WO2021192981A1 - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
WO2021192981A1
WO2021192981A1 PCT/JP2021/009118 JP2021009118W WO2021192981A1 WO 2021192981 A1 WO2021192981 A1 WO 2021192981A1 JP 2021009118 W JP2021009118 W JP 2021009118W WO 2021192981 A1 WO2021192981 A1 WO 2021192981A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid
valve
substrate
unit
solenoid valve
Prior art date
Application number
PCT/JP2021/009118
Other languages
French (fr)
Japanese (ja)
Inventor
文明 青山
Original Assignee
金子産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金子産業株式会社 filed Critical 金子産業株式会社
Publication of WO2021192981A1 publication Critical patent/WO2021192981A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/16Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member
    • F16K31/163Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Definitions

  • the present invention relates to a solenoid valve and a fluid pressure drive valve.
  • Patent Document 1 in a solenoid valve including a vibration sensor that detects vibration of a solenoid portion generated by the operation of a movable iron core and driving of a valve body, the solenoid portion detected by the vibration sensor when the solenoid portion operates. It is disclosed that an abnormality diagnosis of a solenoid valve is performed in response to vibration.
  • the solenoid valve disclosed in Patent Document 1 detects the vibration generated by the operation of the solenoid portion by the vibration sensor. Therefore, in the solenoid valve, it is required to operate the solenoid part as a condition for performing an abnormality diagnosis, so that the solenoid part is not operated (the solenoid part is operated at the request of the system to which the solenoid valve is applied). Abnormal diagnosis cannot be performed in situations where it cannot operate. Further, with the solenoid valve, it is not possible to monitor the change over time that occurs in the solenoid portion when the situation in which the solenoid portion is not operated continues, and it is also difficult to realize predictive maintenance. rice field.
  • the present invention has been made in view of such circumstances, and it is possible to monitor the solenoid unit regardless of the presence or absence of operation of the solenoid unit, and to realize post-mortem maintenance and predictive maintenance. It is an object of the present invention to provide a solenoid valve and a fluid pressure driven valve that enable it.
  • the solenoid valve according to the embodiment of the present invention is A spool part that switches the flow path through which the drive fluid flows, and A solenoid part that displaces the spool part according to the energized state, and A substrate arranged close to the solenoid portion and It is mounted on the substrate and includes a magnetic sensor that measures the strength of the magnetism generated by the solenoid unit.
  • the fluid pressure drive valve according to the embodiment of the present invention is With the above solenoid valve Main valve and A drive device for opening and closing the main valve by driving the valve shaft connected to the main valve according to the fluid pressure of the driving fluid is provided.
  • the solenoid valve is It has a function of controlling the supply and discharge of the driving fluid to the driving device.
  • the substrate is arranged close to the solenoid portion, and the magnetic sensor is mounted on the substrate to generate the solenoid portion. Measure the strength of the magnetism.
  • the magnetic strength to be measured by the magnetic sensor is, for example, the specification of the solenoid part (number of turns and dimensions of the solenoid coil). ), A value that can be calculated in advance according to the set current value of the coil current, the positional relationship between the solenoid unit and the magnetic sensor, etc. (design magnetic strength (a value having a predetermined width may be used)). Therefore, for example, the magnetic sensor measures the magnetic strength (measured magnetic strength) generated by the solenoid portion that is energized at a predetermined sampling cycle, and compares the measured magnetic strength with the above-mentioned design magnetic strength. By doing so, it becomes possible to detect an abnormality or a sign of the abnormality of the solenoid valve.
  • the magnetic strength to be measured by the magnetic sensor before and after switching between the energized state and the non-energized state of the solenoid part is It is assumed that when switching from the non-energized state to the energized state, the magnetic strength increases from zero to the design magnetic strength, and when switching from the energized state to the non-energized state, the design magnetic strength decreases to zero.
  • the magnetic field sensor measures the magnetic strength (measured magnetic strength) generated by the solenoid part before and after switching between the energized state and the non-energized state of the solenoid part, and the measured magnetic strength changes according to the above assumption ( By confirming whether or not the solenoid valve is rising or falling, it is possible to detect an abnormality in the solenoid valve.
  • the solenoid valve and the fluid pressure drive valve are equipped with a magnetic sensor, the solenoid part can be monitored regardless of the presence or absence of operation of the solenoid part, and post-maintenance maintenance and predictive maintenance can be realized.
  • FIG. 1 is a cross-sectional view showing an example of a fluid pressure drive valve 10 according to an embodiment of the present invention.
  • the fluid pressure drive valve 10 opens and closes the main valve 11 by driving the main valve 11 arranged in the middle of the pipe 100 and the valve shaft 13 connected to the main valve 11 according to the fluid pressure of the driving fluid.
  • the drive device 12 is provided, and the solenoid valve 1 having a function of controlling the supply and discharge of the drive fluid to the drive device 12 is provided.
  • the fluid pressure drive valve 10 is installed in, for example, a pipe 100 through which various gases, oil, etc. flow in the plant equipment, and is an emergency shutoff for shutting off the flow of the pipe 100 in the event of an emergency stop such as when an abnormality occurs in the plant equipment. Used as a valve.
  • the installation location and application of the fluid pressure drive valve 10 are not limited to the above examples.
  • Air (air) A is supplied to the fluid pressure drive valve 10 from the air supply source 14 as an example of the drive fluid, and the air A from the air supply source 14 is passed through the first air pipe 140. Is supplied to the electromagnetic valve 1 and further supplied to the drive device 12 via the second air pipe 141. Further, the fluid pressure drive valve 10 includes a communication cable 150 for transmitting and receiving various data between the external device 15 and the solenoid valve 1, and a power cable 160 for supplying electric power from the external power supply 16 to the solenoid valve 1. And are connected.
  • the driving fluid is not limited to the above-mentioned air A, and may be another gas or a liquid (for example, oil).
  • the external device 15 is composed of, for example, a computer for plant management (including a local server and a cloud server), a diagnostic computer used by a maintenance inspector, or an external storage unit such as a USB memory or an external HDD. There is.
  • the communication between the external device 15 and the solenoid valve 1 may be wireless communication.
  • the fluid pressure drive valve 10 adopts an airless closing method. Therefore, during steady operation, the main valve 11 is fully opened by supplying air A (air supply) from the air supply source 14 to the drive device 12 via the solenoid valve 1, and during emergency stop or test operation. By discharging air A (exhaust) from the drive device 12 via the solenoid valve 1, the main valve 11 is fully closed.
  • the fluid pressure drive valve 10 may adopt an airless open system. In that case, the fluid pressure drive valve 10 is fully opened by supplying the air A to the drive device 12, and the air A is discharged from the drive device 12.
  • the main valve 11 may be fully closed.
  • the main valve 11 is composed of, for example, a valve called a ball valve.
  • the main valve 11 includes a valve box 110 arranged in the middle of the pipe 100 and a ball-shaped valve body 111 rotatably provided in the valve box 110, and is provided on the upper portion of the valve body 111. Is connected to the first end 130A of the valve shaft 13.
  • the valve body 111 rotates in the valve box 110 in response to the valve shaft 13 being rotationally driven from 0 degrees to 90 degrees, and the main valve 11 can be switched between a fully open state (state shown in FIG. 1) and a fully closed state. ..
  • the valve used as the main valve 11 is not limited to the ball valve, and may be another type such as a butterfly valve.
  • the drive device 12 is arranged between the main valve 11 and the solenoid valve 1, for example, and is configured as a single-actuated air cylinder mechanism.
  • the drive device 12 includes a cylindrical cylinder 120, a pair of pistons 122A and 122B provided in the cylinder so as to be reciprocally linearly movable, and connected via a piston rod 121, and a first piston 122A.
  • a coil spring 123 provided on the side, an air supply / discharge port 124 formed on the second piston 122B side, a valve shaft 13 and a piston rod 121 arranged so as to penetrate the cylinder 120 along the radial direction. It is provided with a transmission mechanism 125 provided at a portion where the cylinders are orthogonal to each other.
  • the drive device 12 is not limited to the single-acting type, and may be configured in another form such as a double-acting type.
  • the first piston 122A is urged by the coil spring 123 in the direction of closing the main valve 11.
  • the second piston 122B is pressed by the air A (air supply) supplied from the air supply / exhaust port 124 in the direction of opening the main valve 11 against the urging force of the coil spring 123.
  • the transmission mechanism 125 is composed of, for example, a rack and pinion mechanism, a link mechanism, a cam mechanism, etc., and converts the reciprocating linear motion of the piston rod 121 into a rotary motion and transmits it to the valve shaft 13.
  • the valve shaft 13 is formed in a shaft shape and is arranged so as to penetrate the drive device 12 in a rotatable state.
  • the first end 130A of the valve shaft 13 is connected to the main valve 11, and the second end 130B of the valve shaft 13 is pivotally supported by the solenoid valve 1.
  • the valve shaft 13 may have a plurality of shafts connected by, for example, a coupling or the like.
  • the solenoid valve 1 has a function of controlling the supply and discharge of air A to the drive device 12, and is, for example, a three-way solenoid valve of a normally closed type (“open” when energized, “closed” when not energized) at two positions. It is configured as.
  • the solenoid valve 1 has a spool portion 2 that switches the flow path through which the air A flows inside the accommodating portion 6 that functions as a housing of the indoor type or explosion-proof type solenoid valve 1, and is in an energized state (when energized or de-energized). It is provided with a solenoid unit 3 that displaces the spool unit 2 accordingly.
  • the solenoid valve 1 is not limited to a two-position, normally closed type three-way solenoid valve, but may be a three-position solenoid valve, a normally open type, a four-way solenoid valve, or the like, and is composed of various formations based on any combination. May be. Further, in the present embodiment, the solenoid valve 1 is used as a pilot valve in the fluid pressure drive valve 10, but the application of the solenoid valve 1 is not limited to this.
  • the spool portion 2 has an input port 20 connected to the air supply source 14 via the first air pipe 140, an output port 21 connected to the drive device 12 via the second air pipe 141, and a drive device.
  • the exhaust port 22 for discharging the exhaust from the 12 is provided.
  • the solenoid unit 3 displaces the spool unit 2 so as to communicate between the input port 20 and the output port 21 when energized, and communicates between the output port 21 and the exhaust port 22 when the power is off. , Displace the spool portion 2.
  • the solenoid valve 1 when the solenoid valve 1 is energized, the air A (air supply) from the air supply source 14 is the first air pipe 140, the input port 20, the output port 21, and the second air pipe 141.
  • the second piston 122B is pressed and the coil spring 123 is compressed by flowing in this order and being supplied to the air supply / discharge port 124.
  • the valve shaft 13 is rotationally driven via the piston rod 121 and the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the compression of the coil spring 123, the valve body 111 rotates in the valve box 110.
  • the main valve 11 is operated in the fully open state.
  • the solenoid valve 1 when the solenoid valve 1 is in the non-energized state, the air A (exhaust) in the cylinder 120 flows from the air supply / exhaust port 124 to the second air pipe 141, the output port 21, and the exhaust port 22 in this order.
  • the pressing force of the second piston 122B is reduced, and the coil spring 123 is restored from the compressed state.
  • the valve shaft 13 is rotationally driven via the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the restoration of the coil spring 123, the valve body 111 rotates in the valve box 110, and the main valve 11 rotates. It is operated in the fully closed state.
  • FIG. 2 is a cross-sectional view showing an example of the solenoid valve 1 according to the embodiment of the present invention.
  • the solenoid valve 1 includes a plurality of sensors 4 for acquiring the state of each portion of the solenoid valve 1 and a substrate 5 on which at least one of the plurality of sensors 4 is mounted.
  • a spool portion 2, a solenoid portion 3, a plurality of sensors 4, and an accommodating portion 6 for accommodating the substrate 5 are provided.
  • the accommodating portion 6 is adjacent to the first accommodating portion 60 accommodating the spool portion 2 and the first accommodating portion 60, and also accommodates the solenoid unit 3, the plurality of sensors 4, and the substrate 5.
  • a terminal box 62 to which the communication cable 150 and the power cable 160 are connected is provided.
  • the first accommodating portion 60 and the second accommodating portion 61 are made of, for example, a metal material such as aluminum.
  • the first accommodating portion 60 has openings (not shown) that function as input ports 20, output ports 21, and exhaust ports 22, respectively.
  • the second accommodating portion 61 includes a cylindrical housing 610 with both ends (first housing end 610a and second housing end 610b) open, a body 611 arranged inside the housing 610, and a second housing portion 61.
  • a solenoid cover 612 that covers the solenoid portion 3 fixed to the housing end portion 610a of 1 from the outside air, and a terminal box cover 613 that covers the terminal box 62 fixed to the second housing end portion 610b from the outside air are provided.
  • the housing 610 has a shaft insertion port 610c formed in the lower portion thereof and into which the second end 130B of the valve shaft 13 is inserted, a body insertion port 610d formed in the upper portion thereof into which the body 611 is inserted, and a second. It has a cable insertion port 610e formed on the housing end portion 610b side of the above and into which the communication cable 150 and the power cable 160 are inserted.
  • the first accommodating portion 60 and the second accommodating portion 61 are branched from the input side flow path 26 so as to penetrate the body 611, and between the input side flow path 26 and the first pressure sensor 40.
  • a spool flow path 65 through which air A for interlocking with the portion 3 flows is formed.
  • the spool portion 2 includes a spool hole 23 formed in a second accommodating portion 61 that functions as a spool case, a spool valve 24 that is movably arranged in the spool hole 23, and a spool that urges the spool valve 24.
  • the spring 25 the input side flow path 26 communicating between the input port 20 and the spool hole 23, the output side flow path 27 communicating between the output port 21 and the spool hole 23, the exhaust port 22 and the spool hole 23. It is provided with an exhaust flow path 28 that communicates between the two.
  • the solenoid unit 3 is arranged in a solenoid case 30, a solenoid coil 31 housed in the solenoid case 30, a movable iron core 32 movably arranged in the solenoid coil 31, and a fixed state in the solenoid coil 31.
  • a fixed iron core 33 and a solenoid spring 34 for urging the movable iron core 32 are provided.
  • the solenoid coil 31 When the solenoid valve 1 is switched from the non-energized state to the energized state, the solenoid coil 31 generates an electromagnetic force when the coil current flows through the solenoid coil 31 in the solenoid unit 3, and the movable iron core is generated by the electromagnetic force.
  • the flow state of the air A flowing through the spool flow path 65 is switched.
  • the flow state of the air A flowing through the spool flow path 65 is switched, so that the spool valve 24 is moved against the urging force of the spool spring 25, so that the input port 20 and the exhaust are exhausted.
  • the state of communicating with the port 22 can be switched to the state of communicating between the input port 20 and the output port 21.
  • the substrate 5 includes a first substrate 50 arranged so that the substrate surfaces 500A and 500B are arranged along the valve shaft 13 inserted from the shaft insertion port 610c, and a second substrate 51 arranged close to the terminal box 62. And a third substrate 52 arranged close to the solenoid unit 3.
  • the body 611, the solenoid unit 3, and the third substrate 52 are arranged on the first substrate surface 500A side.
  • the second substrate 51 and the terminal box 62 are arranged on the second substrate surface 500B side opposite to the first substrate surface 500A side.
  • the sensor 4 mounted on the first substrate 50 includes, for example, a first pressure sensor 40 for measuring the fluid pressure of air A flowing through the input side flow path 26 and the first flow path 63, and an output side flow path.
  • the second pressure sensor 41 that measures the fluid pressure of the air A flowing through the 27 and the second flow path 64 and the rotation angle when the valve shaft 13 is rotationally driven are measured, and the main valve 11 is measured according to the rotation angle.
  • the first pressure sensor 40, the second pressure sensor 41, and the main valve opening sensor 42 are integrated on one substrate (first substrate 50), so that the solenoid valve 1 and the fluid pressure drive valve 10 are integrated. It is possible to realize the monitoring function required for properly diagnosing whether or not the operation is normal with a simple configuration.
  • the main valve opening sensor 42 is composed of, for example, a magnetic sensor, measures the magnetic strength generated by the permanent magnet 131 attached to the second end 130B of the valve shaft 13, and measures the magnetic strength. Correspondingly, the valve opening information of the main valve 11 is acquired.
  • the main valve opening sensor 42 faces the outer periphery of the valve shaft 13 around the axis of the first board surface 500A of the first board 50 arranged along the valve shaft 13 inserted from the shaft insertion port 610c. It is placed in the position to be used. As a result, in the accommodating portion 6, the main valve opening sensor 42 mounted on the first substrate 50 and the second end portion 130B of the valve shaft 13 are brought close to each other without wasting the arrangement space. The valve opening information can be accurately acquired.
  • the main valve opening sensor 42 is mounted on the first substrate 50 closer to the shaft insertion port 610c than the first pressure sensor 40 and the second pressure sensor 41.
  • the first flow path 63 communicating with the first pressure sensor 40 and the second flow path 64 communicating with the second pressure sensor 41 are the second of the main valve opening sensor 42 and the valve shaft 13. Since it is arranged at a position separated from the end portion 130B of 2, the shape and arrangement of the first flow path 63 and the second flow path 64 can be simplified.
  • the sensor 4 mounted on the third substrate 52 includes, for example, a magnetic sensor 46 that measures the magnetic strength generated by the solenoid unit 3.
  • the magnetic sensor 46 determines the magnetic strength generated by the solenoid unit 3 being energized and the coil current flowing through the solenoid coil 31. measure.
  • the magnetic strength to be measured by the magnetic sensor 46 is, for example, the specification of the solenoid unit 3 (solenoid coil 31). With a value that can be calculated in advance according to the number of turns and dimensions of the coil current, the set current value of the coil current, the positional relationship between the solenoid unit 3 and the magnetic sensor 46, etc. (design magnetic strength (a value having a predetermined width may be used)). be. Therefore, the magnetic sensor 46 measures the magnetic strength (measured magnetic strength) generated by the solenoid unit 3 in the energized state at a predetermined sampling cycle, and compares the measured magnetic strength with the above-mentioned design magnetic strength. By doing so, it becomes possible to detect an abnormality or a sign of the abnormality of the solenoid valve.
  • the current value of the coil current is obtained from the magnetic strength measured by the magnetic sensor 46. Therefore, when detecting an abnormality in the solenoid valve 1, the measured magnetic strength is not used as a judgment standard, but the current value of the coil current obtained from the measured magnetic strength is used as a judgment standard, for example, the set current value of the coil current. You may try to compare.
  • the third substrate 52 is arranged close to the solenoid unit 3 as described above, and "proximity" means that the solenoid unit 3 (particularly the solenoid coil 31) is moved by the magnetic sensor 46.
  • the third substrate 52 is arranged outside the solenoid case 30 and inside the accommodating portion 6.
  • the solenoid portion 3 is accommodated in the space formed by the housing 610 and the solenoid cover 612 constituting the second accommodating portion 61, and is arranged outside the solenoid case 30.
  • the third substrate 52 and the magnetic sensor 46 are protected without being exposed to the outside air, and the magnetism generated by the solenoid coil 31 can be reliably measured.
  • the magnetic sensor 46 is arranged outside the radial direction of the solenoid coil 31. Further, the magnetic sensor 46 is preferably arranged inside both ends of the solenoid case 30 (arrow Y1 in FIG. 2) with respect to the axial direction of the solenoid coil 31, and is further inside both ends of the solenoid coil 31 (FIG. 2). It is more preferable to be arranged at the arrow Y2).
  • the number of magnetic sensors 46 mounted on the third substrate 52 is not limited to one, and may be plural. Further, the magnetic sensor 46 is further mounted on a substrate different from the third substrate 52, and the other substrate is arranged at a position different from that of the third substrate 52 and is close to the solenoid unit 3. May be arranged.
  • FIG. 3 is a block diagram showing an example of the solenoid valve 1 according to the embodiment of the present invention.
  • FIG. 4 is a schematic view showing an example of mounting a plurality of sensors 4 on the substrate 5 according to the embodiment of the present invention. Note that FIG. 4 does not strictly indicate the position where each sensor 4 is mounted on the substrate 5, and each sensor 4 is mounted on any of the first to third substrates 50 to 52. It shows the mounting state of the sensor.
  • the solenoid valve 1 communicates with the control unit 7 that controls the solenoid valve 1 and the external device 15 in addition to the above-mentioned first to third substrates 50 to 52 and the plurality of sensors 4. It includes a communication unit (external transmission unit) 8 having a function and a power supply circuit unit 9 connected to the external power supply 16.
  • the plurality of sensors 4 refer to the solenoid unit 3 in addition to the above-mentioned first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, and magnetic sensor 46 as a group of sensors for measuring the physical quantity of each unit.
  • the plurality of sensors 4 measure at least one of the total energization time for the solenoid unit and the current energization continuous time as the operating time of the solenoid unit 3 as a sensor group for acquiring information on the operation history of each unit.
  • a total of 47 and an operation counter 48 for counting the number of operations of each of the solenoid valve 1, the drive device 12, and the main valve 11 are provided.
  • the control unit 7 processes information indicating the state of each part of the solenoid valve 1 acquired by the plurality of sensors 4, and also controls the state of energization of the microcontroller 70 that controls each part of the solenoid valve 1 and the solenoid unit 3.
  • a valve test switch 71 that opens and closes the main valve 11 during a test operation is provided.
  • the microcontroller 70 includes a processor (not shown) such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • a processor such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the internal storage unit 702 stores a set value when the solenoid valve 1 operates, temporary storage data when the solenoid valve 1 operates, an electromagnetic valve control program that controls the operation of the solenoid valve 1, and the like. ..
  • the processor of the microcontroller 70 has a monitoring processing unit 700 that executes a monitoring process for monitoring the state of each part of the solenoid valve 1 by a plurality of sensors 4 by executing a solenoid valve control program stored in the internal storage unit 702. It functions as an abnormality determination unit 701 that determines whether or not an abnormality has occurred in the solenoid unit 3 based on the magnetic strength measured by the magnetic sensor 46.
  • the monitoring processing unit 700 is at least one of the plurality of sensors 4 regardless of whether or not the main valve 11 is opened / closed (hereinafter, referred to as “first monitored sensor 4A”). Is used to execute the "first monitoring process” for monitoring the state of the solenoid valve 1. Further, the monitoring processing unit 700 uses at least one of the plurality of sensors 4 (hereinafter, referred to as “second monitoring target sensor 4B”) during the unsteady operation in which the main valve 11 is opened and closed. The "second monitoring process” for monitoring the state of the solenoid valve 1 is executed.
  • the first monitored sensor 4A is, for example, all of the plurality of sensors 4 (first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, voltage sensor 43, current / resistance sensor 44).
  • the second monitored sensor 4B is, for example, the second pressure sensor 41 and the main valve opening degree sensor 42, but is not limited to these examples.
  • the monitoring processing unit 700 acquires the state of the solenoid valve 1 acquired by the first monitored sensor 4A in the first sampling period (for example, every 10 seconds) as the first acquired data. Then, each time the first acquired data is acquired, it is sequentially transmitted to the external device 15 via the communication unit 8.
  • the monitoring processing unit 700 performs a second monitoring target in a second sampling cycle (for example, 10 msec interval) shorter than the first sampling cycle in the operation period in which the solenoid valve 1 is operated.
  • the state of the solenoid valve 1 acquired by the sensor 4B is acquired as the second acquisition data, respectively.
  • the monitoring processing unit 700 internally sets the acquired data group configured by associating the second acquired data acquired within the operation period with the acquired acquisition time of each of the second acquired data as temporary storage data. It is stored in the storage unit 702. Then, the acquired data group stored in the internal storage unit 702 is transmitted to the external device 15 at a predetermined timing.
  • the abnormality determination unit 701 executes a plurality of abnormality determination processes on the magnetic strength (measured magnetic strength) measured by the magnetic sensor 46 to determine whether or not an abnormality has occurred in the solenoid unit 3. judge.
  • the abnormality determination unit 701 compares the measured magnetic strength when the solenoid unit 3 is energized and the design magnetic strength as the first abnormality determination process, and whether the difference between the two is larger than a predetermined threshold value. By determining whether or not it has occurred, it is determined whether or not an abnormality has occurred. Further, as the second abnormality determination process, the abnormality determination unit 701 changes (increases or decreases) the measured magnetic strength according to the energized state and the non-energized state before and after switching between the energized state and the non-energized state of the solenoid unit 3. ), It is determined whether or not an abnormality has occurred.
  • the abnormality determination unit 701 may execute the above abnormality determination process using the data from the magnetic sensor 46, or may perform the above abnormality determination process using the temporary storage data stored in the internal storage unit 702. You may do it.
  • the valve test switch 71 receives a command from the microcontroller 70 when a predetermined test operation condition is satisfied, and as a test operation, a full stroke test (hereinafter, referred to as “FST”) or a partial stroke of the solenoid valve 1 is performed. A test (hereinafter referred to as "PST”) is executed.
  • FST full stroke test
  • PST partial stroke of the solenoid valve 1
  • FST diagnoses an abnormality in the fluid pressure drive valve 10 by operating the main valve 11 from the fully open state to the fully closed state and returning it to the fully open state.
  • the PST partially closes the main valve 11 from the fully open state to a predetermined opening state and returns it to the fully open state, so that the main valve 11 is not operated to the fully closed state (that is, without stopping the plant equipment). ,
  • the abnormality of the fluid pressure drive valve 10 is diagnosed.
  • the fluid pressure drive is performed by determining whether or not the operation is completed within a predetermined set time based on the state of the solenoid valve 1 acquired by each sensor 4 when the main valve 11 is operated. It is possible to diagnose the abnormality of the valve 10. Further, by analyzing the time-series change of the state of the solenoid valve 1 acquired by each sensor 4 when the main valve 11 is operated (for example, comparing with the time-series change at the normal time), the fluid pressure drive valve It is possible to diagnose 10 abnormalities.
  • test operation conditions for example, the execution time or a specific designated date and time according to the execution frequency (for example, once a year) designated as the set value of the internal storage unit 702 has arrived, or the external device 15 (for example, once a year) has arrived. , Plant management computer), or when the test execution button (not shown) provided on the solenoid valve 1 is operated by the administrator, the test operation condition is satisfied. Should be executed.
  • the communication unit 8 is a communication modem 80 that transmits / receives data to / from the external device 15 in accordance with the HART (Highway Addressable Remote Transducer) communication standard, and a loop current controller that inputs / outputs a control current (analog signal of 4 to 20 mA). It includes 81.
  • the communication modem 80 converts the data to be transmitted into a frequency signal
  • the loop current controller 81 transmits a superimposed signal obtained by superimposing the frequency signal on the control current to the external device 15.
  • the communication modem 80 converts the frequency signal into data to be received.
  • the power supply circuit unit 9 is supplied from the external power supply 16 via the power cable 160 and the reverse voltage protection circuit 90 that protects the control unit 7 from the reverse voltage generated when the power cable 160 is reversely connected to the terminal box 62. It is provided with an internal power supply circuit 91 that converts the generated power into predetermined voltages and currents and supplies them to each part of the electromagnetic valve 1 (solar part 3, sensor 4, substrate 5, control part 7, communication part 8, etc.).
  • the first substrate 50 includes a first pressure sensor 40, a second pressure sensor 41, a main valve opening sensor 42, a voltage sensor 43, a current / resistance sensor 44, a temperature sensor 45, and an operation.
  • a time meter 47, an operation counter 48, a control unit 7, a communication modem 80, and a reverse voltage protection circuit 90 are mounted.
  • the loop current controller 81 and the internal power supply circuit 91 are mounted on the second substrate 51.
  • the magnetic sensor 46 is mounted on the third substrate 52.
  • the plurality of sensors 4 are not limited to the above sensors 40 to 48, and may further include sensors for acquiring information on other physical quantities and operation histories, and some of these sensors 40 to 48 may be provided. It may be omitted. Further, the mounting state of the sensors 40 to 48 when the plurality of sensors 4 are mounted on the substrates 50 to 52 is not limited to the example shown in FIG. 4, and may be appropriately changed. Further, the number of substrates 5 accommodated in the accommodating portion 6 and the arrangement of the substrates 50 to 52 with respect to the accommodating portion 6 may be appropriately changed.
  • the sensors 40 to 48 are not limited to those in which each sensor is individually provided as shown in FIGS. 3 and 4, and the specific sensor also functions as another sensor. Sensors may not be provided individually.
  • the magnetic sensor 46 measures the magnetic strength generated by the solenoid unit 3, and the current / resistance sensor 44 obtains the current value when the solenoid unit 3 is energized based on the magnetic strength. It does not have to be provided individually.
  • the microcontroller 70 may have a built-in sensor function or a part of the sensor function.
  • the microcontroller 70 has a built-in operating time meter 47 and an operation counter 48. , The operation time meter 47 and the operation counter 48 may not be provided separately.
  • the drive device 12 has been described as rotating the valve shaft 13, but the valve shaft 13 may be driven in a reciprocating linear manner.
  • the main valve 11 whose opening / closing operation is performed in response to the reciprocating linear drive of the valve shaft 13, for example, a type such as a gate valve or a globe valve may be used.
  • the accommodating portion 6 has a shaft insertion port into which the end portion of the valve shaft driven linearly by the drive device 12 is inserted, and the valve shaft is driven linearly reciprocatingly. It accommodates a driving force transmission mechanism (for example, a rack and pinion mechanism, a link mechanism, a cam mechanism, etc.) that rotationally drives the rotating shaft in conjunction with the movement.
  • the substrate surface of the first substrate 50 is arranged along the rotation axis, and the main valve opening sensor 42 is located on the outer periphery of the substrate surface of the first substrate 50 around the axis of the rotation axis. It may be placed at opposite positions and the rotation angle of the rotation shaft may be measured in order to obtain the valve opening degree of the main valve 11.
  • the above-mentioned driving force transmission mechanism may be arranged outside the accommodating portion 6, and in this case, the end portion of the rotary shaft rotationally driven by the driving force transmission mechanism is inserted from the shaft insertion port.
  • the substrate surface of the first substrate 50 is arranged along the rotation axis inserted from the shaft insertion port, and the main valve opening sensor 42 determines the valve opening of the main valve 11 so that the valve shaft Instead of the rotation angle of 13, the rotation angle of the rotation axis may be measured.
  • the third substrate 52 is arranged close to the solenoid portion 3, and the magnetic sensor 46 is the third. It is placed on the substrate 52 of the above, and the strength of the magnetism generated by the solenoid unit 3 is measured.
  • the magnetic sensor 46 measures the strength of the magnetism generated by the solenoid unit 3 regardless of the presence or absence of the operation of the solenoid unit 3, thereby performing post-maintenance and predictive maintenance of the solenoid valve 1 and the fluid pressure drive valve 10. Can be realized.
  • Housing 610a ... First housing end, 610b ... Second housing end, 610c ... Shaft insertion port, 610d ... Body insertion port, 610e ... Cable insertion port, 611 ... Body, 612 ... Solenoid cover, 613 ... Terminal box cover, 700 ... Monitoring processing unit, 701 ... Abnormality judgment unit, 702 ... Internal storage unit, A ... Air

Abstract

[Problem] To provide a solenoid valve capable of monitoring a solenoid unit regardless of the presence or absence of operation of the solenoid unit and realizing correcting maintenance and predictive maintenance. [Solution] A solenoid valve (1) comprises a spool unit (2) that switches a flow path through which air (A) as a driving fluid flows, a solenoid unit (3) that displaces the spool unit (2) in response to an energized state, a third substrate (52) disposed close to the solenoid unit (3), and a magnetic sensor (46) that is placed on the third substrate (52) and measures a magnetic strength generated by the solenoid unit (3). The solenoid valve (1) further comprises an abnormality determination unit (701) that determines whether an abnormality has occurred in the solenoid unit (3) on the basis of the magnetic strength measured by the magnetic sensor (46).

Description

電磁弁solenoid valve
 本発明は、電磁弁及び流体圧駆動弁に関する。 The present invention relates to a solenoid valve and a fluid pressure drive valve.
 従来、電磁弁において異常が発生しているか否かの異常診断を行う様々な方法及び手段が知られている。例えば、特許文献1には、可動鉄心の動作及び弁体の駆動によって生じるソレノイド部の振動を検出する振動センサを備える電磁弁において、ソレノイド部が動作したときに振動センサにより検出されたソレノイド部の振動に応じて電磁弁の異常診断を行うことが開示されている。 Conventionally, various methods and means for diagnosing an abnormality as to whether or not an abnormality has occurred in a solenoid valve are known. For example, in Patent Document 1, in a solenoid valve including a vibration sensor that detects vibration of a solenoid portion generated by the operation of a movable iron core and driving of a valve body, the solenoid portion detected by the vibration sensor when the solenoid portion operates. It is disclosed that an abnormality diagnosis of a solenoid valve is performed in response to vibration.
特開2005-273835号公報Japanese Unexamined Patent Publication No. 2005-273835
 電磁弁及び当該電磁弁が適用される各種のシステムにおける稼働率・信頼性を向上させるためには、異常が発生した際にその異常を把握する事後保全のみならず、異常の兆候を把握する予兆保全を実現することが望まれている。しかし、特許文献1に開示された電磁弁は、上述したように、ソレノイド部が動作することで生じる振動を振動センサにより検出するものである。そのため、当該電磁弁では、異常診断を行う条件として、ソレノイド部を動作させることが要求されることから、ソレノイド部の動作が行われない状況(電磁弁が適用されるシステムの要求でソレノイド部を動作できない状況も含む。)では、異常診断を行うことができない。さらに、当該電磁弁では、ソレノイド部の動作が行われない状況が継続する場合に、ソレノイド部に生じる経時的な変化を監視することができず、また、予兆保全を実現することも困難であった。 In order to improve the operating rate and reliability of the solenoid valve and various systems to which the solenoid valve is applied, not only post-maintenance to grasp the abnormality when an abnormality occurs, but also a sign to grasp the sign of the abnormality. It is desired to realize maintenance. However, as described above, the solenoid valve disclosed in Patent Document 1 detects the vibration generated by the operation of the solenoid portion by the vibration sensor. Therefore, in the solenoid valve, it is required to operate the solenoid part as a condition for performing an abnormality diagnosis, so that the solenoid part is not operated (the solenoid part is operated at the request of the system to which the solenoid valve is applied). Abnormal diagnosis cannot be performed in situations where it cannot operate. Further, with the solenoid valve, it is not possible to monitor the change over time that occurs in the solenoid portion when the situation in which the solenoid portion is not operated continues, and it is also difficult to realize predictive maintenance. rice field.
 本発明は、このような事情に鑑みてなされたものであって、ソレノイド部の動作の有無に関わることなくソレノイド部を監視することを可能とし、また、事後保全及び予兆保全を実現することを可能とする電磁弁及び流体圧駆動弁を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to monitor the solenoid unit regardless of the presence or absence of operation of the solenoid unit, and to realize post-mortem maintenance and predictive maintenance. It is an object of the present invention to provide a solenoid valve and a fluid pressure driven valve that enable it.
 本発明は、上記課題を解決するものであって、本発明の一実施形態に係る電磁弁は、
 駆動流体が流れる流路を切り替えるスプール部と、
 通電状態に応じて前記スプール部を変位させるソレノイド部と、
 前記ソレノイド部に近接して配置される基板と、
 前記基板に載置されて、前記ソレノイド部が発生する磁気の強さを計測する磁気センサとを備える。
The present invention solves the above problems, and the solenoid valve according to the embodiment of the present invention is
A spool part that switches the flow path through which the drive fluid flows, and
A solenoid part that displaces the spool part according to the energized state, and
A substrate arranged close to the solenoid portion and
It is mounted on the substrate and includes a magnetic sensor that measures the strength of the magnetism generated by the solenoid unit.
 また、本発明の一実施形態に係る流体圧駆動弁は、
 上記電磁弁と、
 主弁と、
 前記主弁に連結された弁軸を前記駆動流体の流体圧に応じて駆動させることで前記主弁の開閉操作を行う駆動装置とを備え、
 前記電磁弁は、
  前記駆動装置に対して前記駆動流体の給排を制御する機能を有する。
Further, the fluid pressure drive valve according to the embodiment of the present invention is
With the above solenoid valve
Main valve and
A drive device for opening and closing the main valve by driving the valve shaft connected to the main valve according to the fluid pressure of the driving fluid is provided.
The solenoid valve is
It has a function of controlling the supply and discharge of the driving fluid to the driving device.
 本発明の一実施形態に係る電磁弁及び流体圧駆動弁によれば、基板が、ソレノイド部に近接して配置されるとともに、磁気センサが、当該基板に載置されて、当該ソレノイド部が発生する磁気の強さを計測する。 According to the solenoid valve and the fluid pressure drive valve according to the embodiment of the present invention, the substrate is arranged close to the solenoid portion, and the magnetic sensor is mounted on the substrate to generate the solenoid portion. Measure the strength of the magnetism.
 ここで、電磁弁に異常が発生しておらず正常に動作しているような場合において、磁気センサにより計測されるべき磁気の強さは、例えば、ソレノイド部の仕様(ソレノイドコイルの巻数、寸法)、コイル電流の設定電流値、ソレノイド部及び磁気センサの位置関係等に応じて事前に計算可能な値(設計磁気強度(所定の幅を有する値でもよい。))である。そのため、磁気センサが、例えば、通電状態とされたソレノイド部が発生する磁気の強さ(計測磁気強度)を所定のサンプリング周期で計測し、その計測磁気強度と、上記の設計磁気強度とを比較することにより、電磁弁の異常や異常の兆候を検出することが可能となる。 Here, when the solenoid valve is operating normally without any abnormality, the magnetic strength to be measured by the magnetic sensor is, for example, the specification of the solenoid part (number of turns and dimensions of the solenoid coil). ), A value that can be calculated in advance according to the set current value of the coil current, the positional relationship between the solenoid unit and the magnetic sensor, etc. (design magnetic strength (a value having a predetermined width may be used)). Therefore, for example, the magnetic sensor measures the magnetic strength (measured magnetic strength) generated by the solenoid portion that is energized at a predetermined sampling cycle, and compares the measured magnetic strength with the above-mentioned design magnetic strength. By doing so, it becomes possible to detect an abnormality or a sign of the abnormality of the solenoid valve.
 また、電磁弁に異常が発生しておらず正常に動作しているような場合において、ソレノイド部に対する通電状態及び非通電状態の切替前後で磁気センサにより計測されるべき磁気の強さとしては、非通電状態から通電状態に切り替えられるときは、ゼロから設計磁気強度に上昇し、通電状態から非通電状態に切り替えられるときは、設計磁気強度からゼロに下降することが想定される。そのため、磁界センサが、ソレノイド部の通電状態及び非通電状態の切替前後において、ソレノイド部が発生する磁気の強さ(計測磁気強度)を計測し、その計測磁気強度が、上記の想定に従って変化(上昇又は下降)しているか否かを確認することにより、電磁弁の異常を検出することが可能となる。 In addition, when the solenoid valve is operating normally without any abnormality, the magnetic strength to be measured by the magnetic sensor before and after switching between the energized state and the non-energized state of the solenoid part is It is assumed that when switching from the non-energized state to the energized state, the magnetic strength increases from zero to the design magnetic strength, and when switching from the energized state to the non-energized state, the design magnetic strength decreases to zero. Therefore, the magnetic field sensor measures the magnetic strength (measured magnetic strength) generated by the solenoid part before and after switching between the energized state and the non-energized state of the solenoid part, and the measured magnetic strength changes according to the above assumption ( By confirming whether or not the solenoid valve is rising or falling, it is possible to detect an abnormality in the solenoid valve.
 したがって、電磁弁及び流体圧駆動弁が磁気センサを備えることにより、ソレノイド部の動作の有無に関わることなくソレノイド部を監視することができ、また、事後保全及び予兆保全を実現することができる。 Therefore, since the solenoid valve and the fluid pressure drive valve are equipped with a magnetic sensor, the solenoid part can be monitored regardless of the presence or absence of operation of the solenoid part, and post-maintenance maintenance and predictive maintenance can be realized.
本発明の実施形態に係る流体圧駆動弁10の一例を示す断面図である。It is sectional drawing which shows an example of the fluid pressure drive valve 10 which concerns on embodiment of this invention. 本発明の実施形態に係る電磁弁1の一例を示す断面図である。It is sectional drawing which shows an example of the solenoid valve 1 which concerns on embodiment of this invention. 本発明の実施形態に係る電磁弁1の一例を示すブロック図である。It is a block diagram which shows an example of the solenoid valve 1 which concerns on embodiment of this invention. 本発明の実施形態に係る基板5に対する複数のセンサ4の載置例を示す模式図である。It is a schematic diagram which shows the mounting example of a plurality of sensors 4 on the substrate 5 which concerns on embodiment of this invention.
 以下、本発明の一実施形態について添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
(実施形態)
 図1は、本発明の実施形態に係る流体圧駆動弁10の一例を示す断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view showing an example of a fluid pressure drive valve 10 according to an embodiment of the present invention.
 流体圧駆動弁10は、配管100の途中に配置される主弁11と、主弁11に連結された弁軸13を駆動流体の流体圧に応じて駆動させることで主弁11の開閉操作を行う駆動装置12と、駆動装置12に対して駆動流体の給排を制御する機能を有する電磁弁1とを備える。 The fluid pressure drive valve 10 opens and closes the main valve 11 by driving the main valve 11 arranged in the middle of the pipe 100 and the valve shaft 13 connected to the main valve 11 according to the fluid pressure of the driving fluid. The drive device 12 is provided, and the solenoid valve 1 having a function of controlling the supply and discharge of the drive fluid to the drive device 12 is provided.
 流体圧駆動弁10は、例えば、プラント設備において各種のガスや石油等が流れる配管100に設置され、プラント設備に異常が発生したような緊急停止時に、配管100の流れを遮断するための緊急遮断弁として用いられる。なお、流体圧駆動弁10の設置場所や用途は、上記の例に限られない。 The fluid pressure drive valve 10 is installed in, for example, a pipe 100 through which various gases, oil, etc. flow in the plant equipment, and is an emergency shutoff for shutting off the flow of the pipe 100 in the event of an emergency stop such as when an abnormality occurs in the plant equipment. Used as a valve. The installation location and application of the fluid pressure drive valve 10 are not limited to the above examples.
 流体圧駆動弁10には、駆動流体の一例として、空気供給源14から空気(エアー)Aが供給されるものであり、空気供給源14からの空気Aは、第1の空気配管140を介して電磁弁1に供給され、さらに、第2の空気配管141を介して駆動装置12に供給される。また、流体圧駆動弁10には、外部装置15及び電磁弁1の間で各種のデータを送受信するための通信ケーブル150と、外部電源16から電磁弁1に電力を供給するための電力ケーブル160とが接続される。なお、駆動流体は、上記の空気Aに限られず、他の気体でもよいし、液体(例えば、油)でもよい。 Air (air) A is supplied to the fluid pressure drive valve 10 from the air supply source 14 as an example of the drive fluid, and the air A from the air supply source 14 is passed through the first air pipe 140. Is supplied to the electromagnetic valve 1 and further supplied to the drive device 12 via the second air pipe 141. Further, the fluid pressure drive valve 10 includes a communication cable 150 for transmitting and receiving various data between the external device 15 and the solenoid valve 1, and a power cable 160 for supplying electric power from the external power supply 16 to the solenoid valve 1. And are connected. The driving fluid is not limited to the above-mentioned air A, and may be another gas or a liquid (for example, oil).
 外部装置15は、例えば、プラント管理用のコンピュータ(ローカルサーバ及びクラウドサーバを含む。)、保守点検者が使用する診断用コンピュータ、又は、USBメモリや外付けHDD等の外部記憶部で構成されている。なお、外部装置15及び電磁弁1の間の通信は無線通信でもよい。 The external device 15 is composed of, for example, a computer for plant management (including a local server and a cloud server), a diagnostic computer used by a maintenance inspector, or an external storage unit such as a USB memory or an external HDD. There is. The communication between the external device 15 and the solenoid valve 1 may be wireless communication.
 本実施形態では、流体圧駆動弁10は、エアーレスクローズ方式を採用したものである。したがって、定常運転時は、空気供給源14から電磁弁1を介して駆動装置12に空気A(給気)を供給することで、主弁11が全開操作され、緊急停止時や試験運転時は、駆動装置12から電磁弁1を介して空気A(排気)を排出することで、主弁11が全閉操作される。なお、流体圧駆動弁10は、エアーレスオープン方式を採用したものでもよく、その場合には、駆動装置12に空気Aを供給することで全開操作され、駆動装置12から空気Aを排出することで主弁11を全閉操作されてもよい。 In the present embodiment, the fluid pressure drive valve 10 adopts an airless closing method. Therefore, during steady operation, the main valve 11 is fully opened by supplying air A (air supply) from the air supply source 14 to the drive device 12 via the solenoid valve 1, and during emergency stop or test operation. By discharging air A (exhaust) from the drive device 12 via the solenoid valve 1, the main valve 11 is fully closed. The fluid pressure drive valve 10 may adopt an airless open system. In that case, the fluid pressure drive valve 10 is fully opened by supplying the air A to the drive device 12, and the air A is discharged from the drive device 12. The main valve 11 may be fully closed.
 主弁11は、例えば、ボールバルブと呼ばれる弁で構成されている。主弁11は、その構成例として、配管100の途中に配置される弁箱110と、弁箱110内に回転可能に設けられたボール状の弁体111とを備え、弁体111の上部には、弁軸13の第1の端部130Aが連結されている。弁軸13が0度から90度に回転駆動されることに応じて弁箱110内で弁体111が回転し、主弁11の全開状態(図1に示す状態)と全閉状態が切り替えられる。なお、主弁11として用いられる弁は、ボールバルブに限られず、例えば、バタフライバルブ等の他の形式でもよい。 The main valve 11 is composed of, for example, a valve called a ball valve. As a configuration example thereof, the main valve 11 includes a valve box 110 arranged in the middle of the pipe 100 and a ball-shaped valve body 111 rotatably provided in the valve box 110, and is provided on the upper portion of the valve body 111. Is connected to the first end 130A of the valve shaft 13. The valve body 111 rotates in the valve box 110 in response to the valve shaft 13 being rotationally driven from 0 degrees to 90 degrees, and the main valve 11 can be switched between a fully open state (state shown in FIG. 1) and a fully closed state. .. The valve used as the main valve 11 is not limited to the ball valve, and may be another type such as a butterfly valve.
 駆動装置12は、例えば、主弁11と電磁弁1との間に配置されるとともに、単作動式のエアシリンダ機構として構成されている。駆動装置12は、その構成例として、円筒状のシリンダ120と、シリンダ内に往復直線移動可能に設けられ、ピストンロッド121を介して連結された一対のピストン122A、122Bと、第1のピストン122A側に設けられたコイルばね123と、第2のピストン122B側に形成された空気給排口124と、シリンダ120を径方向に沿って貫通するように配置された弁軸13とピストンロッド121とが直交する部分に設けられた伝達機構125とを備える。なお、駆動装置12は、単作動式に限られず、例えば、複作動式等の他の形式で構成されていてもよい。 The drive device 12 is arranged between the main valve 11 and the solenoid valve 1, for example, and is configured as a single-actuated air cylinder mechanism. As a configuration example thereof, the drive device 12 includes a cylindrical cylinder 120, a pair of pistons 122A and 122B provided in the cylinder so as to be reciprocally linearly movable, and connected via a piston rod 121, and a first piston 122A. A coil spring 123 provided on the side, an air supply / discharge port 124 formed on the second piston 122B side, a valve shaft 13 and a piston rod 121 arranged so as to penetrate the cylinder 120 along the radial direction. It is provided with a transmission mechanism 125 provided at a portion where the cylinders are orthogonal to each other. The drive device 12 is not limited to the single-acting type, and may be configured in another form such as a double-acting type.
 第1のピストン122Aは、コイルばね123により主弁11を閉じる方向に付勢される。第2のピストン122Bは、空気給排口124から供給された空気A(給気)によりコイルばね123の付勢力に抗して主弁11を開く方向に押圧される。伝達機構125は、例えば、ラックアンドピニオン機構、リンク機構、カム機構等で構成されており、ピストンロッド121の往復直線運動を回転運動に変換して弁軸13に伝達する。 The first piston 122A is urged by the coil spring 123 in the direction of closing the main valve 11. The second piston 122B is pressed by the air A (air supply) supplied from the air supply / exhaust port 124 in the direction of opening the main valve 11 against the urging force of the coil spring 123. The transmission mechanism 125 is composed of, for example, a rack and pinion mechanism, a link mechanism, a cam mechanism, etc., and converts the reciprocating linear motion of the piston rod 121 into a rotary motion and transmits it to the valve shaft 13.
 弁軸13は、シャフト状に形成されており、回動可能な状態で駆動装置12を貫通するようにして配置される。弁軸13の第1の端部130Aは、主弁11に連結されるとともに、弁軸13の第2の端部130Bは、電磁弁1により軸支される。なお、弁軸13は、複数のシャフトが、例えば、カップリング等により連結されたものでもよい。 The valve shaft 13 is formed in a shaft shape and is arranged so as to penetrate the drive device 12 in a rotatable state. The first end 130A of the valve shaft 13 is connected to the main valve 11, and the second end 130B of the valve shaft 13 is pivotally supported by the solenoid valve 1. The valve shaft 13 may have a plurality of shafts connected by, for example, a coupling or the like.
 電磁弁1は、駆動装置12に対して空気Aの給排を制御する機能を有し、例えば、2ポジションでノーマルクローズタイプ(通電時「開」、非通電時「閉」)の三方電磁弁として構成されている。電磁弁1は、屋内型又は防爆型の電磁弁1のハウジングとして機能する収容部6の内部に、空気Aが流れる流路を切り替えるスプール部2と、通電状態(通電時又は非通電時)に応じてスプール部2を変位させるソレノイド部3とを備える。なお、電磁弁1は、2ポジションでノーマルクローズタイプの三方電磁弁に限られず、3ポジションでもよく、ノーマルオープンタイプでもよく、四方電磁弁等でもよく、任意の組み合わせに基づく各種の形成で構成されていてもよい。また、本実施形態では、電磁弁1は、流体圧駆動弁10におけるパイロットバルブとして用いられるものであるが、電磁弁1の用途はこれに限られない。 The solenoid valve 1 has a function of controlling the supply and discharge of air A to the drive device 12, and is, for example, a three-way solenoid valve of a normally closed type (“open” when energized, “closed” when not energized) at two positions. It is configured as. The solenoid valve 1 has a spool portion 2 that switches the flow path through which the air A flows inside the accommodating portion 6 that functions as a housing of the indoor type or explosion-proof type solenoid valve 1, and is in an energized state (when energized or de-energized). It is provided with a solenoid unit 3 that displaces the spool unit 2 accordingly. The solenoid valve 1 is not limited to a two-position, normally closed type three-way solenoid valve, but may be a three-position solenoid valve, a normally open type, a four-way solenoid valve, or the like, and is composed of various formations based on any combination. May be. Further, in the present embodiment, the solenoid valve 1 is used as a pilot valve in the fluid pressure drive valve 10, but the application of the solenoid valve 1 is not limited to this.
 スプール部2は、空気供給源14に第1の空気配管140を介して接続される入力ポート20と、駆動装置12に第2の空気配管141を介して接続される出力ポート21と、駆動装置12からの排気を排出する排気ポート22とを備える。 The spool portion 2 has an input port 20 connected to the air supply source 14 via the first air pipe 140, an output port 21 connected to the drive device 12 via the second air pipe 141, and a drive device. The exhaust port 22 for discharging the exhaust from the 12 is provided.
 ソレノイド部3は、通電時に、入力ポート20と出力ポート21との間を連通するように、スプール部2を変位させ、非通電時に、出力ポート21と排気ポート22との間を連通するように、スプール部2を変位させる。 The solenoid unit 3 displaces the spool unit 2 so as to communicate between the input port 20 and the output port 21 when energized, and communicates between the output port 21 and the exhaust port 22 when the power is off. , Displace the spool portion 2.
 したがって、電磁弁1が通電状態である場合には、空気供給源14からの空気A(給気)が、第1の空気配管140、入力ポート20、出力ポート21及び第2の空気配管141の順に流れて、空気給排口124に供給されることで、第2のピストン122Bが押圧されてコイルばね123が圧縮する。そして、コイルばね123の圧縮に応じてピストンロッド121が移動した分だけピストンロッド121及び伝達機構125を介して弁軸13が回転駆動されると、弁箱110内で弁体111が回転し、主弁11が全開状態に操作される。 Therefore, when the solenoid valve 1 is energized, the air A (air supply) from the air supply source 14 is the first air pipe 140, the input port 20, the output port 21, and the second air pipe 141. The second piston 122B is pressed and the coil spring 123 is compressed by flowing in this order and being supplied to the air supply / discharge port 124. Then, when the valve shaft 13 is rotationally driven via the piston rod 121 and the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the compression of the coil spring 123, the valve body 111 rotates in the valve box 110. The main valve 11 is operated in the fully open state.
 一方、電磁弁1が非通電状態である場合には、シリンダ120内の空気A(排気)が、空気給排口124から第2の空気配管141、出力ポート21及び排気ポート22の順に流れて、外気に排出されることで、第2のピストン122Bの押圧力が低下し、コイルばね123が圧縮状態から復元する。そして、コイルばね123の復元に応じてピストンロッド121が移動した分だけ伝達機構125を介して弁軸13が回転駆動されると、弁箱110内で弁体111が回転し、主弁11が全閉状態に操作される。 On the other hand, when the solenoid valve 1 is in the non-energized state, the air A (exhaust) in the cylinder 120 flows from the air supply / exhaust port 124 to the second air pipe 141, the output port 21, and the exhaust port 22 in this order. By being discharged to the outside air, the pressing force of the second piston 122B is reduced, and the coil spring 123 is restored from the compressed state. Then, when the valve shaft 13 is rotationally driven via the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the restoration of the coil spring 123, the valve body 111 rotates in the valve box 110, and the main valve 11 rotates. It is operated in the fully closed state.
(電磁弁の構成について)
 図2は、本発明の実施形態に係る電磁弁1の一例を示す断面図である。
(About the configuration of the solenoid valve)
FIG. 2 is a cross-sectional view showing an example of the solenoid valve 1 according to the embodiment of the present invention.
 電磁弁1は、上記のスプール部2及びソレノイド部3の他に、電磁弁1の各部の状態を取得する複数のセンサ4と、複数のセンサ4のうち少なくとも1つが載置された基板5と、これらスプール部2、ソレノイド部3、複数のセンサ4及び基板5を収容する収容部6とを備える。 In addition to the spool portion 2 and the solenoid portion 3 described above, the solenoid valve 1 includes a plurality of sensors 4 for acquiring the state of each portion of the solenoid valve 1 and a substrate 5 on which at least one of the plurality of sensors 4 is mounted. A spool portion 2, a solenoid portion 3, a plurality of sensors 4, and an accommodating portion 6 for accommodating the substrate 5 are provided.
 収容部6は、スプール部2を収容する第1の収容部60と、第1の収容部60に隣接されるとともに、ソレノイド部3、複数のセンサ4及び基板5を収容する第2の収容部61と、通信ケーブル150及び電力ケーブル160が接続されるターミナルボックス62とを備える。なお、第1の収容部60及び第2の収容部61は、例えば、アルミニウム等の金属材料で製作されている。 The accommodating portion 6 is adjacent to the first accommodating portion 60 accommodating the spool portion 2 and the first accommodating portion 60, and also accommodates the solenoid unit 3, the plurality of sensors 4, and the substrate 5. A terminal box 62 to which the communication cable 150 and the power cable 160 are connected is provided. The first accommodating portion 60 and the second accommodating portion 61 are made of, for example, a metal material such as aluminum.
 第1の収容部60は、入力ポート20、出力ポート21及び排気ポート22として、それぞれ機能する開口部(不図示)を有する。 The first accommodating portion 60 has openings (not shown) that function as input ports 20, output ports 21, and exhaust ports 22, respectively.
 第2の収容部61は、両端(第1のハウジング端部610a及び第2のハウジング端部610b)が開放された円筒状のハウジング610と、ハウジング610の内部に配置されるボディー611と、第1のハウジング端部610aに固定されたソレノイド部3を外気から覆うソレノイドカバー612と、第2のハウジング端部610bに固定されたターミナルボックス62を外気から覆うターミナルボックスカバー613とを備える。 The second accommodating portion 61 includes a cylindrical housing 610 with both ends (first housing end 610a and second housing end 610b) open, a body 611 arranged inside the housing 610, and a second housing portion 61. A solenoid cover 612 that covers the solenoid portion 3 fixed to the housing end portion 610a of 1 from the outside air, and a terminal box cover 613 that covers the terminal box 62 fixed to the second housing end portion 610b from the outside air are provided.
 ハウジング610は、その下部に形成されて弁軸13の第2の端部130Bが挿入される軸挿入口610cと、その上部に形成されてボディー611が挿入されるボディー挿入口610dと、第2のハウジング端部610b側に形成されて通信ケーブル150及び電力ケーブル160が挿入されるケーブル挿入口610eとを有する。 The housing 610 has a shaft insertion port 610c formed in the lower portion thereof and into which the second end 130B of the valve shaft 13 is inserted, a body insertion port 610d formed in the upper portion thereof into which the body 611 is inserted, and a second. It has a cable insertion port 610e formed on the housing end portion 610b side of the above and into which the communication cable 150 and the power cable 160 are inserted.
 第1の収容部60及び第2の収容部61には、ボディー611を貫通するようにして、入力側流路26から分岐して入力側流路26と第1の圧力センサ40との間を連通する第1の流路63と、出力側流路27から分岐して出力側流路27と第2の圧力センサ41との間を連通する第2の流路64と、スプール部2とソレノイド部3とを連動させるための空気Aが流れるスプール流路65が形成されている。 The first accommodating portion 60 and the second accommodating portion 61 are branched from the input side flow path 26 so as to penetrate the body 611, and between the input side flow path 26 and the first pressure sensor 40. A first flow path 63 that communicates, a second flow path 64 that branches from the output side flow path 27 and communicates between the output side flow path 27 and the second pressure sensor 41, a spool portion 2 and a solenoid. A spool flow path 65 through which air A for interlocking with the portion 3 flows is formed.
 スプール部2は、スプールケースとして機能する第2の収容部61内に形成されたスプールホール23と、スプールホール23内に移動可能に配置されたスプールバルブ24と、スプールバルブ24を付勢するスプールスプリング25と、入力ポート20とスプールホール23との間を連通する入力側流路26と、出力ポート21とスプールホール23との連通する出力側流路27と、排気ポート22とスプールホール23との間を連通する排気流路28とを備える。 The spool portion 2 includes a spool hole 23 formed in a second accommodating portion 61 that functions as a spool case, a spool valve 24 that is movably arranged in the spool hole 23, and a spool that urges the spool valve 24. The spring 25, the input side flow path 26 communicating between the input port 20 and the spool hole 23, the output side flow path 27 communicating between the output port 21 and the spool hole 23, the exhaust port 22 and the spool hole 23. It is provided with an exhaust flow path 28 that communicates between the two.
 ソレノイド部3は、ソレノイドケース30と、ソレノイドケース30内に収容されたソレノイドコイル31と、ソレノイドコイル31内に移動可能に配置された可動鉄芯32と、ソレノイドコイル31内に固定状態で配置された固定鉄芯33と、可動鉄芯32を付勢するソレノイドスプリング34とを備える。 The solenoid unit 3 is arranged in a solenoid case 30, a solenoid coil 31 housed in the solenoid case 30, a movable iron core 32 movably arranged in the solenoid coil 31, and a fixed state in the solenoid coil 31. A fixed iron core 33 and a solenoid spring 34 for urging the movable iron core 32 are provided.
 電磁弁1が非通電状態から通電状態に切り替えられた場合には、ソレノイド部3において、コイル電流がソレノイドコイル31に流れることによりソレノイドコイル31が電磁力を発生し、当該電磁力により可動鉄芯32がソレノイドスプリング34の付勢力に抗して固定鉄芯33に吸引されることで、スプール流路65を流れる空気Aの流通状態が切り替えられる。そして、スプール部2において、スプール流路65を流れる空気Aの流通状態が切り替えられたことにより、スプールバルブ24がスプールスプリング25の付勢力に抗して移動されることで、入力ポート20と排気ポート22との間を連通する状態から、入力ポート20と出力ポート21との間を連通する状態に切り替えられる。 When the solenoid valve 1 is switched from the non-energized state to the energized state, the solenoid coil 31 generates an electromagnetic force when the coil current flows through the solenoid coil 31 in the solenoid unit 3, and the movable iron core is generated by the electromagnetic force. When the 32 is sucked into the fixed iron core 33 against the urging force of the solenoid spring 34, the flow state of the air A flowing through the spool flow path 65 is switched. Then, in the spool portion 2, the flow state of the air A flowing through the spool flow path 65 is switched, so that the spool valve 24 is moved against the urging force of the spool spring 25, so that the input port 20 and the exhaust are exhausted. The state of communicating with the port 22 can be switched to the state of communicating between the input port 20 and the output port 21.
 基板5は、基板面500A、500Bが軸挿入口610cから挿入された弁軸13に沿うように配置された第1の基板50と、ターミナルボックス62に近接して配置された第2の基板51と、ソレノイド部3に近接して配置された第3の基板52とを備える。 The substrate 5 includes a first substrate 50 arranged so that the substrate surfaces 500A and 500B are arranged along the valve shaft 13 inserted from the shaft insertion port 610c, and a second substrate 51 arranged close to the terminal box 62. And a third substrate 52 arranged close to the solenoid unit 3.
 第1の基板50の基板面500A、500Bのうち、第1の基板面500A側には、ボディー611、ソレノイド部3及び第3の基板52が配置される。第1の基板面500A側と反対側の第2の基板面500B側には、第2の基板51及びターミナルボックス62が配置される。 Of the substrate surfaces 500A and 500B of the first substrate 50, the body 611, the solenoid unit 3, and the third substrate 52 are arranged on the first substrate surface 500A side. The second substrate 51 and the terminal box 62 are arranged on the second substrate surface 500B side opposite to the first substrate surface 500A side.
 第1の基板50に載置されるセンサ4は、例えば、入力側流路26及び第1の流路63を流れる空気Aの流体圧を計測する第1の圧力センサ40と、出力側流路27及び第2の流路64を流れる空気Aの流体圧を計測する第2の圧力センサ41と、弁軸13が回転駆動するときの回転角度を計測し、当該回転角度に応じて主弁11の弁開度情報を取得する主弁開度センサ42とを含む。これにより、1つの基板(第1の基板50)に、第1の圧力センサ40、第2の圧力センサ41及び主弁開度センサ42が集約されるので、電磁弁1及び流体圧駆動弁10が正常に動作したか否かを適切に診断するために必要となる監視機能を簡易な構成で実現することができる。 The sensor 4 mounted on the first substrate 50 includes, for example, a first pressure sensor 40 for measuring the fluid pressure of air A flowing through the input side flow path 26 and the first flow path 63, and an output side flow path. The second pressure sensor 41 that measures the fluid pressure of the air A flowing through the 27 and the second flow path 64 and the rotation angle when the valve shaft 13 is rotationally driven are measured, and the main valve 11 is measured according to the rotation angle. Includes a main valve opening sensor 42 that acquires valve opening information. As a result, the first pressure sensor 40, the second pressure sensor 41, and the main valve opening sensor 42 are integrated on one substrate (first substrate 50), so that the solenoid valve 1 and the fluid pressure drive valve 10 are integrated. It is possible to realize the monitoring function required for properly diagnosing whether or not the operation is normal with a simple configuration.
 主弁開度センサ42は、例えば、磁気センサにより構成されており、弁軸13の第2の端部130Bに取り付けられた永久磁石131が発生する磁気の強さを計測し、当該磁気の強さに応じて主弁11の弁開度情報を取得する。 The main valve opening sensor 42 is composed of, for example, a magnetic sensor, measures the magnetic strength generated by the permanent magnet 131 attached to the second end 130B of the valve shaft 13, and measures the magnetic strength. Correspondingly, the valve opening information of the main valve 11 is acquired.
 主弁開度センサ42は、軸挿入口610cから挿入された弁軸13に沿うように配置された第1の基板50の第1の基板面500Aのうち弁軸13の軸周りの外周に対向する位置に載置される。これにより、収容部6内において、配置スペースを無駄にすることなく、第1の基板50に載置された主弁開度センサ42と、弁軸13の第2の端部130Bとを近接して配置することが可能となり、弁開度情報を正確に取得することができる。 The main valve opening sensor 42 faces the outer periphery of the valve shaft 13 around the axis of the first board surface 500A of the first board 50 arranged along the valve shaft 13 inserted from the shaft insertion port 610c. It is placed in the position to be used. As a result, in the accommodating portion 6, the main valve opening sensor 42 mounted on the first substrate 50 and the second end portion 130B of the valve shaft 13 are brought close to each other without wasting the arrangement space. The valve opening information can be accurately acquired.
 主弁開度センサ42は、第1の基板50において、第1の圧力センサ40及び第2の圧力センサ41よりも軸挿入口610c寄りに載置される。これにより、第1の圧力センサ40に連通する第1の流路63と、第2の圧力センサ41に連通する第2の流路64とが、主弁開度センサ42及び弁軸13の第2の端部130Bから離間した位置に配置されるので、第1の流路63及び第2の流路64の形状や配置を簡素化することができる。 The main valve opening sensor 42 is mounted on the first substrate 50 closer to the shaft insertion port 610c than the first pressure sensor 40 and the second pressure sensor 41. As a result, the first flow path 63 communicating with the first pressure sensor 40 and the second flow path 64 communicating with the second pressure sensor 41 are the second of the main valve opening sensor 42 and the valve shaft 13. Since it is arranged at a position separated from the end portion 130B of 2, the shape and arrangement of the first flow path 63 and the second flow path 64 can be simplified.
 第3の基板52に載置されるセンサ4は、例えば、ソレノイド部3が発生する磁気の強さを計測する磁気センサ46を含む。磁気センサ46は、電磁弁1が外部電源16から電力の供給を受けている場合において、ソレノイド部3が通電状態とされて、コイル電流がソレノイドコイル31に流れることにより発生する磁気の強さを計測する。 The sensor 4 mounted on the third substrate 52 includes, for example, a magnetic sensor 46 that measures the magnetic strength generated by the solenoid unit 3. When the solenoid valve 1 is supplied with electric power from the external power source 16, the magnetic sensor 46 determines the magnetic strength generated by the solenoid unit 3 being energized and the coil current flowing through the solenoid coil 31. measure.
 その際、電磁弁1に異常が発生しておらず正常に動作しているような場合において、磁気センサ46により計測されるべき磁気の強さは、例えば、ソレノイド部3の仕様(ソレノイドコイル31の巻数、寸法)、コイル電流の設定電流値、ソレノイド部3及び磁気センサ46の位置関係等に応じて事前に計算可能な値(設計磁気強度(所定の幅を有する値でもよい。))である。そのため、磁気センサ46が、通電状態とされたソレノイド部3が発生する磁気の強さ(計測磁気強度)を所定のサンプリング周期で計測し、その計測磁気強度と、上記の設計磁気強度とを比較することにより、電磁弁の異常や異常の兆候を検出することが可能となる。 At that time, when the solenoid valve 1 is operating normally without any abnormality, the magnetic strength to be measured by the magnetic sensor 46 is, for example, the specification of the solenoid unit 3 (solenoid coil 31). With a value that can be calculated in advance according to the number of turns and dimensions of the coil current, the set current value of the coil current, the positional relationship between the solenoid unit 3 and the magnetic sensor 46, etc. (design magnetic strength (a value having a predetermined width may be used)). be. Therefore, the magnetic sensor 46 measures the magnetic strength (measured magnetic strength) generated by the solenoid unit 3 in the energized state at a predetermined sampling cycle, and compares the measured magnetic strength with the above-mentioned design magnetic strength. By doing so, it becomes possible to detect an abnormality or a sign of the abnormality of the solenoid valve.
 また、電磁弁1に異常が発生しておらず正常に動作しているような場合において、ソレノイド部3に対する通電状態及び非通電状態の切替前後で磁気センサ46により計測されるべき磁気の強さとしては、非通電状態から通電状態に切り替えられるときは、ゼロから設計磁気強度に上昇し、通電状態から非通電状態に切り替えられるときは、設計磁気強度からゼロに下降することが想定される。そのため、磁界センサが、ソレノイド部3の通電状態及び非通電状態の切替前後において、ソレノイド部3が発生する磁気の強さ(計測磁気強度)を計測し、その計測磁気強度が、上記の想定に従って変化(上昇又は下降)しているか否かを確認することにより、電磁弁の異常を検出することが可能となる。 Further, when the solenoid valve 1 is operating normally without any abnormality, the magnetic strength to be measured by the magnetic sensor 46 before and after switching between the energized state and the non-energized state of the solenoid unit 3. It is assumed that when the non-energized state is switched to the energized state, the magnetic strength increases from zero to the design magnetic strength, and when the non-energized state is switched to the non-energized state, the design magnetic strength decreases to zero. Therefore, the magnetic field sensor measures the magnetic strength (measured magnetic strength) generated by the solenoid unit 3 before and after switching between the energized state and the non-energized state of the solenoid unit 3, and the measured magnetic strength is in accordance with the above assumption. By confirming whether or not there is a change (rising or falling), it is possible to detect an abnormality in the solenoid valve.
 なお、磁気センサ46により計測された磁気の強さからコイル電流の電流値を求めることも可能である。そのため、電磁弁1の異常を検出する際、計測磁気強度を判定基準とするのではなく、計測磁気強度から求められたコイル電流の電流値を判定基準として、例えば、コイル電流の設定電流値と比較するようにしてもよい。 It is also possible to obtain the current value of the coil current from the magnetic strength measured by the magnetic sensor 46. Therefore, when detecting an abnormality in the solenoid valve 1, the measured magnetic strength is not used as a judgment standard, but the current value of the coil current obtained from the measured magnetic strength is used as a judgment standard, for example, the set current value of the coil current. You may try to compare.
 ここで、第3の基板52は、上述したように、ソレノイド部3に近接して配置されたものであるが、「近接」とは、磁気センサ46によりソレノイド部3(特にソレノイドコイル31)が発生する磁気の強さを計測可能な範囲内に、第3の基板52とソレノイド部3とが配置されている状態をいう。したがって、第3の基板52とソレノイドケース30とは、両者が接触するようにして配置されていてもよいし、また、所定の間隔を空けて配置されていてもよく、例えば、スペーサ等を介してソレノイドケース30に取り付けられていてもよいし、第2の収容部61の内壁面に取り付けられていてもよい。 Here, the third substrate 52 is arranged close to the solenoid unit 3 as described above, and "proximity" means that the solenoid unit 3 (particularly the solenoid coil 31) is moved by the magnetic sensor 46. A state in which the third substrate 52 and the solenoid unit 3 are arranged within a range in which the generated magnetic strength can be measured. Therefore, the third substrate 52 and the solenoid case 30 may be arranged so as to be in contact with each other, or may be arranged at a predetermined interval, for example, via a spacer or the like. It may be attached to the solenoid case 30 or may be attached to the inner wall surface of the second accommodating portion 61.
 また、第3の基板52は、ソレノイドケース30の外側に配置されるとともに、収容部6の内側に配置される。本実施形態では、第2の収容部61を構成するハウジング610及びソレノイドカバー612により形成される空間内に、ソレノイド部3を収容するとともに、ソレノイドケース30の外側に配置される。これにより、第3の基板52及び磁気センサ46は、外気に曝されない状態で保護されるとともに、ソレノイドコイル31が発生する磁気を確実に計測することができる。 Further, the third substrate 52 is arranged outside the solenoid case 30 and inside the accommodating portion 6. In the present embodiment, the solenoid portion 3 is accommodated in the space formed by the housing 610 and the solenoid cover 612 constituting the second accommodating portion 61, and is arranged outside the solenoid case 30. As a result, the third substrate 52 and the magnetic sensor 46 are protected without being exposed to the outside air, and the magnetism generated by the solenoid coil 31 can be reliably measured.
 その際、図2の矢印R1でソレノイドコイル31の径方向を示すとき、磁気センサ46は、ソレノイドコイル31の径方向外側に配置される。また、磁気センサ46は、ソレノイドコイル31の軸方向に対して、ソレノイドケース30の両端部内側(図2の矢印Y1)に配置されるのが好ましく、さらにソレノイドコイル31の両端部内側(図2の矢印Y2)に配置されるのがより好ましい。なお、第3の基板52に載置される磁気センサ46の数は、1つに限られず、複数でもよい。また、第3の基板52とは別の基板にさらに磁気センサ46が載置されて、当該別の基板が、第3の基板52とは別の位置に配置されるとともに、ソレノイド部3に近接して配置されるようにしてもよい。 At that time, when the radial direction of the solenoid coil 31 is indicated by the arrow R1 in FIG. 2, the magnetic sensor 46 is arranged outside the radial direction of the solenoid coil 31. Further, the magnetic sensor 46 is preferably arranged inside both ends of the solenoid case 30 (arrow Y1 in FIG. 2) with respect to the axial direction of the solenoid coil 31, and is further inside both ends of the solenoid coil 31 (FIG. 2). It is more preferable to be arranged at the arrow Y2). The number of magnetic sensors 46 mounted on the third substrate 52 is not limited to one, and may be plural. Further, the magnetic sensor 46 is further mounted on a substrate different from the third substrate 52, and the other substrate is arranged at a position different from that of the third substrate 52 and is close to the solenoid unit 3. May be arranged.
 図3は、本発明の実施形態に係る電磁弁1の一例を示すブロック図である。図4は、本発明の実施形態に係る基板5に対する複数のセンサ4の載置例を示す模式図である。なお、図4は、各センサ4が基板5に載置された位置を厳密に示すものではなく、各センサ4が、第1乃至第3の基板50~52のいずれの基板に載置されているかの載置状態を示すものである。 FIG. 3 is a block diagram showing an example of the solenoid valve 1 according to the embodiment of the present invention. FIG. 4 is a schematic view showing an example of mounting a plurality of sensors 4 on the substrate 5 according to the embodiment of the present invention. Note that FIG. 4 does not strictly indicate the position where each sensor 4 is mounted on the substrate 5, and each sensor 4 is mounted on any of the first to third substrates 50 to 52. It shows the mounting state of the sensor.
 電磁弁1は、電気的な構成例として、上記の第1乃至第3の基板50~52及び複数のセンサ4の他に、電磁弁1を制御する制御部7と、外部装置15と通信する機能を有する通信部(外部送信部)8と、外部電源16に接続される電源回路部9とを備える。 As an example of electrical configuration, the solenoid valve 1 communicates with the control unit 7 that controls the solenoid valve 1 and the external device 15 in addition to the above-mentioned first to third substrates 50 to 52 and the plurality of sensors 4. It includes a communication unit (external transmission unit) 8 having a function and a power supply circuit unit 9 connected to the external power supply 16.
 複数のセンサ4は、各部の物理量を計測するセンサ群として、上記の第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42及び磁気センサ46の他に、ソレノイド部3に対する供給電圧を計測する電圧センサ43と、ソレノイド部3における通電時の電流値及び非通電時の抵抗値を計測する電流・抵抗センサ44と、収容部6の内部温度を計測する温度センサ45とを備える。 The plurality of sensors 4 refer to the solenoid unit 3 in addition to the above-mentioned first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, and magnetic sensor 46 as a group of sensors for measuring the physical quantity of each unit. A voltage sensor 43 for measuring the supply voltage, a current / resistance sensor 44 for measuring the current value when the solenoid unit 3 is energized and a resistance value when the solenoid unit is not energized, and a temperature sensor 45 for measuring the internal temperature of the accommodating unit 6. Be prepared.
 また、複数のセンサ4は、各部の動作履歴に関する情報を取得するセンサ群として、ソレノイド部3の稼働時間としてソレノイド部に対する通電時間の合計及び現在の通電連働時間の少なくとも一方を計測する稼働時間計47と、電磁弁1、駆動装置12及び主弁11それぞれの作動回数を計数する作動カウンタ48とを備える。 In addition, the plurality of sensors 4 measure at least one of the total energization time for the solenoid unit and the current energization continuous time as the operating time of the solenoid unit 3 as a sensor group for acquiring information on the operation history of each unit. A total of 47 and an operation counter 48 for counting the number of operations of each of the solenoid valve 1, the drive device 12, and the main valve 11 are provided.
 制御部7は、複数のセンサ4により取得された電磁弁1の各部の状態を示す情報を処理するとともに、電磁弁1の各部を制御するマイクロコントローラ70と、ソレノイド部3の通電状態を制御し、試験運転時における主弁11の開閉操作を行うバルブテストスイッチ71とを備える。 The control unit 7 processes information indicating the state of each part of the solenoid valve 1 acquired by the plurality of sensors 4, and also controls the state of energization of the microcontroller 70 that controls each part of the solenoid valve 1 and the solenoid unit 3. A valve test switch 71 that opens and closes the main valve 11 during a test operation is provided.
 マイクロコントローラ70は、CPU(Central Processing Unit)等のプロセッサ(不図示)と、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される内部記憶部702とを備える。 The microcontroller 70 includes a processor (not shown) such as a CPU (Central Processing Unit) and an internal storage unit 702 composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 内部記憶部702には、電磁弁1が動作するときの設定値、電磁弁1が動作したときの一時記憶データ、及び、電磁弁1の動作を制御する電磁弁制御プログラム等が記憶されている。 The internal storage unit 702 stores a set value when the solenoid valve 1 operates, temporary storage data when the solenoid valve 1 operates, an electromagnetic valve control program that controls the operation of the solenoid valve 1, and the like. ..
 マイクロコントローラ70のプロセッサは、内部記憶部702に記憶された電磁弁制御プログラムを実行することにより、複数のセンサ4により電磁弁1の各部の状態を監視する監視処理を実行する監視処理部700と、磁気センサ46により計測された磁気の強さに基づいて、ソレノイド部3に異常が発生しているか否かを判定する異常判定部701として機能する。 The processor of the microcontroller 70 has a monitoring processing unit 700 that executes a monitoring process for monitoring the state of each part of the solenoid valve 1 by a plurality of sensors 4 by executing a solenoid valve control program stored in the internal storage unit 702. It functions as an abnormality determination unit 701 that determines whether or not an abnormality has occurred in the solenoid unit 3 based on the magnetic strength measured by the magnetic sensor 46.
 監視処理部700は、定常運転中に、主弁11の開閉操作の有無に関わることなく、複数のセンサ4のうち少なくとも1つのセンサ4(以下、「第1の監視対象センサ4A」という。)を用いて電磁弁1の状態を監視する「第1の監視処理」を実行する。また、監視処理部700は、主弁11の開閉操作が行われる非定常運転中に、複数のセンサ4のうち少なくとも1つのセンサ(以下、「第2の監視対象センサ4B」という。)を用いて電磁弁1の状態を監視する「第2の監視処理」を実行する。なお、第1の監視対象センサ4Aは、例えば、複数のセンサ4の全て(第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42、電圧センサ43、電流・抵抗センサ44、温度センサ45、磁気センサ46、稼働時間計47、及び、作動カウンタ48)であるが、これらの例に限られない。また、第2の監視対象センサ4Bは、例えば、第2の圧力センサ41及び主弁開度センサ42であるが、これらの例に限られない。 During steady operation, the monitoring processing unit 700 is at least one of the plurality of sensors 4 regardless of whether or not the main valve 11 is opened / closed (hereinafter, referred to as “first monitored sensor 4A”). Is used to execute the "first monitoring process" for monitoring the state of the solenoid valve 1. Further, the monitoring processing unit 700 uses at least one of the plurality of sensors 4 (hereinafter, referred to as “second monitoring target sensor 4B”) during the unsteady operation in which the main valve 11 is opened and closed. The "second monitoring process" for monitoring the state of the solenoid valve 1 is executed. The first monitored sensor 4A is, for example, all of the plurality of sensors 4 (first pressure sensor 40, second pressure sensor 41, main valve opening sensor 42, voltage sensor 43, current / resistance sensor 44). , The temperature sensor 45, the magnetic sensor 46, the operating time meter 47, and the operation counter 48), but the present invention is not limited to these examples. Further, the second monitored sensor 4B is, for example, the second pressure sensor 41 and the main valve opening degree sensor 42, but is not limited to these examples.
 第1の監視処理では、監視処理部700は、第1のサンプリング周期(例えば、10秒間隔)で第1の監視対象センサ4Aにより取得された電磁弁1の状態を第1の取得データとして取得し、当該第1の取得データについて、取得する毎に通信部8を介して外部装置15に順次送信する。 In the first monitoring process, the monitoring processing unit 700 acquires the state of the solenoid valve 1 acquired by the first monitored sensor 4A in the first sampling period (for example, every 10 seconds) as the first acquired data. Then, each time the first acquired data is acquired, it is sequentially transmitted to the external device 15 via the communication unit 8.
 第2の監視処理では、監視処理部700は、電磁弁1の操作が行われる操作期間において、第1のサンプリング周期よりも短い第2のサンプリング周期(例えば、10msec間隔)で第2の監視対象センサ4Bにより取得された電磁弁1の状態を第2の取得データとしてそれぞれ取得する。そして、監視処理部700は、操作期間内にそれぞれ取得した第2の取得データと当該第2の取得データのそれぞれを取得した取得時刻とを紐付けて構成する取得データ群を一時記憶データとして内部記憶部702に記憶する。そして、内部記憶部702に記憶された取得データ群は、所定のタイミングで外部装置15に送信される。 In the second monitoring process, the monitoring processing unit 700 performs a second monitoring target in a second sampling cycle (for example, 10 msec interval) shorter than the first sampling cycle in the operation period in which the solenoid valve 1 is operated. The state of the solenoid valve 1 acquired by the sensor 4B is acquired as the second acquisition data, respectively. Then, the monitoring processing unit 700 internally sets the acquired data group configured by associating the second acquired data acquired within the operation period with the acquired acquisition time of each of the second acquired data as temporary storage data. It is stored in the storage unit 702. Then, the acquired data group stored in the internal storage unit 702 is transmitted to the external device 15 at a predetermined timing.
 異常判定部701は、磁気センサ46により計測された磁気の強さ(計測磁気強度)に対して、複数の異常判定処理を実行することで、ソレノイド部3に異常が発生しているか否かを判定する。 The abnormality determination unit 701 executes a plurality of abnormality determination processes on the magnetic strength (measured magnetic strength) measured by the magnetic sensor 46 to determine whether or not an abnormality has occurred in the solenoid unit 3. judge.
 例えば、異常判定部701は、第1の異常判定処理として、ソレノイド部3が通電状態とされたときの計測磁気強度と設計磁気強度とを比較し、両者の差が所定の閾値よりも大きいか否かを判定することにより、異常の発生の有無を判定する。また、異常判定部701は、第2の異常判定処理として、ソレノイド部3の通電状態及び非通電状態の切替前後において、計測磁気強度が、通電状態及び非通電状態に応じて変化(上昇又は下降)しているか否かを判定することにより、異常の発生の有無を判定する。なお、異常判定部701は、磁気センサ46からのデータを用いて上記の異常判定処理を実行してもよいし、内部記憶部702に記憶された一時記憶データを用いて上記の異常判定処理を実行してもよい。 For example, the abnormality determination unit 701 compares the measured magnetic strength when the solenoid unit 3 is energized and the design magnetic strength as the first abnormality determination process, and whether the difference between the two is larger than a predetermined threshold value. By determining whether or not it has occurred, it is determined whether or not an abnormality has occurred. Further, as the second abnormality determination process, the abnormality determination unit 701 changes (increases or decreases) the measured magnetic strength according to the energized state and the non-energized state before and after switching between the energized state and the non-energized state of the solenoid unit 3. ), It is determined whether or not an abnormality has occurred. The abnormality determination unit 701 may execute the above abnormality determination process using the data from the magnetic sensor 46, or may perform the above abnormality determination process using the temporary storage data stored in the internal storage unit 702. You may do it.
 バルブテストスイッチ71は、所定の試験運転条件が満たされた場合にマイクロコントローラ70からの指令を受けて、試験運転として、電磁弁1のフルストロークテスト(以下、「FST」という。)又はパーシャルストロークテスト(以下、「PST」という。)を実行する。 The valve test switch 71 receives a command from the microcontroller 70 when a predetermined test operation condition is satisfied, and as a test operation, a full stroke test (hereinafter, referred to as “FST”) or a partial stroke of the solenoid valve 1 is performed. A test (hereinafter referred to as "PST") is executed.
 FSTは、主弁11を全開状態から全閉状態に操作して全開状態に戻すことで、流体圧駆動弁10の異常を診断するものである。PSTは、主弁11を全開状態から所定の開度まで部分的に閉じて全開状態に戻すことで、主弁11を全閉状態に操作することなく(すなわち、プラント設備を停止することなく)、流体圧駆動弁10の異常を診断するものである。 FST diagnoses an abnormality in the fluid pressure drive valve 10 by operating the main valve 11 from the fully open state to the fully closed state and returning it to the fully open state. The PST partially closes the main valve 11 from the fully open state to a predetermined opening state and returns it to the fully open state, so that the main valve 11 is not operated to the fully closed state (that is, without stopping the plant equipment). , The abnormality of the fluid pressure drive valve 10 is diagnosed.
 FST及びPSTは、監視処理部700による第2の監視処理と並行して実行される。そのため、主弁11が操作されたときに各センサ4により取得された電磁弁1の状態に基づいて、当該操作が所定の設定時間内に完了したか否かを判定することにより、流体圧駆動弁10の異常を診断することが可能である。また、主弁11が操作されたときに各センサ4により取得された電磁弁1の状態の時系列変化を解析する(例えば、正常時の時系列変化と比較する)ことにより、流体圧駆動弁10の異常を診断することが可能である。 FST and PST are executed in parallel with the second monitoring process by the monitoring processing unit 700. Therefore, the fluid pressure drive is performed by determining whether or not the operation is completed within a predetermined set time based on the state of the solenoid valve 1 acquired by each sensor 4 when the main valve 11 is operated. It is possible to diagnose the abnormality of the valve 10. Further, by analyzing the time-series change of the state of the solenoid valve 1 acquired by each sensor 4 when the main valve 11 is operated (for example, comparing with the time-series change at the normal time), the fluid pressure drive valve It is possible to diagnose 10 abnormalities.
 なお、試験運転条件としては、例えば、内部記憶部702の設定値として指定された実行頻度(例えば、1年に1回)による実行時期や特定の指定日時が到来したり、外部装置15(例えば、プラント管理用のコンピュータ)からの実行命令を受け付けたり、電磁弁1に設けられた試験実行ボタン(不図示)が管理者により操作されたりした場合に、試験運転条件を満たすものとして、試験運転が実行されるようにすればよい。 As the test operation conditions, for example, the execution time or a specific designated date and time according to the execution frequency (for example, once a year) designated as the set value of the internal storage unit 702 has arrived, or the external device 15 (for example, once a year) has arrived. , Plant management computer), or when the test execution button (not shown) provided on the solenoid valve 1 is operated by the administrator, the test operation condition is satisfied. Should be executed.
 通信部8は、HART(Highway Addressable Remote Transducer)通信規格に従って外部装置15との間でデータの送受信を行う通信モデム80と、制御電流(4~20mAのアナログ信号)を入出力するループ電流制御器81とを備える。通信モデム80が、送信対象のデータを周波数信号に変換すると、ループ電流制御器81は、当該周波数信号を制御電流に重畳した重畳信号を外部装置15に送信する。ループ電流制御器81が、外部装置15から重畳信号を受信し、当該重畳信号から周波数信号を分離すると、通信モデム80は、当該周波数信号を受信対象のデータに変換する。 The communication unit 8 is a communication modem 80 that transmits / receives data to / from the external device 15 in accordance with the HART (Highway Addressable Remote Transducer) communication standard, and a loop current controller that inputs / outputs a control current (analog signal of 4 to 20 mA). It includes 81. When the communication modem 80 converts the data to be transmitted into a frequency signal, the loop current controller 81 transmits a superimposed signal obtained by superimposing the frequency signal on the control current to the external device 15. When the loop current controller 81 receives the superposed signal from the external device 15 and separates the frequency signal from the superposed signal, the communication modem 80 converts the frequency signal into data to be received.
 電源回路部9は、電力ケーブル160がターミナルボックス62に逆接続された場合に発生する逆電圧から制御部7を保護する逆電圧保護回路90と、外部電源16から電力ケーブル160を介して供給された電力を所定の電圧及び電流に変換し、電磁弁1の各部(ソレノイド部3、センサ4、基板5、制御部7及び通信部8等)に供給する内部電源回路91とを備える。 The power supply circuit unit 9 is supplied from the external power supply 16 via the power cable 160 and the reverse voltage protection circuit 90 that protects the control unit 7 from the reverse voltage generated when the power cable 160 is reversely connected to the terminal box 62. It is provided with an internal power supply circuit 91 that converts the generated power into predetermined voltages and currents and supplies them to each part of the electromagnetic valve 1 (solar part 3, sensor 4, substrate 5, control part 7, communication part 8, etc.).
 図4に示すように、第1の基板50は、第1の圧力センサ40、第2の圧力センサ41、主弁開度センサ42、電圧センサ43、電流・抵抗センサ44、温度センサ45、稼働時間計47、作動カウンタ48、制御部7、通信モデム80及び逆電圧保護回路90が載置される。第2の基板51は、ループ電流制御器81及び内部電源回路91が載置される。第3の基板52は、磁気センサ46が載置される。 As shown in FIG. 4, the first substrate 50 includes a first pressure sensor 40, a second pressure sensor 41, a main valve opening sensor 42, a voltage sensor 43, a current / resistance sensor 44, a temperature sensor 45, and an operation. A time meter 47, an operation counter 48, a control unit 7, a communication modem 80, and a reverse voltage protection circuit 90 are mounted. The loop current controller 81 and the internal power supply circuit 91 are mounted on the second substrate 51. The magnetic sensor 46 is mounted on the third substrate 52.
 なお、複数のセンサ4としては、上記のセンサ40~48に限られず、他の物理量や動作履歴に関する情報を取得するセンサをさらに備えていてもよいし、これらのセンサ40~48の一部が省略されていてもよい。また、複数のセンサ4が各基板50~52に載置される際の各センサ40~48の載置状態は、図4に示す例に限られず、適宜変更してもよい。さらに、収容部6に収容される基板5の枚数や、収容部6に対する各基板50~52の配置についても適宜変更してもよい。 The plurality of sensors 4 are not limited to the above sensors 40 to 48, and may further include sensors for acquiring information on other physical quantities and operation histories, and some of these sensors 40 to 48 may be provided. It may be omitted. Further, the mounting state of the sensors 40 to 48 when the plurality of sensors 4 are mounted on the substrates 50 to 52 is not limited to the example shown in FIG. 4, and may be appropriately changed. Further, the number of substrates 5 accommodated in the accommodating portion 6 and the arrangement of the substrates 50 to 52 with respect to the accommodating portion 6 may be appropriately changed.
 また、上記のセンサ40~48は、図3、図4に示すように、それぞれのセンサが個別に設けられたものに限られず、特定のセンサが他のセンサの機能を兼ねることで、当該他のセンサが個別に設けられていなくてもよい。例えば、磁気センサ46が、ソレノイド部3が発生する磁気の強さを計測するとともに、当該磁気の強さに基づいてソレノイド部3における通電時の電流値を求めることで、電流・抵抗センサ44が個別に設けられていなくてもよい。また、マイクロコントローラ70が、センサの機能を内蔵したり、センサの機能の一部を実現したりしてもよく、例えば、マイクロコントローラ70が、稼働時間計47及び作動カウンタ48を内蔵することで、稼働時間計47及び作動カウンタ48が個別に設けられていなくてもよい。 Further, the sensors 40 to 48 are not limited to those in which each sensor is individually provided as shown in FIGS. 3 and 4, and the specific sensor also functions as another sensor. Sensors may not be provided individually. For example, the magnetic sensor 46 measures the magnetic strength generated by the solenoid unit 3, and the current / resistance sensor 44 obtains the current value when the solenoid unit 3 is energized based on the magnetic strength. It does not have to be provided individually. Further, the microcontroller 70 may have a built-in sensor function or a part of the sensor function. For example, the microcontroller 70 has a built-in operating time meter 47 and an operation counter 48. , The operation time meter 47 and the operation counter 48 may not be provided separately.
(他の実施形態)
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be appropriately modified without departing from the technical idea of the present invention.
 例えば、上記実施形態では、駆動装置12は、弁軸13を回転駆動させるものとして説明したが、弁軸13を往復直線駆動させるようにしてもよい。この場合、弁軸13を往復直線駆動させることに応じて開閉操作が行われる主弁11として、例えば、ゲートバルブやグローブバルブ等の形式を用いるようにしてもよい。 For example, in the above embodiment, the drive device 12 has been described as rotating the valve shaft 13, but the valve shaft 13 may be driven in a reciprocating linear manner. In this case, as the main valve 11 whose opening / closing operation is performed in response to the reciprocating linear drive of the valve shaft 13, for example, a type such as a gate valve or a globe valve may be used.
 さらに、この場合の電磁弁1の構成としては、収容部6が、駆動装置12により往復直線駆動される弁軸の端部が挿入される軸挿入口を有するとともに、当該弁軸が往復直線駆動されることに連動して回転軸を回転駆動させる駆動力伝達機構(例えば、ラックアンドピニオン機構、リンク機構、カム機構等)を収容する。そして、第1の基板50の基板面が当該回転軸に沿うように配置されており、主弁開度センサ42が、第1の基板50の基板面のうち当該回転軸の軸周りの外周に対向する位置に載置されて、主弁11の弁開度を求めるべく、当該回転軸の回転角度を計測するようにすればよい。 Further, as the configuration of the electromagnetic valve 1 in this case, the accommodating portion 6 has a shaft insertion port into which the end portion of the valve shaft driven linearly by the drive device 12 is inserted, and the valve shaft is driven linearly reciprocatingly. It accommodates a driving force transmission mechanism (for example, a rack and pinion mechanism, a link mechanism, a cam mechanism, etc.) that rotationally drives the rotating shaft in conjunction with the movement. The substrate surface of the first substrate 50 is arranged along the rotation axis, and the main valve opening sensor 42 is located on the outer periphery of the substrate surface of the first substrate 50 around the axis of the rotation axis. It may be placed at opposite positions and the rotation angle of the rotation shaft may be measured in order to obtain the valve opening degree of the main valve 11.
 また、上記の駆動力伝達機構は、収容部6の外部に配置されていてもよく、この場合には、駆動力伝達機構により回転駆動される回転軸の端部が軸挿入口から挿入されるとともに、第1の基板50の基板面が軸挿入口から挿入された回転軸に沿うように配置されており、主弁開度センサ42が、主弁11の弁開度を求めるべく、弁軸13の回転角度に代えて、当該回転軸の回転角度を計測するようにすればよい。 Further, the above-mentioned driving force transmission mechanism may be arranged outside the accommodating portion 6, and in this case, the end portion of the rotary shaft rotationally driven by the driving force transmission mechanism is inserted from the shaft insertion port. At the same time, the substrate surface of the first substrate 50 is arranged along the rotation axis inserted from the shaft insertion port, and the main valve opening sensor 42 determines the valve opening of the main valve 11 so that the valve shaft Instead of the rotation angle of 13, the rotation angle of the rotation axis may be measured.
 以上のように、上記実施形態に係る電磁弁1及び流体圧駆動弁10によれば、第3の基板52が、ソレノイド部3に近接して配置されるとともに、磁気センサ46が、当該第3の基板52に載置されて、当該ソレノイド部3が発生する磁気の強さを計測する。 As described above, according to the solenoid valve 1 and the fluid pressure drive valve 10 according to the above embodiment, the third substrate 52 is arranged close to the solenoid portion 3, and the magnetic sensor 46 is the third. It is placed on the substrate 52 of the above, and the strength of the magnetism generated by the solenoid unit 3 is measured.
 したがって、磁気センサ46が、ソレノイド部3の動作の有無に関わることなく,ソレノイド部3が発生する磁気の強さを計測することにより、電磁弁1及び流体圧駆動弁10の事後保全及び予兆保全を実現することができる。 Therefore, the magnetic sensor 46 measures the strength of the magnetism generated by the solenoid unit 3 regardless of the presence or absence of the operation of the solenoid unit 3, thereby performing post-maintenance and predictive maintenance of the solenoid valve 1 and the fluid pressure drive valve 10. Can be realized.
1…電磁弁、2…スプール部、3…ソレノイド部、4…センサ、4A…第1の監視対象センサ、4B…第2の監視対象センサ、5…基板、6…収容部、7…制御部、8…通信部、9…電源回路部、10…流体圧駆動弁、11…主弁、12…駆動装置、13…弁軸、14…空気供給源、15…外部装置、16…外部電源、
20…入力ポート、21…出力ポート、22…排気ポート、23…スプールホール、24…スプールバルブ、25…スプールスプリング、26…入力側流路、27…出力側流路、28…排気流路、30…ソレノイドケース、31…ソレノイドコイル、32…可動鉄芯、33…固定鉄芯、34…ソレノイドスプリング、40…第1の圧力センサ、41…第2の圧力センサ、42…主弁開度センサ、43…電圧センサ、44…電流・抵抗センサ、45…温度センサ、46…磁気センサ、47…稼働時間計、48…作動カウンタ、50…第1の基板、51…第2の基板、52…第3の基板(基板)、60…第1の収容部、61…第2の収容部、62…ターミナルボックス、63…第1の流路、64…第2の流路、65…スプール流路、70…マイクロコントローラ、71…バルブテストスイッチ、80…通信モデム、81…ループ電流制御器、90…逆電圧保護回路、91…内部電源回路、100…配管、110…弁箱、111…弁体、120…シリンダ、121…ピストンロッド、122A…第1のピストン、122B…第2のピストン、123…コイルばね、124…空気給排口、125…伝達機構、130A…第1の端部、130B…第2の端部、140…第1の空気配管、141…第2の空気配管、150…通信ケーブル、160…電力ケーブル、500A…第1の基板面、500B…第2の基板面、610…ハウジング、610a…第1のハウジング端部、610b…第2のハウジング端部、610c…軸挿入口、610d…ボディー挿入口、610e…ケーブル挿入口、611…ボディー、612…ソレノイドカバー、613…ターミナルボックスカバー、700…監視処理部、701…異常判定部、702…内部記憶部、A…空気
1 ... Solenoid valve, 2 ... Spool part, 3 ... Solenoid part, 4 ... Sensor, 4A ... First monitored sensor, 4B ... Second monitored sensor, 5 ... Board, 6 ... Accommodating part, 7 ... Control unit , 8 ... communication unit, 9 ... power supply circuit unit, 10 ... fluid pressure drive valve, 11 ... main valve, 12 ... drive device, 13 ... valve shaft, 14 ... air supply source, 15 ... external device, 16 ... external power supply,
20 ... Input port, 21 ... Output port, 22 ... Exhaust port, 23 ... Spool hole, 24 ... Spool valve, 25 ... Spool spring, 26 ... Input side flow path, 27 ... Output side flow path, 28 ... Exhaust flow path, 30 ... Solenoid case, 31 ... Solenoid coil, 32 ... Movable iron core, 33 ... Fixed iron core, 34 ... Solenoid spring, 40 ... First pressure sensor, 41 ... Second pressure sensor, 42 ... Main valve opening sensor , 43 ... Voltage sensor, 44 ... Current / resistance sensor, 45 ... Temperature sensor, 46 ... Magnetic sensor, 47 ... Operating time meter, 48 ... Operation counter, 50 ... First board, 51 ... Second board, 52 ... Third substrate (board), 60 ... first accommodating portion, 61 ... second accommodating portion, 62 ... terminal box, 63 ... first flow path, 64 ... second flow path, 65 ... spool flow path , 70 ... Micro controller, 71 ... Valve test switch, 80 ... Communication solenoid, 81 ... Loop current controller, 90 ... Reverse voltage protection circuit, 91 ... Internal power supply circuit, 100 ... Piping, 110 ... Valve box, 111 ... Valve body , 120 ... Cylinder, 121 ... Solenoid rod, 122A ... First piston, 122B ... Second piston, 123 ... Coil spring, 124 ... Air supply / exhaust port, 125 ... Transmission mechanism, 130A ... First end, 130B ... second end, 140 ... first air pipe, 141 ... second air pipe, 150 ... communication cable, 160 ... power cable, 500A ... first board surface, 500B ... second board surface, 610 ... Housing, 610a ... First housing end, 610b ... Second housing end, 610c ... Shaft insertion port, 610d ... Body insertion port, 610e ... Cable insertion port, 611 ... Body, 612 ... Solenoid cover, 613 ... Terminal box cover, 700 ... Monitoring processing unit, 701 ... Abnormality judgment unit, 702 ... Internal storage unit, A ... Air

Claims (4)

  1.  電磁弁であって、
     駆動流体が流れる流路を切り替えるスプール部と、
     通電状態に応じて前記スプール部を変位させるソレノイド部と、
     前記ソレノイド部に近接して配置される基板と、
     前記基板に載置されて、前記ソレノイド部が発生する磁気の強さを計測する磁気センサとを備え、
     前記ソレノイド部は、
      前記通電状態に応じて前記磁気を発生するソレノイドコイルと、
      前記ソレノイドコイルを収容するソレノイドケースとを備え、
     前記基板は、
      前記ソレノイドケースの外側に配置され、
     前記磁気センサは、
      前記ソレノイドコイルの径方向外側に配置されるとともに、前記ソレノイドコイルの軸方向に対して前記ソレノイドコイルの両端部内側に配置される、
     ことを特徴とする電磁弁。
    It ’s a solenoid valve,
    A spool part that switches the flow path through which the drive fluid flows, and
    A solenoid part that displaces the spool part according to the energized state, and
    A substrate arranged close to the solenoid portion and
    A magnetic sensor mounted on the substrate and measuring the magnetic strength generated by the solenoid portion is provided.
    The solenoid part is
    A solenoid coil that generates magnetism according to the energized state, and
    A solenoid case for accommodating the solenoid coil is provided.
    The substrate is
    Located on the outside of the solenoid case
    The magnetic sensor is
    It is arranged outside the solenoid coil in the radial direction and inside both ends of the solenoid coil with respect to the axial direction of the solenoid coil.
    A solenoid valve characterized by that.
  2.  前記スプール部、前記ソレノイド部、前記基板及び前記磁気センサを収容する収容部をさらに備え、
     前記基板は、
      前記ソレノイドケースの外側であって、前記収容部の内側に配置される、
     ことを特徴とする請求項1に記載の電磁弁。
    The spool portion, the solenoid portion, the substrate, and the accommodating portion for accommodating the magnetic sensor are further provided.
    The substrate is
    Outside the solenoid case and inside the housing.
    The solenoid valve according to claim 1.
  3.  前記磁気センサにより計測された前記磁気の強さに基づいて、前記ソレノイド部に異常が発生しているか否かを判定する異常判定部をさらに備える、
     ことを特徴とする請求項1又は請求項2に記載の電磁弁。
    An abnormality determination unit for determining whether or not an abnormality has occurred in the solenoid unit is further provided based on the magnetic strength measured by the magnetic sensor.
    The solenoid valve according to claim 1 or 2, wherein the solenoid valve is characterized in that.
  4.  請求項1乃至請求項3のいずれか一項に記載の電磁弁と、
     主弁と、
     前記主弁に連結された弁軸を前記駆動流体の流体圧に応じて駆動させることで前記主弁の開閉操作を行う駆動装置とを備え、
     前記電磁弁は、
      前記駆動装置に対して前記駆動流体の給排を制御する機能を有する、
     ことを特徴とする流体圧駆動弁。
     
    The solenoid valve according to any one of claims 1 to 3,
    Main valve and
    A drive device for opening and closing the main valve by driving the valve shaft connected to the main valve according to the fluid pressure of the driving fluid is provided.
    The solenoid valve is
    It has a function of controlling the supply and discharge of the driving fluid to the driving device.
    A fluid pressure driven valve characterized by that.
PCT/JP2021/009118 2020-03-27 2021-03-09 Solenoid valve WO2021192981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059127 2020-03-27
JP2020059127A JP6795233B1 (en) 2020-03-27 2020-03-27 solenoid valve

Publications (1)

Publication Number Publication Date
WO2021192981A1 true WO2021192981A1 (en) 2021-09-30

Family

ID=73544741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009118 WO2021192981A1 (en) 2020-03-27 2021-03-09 Solenoid valve

Country Status (2)

Country Link
JP (1) JP6795233B1 (en)
WO (1) WO2021192981A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093261A (en) * 2020-12-11 2022-06-23 金子産業株式会社 Database generator, state determination device, database generation method, and state determination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073181A (en) * 1996-08-30 1998-03-17 Ckd Corp Pilot changeover valve having valve position sensing switch
JP2000323324A (en) * 1999-05-14 2000-11-24 Yuken Kogyo Co Ltd Electromagnetic operation device
JP2005320986A (en) * 2004-05-06 2005-11-17 Tyco Flow Control Kk Emergency shut-down valve device
JP2012202505A (en) * 2011-03-25 2012-10-22 Aisin Aw Co Ltd Linear solenoid valve and method of determining abnormality thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073181A (en) * 1996-08-30 1998-03-17 Ckd Corp Pilot changeover valve having valve position sensing switch
JP2000323324A (en) * 1999-05-14 2000-11-24 Yuken Kogyo Co Ltd Electromagnetic operation device
JP2005320986A (en) * 2004-05-06 2005-11-17 Tyco Flow Control Kk Emergency shut-down valve device
JP2012202505A (en) * 2011-03-25 2012-10-22 Aisin Aw Co Ltd Linear solenoid valve and method of determining abnormality thereof

Also Published As

Publication number Publication date
JP2021156402A (en) 2021-10-07
JP6795233B1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
US8925895B2 (en) Cutoff valve control apparatus
US11098822B2 (en) Arrangement with on/off valve, pneumatic actuator, magnetic valve and function monitoring device
WO2021192983A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021187213A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021192981A1 (en) Solenoid valve
WO2021220765A1 (en) Drive device and fluid pressure–driven valve
WO2021182116A1 (en) Electromagnetic valve
WO2021182115A1 (en) Electromagnetic valve
CN114787547B (en) Electromagnetic valve
WO2021220766A1 (en) Machine learning device, data processing system, inference device, and machine learning method
JP2009092110A (en) Shut-off valve control system and method for predicting failure of shut-off valve control system
WO2023053608A1 (en) Database generation device, state assessment device, database generation method, and state assessment method
WO2021220767A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021210497A1 (en) Machine learning device, data processing system, inference device, and machine learning method
WO2021187212A1 (en) Machine learning device, data processing system, inference device, and machine learning method
JP7058447B1 (en) Machine learning equipment, data processing systems, inference equipment and machine learning methods
KR102467699B1 (en) Switch including device for detecting operation status
WO2023135892A1 (en) Data processing system and data processing method
JP2022092743A (en) Property determination device, database generation device, property determination method, and database generation method
JP2022092744A (en) Assembly condition presenting device, and assembly condition presenting method
JP2021157662A (en) Machine learning device, data processing system, inference device, and machine learning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775879

Country of ref document: EP

Kind code of ref document: A1