WO2021220765A1 - Drive device and fluid pressure–driven valve - Google Patents

Drive device and fluid pressure–driven valve Download PDF

Info

Publication number
WO2021220765A1
WO2021220765A1 PCT/JP2021/014970 JP2021014970W WO2021220765A1 WO 2021220765 A1 WO2021220765 A1 WO 2021220765A1 JP 2021014970 W JP2021014970 W JP 2021014970W WO 2021220765 A1 WO2021220765 A1 WO 2021220765A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cylinder
sensor
drive
drive device
Prior art date
Application number
PCT/JP2021/014970
Other languages
French (fr)
Japanese (ja)
Inventor
文明 青山
Original Assignee
金子産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金子産業株式会社 filed Critical 金子産業株式会社
Publication of WO2021220765A1 publication Critical patent/WO2021220765A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the present invention relates to a drive device and a fluid pressure drive valve.
  • Patent Document 1 discloses an actuator including a sensor that detects the position of a piston with respect to a cylinder.
  • the present invention has been made in view of such circumstances, and is capable of detecting the state inside the cylinder, and improving the accuracy of abnormality diagnosis and predictive maintenance of the drive device and fluid pressure.
  • the purpose is to provide a drive valve.
  • the drive device is A cylindrical cylinder that covers both ends, A pair of pistons provided in the cylinder so as to be reciprocally linearly movable and connected via a piston rod, A drive state sensor arranged at one end or both ends of the cylinder in the sliding direction of the piston rod. To be equipped.
  • the fluid pressure drive valve is Main valve and The drive device that drives the main valve and A solenoid valve that controls the supply and discharge of the driving fluid to the driving device, At least prepare.
  • the drive state sensors are arranged at one end or both ends in the cylinder in the sliding direction of the piston rod.
  • the drive state sensor measures, for example, the position of the piston with respect to the cylinder, the acceleration of the cylinder, the temperature and humidity in the cylinder, and the like as the state of the drive device. Therefore, when the drive device and the fluid pressure drive valve are provided with the drive state sensor, it is possible to monitor the state inside the cylinder, and it is possible to improve the accuracy of abnormality diagnosis and predictive maintenance.
  • FIG. 1 is a cross-sectional view showing an example of a fluid pressure drive valve 10 according to an embodiment of the present invention.
  • the fluid pressure drive valve 10 opens and closes the main valve 11 by driving the main valve 11 arranged in the middle of the pipe 100 and the valve shaft 13a connected to the main valve 11 according to the fluid pressure of the driving fluid.
  • the drive device 12 is provided, and the solenoid valve 1 having a function of controlling the supply and discharge of the drive fluid to the drive device 12 is provided.
  • the fluid pressure drive valve 10 is installed in, for example, a pipe 100 through which various gases, oil, etc. flow in the plant equipment, and is an emergency shutoff for shutting off the flow of the pipe 100 in the event of an emergency stop such as when an abnormality occurs in the plant equipment. Used as a valve.
  • the installation location and application of the fluid pressure drive valve 10 are not limited to the above examples.
  • Air (air) A is supplied to the fluid pressure drive valve 10 from the air supply source 14 as an example of the drive fluid, and the air A from the air supply source 14 is passed through the first air pipe 140. Is supplied to the electromagnetic valve 1 and further supplied to the drive device 12 via the second air pipe 141. Further, the fluid pressure drive valve 10 includes a communication cable 150 for transmitting and receiving various data between the external device 15 and the solenoid valve 1, and a power cable 160 for supplying electric power from the external power supply 16 to the solenoid valve 1. And are connected.
  • the driving fluid is not limited to the above-mentioned air A, and may be another gas or a liquid (for example, oil).
  • the external device 15 is composed of, for example, a computer for plant management (including a local server and a cloud server), a diagnostic computer used by a maintenance inspector, or an external storage unit such as a USB memory or an external HDD. There is.
  • the communication between the external device 15 and the solenoid valve 1 may be wireless communication.
  • the fluid pressure drive valve 10 adopts an airless closing method. Therefore, during steady operation, the main valve 11 is fully opened by supplying air A (air supply) from the air supply source 14 to the drive device 12 via the solenoid valve 1, and during emergency stop or test operation. By discharging air A (exhaust) from the drive device 12 via the solenoid valve 1, the main valve 11 is fully closed.
  • the fluid pressure drive valve 10 may adopt an airless open system. In that case, the fluid pressure drive valve 10 is fully opened by supplying the air A to the drive device 12, and the air A is discharged from the drive device 12.
  • the main valve 11 may be fully closed.
  • the main valve 11 is composed of, for example, a valve called a ball valve.
  • the main valve 11 includes a valve box 110 arranged in the middle of the pipe 100 and a ball-shaped valve body 111 rotatably provided in the valve box 110, and is an upper portion of the valve body 111.
  • a valve shaft 13a is connected to the valve shaft 13a.
  • the valve body 111 rotates in the valve box 110 in response to the valve shaft 13a being rotated from 0 degrees to 90 degrees, and the main valve 11 is switched between a fully open state (state shown in FIG. 1) and a fully closed state. Be done.
  • the valve used as the main valve 11 is not limited to the ball valve, and may be another type such as a butterfly valve.
  • the drive device 12 is arranged between the main valve 11 and the solenoid valve 1, for example, and is configured as a single-actuated air cylinder mechanism.
  • the drive device 12 includes a cylindrical cylinder 120 that covers both ends, a pair of pistons 122A and 122B that are provided in the cylinder so as to be reciprocally linearly movable and are connected via a piston rod 121.
  • a coil spring 123 provided on the piston 122A side of No. 1, an air supply / discharge port 124 formed on the second piston 122B side, and a spindle 13b and a piston arranged so as to penetrate the cylinder 120 along the radial direction.
  • a transmission mechanism 125 provided at a portion orthogonal to the rod 121, and a drive state sensor 49 arranged at one end or both ends of the cylinder 120 in the sliding direction of the piston rod 121 are provided.
  • the drive device 12 is not limited to the single-acting type, and may be configured in another form such as a double-acting type.
  • an air supply / exhaust port connected to the space surrounded by the first piston 122A and the cylinder 120 is formed in the cylinder 120, and air is supplied separately from the solenoid valve 1 instead of the coil spring 123.
  • the exhaust path may be connected to the air supply / exhaust port.
  • the first piston 122A is urged by the coil spring 123 in the direction of closing the main valve 11.
  • the second piston 122B is pressed by the air A (air supply) supplied from the air supply / exhaust port 124 in the direction of opening the main valve 11 against the urging force of the coil spring 123.
  • the transmission mechanism 125 is composed of, for example, a rack and pinion mechanism, a scotch yoke mechanism, a link mechanism, a cam mechanism, etc., and converts the reciprocating linear motion of the piston rod 121 into rotation and transmits it to the spindle 13b of the drive device 12. do.
  • FIG. 2 is a schematic view showing an example of a drive device 12 to which the machine learning device or the like according to the embodiment of the present invention is applied.
  • FIG. 2A shows an example in which the transmission mechanism 125 is a rack and pinion mechanism
  • FIG. 2B shows an example in which the transmission mechanism 125 is a Scotch yoke mechanism.
  • the transmission mechanism 125 is a rack and pinion mechanism
  • the piston 122 and the piston rod 121 make a reciprocating linear motion by supplying air to the cylinder 120 or exhausting the air A from the cylinder 120.
  • the rack 125a which moves in the same manner as the piston rod 121, makes a reciprocating linear motion.
  • the pinion 125b that contacts and meshes with the rack 125a rotates.
  • the main shaft 13b which rotates in the same manner as the pinion 125b, rotates.
  • the transmission mechanism 125 is a scotch yoke mechanism
  • the piston 122 and the piston rod 121 perform a reciprocating linear motion by supplying air to the cylinder 120 or exhausting the air A from the cylinder 120.
  • the shaft 125c which moves in the same manner as the piston rod 121, makes a reciprocating linear motion.
  • the yoke 125d that is eccentrically contacted and assembled with respect to the shaft 125c rotates.
  • the main shaft 13b which rotates in the same manner as the yoke 125d, rotates.
  • the drive device 12 has stoppers 126A and 126B that regulate the movements of the pistons 122A and 122B, respectively.
  • the stoppers 126A and 126B are formed by bolts installed on the piston rod 121 shaft of the cylinder cases 120A and 120B.
  • a drive state sensor 49 that detects at least one state in the cylinder 120 can be attached to at least one of the stoppers 126A and 126B.
  • the drive state sensor 49 may be arranged at at least one end (one end or both ends) in the cylinder 120 in the sliding direction of the piston rod 121 as shown by the broken line in the drawing.
  • the drive state sensor 49 for detecting at least one state in the cylinder 120 is attached to at least one of the stoppers 126A and 126B, whereby the cylinder 120 At least one of the states can be detected directly. Therefore, at least one state in the cylinder 120 can be detected with high accuracy.
  • the drive state sensor 49 may be, for example, a position sensor 491, an acceleration sensor 492, a temperature / humidity sensor 493, or the like.
  • the position sensor 491 detects the position of the piston 122 or the piston rod 121 with respect to the cases 120A and 120B of the cylinder 120.
  • the position sensor 491 is composed of an ultrasonic sensor, an infrared sensor, a hall sensor, a lead sensor, and the like.
  • a large torque is applied to the contact portion between the cylinder 120 and the piston 122 whose relative position changes due to high-pressure air, and the contact portion of the transmission mechanism 125 that converts reciprocating linear motion into rotation, resulting in wear and deterioration. Or, there is a risk of abnormalities such as breakage.
  • the position sensor 491 of the present embodiment is attached to the stoppers 126A and 126B, but may be attached to the cases 120A and 120B of the cylinder 120.
  • the acceleration sensor 492 detects the acceleration generated in the cylinder 120. Specifically, the acceleration sensor 492 includes vibration of the cylinder 120 generated when the piston 122 reciprocates linearly in the cylinder 120 and vibration of the cylinder 120 generated when the piston 122 collides with the stoppers 126A and 126B ( Impact) is detected as the acceleration of the cylinder 120. As the input pressure of the cylinder 120 increases, an abnormally fast jumping operation may repeatedly occur. At that time, a larger impact force is repeatedly generated on the piston rod 121 and the stoppers 126A and 126B than during normal operation. This impact force may damage the cylinder cases 120A and 120B.
  • the position sensor 491 of the present embodiment is attached to the stoppers 126A and 126B, but may be attached to the cases 120A and 120B of the cylinder 120.
  • the temperature / humidity sensor 493 is attached to, for example, a tap hole formed in the cylinder 120, and detects the temperature and humidity of the air in the cylinder 120. Specifically, the temperature / humidity sensor 493 detects the temperature and humidity of the air A supplied / discharged from the solenoid valve 1 into the cylinder 120 via the air supply / discharge port 124. When the air supply / exhaust port 124 is open to the external environment, the temperature / humidity sensor 493 is used to supply / discharge the outside air (external air) from the external environment into the cylinder 120 via the air supply / exhaust port 124. Detects temperature and humidity.
  • the temperature / humidity sensor 493 is configured by combining a temperature sensor that detects temperature and a humidity sensor that detects relative humidity.
  • the position sensor 491 of the present embodiment is attached to the cases 120A and 120B of the cylinder 120, but may be attached to the stoppers 126A and 126B.
  • the valve shaft 13a of the main valve 11, the main shaft 13b of the drive device 12, and the shaft 13c of the solenoid valve 1 are each formed into a shaft shape in a rotatable state.
  • the spindle 13b of the drive device 12 is arranged so as to penetrate the drive device 12.
  • the valve shaft 13a of the main valve 11 and the shaft 13c of the solenoid valve 1 are linearly connected to the main shaft 13b of the drive device 12 via a coupling or the like, and perform a rotational movement synchronized with the drive.
  • the solenoid valve 1 has a function of controlling the supply and discharge of air A to the drive device 12, and is, for example, a three-way solenoid valve of a normally closed type (“open” when energized, “closed” when not energized) at two positions. It is configured as.
  • the solenoid valve 1 has a spool portion 2 that switches the flow path through which the air A flows inside the accommodating portion 6 that functions as a housing of the indoor type or explosion-proof type solenoid valve 1, and is in an energized state (when energized or de-energized). It is provided with a solenoid unit 3 that displaces the spool unit 2 accordingly.
  • the solenoid valve 1 is not limited to a two-position, normally closed type three-way solenoid valve, but may be a three-position solenoid valve, a normally open type, a four-way solenoid valve, or the like, and is composed of various formations based on any combination. You may be. Further, in the present embodiment, the solenoid valve 1 is used as a pilot valve in the fluid pressure drive valve 10, but the application of the solenoid valve 1 is not limited to this.
  • the spool portion 2 has an input port 20 connected to the air supply source 14 via the first air pipe 140, an output port 21 connected to the drive device 12 via the second air pipe 141, and a drive device. It is provided with an exhaust port 22 for discharging the exhaust from 12.
  • the solenoid unit 3 displaces the spool unit 2 so as to communicate between the input port 20 and the output port 21 when energized, and communicates between the output port 21 and the exhaust port 22 when the power is off. , The spool portion 2 is displaced.
  • the air A (air supply) from the air supply source 14 is the first air pipe 140, the input port 20, the output port 21, and the second air pipe 141.
  • the second piston 122B is pressed and the coil spring 123 is compressed by flowing in this order and being supplied to the air supply / discharge port 124.
  • the valve shaft 13a of the main valve 11 connected to the main shaft 13b by the connector is rotated via the piston rod 121 and the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the compression of the coil spring 123.
  • the valve body 111 rotates in the valve box 110, and the main valve 11 is operated in the fully opened state.
  • FIG. 3 is a cross-sectional view showing an example of the solenoid valve 1 according to the embodiment of the present invention.
  • the solenoid valve 1 includes a plurality of sensors 4 for acquiring the state of each portion of the solenoid valve 1 and a substrate 5 on which at least one of the plurality of sensors 4 is mounted.
  • a spool portion 2, a solenoid portion 3, a plurality of sensors 4, and an accommodating portion 6 for accommodating the substrate 5 are provided.
  • the accommodating portion 6 is adjacent to the first accommodating portion 60 accommodating the spool portion 2 and the first accommodating portion 60, and also accommodates the solenoid unit 3, the plurality of sensors 4, and the substrate 5.
  • a terminal box 62 to which the communication cable 150 and the power cable 160 are connected is provided.
  • the first accommodating portion 60 and the second accommodating portion 61 are made of, for example, a metal material such as aluminum.
  • the first accommodating portion 60 has openings (not shown) that function as input ports 20, output ports 21, and exhaust ports 22, respectively.
  • the second accommodating portion 61 includes a cylindrical housing 610 with both ends (first housing end 610a and second housing end 610b) open, a body 611 arranged inside the housing 610, and a second housing portion 61.
  • a solenoid cover 612 that covers the solenoid portion 3 fixed to the housing end portion 610a of 1 from the outside air, and a terminal box cover 613 that covers the terminal box 62 fixed to the second housing end portion 610b from the outside air are provided.
  • the housing 610 is formed on the shaft insertion port 610c formed in the lower portion thereof and into which the shaft 13c is inserted, the body insertion opening 610d formed in the upper portion thereof and into which the body 611 is inserted, and the second housing end portion 610b side. It has a cable insertion port 610e into which the communication cable 150 and the power cable 160 are inserted.
  • the first accommodating portion 60 and the second accommodating portion 61 are branched from the input side flow path 26 so as to penetrate the body 611, and between the input side flow path 26 and the first pressure sensor 40.
  • a spool flow path 65 through which air A for interlocking with the portion 3 flows is formed.
  • the spool portion 2 includes a spool hole 23 formed in a second accommodating portion 61 that functions as a spool case, a spool valve 24 that is movably arranged in the spool hole 23, and a spool that urges the spool valve 24.
  • the spring 25 the input side flow path 26 communicating between the input port 20 and the spool hole 23, the output side flow path 27 communicating between the output port 21 and the spool hole 23, the exhaust port 22 and the spool hole 23. It is provided with an exhaust flow path 28 that communicates between the two.
  • the solenoid unit 3 is arranged in a solenoid case 30, a solenoid coil 31 housed in the solenoid case 30, a movable iron core 32 movably arranged in the solenoid coil 31, and a fixed state in the solenoid coil 31.
  • a fixed iron core 33 and a solenoid spring 34 for urging the movable iron core 32 are provided.
  • the solenoid coil 31 When the solenoid valve 1 is switched from the non-energized state to the energized state, the solenoid coil 31 generates an electromagnetic force when the coil current flows through the solenoid coil 31 in the solenoid unit 3, and the movable iron core is generated by the electromagnetic force.
  • the flow state of the air A flowing through the spool flow path 65 is switched.
  • the flow state of the air A flowing through the spool flow path 65 is switched, so that the spool valve 24 is moved against the urging force of the spool spring 25, so that the input port 20 and the exhaust are exhausted.
  • the state of communicating with the port 22 can be switched to the state of communicating between the input port 20 and the output port 21.
  • the substrate 5 includes a first substrate 50 arranged so that the substrate surfaces 500A and 500B are arranged along the shaft 13c inserted from the shaft insertion port 610c, and a second substrate 51 arranged close to the terminal box 62. , A third substrate 52 arranged close to the solenoid unit 3 is provided.
  • the body 611, the solenoid unit 3, and the third substrate 52 are arranged on the first substrate surface 500A side.
  • the second substrate 51 and the terminal box 62 are arranged on the second substrate surface 500B side opposite to the first substrate surface 500A side.
  • the sensor 4 mounted on the first substrate 50 includes, for example, a first pressure sensor 40 for measuring the fluid pressure of air A flowing through the input side flow path 26 and the first flow path 63, and an output side flow path.
  • the electromagnetic valve 1 is passed through the main shaft 13b of the drive device 12 by the rotation of the main valve 11 from the valve shaft 13a and the second pressure sensor 41 that measures the fluid pressure of the air A flowing through the 27 and the second flow path 64.
  • a main valve opening sensor 42 that measures the rotation angle when the shaft 13c of the shaft 13c rotates and acquires valve opening information of the main valve 11 according to the rotation angle.
  • the first pressure sensor 40, the second pressure sensor 41, and the main valve opening sensor 42 are integrated on one substrate (first substrate 50), so that the solenoid valve 1 and the fluid pressure drive valve 10 are integrated. It is possible to realize the monitoring function required for properly diagnosing whether or not the operation is normal with a simple configuration.
  • the main valve opening sensor 42 is composed of, for example, a magnetic sensor, measures the magnetic strength generated by the permanent magnet 131 attached to the shaft 13c, and determines the magnetic strength of the main valve 11 according to the magnetic strength. Acquire valve opening information.
  • the main valve opening sensor 42 is located at a position facing the outer periphery of the shaft 13c in the first board surface 500A of the first board 50 arranged along the shaft 13c inserted from the shaft insertion port 610c. It is placed in. As a result, the main valve opening sensor 42 mounted on the first substrate 50 and the shaft 13c can be arranged close to each other in the accommodating portion 6 without wasting the arrangement space. The valve opening information can be accurately acquired.
  • the main valve opening sensor 42 is mounted on the first substrate 50 closer to the shaft insertion port 610c than the first pressure sensor 40 and the second pressure sensor 41.
  • the first flow path 63 communicating with the first pressure sensor 40 and the second flow path 64 communicating with the second pressure sensor 41 are separated from the main valve opening sensor 42 and the shaft 13c. Since it is arranged at the position, the shape and arrangement of the first flow path 63 and the second flow path 64 can be simplified.
  • the sensor 4 mounted on the third substrate 52 includes, for example, a magnetic sensor 46 that measures the magnetic strength generated by the solenoid unit 3.
  • the magnetic sensor 46 determines the magnetic strength generated by the solenoid unit 3 being energized and the coil current flowing through the solenoid coil 31. measure.
  • FIG. 4 is a block diagram showing an example of the fluid pressure drive valve 10 according to the embodiment of the present invention.
  • FIG. 5 is a schematic view showing an example of mounting a plurality of sensors 4 on the substrate 5 according to the embodiment of the present invention. Note that FIG. 5 does not strictly indicate the position where each sensor 4 is mounted on the substrate 5, and each sensor 4 is mounted on any of the first to third substrates 50 to 52. It shows the mounting state of the sensor.
  • the fluid pressure drive valve 10 includes a control unit 7 for controlling the fluid pressure drive valve 10 and an external device, in addition to the above-mentioned first to third substrates 50 to 52 and a plurality of sensors 4.
  • a communication unit (external transmission unit) 8 having a function of communicating with the 15 and a power supply circuit unit 9 connected to the external power supply 16 are provided.
  • the plurality of sensors 4 refer to the solenoid unit 3 in addition to the above-mentioned first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, and magnetic sensor 46 as a group of sensors for measuring the physical quantity of each unit.
  • a voltage sensor 43 for measuring the supply voltage
  • a current / resistance sensor 44 for measuring the current value when the solenoid unit 3 is energized and a resistance value when the solenoid unit is not energized
  • a temperature sensor 45 for measuring the internal temperature of the accommodating unit 6.
  • a drive state sensor 49 for measuring the state of the drive device 12 is provided.
  • the plurality of sensors 4 measure at least one of the total energization time for the solenoid unit and the current energization continuous time as the operating time of the solenoid unit 3 as a sensor group for acquiring information on the operation history of each unit.
  • a total of 47 and an operation counter 48 for counting the number of operations of each of the solenoid valve 1, the drive device 12, and the main valve 11 are provided.
  • the control unit 7 processes information indicating the state of each part of the fluid pressure drive valve 10 acquired by the plurality of sensors 4, and energizes the microcontroller 70 that controls each part of the fluid pressure drive valve 10 and the solenoid unit 3. It is provided with a valve test switch 71 that controls the state and opens and closes the main valve 11 during a test operation.
  • the microcontroller 70 includes a processor (not shown) such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • a processor such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the internal storage unit 702 contains a set value when the fluid pressure drive valve 10 operates, temporary storage data when the fluid pressure drive valve 10 operates, and a fluid pressure drive valve that controls the operation of the fluid pressure drive valve 10.
  • the control program etc. are stored.
  • the processor of the microcontroller 70 executes a monitoring process for monitoring the state of each part of the fluid pressure drive valve 10 by a plurality of sensors 4 by executing a fluid pressure drive valve control program stored in the internal storage unit 702. It functions as an abnormality determination unit 701 that determines whether or not an abnormality has occurred in the drive device 12 based on the state of the drive device 12 measured by the processing unit 700 and the drive state sensor 49.
  • the monitoring processing unit 700 has at least one of the plurality of sensors 4 regardless of whether or not the main valve 11 is opened / closed (hereinafter, referred to as “first monitored sensor 4A”). Is used to execute the "first monitoring process” for monitoring the state of the fluid pressure drive valve 10. Further, the monitoring processing unit 700 uses at least one of the plurality of sensors 4 (hereinafter, referred to as “second monitored sensor 4B”) during unsteady operation in which the main valve 11 is opened and closed. The "second monitoring process” for monitoring the state of the fluid pressure drive valve 10 is executed.
  • the first monitored sensor 4A is, for example, all of the plurality of sensors 4 (first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, voltage sensor 43, current / resistance sensor 44).
  • the present invention is not limited to these examples.
  • the second monitored sensor 4B is, for example, the second pressure sensor 41 and the main valve opening degree sensor 42, but is not limited to these examples.
  • the monitoring processing unit 700 obtains the state of the fluid pressure drive valve 10 acquired by the first monitored sensor 4A in the first sampling cycle (for example, every 10 seconds) as the first acquired data.
  • the first acquired data is sequentially transmitted to the external device 15 via the communication unit 8 each time it is acquired.
  • the monitoring process unit 700 performs a second sampling cycle (for example, 10 msec interval) shorter than the first sampling cycle during the operation period in which the fluid pressure drive valve 10 is operated.
  • the state of the fluid pressure drive valve 10 acquired by the monitored sensor 4B is acquired as the second acquisition data, respectively.
  • the monitoring processing unit 700 internally sets the acquired data group configured by associating the second acquired data acquired within the operation period with the acquired acquisition time of each of the second acquired data as temporary storage data. It is stored in the storage unit 702. Then, the acquired data group stored in the internal storage unit 702 is transmitted to the external device 15 at a predetermined timing.
  • the abnormality determination unit 701 determines whether or not an abnormality has occurred in the drive device 12 by executing a plurality of abnormality determination processes for the state of the drive device 12 measured by the drive state sensor 49.
  • the drive state sensor 49 detects the position of the piston 122 with respect to the cylinder 120 when the drive device 12 is operated, and the abnormality determination unit 701 and the detection value of the other sensor 4 at that time are used. By comparing the relative relationship of the above with the pre-stored relative relationship during normal operation, it is determined whether or not an abnormality has occurred. Further, as a second abnormality determination process, the abnormality determination unit 701 detects the acceleration generated in the drive device 12 by the drive state sensor 49, and determines whether or not an acceleration (vibration or impact) larger than that during normal operation is generated. By making a judgment, it is judged whether or not an abnormality has occurred.
  • the abnormality determination unit 701 detects the internal temperature and humidity of the drive device 12 by the drive state sensor 49 as a third abnormality determination process, and determines whether or not the relative humidity is larger than a predetermined threshold value. , Judge whether or not an abnormality has occurred.
  • the abnormality determination unit 701 may execute the above-mentioned abnormality determination process using the data from the drive state sensor 49, or the above-mentioned abnormality determination process using the temporary storage data stored in the internal storage unit 702. May be executed.
  • the valve test switch 71 receives a command from the microcontroller 70 when a predetermined test operation condition is satisfied, and as a test operation, a full stroke test (hereinafter, referred to as “FST”) or a partial stroke of the solenoid valve 1 is performed. A test (hereinafter referred to as "PST”) is executed.
  • FST full stroke test
  • PST partial stroke of the solenoid valve 1
  • FST diagnoses an abnormality in the fluid pressure drive valve 10 by operating the main valve 11 from the fully open state to the fully closed state and returning it to the fully open state.
  • the PST partially closes the main valve 11 from the fully open state to a predetermined opening state and returns it to the fully open state, so that the main valve 11 is not operated to the fully closed state (that is, without stopping the plant equipment). ,
  • the abnormality of the fluid pressure drive valve 10 is diagnosed.
  • the fluid is determined by determining whether or not the operation is completed within a predetermined set time based on the state of the fluid pressure drive valve 10 acquired by each sensor 4 when the main valve 11 is operated. It is possible to diagnose an abnormality of the pressure drive valve 10. Further, by analyzing the time-series change of the state of the fluid pressure drive valve 10 acquired by each sensor 4 when the main valve 11 is operated (for example, comparing with the time-series change at the normal time), the fluid pressure It is possible to diagnose an abnormality of the drive valve 10.
  • test operation conditions for example, the execution time or a specific designated date and time according to the execution frequency (for example, once a year) designated as the set value of the internal storage unit 702 has arrived, or the external device 15 (for example, once a year) has arrived. , A computer for plant management), or when the test execution button (not shown) provided on the fluid pressure drive valve 10 is operated by the administrator, the test operation condition is satisfied.
  • the test run may be performed.
  • the communication unit 8 is a communication modem 80 that transmits / receives data to / from the external device 15 in accordance with the HART (Highway Addressable Remote Transducer) communication standard, and a loop current controller that inputs / outputs a control current (analog signal of 4 to 20 mA). It includes 81.
  • the communication modem 80 converts the data to be transmitted into a frequency signal
  • the loop current controller 81 transmits a superimposed signal obtained by superimposing the frequency signal on the control current to the external device 15.
  • the communication modem 80 converts the frequency signal into data to be received.
  • the power supply circuit unit 9 is supplied from the external power supply 16 via the power cable 160 and the reverse voltage protection circuit 90 that protects the control unit 7 from the reverse voltage generated when the power cable 160 is reversely connected to the terminal box 62. It is provided with an internal power supply circuit 91 that converts the generated electric power into a predetermined voltage and current and supplies it to each part (solute unit 3, sensor 4, substrate 5, control unit 7, communication unit 8, etc.) of the fluid pressure drive valve 10.
  • the first substrate 50 includes a first pressure sensor 40, a second pressure sensor 41, a main valve opening sensor 42, a voltage sensor 43, a current / resistance sensor 44, a temperature sensor 45, and an operation.
  • a time meter 47, an operation counter 48, a control unit 7, a communication modem 80, and a reverse voltage protection circuit 90 are mounted.
  • the loop current controller 81 and the internal power supply circuit 91 are mounted on the second substrate 51.
  • the magnetic sensor 46 is mounted on the third substrate 52.
  • the drive state sensor 49 is attached to the drive device 12.
  • the plurality of sensors 4 are not limited to the above sensors 40 to 49, and may further include sensors for acquiring information on other physical quantities and operation histories, and some of these sensors 40 to 49 may be provided. It may be omitted. Further, the mounting state of the sensors 40 to 48 when the plurality of sensors 4 are mounted on the substrates 50 to 52 is not limited to the example shown in FIG. 5, and may be appropriately changed. Further, the number of substrates 5 accommodated in the accommodating portion 6 and the arrangement of the substrates 50 to 52 with respect to the accommodating portion 6 may be appropriately changed.
  • the sensors 40 to 49 are not limited to those in which each sensor is individually provided as shown in FIGS. 4 and 5, and the specific sensor also functions as another sensor. Sensors may not be provided individually.
  • the magnetic sensor 46 measures the magnetic strength generated by the solenoid unit 3, and the current / resistance sensor 44 obtains the current value when the solenoid unit 3 is energized based on the magnetic strength. It does not have to be provided individually.
  • the microcontroller 70 may have a built-in sensor function or a part of the sensor function.
  • the microcontroller 70 has a built-in operating time meter 47 and an operation counter 48. , The operation time meter 47 and the operation counter 48 may not be provided separately.
  • the drive device 12 has been described as rotating the valve shaft 13a, but the valve shaft 13a may be driven in a reciprocating linear manner.
  • the main valve 11 whose opening / closing operation is performed in response to the reciprocating linear drive of the valve shaft 13a
  • a type such as a gate valve or a globe valve may be used.
  • the accommodating portion 6 has a shaft insertion port into which the shaft 13c driven by the drive device 12 in a reciprocating linear manner is inserted, and the shaft 13c is driven in a reciprocating linear manner. It accommodates a driving force transmission mechanism (for example, a rack and pinion mechanism, a scotch yoke mechanism, a link mechanism, a cam mechanism, etc.) that rotates a rotation shaft in conjunction with the above.
  • the substrate surface of the first substrate 50 is arranged along the rotation axis, and the main valve opening sensor 42 is located around the axis of the rotation axis of the substrate surface of the first substrate 50. It may be placed at a position facing the outer circumference, and the rotation angle of the rotation shaft may be measured in order to obtain the valve opening degree of the main valve 11.
  • the above-mentioned driving force transmission mechanism may be arranged outside the accommodating portion 6, and in this case, a rotating shaft rotated by the driving force transmission mechanism is inserted from the shaft insertion port and at the same time.
  • the substrate surface of the first substrate 50 is arranged along the rotation shaft inserted from the shaft insertion port, and the main valve opening sensor 42 of the shaft 13c obtains the valve opening of the main valve 11. Instead of the rotation angle, the rotation angle of the rotation shaft may be measured.
  • control unit 7 of the solenoid valve 1 has been described as functioning as the abnormality determination unit 701, but the abnormality determination unit 701 functions as one of the constituent elements constituting the drive device 12. However, it may be provided in a device other than the control unit 7 of the solenoid valve 1 (for example, a drive device 12, a drive device monitoring device for monitoring the state of the drive device 12, an external device 15, etc.).
  • the drive state sensor 49 is arranged at at least one end in the cylinder 120 in the sliding direction of the piston rod 121.
  • the drive state sensor 49 measures, for example, the positions of the pistons 122A and 122B with respect to the cylinder 120, the acceleration of the cylinder 120, the temperature and humidity in the cylinder 120, and the like as the state of the drive device 12. Therefore, when the drive device 12 and the fluid pressure drive valve 10 are provided with the drive state sensor 49, it is possible to monitor the state inside the cylinder, and it is possible to improve the accuracy of abnormality diagnosis and predictive maintenance.

Abstract

[Problem] To provide a drive device and a fluid pressure–driven valve that make it possible to detect the state of the inside of a cylinder and to improve the precision of abnormality diagnosis and predictive maintenance. [Solution] A drive device (12) that comprises a cylindrical cylinder (120) that is covered at both ends, a pair of pistons (122) that are connected by a piston rod (121) and are capable of reciprocal linear movement inside the cylinder (120), a coil spring (123) that is provided on one side of the pistons (122), an air supply/discharge port (124) that is formed on the other side of the pistons (122), and drive state sensors (49) that are provided inside the cylinder (120) at either end in the sliding direction of the piston rod (121).

Description

駆動装置及び流体圧駆動弁Drive device and fluid pressure drive valve
 本発明は、駆動装置及び流体圧駆動弁に関する。 The present invention relates to a drive device and a fluid pressure drive valve.
 従来、アクチュエータにおいて異常が発生しているか否かの異常診断を行う様々な方法及び手段が知られている。例えば、特許文献1には、シリンダに対するピストンの位置を検出するセンサを備えるアクチュエータが開示されている。 Conventionally, various methods and means for diagnosing an abnormality as to whether or not an abnormality has occurred in an actuator are known. For example, Patent Document 1 discloses an actuator including a sensor that detects the position of a piston with respect to a cylinder.
特開2015-14990号公報Japanese Unexamined Patent Publication No. 2015-14990
 アクチュエータ及び当該アクチュエータが適用される各種のシステムにおける稼働率・信頼性を向上させるためには、異常が発生した際にその異常を把握する事後保全のみならず、異常の兆候を把握する予兆保全を実現することが望まれている。しかしながら、特許文献1に開示されたアクチュエータは、上述したように、シリンダに対するピストンの位置を検出するものであるが、センサをシリンダの外周面に配設している。そのため、シリンダ内部の状態を直接検出することができず、異常診断や予兆保全の精度が落ちるおそれがあった。 In order to improve the operating rate and reliability of actuators and various systems to which the actuators are applied, not only post-maintenance to grasp the abnormality when an abnormality occurs, but also predictive maintenance to grasp the signs of the abnormality should be performed. It is hoped that it will be realized. However, the actuator disclosed in Patent Document 1 detects the position of the piston with respect to the cylinder as described above, but the sensor is arranged on the outer peripheral surface of the cylinder. Therefore, the state inside the cylinder cannot be directly detected, and there is a risk that the accuracy of abnormality diagnosis and predictive maintenance will be reduced.
 本発明は、このような事情に鑑みてなされたものであって、シリンダ内部の状態を検出することを可能とし、また、異常診断及び予兆保全の精度の向上を可能とする駆動装置及び流体圧駆動弁を提供することを目的とする。 The present invention has been made in view of such circumstances, and is capable of detecting the state inside the cylinder, and improving the accuracy of abnormality diagnosis and predictive maintenance of the drive device and fluid pressure. The purpose is to provide a drive valve.
 本発明は、上記課題を解決するものであって、本発明の一実施形態に係る駆動装置は、
 両端を覆われる円筒状のシリンダと、
 前記シリンダ内に往復直線移動可能に設けられ、ピストンロッドを介して連結された一対のピストンと、
 前記ピストンロッドの摺動方向における前記シリンダ内の一端又は両端に配置される駆動状態センサと、
を備える。
The present invention solves the above problems, and the drive device according to the embodiment of the present invention is
A cylindrical cylinder that covers both ends,
A pair of pistons provided in the cylinder so as to be reciprocally linearly movable and connected via a piston rod,
A drive state sensor arranged at one end or both ends of the cylinder in the sliding direction of the piston rod.
To be equipped.
 また、本発明の一実施形態に係る流体圧駆動弁は、
 主弁と、
 前記主弁を駆動する駆動装置と、
 前記駆動装置に対して駆動流体の給排を制御する電磁弁と、
を少なくとも備える。
Further, the fluid pressure drive valve according to the embodiment of the present invention is
Main valve and
The drive device that drives the main valve and
A solenoid valve that controls the supply and discharge of the driving fluid to the driving device,
At least prepare.
 本発明の一実施形態に係る駆動装置及び流体圧駆動弁によれば、駆動状態センサが、ピストンロッドの摺動方向におけるシリンダ内の一端又は両端に配置される。駆動状態センサは、駆動装置の状態として、例えば、シリンダに対するピストンの位置、シリンダの加速度、及び、シリンダ内の温度及び湿度等を計測する。したがって、駆動装置及び流体圧駆動弁が、駆動状態センサを備えることにより、シリンダ内部の状態を監視することが可能となり、また、異常診断及び予兆保全の精度の向上が可能となる。
 
According to the drive device and the fluid pressure drive valve according to the embodiment of the present invention, the drive state sensors are arranged at one end or both ends in the cylinder in the sliding direction of the piston rod. The drive state sensor measures, for example, the position of the piston with respect to the cylinder, the acceleration of the cylinder, the temperature and humidity in the cylinder, and the like as the state of the drive device. Therefore, when the drive device and the fluid pressure drive valve are provided with the drive state sensor, it is possible to monitor the state inside the cylinder, and it is possible to improve the accuracy of abnormality diagnosis and predictive maintenance.
本発明の実施形態に係る流体圧駆動弁10の一例を示す断面図である。It is sectional drawing which shows an example of the fluid pressure drive valve 10 which concerns on embodiment of this invention. 本発明の実施形態に係る駆動装置の例を示す概略図である。It is the schematic which shows the example of the drive device which concerns on embodiment of this invention. 本発明の実施形態に係る電磁弁1の一例を示す断面図である。It is sectional drawing which shows an example of the solenoid valve 1 which concerns on embodiment of this invention. 本発明の実施形態に係る電磁弁1の一例を示すブロック図である。It is a block diagram which shows an example of the solenoid valve 1 which concerns on embodiment of this invention. 本発明の実施形態に係る基板5に対する複数のセンサ4の載置例を示す模式図である。It is a schematic diagram which shows the mounting example of a plurality of sensors 4 on the substrate 5 which concerns on embodiment of this invention.
 以下、本発明の一実施形態について添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
(実施形態)
 図1は、本発明の実施形態に係る流体圧駆動弁10の一例を示す断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view showing an example of a fluid pressure drive valve 10 according to an embodiment of the present invention.
 流体圧駆動弁10は、配管100の途中に配置される主弁11と、主弁11に連結された弁軸13aを駆動流体の流体圧に応じて駆動させることで主弁11の開閉操作を行う駆動装置12と、駆動装置12に対して駆動流体の給排を制御する機能を有する電磁弁1とを備える。 The fluid pressure drive valve 10 opens and closes the main valve 11 by driving the main valve 11 arranged in the middle of the pipe 100 and the valve shaft 13a connected to the main valve 11 according to the fluid pressure of the driving fluid. The drive device 12 is provided, and the solenoid valve 1 having a function of controlling the supply and discharge of the drive fluid to the drive device 12 is provided.
 流体圧駆動弁10は、例えば、プラント設備において各種のガスや石油等が流れる配管100に設置され、プラント設備に異常が発生したような緊急停止時に、配管100の流れを遮断するための緊急遮断弁として用いられる。なお、流体圧駆動弁10の設置場所や用途は、上記の例に限られない。 The fluid pressure drive valve 10 is installed in, for example, a pipe 100 through which various gases, oil, etc. flow in the plant equipment, and is an emergency shutoff for shutting off the flow of the pipe 100 in the event of an emergency stop such as when an abnormality occurs in the plant equipment. Used as a valve. The installation location and application of the fluid pressure drive valve 10 are not limited to the above examples.
 流体圧駆動弁10には、駆動流体の一例として、空気供給源14から空気(エアー)Aが供給されるものであり、空気供給源14からの空気Aは、第1の空気配管140を介して電磁弁1に供給され、さらに、第2の空気配管141を介して駆動装置12に供給される。また、流体圧駆動弁10には、外部装置15及び電磁弁1の間で各種のデータを送受信するための通信ケーブル150と、外部電源16から電磁弁1に電力を供給するための電力ケーブル160とが接続される。なお、駆動流体は、上記の空気Aに限られず、他の気体でもよいし、液体(例えば、油)でもよい。 Air (air) A is supplied to the fluid pressure drive valve 10 from the air supply source 14 as an example of the drive fluid, and the air A from the air supply source 14 is passed through the first air pipe 140. Is supplied to the electromagnetic valve 1 and further supplied to the drive device 12 via the second air pipe 141. Further, the fluid pressure drive valve 10 includes a communication cable 150 for transmitting and receiving various data between the external device 15 and the solenoid valve 1, and a power cable 160 for supplying electric power from the external power supply 16 to the solenoid valve 1. And are connected. The driving fluid is not limited to the above-mentioned air A, and may be another gas or a liquid (for example, oil).
 外部装置15は、例えば、プラント管理用のコンピュータ(ローカルサーバ及びクラウドサーバを含む。)、保守点検者が使用する診断用コンピュータ、又は、USBメモリや外付けHDD等の外部記憶部で構成されている。なお、外部装置15及び電磁弁1の間の通信は無線通信でもよい。 The external device 15 is composed of, for example, a computer for plant management (including a local server and a cloud server), a diagnostic computer used by a maintenance inspector, or an external storage unit such as a USB memory or an external HDD. There is. The communication between the external device 15 and the solenoid valve 1 may be wireless communication.
 本実施形態では、流体圧駆動弁10は、エアーレスクローズ方式を採用したものである。したがって、定常運転時は、空気供給源14から電磁弁1を介して駆動装置12に空気A(給気)を供給することで、主弁11が全開操作され、緊急停止時や試験運転時は、駆動装置12から電磁弁1を介して空気A(排気)を排出することで、主弁11が全閉操作される。なお、流体圧駆動弁10は、エアーレスオープン方式を採用したものでもよく、その場合には、駆動装置12に空気Aを供給することで全開操作され、駆動装置12から空気Aを排出することで主弁11を全閉操作されてもよい。 In the present embodiment, the fluid pressure drive valve 10 adopts an airless closing method. Therefore, during steady operation, the main valve 11 is fully opened by supplying air A (air supply) from the air supply source 14 to the drive device 12 via the solenoid valve 1, and during emergency stop or test operation. By discharging air A (exhaust) from the drive device 12 via the solenoid valve 1, the main valve 11 is fully closed. The fluid pressure drive valve 10 may adopt an airless open system. In that case, the fluid pressure drive valve 10 is fully opened by supplying the air A to the drive device 12, and the air A is discharged from the drive device 12. The main valve 11 may be fully closed.
 主弁11は、例えば、ボールバルブと呼ばれる弁で構成されている。主弁11は、その構成例として、配管100の途中に配置される弁箱110と、弁箱110内に回動可能に設けられたボール状の弁体111とを備え、弁体111の上部には、弁軸13aが連結されている。弁軸13aが0度から90度に回動されることに応じて弁箱110内で弁体111が回動し、主弁11の全開状態(図1に示す状態)と全閉状態が切り替えられる。なお、主弁11として用いられる弁は、ボールバルブに限られず、例えば、バタフライバルブ等の他の形式でもよい。 The main valve 11 is composed of, for example, a valve called a ball valve. As a configuration example thereof, the main valve 11 includes a valve box 110 arranged in the middle of the pipe 100 and a ball-shaped valve body 111 rotatably provided in the valve box 110, and is an upper portion of the valve body 111. A valve shaft 13a is connected to the valve shaft 13a. The valve body 111 rotates in the valve box 110 in response to the valve shaft 13a being rotated from 0 degrees to 90 degrees, and the main valve 11 is switched between a fully open state (state shown in FIG. 1) and a fully closed state. Be done. The valve used as the main valve 11 is not limited to the ball valve, and may be another type such as a butterfly valve.
 駆動装置12は、例えば、主弁11と電磁弁1との間に配置されるとともに、単作動式のエアシリンダ機構として構成されている。駆動装置12は、その構成例として、両端を覆われる円筒状のシリンダ120と、シリンダ内に往復直線移動可能に設けられ、ピストンロッド121を介して連結された一対のピストン122A、122Bと、第1のピストン122A側に設けられたコイルばね123と、第2のピストン122B側に形成された空気給排口124と、シリンダ120を径方向に沿って貫通するように配置された主軸13bとピストンロッド121とが直交する部分に設けられた伝達機構125と、ピストンロッド121の摺動方向におけるシリンダ120内の一端又は両端に配置される駆動状態センサ49と、を備える。なお、駆動装置12は、単作動式に限られず、例えば、複作動式等の他の形式で構成されていてもよい。複作動式である場合、第1のピストン122Aとシリンダ120に囲まれた空間につながる空気給排口をシリンダ120に形成し、コイルばね123の代わりに電磁弁1から別途設けられた空気の給排経路を該空気給排口に連結すればよい。 The drive device 12 is arranged between the main valve 11 and the solenoid valve 1, for example, and is configured as a single-actuated air cylinder mechanism. As a configuration example thereof, the drive device 12 includes a cylindrical cylinder 120 that covers both ends, a pair of pistons 122A and 122B that are provided in the cylinder so as to be reciprocally linearly movable and are connected via a piston rod 121. A coil spring 123 provided on the piston 122A side of No. 1, an air supply / discharge port 124 formed on the second piston 122B side, and a spindle 13b and a piston arranged so as to penetrate the cylinder 120 along the radial direction. A transmission mechanism 125 provided at a portion orthogonal to the rod 121, and a drive state sensor 49 arranged at one end or both ends of the cylinder 120 in the sliding direction of the piston rod 121 are provided. The drive device 12 is not limited to the single-acting type, and may be configured in another form such as a double-acting type. In the case of the double operation type, an air supply / exhaust port connected to the space surrounded by the first piston 122A and the cylinder 120 is formed in the cylinder 120, and air is supplied separately from the solenoid valve 1 instead of the coil spring 123. The exhaust path may be connected to the air supply / exhaust port.
 第1のピストン122Aは、コイルばね123により主弁11を閉じる方向に付勢される。第2のピストン122Bは、空気給排口124から供給された空気A(給気)によりコイルばね123の付勢力に抗して主弁11を開く方向に押圧される。伝達機構125は、例えば、ラックアンドピニオン機構、スコッチヨーク機構、リンク機構、カム機構等で構成されており、ピストンロッド121の往復直線運動を回動に変換して駆動装置12の主軸13bに伝達する。 The first piston 122A is urged by the coil spring 123 in the direction of closing the main valve 11. The second piston 122B is pressed by the air A (air supply) supplied from the air supply / exhaust port 124 in the direction of opening the main valve 11 against the urging force of the coil spring 123. The transmission mechanism 125 is composed of, for example, a rack and pinion mechanism, a scotch yoke mechanism, a link mechanism, a cam mechanism, etc., and converts the reciprocating linear motion of the piston rod 121 into rotation and transmits it to the spindle 13b of the drive device 12. do.
 図2は、本発明の一実施の形態に係る機械学習装置等が適用される駆動装置12の例を示す概略図である。図2(a)は伝達機構125がラックアンドピニオン機構の例、図2(b)は伝達機構125がスコッチヨーク機構の例を示す。 FIG. 2 is a schematic view showing an example of a drive device 12 to which the machine learning device or the like according to the embodiment of the present invention is applied. FIG. 2A shows an example in which the transmission mechanism 125 is a rack and pinion mechanism, and FIG. 2B shows an example in which the transmission mechanism 125 is a Scotch yoke mechanism.
 例えば、伝達機構125がラックアンドピニオン機構の場合、空気Aがシリンダ120に給気又はシリンダ120から排気されることによってピストン122及びピストンロッド121が往復直線運動を行う。すると、ピストンロッド121と同様に移動するラック125aが往復直線運動を行う。続いて、ラック125aに対して接触して噛み合うピニオン125bが回動する。すると、ピニオン125bと同様に回動する主軸13bが回動を行う。 For example, when the transmission mechanism 125 is a rack and pinion mechanism, the piston 122 and the piston rod 121 make a reciprocating linear motion by supplying air to the cylinder 120 or exhausting the air A from the cylinder 120. Then, the rack 125a, which moves in the same manner as the piston rod 121, makes a reciprocating linear motion. Subsequently, the pinion 125b that contacts and meshes with the rack 125a rotates. Then, the main shaft 13b, which rotates in the same manner as the pinion 125b, rotates.
 また、伝達機構125がスコッチヨーク機構の場合、空気Aがシリンダ120に給気又はシリンダ120から排気されることによってピストン122及びピストンロッド121が往復直線運動を行う。すると、ピストンロッド121と同様に移動するシャフト125cが往復直線運動を行う。続いて、シャフト125cに対して偏心して接触し組み付けられるヨーク125dが回動する。すると、ヨーク125dと同様に回動する主軸13bが回動を行う。 Further, when the transmission mechanism 125 is a scotch yoke mechanism, the piston 122 and the piston rod 121 perform a reciprocating linear motion by supplying air to the cylinder 120 or exhausting the air A from the cylinder 120. Then, the shaft 125c, which moves in the same manner as the piston rod 121, makes a reciprocating linear motion. Subsequently, the yoke 125d that is eccentrically contacted and assembled with respect to the shaft 125c rotates. Then, the main shaft 13b, which rotates in the same manner as the yoke 125d, rotates.
 駆動装置12は、ピストン122A、122Bの動きをそれぞれ規制するストッパ126A、126Bを有する。図2(a)及び図2(b)に示す例では、ストッパ126A、126Bは、シリンダケース120A、120Bのピストンロッド121軸上に設置されたボルトにより形成される。ストッパ126A、126Bの少なくとも一方には、シリンダ120内の少なくとも一つの状態を検出する駆動状態センサ49を取り付けることができる。なお、駆動状態センサ49は、図中の破線で示されたように、ピストンロッド121の摺動方向におけるシリンダ120内の少なくとも一端(一端又は両端)に配置されてもよい。 The drive device 12 has stoppers 126A and 126B that regulate the movements of the pistons 122A and 122B, respectively. In the example shown in FIGS. 2A and 2B, the stoppers 126A and 126B are formed by bolts installed on the piston rod 121 shaft of the cylinder cases 120A and 120B. A drive state sensor 49 that detects at least one state in the cylinder 120 can be attached to at least one of the stoppers 126A and 126B. The drive state sensor 49 may be arranged at at least one end (one end or both ends) in the cylinder 120 in the sliding direction of the piston rod 121 as shown by the broken line in the drawing.
 このように、本発明の一実施の形態に係る駆動装置12は、ストッパ126A、126Bの少なくとも一方に、シリンダ120内の少なくとも一つの状態を検出する駆動状態センサ49が取り付けられることで、シリンダ120内の少なくとも一つの状態を直接的に検出することができる。したがって、シリンダ120内の少なくとも一つの状態を精度良く検出することができる。 As described above, in the drive device 12 according to the embodiment of the present invention, the drive state sensor 49 for detecting at least one state in the cylinder 120 is attached to at least one of the stoppers 126A and 126B, whereby the cylinder 120 At least one of the states can be detected directly. Therefore, at least one state in the cylinder 120 can be detected with high accuracy.
 駆動状態センサ49は、例えば、位置センサ491、加速度センサ492、又は、温度・湿度センサ493等でよい。 The drive state sensor 49 may be, for example, a position sensor 491, an acceleration sensor 492, a temperature / humidity sensor 493, or the like.
 位置センサ491は、シリンダ120のケース120A、120Bに対するピストン122又はピストンロッド121の位置を検出する。位置センサ491は、超音波センサ、赤外線センサ、ホールセンサ、リードセンサ等で構成される。駆動装置12は、高圧な空気によって相対位置が変化するシリンダ120とピストン122の接触部分、及び、往復直線運動を回動に変換する伝達機構125の接触部分等に大きなトルクがかかり、摩耗、劣化又は破損等の異常が生じるおそれがある。そのため、シリンダ120に対するピストン122の位置を検出し、伝達機構125の接触部分の異常を把握しておくことで、異常診断及び予兆保全の精度を向上させることができる。本実施形態の位置センサ491は、ストッパ126A、126Bに取り付けられるが、シリンダ120のケース120A、120Bに取り付けてもよい。 The position sensor 491 detects the position of the piston 122 or the piston rod 121 with respect to the cases 120A and 120B of the cylinder 120. The position sensor 491 is composed of an ultrasonic sensor, an infrared sensor, a hall sensor, a lead sensor, and the like. In the drive device 12, a large torque is applied to the contact portion between the cylinder 120 and the piston 122 whose relative position changes due to high-pressure air, and the contact portion of the transmission mechanism 125 that converts reciprocating linear motion into rotation, resulting in wear and deterioration. Or, there is a risk of abnormalities such as breakage. Therefore, by detecting the position of the piston 122 with respect to the cylinder 120 and grasping the abnormality of the contact portion of the transmission mechanism 125, the accuracy of the abnormality diagnosis and the predictive maintenance can be improved. The position sensor 491 of the present embodiment is attached to the stoppers 126A and 126B, but may be attached to the cases 120A and 120B of the cylinder 120.
 加速度センサ492は、シリンダ120に生じる加速度を検出する。具体的には、加速度センサ492は、ピストン122がシリンダ120内を往復直線移動するときに発生するシリンダ120の振動や、ピストン122がストッパ126A、126Bに衝突するときに発生するシリンダ120の振動(衝撃)を、シリンダ120の加速度として検出する。シリンダ120は、入力する圧力が上昇することにより、異常に速い動きのジャンピング動作が繰り返し起こる場合がある。その際、正常な作動時よりもピストンロッド121とストッパ126A、126Bには大きな衝撃力が繰り返し生じる。この衝撃力は、シリンダケース120A、120Bを破損させるおそれがある。そのため、シリンダケース120A、120Bに対するピストン122又はピストンロッド121の加速度を検出し、シリンダ120の異常な振動を把握しておくことで、異常診断及び予兆保全の精度を向上させることができる。本実施形態の位置センサ491は、ストッパ126A、126Bに取り付けられるが、シリンダ120のケース120A、120Bに取り付けてもよい。 The acceleration sensor 492 detects the acceleration generated in the cylinder 120. Specifically, the acceleration sensor 492 includes vibration of the cylinder 120 generated when the piston 122 reciprocates linearly in the cylinder 120 and vibration of the cylinder 120 generated when the piston 122 collides with the stoppers 126A and 126B ( Impact) is detected as the acceleration of the cylinder 120. As the input pressure of the cylinder 120 increases, an abnormally fast jumping operation may repeatedly occur. At that time, a larger impact force is repeatedly generated on the piston rod 121 and the stoppers 126A and 126B than during normal operation. This impact force may damage the cylinder cases 120A and 120B. Therefore, by detecting the acceleration of the piston 122 or the piston rod 121 with respect to the cylinder cases 120A and 120B and grasping the abnormal vibration of the cylinder 120, the accuracy of the abnormality diagnosis and the predictive maintenance can be improved. The position sensor 491 of the present embodiment is attached to the stoppers 126A and 126B, but may be attached to the cases 120A and 120B of the cylinder 120.
 温度・湿度センサ493は、例えば、シリンダ120に形成されたタップ孔に取り付けられ、シリンダ120内の空気の温度及び湿度を検出する。具体的には、温度・湿度センサ493は、電磁弁1から空気給排口124を介してシリンダ120内に給排される空気Aの温度及び湿度を検出する。また、空気給排口124が外部環境に開放されている場合には、温度・湿度センサ493は、外部環境から空気給排口124を介してシリンダ120内に給排される外気(外部空気)の温度及び湿度を検出する。温度・湿度センサ493は、温度を検出する温度センサと、相対湿度を検出する湿度センサとを組み合わせて構成される。シリンダ120内は、相対湿度によっては結露が発生するおそれがある。結露の発生状況によってはシリンダ120内にさびや腐食が発生し、様々な動作不良が発生する。そのため、シリンダ120内の空気の温度及び湿度を検出し、相対湿度を把握しておくことで、異常診断及び予兆保全の精度を向上させることができる。本実施形態の位置センサ491は、シリンダ120のケース120A、120Bに取り付けられるが、ストッパ126A、126Bに取り付けてもよい。 The temperature / humidity sensor 493 is attached to, for example, a tap hole formed in the cylinder 120, and detects the temperature and humidity of the air in the cylinder 120. Specifically, the temperature / humidity sensor 493 detects the temperature and humidity of the air A supplied / discharged from the solenoid valve 1 into the cylinder 120 via the air supply / discharge port 124. When the air supply / exhaust port 124 is open to the external environment, the temperature / humidity sensor 493 is used to supply / discharge the outside air (external air) from the external environment into the cylinder 120 via the air supply / exhaust port 124. Detects temperature and humidity. The temperature / humidity sensor 493 is configured by combining a temperature sensor that detects temperature and a humidity sensor that detects relative humidity. Condensation may occur in the cylinder 120 depending on the relative humidity. Depending on the state of dew condensation, rust and corrosion may occur in the cylinder 120, causing various malfunctions. Therefore, by detecting the temperature and humidity of the air in the cylinder 120 and grasping the relative humidity, it is possible to improve the accuracy of abnormality diagnosis and predictive maintenance. The position sensor 491 of the present embodiment is attached to the cases 120A and 120B of the cylinder 120, but may be attached to the stoppers 126A and 126B.
 主弁11の弁軸13a、駆動装置12の主軸13b、及び、電磁弁1の軸13cは、それぞれ回動可能な状態でシャフト状に形成される。駆動装置12の主軸13bは、駆動装置12を貫通するように配置される。主弁11の弁軸13a及び電磁弁1の軸13cは、一直線上にカップリング等を介して駆動装置12の主軸13bと連結され、駆動と同期した回動運動を行う。 The valve shaft 13a of the main valve 11, the main shaft 13b of the drive device 12, and the shaft 13c of the solenoid valve 1 are each formed into a shaft shape in a rotatable state. The spindle 13b of the drive device 12 is arranged so as to penetrate the drive device 12. The valve shaft 13a of the main valve 11 and the shaft 13c of the solenoid valve 1 are linearly connected to the main shaft 13b of the drive device 12 via a coupling or the like, and perform a rotational movement synchronized with the drive.
 電磁弁1は、駆動装置12に対して空気Aの給排を制御する機能を有し、例えば、2ポジションでノーマルクローズタイプ(通電時「開」、非通電時「閉」)の三方電磁弁として構成されている。電磁弁1は、屋内型又は防爆型の電磁弁1のハウジングとして機能する収容部6の内部に、空気Aが流れる流路を切り替えるスプール部2と、通電状態(通電時又は非通電時)に応じてスプール部2を変位させるソレノイド部3とを備える。なお、電磁弁1は、2ポジションでノーマルクローズタイプの三方電磁弁に限られず、3ポジションでもよく、ノーマルオープンタイプでもよく、四方電磁弁等でもよく、任意の組み合わせに基づく各種の形成で構成されていてもよい。また、本実施形態では、電磁弁1は、流体圧駆動弁10におけるパイロットバルブとして用いられるものであるが、電磁弁1の用途はこれに限られない。 The solenoid valve 1 has a function of controlling the supply and discharge of air A to the drive device 12, and is, for example, a three-way solenoid valve of a normally closed type (“open” when energized, “closed” when not energized) at two positions. It is configured as. The solenoid valve 1 has a spool portion 2 that switches the flow path through which the air A flows inside the accommodating portion 6 that functions as a housing of the indoor type or explosion-proof type solenoid valve 1, and is in an energized state (when energized or de-energized). It is provided with a solenoid unit 3 that displaces the spool unit 2 accordingly. The solenoid valve 1 is not limited to a two-position, normally closed type three-way solenoid valve, but may be a three-position solenoid valve, a normally open type, a four-way solenoid valve, or the like, and is composed of various formations based on any combination. You may be. Further, in the present embodiment, the solenoid valve 1 is used as a pilot valve in the fluid pressure drive valve 10, but the application of the solenoid valve 1 is not limited to this.
 スプール部2は、空気供給源14に第1の空気配管140を介して接続される入力ポート20と、駆動装置12に第2の空気配管141を介して接続される出力ポート21と、駆動装置12からの排気を排出する排気ポート22とを備える。 The spool portion 2 has an input port 20 connected to the air supply source 14 via the first air pipe 140, an output port 21 connected to the drive device 12 via the second air pipe 141, and a drive device. It is provided with an exhaust port 22 for discharging the exhaust from 12.
 ソレノイド部3は、通電時に、入力ポート20と出力ポート21との間を連通するように、スプール部2を変位させ、非通電時に、出力ポート21と排気ポート22との間を連通するように、スプール部2を変位させる。 The solenoid unit 3 displaces the spool unit 2 so as to communicate between the input port 20 and the output port 21 when energized, and communicates between the output port 21 and the exhaust port 22 when the power is off. , The spool portion 2 is displaced.
 したがって、電磁弁1が通電状態である場合には、空気供給源14からの空気A(給気)が、第1の空気配管140、入力ポート20、出力ポート21及び第2の空気配管141の順に流れて、空気給排口124に供給されることで、第2のピストン122Bが押圧されてコイルばね123が圧縮する。そして、コイルばね123の圧縮に応じてピストンロッド121が移動した分だけピストンロッド121及び伝達機構125を介して主軸13bにコネクタで連結された主弁11の弁軸13aが回動されると、弁箱110内で弁体111が回動し、主弁11が全開状態に操作される。 Therefore, when the solenoid valve 1 is energized, the air A (air supply) from the air supply source 14 is the first air pipe 140, the input port 20, the output port 21, and the second air pipe 141. The second piston 122B is pressed and the coil spring 123 is compressed by flowing in this order and being supplied to the air supply / discharge port 124. Then, when the valve shaft 13a of the main valve 11 connected to the main shaft 13b by the connector is rotated via the piston rod 121 and the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the compression of the coil spring 123. The valve body 111 rotates in the valve box 110, and the main valve 11 is operated in the fully opened state.
 一方、電磁弁1が非通電状態である場合には、シリンダ120内の空気A(排気)が、空気給排口124から第2の空気配管141、出力ポート21及び排気ポート22の順に流れて、外気に排出されることで、第2のピストン122Bの押圧力が低下し、コイルばね123が圧縮状態から復元する。そして、コイルばね123の復元に応じてピストンロッド121が移動した分だけ伝達機構125を介して主軸13bにコネクタで連結された主弁11の弁軸13aが回動されると、弁箱110内で弁体111が回動し、主弁11が全閉状態に操作される。 On the other hand, when the solenoid valve 1 is in the non-energized state, the air A (exhaust) in the cylinder 120 flows from the air supply / exhaust port 124 to the second air pipe 141, the output port 21, and the exhaust port 22 in this order. By being discharged to the outside air, the pressing force of the second piston 122B is reduced, and the coil spring 123 is restored from the compressed state. Then, when the valve shaft 13a of the main valve 11 connected to the main shaft 13b by the connector is rotated by the amount that the piston rod 121 moves in response to the restoration of the coil spring 123, the inside of the valve box 110 The valve body 111 rotates and the main valve 11 is operated in a fully closed state.
(電磁弁の構成について)
 図3は、本発明の実施形態に係る電磁弁1の一例を示す断面図である。
(About the configuration of the solenoid valve)
FIG. 3 is a cross-sectional view showing an example of the solenoid valve 1 according to the embodiment of the present invention.
 電磁弁1は、上記のスプール部2及びソレノイド部3の他に、電磁弁1の各部の状態を取得する複数のセンサ4と、複数のセンサ4のうち少なくとも1つが載置された基板5と、これらスプール部2、ソレノイド部3、複数のセンサ4及び基板5を収容する収容部6とを備える。 In addition to the spool portion 2 and the solenoid portion 3 described above, the solenoid valve 1 includes a plurality of sensors 4 for acquiring the state of each portion of the solenoid valve 1 and a substrate 5 on which at least one of the plurality of sensors 4 is mounted. A spool portion 2, a solenoid portion 3, a plurality of sensors 4, and an accommodating portion 6 for accommodating the substrate 5 are provided.
 収容部6は、スプール部2を収容する第1の収容部60と、第1の収容部60に隣接されるとともに、ソレノイド部3、複数のセンサ4及び基板5を収容する第2の収容部61と、通信ケーブル150及び電力ケーブル160が接続されるターミナルボックス62とを備える。なお、第1の収容部60及び第2の収容部61は、例えば、アルミニウム等の金属材料で製作されている。 The accommodating portion 6 is adjacent to the first accommodating portion 60 accommodating the spool portion 2 and the first accommodating portion 60, and also accommodates the solenoid unit 3, the plurality of sensors 4, and the substrate 5. A terminal box 62 to which the communication cable 150 and the power cable 160 are connected is provided. The first accommodating portion 60 and the second accommodating portion 61 are made of, for example, a metal material such as aluminum.
 第1の収容部60は、入力ポート20、出力ポート21及び排気ポート22として、それぞれ機能する開口部(不図示)を有する。 The first accommodating portion 60 has openings (not shown) that function as input ports 20, output ports 21, and exhaust ports 22, respectively.
 第2の収容部61は、両端(第1のハウジング端部610a及び第2のハウジング端部610b)が開放された円筒状のハウジング610と、ハウジング610の内部に配置されるボディー611と、第1のハウジング端部610aに固定されたソレノイド部3を外気から覆うソレノイドカバー612と、第2のハウジング端部610bに固定されたターミナルボックス62を外気から覆うターミナルボックスカバー613とを備える。 The second accommodating portion 61 includes a cylindrical housing 610 with both ends (first housing end 610a and second housing end 610b) open, a body 611 arranged inside the housing 610, and a second housing portion 61. A solenoid cover 612 that covers the solenoid portion 3 fixed to the housing end portion 610a of 1 from the outside air, and a terminal box cover 613 that covers the terminal box 62 fixed to the second housing end portion 610b from the outside air are provided.
 ハウジング610は、その下部に形成されて軸13cが挿入される軸挿入口610cと、その上部に形成されてボディー611が挿入されるボディー挿入口610dと、第2のハウジング端部610b側に形成されて通信ケーブル150及び電力ケーブル160が挿入されるケーブル挿入口610eとを有する。 The housing 610 is formed on the shaft insertion port 610c formed in the lower portion thereof and into which the shaft 13c is inserted, the body insertion opening 610d formed in the upper portion thereof and into which the body 611 is inserted, and the second housing end portion 610b side. It has a cable insertion port 610e into which the communication cable 150 and the power cable 160 are inserted.
 第1の収容部60及び第2の収容部61には、ボディー611を貫通するようにして、入力側流路26から分岐して入力側流路26と第1の圧力センサ40との間を連通する第1の流路63と、出力側流路27から分岐して出力側流路27と第2の圧力センサ41との間を連通する第2の流路64と、スプール部2とソレノイド部3とを連動させるための空気Aが流れるスプール流路65が形成されている。 The first accommodating portion 60 and the second accommodating portion 61 are branched from the input side flow path 26 so as to penetrate the body 611, and between the input side flow path 26 and the first pressure sensor 40. A first flow path 63 that communicates, a second flow path 64 that branches from the output side flow path 27 and communicates between the output side flow path 27 and the second pressure sensor 41, a spool portion 2 and a solenoid. A spool flow path 65 through which air A for interlocking with the portion 3 flows is formed.
 スプール部2は、スプールケースとして機能する第2の収容部61内に形成されたスプールホール23と、スプールホール23内に移動可能に配置されたスプールバルブ24と、スプールバルブ24を付勢するスプールスプリング25と、入力ポート20とスプールホール23との間を連通する入力側流路26と、出力ポート21とスプールホール23との連通する出力側流路27と、排気ポート22とスプールホール23との間を連通する排気流路28とを備える。 The spool portion 2 includes a spool hole 23 formed in a second accommodating portion 61 that functions as a spool case, a spool valve 24 that is movably arranged in the spool hole 23, and a spool that urges the spool valve 24. The spring 25, the input side flow path 26 communicating between the input port 20 and the spool hole 23, the output side flow path 27 communicating between the output port 21 and the spool hole 23, the exhaust port 22 and the spool hole 23. It is provided with an exhaust flow path 28 that communicates between the two.
 ソレノイド部3は、ソレノイドケース30と、ソレノイドケース30内に収容されたソレノイドコイル31と、ソレノイドコイル31内に移動可能に配置された可動鉄芯32と、ソレノイドコイル31内に固定状態で配置された固定鉄芯33と、可動鉄芯32を付勢するソレノイドスプリング34とを備える。 The solenoid unit 3 is arranged in a solenoid case 30, a solenoid coil 31 housed in the solenoid case 30, a movable iron core 32 movably arranged in the solenoid coil 31, and a fixed state in the solenoid coil 31. A fixed iron core 33 and a solenoid spring 34 for urging the movable iron core 32 are provided.
 電磁弁1が非通電状態から通電状態に切り替えられた場合には、ソレノイド部3において、コイル電流がソレノイドコイル31に流れることによりソレノイドコイル31が電磁力を発生し、当該電磁力により可動鉄芯32がソレノイドスプリング34の付勢力に抗して固定鉄芯33に吸引されることで、スプール流路65を流れる空気Aの流通状態が切り替えられる。そして、スプール部2において、スプール流路65を流れる空気Aの流通状態が切り替えられたことにより、スプールバルブ24がスプールスプリング25の付勢力に抗して移動されることで、入力ポート20と排気ポート22との間を連通する状態から、入力ポート20と出力ポート21との間を連通する状態に切り替えられる。 When the solenoid valve 1 is switched from the non-energized state to the energized state, the solenoid coil 31 generates an electromagnetic force when the coil current flows through the solenoid coil 31 in the solenoid unit 3, and the movable iron core is generated by the electromagnetic force. When the 32 is sucked into the fixed iron core 33 against the urging force of the solenoid spring 34, the flow state of the air A flowing through the spool flow path 65 is switched. Then, in the spool portion 2, the flow state of the air A flowing through the spool flow path 65 is switched, so that the spool valve 24 is moved against the urging force of the spool spring 25, so that the input port 20 and the exhaust are exhausted. The state of communicating with the port 22 can be switched to the state of communicating between the input port 20 and the output port 21.
 基板5は、基板面500A、500Bが軸挿入口610cから挿入された軸13cに沿うように配置された第1の基板50と、ターミナルボックス62に近接して配置された第2の基板51と、ソレノイド部3に近接して配置された第3の基板52とを備える。 The substrate 5 includes a first substrate 50 arranged so that the substrate surfaces 500A and 500B are arranged along the shaft 13c inserted from the shaft insertion port 610c, and a second substrate 51 arranged close to the terminal box 62. , A third substrate 52 arranged close to the solenoid unit 3 is provided.
 第1の基板50の基板面500A、500Bのうち、第1の基板面500A側には、ボディー611、ソレノイド部3及び第3の基板52が配置される。第1の基板面500A側と反対側の第2の基板面500B側には、第2の基板51及びターミナルボックス62が配置される。 Of the substrate surfaces 500A and 500B of the first substrate 50, the body 611, the solenoid unit 3, and the third substrate 52 are arranged on the first substrate surface 500A side. The second substrate 51 and the terminal box 62 are arranged on the second substrate surface 500B side opposite to the first substrate surface 500A side.
 第1の基板50に載置されるセンサ4は、例えば、入力側流路26及び第1の流路63を流れる空気Aの流体圧を計測する第1の圧力センサ40と、出力側流路27及び第2の流路64を流れる空気Aの流体圧を計測する第2の圧力センサ41と、主弁11の弁軸13aからの回動によって駆動装置12の主軸13bを介して電磁弁1の軸13cが回動するときの回動角度を計測し、当該回動角度に応じて主弁11の弁開度情報を取得する主弁開度センサ42とを含む。これにより、1つの基板(第1の基板50)に、第1の圧力センサ40、第2の圧力センサ41及び主弁開度センサ42が集約されるので、電磁弁1及び流体圧駆動弁10が正常に動作したか否かを適切に診断するために必要となる監視機能を簡易な構成で実現することができる。 The sensor 4 mounted on the first substrate 50 includes, for example, a first pressure sensor 40 for measuring the fluid pressure of air A flowing through the input side flow path 26 and the first flow path 63, and an output side flow path. The electromagnetic valve 1 is passed through the main shaft 13b of the drive device 12 by the rotation of the main valve 11 from the valve shaft 13a and the second pressure sensor 41 that measures the fluid pressure of the air A flowing through the 27 and the second flow path 64. Includes a main valve opening sensor 42 that measures the rotation angle when the shaft 13c of the shaft 13c rotates and acquires valve opening information of the main valve 11 according to the rotation angle. As a result, the first pressure sensor 40, the second pressure sensor 41, and the main valve opening sensor 42 are integrated on one substrate (first substrate 50), so that the solenoid valve 1 and the fluid pressure drive valve 10 are integrated. It is possible to realize the monitoring function required for properly diagnosing whether or not the operation is normal with a simple configuration.
 主弁開度センサ42は、例えば、磁気センサにより構成されており、軸13cに取り付けられた永久磁石131が発生する磁気の強さを計測し、当該磁気の強さに応じて主弁11の弁開度情報を取得する。 The main valve opening sensor 42 is composed of, for example, a magnetic sensor, measures the magnetic strength generated by the permanent magnet 131 attached to the shaft 13c, and determines the magnetic strength of the main valve 11 according to the magnetic strength. Acquire valve opening information.
 主弁開度センサ42は、軸挿入口610cから挿入された軸13cに沿うように配置された第1の基板50の第1の基板面500Aのうち軸13cの軸周りの外周に対向する位置に載置される。これにより、収容部6内において、配置スペースを無駄にすることなく、第1の基板50に載置された主弁開度センサ42と、軸13cとを近接して配置することが可能となり、弁開度情報を正確に取得することができる。 The main valve opening sensor 42 is located at a position facing the outer periphery of the shaft 13c in the first board surface 500A of the first board 50 arranged along the shaft 13c inserted from the shaft insertion port 610c. It is placed in. As a result, the main valve opening sensor 42 mounted on the first substrate 50 and the shaft 13c can be arranged close to each other in the accommodating portion 6 without wasting the arrangement space. The valve opening information can be accurately acquired.
 主弁開度センサ42は、第1の基板50において、第1の圧力センサ40及び第2の圧力センサ41よりも軸挿入口610c寄りに載置される。これにより、第1の圧力センサ40に連通する第1の流路63と、第2の圧力センサ41に連通する第2の流路64とが、主弁開度センサ42及び軸13cから離間した位置に配置されるので、第1の流路63及び第2の流路64の形状や配置を簡素化することができる。 The main valve opening sensor 42 is mounted on the first substrate 50 closer to the shaft insertion port 610c than the first pressure sensor 40 and the second pressure sensor 41. As a result, the first flow path 63 communicating with the first pressure sensor 40 and the second flow path 64 communicating with the second pressure sensor 41 are separated from the main valve opening sensor 42 and the shaft 13c. Since it is arranged at the position, the shape and arrangement of the first flow path 63 and the second flow path 64 can be simplified.
 第3の基板52に載置されるセンサ4は、例えば、ソレノイド部3が発生する磁気の強さを計測する磁気センサ46を含む。磁気センサ46は、電磁弁1が外部電源16から電力の供給を受けている場合において、ソレノイド部3が通電状態とされて、コイル電流がソレノイドコイル31に流れることにより発生する磁気の強さを計測する。 The sensor 4 mounted on the third substrate 52 includes, for example, a magnetic sensor 46 that measures the magnetic strength generated by the solenoid unit 3. When the solenoid valve 1 is supplied with electric power from the external power source 16, the magnetic sensor 46 determines the magnetic strength generated by the solenoid unit 3 being energized and the coil current flowing through the solenoid coil 31. measure.
 図4は、本発明の実施形態に係る流体圧駆動弁10の一例を示すブロック図である。図5は、本発明の実施形態に係る基板5に対する複数のセンサ4の載置例を示す模式図である。なお、図5は、各センサ4が基板5に載置された位置を厳密に示すものではなく、各センサ4が、第1乃至第3の基板50~52のいずれの基板に載置されているかの載置状態を示すものである。 FIG. 4 is a block diagram showing an example of the fluid pressure drive valve 10 according to the embodiment of the present invention. FIG. 5 is a schematic view showing an example of mounting a plurality of sensors 4 on the substrate 5 according to the embodiment of the present invention. Note that FIG. 5 does not strictly indicate the position where each sensor 4 is mounted on the substrate 5, and each sensor 4 is mounted on any of the first to third substrates 50 to 52. It shows the mounting state of the sensor.
 流体圧駆動弁10は、電気的な構成例として、上記の第1乃至第3の基板50~52及び複数のセンサ4の他に、流体圧駆動弁10を制御する制御部7と、外部装置15と通信する機能を有する通信部(外部送信部)8と、外部電源16に接続される電源回路部9とを備える。 As an example of electrical configuration, the fluid pressure drive valve 10 includes a control unit 7 for controlling the fluid pressure drive valve 10 and an external device, in addition to the above-mentioned first to third substrates 50 to 52 and a plurality of sensors 4. A communication unit (external transmission unit) 8 having a function of communicating with the 15 and a power supply circuit unit 9 connected to the external power supply 16 are provided.
 複数のセンサ4は、各部の物理量を計測するセンサ群として、上記の第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42及び磁気センサ46の他に、ソレノイド部3に対する供給電圧を計測する電圧センサ43と、ソレノイド部3における通電時の電流値及び非通電時の抵抗値を計測する電流・抵抗センサ44と、収容部6の内部温度を計測する温度センサ45と、駆動装置12の状態を計測する駆動状態センサ49とを備える。 The plurality of sensors 4 refer to the solenoid unit 3 in addition to the above-mentioned first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, and magnetic sensor 46 as a group of sensors for measuring the physical quantity of each unit. A voltage sensor 43 for measuring the supply voltage, a current / resistance sensor 44 for measuring the current value when the solenoid unit 3 is energized and a resistance value when the solenoid unit is not energized, and a temperature sensor 45 for measuring the internal temperature of the accommodating unit 6. A drive state sensor 49 for measuring the state of the drive device 12 is provided.
 また、複数のセンサ4は、各部の動作履歴に関する情報を取得するセンサ群として、ソレノイド部3の稼働時間としてソレノイド部に対する通電時間の合計及び現在の通電連働時間の少なくとも一方を計測する稼働時間計47と、電磁弁1、駆動装置12及び主弁11それぞれの作動回数を計数する作動カウンタ48とを備える。 In addition, the plurality of sensors 4 measure at least one of the total energization time for the solenoid unit and the current energization continuous time as the operating time of the solenoid unit 3 as a sensor group for acquiring information on the operation history of each unit. A total of 47 and an operation counter 48 for counting the number of operations of each of the solenoid valve 1, the drive device 12, and the main valve 11 are provided.
 制御部7は、複数のセンサ4により取得された流体圧駆動弁10の各部の状態を示す情報を処理するとともに、流体圧駆動弁10の各部を制御するマイクロコントローラ70と、ソレノイド部3の通電状態を制御し、試験運転時における主弁11の開閉操作を行うバルブテストスイッチ71とを備える。 The control unit 7 processes information indicating the state of each part of the fluid pressure drive valve 10 acquired by the plurality of sensors 4, and energizes the microcontroller 70 that controls each part of the fluid pressure drive valve 10 and the solenoid unit 3. It is provided with a valve test switch 71 that controls the state and opens and closes the main valve 11 during a test operation.
 マイクロコントローラ70は、CPU(Central Processing Unit)等のプロセッサ(不図示)と、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される内部記憶部702と、を備える。 The microcontroller 70 includes a processor (not shown) such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 内部記憶部702には、流体圧駆動弁10が動作するときの設定値、流体圧駆動弁10が動作したときの一時記憶データ、及び、流体圧駆動弁10の動作を制御する流体圧駆動弁制御プログラム等が記憶されている。 The internal storage unit 702 contains a set value when the fluid pressure drive valve 10 operates, temporary storage data when the fluid pressure drive valve 10 operates, and a fluid pressure drive valve that controls the operation of the fluid pressure drive valve 10. The control program etc. are stored.
 マイクロコントローラ70のプロセッサは、内部記憶部702に記憶された流体圧駆動弁制御プログラムを実行することにより、複数のセンサ4により流体圧駆動弁10の各部の状態を監視する監視処理を実行する監視処理部700と、駆動状態センサ49により計測された駆動装置12の状態に基づいて、駆動装置12に異常が発生しているか否かを判定する異常判定部701として機能する。 The processor of the microcontroller 70 executes a monitoring process for monitoring the state of each part of the fluid pressure drive valve 10 by a plurality of sensors 4 by executing a fluid pressure drive valve control program stored in the internal storage unit 702. It functions as an abnormality determination unit 701 that determines whether or not an abnormality has occurred in the drive device 12 based on the state of the drive device 12 measured by the processing unit 700 and the drive state sensor 49.
 監視処理部700は、定常運転中に、主弁11の開閉操作の有無に関わることなく、複数のセンサ4のうち少なくとも1つのセンサ4(以下、「第1の監視対象センサ4A」という。)を用いて流体圧駆動弁10の状態を監視する「第1の監視処理」を実行する。また、監視処理部700は、主弁11の開閉操作が行われる非定常運転中に、複数のセンサ4のうち少なくとも1つのセンサ(以下、「第2の監視対象センサ4B」という。)を用いて流体圧駆動弁10の状態を監視する「第2の監視処理」を実行する。なお、第1の監視対象センサ4Aは、例えば、複数のセンサ4の全て(第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42、電圧センサ43、電流・抵抗センサ44、温度センサ45、磁気センサ46、稼働時間計47、作動カウンタ48、及び、駆動状態センサ49)であるが、これらの例に限られない。また、第2の監視対象センサ4Bは、例えば、第2の圧力センサ41及び主弁開度センサ42であるが、これらの例に限られない。 During steady operation, the monitoring processing unit 700 has at least one of the plurality of sensors 4 regardless of whether or not the main valve 11 is opened / closed (hereinafter, referred to as “first monitored sensor 4A”). Is used to execute the "first monitoring process" for monitoring the state of the fluid pressure drive valve 10. Further, the monitoring processing unit 700 uses at least one of the plurality of sensors 4 (hereinafter, referred to as “second monitored sensor 4B”) during unsteady operation in which the main valve 11 is opened and closed. The "second monitoring process" for monitoring the state of the fluid pressure drive valve 10 is executed. The first monitored sensor 4A is, for example, all of the plurality of sensors 4 (first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, voltage sensor 43, current / resistance sensor 44). , Temperature sensor 45, magnetic sensor 46, operating time meter 47, operation counter 48, and drive state sensor 49), but the present invention is not limited to these examples. Further, the second monitored sensor 4B is, for example, the second pressure sensor 41 and the main valve opening degree sensor 42, but is not limited to these examples.
 第1の監視処理では、監視処理部700は、第1のサンプリング周期(例えば、10秒間隔)で第1の監視対象センサ4Aにより取得された流体圧駆動弁10の状態を第1の取得データとして取得し、当該第1の取得データについて、取得する毎に通信部8を介して外部装置15に順次送信する。 In the first monitoring process, the monitoring processing unit 700 obtains the state of the fluid pressure drive valve 10 acquired by the first monitored sensor 4A in the first sampling cycle (for example, every 10 seconds) as the first acquired data. The first acquired data is sequentially transmitted to the external device 15 via the communication unit 8 each time it is acquired.
 第2の監視処理では、監視処理部700は、流体圧駆動弁10の操作が行われる操作期間において、第1のサンプリング周期よりも短い第2のサンプリング周期(例えば、10msec間隔)で第2の監視対象センサ4Bにより取得された流体圧駆動弁10の状態を第2の取得データとしてそれぞれ取得する。そして、監視処理部700は、操作期間内にそれぞれ取得した第2の取得データと当該第2の取得データのそれぞれを取得した取得時刻とを紐付けて構成する取得データ群を一時記憶データとして内部記憶部702に記憶する。そして、内部記憶部702に記憶された取得データ群は、所定のタイミングで外部装置15に送信される。 In the second monitoring process, the monitoring process unit 700 performs a second sampling cycle (for example, 10 msec interval) shorter than the first sampling cycle during the operation period in which the fluid pressure drive valve 10 is operated. The state of the fluid pressure drive valve 10 acquired by the monitored sensor 4B is acquired as the second acquisition data, respectively. Then, the monitoring processing unit 700 internally sets the acquired data group configured by associating the second acquired data acquired within the operation period with the acquired acquisition time of each of the second acquired data as temporary storage data. It is stored in the storage unit 702. Then, the acquired data group stored in the internal storage unit 702 is transmitted to the external device 15 at a predetermined timing.
 異常判定部701は、駆動状態センサ49により計測された駆動装置12の状態に対して、複数の異常判定処理を実行することで、駆動装置12に異常が発生しているか否かを判定する。 The abnormality determination unit 701 determines whether or not an abnormality has occurred in the drive device 12 by executing a plurality of abnormality determination processes for the state of the drive device 12 measured by the drive state sensor 49.
 例えば、異常判定部701は、第1の異常判定処理として、駆動装置12が作動したときのシリンダ120に対するピストン122の位置を駆動状態センサ49が検出し、その時の他のセンサ4の検出値との相対関係と、予め記憶された正常作動時の相対関係とを比較することにより、異常の発生の有無を判定する。また、異常判定部701は、第2の異常判定処理として、駆動装置12に生じる加速度を駆動状態センサ49が検出し、正常作動時よりも大きな加速度(振動や衝撃)が生じているか否かを判定することにより、異常の発生の有無を判定する。さらに、異常判定部701は、第3の異常判定処理として、駆動装置12の内部温度及び湿度を駆動状態センサ49が検出し、相対湿度が所定の閾値よりも大きいか否かを判定することにより、異常の発生の有無を判定する。なお、異常判定部701は、駆動状態センサ49からのデータを用いて上記の異常判定処理を実行してもよいし、内部記憶部702に記憶された一時記憶データを用いて上記の異常判定処理を実行してもよい。 For example, in the abnormality determination unit 701, as the first abnormality determination process, the drive state sensor 49 detects the position of the piston 122 with respect to the cylinder 120 when the drive device 12 is operated, and the abnormality determination unit 701 and the detection value of the other sensor 4 at that time are used. By comparing the relative relationship of the above with the pre-stored relative relationship during normal operation, it is determined whether or not an abnormality has occurred. Further, as a second abnormality determination process, the abnormality determination unit 701 detects the acceleration generated in the drive device 12 by the drive state sensor 49, and determines whether or not an acceleration (vibration or impact) larger than that during normal operation is generated. By making a judgment, it is judged whether or not an abnormality has occurred. Further, the abnormality determination unit 701 detects the internal temperature and humidity of the drive device 12 by the drive state sensor 49 as a third abnormality determination process, and determines whether or not the relative humidity is larger than a predetermined threshold value. , Judge whether or not an abnormality has occurred. The abnormality determination unit 701 may execute the above-mentioned abnormality determination process using the data from the drive state sensor 49, or the above-mentioned abnormality determination process using the temporary storage data stored in the internal storage unit 702. May be executed.
 バルブテストスイッチ71は、所定の試験運転条件が満たされた場合にマイクロコントローラ70からの指令を受けて、試験運転として、電磁弁1のフルストロークテスト(以下、「FST」という。)又はパーシャルストロークテスト(以下、「PST」という。)を実行する。 The valve test switch 71 receives a command from the microcontroller 70 when a predetermined test operation condition is satisfied, and as a test operation, a full stroke test (hereinafter, referred to as “FST”) or a partial stroke of the solenoid valve 1 is performed. A test (hereinafter referred to as "PST") is executed.
 FSTは、主弁11を全開状態から全閉状態に操作して全開状態に戻すことで、流体圧駆動弁10の異常を診断するものである。PSTは、主弁11を全開状態から所定の開度まで部分的に閉じて全開状態に戻すことで、主弁11を全閉状態に操作することなく(すなわち、プラント設備を停止することなく)、流体圧駆動弁10の異常を診断するものである。 FST diagnoses an abnormality in the fluid pressure drive valve 10 by operating the main valve 11 from the fully open state to the fully closed state and returning it to the fully open state. The PST partially closes the main valve 11 from the fully open state to a predetermined opening state and returns it to the fully open state, so that the main valve 11 is not operated to the fully closed state (that is, without stopping the plant equipment). , The abnormality of the fluid pressure drive valve 10 is diagnosed.
 FST及びPSTは、監視処理部700による第2の監視処理と並行して実行される。そのため、主弁11が操作されたときに各センサ4により取得された流体圧駆動弁10の状態に基づいて、当該操作が所定の設定時間内に完了したか否かを判定することにより、流体圧駆動弁10の異常を診断することが可能である。また、主弁11が操作されたときに各センサ4により取得された流体圧駆動弁10の状態の時系列変化を解析する(例えば、正常時の時系列変化と比較する)ことにより、流体圧駆動弁10の異常を診断することが可能である。 FST and PST are executed in parallel with the second monitoring process by the monitoring processing unit 700. Therefore, the fluid is determined by determining whether or not the operation is completed within a predetermined set time based on the state of the fluid pressure drive valve 10 acquired by each sensor 4 when the main valve 11 is operated. It is possible to diagnose an abnormality of the pressure drive valve 10. Further, by analyzing the time-series change of the state of the fluid pressure drive valve 10 acquired by each sensor 4 when the main valve 11 is operated (for example, comparing with the time-series change at the normal time), the fluid pressure It is possible to diagnose an abnormality of the drive valve 10.
 なお、試験運転条件としては、例えば、内部記憶部702の設定値として指定された実行頻度(例えば、1年に1回)による実行時期や特定の指定日時が到来したり、外部装置15(例えば、プラント管理用のコンピュータ)からの実行命令を受け付けたり、流体圧駆動弁10に設けられた試験実行ボタン(不図示)が管理者により操作されたりした場合に、試験運転条件を満たすものとして、試験運転が実行されるようにすればよい。 As test operation conditions, for example, the execution time or a specific designated date and time according to the execution frequency (for example, once a year) designated as the set value of the internal storage unit 702 has arrived, or the external device 15 (for example, once a year) has arrived. , A computer for plant management), or when the test execution button (not shown) provided on the fluid pressure drive valve 10 is operated by the administrator, the test operation condition is satisfied. The test run may be performed.
 通信部8は、HART(Highway Addressable Remote Transducer)通信規格に従って外部装置15との間でデータの送受信を行う通信モデム80と、制御電流(4~20mAのアナログ信号)を入出力するループ電流制御器81とを備える。通信モデム80が、送信対象のデータを周波数信号に変換すると、ループ電流制御器81は、当該周波数信号を制御電流に重畳した重畳信号を外部装置15に送信する。ループ電流制御器81が、外部装置15から重畳信号を受信し、当該重畳信号から周波数信号を分離すると、通信モデム80は、当該周波数信号を受信対象のデータに変換する。 The communication unit 8 is a communication modem 80 that transmits / receives data to / from the external device 15 in accordance with the HART (Highway Addressable Remote Transducer) communication standard, and a loop current controller that inputs / outputs a control current (analog signal of 4 to 20 mA). It includes 81. When the communication modem 80 converts the data to be transmitted into a frequency signal, the loop current controller 81 transmits a superimposed signal obtained by superimposing the frequency signal on the control current to the external device 15. When the loop current controller 81 receives the superposed signal from the external device 15 and separates the frequency signal from the superposed signal, the communication modem 80 converts the frequency signal into data to be received.
 電源回路部9は、電力ケーブル160がターミナルボックス62に逆接続された場合に発生する逆電圧から制御部7を保護する逆電圧保護回路90と、外部電源16から電力ケーブル160を介して供給された電力を所定の電圧及び電流に変換し、流体圧駆動弁10の各部(ソレノイド部3、センサ4、基板5、制御部7及び通信部8等)に供給する内部電源回路91とを備える。 The power supply circuit unit 9 is supplied from the external power supply 16 via the power cable 160 and the reverse voltage protection circuit 90 that protects the control unit 7 from the reverse voltage generated when the power cable 160 is reversely connected to the terminal box 62. It is provided with an internal power supply circuit 91 that converts the generated electric power into a predetermined voltage and current and supplies it to each part (solute unit 3, sensor 4, substrate 5, control unit 7, communication unit 8, etc.) of the fluid pressure drive valve 10.
 図5に示すように、第1の基板50は、第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42、電圧センサ43、電流・抵抗センサ44、温度センサ45、稼働時間計47、作動カウンタ48、制御部7、通信モデム80及び逆電圧保護回路90が載置される。第2の基板51は、ループ電流制御器81及び内部電源回路91が載置される。第3の基板52は、磁気センサ46が載置される。駆動状態センサ49は、駆動装置12に取り付けられる。 As shown in FIG. 5, the first substrate 50 includes a first pressure sensor 40, a second pressure sensor 41, a main valve opening sensor 42, a voltage sensor 43, a current / resistance sensor 44, a temperature sensor 45, and an operation. A time meter 47, an operation counter 48, a control unit 7, a communication modem 80, and a reverse voltage protection circuit 90 are mounted. The loop current controller 81 and the internal power supply circuit 91 are mounted on the second substrate 51. The magnetic sensor 46 is mounted on the third substrate 52. The drive state sensor 49 is attached to the drive device 12.
 なお、複数のセンサ4としては、上記のセンサ40~49に限られず、他の物理量や動作履歴に関する情報を取得するセンサをさらに備えていてもよいし、これらのセンサ40~49の一部が省略されていてもよい。また、複数のセンサ4が各基板50~52に載置される際の各センサ40~48の載置状態は、図5に示す例に限られず、適宜変更してもよい。さらに、収容部6に収容される基板5の枚数や、収容部6に対する各基板50~52の配置についても適宜変更してもよい。 The plurality of sensors 4 are not limited to the above sensors 40 to 49, and may further include sensors for acquiring information on other physical quantities and operation histories, and some of these sensors 40 to 49 may be provided. It may be omitted. Further, the mounting state of the sensors 40 to 48 when the plurality of sensors 4 are mounted on the substrates 50 to 52 is not limited to the example shown in FIG. 5, and may be appropriately changed. Further, the number of substrates 5 accommodated in the accommodating portion 6 and the arrangement of the substrates 50 to 52 with respect to the accommodating portion 6 may be appropriately changed.
 また、上記のセンサ40~49は、図4、図5に示すように、それぞれのセンサが個別に設けられたものに限られず、特定のセンサが他のセンサの機能を兼ねることで、当該他のセンサが個別に設けられていなくてもよい。例えば、磁気センサ46が、ソレノイド部3が発生する磁気の強さを計測するとともに、当該磁気の強さに基づいてソレノイド部3における通電時の電流値を求めることで、電流・抵抗センサ44が個別に設けられていなくてもよい。また、マイクロコントローラ70が、センサの機能を内蔵したり、センサの機能の一部を実現したりしてもよく、例えば、マイクロコントローラ70が、稼働時間計47及び作動カウンタ48を内蔵することで、稼働時間計47及び作動カウンタ48が個別に設けられていなくてもよい。 Further, the sensors 40 to 49 are not limited to those in which each sensor is individually provided as shown in FIGS. 4 and 5, and the specific sensor also functions as another sensor. Sensors may not be provided individually. For example, the magnetic sensor 46 measures the magnetic strength generated by the solenoid unit 3, and the current / resistance sensor 44 obtains the current value when the solenoid unit 3 is energized based on the magnetic strength. It does not have to be provided individually. Further, the microcontroller 70 may have a built-in sensor function or a part of the sensor function. For example, the microcontroller 70 has a built-in operating time meter 47 and an operation counter 48. , The operation time meter 47 and the operation counter 48 may not be provided separately.
(他の実施形態)
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be appropriately modified without departing from the technical idea of the present invention.
 例えば、上記実施形態では、駆動装置12は、弁軸13aを回動させるものとして説明したが、弁軸13aを往復直線駆動させるようにしてもよい。この場合、弁軸13aを往復直線駆動させることに応じて開閉操作が行われる主弁11として、例えば、ゲートバルブやグローブバルブ等の形式を用いるようにしてもよい。 For example, in the above embodiment, the drive device 12 has been described as rotating the valve shaft 13a, but the valve shaft 13a may be driven in a reciprocating linear manner. In this case, as the main valve 11 whose opening / closing operation is performed in response to the reciprocating linear drive of the valve shaft 13a, for example, a type such as a gate valve or a globe valve may be used.
 さらに、この場合の電磁弁1の構成としては、収容部6が、駆動装置12により往復直線駆動される軸13cが挿入される軸挿入口を有するとともに、当該軸13cが往復直線駆動されることに連動して回動軸を回動させる駆動力伝達機構(例えば、ラックアンドピニオン機構、スコッチヨーク機構、リンク機構、カム機構等)を収容する。そして、第1の基板50の基板面が当該回動軸に沿うように配置されており、主弁開度センサ42が、第1の基板50の基板面のうち当該回動軸の軸周りの外周に対向する位置に載置されて、主弁11の弁開度を求めるべく、当該回動軸の回動角度を計測するようにすればよい。 Further, as a configuration of the electromagnetic valve 1 in this case, the accommodating portion 6 has a shaft insertion port into which the shaft 13c driven by the drive device 12 in a reciprocating linear manner is inserted, and the shaft 13c is driven in a reciprocating linear manner. It accommodates a driving force transmission mechanism (for example, a rack and pinion mechanism, a scotch yoke mechanism, a link mechanism, a cam mechanism, etc.) that rotates a rotation shaft in conjunction with the above. The substrate surface of the first substrate 50 is arranged along the rotation axis, and the main valve opening sensor 42 is located around the axis of the rotation axis of the substrate surface of the first substrate 50. It may be placed at a position facing the outer circumference, and the rotation angle of the rotation shaft may be measured in order to obtain the valve opening degree of the main valve 11.
 また、上記の駆動力伝達機構は、収容部6の外部に配置されていてもよく、この場合には、駆動力伝達機構により回動される回動軸が軸挿入口から挿入されるとともに、第1の基板50の基板面が軸挿入口から挿入された回動軸に沿うように配置されており、主弁開度センサ42が、主弁11の弁開度を求めるべく、軸13cの回動角度に代えて、当該回動軸の回動角度を計測するようにすればよい。 Further, the above-mentioned driving force transmission mechanism may be arranged outside the accommodating portion 6, and in this case, a rotating shaft rotated by the driving force transmission mechanism is inserted from the shaft insertion port and at the same time. The substrate surface of the first substrate 50 is arranged along the rotation shaft inserted from the shaft insertion port, and the main valve opening sensor 42 of the shaft 13c obtains the valve opening of the main valve 11. Instead of the rotation angle, the rotation angle of the rotation shaft may be measured.
 また、上記実施形態では、電磁弁1の制御部7が、異常判定部701として機能するものとして説明したが、異常判定部701は、駆動装置12を構成する構成要素の1つとして機能するものであればよく、電磁弁1の制御部7以外の装置(例えば、駆動装置12、駆動装置12の状態を監視する駆動装置監視装置、又は、外部装置15等)に備えられていてもよい。 Further, in the above embodiment, the control unit 7 of the solenoid valve 1 has been described as functioning as the abnormality determination unit 701, but the abnormality determination unit 701 functions as one of the constituent elements constituting the drive device 12. However, it may be provided in a device other than the control unit 7 of the solenoid valve 1 (for example, a drive device 12, a drive device monitoring device for monitoring the state of the drive device 12, an external device 15, etc.).
 以上のように、上記実施形態に係る電磁弁1及び流体圧駆動弁10によれば、駆動状態センサ49が、ピストンロッド121の摺動方向におけるシリンダ120内の少なくとも一端に配置される。駆動状態センサ49は、駆動装置12の状態として、例えば、シリンダ120に対するピストン122A、122Bの位置、シリンダ120の加速度、及び、シリンダ120内の温度及び湿度等を計測する。したがって、駆動装置12及び流体圧駆動弁10が、駆動状態センサ49を備えることにより、シリンダ内部の状態を監視することが可能となり、また、異常診断及び予兆保全の精度の向上が可能となる。 As described above, according to the solenoid valve 1 and the fluid pressure drive valve 10 according to the above embodiment, the drive state sensor 49 is arranged at at least one end in the cylinder 120 in the sliding direction of the piston rod 121. The drive state sensor 49 measures, for example, the positions of the pistons 122A and 122B with respect to the cylinder 120, the acceleration of the cylinder 120, the temperature and humidity in the cylinder 120, and the like as the state of the drive device 12. Therefore, when the drive device 12 and the fluid pressure drive valve 10 are provided with the drive state sensor 49, it is possible to monitor the state inside the cylinder, and it is possible to improve the accuracy of abnormality diagnosis and predictive maintenance.
1…電磁弁、2…スプール部、3…ソレノイド部、
4…センサ、4A…第1の監視対象センサ、4B…第2の監視対象センサ、
5…基板、6…収容部、7…制御部、8…通信部、9…電源回路部、
10…流体圧駆動弁、11…主弁、12…駆動装置、
13a…弁軸、13b…主軸、13c…軸、
14…空気供給源、15…外部装置、16…外部電源、
20…入力ポート、21…出力ポート、22…排気ポート、
23…スプールホール、24…スプールバルブ、25…スプールスプリング、
26…入力側流路、27…出力側流路、28…排気流路、
30…ソレノイドケース、31…ソレノイドコイル、
32…可動鉄芯、33…固定鉄芯、34…ソレノイドスプリング、
40…第1の圧力センサ、41…第2の圧力センサ、
42…主弁開度センサ、43…電圧センサ、44…電流・抵抗センサ、
45…温度センサ、46…磁気センサ、47…稼働時間計、48…作動カウンタ、49…駆動状態センサ、
50…第1の基板、51…第2の基板、52…第3の基板(基板)、
60…第1の収容部、61…第2の収容部、62…ターミナルボックス、
63…第1の流路、64…第2の流路、65…スプール流路、
70…マイクロコントローラ、71…バルブテストスイッチ、
80…通信モデム、81…ループ電流制御器、
90…逆電圧保護回路、91…内部電源回路、
100…配管、110…弁箱、111…弁体、
120…シリンダ、121…ピストンロッド、
122A…第1のピストン、122B…第2のピストン、
123…コイルばね、124…空気給排口、125…伝達機構、
140…第1の空気配管、141…第2の空気配管、
150…通信ケーブル、160…電力ケーブル、
500A…第1の基板面、500B…第2の基板面、
610…ハウジング、610a…第1のハウジング端部、
610b…第2のハウジング端部、610c…軸挿入口、610d…ボディー挿入口、
610e…ケーブル挿入口、611…ボディー、
612…ソレノイドカバー、613…ターミナルボックスカバー、
700…監視処理部、701…異常判定部、702…内部記憶部、A…空気
1 ... Solenoid valve, 2 ... Spool part, 3 ... Solenoid part,
4 ... Sensor, 4A ... First monitored sensor, 4B ... Second monitored sensor,
5 ... board, 6 ... accommodating unit, 7 ... control unit, 8 ... communication unit, 9 ... power supply circuit unit,
10 ... Fluid pressure drive valve, 11 ... Main valve, 12 ... Drive device,
13a ... valve shaft, 13b ... spindle, 13c ... shaft,
14 ... Air supply source, 15 ... External device, 16 ... External power supply,
20 ... input port, 21 ... output port, 22 ... exhaust port,
23 ... Spool hole, 24 ... Spool valve, 25 ... Spool spring,
26 ... Input side flow path, 27 ... Output side flow path, 28 ... Exhaust flow path,
30 ... Solenoid case, 31 ... Solenoid coil,
32 ... Movable iron core, 33 ... Fixed iron core, 34 ... Solenoid spring,
40 ... 1st pressure sensor, 41 ... 2nd pressure sensor,
42 ... Main valve opening sensor, 43 ... Voltage sensor, 44 ... Current / resistance sensor,
45 ... Temperature sensor, 46 ... Magnetic sensor, 47 ... Operating time meter, 48 ... Operation counter, 49 ... Drive status sensor,
50 ... 1st substrate, 51 ... 2nd substrate, 52 ... 3rd substrate (board),
60 ... 1st containment, 61 ... 2nd containment, 62 ... Terminal box,
63 ... 1st flow path, 64 ... 2nd flow path, 65 ... Spool flow path,
70 ... Microcontroller, 71 ... Valve test switch,
80 ... communication modem, 81 ... loop current controller,
90 ... Reverse voltage protection circuit, 91 ... Internal power supply circuit,
100 ... Piping, 110 ... Valve box, 111 ... Valve body,
120 ... Cylinder, 121 ... Piston rod,
122A ... 1st piston, 122B ... 2nd piston,
123 ... Coil spring, 124 ... Air supply / exhaust port, 125 ... Transmission mechanism,
140 ... 1st air pipe, 141 ... 2nd air pipe,
150 ... communication cable, 160 ... power cable,
500A ... 1st substrate surface, 500B ... 2nd substrate surface,
610 ... Housing, 610a ... First housing end,
610b ... Second housing end, 610c ... Shaft insertion slot, 610d ... Body insertion slot,
610e ... Cable insertion slot, 611 ... Body,
612 ... Solenoid cover, 613 ... Terminal box cover,
700 ... Monitoring processing unit, 701 ... Abnormality determination unit, 702 ... Internal storage unit, A ... Air

Claims (7)

  1.  両端を覆われる円筒状のシリンダと、
     前記シリンダ内に往復直線移動可能に設けられ、ピストンロッドを介して連結された一対のピストンと、
     前記ピストンロッドの摺動方向における前記シリンダ内の一端又は両端に配置される駆動状態センサと、
    を備え、
     前記駆動状態センサは、前記シリンダ内の温度及び湿度を検出する
     ことを特徴とする駆動装置。
    A cylindrical cylinder that covers both ends,
    A pair of pistons provided in the cylinder so as to be reciprocally linearly movable and connected via a piston rod,
    A drive state sensor arranged at one end or both ends of the cylinder in the sliding direction of the piston rod.
    With
    The drive state sensor is a drive device characterized by detecting the temperature and humidity in the cylinder.
  2.  前記シリンダ内の一端又は両端に取り付けられ、前記ピストンの移動を規制するストッパを備え、
     前前記駆動状態センサは、前記ストッパに配置される
     ことを特徴とする請求項1に記載の駆動装置。
    A stopper attached to one end or both ends of the cylinder to regulate the movement of the piston is provided.
    The drive device according to claim 1, wherein the drive state sensor is arranged on the stopper.
  3.  前記駆動状態センサは、前記シリンダに対する前記ピストンの位置を検出する
     ことを特徴とする請求項1又は2に記載の駆動装置。
    The drive device according to claim 1 or 2, wherein the drive state sensor detects the position of the piston with respect to the cylinder.
  4.  前記駆動状態センサは、前記シリンダの加速度を検出する
     ことを特徴とする請求項1乃至3のいずれか1つに記載の駆動装置。
    The drive device according to any one of claims 1 to 3, wherein the drive state sensor detects the acceleration of the cylinder.
  5.  前記ピストンロッドの往復直線運動を回動に変換する伝達機構を備える
     ことを特徴とする請求項1乃至4のいずれか1つに記載の駆動装置。
    The drive device according to any one of claims 1 to 4, further comprising a transmission mechanism that converts the reciprocating linear motion of the piston rod into rotation.
  6.  前記駆動状態センサにより取得された前記駆動装置の状態に基づいて、前記駆動装置に異常が発生しているか否かを判定する異常判定部をさらに備える、
     ことを特徴とする請求項1乃至5のいずれか1つに記載の駆動装置。
    An abnormality determination unit for determining whether or not an abnormality has occurred in the drive device based on the state of the drive device acquired by the drive state sensor is further provided.
    The driving device according to any one of claims 1 to 5.
  7.  主弁と、
     前記主弁を駆動する請求項1乃至6のいずれか1つに記載の駆動装置と、
     前記駆動装置に対して駆動流体の給排を制御する電磁弁と、
    を少なくとも備える
    ことを特徴とする流体圧駆動弁。
     
     
    Main valve and
    The driving device according to any one of claims 1 to 6 for driving the main valve.
    A solenoid valve that controls the supply and discharge of the driving fluid to the driving device,
    A fluid pressure driven valve characterized in that it comprises at least.

PCT/JP2021/014970 2020-04-28 2021-04-09 Drive device and fluid pressure–driven valve WO2021220765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079451 2020-04-28
JP2020079451A JP6783490B1 (en) 2020-04-28 2020-04-28 Drive device and fluid pressure drive valve

Publications (1)

Publication Number Publication Date
WO2021220765A1 true WO2021220765A1 (en) 2021-11-04

Family

ID=73043581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014970 WO2021220765A1 (en) 2020-04-28 2021-04-09 Drive device and fluid pressure–driven valve

Country Status (2)

Country Link
JP (2) JP6783490B1 (en)
WO (1) WO2021220765A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093261A (en) * 2020-12-11 2022-06-23 金子産業株式会社 Database generator, state determination device, database generation method, and state determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558910U (en) * 1991-05-15 1993-08-03 株式会社コガネイ Fluid pressure equipment
JP2005320986A (en) * 2004-05-06 2005-11-17 Tyco Flow Control Kk Emergency shut-down valve device
JP2017009485A (en) * 2015-06-24 2017-01-12 Kyb株式会社 Stroke detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558910U (en) * 1991-05-15 1993-08-03 株式会社コガネイ Fluid pressure equipment
JP2005320986A (en) * 2004-05-06 2005-11-17 Tyco Flow Control Kk Emergency shut-down valve device
JP2017009485A (en) * 2015-06-24 2017-01-12 Kyb株式会社 Stroke detection device

Also Published As

Publication number Publication date
JP6783490B1 (en) 2020-11-11
JP2021173412A (en) 2021-11-01
JP2021173373A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
EP0904573A2 (en) A method for surveying the condition of a control valve, and a valve apparatus
WO2011135155A1 (en) Control valve diagnostics
JP2012052652A (en) Cutoff valve control system
US11174965B2 (en) Detecting maintenance statuses of valves
CN101784827A (en) Device and method for detecting a failure in a powered valve
US11098822B2 (en) Arrangement with on/off valve, pneumatic actuator, magnetic valve and function monitoring device
WO2021220765A1 (en) Drive device and fluid pressure–driven valve
KR102629090B1 (en) Machine learning devices, data processing systems, inference devices, and machine learning methods
WO2021192983A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021192981A1 (en) Solenoid valve
WO2021182116A1 (en) Electromagnetic valve
WO2021220766A1 (en) Machine learning device, data processing system, inference device, and machine learning method
JP3873020B2 (en) Actuator operating condition detecting device and operating condition detecting method
WO2021182115A1 (en) Electromagnetic valve
CN114787547B (en) Electromagnetic valve
WO2021220767A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021210497A1 (en) Machine learning device, data processing system, inference device, and machine learning method
CN113466585B (en) Online detection method for external characteristics of in-service pneumatic stop valve based on pulse excitation
KR102629089B1 (en) Machine learning devices, data processing systems, inference devices, and machine learning methods
WO2023053608A1 (en) Database generation device, state assessment device, database generation method, and state assessment method
WO2023135892A1 (en) Data processing system and data processing method
JP2022086029A (en) Machine learning device, data processing system, inference device, and machine learning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796397

Country of ref document: EP

Kind code of ref document: A1