一电子元件供电,节省功耗。
在上述各实施例的基础上,在一实施例中,当电芯通过第一降压电路220对至少一电子元件供电时,降压控制电路禁止电芯通过第二降压电路230对至少一电子元件供电;以及当电芯通过第二降压电路230对至少一电子元件供电时,降压控制电路禁止电芯通过第一降压电路220对至少一电子元件供电。本实施例中,第一降压电路与第二降压电路不会同时对至少一电子元件供电,由于第一降压电路与第二降压电路的输出电流不同,在不同情况下选择不同的降压电路对电芯的输出电压进行降压处理,既能保证至少一电子元件的正常工作,还节省功耗。
在上述各实施例的基础上,当电芯通过第一降压电路220对至少一电子元件供电时,该至少一电子元件包括上述的控制器210和至少一外部设备。其中,至少一外部设备是相对于控制器210而言的外部设备。可选的,该至少一外部设备可以是属于电池内的设备。比如至少一外部设备包括LED阵列、存储芯片、通信芯片中的一项或多项。由于第一降压电路220的输出电流较大,较大的电流可以驱动至少一外部设备工作,能够保证电池的正常运行。
在上述各实施例的降压控制电路的基础上,图3为本申请一实施例提供的电池的降压控制电路向至少一电子元件供电的示意图,如图3所示,本实施例的电池的降压控制电路200还包括第一开关单元240和第二开关单元250。至少一电子元件包括第一电子元件和第二电子元件(即为上述各实施例中的控制器210)。
第一电子元件的输入端连接在第一降压电路220的第一输出端和第一开关单元240之间。并且控制器210通过第一开关单元240连接至第一降压电路220。
当控制器210需要控制电芯通过第一降压电路220对至少一电子元件供电时,控制器210控制第一降压电路220导通,第一降压电路220对电芯的输出电压进行降压处理后,通过第一输出端输出第一输出电压,由于第一电 子元件的输入端与第一降压电路220的第一输出端连接,所以第一电子元件的输入端接收第一输出电压,实现电芯通过第一降压电路为第一电子元件供电。并且第一开关单元240闭合时,说明第一降压电路220与控制器210之间的电连接导通,控制器210也接收第一降压电路220输出的第一输出电压,实现电芯通过第一降压电路为控制器210供电。其中,当第一降压电路220导通,第一降压电路220输出第一输出电压,由于第一开关单元240与第一降压电路220的第一输出端连接,第一开关单元240接收第一输出电压,在第一输出电压的作用下,第一开关单元240闭合。第一开关单元240比如是二极管或晶体管,晶体管例如为金氧半场效晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOS管)或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)。
本实施例中,控制器210还通过第二开关单元250连接至第二降压电路230。第二开关单元250闭合时,说明第二降压电路230与控制器210之间的电连接导通,控制器210接收第二降压电路230输出的第二输出电压,实现电芯通过第二降压电路为控制器210供电。其中,当第二降压电路230导通,第二降压电路230输出第二输出电压,由于第二开关单元250与第二降压电路230的第二输出端连接,第二开关单元250接收第二输出电压,在第二输出电压的作用下第二开关单元250闭合。第二开关单元250比如是二极管或晶体管,晶体管例如为MOS管或IGBT。
在上述各实施例的基础上,第一降压电路220和所述第二降压电路230并联。以尽可能保证第一降压电路220输出的第一输出电压不会影响到第二降压电路230,以及第二降压电路230输出的第二输出电压不会影响到第一降压电路220。基于此,下面对本申请中电池的降压控制电路进行详细介绍。
在图2所示电池的降压控制电路的基础上,如图4所示,图4为本申请另一实施例提供的电池的降压控制电路的示意图。
上述的第一降压电路220包括第三开关单元221和第一降压子电路222。第三开关单元221电连接于电芯的输出端与第一降压子电路222的输入端之间。控制器210,通过控制第三开关单元221闭合或关断来控制第一降压电路220的通断。其中,第三开关单元221与电芯连接的一端可以称为第一降压电路的第一输入端。
由于第三开关单元221电连接于电芯的输出端与第一降压子电路222,所以电芯与第一降压子电路222之间的电连接是否导通取决于第三开关单元221是闭合还是关断。如果控制器210控制第三开关单元221闭合,使得电芯与第一降压子电路222之间的电连接导通,第一降压子电路222可以接收到电芯的输出电压,也就实现了控制器210控制第一降压电路220导通。然后第一降压子电路222对电芯的输出电压进行降压处理,获得第一输出电压。再通过第一输出端输出第一输出电压,该第一输出电压为上述的至少一电子元件供电。从而实现电芯通过第一降压电路220对至少一电子元件供电。
如果控制器210控制第三开关单元221关断,使得电芯与第一降压子电路222之间的电连接断开,第一降压子电路222不能接收到电芯的输出电压,也就实现了控制器210控制第一降压电路220断开。第一输出端无法输出第一输出电压。使得电芯不能通过第一降压电路220对至少一电子元件供电。
可选的,控制器210,用于向第三开关单元221输出使能信号,使能信号用于指示第三开关单元221闭合或关断。如果控制器210需要控制电芯通过第一降压电路220对至少一电子元件供电,则控制器210向第三开关单元221输出用于指示第三开关单元221闭合的使能信号。第三开关单元221接收到用于指示其闭合的使能信息,第三开关单元221闭合。从而实现第一降压电路220导通,使得电芯通过第一降压电路220向至少一电子元件供电。
如果控制器210不需要控制电芯通过第一降压电路220对至少一电子元件供电,则控制器210向第三开关单元221输出用于指示第三开关单元221关断的使能信号。第三开关单元221接收到用于指示其关断的使能信息,第三开关单元221关断。从而实现第一降压电路220断开,使得电芯不能通过第一降压电路220向至少一电子元件供电。
可选的,当使能信号为高电平信号时,使能信号指示第三开关单元221闭合,以及当使能信号为低电平信号时,使能信号指示第三开关单元221关断。因此,如果第三开关单元221接收到控制器发送的高电平信号,第三开关单元221闭合。如果第三开关单元221接收到控制器发送的低电平信号,第三开关单元221闭合。
上述的第三开关单元221例如为晶体管,具体的,第三开关单元221可以是MOS管或者IGBT。
在一实施例中,上述的第一降压电路220还包括第四开关单元223。至少一电子元件的输入端连接在第一降压子电路222的输出端与第四开关单元223之间。其中,当电芯通过第二降压电路230供电时,第四开关单元223禁止第二降压电路对至少一电子元件供电。其中,第一降压子电路222的输出端也可称为第一降压电路的第一输出端。
本实施例中,至少一电子元件的输入端与第一降压子电路222的输出端连接,所以至少一电子元件的输入端接收第一降压子电路222的输出端输出的第一输出电压,以实现电芯通过第一降压电路220对至少一电子元件供电。又由于第二降压电路230与第一降压电路220并联,第二降压电路230输出的第二输出电压可能会输向第一降压子电路222,又由于至少一电子元件的输入端与第一降压子电路222连接,第二输出电压有可能会输向至少一电子元件,造成第二降压电路对至少一电子元件供电的情况发生。为了避免这种情况,需要阻断第二输出电压输向至少一电子元件,所以将至少一电子元件的输入端连接在第一降压子电路222的输出端与第四开关单元223之间。这样第二输出电压在输向至少一电子元件之前,会先输向第四开关单元223。如果第四开关单元223关断,则第二输出电压不会输向至少一电子元件。从而使得第四开关单元223禁止第二降压电路230对至少一电子元件供电。
可选的,上述第四开关单元223为二极管或晶体管,当有电压来自第二降压电路230时(如图中所示的从右往左的方向输入电压),该第四开关单元223关断。
可选的,第一降压子电路222的输出端通过第四开关单元223与控制器210电连接。因此当第四开关单元223闭合时,第一降压子电路222的输出端输出的第一输出电压输向控制器210,以实现电芯通过第一降压电路对控制器210供电。当第四开关单元223关断时,第一降压子电路222的输出端输出的第一输出电压输向控制器210,以实现电芯通过第一降压电路对控制器210供电。
在图2所示电池的降压控制电路的基础上,如图5所示,图5为本申请另一实施例提供的电池的降压控制电路的示意图。
上述的第二降压电路230包括第二降压子电路231和第五开关单元232。第二降压子电路231的输出端通过第五开关单元232与控制器210电连接。 当电芯通过第一降压电路220供电时,第五开关单元232禁止电芯通过第二降压电路230对至少一电子元件供电。
本实施例中,第二降压电路230的第二输入端接收电芯的输出电压,然后第二降压子电路231对电芯的输出电压进行降压处理,获得第二输出电压。由于第五开关单元232连接在第二降压子电路231的输出端与控制器210之间,第二输出电压会输向第五开关单元232。如果第五开关单元232闭合,第二输出电压会通过第五开关单元232输向控制器210,以实现电芯通过第二降压电路230对至少一电子元件供电。如果第五开关单元232关断,则第二降压子电路231的输出端不会通过第五开关单元232输出第二输出电压,第二输出电压被第五开关单元232阻隔在第五开关单元232之前。所以电芯通过第一降压电路220向至少一电子元件供电时,无需再通过第二降压电路230向至少一电元件供电,可以控制第五开关单元232关断,使得通过第五开关单元232的第二输出电压不会输向至少一电子元件,从而实现禁止电芯通过第二降压电路230对至少一电子元件供电,节省经由第二降压电路230的电能消耗。
可选的,第五开关单元232为二极管或晶体管,晶体管比如是MOS管或IGBT。其中,当第一降压电路220的第一输出电压大于第二降压电路230的第二输出电压时,第五开关单元232禁止电芯通过第二降压电路230对控制器210供电。
本实施例中,如果第五开关单元232中与第二降压电路230的第二输出端连接的一端的电压大于与第一降压电路220的第一输出端连接的一端的电压,则第五开关单元232闭合。如果第五开关单元232中与第二降压电路230的第二输出端连接的一端的电压小于或等于与第一降压电路220的第一输出端连接的一端的电压,则第五开关单元232关断。
所以当第一降压电路220的第一输出电压大于第二降压电路230的第二输出电压时,第五开关单元232关断,从而禁止电芯通过第二降压电路230对控制器210供电。
在一实施例中,上述图4所示的实施例与图5所示的实施例可以结合。
在上述各实施例的基础上,在一些实施例中,上述的第一降压电路220包括单管不隔离直流变换器,其中,单管不隔离直流变换器的输出电压小于 输入电压。本实施例中的第一降压电路220通过单管不隔离直流变换器来实现对电芯的输出电压的降压处理。
可选的,上述图4中涉及的第一降压子电路为单管不隔离直流变换器。
下面以图6为例子对单管不隔离直流变换器进行说明。需要说明的是,单管不隔离直流变换器不限于图6所示的结构。
其中,图6示出了一种Buck电路的示意图,Buck电路指输出电压小于输入电压的单管不隔离直流变换器。Buck电路为降压斩波器,输出电压小于输出电压,极性相同。
图6中,Q1为开关管,其驱动电压一般为脉宽调制(Pulse width modulation,PWM)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy=Ton/Ts。
当开关管Q1驱动为高电平时,开关管导通,储能电感L1被充磁,流经电感的电流线性增加,同时给电容C1充电,给负载R1提供能量。
当开关管Q1驱动为低电平时,开关管关断,储能电感L1通过续流二极管放电,电感电流线性减少,输出电压靠输出滤波电容C1放电以及减小的电感电流维持。
在上述各实施例的基础上,在一些实施例中,第二降压电路230包括源极跟随器或线性稳压器。源极跟随器的输出电压小于输入电压。线性稳压器的输出电压小于输入电压。本实施例中的第二降压电路230通过源极跟随器或线性稳压器来实现对电芯的输出电压的降压处理。
其中,源极跟随器或线性稳压器的输出电流小于单管不隔离直流变换器的输出电流。
下面基于图7为例子对源极跟随器进行说明。需要说明的是,源极跟随器不限于图7所示的结构。
类似于三极管的射极跟随器,源极跟随器的源极输出跟随栅极输入变化而变化,如果栅极输入不变,源极输出也不变。
如图7所示,输入电压V in<电压阈值V th,三极管M1处于载止状态,输出电压V out等于零。V in>V th,M1导通进入饱和区,输出电压跟随输入电压变化。V in进一步增大,输出电压V out跟随输入电压变化。Rs无穷大,源极跟随器的电压增益也不会等于1。
在上述各实施例的基础上,图8为本申请另一实施例提供的电池的降压控制电路的示意图,如图8所示,本实施例的降压控制电路还包括稳压电路260。稳压电路260的一端连接控制器210,稳压电路260的另一端连接第一降压电路220和第二降压电路230。其中,稳压电路260对第一输出电压或第二输出电压进行稳压处理后输出至控制器210。
本实施例中,稳压电路260的一端连接控制器210,另一端连接第一降压电路220和第二降压电路230,所以第一降压电路220向控制器输出的第一输出电压会先经过稳压电路260,再输向给控制器210。同样第二降压电路230向控制器210输出的第二输出电压也会经过稳压电路,再输向控制器210。所以无论电芯通过第一降压电路220还是第二降压电路230向控制器210输出电压,控制器210接收到的电压无是经过稳压电路处理过的电压,确保控制器210接收到的电压不会影响控制器210的正常运行。例如稳压电路260向控制器210输出的电压等于控制器210的工作电压。
可选的,上述稳压电路260包括线性稳压器。
图9为本申请一实施例提供的电池管理系统的示意图,如图9所示,本实施例的电池管理系统900包括电池的降压控制电路901。电池的降压控制电路901的结构可以参见图2-图5、图8中任一图所示的结构,其实现原理与技术效果类似,此处不再赘述。
可选的,电池管理系统900可以包括上述实施例中涉及的至少一电子元件。
图10为本申请一实施例提供的电池的示意图,如图10所示,本实施例的电池1000包括至少一电芯1001和电池管理系统1002。电池管理系统1002与电芯1001连接,用于对电芯1001的输出电压进行降压处理。
其中,电池管理系统1002可以参见图9所示的结构,其实现原理与技术效果类似,此处不再赘述。或者,
电池管理系统1002包括电池的降压控制电路,该电池的降压控制电路与电芯1001连接,用于对电芯1001的输出电压进行降压处理。电池的降压控制电路的结构可以参见图2-图5、图8中任一图所示的结构,其实现原理与技术效果类似,此处不再赘述。
可选的,所述电池包括至少10串电芯,即提高了电池的容量,也能保证 电池给用电设备提供的电压满足用电设备的要求,不会烧坏用电设备。
图11为本申请一实施例提供的可移动平台的示意图,如图11所示,本实施例的可移动平台1100包括机体1101、电池仓1102和电池1103。电池仓1102设置于机体1101上,电池1103容置于电池仓1102内,并与机体1101电连接,为机体1101供电。
其中,电池1103可以参见图10所示的结构,其实现原理与技术效果类似,此处不再赘述。
图12为本申请一实施例提供的电池的降压控制方法的流程图,如图12所示,本实施例的方法可以用于上述的电池中,基于上述电池的结构,本实施例的方法可以包括:
步骤S1201、获取电池的状态信息。
步骤S1202、根据电池的状态信息,通过控制第一降压电路和第二降压电路中的至少一个的通断,来控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。
其中,所述第一降压电路,能够对所述电池的电芯的输出电压进行降压处理;所述第一降压电路的第一输入端能够连接于所述电芯,以接收所述电芯的输出电压,并且所述第一降压电路的第一输出端输出第一输出电压;所述第一输出电压低于所述电芯的所述输出电压;
所述第二降压电路,能够对所述电池的电芯的输出电压进行降压处理;其中,所述第二降压电路的第二输入端能够连接于所述电芯,以接收所述电芯的所述输出电压,并且所述第二降压电路的第二输出端输出第二输出电压;所述第二输出电压低于所述电芯的所述输出电压;
其中,所述第一降压电路的输出电流大于所述第二降压电路的输出电流。
本实施例中,上述步骤的具体过程可以参见图2所示实施例中的相关描述,此处不再赘述。
本实施例的电池的降压控制方法,由于第一降压电路和第二降压电路均能对电芯的输出电压进行降压处理,不同的是,第一降压电路的输出电流大于第二降压电路的输出电流。所以根据电池的状态信息通过控制第一降压电路和第二降压电路中至少一个的通断,来实现控制电芯通过第一降压电路或第二降压电路对至少一电子元件供电。无需一直控制电芯通过输出电流更大 的第一降压电路对电芯的输出电压进行降压处理,可以有选择性地控制电芯通过输出电流更小的第二降压电路对电芯的输出电压进行降压处理。保证电池的降压控制电路输出的电流不会始终处于高值,降低了电池的功耗,避免电池的过放电现象,提高电池的使用寿命。
在图12所示实施例的基础上,所述电池的状态信息包括第一状态信息,所述第一状态信息指示所述电池是否自待机状态切换至工作状态。所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:当所述第一状态信息指示所述电池自所述待机状态切换至所述工作状态时,控制所述电芯通过所述第一降压电路对至少一电子元件供电。
在图12所示实施例的基础上,所述电池的状态信息包括第二状态信息,所述第二状态信息指示所述电池是否自工作状态切换至待机状态;
所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:
当所述第二状态信息指示所述电池自所述工作状态切换至所述待机状态时,控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
在图12所示实施例的基础上,所述电池的状态信息包括第三状态信息,所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的输出电流是否低于预设值。
所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:当所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的所述输出电流低于所述预设值时,控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
在图12所示实施例的基础上,所述电池的状态信息包括第四状态信息,所述第四状态信息指示所述电池是否自启动状态切换至工作状态。所述控制所述电芯通过所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:
当启动所述电池时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电;
所述控制所述电芯通过所述第一降压电路对至少一电子元件供电,包括:
当所述第四状态信息指示所述电池自所述启动状态切换至所述工作状态时,所述控制器控制所述电芯通过所述第一降压电路对所述至少一电子元件供电。
可选的,当所述电池处于所述启动状态的时长达到预定时长时,所述电池自所述启动状态切换至所述工作状态。
可选的,当所述电池处于所述启动状态,并且所述控制器完成初始化处理时,所述电池自所述启动状态切换至所述工作状态。
在图12所示实施例的基础上,所述电池的状态信息包括第五状态信息,所述第五状态信息指示所述电池处于高功耗状态还是低功耗状态。若所述电池的输出功率大于一阈值,则所述电池处于高功耗状态,以及若所述电池的输出功率小于或等于所述阈值,则所述电池处于低功耗状态。
可选的,所述控制所述电芯通过所述第一降压电路对至少一电子元件供电的一种可能的实现方式为:当所述第五状态信息指示所述电池处于所述高功耗状态时,控制所述电芯通过所述第一降压电路对所述至少一电子元件供电。
所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:当所述第五状态信息指示所述电池处于所述低功耗状态时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
在图12所示实施例的基础上,所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:根据所述电芯的输出功率的取值范围,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
在图12所示实施例的基础上,所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:根据所述至少一电子元件的功率,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
在图12所示实施例的基础上,所述方法还包括:当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电;以及当所述电芯通过所述第二降压电路对 所述至少一电子元件供电时,禁止所述电芯通过所述第一降压电路对所述至少一电子元件供电。
在上述任一实施例的基础上,当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,所述至少一电子元件包括所述控制器和至少一外部设备。
在上述任一实施例的基础上,所述至少一外部设备包括:LED阵列、存储芯片、通信芯片。
在上述任一实施例的基础上,所述至少一电子元件包括第一电子元件和第二电子元件。其中,所述第一电子元件的输入端连接在所述第一降压电路的所述第一输出端和第一开关单元之间;以及所述第二电子元件包括所述控制器,并且所述第二电子元件通过所述第一开关单元连接至所述第一降压电路以及通过第二开关单元连接至所述第二降压电路。
所述控制所述电芯通过所述第一降压电路对至少一电子元件供电的一种可能的实现方式为:控制所述电芯通过所述第一降压电路对所述第一电子元件供电,以及通过第一开关单元,控制所述电芯通过所述第一降压电路对所述控制器供电。
所述控制所述电芯通过所述第二降压电路对至少一电子元件供电的一种可能的实现方式为:
通过第二开关单元,控制所述电芯通过所述第二降压电路对所述控制器供电。
在上述任一实施例的基础上,所述第一降压电路和所述第二降压电路并联。
在一种实现方式中,所述第一降压电路还包括第三开关单元和第一降压子电路,其中,所述第三开关单元电连接于所述电芯的输出端与所述第一降压子电路的输入端之间;
所述控制第一降压电路的通断的一种实现方式为:通过控制所述第三开关单元闭合或关断来控制所述第一降压电路的通断。
可选的,所述控制所述第三开关单元闭合或关断的一种可能的实现方式为:向所述第三开关单元输出使能信号,所述使能信号用于指示所述第三开关单元闭合或关断。
可选的,当所述使能信号为高电平信号时,所述使能信号指示所述第三开关单元闭合,以及当所述使能信号为低电平信号时,所述使能信号指示所述第三开关单元关断。
在一种实现方式中,所述第一降压电路还包括第四开关单元。所述至少一电子元件的输入端连接在所述第一降压子电路的输出端与所述第四开关单元之间。其中,当所述电芯通过所述第二降压电路供电时,所述第四开关单元禁止所述第二降压电路对所述至少一电子元件供电。
可选的,所述第四开关单元为二极管或晶体管。
可选的,所述第一降压子电路的输出端通过所述第四开关单元与所述控制器电连接。
在一种实现方式中,所述第二降压电路包括第二降压子电路和第五开关单元,所述第二降压子电路的输出端通过所述第五开关单元与所述控制器电连接;
当所述电芯通过所述第一降压电路供电时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电。
可选的,所述第五开关单元为二极管或晶体管。其中,当所述第一降压电路的所述第一输出电压大于所述第二降压电路的所述第二输出电压时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述控制器供电。
在上述任一实施例的基础上,所述第一降压电路包括单管不隔离直流变换器。其中,所述单管不隔离直流变换器的输出电压小于输入电压。
在上述任一实施例的基础上,所述第二降压电路包括源极跟随器或线性稳压器。
在上述任一实施例的基础上,所述降压控制电路还包括稳压电路。所述稳压电路的一端连接所述控制器,所述稳压电路的另一端连接所述第一降压电路和所述第二降压电路。其中,所述稳压电路对所述第一输出电压或所述第二输出电压进行稳压处理后输出至所述控制器。
在上述任一实施例的基础上,所述稳压电路包括线性稳压器。
上述各实现方式的具体过程可以参见图2-图8所示实施例中的相关描述,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (60)

  1. 一种电池的降压控制电路,其特征在于,包括
    控制器,用于控制第一降压电路和第二降压电路中的至少一个的通断;
    所述第一降压电路,能够对所述电池的电芯的输出电压进行降压处理;其中,所述第一降压电路的第一输入端能够连接于所述电芯,以接收所述电芯的输出电压,并且所述第一降压电路的第一输出端输出第一输出电压;所述第一输出电压低于所述电芯的所述输出电压;
    所述第二降压电路,能够对所述电池的电芯的输出电压进行降压处理;其中,所述第二降压电路的第二输入端能够连接于所述电芯,以接收所述电芯的所述输出电压,并且所述第二降压电路的第二输出端输出第二输出电压;所述第二输出电压低于所述电芯的所述输出电压;
    其中,所述第一降压电路的输出电流大于所述第二降压电路的输出电流;以及
    所述控制器根据所述电池的状态信息,控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电。
  2. 根据权利要求1所述的降压控制电路,其特征在于,
    所述电池的状态信息包括第一状态信息,所述第一状态信息指示所述电池是否自待机状态切换至工作状态;
    当所述第一状态信息指示所述电池自所述待机状态切换至所述工作状态时,所述控制器控制所述电芯通过所述第一降压电路对至少一电子元件供电。
  3. 根据权利要求1所述的降压控制电路,其特征在于,
    所述电池的状态信息包括第二状态信息,所述第二状态信息指示所述电池是否自工作状态切换至待机状态;
    当所述第二状态信息指示所述电池自所述工作状态切换至所述待机状态时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  4. 根据权利要求1所述的降压控制电路,其特征在于,
    所述电池的状态信息包括第三状态信息,所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的输出电流是否低于预设值;
    当所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的所述 输出电流低于所述预设值时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  5. 根据权利要求1所述的降压控制电路,其特征在于,当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,所述至少一电子元件包括所述控制器和至少一外部设备。
  6. 根据权利要求5所述的降压控制电路,其特征在于,所述至少一外部设备包括:LED阵列、存储芯片、通信芯片。
  7. 根据权利要求1所述的降压控制电路,其特征在于,
    所述至少一电子元件包括第一电子元件和第二电子元件;
    其中,
    所述第一电子元件的输入端连接在所述第一降压电路的所述第一输出端和第一开关单元之间,所述电芯通过第一降压电路对第一电子元件供电;以及
    所述第二电子元件包括所述控制器,并且所述第二电子元件通过所述第一开关单元连接至所述第一降压电路以及通过第二开关单元连接至所述第二降压电路。
  8. 根据权利要求1所述的降压控制电路,其特征在于,
    所述电池的状态信息包括第四状态信息,所述第四状态信息指示所述电池是否自启动状态切换至工作状态;
    当启动所述电池时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电;
    当所述第四状态信息指示所述电池自所述启动状态切换至所述工作状态时,所述控制器控制所述电芯通过所述第一降压电路对所述至少一电子元件供电。
  9. 根据权利要求8所述的降压控制电路,其特征在于,
    当所述电池处于所述启动状态的时长达到预定时长时,所述电池自所述启动状态切换至所述工作状态。
  10. 根据权利要求8所述的降压控制电路,其特征在于,
    当所述电池处于所述启动状态,并且所述控制器完成初始化处理时,所述电池自所述启动状态切换至所述工作状态。
  11. 根据权利要求1-6任一项所述的降压控制电路,其特征在于,所述第一降压电路和所述第二降压电路并联。
  12. 根据权利要求11所述的降压控制电路,其特征在于,
    所述第一降压电路还包括第三开关单元和第一降压子电路,其中,所述第三开关单元电连接于所述电芯的输出端与所述第一降压子电路的输入端之间;
    所述控制器,通过控制所述第三开关单元闭合或关断来控制所述第一降压电路的通断。
  13. 根据权利要求12所述的降压控制电路,其特征在于,
    所述控制器,用于向所述第三开关单元输出使能信号,所述使能信号用于指示所述第三开关单元闭合或关断。
  14. 根据权利要求13所述的降压控制电路,其特征在于,
    当所述使能信号为高电平信号时,所述使能信号指示所述第三开关单元闭合,以及
    当所述使能信号为低电平信号时,所述使能信号指示所述第三开关单元关断。
  15. 根据权利要求12所述的降压控制电路,其特征在于,
    所述第一降压电路还包括第四开关单元;
    所述至少一电子元件的输入端连接在所述第一降压子电路的输出端与所述第四开关单元之间;
    其中,当所述电芯通过所述第二降压电路供电时,所述第四开关单元禁止所述第二降压电路对所述至少一电子元件供电。
  16. 根据权利要求15所述的降压控制电路,其特征在于,
    所述第四开关单元为二极管或晶体管。
  17. 根据权利要求15所述的降压控制电路,其特征在于,
    所述第一降压子电路的输出端通过所述第四开关单元与所述控制器电连接。
  18. 根据权利要求11所述的降压控制电路,其特征在于,
    所述第二降压电路包括第二降压子电路和第五开关单元,所述第二降压子电路的输出端通过所述第五开关单元与所述控制器电连接;
    当所述电芯通过所述第一降压电路供电时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  19. 根据权利要求18所述的降压控制电路,其特征在于,
    所述第五开关单元为二极管或晶体管;
    其中,当所述第一降压电路的所述第一输出电压大于所述第二降压电路的所述第二输出电压时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述控制器供电。
  20. 根据权利要求1所述的降压控制电路,其特征在于,
    所述第一降压电路包括单管不隔离直流变换器;
    其中,所述单管不隔离直流变换器的输出电压小于输入电压。
  21. 根据权利要求1所述的降压控制电路,其特征在于,所述第二降压电路包括源极跟随器或线性稳压器。
  22. 根据权利要求1-21任一项所述的降压控制电路,其特征在于,
    所述降压控制电路还包括稳压电路;
    所述稳压电路的一端连接所述控制器,所述稳压电路的另一端连接所述第一降压电路和所述第二降压电路;
    其中,所述稳压电路对所述第一输出电压或所述第二输出电压进行稳压处理后输出至所述控制器。
  23. 根据权利要求22所述的降压控制电路,其特征在于,所述稳压电路包括线性稳压器。
  24. 根据权利要求1所述的降压控制电路,其特征在于,
    所述电池的状态信息包括第五状态信息,所述第五状态信息指示所述电池处于高功耗状态还是低功耗状态;
    若所述电池的输出功率大于一阈值,则所述电池处于高功耗状态,以及
    若所述电池的输出功率小于或等于所述阈值,则所述电池处于低功耗状态。
  25. 根据权利要求24所述的降压控制电路,其特征在于,
    当所述第五状态信息指示所述电池处于所述高功耗状态时,所述控制器控制所述电芯通过所述第一降压电路对所述至少一电子元件供电,以及
    当所述第五状态信息指示所述电池处于所述低功耗状态时,所述控制器 控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  26. 根据权利要求1所述的降压控制电路,其特征在于,
    当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,所述降压控制电路禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电;以及
    当所述电芯通过所述第二降压电路对所述至少一电子元件供电时,所述降压控制电路禁止所述电芯通过所述第一降压电路对所述至少一电子元件供电。
  27. 根据权利要求1所述的降压控制电路,其特征在于,
    所述控制器根据所述电芯的输出功率的取值范围,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
  28. 根据权利要求1所述的降压控制电路,其特征在于,
    所述控制器根据所述至少一电子元件的功率,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
  29. 一种电池管理系统,其特征在于,包括如权利要求1-23任一项所述的降压控制电路。
  30. 一种电池,其特征在于,包括至少一电芯和如权利要求24所述的电池管理系统,所述电池管理系统与所述电芯连接,用于对所述电芯的输出电压进行降压处理。
  31. 根据权利要求30所述的电池,其特征在于,所述电池包括至少10串电芯。
  32. 一种可移动平台,其特征在于,包括机体、电池仓和如权利要求25或26所述的电池,所述电池仓设置于所述机体上,所述电池容置于所述电池仓内,并与所述机体电连接,为所述机体供电。
  33. 一种电池的降压控制方法,用于权利要求30或31所述的电池,其特征在于,所述方法包括:
    获取所述电池的状态信息;
    根据所述电池的状态信息,通过控制第一降压电路和第二降压电路中的至少一个的通断,来控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电;
    其中,所述第一降压电路,能够对所述电池的电芯的输出电压进行降压处理;所述第一降压电路的第一输入端能够连接于所述电芯,以接收所述电芯的输出电压,并且所述第一降压电路的第一输出端输出第一输出电压;所述第一输出电压低于所述电芯的所述输出电压;
    所述第二降压电路,能够对所述电池的电芯的输出电压进行降压处理;其中,所述第二降压电路的第二输入端能够连接于所述电芯,以接收所述电芯的所述输出电压,并且所述第二降压电路的第二输出端输出第二输出电压;所述第二输出电压低于所述电芯的所述输出电压;
    其中,所述第一降压电路的输出电流大于所述第二降压电路的输出电流。
  34. 根据权利要求33所述的方法,其特征在于,所述电池的状态信息包括第一状态信息,所述第一状态信息指示所述电池是否自待机状态切换至工作状态;
    所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    当所述第一状态信息指示所述电池自所述待机状态切换至所述工作状态时,控制所述电芯通过所述第一降压电路对至少一电子元件供电。
  35. 根据权利要求33所述的方法,其特征在于,
    所述电池的状态信息包括第二状态信息,所述第二状态信息指示所述电池是否自工作状态切换至待机状态;
    所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    当所述第二状态信息指示所述电池自所述工作状态切换至所述待机状态时,控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  36. 根据权利要求33所述的方法,其特征在于,
    所述电池的状态信息包括第三状态信息,所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的输出电流是否低于预设值;
    所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    当所述第三状态信息指示所述电芯的所述输出电压或者所述电芯的所述输出电流低于所述预设值时,控制所述电芯通过所述第二降压电路对所述至 少一电子元件供电。
  37. 根据权利要求33所述的方法,其特征在于,当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,所述至少一电子元件包括所述控制器和至少一外部设备。
  38. 根据权利要求37所述的方法,其特征在于,所述至少一外部设备包括:LED阵列、存储芯片、通信芯片。
  39. 根据权利要求33所述的方法,其特征在于,
    所述至少一电子元件包括第一电子元件和第二电子元件;
    其中,所述第一电子元件的输入端连接在所述第一降压电路的所述第一输出端和第一开关单元之间;以及所述第二电子元件包括所述控制器,并且所述第二电子元件通过所述第一开关单元连接至所述第一降压电路以及通过第二开关单元连接至所述第二降压电路;
    所述控制所述电芯通过所述第一降压电路对至少一电子元件供电,包括:
    控制所述电芯通过所述第一降压电路对所述第一电子元件供电,以及通过第一开关单元,控制所述电芯通过所述第一降压电路对所述控制器供电;
    所述控制所述电芯通过所述第二降压电路对至少一电子元件供电,包括:
    通过第二开关单元,控制所述电芯通过所述第二降压电路对所述控制器供电。
  40. 根据权利要求33所述的方法,其特征在于,所述电池的状态信息包括第四状态信息,所述第四状态信息指示所述电池是否自启动状态切换至工作状态;
    所述控制所述电芯通过所述第二降压电路对至少一电子元件供电,包括:
    当启动所述电池时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电;
    所述控制所述电芯通过所述第一降压电路对至少一电子元件供电,包括:
    当所述第四状态信息指示所述电池自所述启动状态切换至所述工作状态时,所述控制器控制所述电芯通过所述第一降压电路对所述至少一电子元件供电。
  41. 根据权利要求40所述的方法,其特征在于,
    当所述电池处于所述启动状态的时长达到预定时长时,所述电池自所述 启动状态切换至所述工作状态。
  42. 根据权利要求40所述的方法,其特征在于,
    当所述电池处于所述启动状态,并且所述控制器完成初始化处理时,所述电池自所述启动状态切换至所述工作状态。
  43. 根据权利要求33-38任一项所述的方法,其特征在于,所述第一降压电路和所述第二降压电路并联。
  44. 根据权利要求43所述的方法,其特征在于,所述第一降压电路还包括第三开关单元和第一降压子电路,其中,所述第三开关单元电连接于所述电芯的输出端与所述第一降压子电路的输入端之间;
    所述控制第一降压电路的通断,包括:通过控制所述第三开关单元闭合或关断来控制所述第一降压电路的通断。
  45. 根据权利要求44所述的方法,其特征在于,所述控制所述第三开关单元闭合或关断,包括:
    向所述第三开关单元输出使能信号,所述使能信号用于指示所述第三开关单元闭合或关断。
  46. 根据权利要求45所述的方法,其特征在于,
    当所述使能信号为高电平信号时,所述使能信号指示所述第三开关单元闭合,以及
    当所述使能信号为低电平信号时,所述使能信号指示所述第三开关单元关断。
  47. 根据权利要求44所述的方法,其特征在于,
    所述第一降压电路还包括第四开关单元;
    所述至少一电子元件的输入端连接在所述第一降压子电路的输出端与所述第四开关单元之间;
    其中,当所述电芯通过所述第二降压电路供电时,所述第四开关单元禁止所述第二降压电路对所述至少一电子元件供电。
  48. 根据权利要求47所述的方法,其特征在于,
    所述第四开关单元为二极管或晶体管。
  49. 根据权利要求47所述的方法,其特征在于,
    所述第一降压子电路的输出端通过所述第四开关单元与所述控制器电连 接。
  50. 根据权利要求43所述的方法,其特征在于,
    所述第二降压电路包括第二降压子电路和第五开关单元,所述第二降压子电路的输出端通过所述第五开关单元与所述控制器电连接;
    当所述电芯通过所述第一降压电路供电时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  51. 根据权利要求50所述的方法,其特征在于,
    所述第五开关单元为二极管或晶体管;
    其中,当所述第一降压电路的所述第一输出电压大于所述第二降压电路的所述第二输出电压时,所述第五开关单元禁止所述电芯通过所述第二降压电路对所述控制器供电。
  52. 根据权利要求33所述的方法,其特征在于,
    所述第一降压电路包括单管不隔离直流变换器,
    其中,所述单管不隔离直流变换器的输出电压小于输入电压。
  53. 根据权利要求33所述的方法,其特征在于,所述第二降压电路包括源极跟随器或线性稳压器。
  54. 根据权利要求33-53任一项所述的方法,其特征在于,所述降压控制电路还包括稳压电路;
    所述稳压电路的一端连接所述控制器,所述稳压电路的另一端连接所述第一降压电路和所述第二降压电路;
    其中,所述稳压电路对所述第一输出电压或所述第二输出电压进行稳压处理后输出至所述控制器。
  55. 根据权利要求54所述的方法,其特征在于,所述稳压电路包括线性稳压器。
  56. 根据权利要求33所述的方法,其特征在于,
    所述电池的状态信息包括第五状态信息,所述第五状态信息指示所述电池处于高功耗状态还是低功耗状态;
    若所述电池的输出功率大于一阈值,则所述电池处于高功耗状态,以及
    若所述电池的输出功率小于或等于所述阈值,则所述电池处于低功耗状态。
  57. 根据权利要求56所述的方法,其特征在于,所述控制所述电芯通过所述第一降压电路对至少一电子元件供电,包括:
    当所述第五状态信息指示所述电池处于所述高功耗状态时,控制所述电芯通过所述第一降压电路对所述至少一电子元件供电;
    所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    当所述第五状态信息指示所述电池处于所述低功耗状态时,所述控制器控制所述电芯通过所述第二降压电路对所述至少一电子元件供电。
  58. 根据权利要求33所述的方法,其特征在于,还包括:
    当所述电芯通过所述第一降压电路对所述至少一电子元件供电时,禁止所述电芯通过所述第二降压电路对所述至少一电子元件供电;以及
    当所述电芯通过所述第二降压电路对所述至少一电子元件供电时,禁止所述电芯通过所述第一降压电路对所述至少一电子元件供电。
  59. 根据权利要求33所述的方法,其特征在于,所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    根据所述电芯的输出功率的取值范围,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
  60. 根据权利要求33所述的方法,其特征在于,所述控制所述电芯通过所述第一降压电路或所述第二降压电路对至少一电子元件供电,包括:
    根据所述至少一电子元件的功率,控制所述电芯在不同时刻通过所述第一降压电路或所述第二降压电路对所述至少一电子元件供电。
PCT/CN2020/089000 2020-05-07 2020-05-07 电池的降压控制电路、方法、系统、电池和可移动平台 WO2021223164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080032196.6A CN113906646A (zh) 2020-05-07 2020-05-07 电池的降压控制电路、方法、系统、电池和可移动平台
PCT/CN2020/089000 WO2021223164A1 (zh) 2020-05-07 2020-05-07 电池的降压控制电路、方法、系统、电池和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089000 WO2021223164A1 (zh) 2020-05-07 2020-05-07 电池的降压控制电路、方法、系统、电池和可移动平台

Publications (1)

Publication Number Publication Date
WO2021223164A1 true WO2021223164A1 (zh) 2021-11-11

Family

ID=78467674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089000 WO2021223164A1 (zh) 2020-05-07 2020-05-07 电池的降压控制电路、方法、系统、电池和可移动平台

Country Status (2)

Country Link
CN (1) CN113906646A (zh)
WO (1) WO2021223164A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655071A (zh) * 2022-02-18 2022-06-24 华为数字能源技术有限公司 一种电池、电池控制方法及电动车
CN115865566A (zh) * 2022-12-17 2023-03-28 中国重汽集团济南动力有限公司 一种适用于商用车的网关控制器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771052B2 (en) * 2003-01-03 2004-08-03 Astec International Limited Programmable multiple output DC-DC isolated power supply
CN101222176A (zh) * 2008-01-10 2008-07-16 晨星半导体股份有限公司 直流电源转换电路及模式切换方法
CN201699581U (zh) * 2010-06-07 2011-01-05 北汽福田汽车股份有限公司 电源转换设备和汽车
CN105281562A (zh) * 2014-07-18 2016-01-27 株式会社东芝 电力系统和控制设备
CN106026647A (zh) * 2016-04-29 2016-10-12 深圳市华芯邦科技有限公司 混合型电路的直流电能降压变换装置
CN206441117U (zh) * 2017-02-21 2017-08-25 济南浪潮高新科技投资发展有限公司 一种降低平板电脑待机功耗的电路
CN206759084U (zh) * 2017-04-06 2017-12-15 珠海惠尔益电子科技有限公司 一种移动电源的输出电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771052B2 (en) * 2003-01-03 2004-08-03 Astec International Limited Programmable multiple output DC-DC isolated power supply
CN101222176A (zh) * 2008-01-10 2008-07-16 晨星半导体股份有限公司 直流电源转换电路及模式切换方法
CN201699581U (zh) * 2010-06-07 2011-01-05 北汽福田汽车股份有限公司 电源转换设备和汽车
CN105281562A (zh) * 2014-07-18 2016-01-27 株式会社东芝 电力系统和控制设备
CN106026647A (zh) * 2016-04-29 2016-10-12 深圳市华芯邦科技有限公司 混合型电路的直流电能降压变换装置
CN206441117U (zh) * 2017-02-21 2017-08-25 济南浪潮高新科技投资发展有限公司 一种降低平板电脑待机功耗的电路
CN206759084U (zh) * 2017-04-06 2017-12-15 珠海惠尔益电子科技有限公司 一种移动电源的输出电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655071A (zh) * 2022-02-18 2022-06-24 华为数字能源技术有限公司 一种电池、电池控制方法及电动车
CN115865566A (zh) * 2022-12-17 2023-03-28 中国重汽集团济南动力有限公司 一种适用于商用车的网关控制器

Also Published As

Publication number Publication date
CN113906646A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021223164A1 (zh) 电池的降压控制电路、方法、系统、电池和可移动平台
AU2019377041B2 (en) Power communication to regulate charge of unmanned aerial vehicle
US11305875B2 (en) Mult-functional compartment
US20180364695A1 (en) Unmanned aerial vehicle, power management system thereof, and power management method therefor
WO2020119722A1 (zh) 一种保护电路、电池及飞行器
US20170374277A1 (en) Image pickup apparatus, image pickup method, and recording medium for imaging plural subjects or a single subject
US10778024B2 (en) Hybrid energy storage system with multiple energy and power densities
US11140332B2 (en) Imaging control method, imaging device and unmanned aerial vehicle
WO2021087780A1 (zh) 飞行控制方法、电源供电方法、系统及无人飞行器
WO2018082526A1 (zh) 一种电子调速器、电机组件以及无人飞行器
KR101615319B1 (ko) 스마트폰을 이용한 스마트 드론 독 시스템
CN111344651B (zh) 无人机的控制方法和无人机
US20200094979A1 (en) Unmanned aerial vehicle charging control method, system and unmanned aerial vehicle
US20200052623A1 (en) Control method for driving motor rotation, electronic governor, power system, and unmanned aerial vehicle
KR102321351B1 (ko) 드론용 통합 제어 시스템
WO2021168819A1 (zh) 无人机的返航控制方法和设备
US7521903B2 (en) Monolithic alternator regulator with configurable regulation modes
US11194120B2 (en) Lens device, camera device, and movable body
WO2021217355A1 (zh) 无人机的控制方法、系统和无人机
WO2021237500A1 (zh) 飞行控制方法和设备
CN109274065B (zh) 一种监控电路、电池及飞行器
CN107422745A (zh) 具备组网能力的可编程无人机装置
Coelho et al. An IoT-enabled modular quadrotor architecture for real-time aerial object tracking
WO2021142667A1 (zh) 电池均衡方法、系统、电池和可移动平台
WO2020061941A1 (zh) 通信方法、系统和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934273

Country of ref document: EP

Kind code of ref document: A1