WO2021219944A1 - Procede et dispositif de desinfection et de purification notamment d'espaces clos tel un volume d'acceuil de passagers d'un moyen de transport - Google Patents

Procede et dispositif de desinfection et de purification notamment d'espaces clos tel un volume d'acceuil de passagers d'un moyen de transport Download PDF

Info

Publication number
WO2021219944A1
WO2021219944A1 PCT/FR2021/000042 FR2021000042W WO2021219944A1 WO 2021219944 A1 WO2021219944 A1 WO 2021219944A1 FR 2021000042 W FR2021000042 W FR 2021000042W WO 2021219944 A1 WO2021219944 A1 WO 2021219944A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
aerosols
disinfectant liquid
microdroplets
gas
Prior art date
Application number
PCT/FR2021/000042
Other languages
English (en)
Inventor
Morou Boukari
Original Assignee
Prodose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodose filed Critical Prodose
Priority to US17/922,333 priority Critical patent/US20230211034A1/en
Publication of WO2021219944A1 publication Critical patent/WO2021219944A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/30Cleaning aircraft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/022Filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/186Peroxide solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/06Inorganic materials containing halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/14Inorganic materials containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/18Ammonia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/32Organic compounds
    • A61L2101/34Hydroxy compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/15Biocide distribution means, e.g. nozzles, pumps, manifolds, fans, baffles, sprayers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/25Rooms in buildings, passenger compartments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/16Connections to a HVAC unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/106Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • B01D2259/4575Gas separation or purification devices adapted for specific applications for use in transportation means in aeroplanes or space ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/40Filters located upstream of the spraying outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/045Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being parallel just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0651Environmental Control Systems comprising filters, e.g. dust filters

Definitions

  • the invention relates to technical solutions to remedy in the best conditions the contamination of air and solid surfaces by toxic aerosols, bacteria and viruses including closed spaces such as a reception volume of passengers of a means of transport.
  • Aerosols, microdroplets, bacteria and viruses from the outside air surrounding the enclosed space and introduced by the pressurization and / or ventilation circuit of the aircraft cabin with air taken from the aircraft engines and air from the pneumatic compressor of the auxiliary power unit (APU);
  • APU auxiliary power unit
  • HEPA for high-efficiency particulate air
  • the disinfection and purification process to avoid contamination of a transport vehicle having a passenger reception volume equipped with a ventilation circuit, contamination by aerosols, microdroplets, bacteria or viruses, is remarkable in that it comprises the following operations:
  • This method is remarkable in that it provides a comprehensive solution by providing filtration and disinfection.
  • the filtration step by means of an armature capacitor filter and a porous dielectric, which capacitor filter is connected to the positive and negative poles of an electric generator, is greater than that of the HEPA filters used hitherto.
  • the step of creating a vortex makes it possible to create a vortex mixture and significant friction (energetic contact) between the particles and / or microdroplets of a disinfectant liquid and:
  • the mixture created by vortex vortex is indeed turbulent.
  • the prior art does not provide swirl mixing and significant friction between the particles, microparticles and aerosols (solids and liquids) suspended in the air and containing bacteria or viruses and the microparticles and aerosols of the disinfectant, this which prevents the diffusion of the disinfectant inside aerosols, particles and microparticles containing bacteria or viruses.
  • the aerosols and / or the microdroplets of disinfectant liquid are created by annular suction of a disinfectant liquid by the flowing driving gas.
  • the driving gas is selected from the following list:
  • the pressure of the engine gas is set to be between 1 and 300 bars.
  • This engine gas can come from a compressed gas network (compressed air for example) or from a pressurized gas cylinder (air cylinder or oxygen cylinder) or from a gas compressor ( electric air compressor for example).
  • compressed gas network compressed air for example
  • pressurized gas cylinder air cylinder or oxygen cylinder
  • gas compressor electric air compressor for example
  • the disinfectant liquid is composed of at least one of the elements from the following list:
  • the method consists in heating the mixture to be sprayed, which improves its properties.
  • the disinfectant liquid is bubbled by a part of the driving gas and the bubbled mixture is then sucked by the annular flow of the driving gas.
  • Such a method makes it possible to filter and disinfect the air and the surfaces, in particular of an enclosed space such as a reception volume for passengers in a passenger transport vehicle.
  • the disinfection process comprises an operation of spraying the mixture created on the engine of the aircraft as well as its compressor for washing purposes.
  • the mixture then contains hot water at a temperature between 60 and 90 ° C and containing a disinfectant which is not corrosive for the engine.
  • These filters can also be used to remove contaminated aerosols, particles and microparticles present in the pneumatic pressurization system of the auxiliary power generator (APU) of the aircraft before their introduction into the cabin or airframe of the aircraft.
  • APU auxiliary power generator
  • Another object of the invention is the device making it possible to filter by a capacitor filter on the one hand and to create the disinfectant vortex on the other hand in order to implement the method described above.
  • the device is remarkable in that the capacitor filter with armatures and porous dielectric which capacitor filter is connected to the positive and negative poles of an electric generator, comprises a gaseous fluid inlet to be filtered and an outlet for the filtered gaseous fluid, said gaseous fluid to be filtered passing through a succession of layers of different porous materials according to at least the following diagram:
  • the implementation of the method can include one or more capacitor filters which can be connected in series or in parallel.
  • this or these capacitor filters may or may not be associated with one or more electropositive filters.
  • the layer of conductive porous material comprises at least one of the materials from the following list:
  • the layer of porous non-conductive material comprises at least one of the materials from the following list:
  • Polyethylene Polypropylene, PTFE, Polyamide, Polyether sulfone.
  • a HEPA filter constitutes the layer of porous non-conductive materials.
  • the conductive materials are associated with a direct voltage generator with one or more electric capacitors.
  • the capacitor filter can be mounted in series or in parallel with said electrical capacitor or capacitors.
  • the voltage supplied by the generator has a value between 0.1 and 1000 volts.
  • the capacitor or capacitors are polarized or not and their electrical capacity is between 0.1 and 500,000 microfarads.
  • the capacitor filter with reinforcements and porous dielectric which filter capacitor is connected to the positive and negative poles of an electric generator further contains activated carbon and / or a catalyst. atmospheric ozone neutralization.
  • the device is equipped with a nozzle creating in its hollow core the swirling vortex, said nozzle comprising two ends,
  • Said nozzle comprising an orifice for communication with a volume of disinfectant liquid
  • orifice opens into the hollow core by means of a channel arranged coaxially with the axis of the driving gas flow and at the center of the latter, so that the driving gas creates an annular flow around the central flow of the disinfectant liquid so that the disinfectant liquid is sucked by the movement of said motive gas in the hollow core and the mixture is swirled and turbulent.
  • the orifice of communication with the volume of disinfectant liquid allows bubbling by the engine gas.
  • the hollow core is preformed so as to orient the flows and make them swirl.
  • FIG. 1 is a schematic drawing of an aircraft showing the different possibilities of contamination
  • FIG. 2 is a schematic drawing of an embodiment according to the invention of a device for creating a vortex vortex
  • FIG. 3 is a schematic drawing of a sectional view of one embodiment of a nozzle
  • FIG. 4] [Fig. 5], [Fig. 6], [Fig. 7], [Fig. 8] and [Fig. 9] are schematic drawings of embodiments according to the invention of a capacitor filter.
  • the air intended for the reception volume V accommodating the passengers P can also be the source of contamination.
  • the applicants propose an overall process making it possible to filter the air before it enters the reception volume by means of a condenser filter and to disinfect the various surfaces with which the air is liable to enter. come into contact by spraying a vortex containing particles of disinfectant.
  • the functional sub-assembly 100 for creating said vortex comprises a nozzle 100 and a reservoir of liquid disinfectant 101 disposed in a housing 102, the nozzle 100 being fixed to the outer surface of the housing 102. Under the action of a motive gas, the nozzle 100 creates a vortex which sucks the disinfectant and creates a swirling and turbulent mixture containing the disinfectant particles.
  • the nozzle 100 comprises two ends, with at a first end 110, a gas inlet orifice called motor F1, and at the second end 120, an outlet orifice a swirling vortex of a mixture combining engine gas and particle of a disinfectant.
  • the nozzle is preformed with a hollow core 130 having from the inlet of the engine gas F1 a succession of volumes having different functions.
  • the driving gas F1 opens into a first chamber 140 with which two pipes communicate:
  • a first transverse pipe 141 communicating with an external orifice allowing the installation of a pressure monitoring monometer in the first chamber 140;
  • a second transverse pipe 142 communicating with another external orifice allowing the entry of another driving gas or the exit of part of the driving gas F1 for the bubbling of the disinfectant liquid.
  • This first chamber 143 opens by means of longitudinal pipes 143 arranged around the axis of the nozzle 100 in a second chamber 150.
  • the hollow core 130 is further preformed with an axial pipe 145 arranged such that the longitudinal pipes are disposed around and with which said transverse pipe 144 communicates.
  • This axial pipe 145 is extended by a tube 151 passing through the second chamber 150.
  • the disinfectant liquid does not open into the second chamber 150.
  • This second chamber 150 opens onto an axial bore 152 with a diameter greater than the outside diameter of the tube 151 so as to leave a clearance allowing an annular flow of the driving gas coming from the chamber 150 around the tube 151.
  • This tube 151 opens into said bore so that its outlet orifice is subjected to said annular flow which therefore creates a vacuum causing suction to which the disinfectant liquid is subjected.
  • the vortex then creates in the bore 152 the mixture between the driving gas and the disinfectant liquid downstream of the outlet of the tube 151 and just before the outlet of the second end 120.
  • the outlet flow F2 is animated by said vortex and is therefore swirling and turbulent.
  • the tube 151 is screwed into the preformed body of the pipe 145 and coaxially with the latter so that its position can be adjusted.
  • the outlet end 153 of said tube 151 is equipped with a peripheral flange creating a constriction for the annular flow of engine gas, the constriction whose position can be adjusted by means of the helical connection.
  • this collar is preformed with blades directing the flow of engine gas so as to create a vortex.
  • the filter comprises an inlet for gaseous fluid to be filtered and an outlet for the filtered gaseous fluid, said gaseous fluid to be filtered passing through a succession of layers of different porous materials according to the following diagram:
  • porous conductive material is part of the following list:
  • the non-conductive porous material is part of the following list:
  • the filter 200 illustrated by FIG. 4 comprises three associated layers 210, 220, 230 and a fourth dissociated layer 240.
  • the three associated layers are arranged so as to sandwich a layer of porous non-conductive material 220 by the layers of porous conductive material 210 and 230.
  • Layer 240 is a layer of porous conductive material.
  • a DC voltage generator 250 supplies the conductive layers.
  • the positive pole 251 is connected to the layers 210 and 230 of the associated layers and the negative pole 252 is connected to the dissociated layer 240.
  • a capacitor 260 is also connected to the conductive layers with one electrode connected to the layers 210 and 230 of the associated layers and the other electrode connected to the dissociated layer.
  • the filter 300 illustrated by FIG. 5 comprises three layers 310, 320, 330 associated and a fourth layer 340 dissociated.
  • the three associated layers are arranged to sandwich a layer of porous material non-conductive 320 by the layers of conductive porous material 310 and 330.
  • Layer 340 is a layer of conductive porous material.
  • a DC voltage generator 350 supplies the conductive layers.
  • the positive pole 351 is connected to the layers 310 and 330 of the associated layers and the negative pole 352 is connected to the dissociated layer 340.
  • a capacitor 360 is also connected to the conductive layers with one electrode connected to the layers 310 and 330 of the associated layers and the other electrode connected to the dissociated layer 340.
  • Another capacitor 370 is inserted between the negative pole 352 and the dissociated layer 340.
  • the filter 400 illustrated by FIG. 6 comprises four associated layers 410, 420, 430 and 440.
  • the layers 410 and 440 are made of a conductive porous material.
  • Layer 420 is made of a non-conductive porous material.
  • the layer 430 is made of a porous material and is made of at least one of the materials from the following list:
  • the four associated layers are arranged so as to sandwich the layer of non-conductive porous material 420 and the layer 430 by the layers of conductive porous material 410 and 440.
  • the fluid to be filtered first passes through the material. porous non-conductive 420 then through the layer 430.
  • a DC voltage generator 450 supplies the conductive layers 410 and 440.
  • the positive pole 451 is connected to the layer 410 and the negative pole 452 is connected to the layer 440.
  • a capacitor 460 is also connected to the conductive layers with one electrode connected to the layer 410 and the other electrode connected to the layer 440.
  • Another capacitor 470 is inserted between the negative pole 452 and the layer
  • the filter 500 illustrated by FIG. 7 comprises four associated layers 510, 520, 530 and 540.
  • the layers 510 and 540 are made of a conductive porous material.
  • Layer 520 is made of a non-conductive porous material.
  • the layer 530 is made of a porous material and is made of at least one of the materials from the following list:
  • the four associated layers are arranged so as to sandwich the layer of non-conductive porous material 520 and the layer 530 by the layers of conductive porous material 510 and 540.
  • the fluid to be filtered first passes through the material. porous non-conductive then through the layer 530.
  • a direct voltage generator 550 supplies the conductive layers 510 and 540.
  • the positive pole 551 is connected to the layer 510 and the negative pole 552 is connected to the layer 540.
  • a capacitor 560 is also connected to the conductive layers with one electrode connected to the layer 510 and the other electrode connected to the layer 540.
  • the filter 600 illustrated by FIG. 8 comprises three associated layers 610, 620, 630.
  • the three associated layers are arranged so as to sandwich a layer of porous non-conductive material 620 of great thickness by the layers of porous conductive material 610 and 630.
  • a direct voltage generator 650 supplies the conductive layers.
  • the positive pole 651 is connected to the layer 610 and the negative pole 652 is connected to the layer 630.
  • a capacitor 660 is also connected to the conductive layers with one electrode connected to the layer 610 and the other electrode connected to the dissociated layer 630.
  • the filter 700 illustrated by FIG. 9 comprises three associated layers 710, 720, 730.
  • the three associated layers are arranged so as to sandwich a layer of non-conductive porous material 720 of great thickness by the layers of conductive porous material 710 and 730.
  • a DC voltage generator 750 supplies the conductive layers.
  • the positive pole 751 is connected to the layer 710 and the negative pole 752 is connected to the layer 730.
  • a capacitor 760 is also connected to the conductive layers with one electrode connected to the layer 710 and the other electrode connected to the dissociated layer 730.
  • Another capacitor 770 is inserted between the negative pole 752 and the layer 730.

Abstract

L'invention a trait à un procédé de désinfection et de purification pour éviter la contamination d'un véhicule de de passagers remarquable en ce qu'il comprend les opérations suivantes : - installation dans le circuit de ventilation d'au moins un filtre (200, 300, 400, 500, 600, 700) condensateur (260, 360, 370, 460, 470, 560, 660, 760, 770); - création d'un vortex tourbillonnaire d'un liquide désinfectant au moyen d'un gaz dit moteur (Fl); - pulvérisation du mélange tourbillonnaire créé sur les vêtements, les bagages des passagers avant leur entrée dans le volume d'accueil, - pulvérisation du mélange créé sur les surfaces solides et/ou dans l'air du volume d'accueil à désinfecter. L'invention a pour autre objet un dispositif permettant de mettre en oeuvre le procédé.

Description

Description
Titre de l'invention : PROCEDE ET DISPOSITIF DE DESINFECTION ET DE PURIFICATION NOTAMMENT D’ESPACES CLOS TEL UN VOLUME D’ACCUEIL DE PASSAGERS D’UN MOYEN DE TRANSPORT
DOMAINE D’APPLICATION DE L’INVENTION
[0001] L’invention a trait aux solutions techniques permettant de remédier dans les meilleures conditions à la contamination de l’air et des surfaces solides par les aérosols toxiques, les bactéries et les virus notamment des espaces clos tel un volume d’accueil de passagers d’un moyen de transport.
[0002] DESCRIPTION DE L’ETAT DE LA TECHNIQUE
[0003] L’air et les surfaces solides à l’intérieur de la cabine d’un avion peuvent être contaminés par des aérosols, des microgouttelettes, des bactéries et des virus (par exemple de type Covid-19). Ces aérosols, microgouttelettes, bactéries et virus peuvent provenir de plusieurs sources :
[0004] - Aérosols, microgouttelettes, bactéries et virus introduits par les passagers, les membres d’équipage et le personnel technique d’entretien ;
[0005] - Aérosols, microgouttelettes, bactéries et virus issus de l’air extérieur environnant à l’espace clos et introduits par le circuit de pressurisation et/ou de ventilation de la cabine avion avec de l’air prélevé sur les moteurs des avions et de l’air issu du compresseur pneumatique du groupe auxiliaire de puissance (APU) ;
[0006] - Aérosols, microgouttelettes, bactéries et virus issus du circuit de pressurisation et de ventilation de la cabine avion ou de l’espace clos.
[0007] Ces aérosols, microgouttelettes, bactéries et virus peuvent se déposer sur les surfaces solides des cabines des avions et peuvent potentiellement intoxiquer ou infecter les passagers et les membres d’équipage.
[0008] Bien que le système de recirculation et de traitement de l’air à l’intérieur de la cabine soit classiquement équipé de filtres HEPA (pour high-efficiency particulate air) performants, leur efficacité et leur performance peuvent être réduites par l’introduction permanente dans la cabine de l’avion d’aérosols, de particules et de microparticules.
[0009] En ce qui concerne la contamination par le virus Covid-19 susceptible d’être introduite par les passagers, le personnel navigant et le personnel technique d’entretien, plusieurs voies d’introduction de la contamination ont été répertoriées parmi celles-ci :
[0010] - Emission de microgouttelettes liquides et d’aérosols en suspension dans l’air contenant le virus Covid-19 par les passagers, les membres d’équipage ou par le personnel technique d’entretien infectés par ce virus ;
[0011] - Apport du virus Covid-19 par les bagages « cabine » des passagers, des membres d’équipage ou du personnel technique d’entretien et de maintenance ;
[0012] - Apport du virus Covid-19 par les vêtements et chaussures des passagers, des membres d’équipage ou du personnel technique d’entretien et de maintenance.
[0013] Pour la désinfection chimique de l’air et des surfaces solides à l’intérieur de la cellule d’aéronef dite cabine avion, les techniques de désinfection suivantes sont communément appliquées :
[0014] - Nettoyage au chiffon des surfaces contaminées avec des solutions désinfectantes. Cette solution est très peu coûteuse en matériel mais extrêmement coûteuse en temps et donc en frais de personnel. Elle est parfois inefficace car l’opérateur ne peut pas désinfecter les surfaces difficiles d’accès ;
[0015] - Pulvérisation avec des pistolets électriques de type pistolet à peinture de solutions désinfectantes. Cette solution est également simple à mettre en œuvre mais les gouttelettes produites sont trop grosses et les surfaces atteintes ne sont que partiellement désinfectées ;
[0016] - Pulvérisation à l’aide de dispositifs thermiques : Efficaces en termes de taille de particules mais la température dégrade fortement les produits désinfectants et il est déconseillé d’utiliser ces procédés thermiques dans des espaces intérieurs.
[0017] Ces différentes techniques existantes de pulvérisation de gouttelettes de désinfectant présentent aussi plusieurs autres inconvénients tel le fait que le mélange efficace dans l’air nécessite un temps important. [0018] Une pluralité des inconvénients précités se rencontre dans les véhicules transportant des passagers en général et pas seulement pour un aéronef.
[0019] BREVE DESCRIPTION DE L’INVENTION
[0020] Partant de ces constats, les demandeurs ont mené des recherches visant à éviter ces contaminations.
[0021] Ces recherches ont abouti à la conception et à la réalisation d’un procédé et d’un dispositif nouveaux permettant d’apporter une solution globale pour la désinfection et/ou pour éviter la contamination de l’air et des surfaces notamment d’espaces clos telle une cabine de véhicule de transport de passagers.
[0022] Selon l’invention, le procédé de désinfection et de purification pour éviter la contamination d’un véhicule de transport présentant un volume d'accueil de passagers équipé d’un circuit de ventilation, contamination par des aérosols, des microgouttelettes, des bactéries ou des virus, est remarquable en ce qu’il comprend les opérations suivantes :
[0023] -installation dans le circuit de ventilation du volume d’accueil d’au moins un filtre condensateur à armatures et diélectrique poreux, imprégné ou non de substances bactéricides ou virucides non relargables dans le circuit d’air de ventilation du volume d’accueil, lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique ;
[0024] - création d’un vortex tourbillonnaire d’aérosols et de microgouttelettes d’un liquide désinfectant ou d’aérosols ou de microgouttelettes d’un liquide désinfectant au moyen d'un gaz dit moteur;
[0025] - mise en contact des aérosols ou des microgouttelettes de liquide désinfectant avec les aérosols et microgouttelettes susceptibles de contenir des bactéries et des virus par pulvérisation du mélange tourbillonnaire créé sur les vêtements, les bagages des passagers avant leur entrée dans le volume d’accueil,
[0026] - mise en contact des aérosols ou des microgouttelettes de liquide désinfectant avec les aérosols et microgouttelettes susceptibles de contenir des bactéries et des virus par pulvérisation du mélange créé sur les surfaces solides et/ou dans l’air du volume d’accueil à désinfecter. [0027] Le terme « passagers » utilisé inclut aussi bien des personnes transportées que les personnels naviguant et techniques ayant accès au volume d’accueil.
[0028] Ce procédé est remarquable en ce qu’il propose une solution globale en prévoyant une filtration et une désinfection.
[0029] Une filtration par filtre condensateur à armatures et diélectrique poreux lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique, de l’air circulant dans le volume d’accueil et une désinfection des différentes surfaces avec lequel l’air ou les passagers sont susceptibles de venir en contact ainsi qu’avec les vêtements ou bagages des passagers, des membres d’équipage et des personnels techniques susceptibles de pénétrer dans le volume.
[0030] Il peut en outre être associé à des moyens de protection individuelle des passagers.
[0031] L’étape de filtration par filtre condensateur à armatures et diélectrique poreux lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique, est supérieure à celle des filtres HEPA jusqu’ici utilisés.
[0032] L’étape de création d'un vortex permet de créer un mélange tourbillonnaire et une friction importante (contact énergique) entre les particules et/ou microgouttelettes d’un liquide désinfectant et :
[0033] - Des aérosols, particules et microparticules contenant des bactéries ou des virus, en suspension dans l’air,
[0034] - Des aérosols, particules et microparticules contenant des bactéries ou des virus et déposés sur des surfaces solides.
[0035] Le mélange créé par vortex tourbillonnaire est en effet turbulent.
[0036] L’art antérieur ne propose pas de mélange tourbillonnaire et de friction importante entre les particules, microparticules et aérosols (solides et liquides) en suspension dans l’air et contenant des bactéries ou virus et les microparticules et aérosols du désinfectant, ce qui empêche la diffusion du désinfectant à l’intérieur des aérosols, des particules et microparticules contenant des bactéries ou des virus. [0037] Selon une autre caractéristique particulièrement avantageuse de l’invention, les aérosols et/ou les microgouttelettes de liquide désinfectant sont créés par aspiration annulaire d’un liquide désinfectant par le gaz moteur en écoulement.
[0038] Selon une caractéristique particulièrement avantageuse de l’invention, le gaz moteur est sélectionné dans la liste suivante :
[0039] - de l’air sous pression ou de l’azote sous pression ou de l’oxygène sous pression ou de C02 sous pression, ou
[0040] - un mélange d’air et de C02 sous pression, ou
[0041] - un mélange d’oxygène et de C02 sous pression, ou
[0042] - un mélange d’azote et de C02 sous pression.
[0043] Selon une autre une caractéristique de l’invention, la pression du gaz moteur est réglée pour être comprise entre 1 et 300 bars.
[0044] Ce gaz moteur peut être issu d’un réseau de gaz comprimé (air comprimé par exemple) ou d’une bouteille de gaz sous pression (bouteille d’air ou bouteille d’oxygène) ou d’un compresseur de gaz (compresseur électrique d’air par exemple).
[0045] Selon une autre caractéristique particulièrement avantageuse de l’invention, le liquide désinfectant est composé par au moins un des éléments de la liste suivante :
[0046] - du peroxyde d’hydrogène ou de l’acide peracétique,
[0047] - un composé à base de bioxyde de chlore,
[0048] - un composé à base d’ammoniums quaternaires,
[0049] - un composé alcoolique,
[0050] - du monopersulfate de potassium ou du persulfate de potassium ou du persulfate,
[0051] - un mélange de plusieurs désinfectants,
[0052] - tout désinfectant agréé. [0053] Selon une autre caractéristique particulièrement avantageuse de l’invention, le procédé consiste à chauffer le mélange à pulvériser ce qui améliore ses propriétés.
[0054] Selon une autre caractéristique particulièrement avantageuse de l’invention, le liquide désinfectant fait l’objet d’un barbotage par une partie du gaz moteur et le mélange barboté est aspiré ensuite par l’écoulement annulaire du gaz moteur.
[0055] Un tel procédé permet de filtrer et de désinfecter l’air et les surfaces notamment d’un espace clos tel un volume d’accueil pour passager dans un véhicule de transport de passagers.
[0056] Il permet également dans le cadre d’une application à un aéronef d’éliminer les particules, microparticules et aérosols contenant des bactéries ou des virus déposés sur les parois internes et les aubes des compresseurs des moteurs des aéronefs, d’une part et : a. les aérosols, particules et microparticules (toxiques) présents dans le circuit de pressurisation de la cabine des aéronefs et issus de la fuite des lubrifiants liquides des moteurs des avions, b. les aérosols, particules et microparticules contenant des bactéries ou virus (Covid-19 par exemple) présents dans le circuit de pressurisation de la cabine des avions et issus de la pollution de l’air des zones d’épidémie et de pandémie, lequel air pollué est lui-même issu de l’air environnant aspiré et comprimé par les moteurs des aéronefs, d’autre part.
[0057] Ainsi, selon une autre caractéristique particulièrement avantageuse de l’invention où le moyen de transport est un aéronef équipé d’un moteur et d’un compresseur, le procédé de désinfection comprend une opération de pulvérisation du mélange créé sur le moteur de l’aéronef ainsi que sur son compresseur à des fins de lavage.
[0058] Cette opération peut venir en complément de celles déjà citées. [0059] Selon un mode de réalisation préféré mais non limitatif, le mélange contient alors de l’eau chaude à une température comprise entre 60 et 90 °C et contenant un désinfectant non corrosif pour le moteur.
[0060] Ces filtres peuvent également servir à éliminer des aérosols, particules et microparticules contaminés présents dans le système de pressurisation pneumatique du générateur auxiliaire de puissance (APU) de l’aéronef avant leur introduction dans la cabine ou cellule des aéronefs.
[0061] Comme expliqué plus haut, il est en outre envisagé de compléter ces solutions techniques de désinfection par les mesures ci-dessous décrites.
[0062] Il est possible de réduire des risques d’introduction de la contamination à l’intérieur du volume d’accueil des passagers (telle la cabine d’un avion) par les passagers, les membres d’équipage et le personnel technique d’entretien et de maintenance par les opérations suivantes :
[0063] - Tester les passagers, les membres d’équipage et le personnel technique d’entretien avant son entrée dans la cabine avion (afin de détecter les porteurs du virus du Covid-19). On pourra utiliser à cet effet les bornes autonomes de détection automatiques de virus et bactéries contenus dans les aérosols et microgouttelettes émis par toute personne infectée ;
[0064] - Désinfecter (grâce à la mise en place de portiques de désinfection) les bagages des passagers et les membres d’équipage ou le personnel technique d’entretien et de maintenance avant leur chargement ou introduction dans l’avion ;
[0065] - Désinfecter (grâce à la mise en place de portiques de désinfection) les vêtements et chaussures des passagers, des membres d’équipage et du personnel technique d’entretien et de maintenance avant leur entrée dans l’avion ;
[0066] - Faire un traçage point à point des personnes malades de COVID-19 et ayant l’intention de prendre un avion. On pourra à cet effet utiliser le procédé de détection et traçage.
[0067] De plus, il est également possible de réduire les risques de contamination en équipant les personnes transportées de moyen de protection individuelle. [0068] L’invention a pour autre objet le dispositif permettant de filtrer par filtre condensateur d’une part et de créer le vortex tourbillonnaire désinfectant d’autre part afin de mettre en œuvre le procédé ci-dessus décrit.
[0069] Selon une caractéristique particulièrement avantageuse de l’invention, le dispositif est remarquable en ce que le filtre condensateur à armatures et diélectrique poreux lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique, comprend une entrée de fluide gazeux à filtrer et une sortie du fluide gazeux filtré, ledit fluide gazeux à filtrer passant par une succession de couches de matériaux poreux différents selon au moins le schéma suivant :
- Au moins une couche de matériau non conducteur pris en sandwich entre deux couches de matériau conducteur.
La mise en œuvre du procédé peut comprendre un ou plusieurs filtres condensateurs qui peuvent être montés en série ou en parallèles.
De plus, ce ou ces filtres condensateurs peuvent être associés ou non à un ou plusieurs filtres électropositifs.
[0070] Selon une autre caractéristique particulièrement avantageuse de l’invention, la couche de matériau poreux conducteur comprend au moins un des matériaux de la liste suivante :
[0071] - titane, alliage de titane, inox, nickel, alliage de nickel, argent, or, graphite, carbone, fibre de carbone, hastelloy, platine, graphène.
[0072] Selon une autre caractéristique particulièrement avantageuse de l’invention, la couche de matériau poreux non conducteur comprend au moins un des matériaux de la liste suivante :
[0073] Polyéthylène, Polypropylène, PTFE, Polyamide, Polyéther sulfone.
[0074] Selon une autre caractéristique particulièrement avantageuse de l’invention, un filtre HEPA constitue la couche de matériaux poreux non conducteur.
[0075] Les matériaux conducteurs sont associés à un générateur de tension continue avec un ou plusieurs condensateurs électriques. [0076] Le filtre condensateur peut être monté en série ou en parallèle avec le ou lesdits condensateurs électriques.
[0077] La tension fournie par le générateur a une valeur située entre 0,1 et 1000 volts.
[0078] Le ou les condensateurs sont polarisés ou non et leur capacité électrique se situe entre 0,1 et 500000 microfarads.
[0079] Selon une autre caractéristique particulièrement avantageuse de l’invention, le filtre condensateur à armatures et diélectrique poreux lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique, contient en outre du charbon actif et/ou un catalyseur de neutralisation d’ozone atmosphérique.
[0080] En jouant sur la succession et sur la sélection de matériaux traversés, leur épaisseur et leur alimentation en électricité (pour les couches de matériau conducteur), la filtration obtenue est très efficace et supérieure à celle proposée par l’art antérieur.
[0081] Selon une autre caractéristique particulièrement avantageuse de l’invention, le dispositif est équipé d’une buse créant dans son âme creuse le vortex tourbillonnaire, ladite buse comprenant deux extrémités,
[0082] avec à une première extrémité, un orifice d’entrée du gaz dit moteur, et à la deuxième extrémité, la sortie sous la forme d’un vortex tourbillonnaire du mélange,
[0083] ladite buse comprenant un orifice de communication avec un volume de liquide désinfectant,
[0084] lequel orifice débouche dans l’âme creuse au moyen d’un canal disposé coaxialement à l’axe du flux de gaz moteur et au centre de ce dernier, de sorte que le gaz moteur crée un flux annulaire autour du flux central du liquide désinfectant de façon à ce que le liquide désinfectant soit aspiré par le déplacement dudit gaz moteur dans l’âme creuse et que le mélange soit tourbillonnaire et turbulent. [0085] Selon une autre caractéristique particulièrement avantageuse de l’invention, l’orifice de communication avec le volume de liquide désinfectant permet le barbotage par le gaz moteur.
[0086] Selon une autre caractéristique particulièrement avantageuse, l’âme creuse est préformée de façon à orienter les flux et les faire tourbillonner.
[0087] Les concepts fondamentaux de l’invention venant d’être exposés ci-dessus dans leur forme la plus élémentaire, d’autres détails et caractéristiques ressortiront plus clairement à la lecture de la description qui suit et en regard des dessins annexés, donnant à titre d’exemples non limitatifs, des modes de réalisation d’un procédé et d’un dispositif conformes à l’invention.
[0088] BREVE DESCRIPTION DES DESSINS
[0089] [Fig. 1] est un dessin schématique d’un aéronef montrant les différentes possibilités de contamination ;
[0090] [Fig. 2] est un dessin schématique d’un mode de réalisation conforme à l’invention d’un dispositif de création d’un vortex tourbillonnaire ;
[0091] [Fig. 3] est un dessin schématique d’une vue en coupe d’un mode de réalisation d’une buse ;
[0092] [Fig. 4], [Fig. 5], [Fig. 6], [Fig. 7], [Fig. 8] et [Fig. 9] sont des dessins schématiques de modes de réalisation conformes à l’invention d’un filtre condensateur.
[0093] DESCRIPTION EN APPUI DES DESSINS
[0094] Comme illustré par la figure 1 , la cellule de l’aéronef ici un avion référencé A dans son ensemble peut être contaminée de différentes façons.
[0095] Ainsi, en addition des contaminations susceptibles d’avoir pour origines les passagers P, membres d’équipages ou personnels techniques, l’atmosphère dans laquelle évolue l’avion A mais également les sous-ensembles techniques par lesquelles est susceptible de passer l’air destiné au volume d’accueil V accueillant les passagers P, peuvent également être la source d’une contamination.
[0096] Comme expliqué plus haut, [0097] - les aérosols, particules et microparticules issus de la fuite des lubrifiants liquides des moteurs M de l’avion A,
[0098] - les aérosols, particules et microparticules contenant des bactéries et/ou virus (COVID 19 par exemple) issus de la pollution,
[0099] font que le flux F d’air circulant dans le volume est susceptible d’être contaminé.
[0100] Pour éviter cela, les demandeurs proposent un procédé global permettant de filtrer l’air avant son entrée dans le volume d’accueil au moyen d’un filtre condensateur et de désinfecter les différentes surfaces avec lesquelles l’air est susceptible d’entrer en contact par la pulvérisation d’un vortex contenant des particules de désinfectant.
[0101 ] Comme illustré par la figure 2, le sous-ensemble fonctionnel 100 de création dudit vortex comprend une buse 100 et un réservoir de désinfectant liquide 101 disposé dans un boîtier 102, la buse 100 étant fixée sur la surface extérieure du boîtier 102 . Sous l’action d’un gaz moteur, la buse 100 crée un vortex qui aspire le désinfectant et crée un mélange tourbillonnaire et turbulent contenant les particules de désinfectant.
[0102] A cette fin, comme illustrée par la figure 3, la buse 100 comprend deux extrémités, avec à une première extrémité 110, un orifice d’entrée du gaz dit moteur F1 , et à la deuxième extrémité 120, un orifice de sortie d’un vortex tourbillonnaire d’un mélange associant gaz moteur et particule d’un désinfectant.
[0103] La buse est préformée d’une âme creuse 130 présentant à partir de l’entrée du gaz moteur F1 une succession de volumes ayant des fonctions différentes.
[0104] Ainsi, le gaz moteur F1 débouche dans une première chambre 140 avec laquelle communique deux conduites :
- Une première conduite transversale 141 communiquant avec un orifice extérieur permettant l’installation d’un monomètre de contrôle de la pression dans la première chambre 140 ;
- Une deuxième conduite transversale 142 communiquant avec un autre orifice extérieur autorisant l’entrée d’un autre gaz moteur ou la sortie d’une partie du gaz moteur F1 pour le bullage du liquide désinfectant. [0105] Cette première chambre 143 débouche au moyen de canalisations longitudinales 143 disposées autour de l’axe de la buse 100 dans une deuxième chambre 150.
[0106] La même partie de buse 100 accueillant la chambre 140 est préformée d’une conduite transversale 144 communiquant avec un orifice extérieur autorisant l’entrée de liquide désinfectant stocké dans le réservoir 101 (cf. figure 2).
[0107] L’âme creuse 130 est en outre préformée d’une canalisation axiale 145 disposée de telle façon que les canalisations longitudinales soient disposées autour et avec laquelle communique ladite conduite transversale 144. Cette canalisation axiale 145 se prolonge par un tube 151 traversant la deuxième chambre 150. Ainsi, le liquide désinfectant ne débouche pas dans la deuxième chambre 150.
[0108] Cette deuxième chambre 150 débouche sur un alésage axial 152 de diamètre supérieur au diamètre extérieur du tube 151 de façon à laisser un jeu autorisant un écoulement annulaire du gaz moteur issu de la chambre 150 autour du tube 151. Ce tube 151 débouche dans ledit alésage de sorte que sont orifice de sortie soit soumis audit écoulement annulaire qui créé donc une dépression provoquant une aspiration à laquelle est soumis le liquide désinfectant. Le vortex créé alors dans l’alésage 152 le mélange entre le gaz moteur et le liquide désinfectant en aval de l’orifice de sortie du tube 151 et juste avant l’orifice de sortie de la deuxième extrémité 120. Le flux de sortie F2 est animé par ledit vortex et est donc tourbillonnant et turbulent.
[0109] Comme illustré, le tube 151 est vissé dans le corps préformé de la conduite 145 et coaxialement à cette dernière de sorte que sa position puisse être réglée. En effet, l’extrémité de sortie 153 dudit tube 151 est équipée d’une collerette périphérique créant un étranglement pour le flux annulaire de gaz moteur, étranglement dont la position peut être réglée grâce à la liaison hélicoïdale.
[0110] Selon un mode de réalisation non limitatif, cette collerette est préformée de pales orientant le flux de gaz moteur de façon à créer un tourbillon.
[0111] Plusieurs modes de réalisation de filtre sont possibles pour la mise en œuvre de la filtration par filtre condensateur selon l’invention, mais ils adoptent tous une configuration de base décrite ci-dessous. [0112] Le filtre comprend une entrée de fluide gazeux à filtrer et une sortie du fluide gazeux filtré, ledit fluide gazeux à filtrer passant par une succession de couches de matériaux poreux différents selon le schéma suivant :
- Au moins une couche de matériau non conducteur pris en sandwich entre deux couches de matériau conducteur.
[0113] Le matériau poreux conducteur fait partie de la liste suivante :
[0114] - titane, alliage de titane, inox, nickel, alliage de nickel, argent, or, graphite, carbone, fibre de carbone, hastelloy, platine, graphène.
[0115] Le matériau poreux non conducteur fait partie de la liste suivante :
[0116] Polyéthylène, Polypropylène, PTFE, Polyamide, Polyéther sulfone, Filtre HEPA.
[0117] Parmi ceux-ci, le filtre 200 illustré par la figure 4 comprend trois couches 210, 220, 230 associées et une quatrième couche 240 dissociée. Les trois couches associées sont agencées de façon à prendre en sandwich une couche de matériau poreux non conducteur 220 par les couches de matériau poreux conducteur 210 et 230. La couche 240 est une couche de matériau poreux conducteur.
[0118] Un générateur de tension continue 250 alimente les couches conductrices. Le pôle positif 251 est relié aux couches 210 et 230 des couches associées et le pôle négatif 252 est relié à la couche 240 dissociée.
[0119] Un condensateur 260 est également relié aux couches conductrices avec une électrode reliée aux couches 210 et 230 des couches associées et l’autre électrode reliée à la couche dissociée.
[0120] Le flux d’air F3 éventuellement contaminé passe à travers ces couches et un flux d’air filtré F4 en sort.
[0121] Le filtre 300 illustré par la figure 5 comprend trois couches 310, 320, 330 associées et une quatrième couche 340 dissociée. Les trois couches associées sont agencées de façon à prendre en sandwich une couche de matériau poreux non conducteur 320 par les couches de matériau poreux conducteur 310 et 330. La couche 340 est une couche de matériau poreux conducteur.
[0122] Un générateur de tension continue 350 alimente les couches conductrices. Le pôle positif 351 est relié aux couches 310 et 330 des couches associées et le pôle négatif 352 est relié à la couche 340 dissociée.
[0123] Un condensateur 360 est également relié aux couches conductrices avec une électrode reliée aux couches 310 et 330 des couches associées et l’autre électrode reliée à la couche dissociée 340.
[0124] Un autre condensateur 370 s’intercale entre le pôle négatif 352 et la couche dissociée 340.
[0125] Le filtre 400 illustré par la figure 6 comprend quatre couches 410, 420, 430 et 440 associées. Les couches 410 et 440 sont en matériau poreux conducteur. La couche 420 est en matériau poreux non conducteur. La couche 430 est en matériau poreux est réalisée dans au moins un des matériaux de la liste suivante :
[0126] - charbon actif,
[0127] - fibre de carbone activé,
[0128] - graphène.
[0129] Les quatre couches associées sont agencées de façon à faire prendre en sandwich la couche de matériau poreux non conducteur 420 et la couche 430 par les couches de matériau poreux conducteur 410 et 440. Le fluide à filtrer passe d’abord par le matériau poreux non conducteur 420 puis à travers la couche 430.
[0130] Un générateur de tension continue 450 alimente les couches conductrices 410 et 440. Le pôle positif 451 est relié à la couche 410 et le pôle négatif 452 est relié à la couche 440.
[0131] Un condensateur 460 est également relié aux couches conductrices avec une électrode reliée à la couche 410 et l’autre électrode reliée à la couche 440.
[0132] Un autre condensateur 470 s’intercale entre le pôle négatif 452 et la couche
440. [0133] Le filtre 500 illustré par la figure 7 comprend quatre couches 510, 520, 530 et 540 associées. Les couches 510 et 540 sont en matériau poreux conducteur. La couche 520 est en matériau poreux non conducteur. La couche 530 est en matériau poreux est réalisée dans au moins un des matériaux de la liste suivante :
[0134] - charbon actif,
[0135] - fibre de carbone activé,
[0136] - graphène.
[0137] Les quatre couches associées sont agencées de façon à faire prendre en sandwich la couche de matériau poreux non conducteur 520 et la couche 530 par les couches de matériau poreux conducteur 510 et 540. Le fluide à filtrer passe d’abord par le matériau poreux non conducteur puis à travers la couche 530.
[0138] Un générateur de tension continue 550 alimente les couches conductrices 510 et 540. Le pôle positif 551 est relié à la couche 510 et le pôle négatif 552 est relié à la couche 540.
[0139] Un condensateur 560 est également relié aux couches conductrices avec une électrode reliée à la couche 510 et l’autre électrode reliée à la couche 540.
[0140] Le filtre 600 illustré par la figure 8 comprend trois couches 610, 620, 630 associées. Les trois couches associées sont agencées de façon à prendre en sandwich une couche de matériau poreux non conducteur 620 de grande épaisseur par les couches de matériau poreux conducteur 610 et 630.
[0141] Un générateur de tension continue 650 alimente les couches conductrices. Le pôle positif 651 est relié à la couche 610 et le pôle négatif 652 est relié à la couche 630.
[0142] Un condensateur 660 est également relié aux couches conductrices avec une électrode reliée à la couche 610 et l’autre électrode reliée à la couche dissociée 630.
[0143] Le filtre 700 illustré par la figure 9 comprend trois couches 710, 720, 730 associées. Les trois couches associées sont agencées de façon à prendre en sandwich une couche de matériau poreux non conducteur 720 de grande épaisseur par les couches de matériau poreux conducteur 710 et 730. [0144] Un générateur de tension continue 750 alimente les couches conductrices. Le pôle positif 751 est relié à la couche 710 et le pôle négatif 752 est relié à la couche 730.
[0145] Un condensateur 760 est également relié aux couches conductrices avec une électrode reliée à la couche 710 et l’autre électrode reliée à la couche dissociée 730.
[0146] Un autre condensateur 770 s’intercale entre le pôle négatif 752 et la couche 730.
[0147] On comprend que les dispositifs qui viennent d’être ci-dessus décrits et représentés, l’ont été en vue d’une divulgation plutôt que d’une limitation. Bien entendu, divers aménagements, modifications et améliorations pourront être apportés aux exemples ci-dessus, sans pour autant sortir du cadre de l’invention.
[0148] Ainsi, par exemple, on comprend que les caractéristiques décrites ci-dessus pour une application à un aéronef est susceptible de s’appliquer à tout véhicule de transport de passagers.

Claims

Revendications
[Revendication 1] Procédé de désinfection et de purification pour éviter la contamination d’un véhicule de transport présentant un volume d'accueil de passagers équipé d’un circuit de ventilation, contamination par des aérosols, des microgouttelettes, des bactéries ou des virus, CARACTERISE EN CE QU’il comprend les opérations suivantes :
-installation dans le circuit de ventilation du volume d’accueil d’au moins un filtre condensateur à armatures et diélectrique poreux, imprégné ou non de substances bactéricides ou virucides non relargables dans le circuit d’air de ventilation du volume d’accueil, lequel filtre condensateur est relié aux pôles positif et négatif d’un générateur électrique ;
- création d’un vortex tourbillonnaire d’aérosols et de microgouttelettes d’un liquide désinfectant ou d’aérosols ou de microgouttelettes d’un liquide désinfectant au moyen d'un gaz dit moteur;
- mise en contact des aérosols ou des microgouttelettes de liquide désinfectant avec les aérosols et microgouttelettes susceptibles de contenir des bactéries et des virus par pulvérisation du mélange tourbillonnaire créé sur les vêtements, les bagages des passagers avant leur entrée dans le volume d’accueil,
- mise en contact des aérosols ou des microgouttelettes de liquide désinfectant avec les aérosols et microgouttelettes susceptibles de contenir des bactéries et des virus par pulvérisation du mélange créé sur les surfaces solides et/ou dans l’air du volume d’accueil à désinfecter.
[Revendication 2] Procédé selon la revendication 1 , CARACTERISE EN CE QUE les aérosols et/ou les microgouttelettes de liquide désinfectant sont créés par aspiration annulaire du liquide désinfectant par le gaz moteur en écoulement.
[Revendication 3] Procédé selon la revendication 1 ou la revendication 2, CARACTERISE EN CE QUE le gaz moteur est sélectionné dans la liste suivante :
- de l’air sous pression ou de l’azote sous pression ou de l’oxygène sous pression ou de C02 sous pression, ou
- un mélange d’air et de C02 sous pression, ou - un mélange d’oxygène et de C02 sous pression, ou
- un mélange d’azote et de C02 sous pression.
[Revendication 4] Procédé selon l’une quelconque des revendications 1 à
3, CARACTERISE EN CE QUE la pression du gaz moteur est réglée pour être comprise entre 1 et 300 bars.
[Revendication 5] Procédé selon l’une quelconque des revendications 1 à
4, CARACTERISE EN CE QUE le liquide désinfectant est composé par au moins un des éléments de la liste suivante : du peroxyde d’hydrogène ou de l’acide peracétique, un composé à base de bioxyde de chlore, un composé à base d’ammoniums quaternaires, un composé alcoolique, du monopersulfate de potassium ou du persulfate de potassium ou du persulfate, un mélange de plusieurs désinfectants.
[Revendication 6] Procédé selon l’une quelconque des revendications 1 à
5, CARACTERISE EN CE QU’il consiste à chauffer le mélange à pulvériser.
[Revendication 7] Procédé selon l’une quelconque des revendications 1 à
6, CARACTERISE EN CE QUE le liquide désinfectant fait l’objet d‘un barbotage par une partie du gaz moteur et le mélange barboté est aspiré ensuite par l’écoulement annulaire du gaz moteur.
[Revendication 8] Procédé selon l’une quelconque des revendications 1 à 7 où le moyen de transport est un aéronef comprenant un moteur et un compresseur, CARACTERISE EN CE QU’il comprend une opération de pulvérisation du mélange créé sur le moteur de l’aéronef ainsi que sur son compresseur à des fins de lavage.
[Revendication 9] Dispositif permettant de mettre en œuvre le procédé selon l’une quelconque des revendications 1 à 8, CARACTERISE PAR LE FAIT QUE le filtre condensateur (200) à armatures et diélectrique poreux est relié aux pôles positif et négatif d’un générateur électrique et comprend une entrée de fluide gazeux à filtrer (F3) et une sortie du fluide gazeux filtré (F4), ledit fluide gazeux à filtrer passant par une succession de couches de matériaux poreux différents selon le schéma suivant : - Au moins une couche de matériau non conducteur (220) pris en sandwich entre deux couches de matériau conducteur (210, 230) alimentées en électricité.
[Revendication 10] Dispositif selon la revendication 9, CARACTERISE PAR LE FAIT QU’il est équipé d’une buse (100) créant dans son âme creuse le vortex tourbillonnaire, ladite buse comprenant deux extrémités, avec à une première extrémité, un orifice d’entrée du gaz dit moteur, et à la deuxième extrémité, la sortie sous la forme d’un vortex tourbillonnaire du mélange, ladite buse comprenant un orifice de communication avec un volume de liquide désinfectant, lequel orifice débouche dans l’âme creuse au moyen d’un canal disposé coaxialement à l’axe du flux de gaz moteur et au centre de ce dernier, de sorte que le gaz moteur crée un flux annulaire autour du flux central du liquide désinfectant de façon à ce que le liquide désinfectant soit aspiré par le déplacement dudit gaz moteur dans l’âme creuse et que le mélange soit tourbillonnaire et turbulent.
[Revendication 11] Dispositif selon la revendication 9 ou la revendication 10, CARACTERISE PAR LE FAIT QUE la couche de matériau poreux conducteur (210, 230) comprend au moins un des matériaux de la liste suivante :
- titane, alliage de titane, inox, nickel, alliage de nickel, argent, or, graphite, carbone, fibre de carbone, hastelloy, platine, graphène.
[Revendication 12] Dispositif selon l’une quelconque des revendications 9 à 11 , CARACTERISE PAR LE FAIT QUE la couche de matériau poreux non conducteur (220) comprend au moins un des matériaux de la liste suivante : Polyéthylène, Polypropylène, PTFE, Polyamides, Polyéther sulfone.
[Revendication 13] Dispositif selon l’une quelconque des revendications 9 à 11 , CARACTERISE PAR LE FAIT QUE le filtre condensateur contient du charbon actif et/ou un catalyseur de neutralisation d’ozone atmosphérique.
[Revendication 14] Dispositif selon l’une quelconque des revendications 9 à 13, CARACTERISE PAR LE FAIT QUE le filtre condensateur est montée en parallèle avec un autre condensateur. [Revendication 15] Dispositif selon l’une quelconque des revendications 9 à 13, CARACTERISE PAR LE FAIT QUE le filtre condensateur est montée en série avec un autre condensateur.
PCT/FR2021/000042 2020-04-28 2021-04-28 Procede et dispositif de desinfection et de purification notamment d'espaces clos tel un volume d'acceuil de passagers d'un moyen de transport WO2021219944A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,333 US20230211034A1 (en) 2020-04-28 2021-04-28 Method and device for disinfecting and cleaning enclosed spaces in particular, such as a passenger compartment on a means of transport

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063016660P 2020-04-28 2020-04-28
US63/016,660 2020-04-28
US202063020157P 2020-05-05 2020-05-05
US63/020,157 2020-05-05
US202063030541P 2020-05-27 2020-05-27
US63/030,541 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021219944A1 true WO2021219944A1 (fr) 2021-11-04

Family

ID=76181150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/000042 WO2021219944A1 (fr) 2020-04-28 2021-04-28 Procede et dispositif de desinfection et de purification notamment d'espaces clos tel un volume d'acceuil de passagers d'un moyen de transport

Country Status (2)

Country Link
US (1) US20230211034A1 (fr)
WO (1) WO2021219944A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115228262A (zh) * 2022-08-22 2022-10-25 湖南国测生物科技有限公司 实验室密闭空间内核酸污染的立体净化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546923A (en) * 1980-11-29 1985-10-15 Tadashi Ii Nozzle for atomizing fluids
US5855653A (en) * 1997-07-14 1999-01-05 Yamamoto; Yujiro Induced voltage electrode filter system with disposable cartridge
CA2494940A1 (fr) * 2002-08-07 2004-02-19 Access Business Group International Llc Systeme de traitement d'air par plasma non thermique
US6805732B1 (en) * 1999-11-23 2004-10-19 Airinspace Ltd. Electrostatic treatment of aerosols, devices and method for producing same
US20070140932A1 (en) * 2005-12-17 2007-06-21 Airinspace Limited Air purification device
US7763206B2 (en) * 2004-06-30 2010-07-27 Tri-Air Developments Limited Air decontamination method
WO2010140702A1 (fr) * 2009-06-01 2010-12-09 Katsura Tsutomu Buse
CN105841265A (zh) * 2016-05-19 2016-08-10 西安航科等离子体科技有限公司 一种等离子空气净化单元

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546923A (en) * 1980-11-29 1985-10-15 Tadashi Ii Nozzle for atomizing fluids
US5855653A (en) * 1997-07-14 1999-01-05 Yamamoto; Yujiro Induced voltage electrode filter system with disposable cartridge
US6805732B1 (en) * 1999-11-23 2004-10-19 Airinspace Ltd. Electrostatic treatment of aerosols, devices and method for producing same
CA2494940A1 (fr) * 2002-08-07 2004-02-19 Access Business Group International Llc Systeme de traitement d'air par plasma non thermique
US7763206B2 (en) * 2004-06-30 2010-07-27 Tri-Air Developments Limited Air decontamination method
US20070140932A1 (en) * 2005-12-17 2007-06-21 Airinspace Limited Air purification device
WO2010140702A1 (fr) * 2009-06-01 2010-12-09 Katsura Tsutomu Buse
CN105841265A (zh) * 2016-05-19 2016-08-10 西安航科等离子体科技有限公司 一种等离子空气净化单元

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AEROTEC: "Aerotec SANY AIR Komplettpaket", 25 March 2020 (2020-03-25), pages 1 - 8, XP055833588, Retrieved from the Internet <URL:https://cdn.hornbach.de/data/shop/D04/001/780/491/779/644/10292990_Doc_01_DE_20200418214654.pdf> [retrieved on 20210820] *
ANONYMOUS: "Disinfectant Spray - Lavender Scent | Seventh Generation", 26 February 2019 (2019-02-26), pages 1 - 8, XP055834018, Retrieved from the Internet <URL:https://www.seventhgeneration.com/disinfectant-spray-lavender-vanilla-thyme-scent> [retrieved on 20210823] *
ANONYMOUS: "Sprühdose - Wikipedia", 18 September 2017 (2017-09-18), pages 1 - 6, XP055833581, Retrieved from the Internet <URL:https://de.wikipedia.org/w/index.php?title=Sprühdose&oldid=169208283> [retrieved on 20210820] *
MARK ONSLOW: "The value of compressor washes in aviation", 24 May 2019 (2019-05-24), pages 1 - 4, XP055833820, Retrieved from the Internet <URL:https://www.rochem-fyrewash.com/news/41-the-value-of-compressor-washes-in-aviation/> [retrieved on 20210823] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115228262A (zh) * 2022-08-22 2022-10-25 湖南国测生物科技有限公司 实验室密闭空间内核酸污染的立体净化方法
CN115228262B (zh) * 2022-08-22 2023-12-01 湖南国测生物科技有限公司 实验室密闭空间内核酸污染的立体净化方法

Also Published As

Publication number Publication date
US20230211034A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN104785112A (zh) 水纯化装置
WO2021219944A1 (fr) Procede et dispositif de desinfection et de purification notamment d&#39;espaces clos tel un volume d&#39;acceuil de passagers d&#39;un moyen de transport
EP2501457B1 (fr) Dispositif de recuperation de nanopoudres et de poudres ultrafines contenues dans un gaz
FR2829041A1 (fr) Epurateur d&#39;air electrostatique
SG192618A1 (en) Seawater desalination device
EP1387989A1 (fr) Procede et dispositif pour diffuser un flux de protection a l&#39;egard d&#39;une ambiance environnante
CN108246068A (zh) 一种空气净化器
FR2979258A1 (fr) Dispositif de collecte electrostatique de particules en suspension dans un milieu gazeux
KR101859955B1 (ko) 호흡용 공기 충전기의 공기정화필터
US20110283887A1 (en) Gas cleaner
CN204107266U (zh) 一种汽车喷漆房废气uv光解净化设备
CN104107593B (zh) 集装箱喷漆有机废气的净化装置
EP2566526A1 (fr) Ensemble de purification d&#39;air par photocatalyse
US20210371305A1 (en) Liquid treatment apparatus
WO2010037717A1 (fr) Dispositif, son utilisation et procede pour l&#39;elimination d&#39;un compose contenu dans un fluide
CN214862280U (zh) 一种废气处理设备
US11602573B2 (en) Cleaning system by means of artificial mist
FR3114975A1 (fr) Appareil de décontamination de l’air ambiant dans un environnement intérieur
FR2564331A1 (fr) Perfectionnements apportes aux installations de depollution d&#39;un gaz pollue par des particules solides et/ou liquides
CN212188550U (zh) 一种环保工程用有害气体处理装置
CN206531191U (zh) 一种空气净化装置
CN218653746U (zh) 一种酸雾污染物废气的净化处理系统
CN204017553U (zh) 集装箱喷漆有机废气的净化装置
CN112160817B (zh) 地下工程移动电站尾气治理红外抑制系统
CN209475890U (zh) 一种有机废气分级处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21728602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21728602

Country of ref document: EP

Kind code of ref document: A1