WO2021221116A1 - すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法 - Google Patents

すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法 Download PDF

Info

Publication number
WO2021221116A1
WO2021221116A1 PCT/JP2021/017019 JP2021017019W WO2021221116A1 WO 2021221116 A1 WO2021221116 A1 WO 2021221116A1 JP 2021017019 W JP2021017019 W JP 2021017019W WO 2021221116 A1 WO2021221116 A1 WO 2021221116A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
mex3b
gene
agent
therapeutic agent
Prior art date
Application number
PCT/JP2021/017019
Other languages
English (en)
French (fr)
Inventor
徹 秋山
寛敦 林
祐介 山角
健昭 小田
Original Assignee
国立大学法人東京大学
TAK-Circulator株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, TAK-Circulator株式会社 filed Critical 国立大学法人東京大学
Priority to CN202180031242.5A priority Critical patent/CN115529818B/zh
Priority to JP2021542198A priority patent/JP7037160B1/ja
Priority to US17/997,138 priority patent/US20230183698A1/en
Priority to EP21795571.5A priority patent/EP4137156A1/en
Publication of WO2021221116A1 publication Critical patent/WO2021221116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer, and the above-mentioned combination pharmaceuticals in combination with the agent.
  • a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer, and the above-mentioned combination pharmaceuticals in combination with the agent.
  • immune checkpoint molecules such as PD-1 and CTLA4.
  • immune checkpoint inhibitors such as anti-PD-1 antibody and anti-CTLA4 antibody may be highly effective against malignant melanoma, non-small cell lung cancer and the like (for example, Patent Document 1).
  • the current situation is that only about 20% or less of the cases to which the immune checkpoint inhibitor is applied are effective. Therefore, it is desired to develop a new anti-cancer drug that has a different point of action, mechanism of action, etc. from the conventional anti-cancer drug and can treat cancer by a route different from that of the conventional anti-cancer drug.
  • the MEX3B protein is an RNA-binding protein, which is known to function downstream of p53 and the like in the signal cascade system, and is located in the 3'UTR (untranslated region that does not encode amino acids in exons) of various target mRNAs. It is known to bind and regulate the function (ie, translation into protein) or stability of those mRNAs.
  • the MEX3B protein is described as interleukin 6 (IL-6), IL-13, TNF (tumor necrosis factor: Tumor Necrosis Factor), G-CSF (granulocyte-colony stimulating factor).
  • Non-Patent Document 2 discloses that airway inflammation can be suppressed by suppressing the expression of Mix3B in the respiratory tract by inhaling an antisense nucleic acid against Mix3B using a bronchial asthma mouse model.
  • the present invention has been made in view of the above circumstances, and is a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer.
  • the cancer preventive or therapeutic agent for combination medicine to be combined with the agent, the combination drug containing the agent, and the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer. It is an object of the present invention to provide a method for screening a preventive or therapeutic agent for at least one type of cancer.
  • the present inventors can suppress at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer.
  • the present invention has been completed. Specifically, the present invention is as follows.
  • a first aspect of the present invention is a prophylactic or therapeutic agent for at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer, wherein the MEX3B gene is used. Alternatively, it is an agent containing a substance that reduces the expression of MEX3B protein or an inhibitor of MEX3B protein.
  • the second aspect of the present invention is selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer for combination pharmaceuticals in combination with the prophylactic or therapeutic agent according to the first aspect. It is a preventive or therapeutic agent for at least one type of cancer.
  • a third aspect of the present invention is a combination drug (combination drug) containing the prophylactic or therapeutic agent according to the first aspect and the above-mentioned other anticancer agent.
  • a fourth aspect of the present invention is a method for screening a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer. Therefore, at least one selected from the group consisting of decreased expression of MEX3B gene or MEX3B protein and decreased function of MEX3B protein is used as an index. Further, the present invention may be the fifth or sixth aspect described below.
  • a fifth aspect of the present invention is selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer, which comprises administering the prophylactic or therapeutic agent according to the first aspect to a subject. It is a method of preventing or treating at least one type of cancer.
  • a sixth aspect of the present invention comprises administering to a subject in combination with the prophylactic or therapeutic agent according to the first aspect and the other anticancer agent described above, pancreatic cancer, lung cancer, colon cancer, bile duct.
  • a method for preventing or treating at least one type of cancer selected from the group consisting of cancer and liver cancer.
  • the prophylactic or therapeutic agent according to the first aspect can prevent or treat at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer. ..
  • the prophylactic or therapeutic agent according to the second aspect may be used in combination with the prophylactic or therapeutic agent according to the first aspect having different points of action, mechanism of action, etc. for pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver. At least one cancer selected from the group consisting of cancers can be prevented or treated.
  • the combination drug according to the third aspect can prevent or treat intractable cancer with other anticancer agents having different points of action, mechanism of action, etc., or the above-mentioned other anticancer agents.
  • the dose can be reduced, and preferably, a synergistic effect of the prophylactic or therapeutic agent according to the first aspect and another anticancer agent can be obtained.
  • a method for screening a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer according to the fourth aspect is pancreatic cancer.
  • a preventive or therapeutic agent for at least one cancer selected from the group consisting of lung cancer, colon cancer, bile duct cancer and liver cancer can be screened.
  • the MEX3B gene contains exons 1, introns and exons 2, and this composition is highly conserved in humans, mice and other mammals. Exxons 1 and 2 also include a coding region (CDS) and a UTR. As the untranslated region (UTR) that does not encode an amino acid in an exon, there is a 5'UTR upstream of the start codon and a 3'UTR downstream of the stop codon.
  • the human MEX3B gene which encodes human MEX3B mRNA, has the sequence represented by SEQ ID NO: 1 below.
  • SEQ ID NO: 1 the 437th to 2146th base sequence is CDS, the 1st to 436th base sequence is 5'UTR, and the 2147th to 3532th base sequence is 3'UTR.
  • SEQ ID NO: 2 indicates a sequence containing an expression control region of about 36 kilobases upstream from the transcription start site of the human MEX3B gene.
  • SEQ ID NO: 3 indicates 836 bases in the intron region of the human MEX3B gene. In the human MEX3B gene, the intron region exists between the 694th base and the 695th base in the sequence represented by SEQ ID NO: 1.
  • SEQ ID NO: 7 shows the base sequence encoding the pre-mRNA of human MEX3B before splicing.
  • the base sequences 437 to 692 and 1529 to 2892 are CDS, and the base sequences 1 to 436 are 5'UTR, 2983 to.
  • the 4368th base sequence is 3'UTR, and the 693th to 1528th regions correspond to the intron region of the human MEX3B gene represented by SEQ ID NO: 3.
  • the mouse MEX3B gene which encodes mouse MEX3B mRNA, has the sequence represented by SEQ ID NO: 4 below.
  • SEQ ID NO: 4 the base sequence of positions 319 to 2049 is CDS
  • the base sequence of positions 1 to 318 is 5'UTR
  • the base sequence of 2050 to 3416 is 3'UTR.
  • all the genes encoding the MEX3B protein (for example, the protein having the amino acid sequence represented by SEQ ID NO: 5 or 6 described later) belong to the MEX3B gene.
  • the MEX3B gene is known to be a molecule in which MEX3B proteins bind to various mRNAs and control the function (ie, translation into proteins) or stability of those mRNAs (eg, Oncogene.
  • MEX3B gene examples include the gene described in any of the following (a) or (b), and the following is a viewpoint that a human-derived gene can be used as it is and no extra transformation or the like is required. It is preferably the gene of (a).
  • B A gene consisting of a base sequence in which one or several bases are deleted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 or 4 in the sequence listing, and whose expression is induced by p53.
  • a gene encoding a protein that has the activity of inducing cell aging A gene encoding a protein having an activity of promoting at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer, and liver cancer, or A gene encoding a protein having an activity of inducing the expression of inflammatory cytokines or inflammatory chemokines (IL-6, IL-13, TNF, G-CSF, CXCL1, CXCL2, CXCL5, etc.)
  • the range of "1 or several" in the "base sequence in which one or several bases are deleted, substituted and / or added in the base sequence" referred to in the present specification is not particularly limited, but is preferably 1 to 20. It means, more preferably 1 to 10, and even more preferably 1 to 5.
  • Examples of the degree of the above DNA mutation include those having 80% or more homology with the base sequence of the MEX3B gene set forth in SEQ ID NO: 1 or 4 in the sequence listing, preferably 85% or more, more preferably. DNA having 90% or more, more preferably 95% or more, particularly preferably 98% or more homology can be mentioned.
  • the method for obtaining the MEX3B gene is not particularly limited.
  • Appropriate probes and primers are prepared based on the information of the nucleotide sequence and amino acid sequence set forth in SEQ ID NOs: 1, 4 or 7 and 5 or 6 in the sequence listing of the present specification, and using them, a human cDNA library (
  • the MEX3B gene can be isolated by selecting a desired clone from a suitable cell in which the MEX3B gene is expressed (prepared according to a conventional method).
  • the gene (mutant gene) described in (b) described above in the present specification can also be prepared by any method known to those skilled in the art such as chemical synthesis, genetic engineering techniques, or mutagenesis.
  • a mutant DNA can be obtained by using the DNA having the base sequence shown in SEQ ID NO: 1 and introducing a mutation into these DNAs. Specifically, it can be carried out by using a method of contacting the DNA having the base sequence shown in SEQ ID NO: 1 or 4 with a drug that is a mutagen, a method of irradiating ultraviolet rays, a genetic engineering method, or the like. ..
  • MEX3B protein The MEX3B protein is any of the following proteins (a) or (b).
  • A A protein consisting of the amino acid sequence set forth in SEQ ID NO: 5 or 6 in the sequence listing
  • B The amino acid sequence set forth in SEQ ID NO: 5 or 6 of the sequence listing consists of an amino acid sequence in which one or several amino acids have been deleted, substituted and / or added, or SEQ ID NO: 5 or 6 of the sequence listing.
  • a protein consisting of an amino acid sequence having 95% or more homology with the amino acid sequence described in 1 and whose expression is induced by p53, A protein having an activity of inducing cell aging, or a protein having an activity of promoting at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer, or , Inflammatory cytokines or proteins having the activity of inducing the expression of inflammatory chemokines (IL-6, IL-13, TNF, G-CSF, CXCL1, CXCL2, CXCL5, etc.)
  • inflammatory chemokines IL-6, IL-13, TNF, G-CSF, CXCL1, CXCL2, CXCL5, etc.
  • the protein of (a) above is preferable from the viewpoint that a human-derived protein can be used as it is and no extra transformation or the like is required.
  • SEQ ID NO: 5 represents the amino acid sequence of the human MEX3B protein.
  • SEQ ID NO: 6 represents the amino acid sequence of the mouse MEX3B protein.
  • amino acid sequence in which one or several amino acids are deleted, substituted and / or added in the amino acid sequence is not particularly limited, but is preferably 1 to 10. It means, more preferably 1 to 5, and even more preferably 1 to 3.
  • amino acid sequence having 95% or more homology means that the homology of amino acids is 95% or more, and the homology is preferably 96% or more, more preferably 97% or more. Is.
  • all proteins encoded by mutant genes having high homology with the gene having the nucleotide sequence shown in SEQ ID NO: 1 or 4 in the sequence listing and having binding activity to a specific mRNA are all physiologically active proteins.
  • the side chains of amino acids which are the constituents of proteins, differ in hydrophobicity, charge, size, etc., but mean that they do not substantially affect the three-dimensional structure (also called three-dimensional structure) of the entire protein.
  • Several highly conservative relationships are known empirically and by physicochemical measurements. For example, for the substitution of amino acid residues, glycine (Gly) and proline (Pro), Gly and alanine (Ala) or valine (Val), leucine (Leu) and isoleucine (Ile), glutamic acid (Glu) and glutamine (Gln).
  • the mutant protein is a mutant protein due to substitution, insertion, deletion, etc. on the amino acid sequence of MEX3B described in SEQ ID NO: 5 or 6 in the sequence listing, the mutation is a highly conserved mutation in the three-dimensional structure of MEX3B. If the mutant protein is a physiologically active protein having a binding activity to a specific mRNA as in MEX3B, all of them belong to the range of MEX3B.
  • the method for obtaining the MEX3B protein is not particularly limited, and may be a protein synthesized by chemical synthesis, a naturally occurring protein isolated from a biological sample or cultured cells, or a recombinant protein prepared by gene recombination technology. ..
  • a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer contains, as an active ingredient, a substance that reduces the expression of the MEX3B gene or the MEX3B protein, or a substance that inhibits the MEX3B protein.
  • the active ingredient preferably contains a substance that lowers the expression of the MEX3B gene or the MEX3B protein, and more preferably contains a substance that lowers the expression of the MEX3B gene.
  • substances that reduce the expression of the MEX3B gene or MEX3B protein include antisense oligonucleotides described below, nucleic acids having RNAi action (for example, siRNA, shRNA), miRNA, artificial nucleases, and low molecular weight compounds.
  • the inhibitor of the MEX3B protein may be any substance as long as it inhibits the function of the MEX3B protein, and specifically, a high molecular compound (for example, a nucleic acid such as an aptamer), an antibody, a low molecular compound and the like. These will be described later.
  • Antisense oligonucleotide examples of the substance that lowers the expression of the MEX3B gene or MEX3B protein include antisense oligonucleotides having a sequence complementary to a continuous sequence in the MEX3B gene (CDS or UTR in Exxon or Intron) or in the expression control region of the gene.
  • An antisense oligonucleotide having a sequence complementary to the oligonucleotide contained in the MEX3B gene (CDS or UTR in exon) or in the expression control region of the gene is preferable, and the MEX3B gene (CDS or UTR in exson) is preferable.
  • An antisense oligonucleotide having a sequence complementary to the oligonucleotide contained in is more preferable, and an antisense oligonucleotide having a sequence complementary to the oligonucleotide contained in the UTR of the MEX3B gene is more preferable.
  • An antisense oligonucleotide having a sequence complementary to the oligonucleotide contained in 3'UTR is particularly preferable, and is contained in the base sequences 3129 to 4293 in the sequence encoding the pre-mRNA of human MEX3B represented by SEQ ID NO: 7. Most preferred are antisense oligonucleotides that have a sequence complementary to that of the oligonucleotide.
  • the antisense oligonucleotide When the antisense oligonucleotide is taken up into cells (preferably in the nucleus), it suppresses transcription, translation, etc. of the MEX3B gene, thereby causing pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma, and liver cancer. Can prevent or treat at least one cancer selected from the group.
  • an oligonucleotide contained in the MEX3B gene (CDS or UTR in exon or intron) or in the expression control region of the gene, and the antisense oligonucleotide complementary thereto are intracellular (preferably intranuclear).
  • the resulting hybrid double-stranded specific nuclease degrades MEX3B mRNA containing a nucleotide chain and suppresses transcription and translation of the MEX3B gene.
  • the antisense oligonucleotide may be DNA or RNA, but DNA is preferable from the viewpoint that mRNA is cleaved by the specific nuclease.
  • the antisense oligonucleotide is a continuous sequence of a number required to suppress the expression of the MEX3B gene in the base sequence of the MEX3B gene (CDS or UTR or intron in Exxon) or in the expression control region of the gene.
  • An antisense oligonucleotide having a complementary sequence is particularly preferable, and an antisense oligonucleotide having a sequence complementary to an oligonucleotide containing at least 14 nucleotides is most preferable.
  • the upper limit of the base length of the antisense oligonucleotide is 40 or less continuous oligonucleotides in the base sequence of the MEX3B gene (CDS or UTR or intron in Exxon) or in the expression control region of the gene.
  • an antisense oligonucleotide having a complementary sequence is preferably an antisense oligonucleotide having a complementary sequence, more preferably an antisense oligonucleotide having a sequence complementary to a contiguous 30 nucleotides or less oligonucleotide, and a contiguous 25 nucleotides or less oligonucleotide. It is more preferably an antisense oligonucleotide having a sequence complementary to, particularly preferably an antisense oligonucleotide having a sequence complementary to a contiguous 20 nucleotides or less oligonucleotide, and a contiguous 17 nucleotides or less.
  • An antisense oligonucleotide having a sequence complementary to the oligonucleotide is particularly preferable, and an antisense oligonucleotide having a sequence complementary to a contiguous 16-nucleotide or less oligonucleotide is most preferable.
  • the antisense oligonucleotide may or may not be an artificially synthesized artificial nucleic acid, and at least one nucleotide having at least one structure selected from the group consisting of a phosphorothioate structure, a crosslinked structure and an alkoxy structure. It is preferably an antisense oligonucleotide containing one.
  • nuclease resistance can be acquired, and since hydrophobicity is improved, intracellular or nuclear uptake can also be improved. can.
  • the sugar portion of the nucleotide is 2', 4'-BNA (2', 4'-Bridged Nucleic Acid; also known as LNA (Locked Nucleic Acid)), ENA (2'-O, 4'-C-Ethylene-bridged).
  • LNA Locked Nucleic Acid
  • ENA ENA
  • a bridged structure such as Nucleic Acid
  • an alkoxy structure such as 2'-O-methylation and 2'-O-methoxyethylation (2'-MOE
  • the antisense oligonucleotide it is preferable that at least one phosphodiester bond connecting the nucleotides has a phosphodiester structure, and 50% or more of the phosphodiester bonds in the antisense oligonucleotide have a phosphodiester structure. More preferably, 70% or more of the phosphodiester bonds in the antisense oligonucleotide have a phosphodiester structure, and 90% or more of the phosphodiester bonds in the antisense oligonucleotide are. It is particularly preferable to have a phosphodiester structure, and it is most preferable that all the phosphodiester bonds in the antisense oligonucleotide have a phosphodiester structure.
  • At least one of the nucleotides at one end preferably 1 to 3 bases from the end
  • the nucleotides at both ends of the antisense oligonucleotide have a crosslinked structure.
  • it is more preferable to have an alkoxy structure so-called gapmer type antisense oligonucleotide
  • 2 or 3 bases from the end have a crosslinked structure or an alkoxy structure.
  • the 5-position of cytosine (cytidine) at an arbitrary position may or may not be methylated.
  • the antisense oligonucleotide can be produced by a conventional method using a DNA synthesizer and a known organic synthesis technique.
  • Intracellular (preferably intranuclear) uptake of the antisense oligonucleotide may be free uptake.
  • the prophylactic or therapeutic agent according to the first aspect may or may not further contain any transfection agent from the viewpoint of improving intracellular uptake.
  • the transfection agent include a transfection agent containing polyethyleneimine (PEI), and a transfection agent containing linear PEI is preferable.
  • Linear PEI can be synthesized by hydrolysis of poly (2-ethyl-2-oxazoline).
  • transfection agent containing linear PEI a transfection agent commercially available as jetPEI (registered trademark; manufactured by Polyplus Transfection Co., Ltd.) can be used, and is commercially available as in-vivo-jetPEI (registered trademark). It is preferable to use the transfection agent that has been used.
  • the N / P ratio nitrogen residue of PEI per phosphate ester of nucleic acid
  • a transfection agent can be contained.
  • the prophylactic or therapeutic agent according to the first aspect may or may not further contain any drug delivery system (DDS) or DDS agent from the viewpoint of improving intracellular uptake. ..
  • the antisense oligonucleotide may or may not be contained in any drug delivery system (DDS) or DDS agent.
  • DDS agent include DDS agents containing particles having a particle size of 300 nm or less (preferably a particle size of 200 nm or less, more preferably a particle size of 100 nm or less).
  • the particles are preferably monodisperse particles having a core-shell structure, and the core-shell structure is preferably formed by self-organization.
  • the particles preferably contain polymer micelles.
  • the polymer micelle include polymer micelles containing a block copolymer containing polyethylene glycol (PEG) and polyamino acid, and the polymer formed between the block copolymer and the antisense oligonucleotide. Micelle is preferred.
  • the DDS agent preferably contains a ligand molecule capable of binding to a target (preferably a target cell), and contains a polymer micelle in which the ligand molecule is bound to the PEG (preferably at the tip of the PEG). Is more preferable.
  • Examples of the ligand molecule include cyclic RGD (cRGD) peptides containing arginine, glycine and aspartic acid, antibody fragments, lactose, folic acid, phenylboronic acid and the like, which target various cancer cells, and cRGD peptides are preferable.
  • cRGD cyclic RGD
  • the prophylactic or therapeutic agent according to the first aspect may or may not further contain a carrier for lipofection from the viewpoint of improving intracellular uptake.
  • a carrier for lipofection carrier include carriers having a high affinity for cell membranes (for example, liposomes, cholesterol, etc.), and lipofectamine or lipofectin is preferable, and lipofectamine is more preferable.
  • antisense oligonucleotides can be injected alone or in combination with the above-mentioned transfectants, DDS agents, and lipofection carriers into the affected area or the whole body of a subject (patient, unaffected person, etc.) (intratumoral administration, intravenous). Administration by administration, intraperitoneal administration, local transdermal administration, inhalation administration, etc.), and at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma, and liver cancer. It can be prevented or treated.
  • the antisense oligonucleotide having at least one structure selected from the group consisting of a phosphorothioate structure, a crosslinked structure and an alkoxy structure in combination with the above-mentioned carrier for lipofection, the subject (patient, unaffected person, etc.) ) Can be improved in intracellular or nuclear uptake.
  • the dose of the antisense oligonucleotide, which is the active ingredient, is generally in the range of about 0.1 ⁇ g to 100 mg per 1 kg of body weight at a time.
  • the vector or virus is introduced into a suitable vector or virus and further introduced into a suitable packaging cell. After the preparation, the vector or virus may be infecting the target cancer cells.
  • suitable vector or virus is not particularly limited, and may be, for example, an autonomously replicating vector or virus, but a chromosome integrated into the genome of the packaging cell when introduced into the packaging cell. It is preferable that it is duplicated with.
  • the antisense oligonucleotide may be functionally bound to a suitable terminator such as TPI1 terminator or ADH3 terminator for a human growth hormone terminator or a fungal host, if necessary.
  • a suitable terminator such as TPI1 terminator or ADH3 terminator for a human growth hormone terminator or a fungal host, if necessary.
  • Recombinant vectors also have elements such as polyadenylation signals (eg from the SV40 or adenovirus 5E1b region), transcription enhancer sequences (eg SV40 enhancers) and translation enhancer sequences (eg those encoding adenovirus VARNA). You may be doing it.
  • the recombinant vector may further comprise a DNA sequence that allows the vector or virus to replicate within the packaging cell, an example of which is the SV40 origin of replication.
  • Examples of packaging cells for preparing the vector or virus by introducing the antisense oligonucleotide or a vector or virus containing the same include higher eukaryotic cells, bacteria, yeast, fungi, etc., but they must be mammalian cells. Is preferable.
  • Examples of mammalian cells include HEK293 cells (for example, HEK293FT cells, HEK293T cells) and the like.
  • a method for transforming a mammalian cell to express a gene introduced into the cell is also known, and for example, a lipofection method, an electroporation method, a calcium phosphate method, or the like can be used.
  • nucleic acid having RNAi action As a substance that lowers the expression of the MEX3B gene or the MEX3B protein, a nucleic acid having an RNAi action capable of suppressing the expression of the MEX3B gene is also mentioned as a preferable example.
  • the nucleic acid having RNAi action preferably contains a continuous partial sequence in the coding region or the untranslated region in the base sequence of RNA transcribed from the MEX3B gene, or a sequence complementary thereto.
  • RNAi refers to a phenomenon in which the expression of a target gene is suppressed when RNA (double stranded RNA: dsRNA) in which a part of mRNA encoding a part of a certain target gene is double-stranded is introduced into a cell. ..
  • dsRNA double stranded RNA
  • nucleic acids having RNAi action include siRNA (small interfering RNA), shRNA (smal hairpin RNA) and the like.
  • siRNA and shRNA will be described.
  • siRNA examples include double-stranded RNA capable of suppressing the expression of the MEX3B gene by RNAi action or DNA encoding the above double-stranded RNA, and the expression of the MEX3B gene can be suppressed by RNAi action, and the expression of the MEX3B gene can be suppressed.
  • Double-stranded RNA having a continuous partial sequence in the base sequence of RNA transcribed from the MEX3B gene or DNA encoding the above double-stranded RNA is preferable. More specifically, as siRNA, if there is a sequence complementary to the number of consecutive sequences required for suppressing the expression of MEX3B gene of CDS or UTR in the base sequence of RNA transcribed from MEX3B gene.
  • a double-stranded RNA containing at least 17 contiguous nucleotides or a DNA encoding the double-stranded RNA is preferred, and at least 17 contiguous UTR nucleotides in the base sequence of the RNA transcribed from the MEX3B gene.
  • Double-stranded RNA containing the above or DNA encoding the above double-stranded RNA is more preferable, and the double-stranded RNA containing at least 17 consecutive nucleotides of 3'UTR in the base sequence of RNA transcribed from the MEX3B gene or the above two.
  • DNA encoding a double-stranded RNA is more preferred, and at least 17 consecutive nucleotides in the base sequence of RNA transcribed from the 3129-4293 base sequence in the sequence encoding the pre-mRNA of human MEX3B represented by SEQ ID NO: 7.
  • Double-stranded RNA containing the above double-stranded RNA or DNA encoding the above double-stranded RNA is particularly preferable.
  • the siRNA may have a sequence complementary to the number of consecutive sequences required for suppressing the expression of the MEX3B gene of CDS or UTR in the base sequence of RNA transcribed from the MEX3B gene.
  • it is a double-stranded RNA containing at least 18 contiguous nucleotides or a DNA encoding the double-stranded RNA, and the CDS or UTR in the base sequence of the RNA transcribed from the MEX3B gene is contiguous.
  • RNA is a double-stranded RNA containing at least 19 nucleotides or a DNA encoding the double-stranded RNA, preferably containing at least 20 consecutive nucleotides of CDS or UTR in the base sequence of the RNA transcribed from the MEX3B gene. It is more preferably a double-stranded RNA or a DNA encoding the double-stranded RNA, and is a double-stranded RNA containing at least 21 contiguous nucleotides of CDS or UTR in the base sequence of the RNA transcribed from the MEX3B gene or the double-stranded RNA described above. It is particularly preferable that the DNA encodes a double-stranded RNA.
  • the siRNA is preferably a double-stranded RNA containing 30 or less consecutive CDS or UTR nucleotides in the base sequence of RNA transcribed from the MEX3B gene, or a DNA encoding the double-stranded RNA, preferably from the MEX3B gene. More preferably, it is a double-stranded RNA containing 25 or less consecutive CDS or UTR nucleotides in the base sequence of the transcribed RNA, or a DNA encoding the double-stranded RNA.
  • Examples of the DNA encoding the double-stranded RNA include DNA having an inverted repeat sequence of a partial sequence of MEX3B.
  • the inverted repeat sequence of a partial sequence of MEX3B can be expressed in the cell, whereby the target gene (MEX3B) can be expressed by RNAi action. Can be suppressed.
  • the inverted repeat sequence refers to a sequence in which a partial sequence of a target gene (MEX3B) and an inverted sequence complementary thereto are arranged in parallel via an appropriate sequence. Specifically, when the partial sequence of the target gene has a double strand consisting of the n base sequences shown below, 5'-X 1 X 2 . ..
  • the reverse sequence has the following sequence. 5'-Y n Y n-1 . .. . . . . Y 2 Y 1-3 ' 3'-X n X n-1 . .. . . . . X 2 X 1 -5 ' (Here, among the bases represented by X and the bases represented by Y, those having the same subscript number are complementary bases to each other).
  • the inverted repeat sequence is a sequence in which the above two types of sequences are arranged via appropriate sequences. There are two cases of the inverted repeat sequence, one is when the partial sequence of the target gene is upstream of the complementary sequence of the target gene, and the other is when the inverted sequence is upstream of the partial sequence of the complementary target gene. Can be considered.
  • the inverted repeat sequence used in the present invention may be any of the above, but the inverted repeat is preferably located upstream of the partial sequence of the target gene complementary thereto.
  • shRNA has an inverted repeat sequence in which a partial sequence in the base sequence of RNA transcribed from the MEX3B gene and an inverted sequence complementary thereto are paralleled via a sequence capable of forming a hairpin loop. Examples thereof include double-stranded RNA and DNA encoding the above RNA.
  • the shRNA is suitable for a method of introducing a vector or virus expressing shRNA into a cell, and can function in the cell in the same manner as the siRNA described above.
  • shRNA as a partial sequence in the base sequence of RNA transcribed from the MEX3B gene, the number of CDS or UTR in the base sequence of RNA transcribed from the MEX3B gene required to suppress the expression of the MEX3B gene.
  • the sequence may be complementary to the contiguous sequence, preferably a partial sequence containing at least 17 contiguous nucleotides, preferably containing at least 17 contiguous UTR nucleotides in the base sequence of RNA transcribed from the MEX3B gene.
  • a partial sequence is more preferred, and a partial sequence containing at least 17 consecutive nucleotides of 3'UTR in the base sequence of RNA transcribed from the MEX3B gene is even more preferred, encoding the premRNA of human MEX3B represented by SEQ ID NO: 7. Partial sequences containing at least 17 contiguous creotides in the base sequence of RNA transcribed from positions 3129-4293 in the sequence are particularly preferred.
  • the partial sequence in the base sequence of the RNA transcribed from the MEX3B gene is preferably a partial sequence containing at least 18 consecutive nucleotides of CDS or UTR in the base sequence of the RNA transcribed from the MEX3B gene. More preferably, it is a partial sequence containing at least 19 consecutive nucleotides of CDS or UTR in the nucleotide sequence of RNA transcribed from the MEX3B gene, and contiguous CDS or UTR in the nucleotide sequence of RNA transcribed from the MEX3B gene.
  • a partial sequence containing at least 20 nucleotides is more preferable, and a partial sequence containing at least 21 consecutive nucleotides of CDS or UTR in the base sequence of RNA transcribed from the MEX3B gene is particularly preferable.
  • the partial sequence in the base sequence of RNA transcribed from the MEX3B gene is preferably a partial sequence containing 30 nucleotides or less of continuous CDS or UTR in the base sequence of RNA transcribed from the MEX3B gene, and the MEX3B gene. More preferably, it is a partial sequence containing 25 or less contiguous CDS or UTR in the base sequence of RNA transcribed from.
  • the length of the sequence capable of forming the hairpin loop is not particularly limited as long as the hairpin loop can be formed, but is preferably 0 to 300 bp, more preferably 1 to 100 bp, still more preferably 2 to 75 bp, and particularly preferably 3 to 50 bp. Is. Restriction enzyme sites may be present in this sequence.
  • the inverted repeat sequence of the target gene By incorporating the inverted repeat sequence of the target gene downstream of the promoter sequence that can be operated in mammals, the inverted repeat sequence of the target gene can be expressed in the cells of the mammal.
  • the promoter sequence is not particularly limited as long as it can be operated in mammals.
  • miRNA As a substance that lowers the expression of the MEX3B gene or the MEX3B protein, miRNA (microRNA) capable of suppressing the expression of the MEX3B gene is also mentioned as a preferable example.
  • the miRNA can suppress the translation of the MEX3B gene by pairing with the 3'UTR of the mRNA. More specifically, miRNAs are transcribed as RNA precursors with a hairpin-like structure, cleaved by dsRNA-cleaving enzymes with RNaseIII cleaving activity, incorporated into RISC or RISC-like protein complexes, and suppress the translation of mRNA. Can be done.
  • miRNA can include any of tri-miRNA (primary miRNA), pre-miRNA, and mature miRNA.
  • the miRNA preferably contains a contiguous partial sequence in 3'UTR of RNA transcribed from the MEX3B gene or a sequence complementary thereto, and encodes the premRNA of human MEX3B represented by SEQ ID NO: 7. It is more preferable to include a partial sequence in the base sequence of RNA transcribed from the base sequence of positions 3129 to 4293 or a sequence complementary thereto.
  • the length of the partial sequence is not particularly limited, and is preferably 7 bases or more, more preferably 8 bases or more, further preferably 9 bases or more, further preferably 11 bases or more, particularly preferably 13 bases or more, and 15 bases or more.
  • the above is particularly preferable, and 17 bases or more is most preferable.
  • the upper limit of the length of the partial sequence is not particularly limited, and is preferably 50 bases or less, more preferably 40 bases or less, further preferably 30 bases or less, particularly preferably 25 bases or less, and most preferably 23 bases or less.
  • the length of the pre-miRNA is usually several hundred to several thousand bases, and the length of the pre-miRNA is usually 50 to 80 bases.
  • the uptake of the nucleic acid or miRNA having an RNAi action into cells may be free uptake.
  • the intracellular uptake of nucleic acid or miRNA having RNAi action described above after inserting into a suitable vector or virus and further introducing into a suitable packaging cell to prepare a vector or virus. It may be an embodiment that infects the target cancer cells.
  • the type of the above-mentioned suitable vector or virus is not particularly limited, and may be, for example, an autonomously replicating vector or virus, but a chromosome integrated into the genome of the packaging cell when introduced into the packaging cell. It is preferable that it is duplicated with.
  • Suitable vectors or viruses include plasmids derived from Escherichia coli (eg, pBR322, pUC118, etc.), plasmids derived from bacillus (eg, pUB110, pSH19, etc.), lentivirus, retrovirus, adenovirus, bacteriophage, etc. Examples include animal viruses such as plasmid virus. At the time of recombination, it is also possible to add a translation start codon and a translation stop codon using an appropriate synthetic DNA adapter.
  • nucleic acid or miRNA having the RNAi action described above may be functionally bound to an appropriate terminator such as a TPI1 terminator or an ADH3 terminator for a human growth hormone terminator or a fungal host, if necessary.
  • Recombinant vectors also have elements such as polyadenylation signals (eg from the SV40 or adenovirus 5E1b region), transcription enhancer sequences (eg SV40 enhancers) and translation enhancer sequences (eg those encoding adenovirus VARNA). You may be doing it.
  • the recombinant vector or virus may further comprise a DNA sequence that allows the vector or virus to replicate within the packaging cell, an example of which is the SV40 origin of replication.
  • the recombinant vector or virus may further contain a selectable marker.
  • Selectable markers include genes lacking its complement in packaging cells, such as dihydrofolate reductase (DHFR) or the cisosaccalomyces pombe TPI gene, or chloramphenicol, such as ampicillin, kanamycin, tetracycline, chloramphenicol. , Neomycin or drug resistance genes such as dihydromycin.
  • DHFR dihydrofolate reductase
  • chloramphenicol such as ampicillin, kanamycin, tetracycline, chloramphenicol.
  • Neomycin Neomycin or drug resistance genes such as dihydromycin.
  • Examples of packaging cells for preparing the vector or virus by introducing the above-mentioned nucleic acid having RNAi action or miRNA or a vector or virus containing the same include higher eukaryotic cells, bacteria, yeast, fungi and the like, but mammals. It is preferably a cell.
  • Examples of mammalian cells include HEK293 cells (for example, HEK293FT cells, HEK293T cells) and the like.
  • a method for transforming a mammalian cell to express a gene introduced into the cell is also known, and for example, a lipofection method, an electroporation method, a calcium phosphate method, or the like can be used.
  • transfection agent lipofection carrier, and DDS agent described above can be applied to the nucleic acid or miRNA having the RNAi action described above in the same manner as the antisense oligonucleotide.
  • the nucleic acid or miRNA having the RNAi action described above can be used alone or in combination with the transfection agent, DDS agent, lipofection carrier described above, which is used to aid uptake into cells (patient, Administer to the affected area (non-symptomatic person, etc.) or whole body by injection (intratumoral administration, intravenous administration, intraperitoneal administration, local transdermal administration, inhalation administration, etc.) and take up into the cells of the target (patient, non-symptomatic person, etc.) Can be made.
  • the dose of double-stranded RNA or DNA, which is the active ingredient is generally in the range of about 0.1 ⁇ g to 10 mg per 1 kg of body weight at a time.
  • TALEN is an artificial nuclease containing TALEs, which is a domain formed by polymerizing four types of units that recognize and bind to any of four types of bases (A, T, G, and C), and a DNA cleavage domain.
  • ZFN is an artificial nuclease in the form of a chimeric protein containing a zinc finger domain and a DNA cleavage domain.
  • the zinc finger domain is a domain in which a zinc finger unit that recognizes a specific 3-base sequence has a structure obtained by polymerizing a plurality of zinc finger units and recognizes and binds to a DNA sequence that is a multiple of 3, and the zinc finger domain is contained in the MEX3B gene. At least recognize and combine subsequences.
  • the CRISPR / Casnuclease contains a guide RNA and a Casnuclease (preferably Cas9).
  • the guide RNA means an RNA having a function of binding to Casnuclease, which is a DNA cleaving enzyme, to guide Casnuclease to the target DNA (at least a partial sequence in the MEX3B gene).
  • the guide RNA has a sequence complementary to the target DNA (at least a partial sequence in the MEX3B gene) at its 5'end, and binds to the target DNA via the complementary sequence to target Casnuclease. Lead to.
  • the Cas nuclease functions as a DNA endonuclease and can cleave the DNA at the site where the target DNA is present, for example, to specifically reduce the expression of the MEX3B gene.
  • At least a partial sequence in the target MEX3B gene includes oligonucleotides contained in the MEX3B gene (CDS or UTR in Exxon or Intron) or in the expression control region of the gene, and the expression of the MEX3B gene is surely reduced.
  • an oligonucleotide contained in the MEX3B gene (CDS or UTR in Exxon) or in the expression control region of the gene is preferable, and it is contained in the MEX3B gene (CDS in Exxon) or the expression control region of the gene.
  • the oligonucleotide is more preferred, the oligonucleotide contained in the MEX3B gene (CDS in exon 1) is even more preferred, the oligonucleotide contained in the MEX3B gene (CDS in exon 1) is particularly preferred, and the starting codon of the MEX3B gene. Containing oligonucleotides are most preferred.
  • the partial sequence in the target MEX3B gene is preferably 15 to 25 bases, more preferably 17 to 22 bases, even more preferably 18 to 21 bases, and particularly preferably 20 bases.
  • a composition containing a guide RNA specific to the MEX3B gene or a DNA encoding a guide RNA By transfecting a eukaryotic cell or eukaryotic organism containing the MEX3B gene with a composition containing a guide RNA specific to the MEX3B gene or a DNA encoding a guide RNA, and a nucleic acid encoding a Cas nuclease or Cas nuclease.
  • the expression of the MEX3B gene can be reduced.
  • Nucleic acids encoding Cas nucleases or Cas nucleases and DNAs encoding guide RNAs or guide RNAs can be obtained by a variety of methods known in the art such as microinjection, electroporation, DEAE-dextran treatment, lipofection, nanoparticles.
  • nucleic acid encoding Cas nuclease or Cas nuclease and guide RNA can be transferred into an organism by various methods known in the art for administering genes or proteins such as infusion.
  • the nucleic acid or Cas protein encoding the Cas nuclease can be transferred into the cell in the form of a complex with a guide RNA or separately. Cas nucleases fused to protein transduction domains such as Tat can also be efficiently delivered intracellularly.
  • eukaryotic cells or eukaryotes are co-transfected or serially transfected with Cas9 nuclease and guide RNA. Successive transfection can be performed first by transfection with a nucleic acid encoding Cas nuclease, followed by a second transfection with a naked guide RNA. Preferably, the second transfection is after 3, 6, 12, 18, 24 hours, but is not limited to them.
  • a guide RNA expression unit may be used for the expression of the guide RNA.
  • RNA expression unit it is preferable to use a CRISPR-Cas9 system transcription unit containing a target sequence (partial sequence of MEX3B gene) and a guide RNA, and a promoter region for expressing the guide RNA (promoter of RNA polymerase III). It preferably has (eg, a promoter selected from the U6 and H1 promoters), a target sequence (MEX3B gene) and a guide RNA, and a sequence and guide complementary to the promoter, target sequence (at least a partial sequence of the MEX3B gene). More preferably, the RNAs are seamlessly linked.
  • the CRISPR / Casnuclease can also use a Cas9 mutant that cleaves only one strand of double-stranded DNA as a nickase to prevent off-targeting.
  • Examples of the single-strand break type Cas9 mutant include Cas9 (D10A).
  • a single-strand break Cas9 variant is, for example, a combination of a guide RNA having a target sequence complementary to one strand of the target DNA and a guide RNA having a target sequence complementary to the other strand in the immediate vicinity thereof. When used, one strand is cleaved with a specificity of 20 bases, and the other strand is cleaved with a specificity of 20 bases. It is possible to greatly improve the sex.
  • the dose of the artificial nuclease or the nucleic acid encoding the artificial nuclease, which is the active ingredient, is generally in the range of about 0.1 ⁇ g to 10 mg per 1 kg of body weight at a time.
  • the inhibitor of the MEX3B protein may be any substance such as a high molecular compound (for example, a nucleic acid such as an aptamer), an antibody, or a low molecular compound as long as it inhibits the function of the MEX3B protein.
  • a high molecular compound for example, a nucleic acid such as an aptamer
  • an antibody or a low molecular compound as long as it inhibits the function of the MEX3B protein.
  • the preferred embodiments of the MEX3B protein inhibitor at least selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer using an aptamer that selectively binds to the MEX3B protein.
  • One type of cancer preventive or therapeutic agent is mentioned.
  • An aptamer is a nucleic acid drug that is composed of single-strand RNA or DNA and binds to a target protein by its three-dimensional structure to inhibit its function. Aptamers have high binding and specificity to target proteins, low immunogenicity, can be produced by chemical synthesis, and have high storage stability.
  • the base length of the aptamer that selectively binds to the MEX3B protein is not particularly limited as long as it specifically binds to the MEX3B protein, but is preferably 15 to 60 bases, more preferably 20 to 50 bases. , 25-47 bases, more preferably 26-45 bases. Aptamers that selectively bind to the MEX3B protein can be obtained by the SELEX (Systematic Evolution of Ligands by EXPonential evolution) method.
  • MEX3B protein inhibitor is at least selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer using an antibody that selectively binds to the MEX3B protein.
  • One type of cancer preventive or therapeutic agent is mentioned.
  • Either a polyclonal antibody or a monoclonal antibody may be used as long as it can specifically bind to the MEX3B protein.
  • Polyclonal antibody can be prepared by separating and purifying serum obtained from an animal immunized with an antigen.
  • the monoclonal antibody is prepared by fusing antibody-producing cells obtained from an animal immunized with an antigen and myeloma cells to prepare a hybridoma, and the hybridoma is cultured or administered to an animal to cause the animal to become ascites cancer. It can be prepared by separating and purifying the culture solution or ascites of.
  • the monoclonal antibody is prepared by fusing the antibody-producing cells and myeloma cells derived from non-human mammals to prepare a hybridoma, and the hybridoma is cultured or administered to an animal to cause the animal to have ascites cancer, and the culture is performed. It can be prepared by separating and purifying the liquid or ascites.
  • As the antibody-producing cells spleen cells, lymph nodes, and antibody-producing cells in peripheral blood can be used, and spleen cells are particularly preferable.
  • humanized antibody or a humanized antibody When the antibody is used for the purpose of administration to humans, it is preferable to use a humanized antibody or a humanized antibody in order to reduce immunogenicity.
  • humanized antibodies and humanized antibodies can be produced using mammals such as transgenic mice.
  • mammals such as transgenic mice.
  • humanized antibodies see, for example, Morrisons, S. et al. L. et al. [Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984)], Hiroshi Noguchi [Ayumi of Medicine 167: 457-462 (1993)].
  • the humanized chimeric antibody can be prepared by binding the V region of a mouse antibody and the C region of a human antibody by genetic recombination.
  • a humanized antibody can be prepared by substituting a sequence derived from a human antibody from a mouse monoclonal antibody in a region other than the complementarity determining regions (CDRs).
  • the antibody can be used as an immobilized antibody immobilized on an insoluble carrier such as a solid phase carrier, or as a labeled antibody labeled with a labeling substance. All such immobilized antibodies and labeled antibodies are also within the scope of the present invention.
  • the antibody capable of selectively (preferably specifically) binding to the MEX3B protein and inhibiting its function consists of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer. It can be used as a prophylactic or therapeutic agent for at least one cancer selected from the group.
  • an antibody is used in the form of a pharmaceutical composition as a prophylactic or therapeutic agent according to the first aspect, the antibody is used as an active ingredient, and a pharmaceutically acceptable carrier or diluent (for example, immunogen) is used.
  • a pharmaceutically acceptable carrier or diluent for example, immunogen
  • Pharmaceutical compositions can be prepared using (such as sex adjuvants), stabilizers or excipients.
  • the prophylactic or therapeutic agent containing the antibody can be filtered sterilized and lyophilized and formulated into a dosage form in a dosage vial or stabilized aqueous preparation.
  • the pancreatic cancer specifically includes pancreatic adenocarcinoma and the like
  • the lung cancer includes non-small cell lung cancer and the like
  • the colon cancer includes non-small cell lung cancer and the like.
  • examples include colon cancer and the like
  • examples of the above-mentioned liver cancer include hepatocellular carcinoma and the like.
  • Administration to a subject can be performed by a method known to those skilled in the art, such as intraarterial injection, intravenous injection, and subcutaneous injection.
  • the dose varies depending on the body weight and age of the subject (patient, unaffected person, etc.), administration method, etc., but those skilled in the art can appropriately select an appropriate dose.
  • the dose of the antibody as an active ingredient is generally in the range of about 0.1 ⁇ g to 100 mg per 1 kg of body weight at a time.
  • the above-mentioned at least one type of cancer does not have to be a cancer that is intractable to other anticancer agents, but to other anticancer agents.
  • the preventive or therapeutic agent according to the first aspect can be regarded as an intractable cancer, and the above-mentioned intractable cancer is different from other anticancer agents in terms of action point, mechanism of action, etc. Or can reduce the dose of other conventional anti-cancer drugs (ie, reduce side effects of other conventional anti-cancer drugs, improve medication compliance) ..
  • the prophylactic or therapeutic agent according to the first aspect does not have to be an agent for administration to a patient suffering from the intractable cancer, but is administered to a patient suffering from the intractable cancer.
  • the other anticancer agent include any anticancer agent, and at least one anticancer agent selected from the group consisting of an immune checkpoint inhibitor and a pyrimidine antimetabolite is preferable.
  • immune checkpoint inhibitors include agents that inhibit the function of immune checkpoint molecules (eg, binding between immune checkpoint molecules (eg, binding between receptors and ligands)).
  • Examples of the immune checkpoint molecule include receptors PD-1, CTLA4 and the like, and ligands PD-L1, PD-L2, CD80 / 86 and the like.
  • Examples of the immune checkpoint inhibitor include substances (for example, antibodies, aptamers, etc.) that selectively (preferably specificly) bind to these immune checkpoint molecules.
  • Specific examples of the immune checkpoint inhibitor include anti-PD-1 antibody, anti-CTLA4 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody, and anti-CD80 / 86 antibody.
  • Examples of the pyrimidine antimetabolite include an agent that inhibits nucleic acid synthesis in vivo, an agent that changes into an agent that inhibits nucleic acid synthesis in vivo, and specifically, gemcitabine (abbreviation: Gem), citarabin, and the like.
  • Examples thereof include capecitabin, TS-1 (registered trademark), tegafur / gimeracil / oteracil potassium (S-1), tegafur / uracil, fluorouracil and the like.
  • the prophylactic or therapeutic agent according to the first aspect also relates to an agent for a combination drug (combination drug) to be combined with the other anticancer agent, and reduces the dose of the other anticancer agent (that is,). Side effects caused by other conventional anticancer drugs can be reduced and medication compliance can be improved).
  • the preventive or therapeutic agent according to the first aspect is a combination in which at least one of the above cancers is intractable to the above other anticancer agents and is combined with the above other anticancer agents. It can also be a medicinal agent, that is, a combination medicinal agent for administration to a patient suffering from the above-mentioned intractable cancer.
  • the prophylactic or therapeutic agent according to the first aspect can be orally or parenterally administered systemically or topically.
  • parenteral administration methods include intratumoral injection, intravenous injection such as infusion, intraperitoneal injection, subcutaneous injection, and intramuscular injection.
  • the administration method can be appropriately selected depending on the age and symptoms of the subject (patient, non-symptomatic person, etc.).
  • the dose varies depending on the age, the route of administration, and the number of administrations, and can be appropriately selected by those skilled in the art.
  • Examples of the pharmaceutical form suitable for parenteral administration include those containing additives such as stabilizers, buffers, preservatives, and tonicity agents, and those containing pharmaceutically acceptable carriers and additives. It may be.
  • Such carriers and additives include water, organic solvents, high molecular weight compounds (collagen, polyvinyl alcohol, etc.), stearic acid, human serum albumin (HSA), mannitol, turbitol, lactose, surfactants and the like. However, it is not limited to these.
  • the prophylactic or therapeutic agent according to the second aspect is composed of a group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer for combination medicine combined with the prophylactic or therapeutic agent according to the first aspect.
  • the prophylactic or therapeutic agent according to the second aspect can contain any anticancer agent as an active ingredient, and has a different point of action, mechanism of action, etc. from the prophylactic or therapeutic agent according to the first aspect.
  • the prophylactic or therapeutic agent according to the second aspect can be orally or parenterally administered systemically or topically.
  • parenteral administration methods include intratumoral injection, intravenous injection such as infusion, intraperitoneal injection, subcutaneous injection, and intramuscular injection. The administration method can be appropriately selected depending on the age and symptoms of the subject (patient, non-symptomatic person, etc.).
  • the dose varies depending on the age, the route of administration, and the number of administrations, and can be appropriately selected by those skilled in the art.
  • the pharmaceutical form suitable for parenteral administration include those containing additives such as stabilizers, buffers, preservatives, and tonicity agents, and those containing pharmaceutically acceptable carriers and additives. It may be.
  • such carriers and additives include water, organic solvents, high molecular weight compounds (collagen, polyvinyl alcohol, etc.), stearic acid, human serum albumin (HSA), mannitol, turbitol, lactose, surfactants and the like. However, it is not limited to these.
  • the combination drug according to the third aspect includes a prophylactic or therapeutic agent according to the first aspect and another anticancer agent.
  • the combination drug according to the third aspect can reduce the dose of the other anticancer drug (that is, reduce the side effects of the other anticancer drug and improve the medication compliance).
  • the combination drug according to the third aspect is administered to a patient in which at least one of the above cancers is intractable to the other anticancer drug and suffers from the intractable cancer. It can also be used as a combination drug.
  • other anticancer agents include arbitrary anticancer agents, and anticancer agents having different points of action, mechanism of action, etc. from the prophylactic or therapeutic agents according to the first aspect are preferable, and immune checkpoints. More preferably, at least one anticancer agent selected from the group consisting of inhibitors and pyrimidine antimetabolites. Specific examples and preferable examples of the immune checkpoint inhibitor and the pyrimidine antimetabolite are as described above.
  • the combination drug according to the third aspect may be administered by mixing the prophylactic or therapeutic agent according to the first aspect with another anticancer agent, or the prophylactic or therapeutic agent according to the first aspect. And, although it is separate from other anticancer agents, it may be administered at the same time.
  • the administration route of the prophylactic or therapeutic agent according to the first aspect and the administration route of the other anticancer agent may be the same or different, and the dose may be different. May be the same or different.
  • the combination drug according to the third aspect can be orally or parenterally administered systemically or topically. Examples of parenteral administration methods include intratumoral injection, intravenous injection such as infusion, intraperitoneal injection, subcutaneous injection, and intramuscular injection.
  • the administration method can be appropriately selected depending on the age and symptoms of the subject (patient, non-symptomatic person, etc.).
  • the dose varies depending on the age, the route of administration, and the number of administrations, and can be appropriately selected by those skilled in the art.
  • the pharmaceutical form suitable for parenteral administration include those containing additives such as stabilizers, buffers, preservatives, and tonicity agents, and those containing pharmaceutically acceptable carriers and additives. It may be.
  • Such carriers and additives include water, organic solvents, high molecular weight compounds (collagen, polyvinyl alcohol, etc.), stearic acid, human serum albumin (HSA), mannitol, turbitol, lactose, surfactants and the like. However, it is not limited to these.
  • the screening method according to the fourth aspect uses at least one selected from the group consisting of decreased expression of MEX3B gene or MEX3B protein and decreased function of MEX3B protein as an index to obtain pancreatic cancer, lung cancer, and the like.
  • a prophylactic or therapeutic agent for at least one cancer selected from the group consisting of colorectal cancer, bile duct cancer and liver cancer can be screened.
  • the at least one type of cancer may or may not be intractable to other anticancer agents, but to other anticancer agents. It can be an intractable cancer.
  • the preventive or therapeutic agent to be screened may or may not be a combination drug in combination with the other anticancer drug, but is a combination drug in combination with the other anticancer drug. be able to.
  • any anti-cancer agent can be mentioned, and an anti-cancer agent having a different point of action, mechanism of action, etc. from the above-mentioned preventive or therapeutic agent is preferable, and an immune check is performed.
  • At least one anticancer agent selected from the group consisting of point inhibitors and pyrimidine antimetabolites is more preferable.
  • the screening method preferably uses a decrease in MEX3B gene expression as an index.
  • the functions of the MEX3B protein include a function of promoting at least one type of cancer selected from the group consisting of colon cancer, bile duct cancer and liver cancer, a function of inducing expression by p53, and a function of inducing cell aging.
  • the function of binding to various mRNAs of the inflammatory cytokine or inflammatory chemokine gene to control the function (that is, translation into protein) or stability of those mRNAs, and induces the expression of the inflammatory cytokine or inflammatory chemokine. Functions to be used can be mentioned.
  • the degree of the decrease is not particularly limited as long as it is a statistically significant decrease, but is in the absence of the test substance (for example, the system before administration of the test substance (for example, wild type), or a negative control (for example, wild type). It is preferably 1/2 or less, preferably 1/4 or less, with respect to the expression or function of the MEX3B gene or MEX3B protein in the system) of the control) in which a substance that does not affect the expression or function of the MEX3B gene or MEX3B protein is administered. It is more preferably present, more preferably 1/10 or less, and particularly preferably no expression or function.
  • the screening method may be any screening method such as in vivo, in vitro, and in silico as long as the above is used as an index.
  • cells expressing the MEX3B gene are cultured in the presence and absence of the test substance, the expression of the MEX3B gene or the MEX3B protein is decreased depending on the presence or absence of the test substance, and the expression of the MEX3B protein is reduced.
  • screening for a prophylactic or therapeutic agent for at least one type of cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, bile duct cancer and liver cancer can be mentioned.
  • the full length MEX3B protein may be used, or a portion of the MEX3B protein (eg, including any one or more domains characterizing the MEX3B protein) may be used.
  • the above-mentioned domain include an arbitrary RNA-binding domain and an arbitrary protein-binding domain in the MEX3B protein, and more specifically, a KH domain, a RING finger domain, and the like.
  • the expression of the MEX3B gene in various human tissues can be detected even in in silico.
  • the expression of the MEX3B gene in various human tissues can be detected by using a probe or a primer having a part or all of the base sequence of the gene.
  • the expression of the MEX3B gene can be detected by a conventional method such as RT-PCR, Northern blot, Southern blot and the like.
  • the expression level of the MEX3B gene at the mRNA level can also be measured by a conventional method such as RT-PCR, Northern blot, Southern blot or the like.
  • the primer is not particularly limited as long as it can specifically amplify only the MEX3B gene, and can be appropriately set based on the sequence information of the MEX3B gene.
  • an oligonucleotide containing at least 10 consecutive nucleotides in the base sequence of the MEX3B gene or the expression control region of the gene, and an antisense oligonucleotide having a sequence complementary to the oligonucleotide can be used as a probe or primer. can.
  • Antisense oligonucleotides having different sequences can be used.
  • oligonucleotide and antisense oligonucleotide can be produced by a conventional method using a DNA synthesizer.
  • a sense primer corresponding to the base sequence on the 5'end side in a part of the base sequence of the mRNA to be detected, a sense primer corresponding to the base sequence on the 5'end side, an antisense primer corresponding to the base sequence on the 3'end side, and the like.
  • the sense primer and the antisense primer are oligonucleotides whose melting temperature (Tm) and number of bases do not change drastically, and those having about 10 to 60 bases can be mentioned, and those having about 10 to 40 bases can be mentioned.
  • the above-mentioned derivative of the oligonucleotide can be used, and for example, a methyl form or a phosphorothioate form of the oligonucleotide can be used.
  • the expression level of MEX3B protein can be measured by Western blotting using an antibody described later or by ordinary immunoassay such as ELISA. Specifically, it can be carried out by a conventional method known to those skilled in the art described in Molecular Cloning 2nd Edition or Current Protocols in Molecular Biology and the like. Further, the analysis of the decrease in the function of the MEX3B protein can be analyzed by measuring the presence or absence or degree of the binding ability of the MEX3B protein to mRNA and the presence or absence or degree of the functional expression of the mRNA to which the MEX3B protein binds. .. The presence or absence or degree of binding ability to MEX3B protein mRNA can be measured by any analysis such as a competitive inhibition test.
  • Measurement of the expression level at the protein level regarding the presence or absence or degree of functional expression of mRNA to which the MEX3B protein binds can be performed by conventional immunoanalysis such as Western blotting or ELISA. For example, it can be carried out by a conventional method known to those skilled in the art described in Molecular Cloning 2nd Edition or Current Protocols in Molecular Biology and the like.
  • test substance used in the screening method according to the fourth aspect.
  • the type of the test substance is not particularly limited, and may be a nucleic acid molecule, an antibody, an individual small molecule synthetic compound, a compound present in a natural product extract, or a synthetic peptide. It may be an artificial nuclease for genome editing described later.
  • the test compound may also be a compound library, a phage display library or a combinatorial library. Construction of a compound library is known to those skilled in the art, and a commercially available compound library can also be used.
  • the test substance is preferably a low molecular weight compound (for example, a compound library), a nucleic acid molecule, an artificial nuclease or an antibody for genome editing, and the nucleic acid molecule or the antibody is a nucleic acid molecule or an antibody from the viewpoint of high specificity for the MEX3B gene or protein. More preferably, an aptamer or antibody that selectively binds to a nucleic acid molecule or MEX3B protein having a sequence complementary to an oligonucleotide contained in the MEX3B gene (CDS or UTR in exon or intron) or in the expression control region of the gene. Is more preferable.
  • the present invention may or may not be a method for preventing or treating at least one cancer selected from the group consisting of pancreatic cancer, lung cancer, colon cancer, cholangiocarcinoma and liver cancer.
  • the method for preventing or treating at least one type of cancer selected from the group consisting of lung cancer, colon cancer, cholangiocarcinoma and liver cancer according to the fifth aspect is the preventive or therapeutic agent according to the first aspect. Includes administration to the subject.
  • the method for preventing or treating at least one type of cancer selected from the group consisting of lung cancer, colon cancer, cholangiocarcinoma and liver cancer according to the sixth aspect is the preventive or therapeutic agent according to the first aspect.
  • administration to the subject in combination with the above other anticancer agents include animals, vertebrates are preferable, mammals such as humans, pigs, cows, mice and rats are more preferable, humans are further preferable, and human-onset patients are particularly preferable. Specific examples and preferred examples of the administration method, dose and the like are as described above.
  • Antisense oligonucleotide used The antisense oligonucleotides used in the following examples are as follows. Gapmer 89 (SEQ ID NO: 8), Gapmer 89-2 (SEQ ID NO: 9) and Gapmer NC are summarized in Table 1 below.
  • Gapmer 89-2 is an antisense oligonucleotide in which the target sequence is shifted from the target sequence of Gapmer 89 to the 5'terminal side by 2 bases.
  • Gapmer NC is a gapmer as a negative control (NC) that targets sequences that do not exist on the genome.
  • Two bases of LNA (2', 4'-BNA) are placed at both ends of each of the gapmer type antisense oligonucleotides, and the bases that fill the other spaces are ordinary DNA, and each nucleotide is connected. All phosphate diester bonds were phosphorothioated.
  • Example 1 Nude mice (Balb / c nu / nu, female, 7 weeks old) human pancreatic cancer cells PK1 to (3 ⁇ 10 6 cells / mouse) after transplantation 23, 26, 28, 31, 33, gap 35 day Mar 89 (20 ⁇ g / 200 ⁇ l micelles (50% cRGD) / mouse) or Gap Mar 89-2 (20 ⁇ g / 200 ⁇ l micelles (50% cRGD) / mouse) was administered via the tail vein and 22, 26, 28, 31, 33.
  • the micelle is a polymer micelle having a core-shell structure formed between a block copolymer containing PEG and polyamino acid and the antisense oligonucleotide, and having cRGD as a ligand molecule and having a particle size of 100 nm or less.
  • NC negative control
  • FIG. 1 is a diagram showing the results of a growth suppression test of pancreatic cancer cell PK1 by an antisense oligonucleotide against MEX3B.
  • the error bars in the figure are standard errors.
  • the tumors to which Gapmer 89 and Gapmer 89-2 were administered had a lower volume and weight than the tumors to which Gapmer NC was administered (particularly 33 days). It can be seen that there is a significant decrease after the eyes).
  • Gapmer 89 and Gapmer 89-2 which are substances that reduce the expression of the MEX3B gene or MEX3B protein, suppress the growth of pancreatic cancer cells. From the above results, it can be said that the growth of pancreatic cancer cells can be suppressed by suppressing the expression of the MEX3B gene without depending on the knockdown target sequence in the MEX3B gene.
  • the Gapmer 89 was mixed with in vivo jet PEI® and used [Gapmer 8 ⁇ g / in vivo jet PEI® 80 ⁇ l / mouse].
  • the tumor to which Gapmer 89 was administered was a tumor to which Gapmer NC was administered, as in the results shown in FIGS. 1 (a) and 1 (b). The result is significantly lower than that of.
  • pancreatic cancer cells can be suppressed by suppressing the expression of the MEX3B gene without depending on the administration method and administration route of the substance that lowers the expression of the MEX3B gene or the MEX3B protein. ..
  • Example 2 After transplanting human pancreatic cancer cell AsPC1 (3 ⁇ 10 6 cells / mouse) into nude mice (Balb / c nu / nu, female, 7 weeks old), 17 after the average tumor volume reached about 80 mm 3 , 19, 21, 24, 26, 28, 31, 33, 35 days, Gapmer 89 (20 ⁇ g / 200 ⁇ l micelle (50% cRGD) / mouse) was administered from the tail vein and 17, 19, 21, 24, 26. , 28, 31, 33, 35 days later, the major axis and minor axis of the tumor were measured with a nogis, and the tumor volume (Tumor size) was calculated (mm 3 ).
  • the micelle is a polymer micelle having a core-shell structure formed between a block copolymer containing PEG and polyamino acid and the antisense oligonucleotide, and having cRGD as a ligand molecule and having a particle size of 100 nm or less.
  • a negative control NC
  • gapmer NCs targeting sequences that do not exist on the genome were similarly tested. The results are shown in FIG.
  • FIG. 2 is a diagram showing the results of a growth suppression test of pancreatic cancer cell AsPC1 by an antisense oligonucleotide against MEX3B.
  • the error bars in the figure are standard errors.
  • the volume of the tumor to which Gapmer 89 was administered was lower than that of the tumor to which Gapmer NC was administered (especially after the 28th day). You can see that. That is, it can be seen that Gapmer 89, which is a substance that reduces the expression of the MEX3B gene or MEX3B protein, suppresses the growth of pancreatic cancer cells.
  • Example 3 Nude mice (Balb / c nu / nu, female, 7 weeks old) subcutaneously to a human non-small cell lung cancer cell A549 (3.0 ⁇ 10 6 cells / mouse) of the post-transplantation 25,27,32,34,37, Gapmer 89 [20 ⁇ g / 200 ⁇ l micelles (50% cRGD) / mouse] was administered intravenously on days 39, 41, and 43, and 25, 27, 32, 34, 37, 39, 41, and 43 days later on tumors. The major axis and the minor axis were measured with a nogis, and the tumor volume (Tumor size) was calculated. On the 43rd day, the tumor was removed and the tumor weight was measured (g).
  • the micelle is a polymer micelle having a core-shell structure formed between a block copolymer containing PEG and polyamino acid and the antisense oligonucleotide, and having cRGD as a ligand molecule and having a particle size of 100 nm or less.
  • NC gapmer NCs targeting sequences that do not exist on the genome were also tested in the same manner. The results are shown in FIG.
  • FIG. 3 is a diagram showing the results of a growth suppression test of non-small cell lung cancer cells by an antisense oligonucleotide against MEX3B.
  • the error bars in the figure are standard errors. * Is a p-value ⁇ 0.05 according to the Wald t-test.
  • the volume and weight of the tumor to which Gapmer 89 was administered were lower than that of the tumor to which Gapmer NC was administered (especially after the 34th day). I understand that. That is, it can be seen that Gapmer 89, which is a substance that reduces the expression of the MEX3B gene or MEX3B protein, suppresses the growth of non-small cell lung cancer cells.
  • Example 4 Human bile duct cancer cell HUCCT1 (3 ⁇ 10 6 cells / mouse) was transplanted into nude mice (Balb / c nu / nu, female, 7 weeks old) at a frequency of once every 12 to 3 days after transplantation.
  • nude mice Balb / c nu / nu, female, 7 weeks old
  • gapmer NCs targeting sequences that do not exist on the genome were also tested in the same manner. The results are shown in FIG.
  • FIG. 4 is a diagram showing the results of a growth suppression test of cholangiocarcinoma cells by an antisense oligonucleotide against MEX3B.
  • the error bars in the figure are standard errors. * Is a p value ⁇ 0.01.
  • the volume and weight of the tumor to which Gapmer 89 was administered were lower than that of the tumor to which Gapmer NC was administered (especially after the 18th day, the tumor was significantly reduced). I understand that. That is, it can be seen that Gapmer 89, which is a substance that reduces the expression of the MEX3B gene or MEX3B protein, suppresses the growth of bile duct cancer cells.
  • Example 5 Wild-type mice (Balb / c, male, 8 weeks old) after transplantation the mice colon cancer cell line CT26 cells (1.0 ⁇ 10 5 cells / mouse), 6, 8, 10, 14, 17 day Gapmer 89 (Gapmer 8 ⁇ g / 80 ⁇ l in vivo jet PEI® / mouse) was intratumorally administered, and anti-PD-L1 antibody was administered on days 10 (200 ⁇ g / mouse) and 14 (100 ⁇ g / mouse). It was intraperitoneally administered on the 17th day (100 ⁇ g / mouse), and after 6, 8, 10, 14, 17, and 20 days, the longitudinal and lateral diameters of the tumor were measured with a nogis to calculate the tumor volume. (Mm 3 ). On the 20th day, the tumor was removed and the tumor weight was measured (g). As NC, gapmer NCs targeting sequences that do not exist on the genome were also tested in the same manner. The results are shown in FIG.
  • FIG. 5A is a diagram showing an outline of a procedure for a growth suppression test of colorectal cancer cells by administration of a combination of an antisense oligonucleotide and an immune checkpoint inhibitor to MEX3B.
  • FIG. 5B is a diagram showing the results of a growth suppression test (tumor volume) by combined administration of Gapmer NC and an immune checkpoint inhibitor.
  • FIG. 5C is a diagram showing the results of a growth suppression test (tumor volume) by combined administration of an antisense oligonucleotide and an immune checkpoint inhibitor to MEX3B.
  • FIG. 5A is a diagram showing an outline of a procedure for a growth suppression test of colorectal cancer cells by administration of a combination of an antisense oligonucleotide and an immune checkpoint inhibitor to MEX3B.
  • FIG. 5B is a diagram showing the results of a growth suppression test (tumor volume) by combined administration of Gapmer NC and an immune checkpoint inhibitor.
  • 5D is a diagram showing the results of a growth suppression test (tumor weight) by combined administration of an antisense oligonucleotide and an immune checkpoint inhibitor to MEX3B.
  • the error bars in the figure are standard errors. * Is a p-value ⁇ 0.05 according to the Wald t-test.
  • the Gapmer 89 and anti-PD-L1 antibody were administered in combination with Gapmer NC and anti-PD-L1 antibody. It can be seen that the combined administration of the tumor significantly reduced both the tumor volume and the weight. That is, the combined administration of Gapmer 89, which is a substance that lowers the expression of the MEX3B gene or MEX3B protein, and an immune checkpoint inhibitor is used when cancer cell growth is suppressed by the immune checkpoint inhibitor and when the immune checkpoint is inhibited. It can be said that the proliferation of colon cancer cells can be further suppressed in any case where the drug does not suppress the growth.
  • Example 6 Nude mice (Balb / c nu / nu, female, 7 weeks old) subcutaneously gap human pancreatic cancer cells PK1 the (3 ⁇ 10 6 cells / mouse) from day 23 after transplantation until day 39 every other day for Ma 89 [20 ⁇ g / 200 ⁇ l micelle (50% cRGD) / mouse] was administered intravenously to the tail, and gemcitabine [50 mg / kg] was intraperitoneally administered on days 23, 27, 31, and 35, and 23, 27, and 31 , 35, 38, 41 days later, the vertical and horizontal diameters of the tumor were measured with a nogis, and the tumor volume (Tumor size) was calculated (mm 3 ). On the 41st day, the tumor was removed and the tumor weight was measured (g). As NC, gapmer NCs targeting sequences that do not exist on the genome were also tested in the same manner. The results are shown in FIG.
  • FIG. 6 is a diagram showing the results of a growth suppression test of pancreatic cancer cells by combined administration of an antisense oligonucleotide and a pyrimidine antimetabolite to MEX3B.
  • the error bars in the figure are standard errors.
  • the tumor volume of the combination administration of Gapmer 89 and gemcitabine is larger than that of the combination administration of Gapmer NC and gemcitabine (Gem) and the administration of Gapmer 89 alone. It can be seen that it is decreasing.
  • the combined administration of Gapmer 89 and gemcitabine reduced the tumor weight in both the combined administration of Gapmer NC and Gem and the single administration of Gapmer 89. You can see that there is.
  • the tumor weight of the combination administration of gapmer 89 and gemcitabine was significantly greater than the combination administration of gapmer NC and Gem and the single administration of gapmer 89 when the p value ⁇ 0.05 by the t-test. It was declining.
  • Gapmer 89 which is a substance that lowers the expression of the MEX3B gene or MEX3B protein
  • a pyrimidine antimetabolite is used when cancer cell proliferation is suppressed by the pyrimidine antimetabolite and when the pyrimidine antimetabolite is suppressed. It can be seen that the proliferation of pancreatic cancer cells can be further suppressed in any case where the drug does not suppress it.
  • Example 7 21 after transplanting human liver cancer cell Hep3B (3 ⁇ 10 6 cells / mouse) into a nude mouse (Balb / c nu / nu, female, 7 weeks old) and the average tumor volume reaches about 150 mm 3 Gapmer 89 (20 ⁇ g / 200 ⁇ l micelle (50% cRGD) / mouse) was administered from the tail vein on days 24 and 26, and the major and minor axes of the tumor were measured with a nogis after 21, 24, 26 and 28 days. , Tumor size was calculated (mm 3 ). As a negative control (NC), gapmer NCs targeting sequences that do not exist on the genome were similarly tested. The results are shown in FIG.
  • NC negative control
  • FIG. 7 is a diagram showing the results of a growth suppression test of pancreatic cancer cell AsPC1 by an antisense oligonucleotide against MEX3B.
  • the error bars in the figure are standard errors.
  • the volume of the tumor to which Gapmer 89 was administered is smaller than that of the tumor to which Gapmer NC was administered. That is, it can be seen that Gapmer 89, which is a substance that reduces the expression of the MEX3B gene or MEX3B protein, suppresses the growth of liver cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法を提供すること。 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤であって、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質、又はMEX3Bタンパク質の阻害物質を含む剤。

Description

すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法
 本発明は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法に関する。
 近年、がん細胞がPD-1、CTLA4等の免疫チェックポイント分子を介して免疫系によるがん細胞への攻撃を抑制していることが明らかになってきている。
 抗PD-1抗体、抗CTLA4抗体などの免疫チェックポイント阻害剤は、悪性黒色腫、非小細胞肺がん等に著効を示す場合があることがわかってきている(例えば、特許文献1)。
 しかし、免疫チェックポイント阻害剤を適用した症例のうち、有効な症例は20%以下程度であることが現状である。
 したがって、従来の抗がん剤とは作用点、作用機序等が異なり、従来の抗がん剤とは異なる経路でがんを治療し得る新規抗がん剤の開発が望まれている。
 一方、MEX3Bタンパク質はRNA結合タンパク質であり、シグナルカスケード系において、p53等の下流にて機能することが知られ、種々の標的mRNAの3’UTR(エクソン中のアミノ酸をコードしない非翻訳領域)に結合してそれらmRNAの機能(つまりタンパク質への翻訳)又は安定性を制御していることが知られている。
 例えば、特許文献2には、MEX3Bタンパク質が、インターロイキン6(IL-6)、IL-13、TNF(腫瘍壊死因子:Tumor Necrosis Factor)、G-CSF(顆粒球コロニー刺激因子:Granulocyte-Colony Stimulating Factor)、CXCL1、CXCL2、又はCXCL5等の炎症性サイトカインないしは炎症性ケモカインのmRNAに結合しそれらmRNAの機能(つまりタンパク質への翻訳)又は安定性に関与し、上記炎症性サイトカインないしはケモカインに起因する疾病の発症に関わる旨が開示されている。
 また、MEX3Bタンパク質はアポトーシスの誘導に関わることが知られている(例えば、特許文献3、非特許文献1等)。
 また、非特許文献2等には、気管支喘息マウスモデルを用い、Mex3Bに対するアンチセンス核酸の吸入により気道におけるMex3Bの発現を抑制することにより、気道炎症を抑制できることが開示されている。
特許第4409430号公報 国際公開2018/008750A1号 特許第4429269号公報
Oncogene.2018 Sep;37(38):5233-5247 Cell Rep.2016 Aug 30;16(9):2456-71.
 そして、MEX3Bタンパク質は、がん化、増殖、分化等に関わる遺伝子の発現を制御していることが分かってきており、大腸がん等で発現が高いことも分かってきている。
 本発明は、上記事情に鑑みてなされたものであり、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法の提供を目的とする。
 本発明者らは、MEX3B遺伝子をノックダウンすることにより、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを抑制し得ることを見出し、本発明を完成するに至った。
 具体的には、本発明は以下の通りである。
 本発明の第1の態様は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤であって、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質、又はMEX3Bタンパク質の阻害物質を含む剤である。
 本発明の第2の態様は、第1の態様に係る予防又は治療剤と組み合わせるコンビネーション医薬用の、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤である。
 本発明の第3の態様は、第1の態様に係る予防又は治療剤と、上記他の抗がん剤とを含むコンビネーション医薬(組合せ医薬)である。
 本発明の第4の態様は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法であって、MEX3B遺伝子又はMEX3Bタンパク質の発現の低下、及びMEX3Bタンパク質の機能の低下よりなる群から選択される少なくとも1つを指標とする、方法である。
 また、本発明は、下記第5又は第6の態様であってもよい。
 本発明の第5の態様は、第1の態様に係る予防又は治療剤を対象に投与することを含む、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法である。
 本発明の第6の態様は、第1の態様に係る予防又は治療剤と、上記他の抗がん剤と組み合わせて対象に投与することを含む、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法である。
 第1の態様に係る予防又は治療剤は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを予防又は治療することができる。
 第2の態様に係る予防又は治療剤は、作用点、作用機序等が異なる第1の態様に係る予防又は治療剤と組み合わせてすい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを予防又は治療することができる。
 第3の態様に係る組合せ医薬は、作用点、作用機序等が異なる他の抗がん剤では難治性のがんを予防又は治療することができ、又は、上記他の抗がん剤の投与量を低減することができ、好ましくは、第1の態様に係る予防又は治療剤と、他の抗がん剤との相乗効果を得ることができる。
 第4の態様に係るすい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングすることができる。
MEX3Bに対するアンチセンスオリゴヌクレオチドによる膵がん細胞PK1の増殖抑制試験結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチドによる膵がん細胞AsPC1の増殖抑制試験結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチドによる非小細胞肺がん細胞の増殖抑制試験結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチドによる胆管がん細胞の増殖抑制試験結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチド及び免疫チェックポイント阻害剤の組み合わせ投与による大腸がん細胞の増殖抑制試験手順及び結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチド及びピリミジン系代謝拮抗剤の組み合わせ投与によるすい臓がん細胞の増殖抑制試験結果を示す図である。 MEX3Bに対するアンチセンスオリゴヌクレオチドによる肝臓がん細胞の増殖抑制試験結果を示す図である。
 以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
(MEX3B遺伝子)
 MEX3B遺伝子はエクソン1、イントロン及びエクソン2を含み、この構成はヒト、マウス、その他の哺乳類において高度に保存されている。また、エクソン1及びエクソン2にはコーディング領域(CDS)及びUTRが含まれる。
 エクソン中のアミノ酸をコードしない非翻訳領域(UTR)としては、開始コドンより上流に5’UTRが存在し、終始コドンより下流に3’UTRが存在する。
 ヒトMEX3BのmRNAをコードするヒトMEX3B遺伝子は後記の配列番号1で表される配列を有する。
 配列番号1において、437~2146番目の塩基配列がCDSであり、1~436番目の塩基配列が5’UTRであり、2147~3532番目の塩基配列が3’UTRである。
 後記の配列番号2はヒトMEX3B遺伝子の転写開始点から上流約36キロ塩基の発現制御領域を含む配列を示す。後記の配列番号3はヒトMEX3B遺伝子のイントロン領域の836塩基を示す。ヒトMEX3B遺伝子において、上記イントロン領域は、配列番号1で表される配列における694番目の塩基と695番目の塩基との間に存在する。
 配列番号7は、スプライシング前のヒトMEX3BのプレmRNAをコードする塩基配列を示す。配列番号7で表されるヒトMEX3BのプレmRNAをコードする配列における437~692番目及び1529~2982番目の塩基配列がCDSであり、1~436番目の塩基配列が5’UTRであり、2983~4368番目の塩基配列が3’UTRであり、693~1528番目の領域が、配列番号3で表されるヒトMEX3B遺伝子のイントロン領域に相当する。
 マウスMEX3BのmRNAをコードするマウスMEX3B遺伝子は後記の配列番号4で表される配列を有する。
 配列番号4において、319~2049番目の塩基配列がCDSであり、1~318番目の塩基配列が5’UTRであり、2050~3416番目の塩基配列が3’UTRである。
 また、MEX3Bタンパク質(例えば、後記の配列番号5又は6で表されるアミノ酸配列を有するタンパク質)をコードする遺伝子は全てMEX3B遺伝子に属する。
 MEX3B遺伝子は、MEX3Bタンパク質は種々のmRNAに結合してそれらmRNAの機能(つまりタンパク質への翻訳)又は安定性を制御する分子であることが知られている(例えば、Oncogene.2018 Sep;37(38):5233-5247)。
 MEX3B遺伝子の具体例としては、以下の(a)又は(b)の何れかに記載の遺伝子が挙げられ、ヒト由来の遺伝子をそのまま用いることができ余計な形質転換等が要求されない観点から、下記(a)の遺伝子であることが好ましい。
(a)配列表の配列番号1又は4に記載の塩基配列からなる遺伝子、
(b)配列表の配列番号1又は4に記載の塩基配列において1もしくは数個の塩基が欠失、置換及び/又は付加された塩基配列からなり、かつ
 p53により発現誘導される遺伝子、
 細胞老化を誘導する活性を有するタンパク質をコードする遺伝子、
 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを促進する活性を有するタンパク質をコードする遺伝子、又は、
 炎症性サイトカインないしは炎症性ケモカイン(IL-6、IL-13、TNF、G-CSF、CXCL1、CXCL2、CXCL5等)の発現を誘導する活性を有するタンパク質をコードする遺伝子
 本明細書で言う「塩基配列において1もしくは数個の塩基が欠失、置換及び/又は付加された塩基配列」における「1もしくは数個」の範囲は特には限定されないが、好ましくは1から20個、より好ましくは1から10個、更に好ましくは1から5個程度を意味する。
 上記のDNA変異の程度としては、例えば、配列表の配列番号1又は4に記載したMEX3B遺伝子の塩基配列と80%以上の相同性を有するものが挙げられ、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上の相同性を有するDNAが挙げられる。
(MEX3B遺伝子の取得)
 MEX3B遺伝子の取得方法は特に限定されない。本明細書の配列表の配列番号1、4又は7及び5又は6に記載した塩基配列およびアミノ酸配列の情報に基づいて適当なプローブやプライマーを調製し、それらを用いて、ヒトcDNAライブラリー(MEX3B遺伝子が発現される適当な細胞より常法に従い調製したもの)から所望クローンを選択することにより、MEX3B遺伝子を単離することができる。
 本明細書中上記した、上記(b)の遺伝子(変異遺伝子)は、化学合成、遺伝子工学的手法又は突然変異誘発などの当業者に既知の任意の方法で作製することもできる。例えば、配列番号1に記載の塩基配列を有するDNAを利用し、これらDNAに変異を導入することにより変異DNAを取得することができる。具体的には、配列番号1又は4に記載の塩基配列を有するDNAに対し、変異原となる薬剤と接触作用させる方法、紫外線を照射する方法、遺伝子工学的手法等を用いて行うことができる。
(MEX3Bタンパク質)
 MEX3Bタンパク質は、以下の(a)又は(b)の何れかのタンパク質である。
(a)配列表の配列番号5又は6に記載のアミノ酸配列からなるタンパク質、
(b)配列表の配列番号5又は6に記載のアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなるか、又は、配列表の配列番号5又は6に記載のアミノ酸配列と95%以上の相同性を有するアミノ酸配列からなり、かつ
 p53により発現誘導されるタンパク質、
 細胞老化を誘導する活性を有するタンパク質、又は
 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを促進する活性を有するタンパク質、若しくは、炎症性サイトカインないしは炎症性ケモカイン(IL-6、IL-13、TNF、G-CSF、CXCL1、CXCL2、CXCL5等)の発現を誘導する活性を有するタンパク質
 ヒト由来のタンパク質をそのまま用いることができ余計な形質転換等が要求されない観点から、上記(a)のタンパク質であることが好ましい。
 配列番号5は、ヒトMEX3Bタンパク質のアミノ酸配列を表す。配列番号6は、マウスMEX3Bタンパク質のアミノ酸配列を表す。
 本明細書で言う「アミノ酸配列において1もしくは数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列」における「1から数個」の範囲は特には限定されないが、好ましくは1から10個、より好ましくは1から5個、さらに好ましくは1から3個程度を意味する。
 本明細書で言う「95%以上の相同性を有するアミノ酸配列」とは、アミノ酸の相同性が95%以上であることを意味し、相同性は好ましくは96%以上、より好ましくは97%以上である。
 上述の通り、配列表の配列番号1又は4に記載の塩基配列を有する遺伝子と相同性の高い変異体遺伝子にコードされるタンパク質であって、特定のmRNAに対する結合活性を有する生理活性タンパク質は全て本発明の範囲内のものである。
 タンパク質の構成要素となるアミノ酸の側鎖は、疎水性、電荷、大きさなどにおいてそれぞれ異なるものであるが、実質的にタンパク質全体の3次元構造(立体構造とも言う)に影響を与えないという意味で保存性の高い幾つかの関係が、経験的にまた物理化学的な実測により知られている。例えば、アミノ酸残基の置換については、グリシン(Gly)とプロリン(Pro)、Glyとアラニン(Ala)またはバリン(Val)、ロイシン(Leu)とイソロイシン(Ile)、グルタミン酸(Glu)とグルタミン(Gln)、アスパラギン酸(Asp)とアスパラギン(Asn)、システイン(Cys)とスレオニン(Thr)、Thrとセリン(Ser)またはAla、リジン(Lys)とアルギニン(Arg)、等が挙げられる。
 従って、配列表の配列番号5又は6に記載したMEX3Bのアミノ酸配列上の置換、挿入、欠失等による変異タンパク質であっても、その変異がMEX3Bの3次元構造において保存性が高い変異であって、その変異タンパク質がMEX3Bと同様に、特定のmRNAに対する結合活性を有する生理活性タンパク質であれば、これらは全てMEX3Bの範囲内に属する。
 MEX3Bタンパク質の取得方法については特に制限はなく、化学合成により合成したタンパク質でもよいし、生体試料又は培養細胞などから単離した天然由来のタンパク質でもよいし、遺伝子組み換え技術による作製した組み換えタンパク質でもよい。
<すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤>
 第1の態様に係るすい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤(以下、単に「第1の態様に係る予防又は治療剤」ともいう。)は、有効成分として、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質、又はMEX3Bタンパク質の阻害物質を含む。
 有効成分として、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質を含むことが好ましく、MEX3B遺伝子の発現の低下物質を含むことがより好ましい。
 MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質としては、以下説明するアンチセンスオリゴヌクレオチド、RNAi作用を有する核酸(例えば、siRNA、shRNA)、miRNA、人工ヌクレアーゼ、低分子化合物等が挙げられる。
 また、MEX3Bタンパク質の阻害物質としては、MEX3Bタンパク質の機能を阻害する限り任意の物質であってもよく、具体的には、高分子化合物(例えば、アプタマー等の核酸)、抗体、低分子化合物等が挙げられ、これらについては後述する。
(アンチセンスオリゴヌクレオチド)
 MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質としては、MEX3B遺伝子(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中の連続する配列に相補的な配列を有するアンチセンスオリゴヌクレオチドが挙げられ、MEX3B遺伝子(エクソン中のCDS又はUTR)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドが好ましく、MEX3B遺伝子(エクソン中のCDS又はUTR)中に含まれるオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドがより好ましく、MEX3B遺伝子のUTR中に含まれるオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドが更に好ましく、MEX3B遺伝子の3’UTR中に含まれるオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドが特に好ましく、配列番号7で表されるヒトMEX3BのプレmRNAをコードする配列における3129~4293番目の塩基配列に含まれるオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドが最も好ましい。
 上記アンチセンスオリゴヌクレオチドが細胞内(好ましくは核内)に取り込まれると、MEX3B遺伝子の転写、翻訳等を抑制することにより、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを予防又は治療することができる。
 例えば、MEX3B遺伝子(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドと、それと相補的な上記アンチセンスオリゴヌクレオチドとが、細胞内(好ましくは核内)に取り込まれた後にハイブリッド形成することにより、生じたハイブリッド二本鎖に特異的なヌクレアーゼ(例えば、RNアーゼH)によりヌクレオチド鎖を含むMEX3BのmRNAが分解されMEX3B遺伝子の転写、翻訳等を抑制することができる。
 上記アンチセンスオリゴヌクレオチドとしては、DNAであってもRNAであってもよいが、上記特異的なヌクレアーゼによりmRNAが切断される観点から、DNAであることが好ましい。
 上記アンチセンスオリゴヌクレオチドとしては、MEX3B遺伝子の塩基配列(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中の、MEX3B遺伝子の発現を抑制するために要求される数の連続配列に相補的な配列を有せばよく、典型的には、連続する少なくとも10ヌクレオチドを含むオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが好ましく、少なくとも11ヌクレオチドを含むオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることがより好ましく、少なくとも12ヌクレオチドを含むオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが更に好ましく、少なくとも13ヌクレオチドを含むオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが特に好ましく、少なくとも14ヌクレオチドを含むオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが最も好ましい。
 また、上記アンチセンスオリゴヌクレオチドの塩基長の上限値としては、MEX3B遺伝子の塩基配列(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中の連続する40ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが好ましく、連続する30ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることがより好ましく、連続する25ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが更に好ましく、連続する20ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが特に好ましく、連続する17ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることがとりわけ好ましく、連続する16ヌクレオチド以下のオリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドであることが最も好ましい。
 上記アンチセンスオリゴヌクレオチドとしては、人工的に合成された人工核酸であってもなくてもよく、ホスホロチオエート構造、架橋構造及びアルコキシ構造よりなる群から選択される少なくとも1つの構造を有するヌクレオチドを少なくとも1つ含むアンチセンスオリゴヌクレオチドであることが好ましい。
 例えば、ヌクレオチド同士をつなぐリン酸ジエステル結合部がホスホロチオエート構造を有することにより、ヌクレアーゼ耐性を獲得することができ、また、疎水性が向上することから細胞内又は核内への取り込みも向上することができる。
 また、ヌクレオチドの糖部が、2’,4’-BNA(2’,4’-Bridged Nucleic Acid;別名LNA(Locked Nucleic Acid))、ENA(2’-O,4’-C-Ethylene-bridged Nucleic Acid)等の架橋構造、2’-O-メチル化、2’-O-メトキシエチル化(2’-MOE)等のアルコキシ構造を有することにより、ヌクレアーゼ耐性獲得及びmRNAの結合能を向上することができる。
 上記アンチセンスオリゴヌクレオチドにおいて、ヌクレオチド同士をつなぐ少なくとも1つのリン酸ジエステル結合部がホスホロチオエート構造を有することが好ましく、上記アンチセンスオリゴヌクレオチド中のリン酸ジエステル結合のうちの50%以上がホスホロチオエート構造を有することがより好ましく、上記アンチセンスオリゴヌクレオチド中のリン酸ジエステル結合のうちの70%以上がホスホロチオエート構造を有することが更に好ましく、上記アンチセンスオリゴヌクレオチド中のリン酸ジエステル結合のうちの90%以上がホスホロチオエート構造を有することが特に好ましく、上記アンチセンスオリゴヌクレオチド中の全てのリン酸ジエステル結合がホスホロチオエート構造を有することが最も好ましい。
 上記アンチセンスオリゴヌクレオチドにおいて、少なくともいずれか一方の末端(好ましくは末端から1~3塩基)のヌクレオチドが架橋構造又はアルコキシ構造を有することが好ましく、上記アンチセンスオリゴヌクレオチドの両末端のヌクレオチドが架橋構造又はアルコキシ構造を有することがより好ましく(いわゆるギャップマー(Gapmer)型アンチセンスオリゴヌクレオチド)、上記アンチセンスオリゴヌクレオチドの両末端において、独立して、末端から4塩基までが架橋構造又はアルコキシ構造を有することが更に好ましく、末端から2又は3塩基が架橋構造又はアルコキシ構造を有することが特に好ましい。
 上記アンチセンスオリゴヌクレオチドにおいて、任意の位置のシトシン(シチジン)の5位がメチル化修飾されていてもいなくてもよい。
 上記アンチセンスオリゴヌクレオチドは、DNA合成機及び公知の有機合成技術を用いて常法により製造することができる。
 上記アンチセンスオリゴヌクレオチドの細胞内(好ましくは核内)への取り込みは、自由取り込み(Free uptake)であってもよい。
 第1の態様に係る予防又は治療剤は、細胞内への取り込みを向上させる観点から、任意のトランスフェクション剤を更に含んでいてもよいが含んでいなくてもよい。
 トランスフェクション剤としては、ポリエチレンイミン(PEI)を含むトランスフェクション剤が挙げられ、直鎖状PEIを含むトランスフェクション剤が好ましい。
 直鎖状PEIは、ポリ(2-エチル-2-オキサゾリン)の加水分解により合成され得る。
 直鎖状PEIを含むトランスフェクション剤としては、jetPEI(登録商標;ポリプラストランスフェクション社製)として市販されているトランスフェクション剤を使用することができ、in-vivo-jetPEI(登録商標)として市販されているトランスフェクション剤を使用することが好ましい。例えば、N/P比(核酸のリン酸エステル1つ当りのPEIの窒素残基)が1~30の量(好ましくは1~10の量、より好ましくは2~5の量)にて、上記トランスフェクション剤を含有させることができる。
 第1の態様に係る予防又は治療剤は、細胞内への取り込みを向上させる観点から、任意のドラッグデリバリーシステム(DDS)若しくはDDS剤を更に含んでいてもよいが、含んでいなくてもよい。
 上記アンチセンスオリゴヌクレオチドが任意のドラッグデリバリーシステム(DDS)若しくはDDS剤に含有されていてもよいが含んでいなくてもよい。
 DDS剤としては、例えば、粒径300nm以下(好ましくは粒径200nm以下、より好ましくは粒径100nm以下)の粒子を含むDDS剤が挙げられる。
 上記粒子はコアシェル構造を有する単分散性の粒子が好ましく、上記コアシェル構造は自己組織化により形成されることが好ましい。
 上記粒子は高分子ミセルを含むことが好ましい。上記高分子ミセルとしては、ポリエチレングリコール(PEG)及びポリアミノ酸を含むブロック共重合体を含む高分子ミセルが挙げられ、上記ブロック共重合体と上記アンチセンスオリゴヌクレオチドとの間で形成される高分子ミセルが好ましい。
 上記DDS剤は、標的(好ましくは標的細胞)に結合し得るリガンド分子を含むことが好ましく、上記PEGに(好ましくは、上記PEGの先端に)リガンド分子が結合している高分子ミセルを含むことがより好ましい。
 上記リガンド分子としては、各種がん細胞を標的とする、アルギニン、グリシン及びアスパラギン酸を含む環状RGD(cRGD)ペプチド、抗体フラグメント、ラクトース、葉酸、フェニルボロン酸等が挙げられ、cRGDペプチドが好ましい。
 上記DDS剤として、Miyata K.et al.React.Funct.Polym.71,227-234(2011)、Miyata K.Drug Discov.Ther.10,236-247(2016)等に記載のDDS剤を使用し得る。
 第1の態様に係る予防又は治療剤は、細胞内への取り込みを向上させる観点から、リポフェクション用担体を更に含んでいてもよいが含んでいなくてもよい。
 リポフェクション用担体としては、細胞膜との親和性の高い担体(例えばリポソーム、コレステロール等)が挙げられ、リポフェクトアミン又はリポフェクチンが好ましく、リポフェクトアミンがより好ましい。
 例えば、アンチセンスオリゴヌクレオチドは、単独で、又は、上述したトランスフェクション剤、DDS剤、リポフェクション用担体と一緒に対象(患者、未発症者等)の患部又は全身に注射など(腫瘍内投与、静脈投与、腹腔内投与、局所経皮投与、吸入投与等)により投与し、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを予防又は治療することができる。
 また、アンチセンスオリゴヌクレオチドがホスホロチオエート構造、架橋構造及びアルコキシ構造よりなる群から選択される少なくとも1つの構造を有することと、上記リポフェクション用担体とを組み合わせて用いることにより対象(患者、未発症者等)の細胞内又は核内への取り込みを向上させることができる。
 有効成分であるアンチセンスオリゴヌクレオチドの投与量としては、一般的には一回につき体重1kgあたり0.1μg~100mg程度の範囲である。
 また、アンチセンスオリゴヌクレオチドの細胞内(好ましくは核内)への取り込みの1つの実施態様としては、適当なベクター又はウイルス中に挿入し、更に適当なパッケージング細胞に導入してベクター又はウイルスを調製した後に該ベクター又はウイルスを標的がん細胞に感染させる態様であってもよい。
 上記適当なベクター又はウイルスの種類は特に限定されず、例えば、自律的に複製するベクター又はウイルスでもよいが、パッケージング細胞に導入された際にパッケージング細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであることが好ましい。
 また、上記アンチセンスオリゴヌクレオチドは、必要に応じて、例えばヒト成長ホルモンターミネーター又は真菌宿主についてはTPI1ターミネーター若しくはADH3ターミネーターのような適切なターミネーターに機能的に結合されていてもよい。組み換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサー配列(例えばSV40エンハンサー)及び翻訳エンハンサー配列(例えばアデノウイルスVARNAをコードするもの)のような要素を有していてもよい。
 組み換えベクターは更に、該ベクター又はウイルスがパッケージング細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点が挙げられる。
 上記アンチセンスオリゴヌクレオチド又はそれを含むベクター若しくはウイルスを導入して上記ベクター若しくはウイルスを調製するパッケージング細胞としては、高等真核細胞、細菌、酵母、真菌等が挙げられるが、哺乳類細胞であることが好ましい。
 哺乳類細胞の例としては、HEK293細胞(例えば、HEK293FT細胞、HEK293T細胞)等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入された遺伝子を発現させる方法も公知であり、例えば、リポフェクション法、エレクトロポレーション法、リン酸カルシウム法等を用いることができる。
(RNAi作用を有する核酸)
 MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質として、MEX3B遺伝子の発現を抑制することができるRNAi作用を有する核酸も好ましい例として挙げられる。上記RNAi作用を有する核酸は、MEX3B遺伝子から転写されるRNAの塩基配列中のコーディング領域中又は非翻訳領域中の連続する部分配列若しくはそれに相補的な配列を含むことが好ましい。
 RNAi(RNAinterference)とは、ある標的遺伝子の一部をコードするmRNAの一部を二本鎖にしたRNA(double strandedRNA:dsRNA)を細胞へ導入すると、標的遺伝子の発現が抑制される現象を言う。
 RNAi作用を有する核酸としては、siRNA(small interfering RNA)、shRNA(small hairpin RNA)等が挙げられる。以下、siRNA、shRNAについて説明する。
 (1)siRNA
 siRNAとしては、RNAi作用によりMEX3B遺伝子の発現を抑制することができる二本鎖RNA若しくは上記二本鎖RNAをコードするDNAが挙げられ、RNAi作用によりMEX3B遺伝子の発現を抑制することができ、かつMEX3B遺伝子から転写されるRNAの塩基配列中の連続する部分配列を有する二本鎖RNA若しくは上記二本鎖RNAをコードするDNAが好ましい。
 siRNAとしてより具体的には、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの、MEX3B遺伝子の発現を抑制するために要求される数の連続配列に相補的な配列を有せばよく、典型的には、連続する少なくとも17ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAが好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のUTRの連続する少なくとも17ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAがより好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中の3’UTRの連続する少なくとも17ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAが更に好ましく、配列番号7で表されるヒトMEX3BのプレmRNAをコードする配列における3129~4293番目の塩基配列から転写されるRNAの塩基配列中の連続する少なくとも17ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAが特に好ましい。
 また、siRNAとしては、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの、MEX3B遺伝子の発現を抑制するために要求される数の連続配列に相補的な配列を有せばよく、典型的には、連続する少なくとも18ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることが好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも19ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることがより好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも20ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることが更に好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも21ヌクレオチドを含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることが特に好ましい。
 siRNAとしては、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する30ヌクレオチド以下を含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることが好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する25ヌクレオチド以下を含む二本鎖RNA又は上記二本鎖RNAをコードするDNAであることがより好ましい。
 上記二本鎖RNAをコードするDNAとしては、例えば、MEX3Bの部分配列の逆向き反復配列を有するDNAを挙げることができる。
 このような逆向き反復配列を有するDNAを哺乳動物の細胞に導入することにより、細胞内でMEX3Bの部分配列の逆向き反復配列を発現させることができ、これによりRNAi作用により標的遺伝子(MEX3B)の発現を抑制することができる。
 逆向き反復配列とは、標的遺伝子(MEX3B)の部分配列及びそれに相補的な逆向きの配列が適当な配列を介して並列している配列を言う。具体的には、標的遺伝子の部分配列が、以下に示すn個の塩基配列から成る2本鎖を有する場合、
 5’-X......Xn-1-3’
 3’-Y......Yn-1-5’
その逆向き配列は以下の配列を有する。
 5’-Yn-1......Y-3’
 3’-Xn-1......X-5’
(ここで、Xで表される塩基とYで表される塩基において、添え字の数字が同じものは互いに相補的な塩基である)
 逆向き反復配列は上記2種の配列が適当な配列を介した配列である。逆向き反復配列としては、標的遺伝子の部分配列がそれに相補的な逆向き配列の上流にある場合と、逆向き配列が、それに相補的な標的遺伝子の部分配列の上流にある場合の2つの場合が考えられる。本発明で用いる逆向き反復配列は上記の何れでもよいが、好ましくは、逆向き配列がそれに相補的な標的遺伝子の部分配列の上流に存在する。
 (2)shRNA
 shRNAとしては、MEX3B遺伝子から転写されるRNAの塩基配列中の部分配列及びそれに相補的な逆向きの配列を、ヘアピンループを形成し得る配列を介して並列している逆向き反復配列を有する一本鎖RNA若しくは上記RNAをコードするDNAが挙げられる。
 shRNAは、shRNAを発現するベクター若しくはウイルスを細胞に導入する方法に好適であり、細胞内において、上記siRNAと同様に機能し得る。
 shRNAについて、MEX3B遺伝子から転写されるRNAの塩基配列中の部分配列として、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの、MEX3B遺伝子の発現を抑制するために要求される数の連続配列に相補的な配列であればよく、典型的には、連続する少なくとも17ヌクレオチドを含む部分配列が好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のUTRの連続する少なくとも17ヌクレオチドを含む部分配列がより好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中の3’UTRの連続する少なくとも17ヌクレオチドを含む部分配列が更に好ましく、配列番号7で表されるヒトMEX3BのプレmRNAをコードする配列における3129~4293番目の塩基配列から転写されるRNAの塩基配列中の連続する少なくとも17クレオチドを含む部分配列が特に好ましい。
 また、MEX3B遺伝子から転写されるRNAの塩基配列中の部分配列としては、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも18ヌクレオチドを含む部分配列であることが好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも19ヌクレオチドを含む部分配列であることがより好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも20ヌクレオチドを含む部分配列であることが更に好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する少なくとも21ヌクレオチドを含む部分配列であることが特に好ましい。
 MEX3B遺伝子から転写されるRNAの塩基配列中の部分配列としては、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する30ヌクレオチド以下を含む部分配列であることが好ましく、MEX3B遺伝子から転写されるRNAの塩基配列中のCDS又はUTRの連続する25ヌクレオチド以下を含む部分配列であることがより好ましい。
 ヘアピンループを形成し得る配列の長さは、ヘアピンループを形成できる限り特には限定されないが、好ましくは0~300bp、より好ましくは1~100bp、更に好ましくは2~75bp、特に好ましくは3~50bpである。この配列の中には制限酵素部位が存在していてもよい。
 哺乳動物で作動可能なプロモーター配列の下流に標的遺伝子の逆向き反復配列を組み込むことにより、哺乳動物の細胞内において標的遺伝子の逆向き反復配列を発現させることができる。上記プロモーター配列は、哺乳動物で作動可能であれば特に限定されない。
 (miRNA)
 MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質として、MEX3B遺伝子の発現を抑制することができるmiRNA(マイクロRNA)も好ましい例として挙げられる。
 miRNAは、mRNAの3’UTRに対合してMEX3B遺伝子の翻訳を抑制することができる。より具体的には、miRNAは、ヘアピン様構造のRNA前駆体として転写され、RNaseIII切断活性を有するdsRNA切断酵素により切断され、RISC若しくはRISC様タンパク質複合体に取り込まれ、mRNAの翻訳を抑制することができる。
 本発明において、miRNAは、pri-miRNA(primary miRNA)、pre-miRNA、及び成熟miRNAのいずれをも包含し得る。
 本発明において、miRNAは、MEX3B遺伝子から転写されるRNAの3’UTR中の連続する部分配列若しくはそれに相補的な配列を含むことが好ましく、配列番号7で表されるヒトMEX3BのプレmRNAをコードする配列における3129~4293番目の塩基配列から転写されるRNAの塩基配列中の部分配列若しくはそれに相補的な配列を含むことがより好ましい。
 上記部分配列の長さとしては特に制限されず、7塩基以上が好ましく、8塩基以上がより好ましく、9塩基以上が更に好ましく、11塩基以上が更により好ましく、13塩基以上が特に好ましく、15塩基以上がとりわけ好ましく、17塩基以上が最も好ましい。
 上記部分配列の長さの上限としては特に制限されず、50塩基以下が好ましく、40塩基以下がより好ましく、30塩基以下が更に好ましく、25塩基以下が特に好ましく、23塩基以下が最も好ましい。
 また、pri-miRNAの長さは通常数百~数千塩基であり、pre-miRNAの長さは通常50~80塩基である。
 また、上記RNAi作用を有する核酸又はmiRNAの細胞内(好ましくは核内)への取り込みは、自由取り込み(Free uptake)であってもよい。
 上記したRNAi作用を有する核酸又はmiRNAの細胞内への取り込みの1つの実施態様としては、適当なベクター又はウイルス中に挿入し、更に適当なパッケージング細胞に導入してベクター又はウイルスを調製した後に標的がん細胞に感染させる態様であってもよい。
 上記適当なベクター又はウイルスの種類は特に限定されず、例えば、自律的に複製するベクター又はウイルスでもよいが、パッケージング細胞に導入された際にパッケージング細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであることが好ましい。
 上記適当なベクター又はウイルスとしては、大腸菌由来のプラスミド(例、pBR322、pUC118その他)、枯草菌由来のプラスミド(例、pUB110、pSH19その他)、さらに、レンチウイルス、レトロウイルス、アデノウイルス、バクテリオファージ、ワクシニアウイルス等の動物ウイルス等が挙げられる。組み換えに際しては、適当な合成DNAアダプターを用いて翻訳開始コドンや翻訳終止コドンを付加することも可能である。
 また、上記したRNAi作用を有する核酸又はmiRNAは、必要に応じて、例えばヒト成長ホルモンターミネーター又は真菌宿主についてはTPI1ターミネーター若しくはADH3ターミネーターのような適切なターミネーターに機能的に結合されていてもよい。組み換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサー配列(例えばSV40エンハンサー)及び翻訳エンハンサー配列(例えばアデノウイルスVARNAをコードするもの)のような要素を有していてもよい。
 組み換えベクター又はウイルスは更に、該ベクター又はウイルスがパッケージング細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点が挙げられる。
 組み換えベクター又はウイルスはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体がパッケージング細胞に欠けている遺伝子、又は例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。
 上記したRNAi作用を有する核酸又はmiRNA又はそれを含むベクター若しくはウイルスを導入して上記ベクター若しくはウイルスを調製するパッケージング細胞としては、高等真核細胞、細菌、酵母、真菌等が挙げられるが、哺乳類細胞であることが好ましい。
 哺乳類細胞の例としては、HEK293細胞(例えば、HEK293FT細胞、HEK293T細胞)等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入された遺伝子を発現させる方法も公知であり、例えば、リポフェクション法、エレクトロポレーション法、リン酸カルシウム法等を用いることができる。
 上記したRNAi作用を有する核酸又はmiRNAには、アンチセンスオリゴヌクレオチドにおいて上述したトランスフェクション剤、リポフェクション用担体、DDS剤を、上記アンチセンスオリゴヌクレオチドと同様に適用し得る。
 例えば、上記したRNAi作用を有する核酸又はmiRNAは、単独で、又は、細胞への取り込みを助けるために使用される、上述した、トランスフェクション剤、DDS剤、リポフェクション用担体と一緒に対象(患者、未発症者等)の患部又は全身に注射などにより投与(腫瘍内投与、静脈投与、腹腔内投与、局所経皮投与、吸入投与等)し、対象(患者、未発症者等)の細胞に取り込ませることができる。有効成分である二本鎖RNAまたはDNAの投与量としては、一般的には一回につき体重1kgあたり0.1μg~10mg程度の範囲である。
 (人工ヌクレアーゼ)
 MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質としては、CRISPR(Clusterd Regularly Interspaced Short Palindromic Repeats)/Casヌクレアーゼ等のゲノム編集用の人工ヌクレアーゼも挙げられ、Transcription Activator-Like Effector Nuclease(TALEN)及びジンクフィンガーヌクレアーゼ(ZFN)を用いた人工制限酵素(人工ヌクレアーゼ)であってもよい。
 TALENは4種類の塩基(A、T、G及びC)のいずれかを認識して結合する4種類のユニットを重合させてなるドメインであるTALEs及びDNA切断ドメインを含む人工ヌクレアーゼであり、TALEsがMEX3B遺伝子中の少なくとも部分配列を認識し結合する。
 ZFNはジンクフィンガードメイン及びDNA切断ドメインを含むキメラタンパク質の形態の人工ヌクレアーゼである。ジンクフィンガードメインは、特異的な3塩基配列を認識するジンクフィンガーユニットを、複数重合した構造を有し、3の倍数のDNA配列を認識し結合するドメインであり、ジンクフィンガードメインがMEX3B遺伝子中の少なくとも部分配列を認識し結合する。
 CRISPR/Casヌクレアーゼは、ガイドRNA及びCasヌクレアーゼ(好ましくはCas9)を含む。
 ガイドRNAとは、DNA切断酵素であるCasヌクレアーゼと結合して、Casヌクレアーゼを標的DNA(MEX3B遺伝子中の少なくとも部分配列)に導く機能を有するRNAを意味する。ガイドRNAは、その5’末端に標的DNA(MEX3B遺伝子中の少なくとも部分配列)に相補的な配列を有し、該相補的な配列を介して標的DNAに結合することにより、Casヌクレアーゼを標的DNAに導く。Casヌクレアーゼは、DNAエンドヌクレアーゼとして機能し、標的DNAが存在する部位でDNAを切断し、例えば、MEX3B遺伝子の発現を特異的に低下させることができる。
 標的となるMEX3B遺伝子中の少なくとも部分配列は、MEX3B遺伝子(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドが挙げられ、MEX3B遺伝子の発現を確実に低下させる観点から、MEX3B遺伝子(エクソン中のCDS又はUTR)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドが好ましく、MEX3B遺伝子(エクソン中のCDS)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドがより好ましく、MEX3B遺伝子(エクソン中のCDS)中に含まれるオリゴヌクレオチドが更に好ましく、MEX3B遺伝子(エクソン1中のCDS)中に含まれるオリゴヌクレオチドが特に好ましく、MEX3B遺伝子の開始コドンを含むオリゴヌクレオチドが最も好ましい。
 標的となるMEX3B遺伝子中の部分配列は、15~25塩基であることが好ましく、17~22塩基がより好ましく、18~21塩基がさらに好ましく、20塩基であることが特に好ましい。
 MEX3B遺伝子に特異的なガイドRNAもしくはガイドRNAをコードするDNA、及びCasヌクレアーゼをコードする核酸もしくはCasヌクレアーゼを含有する組成物を、MEX3B遺伝子を含む真核細胞又は真核生物にトランスフェクトすることによりMEX3B遺伝子の発現を低下させることができる。
 Casヌクレアーゼをコードする核酸又はCasヌクレアーゼ、及びガイドRNA又はガイドRNAをコードするDNAは、当技術分野において公知の様々な方法、例えば、マイクロインジェクション、エレクトロポレーション、DEAE-デキストラン処理、リポフェクション、ナノ粒子媒介性トランスフェクション、タンパク質形質導入ドメイン媒介性形質導入、ウイルス媒介性遺伝子送達、およびプロトプラストへのPEG媒介性トランスフェクションなどによって、細胞内に移入されうるが、これらに限定されない。また、Casヌクレアーゼをコードする核酸又はCasヌクレアーゼ及びガイドRNAは、注入などの遺伝子もしくはタンパク質を投与するための、当技術分野において公知の様々な方法によって、生物内に移入されうる。Casヌクレアーゼをコードする核酸又はCasタンパク質は、ガイドRNAとの複合体の形態で、もしくは別々に、細胞内に移入されうる。Tatなどのタンパク質形質導入ドメインと融合されたCasヌクレアーゼもまた、細胞内に効率的に送達され得る。
 好ましくは、真核細胞又は真核生物は、Cas9ヌクレアーゼ及びガイドRNAが同時トランスフェクトまたは連続トランスフェクトされる。
 連続トランスフェクションは、最初にCasヌクレアーゼをコードする核酸によるトランスフェクション、続いて裸のガイドRNAによる第二のトランスフェクションによって行われうる。好ましくは、第二のトランスフェクションは、3、6、12、18、24時間後であるが、それらに限定されない。
 ガイドRNAの発現は、ガイドRNA発現ユニットを用いてもよい。ガイドRNA発現ユニットとしては、標的配列(MEX3B遺伝子の部分配列)とガイドRNAとを含むCRISPR-Cas9系の転写ユニットとすることが好ましく、ガイドRNAを発現するためのプロモーター領域(RNAポリメラーゼIIIのプロモーター(例えば、U6プロモーターおよびH1プロモーターから選択されるプロモーター))、標的配列(MEX3B遺伝子)及びガイドRNAを有することが好ましく、プロモーター、標的配列(MEX3B遺伝子の少なくとも部分配列)に相補的な配列及びガイドRNAがシームレスに連結していることがより好ましい。
 CRISPR/Casヌクレアーゼは、オフターゲットを防ぐために、ニッカーゼとして二本鎖DNAの一方の鎖のみを切断するCas9変異体を用いることもできる。一本鎖切断型Cas9変異体としては、例えば、Cas9(D10A)が挙げられる。一本鎖切断型Cas9変異体は例えば、標的DNAの一方の鎖に相補的な標的配列を有するガイドRNAと、そのごく近傍の他方の鎖に相補的な標的配列を有するガイドRNAとを組み合わせて用いると、一方の鎖を20塩基の特異性で切断し、他方の鎖をさらに20塩基の特異性で切断するため、併せて40塩基の特異性でDNAを切断することになり、標的の特異性を大幅に向上させることが可能となる。
 有効成分である上記人工ヌクレアーゼ又は上記人工ヌクレアーゼをコードする核酸の投与量としては、一般的には一回につき体重1kgあたり0.1μg~10mg程度の範囲である。
(MEX3Bタンパク質に選択的に結合するアプタマー又は抗体)
 MEX3Bタンパク質の阻害物質としては、MEX3Bタンパク質の機能を阻害する限り、高分子化合物(例えば、アプタマー等の核酸)、抗体、低分子化合物等任意の物質であってもよい。
 MEX3Bタンパク質の阻害物質の好ましい態様の1つとして、MEX3Bタンパク質に選択的に結合するアプタマーを用いたすい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤が挙げられる。
 アプタマーとは、一本鎖RNA又はDNAで構成され、その立体構造により標的タンパク質と結合して機能を阻害する核酸医薬品をいう。
 アプタマーは標的タンパク質に対する結合性及び特異性が高く、免疫原性が低く、化学合成により製造することができ、保存安定性も高い。
 MEX3Bタンパク質に選択的に結合するアプタマーの塩基長としては、MEX3Bタンパク質に特異的に結合する限り特に制限はないが、15~60塩基であることが好ましく、20~50塩基であることがより好ましく、25~47塩基であることが更に好ましく、26~45塩基であることが特に好ましい。
 MEX3Bタンパク質に選択的に結合するアプタマーはSELEX(Systematic Evolution of Ligands by EXponential enrichment)法により取得することができる。
 MEX3Bタンパク質の阻害物質のもう1つの好ましい態様として、MEX3Bタンパク質に選択的に結合する抗体を用いたすい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤が挙げられる。上記MEX3Bタンパク質に特異的に結合できるものであれば、ポリクローナル抗体またはモノクローナル抗体のいずれでもよい。
 ポリクローナル抗体は、抗原を免疫した動物から得られる血清を分離、精製することにより調製することができる。モノクローナル抗体は、抗原を免疫した動物から得られる抗体産生細胞と骨髄腫細胞とを融合させてハイブリドーマを作製し、該ハイブリドーマを培養するか、動物に投与して該動物を腹水癌化させ、上記の培養液または腹水を分離、精製することにより調製することができる。
 モノクローナル抗体は、該抗体産生細胞と非ヒト哺乳動物由来の骨髄腫細胞とを融合させてハイブリドーマを作製し、該ハイブリドーマを培養するか、動物に投与して該動物を腹水癌化させ、該培養液または腹水を分離、精製することにより調製することができる。抗体産生細胞としては、脾細胞、リンパ節、末梢血中の抗体産生細胞を使用することができ、特に好ましくは脾細胞を使用することができる。
 抗体をヒトに投与する目的で使用する場合は、免疫原性を低下させるために、ヒト型化抗体あるいはヒト化抗体を用いることが好ましい。これらのヒト型化抗体やヒト化抗体は、トランスジェニックマウスなどの哺乳動物を用いて作製することができる。ヒト型化抗体については、例えば、Morrison,S.L.et al.〔Proc.Natl.Acad.Sci.USA,81:6851-6855(1984)〕、野口浩〔医学のあゆみ 167:457-462(1993)〕に記載されている。ヒト化キメラ抗体は、マウス抗体のV領域とヒト抗体のC領域を遺伝子組換えにより結合し、作製することができる。ヒト化抗体は、マウスのモノクローナル抗体から相補性決定部位(CDR)以外の領域をヒト抗体由来の配列に置換することによって作製できる。
 また、抗体は、固相担体などの不溶性担体上に固定された固定化抗体として使用したり、標識物質で標識した標識抗体として使用することができる。このような固定化抗体や標識抗体も全て本発明の範囲内である。
 上記した抗体のうち、MEX3Bタンパク質に選択的に(好ましくは特異的に)結合してその機能を阻害できる抗体については、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤として使用することができる。
 抗体を第1の態様に係る予防又は治療剤として医薬組成物の形態で使用する場合には、上記抗体を有効成分として使用し、さらに薬学的に許容可能な担体、希釈剤(例えば、免疫原性アジュバントなど)、安定化剤または賦形剤などを用いて医薬組成物を調製することができる。抗体を含む予防又は治療剤は、濾過滅菌および凍結乾燥し、投薬バイアルまたは安定化水性調製物中に投薬形態に製剤化することができる。
 第1の態様に係る予防又は治療剤において、上記すい臓がんとして具体的には、すい臓腺がん等が挙げられ、上記肺がんとしては、非小細胞肺がん等が挙げられ、上記大腸がんとしては、結腸がん等が挙げられ、上記肝臓がんとしては、肝細胞がん等が挙げられる。
 対象(患者、未発症者等)への投与は、たとえば、動脈内注射、静脈内注射、皮下注射などの当業者に公知の方法により行うことができる。投与量は、対象(患者、未発症者等)の体重や年齢、投与方法などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能である。有効成分である抗体の投与量としては、一般的には一回につき体重1kgあたり0.1μg~100mg程度の範囲である。
 第1の態様に係る予防又は治療剤において、上記少なくとも1種のがんは、他の抗がん剤に対して難治性のがんでなくてもよいが、他の抗がん剤に対して難治性のがんとすることができ、第1の態様に係る予防又は治療剤は、他の抗がん剤とは、作用点、作用機序等が異なることから、上記難治性のがんに対して有効となることができ、又は、従来の他の抗がん剤の投与量を低減(すなわち、従来の他の抗がん剤による副作用を低減、投薬コンプライアンスを改善)することができる。
 すなわち、第1の態様に係る予防又は治療剤は、上記難治性のがんに罹患した患者に投与するための剤でなくてもよいが、上記難治性のがんに罹患した患者に投与するための剤とすることができる。
 上記他の抗がん剤としては、任意の抗がん剤が挙げられ、免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤が好ましい。
 免疫チェックポイント阻害剤としては、免疫チェックポイント分子の機能(例えば、免疫チェックポイント分子同士の結合(例えば、受容体及びリガンド間の結合))を阻害する剤が挙げられる。
 上記免疫チェックポイント分子としては、受容体であるPD-1、CTLA4等、リガンドであるPD-L1、PD-L2、CD80/86等が挙げられる。
 上記免疫チェックポイント阻害剤としては、これら免疫チェックポイント分子に選択的(好ましくは特異的)に結合する物質(例えば、抗体、アプタマーなど)が挙げられる。
 上記免疫チェックポイント阻害剤として、具体的には、抗PD-1抗体、抗CTLA4抗体、抗PD-L1抗体、抗PD-L2抗体、抗CD80/86抗体などが挙げられる。
 ピリミジン系代謝拮抗剤としては、生体内において核酸合成を阻害する剤、生体内において核酸合成を阻害する剤に変化する剤等が挙げられ、具体的には、ゲムシタビン(略号:Gem)、シタラビン、カペシタビン、TS-1(登録商標)、テガフール・ギメラシル・オテラシルカリウム(S-1)、テガフール・ウラシル、フルオロウラシル等が挙げられる。
 第1の態様に係る予防又は治療剤は、上記他の抗がん剤と組み合わせるコンビネーション医薬(組み合わせ医薬)用の剤に関するものでもあり、上記他の抗がん剤の投与量を低減(すなわち、従来の他の抗がん剤による副作用を低減、投薬コンプライアンスを改善)することができる。
 また、第1の態様に係る予防又は治療剤は、上記少なくとも1種のがんが、上記他の抗がん剤に対して難治性のがんであり、上記他の抗がん剤と組み合わせるコンビネーション医薬用の剤とすることもでき、すなわち、上記難治性のがんに罹患した患者に投与するためのコンビネーション医薬用の剤とすることができる。
 第1の態様に係る予防又は治療剤は、経口または非経口的に全身又は局所的に投与することができる。非経口的な投与方法としては、腫瘍内注射、点滴などの静脈内注射、腹腔内注射、皮下注射、筋肉内注射などを挙げることができる。対象(患者、未発症者等)の年齢、症状により適宜投与方法を選択することができる。その投与量は、年齢、投与経路、投与回数により異なり、当業者であれば適宜選択できる。
 非経口投与に適した製剤形態として、例えば安定剤、緩衝剤、保存剤、等張化剤等の添加剤を含有したものは挙げられ、さらに薬学的に許容される担体や添加物を含むものでもよい。このような担体及び添加物の例として、水、有機溶剤、高分子化合物(コラーゲン、ポリビニルアルコールなど)、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ツルビトール、ラクトース、界面活性剤などが挙げられるが、これらに限定されるものではない。
<第1の態様に係る予防又は治療剤と組み合わせるコンビネーション医薬用の、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤>
 第2の態様に係る予防又は治療剤は、第1の態様に係る予防又は治療剤と組み合わせるコンビネーション医薬用の、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤である。
 第2の態様に係る予防又は治療剤は、有効成分として、任意の抗がん剤を含むことができ、第1の態様に係る予防又は治療剤とは作用点、作用機序等が異なる抗がん剤を含むことが好ましく、免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤を含むことがより好ましい。
 免疫チェックポイント阻害剤、及びピリミジン系代謝拮抗剤の具体例及び好ましい例としては上述の通りである。
 第2の態様に係る予防又は治療剤は、経口または非経口的に全身又は局所的に投与することができる。非経口的な投与方法としては、腫瘍内注射、点滴などの静脈内注射、腹腔内注射、皮下注射、筋肉内注射などを挙げることができる。対象(患者、未発症者等)の年齢、症状により適宜投与方法を選択することができる。その投与量は、年齢、投与経路、投与回数により異なり、当業者であれば適宜選択できる。
 非経口投与に適した製剤形態として、例えば安定剤、緩衝剤、保存剤、等張化剤等の添加剤を含有したものは挙げられ、さらに薬学的に許容される担体や添加物を含むものでもよい。このような担体及び添加物の例として、水、有機溶剤、高分子化合物(コラーゲン、ポリビニルアルコールなど)、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ツルビトール、ラクトース、界面活性剤などが挙げられるが、これらに限定されるものではない。
<コンビネーション医薬>
 第3の態様に係るコンビネーション医薬は、第1の態様に係る予防又は治療剤と、他の抗がん剤とを含む。第3の態様に係るコンビネーション医薬は、上記他の抗がん剤の投与量を低減(すなわち、他の抗がん剤による副作用を低減、投薬コンプライアンスを改善)することができる。
 また、第3の態様に係るコンビネーション医薬は、上記少なくとも1種のがんが、上記他の抗がん剤に対して難治性のがんであり、上記難治性のがんに罹患した患者に投与するためのコンビネーション医薬とすることもできる。
 他の抗がん剤としては、任意の抗がん剤が挙げられ、第1の態様に係る予防又は治療剤とは作用点、作用機序等が異なる抗がん剤が好ましく、免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤がより好ましい。
 免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤の具体例及び好ましい例としては上述の通りである。
 第3の態様に係るコンビネーション医薬は、第1の態様に係る予防又は治療剤と、他の抗がん剤とを混合して投与してもよいし、第1の態様に係る予防又は治療剤と、他の抗がん剤と別々であるが同時期に投与してもよい。
 第3の態様に係るコンビネーション医薬において、第1の態様に係る予防又は治療剤の投与経路と、他の抗がん剤の投与経路とは、同一であっても異なっていてもよく、投与量も同一であっても異なっていてもよい。
 第3の態様に係るコンビネーション医薬は、経口または非経口的に全身又は局所的に投与することができる。非経口的な投与方法としては、腫瘍内注射、点滴などの静脈内注射、腹腔内注射、皮下注射、筋肉内注射などを挙げることができる。対象(患者、未発症者等)の年齢、症状により適宜投与方法を選択することができる。その投与量は、年齢、投与経路、投与回数により異なり、当業者であれば適宜選択できる。
 非経口投与に適した製剤形態として、例えば安定剤、緩衝剤、保存剤、等張化剤等の添加剤を含有したものは挙げられ、さらに薬学的に許容される担体や添加物を含むものでもよい。このような担体及び添加物の例として、水、有機溶剤、高分子化合物(コラーゲン、ポリビニルアルコールなど)、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ツルビトール、ラクトース、界面活性剤などが挙げられるが、これらに限定されるものではない。
<すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法>
 第4の態様に係るスクリーニング方法は、MEX3B遺伝子又はMEX3Bタンパク質の発現の低下、及びMEX3Bタンパク質の機能の低下よりなる群から選択される少なくとも1つを指標とすることにより、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングすることができる。
 第4の態様に係るスクリーニング方法において、上記少なくとも1種のがんは、他の抗がん剤に対して難治性のがんであってもなくてもよいが、他の抗がん剤に対して難治性のがんとすることができる。
 スクリーニングされる上記予防又は治療剤は、上記他の抗がん剤と組み合わせるコンビネーション医薬用の剤であってもなくてもよいが、上記他の抗がん剤と組み合わせるコンビネーション医薬用の剤とすることができる。
 上記他の抗がん剤としては、上述のように、任意の抗がん剤が挙げられ、上記予防又は治療剤とは作用点、作用機序等が異なる抗がん剤が好ましく、免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤がより好ましい。
 第4の態様に係るスクリーニング方法は、MEX3B遺伝子発現の低下を指標とすることが好ましい。
 MEX3Bタンパク質の機能としては、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんを促進する機能、p53により発現誘導される機能、細胞老化を誘導する機能、上記炎症性サイトカインないしは炎症性ケモカインの遺伝子の種々のmRNAに結合してそれらmRNAの機能(つまりタンパク質への翻訳)又は安定性を制御する機能、上記炎症性サイトカインないしは炎症性ケモカインの発現を誘導する機能等が挙げられる。
 また、上記低下の程度としては統計的に有意な低下であれば特に制限はないが、被験物質の非存在下(例えば、被験物質の投与前の系(例えば、野生型)、又は陰性対照(MEX3B遺伝子若しくはMEX3Bタンパク質の発現又は機能に影響しない物質を投与した対照)の系)におけるMEX3B遺伝子若しくはMEX3Bタンパク質の発現又は機能に対して、1/2以下であることが好ましく、1/4以下であることがより好ましく、1/10以下であることがさらに好ましく、発現又は機能がなくなることが特に好ましい。
 スクリーニング方法としては、上記を指標とする限り、インビボ(in vivo)、インビトロ(in vitro)、インシリコ(in silico)等の任意のスクリーニング方法であってもよい。スクリーニング方法の好ましい一例としては、MEX3B遺伝子を発現する細胞を被験物質の存在下及び非存在下において培養し、上記被験物質の有無に応じたMEX3B遺伝子又はMEX3Bタンパク質の発現の低下、及びMEX3Bタンパク質の機能の低下を指標として、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングすることが挙げられる。上記スクリーニングにおいて、全長MEX3Bタンパク質を使用してもよく、あるいはMEX3Bタンパク質の一部分(例えば、MEX3Bタンパク質を特徴付ける任意の1以上のドメインを含む)を使用してもよい。
 上記ドメインとしては、MEX3Bタンパク質中の、任意のRNA結合ドメイン、任意のタンパク質結合ドメインが挙げられ、より具体的には、KHドメイン、RINGフィンガードメイン等が挙げられる。
 MEX3B遺伝子の塩基配列情報を基にすれば、インシリコでも各種のヒト組織におけるMEX3B遺伝子の発現を検出することができる。また、インビボ、インビトロでも、例えば該遺伝子の一部又は全部の塩基配列を有するプローブまたはプライマーを利用することにより、各種のヒト組織におけるMEX3B遺伝子の発現を検出することができる。MEX3B遺伝子の発現の検出は、RT-PCR、ノザンブロット、サザンブロット等の常法により行うことができる。
 また、MEX3B遺伝子のmRNAレベルでの発現量の測定も、RT-PCR、ノザンブロット、サザンブロット等の常法により行うことができる。
 PCRを行なう場合、プライマーは、MEX3B遺伝子のみを特異的に増幅できるものであれば特に限定されず、MEX3B遺伝子の配列情報に基づき適宜設定することができる。例えば、MEX3B遺伝子又は上記遺伝子の発現制御領域の塩基配列中の連続する少なくとも10ヌクレオチドを含むオリゴヌクレオチド、並びに該オリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドをプローブまたはプライマーとして使用することができる。より具体的には、MEX3B遺伝子又は上記遺伝子の発現制御領域の塩基配列中の連続した10~60残基、好ましくは10~40残基の塩基配列を有するオリゴヌクレオチド、並びに該オリゴヌクレオチドに相補的な配列を有するアンチセンスオリゴヌクレオチドを使用することができる。
 上記したオリゴヌクレオチド及びアンチセンスオリゴヌクレオチドは、DNA合成機を用いて常法により製造することができる。該オリゴヌクレオチドまたはアンチセンスオリゴヌクレオチドとして、例えば、検出したいmRNAの一部の塩基配列において、5’末端側の塩基配列に相当するセンスプライマー、3’末端側の塩基配列に相当するアンチセンスプライマー等を挙げることができる。センスプライマー及びアンチセンスプライマーとしては、それぞれの融解温度(Tm)および塩基数が極端に変わることのないオリゴヌクレオチドであって、10~60塩基程度のものが挙げられる、10~40塩基程度のものが好ましい。また、本発明においては、上記したオリゴヌクレオチドの誘導体を用いることも可能であり、例えば、該オリゴヌクレオチドのメチル体やホスホロチオエート体等を用いることもできる。
 またMEX3Bタンパク質の発現量の測定は、後述の抗体を用いたウェスタンブロット又はELISA等の通常の免疫分析により行なうことができる。具体的には、モレキュラークローニング第2版又はカレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された当業者に公知の常法により行うことができる。
 また、MEX3Bタンパク質の機能の低下の分析は、MEX3Bタンパク質のmRNAへの結合能の有無または程度の測定、MEX3Bタンパク質が結合するmRNAの機能発現の有無または程度を測定することにより分析することができる。
 MEX3Bタンパク質mRNAへの結合能の有無または程度の測定は、競争的阻害試験等任意の分析でおこなうことができる。
 MEX3Bタンパク質が結合するmRNAの機能発現の有無または程度についてのタンパク質レベルでの発現量の測定は、ウェスタンブロット又はELISA等の通常の免疫分析により行なうことができる。例えば、モレキュラークローニング第2版又はカレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された当業者に公知の常法により行うことができる。
 第4の態様に係るスクリーニング方法に供される被験物質としては任意の物質を使用することができる。被験物質の種類は特に限定されず、核酸分子でもよいし、抗体でもよく、個々の低分子合成化合物でもよいし、天然物抽出物中に存在する化合物でもよく、合成ペプチドでもよい。後述するゲノム編集用の人工ヌクレアーゼであってもよい。あるいは、被験化合物はまた、化合物ライブラリー、ファージディスプレーライブラリーもしくはコンビナトリアルライブラリーでもよい。化合物ライブラリーの構築は当業者に公知であり、また市販の化合物ライブラリーを使用することもできる。
 被験物質は、好ましくは低分子化合物(例えば、化合物ライブラリー)、核酸分子、ゲノム編集用の人工ヌクレアーゼ又は抗体であり、MEX3B遺伝子又はタンパク質に対して特異性が高い観点から、核酸分子又は抗体がより好ましく、MEX3B遺伝子(エクソン中のCDS若しくはUTR又はイントロン)中又は上記遺伝子の発現制御領域中に含まれるオリゴヌクレオチドに相補的な配列を有する核酸分子又はMEX3Bタンパク質に選択的に結合するアプタマー又は抗体であることが更に好ましい。
<すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法>
 本発明は、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法であってもなくてもよい。
 第5の態様に係る、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法は、第1の態様に係る予防又は治療剤を対象に投与することを含む。
 第6の態様に係る、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療方法は、第1の態様に係る予防又は治療剤と、上記他の抗がん剤と組み合わせて対象に投与することを含む。
 対象としては、動物が挙げられ、脊椎動物が好ましく、ヒト、ブタ、ウシ、マウス、ラット等の哺乳類がより好ましく、ヒトが更に好ましく、ヒトの発症患者が特に好ましい。
 投与方法、投与量等の具体例及び好ましい例については上述の通りである。
 以下、実施例を示して本発明を更に具体的に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。
 (使用したアンチセンスオリゴヌクレオチド)
 以降の実施例において使用したアンチセンスオリゴヌクレオチドは以下の通りである。
 ギャップマー89(配列番号8)、ギャップマー89-2(配列番号9)及びギャップマーNCを下記表1にまとめる。

Figure JPOXMLDOC01-appb-T000001
 上記表に示したように、ギャップマー89-2は、ギャップマー89の標的配列から2塩基分5’末端側に標的配列をずらしたアンチセンスオリゴヌクレオチドである。
 ギャップマーNCは、ゲノム上に存在しない配列を標的としたネガティブコントロール(NC)としてのギャップマーである。
 なお、上記各ギャップマー型アンチセンスオリゴヌクレオチドの両末端には2塩基のLNA(2’,4’-BNA)を配置し、それ以外の間を埋める塩基は通常のDNAとし、各ヌクレオチドを結ぶリン酸ジエステル結合は全てホスホロチオエート化した。
<実施例1>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)にヒト膵がん細胞PK1(3×10細胞/マウス)を移植後23、26、28、31、33、35日目にギャップマー89(20μg/200μlミセル(50%cRGD)/マウス)又はギャップマー89-2(20μg/200μlミセル(50%cRGD)/マウス)を尾静脈から投与し、22、26、28、31、33、35、37日後に腫瘍の長径及び短径をノギスにて計測し、腫瘍体積(Tumor size)を(長径×短径)/2として算出した(mm;以下同様である。)。37日目には腫瘍を摘出し、腫瘍重量(Tumor weight)を測定した(g)。
 上記ミセルは、PEG及びポリアミノ酸を含むブロック共重合体と上記アンチセンスオリゴヌクレオチドとの間で形成されるコアシェル構造を有し、リガンド分子としてcRGDを有する粒径100nm以下の高分子ミセルである。
 ネガティブコントロール(NC)として、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図1に示す。
 図1は、MEX3Bに対するアンチセンスオリゴヌクレオチドによる膵がん細胞PK1の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。*は、チューキー=クレーマー検定によるp値<0.05である。
 図1A及びBに示した結果から明らかなように、ギャップマー89及びギャップマー89-2を投与した腫瘍は体積及び重量とも、ギャップマーNCを投与した腫瘍に比べ低下している(特に33日目以降は有意に低下している)ことがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89及びギャップマー89-2はいずれも、膵がん細胞の増殖を抑制していることがわかる。
 以上の結果から、MEX3B遺伝子中のノックダウンされる標的配列に依存されることなく、MEX3B遺伝子の発現を抑制することにより、膵がん細胞の増殖を抑制し得るといえる。
 なお、上記ミセルを使用した尾静脈投与の代わりに、上記ギャップマー89をin vivo jet PEI(登録商標)と混合して用いて[ギャップマー8μg/in vivo jet PEI(登録商標)80μl/マウス]の投与量にて腫瘍内投与した場合についても、図1(a)及び(b)に示した結果と同様に、ギャップマー89を投与した腫瘍は体積及び重量とも、ギャップマーNCを投与した腫瘍に比べ有意に低下した結果が得られている。
 以上の結果から、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質の投与方法、投与経路に依存されることなく、MEX3B遺伝子の発現を抑制することにより、膵がん細胞の増殖を抑制し得るといえる。
<実施例2>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)にヒト膵がん細胞AsPC1(3×10細胞/マウス)を移植後、腫瘍体積の平均が80mm程度になった後の17、19、21、24、26、28、31、33、35日にギャップマー89(20μg/200μlミセル(50%cRGD)/マウス)を尾静脈から投与し、17、19、21、24、26、28、31、33、35日後に腫瘍の長径及び短径をノギスにて計測し、腫瘍体積(Tumor size)を算出した(mm)。
 上記ミセルは、PEG及びポリアミノ酸を含むブロック共重合体と上記アンチセンスオリゴヌクレオチドとの間で形成されるコアシェル構造を有し、リガンド分子としてcRGDを有する粒径100nm以下の高分子ミセルである。
 ネガティブコントロール(NC)として、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図2に示す。
 図2は、MEX3Bに対するアンチセンスオリゴヌクレオチドによる膵がん細胞AsPC1の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。*は、t検定によるp値<0.05である。
 図2に示した結果から明らかなように、ギャップマー89を投与した腫瘍は体積が、ギャップマーNCを投与した腫瘍に比べ低下している(特に28日目以降は有意に低下している)ことがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89は、膵がん細胞の増殖を抑制していることがわかる。
<実施例3>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)の皮下にヒト非小細胞肺がん細胞A549(3.0×10細胞/マウス)を移植後25、27、32、34、37、39、41、43日目にギャップマー89[20μg/200μlミセル(50%cRGD)/マウス]を尾静脈内投与し、25、27、32、34、37、39、41、43日後に腫瘍の長径及び短径をノギスにて計測し、腫瘍体積(Tumor size)を算出した。43日目には腫瘍を摘出し、腫瘍重量(Tumor weight)を測定した(g)。
 上記ミセルは、PEG及びポリアミノ酸を含むブロック共重合体と上記アンチセンスオリゴヌクレオチドとの間で形成されるコアシェル構造を有し、リガンド分子としてcRGDを有する粒径100nm以下の高分子ミセルである。
 NCとして、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図3に示す。
 図3は、MEX3Bに対するアンチセンスオリゴヌクレオチドによる非小細胞肺がん細胞の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。*は、ワルドt検定によるp値<0.05である。
 図3A及びBに示した結果から明らかなように、ギャップマー89を投与した腫瘍は体積及び重量とも、ギャップマーNCを投与した腫瘍に比べ低下している(特に34日目以降は有意に低下している)ことがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89は、非小細胞肺がん細胞の増殖を抑制していることがわかる。
<実施例4>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)にヒト胆管がん細胞HUCCT1(3×10細胞/マウス)を移植後12日目から3日に一度の頻度にてギャップマー89をin vivo jet PEI(登録商標)を用いて[ギャップマー5μg/in vivo jet PEI(登録商標)80μl/マウス]の投与量にて腫瘍内に投与し、腫瘍の長径及び短径をノギスにて計測し、腫瘍体積(tumor size)を(長径)×(短径)/2にて算出した(mm)。
 NCとして、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図4に示す。
 図4は、MEX3Bに対するアンチセンスオリゴヌクレオチドによる胆管がん細胞の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。*は、p値<0.01である。
 図4に示した結果から明らかなように、ギャップマー89を投与した腫瘍は体積及び重量とも、ギャップマーNCを投与した腫瘍に比べ低下している(特に18日目以降は有意に低下している)ことがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89は、胆管がん細胞の増殖を抑制していることがわかる。
<実施例5>
 野生型マウス(Balb/c、雄、8週齢)にマウス大腸がん細胞株CT26細胞(1.0×10細胞/マウス)を移植後、6、8、10、14、17日目にギャップマー89(ギャップマー8μg/80μl in vivo jet PEI(登録商標)/マウス)を腫瘍内投与し、抗PD-L1抗体は10日目(200μg/マウス)、14日目(100μg/マウス)、17日目(100μg/マウス)に腹腔内に投与し、6、8、10、14、17、20日後に腫瘍の縦径及び横径をノギスにて計測し、腫瘍体積(Tumor volume)を算出した(mm)。20日目には腫瘍を摘出し、腫瘍重量(Tumor weight)を測定した(g)。
 NCとして、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図5に示す。
 図5Aは、MEX3Bに対するアンチセンスオリゴヌクレオチド及び免疫チェックポイント阻害剤の組み合わせ投与による大腸がん細胞の増殖抑制試験手順の概要を示す図である。
 図5Bは、ギャップマーNC及び免疫チェックポイント阻害剤の組み合わせ投与による増殖抑制試験結果(腫瘍体積)を示す図である。
 図5Cは、MEX3Bに対するアンチセンスオリゴヌクレオチド及び免疫チェックポイント阻害剤の組み合わせ投与による増殖抑制試験結果(腫瘍体積)を示す図である。
 図5Dは、MEX3Bに対するアンチセンスオリゴヌクレオチド及び免疫チェックポイント阻害剤の組み合わせ投与による増殖抑制試験結果(腫瘍重量)を示す図である。
 図中のエラーバーは、標準誤差である。*は、ワルドt検定によるp値<0.05である。
 図5B及びCに示された結果同士の比較、及び図4Dに示した結果から明らかなように、ギャップマーNC及び抗PD-L1抗体の組み合わせ投与に対し、ギャップマー89及び抗PD-L1抗体の組み合わせ投与は、腫瘍体積及び重量とも、有意に低下していることがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89及び免疫チェックポイント阻害剤の組み合わせ投与は、免疫チェックポイント阻害剤によりがん細胞増殖が抑制されている場合、及び免疫チェックポイント阻害剤により抑制されていない場合のいずれに対しても、大腸がん細胞の増殖を更に抑制することができるといえる。
<実施例6>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)の皮下にヒト膵がん細胞PK1(3×10細胞/マウス)を移植後23日目から1日おきに39日目までギャップマー89[20μg/200μlミセル(50%cRGD)/マウス]を尾静脈内投与し、23、27、31、35日目にはゲムシタビン[50mg/kg]を腹腔内投与し、23、27、31、35、38、41日後に腫瘍の縦径及び横径をノギスにて計測し、腫瘍体積(Tumor size)を算出した(mm)。41日目には腫瘍を摘出し、腫瘍重量(Tumor weight)を測定した(g)。
 NCとして、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図6に示す。
 図6は、MEX3Bに対するアンチセンスオリゴヌクレオチド及びピリミジン系代謝拮抗剤の組み合わせ投与によるすい臓がん細胞の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。
 図6Aに示した結果から明らかなように、ギャップマーNC及びゲムシタビン(Gem)の組み合わせ投与及びギャップマー89の単独投与のいずれに対しても、ギャップマー89及びゲムシタビンの組み合わせ投与は、腫瘍体積が低下していることがわかる。また、ギャップマーNC及びGemの組み合わせ投与及びギャップマー89の単独投与のいずれに対しても、ギャップマー89及びゲムシタビンの組み合わせ投与は、特に、移植38日以降、t検定によるp値<0.05で有意に低下していた。
 図6Bに示した結果から明らかなように、ギャップマーNC及びGemの組み合わせ投与及びギャップマー89の単独投与のいずれに対しても、ギャップマー89及びゲムシタビンの組み合わせ投与は、腫瘍重量が低下していることがわかる。また、ギャップマーNC及びGemの組み合わせ投与及びギャップマー89の単独投与のいずれに対しても、ギャップマー89及びゲムシタビンの組み合わせ投与は、腫瘍重量が、t検定によるp値<0.05で有意に低下していた。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89及びピリミジン系代謝拮抗剤の組み合わせ投与は、ピリミジン系代謝拮抗剤によりがん細胞増殖が抑制されている場合、及びピリミジン系代謝拮抗剤により抑制されていない場合のいずれに対しても、すい臓がん細胞の増殖を更に抑制することができることがわかる。
<実施例7>
 ヌードマウス(Balb/c nu/nu、雌、7週齢)にヒト肝臓がん細胞Hep3B(3×10細胞/マウス)を移植後、腫瘍体積の平均が150mm程度になった後の21、24、26日にギャップマー89(20μg/200μlミセル(50%cRGD)/マウス)を尾静脈から投与し、21、24、26、28日後に腫瘍の長径及び短径をノギスにて計測し、腫瘍体積(Tumor size)を算出した(mm)。
 ネガティブコントロール(NC)として、ゲノム上に存在しない配列を標的としたギャップマーNCについても同様に試験した。結果を図7に示す。
 図7は、MEX3Bに対するアンチセンスオリゴヌクレオチドによる膵がん細胞AsPC1の増殖抑制試験結果を示す図である。図中のエラーバーは、標準誤差である。
 図7に示した結果から明らかなように、ギャップマー89を投与した腫瘍は体積が、ギャップマーNCを投与した腫瘍に比べ低下していることがわかる。
 すなわち、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質であるギャップマー89は、肝臓がん細胞の増殖を抑制していることがわかる。

Claims (14)

  1.  すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤であって、MEX3B遺伝子若しくはMEX3Bタンパク質の発現の低下物質、又はMEX3Bタンパク質の阻害物質を含む剤。
  2.  前記低下物質がMEX3B遺伝子中又は前記遺伝子の発現制御領域中の連続する部分配列に相補的な配列を有し、MEX3B遺伝子の発現を抑制することができるアンチセンスオリゴヌクレオチドである、請求項1に記載の剤。
  3.  前記低下物質がMEX3B遺伝子から転写されるRNAの塩基配列中のコーディング領域中又は非翻訳領域中の連続する部分配列若しくはそれに相補的な配列を含み、かつMEX3B遺伝子の発現を抑制することができる、RNAi作用を有する核酸又はmiRNAである、請求項1に記載の剤。
  4.  前記少なくとも1種のがんが、他の抗がん剤に対して難治性のがんであり、前記他の抗がん剤に対して難治性の患者に投与するための、請求項1~3のいずれか1項に記載の剤。
  5.  他の抗がん剤と組み合わせるコンビネーション医薬用の剤である、請求項1~4のいずれか1項に記載の剤。
  6.  前記他の抗がん剤が、免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤を含む、請求項4又は5に記載の剤。
  7.  前記肺がんが非小細胞肺がんである、請求項1~6のいずれか1項に記載の剤。
  8.  請求項1~7のいずれか1項に記載の剤と組み合わせるコンビネーション医薬用の、すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤。
  9.  免疫チェックポイント阻害剤及びピリミジン系代謝拮抗剤よりなる群から選択される少なくとも1種の抗がん剤を含む、請求項8に記載の剤。
  10.  請求項5に記載の剤と、前記他の抗がん剤とを含むコンビネーション医薬。
  11.  すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤をスクリーニングする方法であって、
     MEX3B遺伝子又はMEX3Bタンパク質の発現の低下、及びMEX3Bタンパク質の機能の低下よりなる群から選択される少なくとも1つを指標とする、方法。
  12.  前記予防又は治療剤が他の抗がん剤と組み合わせるコンビネーション医薬用の剤である、請求項11に記載の方法。
  13.  前記指標が、MEX3B遺伝子を発現する細胞を被験物質の存在下及び非存在下において培養し、前記被験物質の有無に応じたMEX3B遺伝子又はMEX3Bタンパク質の発現の低下、及びMEX3Bタンパク質の機能の低下よりなる群から選択される少なくとも1つである、請求項11又は12に記載の方法。
  14.  前記肺がんが非小細胞肺がんである、請求項11~13のいずれか1項に記載の方法。
PCT/JP2021/017019 2020-05-01 2021-04-28 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法 WO2021221116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180031242.5A CN115529818B (zh) 2020-05-01 2021-04-28 一种癌的预防或治疗剂、组合医药、以及筛选方法
JP2021542198A JP7037160B1 (ja) 2020-05-01 2021-04-28 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法
US17/997,138 US20230183698A1 (en) 2020-05-01 2021-04-28 Prophylactic or therapeutic agent for at least one type of cancer selected from group consisting of pancreatic cancer, lung cancer, colorectal cancer, cholangiocarcinoma and liver cancer, prophylactic or therapeutic agent for said cancer which is used in combination drug in combination with said agent, combination drug comprising said agents, and method for screening for prophylactic or therapeutic agent for cancer
EP21795571.5A EP4137156A1 (en) 2020-05-01 2021-04-28 Prophylactic or therapeutic agent for at least one type of cancer selected from group consisting of pancreatic cancer, lung cancer, colorectal cancer, biliary tract cancer and liver cancer, prophylactic or therapeutic agent for said cancer which is used in combination drug in combination with said agent, combination drug comprising said agents, and method for screening for prophylactic or therapeutic agent for cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020081351 2020-05-01
JP2020-081351 2020-05-01

Publications (1)

Publication Number Publication Date
WO2021221116A1 true WO2021221116A1 (ja) 2021-11-04

Family

ID=78374090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017019 WO2021221116A1 (ja) 2020-05-01 2021-04-28 すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法

Country Status (5)

Country Link
US (1) US20230183698A1 (ja)
EP (1) EP4137156A1 (ja)
JP (2) JP7037160B1 (ja)
CN (1) CN115529818B (ja)
WO (1) WO2021221116A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409430B2 (ja) 2002-07-03 2010-02-03 小野薬品工業株式会社 免疫賦活組成物
JP4429269B2 (ja) 2003-02-10 2010-03-10 大正製薬株式会社 アポトーシス誘導遺伝子およびその利用
WO2011036118A1 (en) * 2009-09-22 2011-03-31 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
WO2018008750A1 (ja) * 2016-07-08 2018-01-11 TAK-Circulator株式会社 インターロイキン6、インターロイキン13、tnf、g-csf、cxcl1、cxcl2、又はcxcl5に起因する疾病の予防又は治療剤をスクリーニングする方法、及びインターロイキン6、インターロイキン13、tnf、g-csf、cxcl1、cxcl2、又はcxcl5に起因する疾病の予防又は治療剤
JP2018011593A (ja) * 2016-07-08 2018-01-25 TAK−Circulator株式会社 Mex3b遺伝子の発現を抑制する核酸、mex3b遺伝子発現抑制剤、mex3b遺伝子発現を抑制する方法及びmex3b遺伝子発現に起因する疾病の予防又は治療剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409430B2 (ja) 2002-07-03 2010-02-03 小野薬品工業株式会社 免疫賦活組成物
JP4429269B2 (ja) 2003-02-10 2010-03-10 大正製薬株式会社 アポトーシス誘導遺伝子およびその利用
WO2011036118A1 (en) * 2009-09-22 2011-03-31 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
WO2018008750A1 (ja) * 2016-07-08 2018-01-11 TAK-Circulator株式会社 インターロイキン6、インターロイキン13、tnf、g-csf、cxcl1、cxcl2、又はcxcl5に起因する疾病の予防又は治療剤をスクリーニングする方法、及びインターロイキン6、インターロイキン13、tnf、g-csf、cxcl1、cxcl2、又はcxcl5に起因する疾病の予防又は治療剤
JP2018011593A (ja) * 2016-07-08 2018-01-25 TAK−Circulator株式会社 Mex3b遺伝子の発現を抑制する核酸、mex3b遺伝子発現抑制剤、mex3b遺伝子発現を抑制する方法及びmex3b遺伝子発現に起因する疾病の予防又は治療剤

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CELL REP, vol. 16, no. 9, 30 August 2016 (2016-08-30), pages 2456 - 71
CURRENT PROTOCOLS IN MOLECULAR BIOLOGY
HIROSHI NOGUCHI, IGAKU NO AYUMI, vol. 167, 1993, pages 457 - 462
HUANG, L. ET AL.: "The RNA-binding Protein MEX3B Mediates Resistance to Cancer Immunotherapy by Downregulating HLA-A Expression", CLINICAL CANCER RESEARCH, vol. 24, no. 14, 15 July 2018 (2018-07-15), pages 3366 - 3376, XP055869927 *
JASINSKI-BERGNER, S. ET AL.: "The Role of the RNA-Binding Protein Family MEX-3 in Tumorigenesis", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 21, no. 15, 23 July 2020 (2020-07-23), pages 5209, XP55869934 *
JIANG, H. ET AL.: "Knockdown of hMex-3A by small RNA interference suppresses cell proliferation and migration in human gastric cancer cells", MOLECULAR MEDICINE REPORTS, vol. 6, no. 3, September 2012 (2012-09-01), pages 575 - 580, XP055869930 *
MIYATA K. ET AL., REACT. FUNCT. POLYM., vol. 71, 2011, pages 227 - 234
MIYATA K., DRUG DISCOV. THER., vol. 10, 2016, pages 236 - 247
MORRISON, S. L. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
ONCOGENE, vol. 37, no. 38, September 2018 (2018-09-01), pages 5233 - 5247
XUE, M. ET AL.: "HOTAIR induces the ubiquitination of Runx3 by interacting with Mex3b and enhances the invasion of gastric cancer cells", GASTRIC CANCER, vol. 21, 2018, pages 756 - 764, XP036693710, DOI: 10.1007/s10120-018-0801-6 *

Also Published As

Publication number Publication date
EP4137156A1 (en) 2023-02-22
JP7037160B1 (ja) 2022-03-16
JP2022082537A (ja) 2022-06-02
JPWO2021221116A1 (ja) 2021-11-04
CN115529818B (zh) 2024-04-02
US20230183698A1 (en) 2023-06-15
CN115529818A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US20150258130A1 (en) Nicked or gapped nucleic acid molecules and uses thereof
CN109526229B (zh) 筛选疾病的预防或治疗剂的方法、及用于制造该制剂的应用
KR101252799B1 (ko) c-Met의 발현을 저해하는 siRNA 및 이를 포함하는 항암 조성물
KR20150115687A (ko) 신규 이중 나선 올리고 rna 및 이를 포함하는 섬유증 또는 호흡기 질환의 예방 또는 치료용 약학조성물
WO2020109343A1 (en) Combination therapy for treatment of macular degeneration
US20120183538A1 (en) Sparc antisense compositions and uses thereof
US20230383294A1 (en) Novel rna compositions and methods for inhibiting angptl3
US20240035029A1 (en) Rna compositions and methods for inhibiting lipoprotein(a)
WO2021221116A1 (ja) すい臓がん、肺がん、大腸がん、胆管がん及び肝臓がんよりなる群から選択される少なくとも1種のがんの予防又は治療剤、該剤と組み合わせるコンビネーション医薬用の前記がんの予防又は治療剤、該剤を含む組合せ医薬、並びに、がんの予防又は治療剤をスクリーニングする方法
JP7106788B2 (ja) Mex3b遺伝子の発現を抑制する核酸、mex3b遺伝子発現抑制剤、mex3b遺伝子発現を抑制する方法及びmex3b遺伝子発現に起因する疾病の予防又は治療剤
KR20230126725A (ko) 침묵화를 위한 P21 mRNA 표적 부위
JP7450268B2 (ja) がん幹細胞マーカー及びがん幹細胞標的薬
CN111433360B (zh) 靶向ckip-1的双链rna分子及其用途
JP2023506540A (ja) B型肝炎ウイルス感染を処置するためのscamp3阻害剤の使用
US20220025367A1 (en) Novel rna compositions and methods for inhibiting angptl8
WO2019208398A1 (ja) 難治性喘息の予防又は治療剤をスクリーニングする方法、及び難治性喘息の予防又は治療剤
WO2024048528A1 (ja) 心疾患及びラミノパチーの予防及び/又は治療剤
WO2023248498A1 (ja) 線維症治療用医薬組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021542198

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021795571

Country of ref document: EP

Effective date: 20221115

NENP Non-entry into the national phase

Ref country code: DE