WO2021219074A1 - 覆膜支架 - Google Patents

覆膜支架 Download PDF

Info

Publication number
WO2021219074A1
WO2021219074A1 PCT/CN2021/090906 CN2021090906W WO2021219074A1 WO 2021219074 A1 WO2021219074 A1 WO 2021219074A1 CN 2021090906 W CN2021090906 W CN 2021090906W WO 2021219074 A1 WO2021219074 A1 WO 2021219074A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
window
stent graft
wave
support frame
Prior art date
Application number
PCT/CN2021/090906
Other languages
English (en)
French (fr)
Inventor
郭伟
王永胜
李安伟
林嵩
Original Assignee
杭州唯强医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州唯强医疗科技有限公司 filed Critical 杭州唯强医疗科技有限公司
Publication of WO2021219074A1 publication Critical patent/WO2021219074A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage

Definitions

  • This application relates to the technical field of medical devices, and in particular to a stent graft.
  • vascular diseases With the improvement of people's living standards and changes in lifestyles, the incidence of vascular diseases is getting higher and higher. If these diseases are not treated in time, they may cause vascular blockage, aneurysms and other diseases, which will seriously endanger human life.
  • Aortic aneurysm and aortic dissection are common high-risk diseases of the aorta. Among them, once an aortic aneurysm occurs, it can gradually increase until it finally ruptures and hemorrhages. Aortic dissection may cause aortic rupture and hemorrhage, and ischemia of important abdominal organs or limbs, which may be life-threatening.
  • minimally invasive interventional procedures are mainly used to treat these diseases.
  • minimally invasive interventional procedures have little trauma to patients, high safety, and high effectiveness. Therefore, it has been recognized by doctors and patients and has become a blood vessel.
  • Minimally invasive interventional surgery is the introduction of special catheters, guide wires and other precision instruments into the human body under the guidance of medical imaging equipment to diagnose and locally treat diseases in the body.
  • Aortic endovascular repair is an endovascular treatment technique in minimally invasive interventional surgery.
  • the stent vessel is delivered to the diseased part of the aorta through the femoral artery incision, and the aortic disease is repaired from the arterial lumen, thereby avoiding opening Operation.
  • the advantages of aortic endovascular repair include: greatly reducing surgical trauma, significantly shortening the operation time, reducing surgical complications and mortality, and greatly shortening the postoperative ICU monitoring time and The overall length of hospital stay.
  • stents used to repair aortic aneurysms and aortic dissections are conventional straight tube type covered stents or multiple bare stents overlapping repairs. Because the location of the aortic lesion may be close to the branch of the blood vessel, the conventional straight-tube stent graft needs to complete the fenestration operation and implant the branch stent during the operation to preserve the branch blood vessels, which greatly increases the complexity of the operation. In addition, when the branch stent is implanted, because the operation space in the diseased area in the aorta is small, it is easy to cause the problem of severe compression of the blood vessel.
  • the present application provides a stent graft that can reduce the complexity of surgery and increase the operating space.
  • a stent graft characterized in that it comprises a tubular main body, the tubular main body includes a main body skeleton and a main body covering film arranged on the main body skeleton, the main body covering film is provided with a first window, and the tubular main body is provided with There is an avoiding area, the avoiding area is adjacent to the distal end of the first window, the main frame includes an avoiding support frame, and the coverage of the avoiding support frame in the avoiding area is less than that of the avoiding support frame in the remaining areas Coverage.
  • the stent graft provided by the present application has a window, which avoids the opening of the first window, which is beneficial to reduce the number of fenestrations during surgery.
  • branch stents can be directly implanted during surgery. There is no need to open the window during the operation, therefore, the complexity of the operation is reduced, and the efficiency and accuracy of the operation are improved.
  • the coverage rate of the avoidance support frame in the avoidance area is less than the coverage rate of the rest of the avoidance support frame, thereby reducing the radial support force of the avoidance area in the radial direction of the tubular body, and
  • the flexibility of the avoidance area is improved, thus increasing the operating space for implanting the branch stent, and it is convenient for the proximal end of the branch stent to enter the window and be anchored in the embedded branch.
  • the support force and flexibility of the avoidance area are reduced, which reduces the compression on the branch stent and the vascular intima, which is beneficial to the release of the branch stent and the blood circulation inside the branch stent.
  • Fig. 1 is a front view of the stent graft provided by the first embodiment of the application
  • Fig. 2 is an enlarged schematic diagram of a partial area of Fig. 1;
  • Figure 3 is a schematic diagram of the structure of the embedded branch
  • Figure 4 is a partial rear view of the stent graft
  • Figure 5 is a front view of the stent graft provided by the second embodiment of the application.
  • Fig. 6 is a front view of the stent graft provided by the third embodiment of the application.
  • Fig. 7 is a front view of the stent graft provided by the fourth embodiment of the application.
  • Fig. 8 is an enlarged schematic diagram of a partial area of Fig. 7;
  • Fig. 9 is a front view of the stent graft provided by the fifth embodiment of the application.
  • Fig. 10 is an enlarged schematic diagram of a partial area of the stent graft shown in Fig. 9;
  • FIG. 11 is an enlarged schematic diagram of a partial area of the stent graft provided by the sixth embodiment of the application.
  • FIG. 12 is a front view of the stent graft provided by the seventh embodiment of this application.
  • Fig. 13 is an enlarged schematic view of a partial area of the stent graft shown in Fig. 12;
  • FIG. 14 is a schematic plan view of the stent graft provided by the eighth embodiment of this application.
  • Fig. 15 is a rear view of the stent graft provided by the eighth embodiment of the application.
  • the range is continuous and includes the minimum and maximum values of the range and each value between these minimum and maximum values. Furthermore, in the case where the range refers to an integer, there are only integers including the minimum value to and including the maximum value of this range. In addition, where multiple ranges are provided to describe features or characteristics, such ranges can be combined.
  • proximal end the end near the heart after implantation of the blood vessel
  • distal end the end far away from the heart after the implantation of the blood vessel
  • proximal end the end far away from the heart after the implantation of the blood vessel
  • distal end the end far away from the heart after the implantation of the blood vessel
  • the delivery system is defined according to this principle.
  • Axial generally refers to the length direction of the stent when it is delivered
  • radial generally refers to the direction perpendicular to the “axial direction” of the stent, and the "axial direction” of any component of the stent graft is defined according to this principle.
  • And radial
  • the first embodiment of the present application provides a stent graft 100.
  • the stent graft 100 includes a tubular body 101 and an embedded branch 103 provided on the tubular body 101.
  • the embedded branch 103 is used for implanting a branch stent (not shown).
  • the stent graft 100 is input to the diseased site through a conveyor (not shown), and the implantation position of the stent graft 100 is adjusted by repeatedly tightening or expanding the tubular body 101, so as to realize the accurate release of the stent graft 100 from the vascular cavity In an appropriate position, the therapeutic function of the intraluminal stent graft 100 is realized.
  • the tubular body 101 and the embedded branch 103 are both hollow lumens, thereby forming a channel for blood circulation.
  • the tubular main body 101 includes a main body frame 11 and a main body covering film 13 provided on the main body frame 11.
  • the main body frame 11 includes a plurality of annular main support frames 110 arranged at intervals along the axial direction of the tubular main body 101.
  • Four windows 131 are provided on the main body covering film 13.
  • the four windows 131 include a first window 1311, a second window 1312, a third window 1313, and a fourth window 1314.
  • the first window 1311 and the second window 1312 are closer to the tubular body 101 than the third window 1313 and the fourth window 1314. Near-end settings.
  • the tubular body 101 also has an avoidance area 1011, and the avoidance area 1011 is adjacent to the distal end of the first window 1311 and the distal end of the second window 1312.
  • the plurality of ring-shaped main support frames 110 includes an avoiding support frame 111.
  • the coverage rate of the avoiding support frame 111 in the avoiding area 1011 is less than the coverage rate of the avoiding support frame 111 on the remaining area of the tubular body 101, so as to reduce the amount of the tubular body 101 in the avoiding area 1011. Radial support force.
  • the main body frame 11 includes an annular main support frame 110 arranged on the inner surface and/or outer surface of the main body covering film 13.
  • the main body frame 11 can be fully or partially fixed on the inner or outer surface of the main body covering film 13 by stitching or hot pressing. superior.
  • the avoidance support frame 111 has a partial ring structure (open ring structure) with a gap.
  • the gap is located in the avoiding area 1011, so that the coverage of the avoiding support frame 111 in the avoiding area 1011 is smaller than the coverage of the avoiding support frame 111 in the remaining area of the tubular body 101, thereby reducing the radial support force.
  • the number of avoidance support frames 111 is two, and the two avoidance support frames 111 are arranged at intervals along the axial direction of the tubular body 101.
  • the first window 1311 and the second window 1312 are arranged on the edge of the cutout of the avoiding support frame 111.
  • the first windows 1311 and the second windows 1312 are distributed side by side symmetrically along the central axis of the tubular body 101, and correspondingly, the notches are distributed symmetrically along the central axis of the tubular body 101.
  • the number of avoiding support frames 111 is not limited; in the embodiment where the first window 1311 and the second window 1312 are not symmetrically distributed along the central axis of the tubular body 101, the notch may be asymmetrical along the central axis of the tubular body 101 distributed.
  • the embedded branch 103 is a hollow tube with open ends for implanting a branch stent (not shown).
  • the number of embedded branches 103 is four, including a first embedded branch 1031, a second embedded branch 1032, a third embedded branch 1033, and a fourth embedded branch 1034.
  • the first inlaid branch 1031, the second inlaid branch 1032, the third inlaid branch 1033, and the fourth inlaid branch 1034 are all fixedly connected to the main body covering film 13 and housed in the lumen of the tubular main body 101.
  • the branch 1031 is fixed to the first window 1311
  • the second embedded branch 1032 is fixed to the second window 1312
  • the third embedded branch 1033 is fixed to the third window 1313
  • the fourth embedded branch 1034 is fixed to the fourth window. 1314.
  • the embedded branch 103 Since the embedded branch 103 is housed in the lumen of the tubular body 101, the occupancy space of the stent graft 100 is reduced, which provides ample operating space for the implantation of the stent graft 100 and the implantation of each branch stent, which is convenient
  • the proximal end of the branch bracket enters the window 131 and is anchored in the embedded branch 103. And after the branch stent is implanted, the compression of the stent graft 100 on the branch stent and the inner wall of the blood vessel is reduced.
  • the first embedded branch 1031 is used to implant the first branch stent
  • the second embedded branch 1032 is used to implant the second branch stent
  • the third embedded branch 1033 is used to implant the third branch stent
  • the fourth embedded branch 1034 is used for implanting the fourth branch stent
  • a part of each branch stent is used for receiving and fixing in the inner cavity of the corresponding embedded branch.
  • the stent graft 100 is used for implanting in the chest and abdomen In the aorta, treat the thoracic-abdominal aortic disease to seal the false cavity/aneurysm.
  • the multiple windows 131 and multiple embedded branches 103 attached to the stent graft 100 are used for branch stents corresponding to the celiac trunk, superior mesenteric artery, and left and right renal arteries.
  • the first branch stent is the celiac trunk artery branch stent
  • the second branch The stent is a superior mesenteric artery branch stent
  • the third branch stent is a left renal artery branch stent
  • the fourth branch stent is a right renal artery branch stent.
  • the stent graft 100 is attached with a window 131, and the above-mentioned multiple branch stents can be directly implanted during the operation without opening the window during the operation.
  • the first branch stent is a celiac artery branch stent
  • the second branch stent is a superior mesenteric artery branch stent.
  • the first branch stent can be implanted into the superior mesenteric artery
  • the second branch stent can be implanted into the celiac trunk artery as needed.
  • the embedded branches 103 are all hollow tubes.
  • Each of the branch stents (first to fourth branch stents) includes a proximal end and a distal end.
  • the proximal end of the first branch stent is used to be inserted into and anchored to the first embedded branch 1031.
  • the proximal end of the two-branch stent is used for inserting and anchoring in the second embedded branch 1032, the proximal end of the third branch stent is used for inserting and anchoring to the third embedded branch 1033, and the proximal end of the fourth branch stent
  • the end is used to be inserted and anchored to the fourth embedded branch 1034.
  • the distal ends of the four branch stents are respectively implanted into the corresponding branch blood vessels.
  • the first branch stent and the second branch stent further include an intermediate portion connected between a proximal portion and a distal portion.
  • the middle part of the first branch stent protrudes from the first window 1311 and extends along the arc to the distal end, so that the distal part of the first branch stent is implanted in the abdominal trunk on the anterior side of the abdominal aorta; the second branch stent The middle part protrudes from the second window 1312 and extends along the arc to the distal end, so that the distal part of the second branch stent is implanted in the superior mesenteric artery located on the anterior side of the abdominal aorta.
  • the coverage rate of the avoidance support frame 111 in the avoidance area 1011 is smaller than that of other areas, thereby reducing the supporting force of the avoidance area 1011 in the radial direction and improving the flexibility of the avoidance area 1011 In this way, the operation space for implanting the branch stent is increased, and it is convenient for the proximal end of the branch stent to enter the window 131 and be anchored in the embedded branch 103.
  • the first branch stent and the second branch stent are easier to follow the direction of the corresponding branch blood vessels, and the compliance of the branch stent is improved, thereby avoiding too much support force due to the avoiding area 1011.
  • the middle part of the first branch stent and the second branch stent is lifted, the first branch stent and the second branch stent are upwardly tilted, which causes a problem of greater compression on the two branch blood vessels after implantation.
  • the middle part of the first branch stent and the second branch stent is sandwiched between the avoidance area and the endovascular membrane, and the support force of the avoidance area is reduced and the flexibility is improved.
  • the compression on the branch stent and the intima of the blood vessel is reduced, which is beneficial to the release of the branch stent and the blood circulation inside the branch stent.
  • the stent graft 100 is applied to the aortic arch or thoracic aorta.
  • the number of windows in the stent graft 100 is not limited. At least the first window 1311 is provided in the stent graft 100. In some embodiments, the At least two windows, three windows or other numbers of windows are provided in the membrane support 100. The relative positional relationship between the windows is not limited. In some embodiments, the stent graft 100 is provided with several windows. The surgeon can also use in-situ fenestration.
  • the stent graft can be opened in the patient's body; or the surgeon can also use pre-
  • the fenestration method is to perform a fenestration operation on the stent graft outside the patient's body before the interventional operation, so as to obtain windows other than the several windows on the stent graft 100.
  • the stent graft 100 omits at least part of the embedded branches 103, and the proximal ends of the four branch stents are sleeved in the corresponding windows 131.
  • the material of the ring-shaped main support frame 110 is made of nickel-titanium alloy material with good biocompatibility, and each ring-shaped main support frame 110 is wound by a nickel-titanium alloy wire.
  • the head and tail ends of the wire are fixed by steel sleeves or other processes.
  • the ring-shaped main support frame 110 can also be made of other materials, for example, stainless steel and other materials.
  • the main body covering film 13 is made of PET, which is a polymer material with good biocompatibility, and other materials such as PTFE and FEP that can effectively prevent fluid penetration and are suitable for long-term implantation in the human body can also be selected.
  • the ring-shaped main support frame 110 is cut from a pipe, so that the connecting pieces (such as the above-mentioned steel sleeve) or other processes for fixing the two ends of the ring-shaped main support frame 110 are omitted.
  • the stent graft 100 further includes a front wall (the side shown in the front view shown in FIG. 1), a rear wall (the side shown in the rear view shown in FIG. 4), and two side walls.
  • the front wall is arranged opposite to the rear wall, each side wall is connected between the front wall and the rear wall, and the first window 1311 and the second window 1312 are arranged along the circumference of the tubular body 101 and located in the front.
  • the wall, the third window 1313 and the fourth window 1314 are arranged along the circumference of the tubular body 101 and are respectively located on a side wall.
  • the first windows 1311 and the second windows 1312 are symmetrically distributed along the central axis of the tubular body 101
  • the first embedded branches 1031 and the second embedded branches 1032 are symmetrically distributed along the central axis of the tubular body 101.
  • the third window 1313 and the fourth window 1314 are symmetrically distributed along the central axis of the tubular body 101
  • the third embedded branch 1033 and the fourth embedded branch 1034 are symmetrically distributed along the central axis of the tubular body 101.
  • first window 1311 and the second window 1312 are not limited to be distributed symmetrically along the central axis of the tubular body 101.
  • the size and shape of the first window 1311 and the second window 1312 may be different, and the first embedded branch is not limited. 1031.
  • the second embedded branches 1032 are symmetrically distributed along the central axis of the tubular body 101; similarly, the third window 1313 and the fourth window 1314 are not limited to be symmetrically distributed along the central axis of the tubular body 101, for example, the third window 1313 and the first
  • the size and shape of the four windows 1314 may be different, and the third embedded branch 1033 and the fourth embedded branch 1034 are symmetrically distributed along the central axis of the tubular body 101 without limitation.
  • the first window 1311, the second window 1312, the third window 1313, and the fourth window 1314 are staggered in the axial direction, that is, the positions of the four windows 131 in the axial direction are different.
  • the stent graft 100 further includes a proximal section 105, a variable diameter section 106 and a distal section 107.
  • the diameter reducing section 106 is connected between the proximal section 105 and the distal section 107.
  • the proximal section 105 and the distal section 107 are roughly straight cylindrical, that is, the proximal section 105 is an equal-diameter tube body, and the distal section 107 is an equal-diameter tube body.
  • the diameter of the proximal section 105 is larger than that of the distal section 107, so as to better adapt to the anatomical characteristics of the thoracic and abdominal aorta.
  • the variable diameter section 106 includes a first subsection 1061, a second subsection 1063, and a third subsection 1065 that are connected in sequence.
  • the first segment 1061 is connected to the distal end of the proximal segment 105.
  • the third segment 1065 is connected to the proximal end of the distal segment 107.
  • the tube diameter of the first segment 1061 gradually decreases from the proximal end of the first segment 1061 toward the distal end of the first segment 1061.
  • the second section 1063 is an equal-diameter tube body, and the tube diameter of the third section 1065 gradually increases from the proximal end of the third section 1065 toward the distal end of the third section 1065.
  • the third window 1313 and the fourth window 1314 are provided on opposite sides of the first segment 1061, that is, the third branch stent and the fourth branch stent used for implanting into the left and right renal arteries are used to move inwardly of the stent graft 100
  • the concave first section 1061 connects the third window 1313 and the fourth window 1314, and then is inserted into the third embedded branch 1033 and the fourth embedded branch 1034.
  • the stent graft 100 is roughly dumbbell-shaped and can be a kidney Arterial branch stents provide ample space and will not squeeze into blood vessels.
  • the proximal section 105 is not limited to an equal diameter
  • the distal section 107 is not limited to an equal diameter
  • the second subsection 1063 is not limited to an equal diameter.
  • the first window 1311 and the second window 1312 are all located on the proximal section 105, the third window 1313 and the fourth window 1314 are located in the first section 1061 of the reducing section 106, and the avoidance area 1011 extends from the proximal section 105 to the reducing section.
  • the first paragraph 1061 of paragraph 106 the axial positions of the tubular body 101 corresponding to the first window 1311 and the second window 1312 are the same to form the first group of windows.
  • the third window 1313 and the fourth window 1314 correspond to the tubular body 101. The axial positions are the same to form a second set of windows.
  • the first set of windows and the second set of windows are alternately arranged at different axial positions of the tubular body 101, thereby reducing the radial size of the sheathing, which is beneficial to Use a smaller sheath for delivery. It can be understood that the axial positions of the first window 1311 and the second window 1312 may be different, and the axial positions of the third window 1313 and the fourth window 1314 may be different, thereby further reducing the diameter of the delivery sheath.
  • the axial positions of the tubular body 101 corresponding to the proximal openings of the first embedded branch 1031 and the second embedded branch 1032 are the same to form the first group of branch proximal openings, the third embedded branch 1033 and the fourth embedded branch 1033
  • the axial positions of the tubular body 101 corresponding to the proximal openings of the two branches 1034 are the same to form a second group of branch proximal openings.
  • the first group of branch proximal openings and the second group of branch proximal openings are different in the tubular body 101.
  • the axial position of the tube further reduces the radial size of the sheath, which is conducive to the use of a smaller sheath for delivery.
  • the axial positions of the proximal openings of the first embedded branch 1031 and the second embedded branch 1032 may be different, and the axial positions of the proximal openings of the third embedded branch 1033 and the fourth embedded branch 1034 Can be different, thereby further reducing the diameter of the delivery sheath.
  • tubular body 101 can omit the distal section 107 and the third subsection 1065 of the variable diameter section 106. It can be understood that the tubular body 101 can further omit all of the diameter reducing section 106.
  • the ring-shaped main support frame 110 is a ring-shaped structure in which a plurality of waveforms 110a are connected in series.
  • the waveforms of the annular main support frame 110 may be the same or different, and the waveforms may be Z-wave, M-wave, V-wave, sine-wave structure, or other structures that can be radially compressed to a small diameter. It is understandable that this embodiment does not limit the specific structure of the main ring-shaped support frame 110, and the waveform of the ring-shaped main support frame 110 can be set as required, and the number of waveforms 110a in each ring-shaped main support frame 110 can be set as required.
  • a nickel-titanium tube can be cut and shaped to form a bare stent, and then the bare stent is sutured on the main body membrane 13.
  • the ring-shaped main support frame 110 is a constant-height waveform or a high-low waveform frame.
  • the main frame 11 includes a constant-height waveform ring-shaped main frame 110 and a high-low waveform ring-shaped main frame 110.
  • the waveform 110a includes a wave rod 110b, a wave crest 110c, and a wave trough 110d.
  • the wave crest 110c is located at the proximal end of the wave rod 110b, and the wave trough 110d is located at the far end of the wave rod 110b.
  • the two adjacent wave rods 110b are relatively close to make the tubular body 101 contract, and the adjacent two wave rods 110b are relatively open to make the tubular body 101 expand.
  • the plurality of ring-shaped main support frames 110 may extend in equal diameters or non-equal diameters.
  • the height of the wave peak 110c to the wave trough 110d is the wave height.
  • the wave heights of the multiple waveforms of the ring-shaped main support frame 110 may be equal, that is, equal-height waveforms.
  • the wave heights of the multiple waveforms of the ring-shaped main support frame 110 may not be equal, that is, the high and low waves.
  • the ring-shaped main support frame 110 includes alternately arranged high waves and low waves, and the wave height of the high waves is greater than the height of the low waves.
  • the end of the high wave beyond the low wave is not sutured (fixed) between the main body covering film 13, so that when the stent graft 100 is bent, the high wave is not fixed on the main body covering area corresponding to the end of the main body covering film 13
  • the membrane 13 is separated from the ring-shaped main support frame 110 to form a hole, and the end of the adjacent ring-shaped main support frame 110 is inserted into the hole, so that the stent graft 100 can be kept in a bent state, which improves the compliance of the branch stent and reduces the resistance to blood vessels.
  • oppression It can be understood that the wave height of the waveform 110a in each ring-shaped main support frame 110 can be set as required.
  • a plurality of ring-shaped main support frames 110 are distributed in the proximal section 105, the variable diameter section 106 and the distal section 107.
  • barbs 112 are also provided on the trough 110d of at least one annular main support frame 110 located in the proximal section 105, and the barbs 112 are used to improve the anchoring of the stent graft 100.
  • the barbs 112 generally extend from the proximal end of the tubular body 101 toward the distal end of the tubular body 101. In this embodiment, along the proximal end of the tubular body 101 toward the distal end of the tubular body 101, the barbs 112 are provided in the proximal section 105.
  • the ring-shaped main support frame 110 with barbs 112 is formed by laser cutting. It can be understood that the barb 112 may also be provided on the wave crest 110c and/or the wave rod 110b. In addition, the barbs 112 can also be arranged on one or more other annular main support frames 110.
  • the ring-shaped main support frame 110 at the nearest end of the proximal section 105 is called the first ring-shaped main support frame 1100.
  • the first ring-shaped main support frame 1100 includes the first high wave 1102, the second high wave 1104, and the third high wave 1104. High wave 1106 and five low waves 1108.
  • the first high wave 1102 is located between the second high wave 1104 and the third high wave 1106.
  • the second high wave 1104 and A low wave 1108 is provided between the third high wave 1106, and two low waves 1108 are provided between the third high wave 1106 and the first high wave 1102.
  • the first high wave 1102, the second high wave 1104, and the third high wave 1106 are combined together under the control of the conveyor, so that after the proximal end of the stent graft 100 is released, the position of the proximal end of the stent graft 100 is fixed , And the diameter is constrained within a certain range, it is convenient to adjust the stent graft along the axis during the implantation process, or rotate it, so as to adjust the axial and axial position of the stent graft 100 and improve the release of the stent graft 100 Accuracy.
  • the first high wave 1102, the second high wave 1104, and the third high wave 1106 are combined together.
  • a first opening is formed between the first high wave 1102 and the second high wave 1104.
  • the third high wave 1106 and the first is formed between the high waves 1102, and a third opening is formed between the second high waves 1104 and the third high waves 1106. Because the number of low waves 1108 circumferentially surrounding the first opening is larger than the low waves 1108 circumferentially surrounding the third opening Therefore, the area of the first opening is greater than the area of the third opening. Similarly, the area of the second opening is greater than the area of the third opening, and the area of the first opening is equal to the area of the second opening.
  • the proximal end of the stent graft 100 forms two relatively large openings, namely the first opening and the second opening. It is convenient for the first opening and the second opening to pass through the corresponding branch stent and the guide wire of the corresponding branch stent from the proximal end to the distal end.
  • the first opening is used to pass the branch stent corresponding to the first window and/or the third window and the guide wire corresponding to the branch stent from the proximal end to the distal end; the second opening is used to pass from the proximal end to the distal end.
  • the branch bracket corresponding to the second window and/or the fourth window, and the guide wire corresponding to the branch bracket are used to pass from the proximal end to the branch bracket.
  • the first high wave 1102, the second high wave 1104, and the third high wave 1106 of the first ring-shaped main support frame 1100 are controlled by the conveyor to release from the conveyor. In some embodiments, release is performed first, and then released. Half-release; or half-release first, and then release later.
  • the first window 1311 is tangent to the second window 1312, and the tangent point between the first window 1311 and the second window 1312 is at a trough 110d between the first high wave 1102 and the second high wave 1104 Align the settings.
  • the stent graft 100 further includes four sets of first developing parts 14.
  • the number of the first developing member 14 in each group of the first developing member 14 is one.
  • Each group of first developing members 14 is fixed on the avoiding support frame 111 close to the trough 110d of the wave 110a of the avoiding area 1011.
  • the avoidance bracket 111 is an open-loop structure with a gap, so that each avoidance support bracket 111 forms two fractures 1110.
  • the wave trough 110d at each fracture 1110 is fixed with a set of first developing parts 14 to facilitate the release operation.
  • the first developer 14 is not limited to be disposed at the wave trough 110d at the fracture 1110, it can also be disposed at the wave rod 110b and/or the wave crest 110c of the end block 1110, and can also be disposed outside the break 1110 of the avoiding support frame 111 At the trough 110d, the pole 110b and/or the crest 110c of the waveform 110a. It is not limited that the first developing member 14 is fixed on the avoiding support frame 111, the first developing member 14 may be fixed on the main body covering film 13, and the number of the first developing member 14 in each group of the first developing member 14 is not limited.
  • the avoidance support frame 111 includes a plurality of serially connected waveforms 110a, the waveforms 110a include a pole 110b, a crest 110c, and a trough 110d, and the at least one set of first developing member 14 is provided on the main body covering On the film 13, the at least one group of first developing elements 14 are arranged around at least one of the pole 110b, the wave crest 110c, and the wave trough 110d of the avoiding support frame 111 close to the avoiding area 1110.
  • the avoiding support frame 111 includes a plurality of serially connected waveforms 110a, the waveforms 110a include a wave rod 110b, a wave peak 110c, and a wave trough 110d, and the at least one set of first developing members 14 are provided on the avoiding support On the frame 111, the at least one group of first developing elements 14 are provided on at least one of the pole 110b, the wave crest 110c, and the wave trough 110d of the avoiding support frame 111 close to the avoiding area 1110.
  • the tubular main body 101 also includes three sets of second developing parts 15, and the three sets of second developing parts 15 are respectively arranged at the proximal section 105, the variable diameter section 106 and the distal section 107.
  • the second developing member 15 composed of three second developing members 15 as a group is disposed adjacent to the proximal opening of the tubular body 101, and is used to mark the proximal opening of the stent graft 100. To indicate whether the direction of the proximal opening of the tubular body 101 is consistent with the blood vessel.
  • the central axis position of the front wall of the proximal section 105 is fixed with a second developing member 15 (referred to as the second developing member 15 in the middle of the proximal section) with a g-shaped or 8-shaped structure, and the positions corresponding to the circumferential angle of 120° on both sides are respectively
  • a second developing member 15 with an o-shaped structure (referred to as the second developing member 15 at the side of the proximal section) is fixed.
  • the second developing member 15 in the middle of the proximal section is not limited to a g-shaped or 8-shaped structure, and the second developing member 15 on the side of the proximal section is not limited to an o-shaped structure.
  • the shape of the second developing member 15 in the middle of the proximal section is not limited. It may be different from the shape of the second developing member 15 on the side of the proximal section.
  • a second developing member 15 with an O-shaped structure is fixed at the central axis position of the front wall of the second secondary section 1063 (referred to as the second developing member 15 in the middle of the variable-diameter section) for marking the stent graft 100
  • the position of the variable diameter section 106 is located. It can be understood that the shape and structure of the second developing member 15 in the middle of the diameter-reducing section is not limited, and it can also be in other shapes, such as a triangle.
  • the second developing member 15 with two second developing members 15 as a group is disposed adjacent to the distal opening of the tubular body 101, and is used to identify the position of the distal opening of the stent graft 100, one of which is o
  • the second developing member 15 of the letter structure is fixed to the central axis position of the front wall of the distal section 107, and the second developing member 15 of the other g-shaped structure is set at 180 degrees relative to the central axis position. It can be understood that the position and shape of the two second developing members 15 on the distal section 107 are not limited.
  • the distribution position of the second developing member 15 in the stent graft 100 is not limited, and the number of the second developing member 15 in each group is not limited, as long as it can identify the stent graft 100.
  • the ring-shaped main support frame 110, the embedded branch 103 and the second developing member 15 can be fixed on the main body covering film 13 by sewing. It can be understood that the ring-shaped main support frame 110, the embedded branch 103, and the second developing member 15 can also be fixed to the inner surface or the outer surface of the main cover film 13 by other processes, such as a heat sealing process.
  • the embedded branches 103 include a branch skeleton 1038 and a branch film 1039 provided on the branch skeleton 1038.
  • the embedded branch 103 includes a branch film 1039 arranged on the inner surface and /Or the branch skeleton 1038 on the outer surface, the branch skeleton 1038 can be fully or partially fixed on the inner or outer surface of the branch film 1039 by stitching or hot pressing.
  • the branch skeleton 1038 includes a proximal support ring 1041, a plurality of branch support frames 1042, and a distal support ring 1043 arranged at intervals.
  • a plurality of branch support frames 1042 are arranged at intervals along the axial direction.
  • the proximal support ring 1041 is provided at the proximal opening of the branch covering 1039
  • the distal supporting ring 1043 is provided at the distal opening of the branch covering 1039 and fixed to the corresponding window 131 on the main body covering 13.
  • the distal end support ring 1043 of the first embedded branch 1031 is fixed to the first window 1311.
  • the distal end support ring 1043 of the second embedded branch 1032 is fixed to the second window 1312.
  • the distal end support ring 1043 of the third embedded branch 1033 is fixed to the third window 1313.
  • the distal end support ring 1043 of the fourth embedded branch 1034 is fixed to the fourth window 1314.
  • the opening direction of the distal support ring 1043 with at least one embedded branch is inclined relative to the axial direction of the tubular body 101.
  • the distal support ring 1043 is sutured obliquely on the branch covering 1039 and the main body covering 13 of the tubular body 101.
  • Four windows 131 At least one window 131 in the stent graft 13 is obliquely arranged on the main body graft 13, which is conducive to reducing the radial size of the stent graft 100 when the stent graft 100 is in the tightened state (the compressed state after the sheath is retracted).
  • the opening direction is the normal direction of the plane where the distal support ring 1043 is located.
  • the angle between the opening direction of the distal support ring 1043 and the tubular body 101 is an acute angle.
  • the opening direction of the at least one proximal support ring 1041 is inclined relative to the axial direction of the tubular body 101, and the at least one proximal support ring 1041 is sutured obliquely on the branch covering 1039 and the main covering 13 of the tubular body 101.
  • the opening direction of part of the proximal support ring 1041 in the stent graft 100 is inclined relative to the axial direction of the tubular body 101, and/or the opening direction of part of the distal support ring 1043 in the stent graft 100 is relative to the tubular body.
  • the axial direction of the main body 101 is inclined.
  • the opening directions of all the proximal support rings 1041 in the stent graft 100 are inclined relative to the axial direction of the tubular body 101, and the opening directions of all the distal support rings 1043 in the stent graft 100 are relative to the axis of the tubular body 101. To tilt.
  • the obliquely sutured window 131 includes a proximal end and a distal end.
  • the distal end of the window 131 is adjacent to the axis of the stent graft 100 relative to the proximal end of the same window 131, that is, the distal end of the window 131 faces the stent graft 100
  • the inside is inclined to avoid the junction between the branch stent and the stent graft 100, that is, the window 131 contacting the inner wall of the blood vessel, which reduces the stimulation of the blood vessel and prevents tearing of the aortic dissection.
  • proximal support ring 1041 and the distal support ring 1043 are both elliptical rings. It can be understood that the proximal support ring 1041 and the distal support ring 1043 may also be circular or other shapes, which are not limited herein.
  • the branch support frame 1042 is generally a wave-shaped ring. It can be understood that the branch support frame 1042 is not limited to a wave-shaped ring, and it may also be a non-wave-shaped ring or other structures.
  • the proximal support ring 1041, the distal support ring 1043, and each branch support frame 1042 are respectively wound by a nickel-titanium alloy wire, and both ends of the nickel-titanium alloy wire are passed through a steel sleeve or other process
  • the proximal support ring 1041, the branch support frame 1042, and the distal support ring 1043 can also be made of other materials, such as stainless steel.
  • the branch covering film 1039 is made of PET, a polymer material with good biocompatibility, and other materials such as PTFE and FEP that can effectively prevent fluid penetration and are suitable for long-term implantation in the human body can also be selected.
  • at least one of the proximal support ring 1041, the distal support ring 1043, and each branch support frame 1042 is made by a cutting process.
  • the embedded branch 103 further includes a third developing member 1045.
  • the third developing member 1045 includes a plurality of serially connected waveforms.
  • a third developing member 1045 is fixedly wound around the proximal support ring 1041 and surrounds the embedded branch 103 for marking the proximal opening of the embedded branch 103.
  • a third developing member 1045 is fixedly wound around the distal support ring 1043 and is used to mark the distal opening of the embedded branch 103.
  • the third developing member 1045 is a winding wire made of tantalum wire. It can be understood that the third developing member 1045 is not limited to a winding wire, and it can also be other materials or structures.
  • the third developing member 1045 is disposed on the proximal support ring 1041, the distal support ring 1043, or the branch film 1039. Dot-shaped developing marks.
  • the third developing member 1045 has a ring shape and is used as a branch support frame 1042 to be arranged on the branch covering film 1039 between the proximal opening and the distal opening of the embedded branch 103, that is, at least one inner A branch support frame 1042 embedded in the branch 103 is a developing part, and the third developing part 1045 is fixed on the branch covering film 1039.
  • the third developing member 1045 can be used for imaging during the implantation process.
  • the opening direction of the third developing member 1045 is inclined relative to the axial direction of the tubular body 101, which is also conducive to reducing the radial direction of the stent graft 100 in the tightened state (compressed state after sheathing).
  • the size facilitates the use of a thinner sheath and accommodating other branch stents in the sheath, reducing the difficulty in assembling the stent graft 100.
  • a third developing member 1045 is disposed near the proximal support ring 1041, and a third developing member 1045 is disposed near the distal support ring 1043; the third developing member 1045 may also be disposed on the branch support frame 1042.
  • the number of the third developing member 1045 on each embedded branch 103 is not limited, for example, it can be one or more.
  • the stent graft 100 also includes a plurality of connecting structures 19 arranged on the rear wall of the proximal section 105 for tracing a traction guide wire (not shown).
  • Multiple sets of connecting structures 19 are located inside or outside the lumen of the tubular body 101.
  • the connecting structure 19 is an annular structure formed by sewing into the main body covering film 13 with a suture thread and knotting.
  • Each group of connecting structures 19 is distributed near the wave crest 110c or wave crest 110d of the ring-shaped main support frame 110 of corresponding height, and the connecting structures 19 of the same group are arranged along the circumferential direction of the tubular body 101.
  • connection structure 19 is not limited to be disposed on the wave crest 110c or the wave crest 110d of the ring-shaped main support frame 110, and the connection structure 19 may also be disposed on the wave rod 110b of the ring-shaped main support frame 110.
  • the stent graft 100 is released in steps. After the proximal section 105 of the stent graft 100 is released from the sheath of the conveyor, the traction guide wire is inserted into the multiple connecting structures 19 so as to be in the circumferential direction.
  • the expanded diameter of the proximal section 105 is restricted, so that the stent graft 100 is in a semi-released state, that is, the front wall of the proximal section 105 expands, the rear wall is contracted around the traction guide wire by the connecting structure 19, and the proximal section 105 is radially integral
  • the diameter is still smaller than that of the blood vessel, so that the stent graft 100 can smoothly enter the aortic lumen under the transport of the conveyor, especially in the relatively narrow aorta of patients with aortic dissection. At this time, the stent graft 100 can be observed through angiography.
  • the conveyor Adjust the position of the stent graft 100 in the blood vessel. This process can be repeated many times until the stent graft 100 is released to the most suitable position, ensuring that the stent graft 100 is accurately released to the position required by the patient, and the four windows are aligned.
  • the corresponding branch blood vessel opening ensures the safety after the stent is released, and at the same time better exerts the therapeutic effect of the stent.
  • the stent graft 100 does not cover or occlude the key branch arteries after expansion, and the space inside the stent graft 100 after expansion It isolates the affected area well and provides a flow channel for blood to flow through.
  • each group of connecting structures 19 includes a first connecting structure 191, a second connecting structure 193, and a third connecting structure 195.
  • the axial positions of the first connection structure 191, the second connection structure 193, and the third connection structure 195 in the same group are substantially the same.
  • the traction guide wire Due to the elastic action of the traction guide wire, after the traction guide wire penetrates into the first connection structure 191 and the second connection structure 193, the traction guide wire rebounds toward the center of the tubular body 101, and the first connection structure 191 is pulled toward the second connection structure.
  • the second connecting structure 193 moves closer, the first connecting structure 191 drives the main body covering film 13 at the suture position of the first connecting structure 191 to move closer to the center of the tubular body 101, and the third connecting structure 193 drives the suture position with the third connecting structure 193
  • the main body covering film 13 of the body is brought closer to the center of the tubular main body 101.
  • the diameter of the proximal section 105 of the tubular body 101 is smaller than the diameter of the blood vessel, and the proximal section 105 is not completely supported in the blood vessel wall.
  • the position is adjusted by free rotation and longitudinal movement in the middle, so that the four windows 131 can be accurately positioned to the openings of the corresponding branch blood vessels in the half-released state.
  • the traction guide wire is pulled out, the connecting structure 19 on both sides and the stent graft 100 at the corresponding positions lose traction and rebound to both sides.
  • the proximal section 105 is fully deployed, and the diameter of the proximal section 105 is larger than the diameter of the blood vessel. , Supports and anchors to the blood vessel wall.
  • a traction guide wire is passed through each group of connecting structures 19 from the distal end of the tubular body 101 to the proximal end of the tubular body 101 (from bottom to top).
  • Each group of connecting structures 19 is in accordance with the third connecting structure 195.
  • the first connecting structure 191 and the second connecting structure 193 are inserted into the traction guide wire in the order, wherein the threading sequence of the first connecting structure 191 and the second connecting structure 193 can be exchanged to ensure the third connecting structure 195 in the axial section. It is released last, which helps to improve the accuracy of the release of the stent graft 100.
  • each group of connecting structures 19 includes at least two connecting structures 19 arranged at intervals along the circumferential direction of the tubular body 101.
  • a plurality of traction guide wires are provided in the conveyor, and each of the traction guide wires is used to pass through the corresponding connection structure 19.
  • connecting structure 19 is only provided on the rear wall of the tubular body 101, and it may also be provided on the front wall or side wall of the tubular body 101.
  • the diameter of the tubular body 101 at the barb position is smaller than the diameter of the tubular body 101 when the tubular body 101 is completely released, or the diameter of the area of the tubular body 101 corresponding to the barb 112 is reduced compared to the proximal tubular body
  • the diameters of 101 and the distal tubular body 101 are small.
  • the area of the main body covering film 13 corresponding to the barbs 112 is tightened along the circumferential direction of the tubular main body 101, and the tubular main body 101 at the barb position is recessed relative to the proximal and distal tubular main bodies 101, thereby avoiding falling
  • the thorn 112 touches and scratches the blood vessel wall during the release process, or is anchored on the blood vessel wall and the release position cannot be adjusted, which improves the release accuracy and safety.
  • the connecting structure 19 can be replaced by other rings such as a metal ring.
  • the metal ring can be arranged on the annular main support frame 110, or the connecting structure 19 can be realized by a hole on the main body covering film 13, at least one pull The guide wire passes through the hole to shrink the diameter of the corresponding section for half release.
  • each group of connecting structures 19 includes at least two circumferentially arranged connecting structures 19, and each group of connecting structures 19 is provided on the main body covering film 13 or the annular main support frame 110, in each group
  • the multiple connecting structures 19 are arranged along the circumferential direction of the tubular body 101 for piercing a traction guide wire, so that during the release process of the stent graft 100, the traction connecting structure 19 drives the correspondingly connected main body film 13 Tighten the tubular body 101 in the circumferential direction, so that the stent graft 100 is in a half-released state.
  • the stent graft 100 provided in this embodiment is suitable for thoracic-abdominal aortic aneurysms.
  • the stent graft 100 is implanted near the tumor of the thoracic-abdominal aortic aneurysm, and the blood in the aorta is in the stent graft 100.
  • the blood in the tumor body is gradually thrombosis and is absorbed by the vascular tissue, and the tumor body gradually shrinks.
  • the stent graft 100 provided in this embodiment is also suitable for treating aortic dissection (AD for short).
  • Aortic dissection refers to a tear in the aortic intima due to various reasons.
  • the blood flow in the aortic lumen enters the aortic media from the aortic intima cleft, causing the media to be torn apart and approaching along the long axis of the aorta.
  • the distal end expands to form a pathological change of the two cavities of the aorta.
  • the sudden onset of aortic dissection is very harmful.
  • the torn false lumen is weak, which can form an aneurysm or directly rupture and cause hemorrhage and death. After the formation of the dissection, the true lumen is compressed and the true lumen space is small.
  • the stent graft 100 includes four embedded branches 31, compared with the external embedded branches, it occupies less space in the true cavity.
  • the distal end of the window 131 is sutured obliquely into the stent graft 100, so that the connection between the embedded branch 103 and the branch stent (at the window 131) is less likely to contact the dissection and avoid dissection tear during the implantation process. crack.
  • the stent graft 100 in the semi-released state, it is convenient for the stent graft 100 to enter the true cavity.
  • the stent graft 100 After aligning the positions of the four windows 13, the stent graft 100 is completely released, avoiding the adjustment of the window after the proximal section 105 is attached to the dissection. Dissection tear caused by location, especially when the proximal section 105 has barbs.
  • the avoidance area 1011 under the corresponding windows (first window 1311 and second window 1312) of the celiac trunk and superior mesenteric artery branch stents reduces the radial support force of the tubular body 101 and increases the branch stent implantation corresponding inlay
  • the operating space of the branch 103 is more friendly to the mezzanine.
  • the avoidance area 1011 reduces the pressure on the branch stent and the dissection, which is beneficial to the release of the branch stent and the circulation of blood inside the branch stent.
  • the difference between the stent graft provided by the second embodiment of the present application and the stent graft provided by the first embodiment is that the avoiding support frame 111 includes an avoiding portion 1113 and a connecting portion 1115 connected to the avoiding portion 1113.
  • the avoiding portion 1113 and the connecting portion 1115 are integrally formed.
  • the number of waves of the avoiding support frame 111 at the avoiding part 1113 is smaller than the number of waves of the connecting part 1115 having the same circumferential angle as the avoiding part 1113.
  • the number of waveforms of the avoiding portion 1113 is one
  • the waveform at the avoiding portion 1113 is an arc
  • the number of waveforms of the connecting portion 1115 having the same circumferential angle as the avoiding portion 1113 is greater than one.
  • the waveform of the avoiding portion 1113 is not limited to a circular arc shape, and it may also have other shapes, for example, a triangle.
  • the structure of the avoiding portion 1113 is not limited.
  • the main body coating 13 in the avoiding region 1011 is recessed inward of the tubular body relative to the main body coating 13 in other regions in the circumferential direction of the avoiding region 1011.
  • the avoiding portion 1113 is recessed toward the inside of the tubular body relative to the connecting portion 1115.
  • a depression is formed in the avoiding area 1011, and the main body is covered with a film. 13 is arranged on the main frame 11, and the outline of the main body covering film 13 is consistent with the outline of the main body frame 11; Depressed inward.
  • the avoidance area 1011 is recessed inward, so that after fully implanted, the avoidance area 1011 does not contact the first branch stent and the second branch stent, or, on the basis of contacting the first branch stent and the second branch stent, it is better than the existing rules.
  • the space between the avoidance area and the inner wall of the blood vessel is relatively large, which provides a larger operating space for the implantation of the branch stent, and reduces the avoidance area 1011 of the stent graft 100 to the branch stent.
  • the compression of the vascular intima is conducive to the release of the branch stent and blood circulation inside the branch stent.
  • the stent graft provided by the third embodiment of the present application is different from the stent graft provided by the first embodiment in that the avoidance support frame 111 includes a avoidance portion 1113 and a connection portion 1115 connected to the avoidance portion 1113.
  • the wave height of the waveform located at the avoiding portion 1113 is lower than the wave height of the waveform located at the connecting portion 1115.
  • the waveform of the avoiding portion 1113 is a short wave structure. In this way, by reducing the coverage of the avoiding support frame 111 in the avoiding area 1011, the radial support force of the avoiding area 1011 is reduced.
  • the difference between the stent graft provided by the fourth embodiment of the present application and the stent graft provided by the second embodiment is that the avoidance support frame 111 includes a first avoidance support frame 111a and a second avoidance support frame 111b, wherein the wire diameter of the avoiding portion 1113 of the first avoiding support frame 111a is still smaller than the wire diameter of the connecting portion 1115, thereby further reducing the coverage of the avoiding support frame 111 in the avoiding area 1011 and reducing the radial support force of the avoiding area 1011 .
  • the avoiding portion 1113 of the first avoiding support frame 111a is formed by winding the first wire
  • the connecting portion 1115 of the first avoiding support frame 111a is formed by winding the second wire.
  • the wire diameter is larger than the first winding wire
  • each end of the connecting portion 1115 of the first avoiding support frame 111a is fixedly connected to one end of the avoiding portion 1113 of the first avoiding support frame 111a through a fixing sleeve 1117, which is convenient for avoiding Fabrication and disassembly of the support frame 111.
  • the fixing sleeve 1117 can be made of steel or other materials with good biocompatibility.
  • the first avoiding support frame 111a is integrally formed by a cutting process, and laser cutting is used to obtain the avoiding portion 1113 and the connecting portion 1115 with different rod widths (corresponding to the aforementioned wire diameter).
  • the second avoidance support frame 111b has the same structure as the avoidance support frame in the second embodiment, and will not be repeated here. It is understandable that the structure of the second avoiding support frame 111b may be different from the structure of the first avoiding support frame 111a.
  • each fracture 1110 is assigned two sets of first developing parts 14, a set of first One developer 14 is arranged close to the wave crest 110c at the break 1110 of the avoiding support frame 111, and the other group of first developer 14 is arranged close to the wave trough 110d at the break 1110 of the avoiding support frame 111, and the first developer 14 in each group is
  • the number of one developing member 14 is two, and the two first developing members 14 of the first developing member 14 in the same group are respectively located on both sides of the wave rod 110b at the fracture 1110 of the position avoiding support frame 111.
  • the first developing member 14 is a developing mark having a substantially dot shape or a ring shape.
  • the difference between the stent graft provided by the sixth embodiment of the present application and the stent graft provided by the fifth embodiment is that the number of the first developing member 14 in each group is one to save developing materials, and the same fracture
  • the two first developing members 14 around 1110 are respectively located on both sides of the wave rod 110b at the fracture 1110.
  • the difference between the stent graft provided by the seventh embodiment of the present application and the stent graft provided by the first embodiment is that the pole 110b at at least one fracture 1110 is provided with a first developing member 14.
  • the first developing member 14 is a winding wire, such as a tantalum wire, and the first developing member 14 is wound on the pole 110b. It can be understood that the first developing member 14 near the remaining fractures 1110 may adopt a developing mark with an o-shaped structure or the like. It can be understood that in the modified embodiment, the four fractures 1110 may all be wound with winding wires, or the two distal ends 1110 may be wound with winding wires.
  • the stent graft 100 provided by the eighth embodiment of the present application is different from the stent graft provided by the first embodiment in that the peaks 110c and troughs 110d of the annular main support frame 110 of the proximal portion 105 are adjusted. Location.
  • the ring-shaped main support frame 110 includes a high wave and a low wave, and the wave height of the high wave is greater than the wave height of the low wave.
  • the ring-shaped main support frame 110 at the nearest end of the proximal section 105 is referred to as the first ring-shaped main support frame 1100.
  • Any two high waves of the first annular main support frame 1100 are connected with low waves at intervals.
  • a straight line parallel to the axial direction of the stent graft 100 where the peak of each high wave of the first annular main support frame 1100 is located is staggered from the position of the first window 1311.
  • a plurality of high waves of the first annular main support frame 1100 are arranged on both sides of the first window 1311.
  • the distance between two adjacent high wave crests 110c of the first ring-shaped main support frame 1100 includes unequal first and third distances, so as to form openings of different areas to facilitate the branch support from close proximity.
  • the end that is, the opening enters the bracket along a straight path, and leads out the branch bracket from the corresponding embedded branch and the window.
  • the first ring-shaped main support frame 1100 includes a first high wave 1102, a second high wave 1104, a third high wave 1106, and five low waves 1108.
  • the first high wave 1102 is located between the second high wave 1104 and the third high wave 1106.
  • the distance between the peak 110c of the first high wave 1102 and the peak 110c of the second high wave 1104 can be regarded as the first distance
  • the distance between the peak 110c of the first high wave 1102 and the peak 110c of the third high wave 1106 can be Regarding as the second interval
  • the interval between the crest 110c of the third high wave 1106 and the crest 110c of the second high wave 1104 can be regarded as the third interval
  • the first interval is different from the third interval.
  • both the first pitch and the second pitch are greater than the third pitch.
  • the first distance corresponds to the first window and the third window in the axial direction
  • the second distance corresponds to the second window and the fourth window in the axial direction.
  • At least one straight line passing through the peak of the high wave of the first annular support frame 1100 and parallel to the axial direction of the stent graft is staggered from the first window 1311.
  • the crest 110c of the first high wave 1102, the crest 110c of the second high wave 1104, and the crest 110c of the third high wave 1106 are all staggered from the first window 1311.
  • a straight line passing through the crest 110c of the first high wave 1102 and parallel to the axial direction of the stent graft 100 is located between the first window 1311 and the second window 1312, and the phase between the first window 1311 and the second window 1312
  • the tangent point M and the first high wave 1102 of the first ring-shaped main support frame 1103 are located on the same axis AA.
  • the tangent point M is aligned with the peak 110c of the first high wave 1102 of the first ring-shaped main support frame 1103.
  • Both the first window 1311 and the second window 1312 are tangent to the axis A-A.
  • a straight line that passes through part of the high wave crest and is parallel to the axial direction of the stent graft 100 is staggered from the position of the first window 1311, or, passes through a part of the high wave crest and is parallel to the cover.
  • the axial straight line of the membrane stent 100 is staggered from the position of at least part of the window.
  • the three high waves (the first high wave 1102, the second high wave 1104, and the third high wave 1106) of the first annular main support frame 1100 are combined together under the control of the conveyor, and the three high waves ( Three openings are formed between the first high wave 1102, the second high wave 1104, and the third high wave 1106).
  • a first opening (corresponding to the first interval) is formed between the first high wave 1102 and the second high wave 1104.
  • a second opening (corresponding to the second spacing) is formed between one high wave 1102
  • a third opening (corresponding to the third spacing) is formed between the second high wave 1104 and the third high wave 1106, and the first opening (corresponding to the first spacing) is aligned with the first A window 1311 and a third window 1313 are arranged
  • the second opening (corresponding to the second spacing) is arranged in alignment with the second window 1312 and the fourth window 1314 to facilitate the guide of the branch stent and the corresponding branch guide wire before the rear release. Pass through the first opening and the second opening, and along a straight path, pass through the corresponding embedded branch and the window 131, and finally enter the corresponding branch blood vessel.
  • the branch stent Since both the first opening and the second opening are larger than the third opening, it is convenient for the branch stent to enter the lumen of the stent graft from the first and second openings at the proximal end before being released later.
  • the first high wave 1102, the second high wave 1104, and the third high wave 1106 of the first ring-shaped main support frame 1100 are controlled by the conveyor to release from the conveyor. In some embodiments, release is performed first, and then released. Half-release; or half-release first, and then release later.
  • the circumferential distance between the first high wave 1102 and the second high wave 1104 (two low waves 1108 are set apart), and the circumferential distance between the first high wave 1102 and the third high wave 1106 is relatively large (two low waves are set apart 1108), so that the first opening of the first high wave 1102 and the second high wave 1104 toward the proximal end and the second opening of the first high wave 1102 and the third high wave 1106 toward the proximal end are larger, which is convenient for guiding the branch stent and its corresponding branch guide The passage of the guide wire.
  • a connecting structure 19 is provided on the back wall of the stent graft 100, and the connecting structure 19 is fixed at the approximate middle position of the wave rod 110b (that is, the position between the wave crest 110c and the wave trough 110d), so that the wave rod 110b is stressed It is more uniform and avoids the deflection of the pole 110b.
  • multiple traction guide wires for inserting into the connecting structure 19 are provided in the conveyor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)

Abstract

本申请公开一种覆膜支架,包括管状主体,所述管状主体包括主体骨架及设于所述主体骨架的主体覆膜,所述第一窗口设于所述主体覆膜上,所述管状主体设有避让区域,所述避让区域邻接所述第一窗口的远端,所述主体骨架包括避让支撑架,所述避让支撑架于所述避让区域的覆盖率小于所述避让支撑架于其余区域的覆盖率,从而减小避让区域的径向支撑力,提高了避让区域的柔性,如此,增大了植入分支支架的操作空间,方便分支支架近端进入窗口并锚定于内嵌分支。

Description

覆膜支架
本申请要求在2020年04月30日提交中国国家知识产权局、申请号为2020103622416、发明名称为“覆膜支架”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,特别涉及一种覆膜支架。
背景技术
随着人们生活水平的提高和生活方式的改变,血管疾病发病率越来越高,这些疾病若不及时治疗可能会导致血管堵塞、动脉瘤等疾病,将严重危害人类的生命安全。
主动脉瘤和主动脉夹层是常见的主动脉高危疾病。其中,主动脉瘤一旦发生,可逐渐增大,直至最后破裂出血,而主动脉夹层则可能会导致主动脉破裂出血、腹腔重要脏器或肢体缺血而威胁生命。
目前主要采用开放手术、杂交手术及微创伤介入术治疗这类疾病,其中微创伤介入术对病人的创伤小,安全性高,有效性高,因此受到医生与患者的肯定,已成为血管疾病的重要治疗方法。微创伤介入术是在医学影像设备的引导下,将特制的导管,导丝等精密器械,引入人体,对体内病态进行诊断和局部治疗。
主动脉腔内修复术是微创伤介入术中的一种腔内治疗技术,通过股动脉切口把支架血管送到主动脉的病变部位,从动脉腔内来修复主动脉病变,从而避免了开放手术。与传统外科手术相比,主动脉腔内修复术的优势包括:大大降低了外科手术的创伤,明显缩短了手术时间,减少了手术并发症和死亡率,也大大缩短了术后ICU监护时间和整体住院时间。
现有主动脉腔内修复术中,修复主动脉瘤及主动脉夹层的所采用的支架,多为常规直管型覆膜支架或多个裸支架重叠修复。由于主动脉病变位置可能靠近血管分支,常规直管型覆膜支架在术中需完成开窗操作以及植入分支支架才能保留各分支血管,极大提升了手术的复杂程度。另外,植入分支支架时,由于主动脉内病变区域操作空间较小,容易导致严重压迫血管的问题出现。
发明内容
为了解决前述问题,本申请提供一种能够降低手术复杂程度及增大操作空间的覆膜支架。
一种覆膜支架,其特征在于,包括管状主体,所述管状主体包括主体骨架及设于所述主体骨架的主体覆膜,所述主体覆膜上设有第一窗口,所述管状主体设有避让区域,所述避让区域邻接所述第一窗口的远端,所述主体骨架包括避让支撑架,所述避让支撑架于所述避让区域的覆盖率小于所述避让支撑架于其余区域的覆盖率。
一方面,本申请提供的覆膜支架附带窗口,避免了第一窗口的开窗操作,有利于减少术中进行开窗的次数,在一些实施方式中,可于术中直接植入分支支架而无需在术中进行 开窗操作,因此,降低了手术复杂程度,提高了手术效率及手术精准度。另一方面,本申请提供的覆膜支架中,避让支撑架于避让区域的覆盖率小于避让支撑架的其余区域的覆盖率,从而在管状主体的径向降低避让区域的径向支撑力,而提高了避让区域的柔性,如此,增大了植入分支支架的操作空间,方便分支支架近端进入窗口并锚定于内嵌分支中。在覆膜支架以及分支支架植入后,分支支架更容易顺应对应分支血管的走向,提高分支支架的顺应性。另外,覆膜支架以及分支支架完全植入后,由于避让区域的支撑力减小及柔性提高,减小了对分支支架以及血管内膜的压迫,有利于分支支架释放以及分支支架内部血液流通。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的覆膜支架的前视图;
图2为图1的部分区域放大示意图;
图3为内嵌分支的结构示意图;
图4为覆膜支架的部分后视图;
图5为本申请第二实施方式提供的覆膜支架的前视图;
图6为本申请第三实施方式提供的覆膜支架的前视图;
图7为本申请第四实施方式提供的覆膜支架的前视图;
图8为图7的部分区域放大示意图;
图9为本申请第五实施方式提供的覆膜支架的前视图;
图10为图9所示的覆膜支架的部分区域放大示意图;
图11为本申请第六实施方式提供的覆膜支架的部分区域放大示意图;
图12为本申请第七实施方式提供的覆膜支架的前视图;
图13为图12所示的覆膜支架的部分区域放大示意图;
图14为本申请第八实施方式提供的覆膜支架的平面示意图;
图15为本申请第八实施方式提供的覆膜支架的后视图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在以下描述中,出于解释的目的,阐述了许多具体细节,以便提供对本申请的透彻理解。然而,对于本领域技术人员显而易见的是,本申请可以在没有这些具体细节或具有等同布置的情况下实施。
在本申请中公开数值范围的情况下,除非另有说明,否则该范围是连续的,包括该范围的最小值和最大值以及这些最小值和最大值之间的每个值。再此外,在范围指整数的情况下,只有包括从最小值到和包括这个范围的最大值的整数。此外,在提供多个范围来描述特征或特征的情况下,这样的范围能够组合。
文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
需要说明的是,对于血管支架,一般将植入血管后靠近心脏的一端称为支架的“近端”,将植入血管后远离心脏的一端称为支架的“远端”,并依据此原理定义支架的任一部件的“近端”和“远端”。对于输送器,一般将输送器上相对离操纵者近的一端称为“近端”,将输送器上相对离操纵者远的一端称为“远端”,并依据此原理定义输送系统的任一部件的“近端”和“远端”。“轴向”一般是指支架在被输送时的长度方向,“径向”一般是指支架的与其“轴向”垂直的方向,并依据此原理定义覆膜支架的任一部件的“轴向”和“径向”。
请参阅图1与图2,本申请第一实施方式提供一种覆膜支架100。覆膜支架100包括管状主体101及设于管状主体101上的内嵌分支103。内嵌分支103用于植入分支支架(图未示)。通过输送器(图未示)将覆膜支架100输入至病变部位,并通过反复收紧或扩张管状主体101来调整覆膜支架100的植入位置,从而实现覆膜支架100准确释放血管腔内适当的位置上,实现腔内覆膜支架100的治疗功能。管状主体101与内嵌分支103均为中空管腔,从而构成血液流通的通道。
管状主体101包括主体骨架11及设于主体骨架11上的主体覆膜13。主体骨架11包括多个沿管状主体101的轴向间隔设置的环形主支撑架110。主体覆膜13上设有四个窗口131。四个窗口131包括第一窗口1311、第二窗口1312、第三窗口1313及第四窗口1314,第一窗口1311与第二窗口1312相对于第三窗口1313及第四窗口1314靠近管状主体101的近端设置。管状主体101还设避让区域1011,避让区域1011邻接第一窗口1311的远端与第二窗口1312的远端。多个环形主支撑架110包括避让支撑架111,避让支撑架111于避让区域1011的覆盖率小于避让支撑架111于管状主体101其余区域的覆盖率,以减小管状主体101于避让区域1011的径向支撑力。
主体骨架11包括设置于主体覆膜13内表面和/或外表面的环形主支撑架110,主体骨架11可通过缝合或者热压的方式全部或者部分固定在主体覆膜13的内表面或者外表面上。
本实施方式中,避让支撑架111为具有缺口的部分环形结构(开环结构)。所述缺口位于避让区域1011,使得避让支撑架111于避让区域1011的覆盖率小于避让支撑架111于管状主体101其余区域的覆盖率,进而减小径向支撑力。避让支撑架111的数量为两个,两个避让支撑架111沿管状主体101的轴向间隔设置。第一窗口1311与第二窗口1312设置于避让支撑架111的缺口边缘。
在本实施方式中,第一窗口1311与第二窗口1312沿管状主体101的中轴线并排对称分布,相应地,所述缺口沿管状主体101的中轴线对称分布。可以理解,不限定避让支撑架111的数量;在第一窗口1311与第二窗口1312并非沿管状主体101的中轴线对称分布 的实施方式中,所述缺口可以沿管状主体101的中轴线非对称分布。
内嵌分支103为两端开口的中空管体,用于植入分支支架(图未示)。本实施方式中,内嵌分支103的数量为四个,包括第一内嵌分支1031、第二内嵌分支1032、第三内嵌分支1033及第四内嵌分支1034。第一内嵌分支1031、第二内嵌分支1032、第三内嵌分支1033及第四内嵌分支1034均与主体覆膜13固定连接并收容于管状主体101的管腔内,第一内嵌分支1031固定设于第一窗口1311,第二内嵌分支1032固定设于第二窗口1312,第三内嵌分支1033固定设于第三窗口1313,第四内嵌分支1034固定设于第四窗口1314。
由于内嵌分支103收容于管状主体101的管腔内,减少了覆膜支架100的占用空间,为覆膜支架100的植入,以及各个分支支架的植入提供的较为充裕的操作空间,方便分支支架的近端部进入窗口131并锚定于内嵌分支103中。并且在分支支架植入后,减小了覆膜支架100对分支支架以及血管内壁的压迫。
第一内嵌分支1031用于植入第一分支支架,第二内嵌分支1032用于植入第二分支支架,第三内嵌分支1033用于植入第三分支支架,第四内嵌分支1034用于植入第四分支支架,每个分支支架中的部分区段用于收容并固定在对应的内嵌分支的内腔中,本实施方式中,覆膜支架100用于植入胸腹主动脉中,治疗胸腹主动脉病变,以封闭假腔/动脉瘤。覆膜支架100附带的多个窗口131及多个内嵌分支103用于对应腹腔干、肠系膜上动脉、左右肾动脉的分支支架,例如,第一分支支架为腹腔干动脉分支支架,第二分支支架为肠系膜上动脉分支支架,第三分支支架为左肾动脉分支支架,第四分支支架为右肾动脉分支支架。覆膜支架100附带窗口131,可于术中直接植入上述多个分支支架而无需在术中进行开窗操作,因此,提高了手术效率及手术精准度。在本实施方式中限定,第一分支支架为腹腔干动脉分支支架,第二分支支架为肠系膜上动脉分支支架。在实际手术过程中,可以根据需要将第一分支支架植入至肠系膜上动脉中,将第二分支支架植入至腹腔干动脉中。
内嵌分支103(包括第一至第四内嵌分支)均为中空管体。所述分支支架(第一至第四分支支架)均包括近端部与远端部,所述第一分支支架的近端部用于插入并锚定于第一内嵌分支1031,所述第二分支支架的近端部用于插入并锚定于第二内嵌分支1032中,第三分支支架的近端部用于插入并锚定于第三内嵌分支1033,第四分支支架的近端部用于插入并锚定于第四内嵌分支1034。四个分支支架的远端部分别植入至对应的分支血管中。
所述第一分支支架与所述第二分支支架还包括连接在近端部与远端部之间的中间部。第一分支支架的中间部从第一窗口1311伸出并沿弧线向远端弯曲延伸,使得第一分支支架的远端部植入位于腹主动脉前侧的腹腔干;第二分支支架的中间部从第二窗口1312伸出并沿弧线向远端弯曲延伸,使得第二分支支架的远端部植入位于腹主动脉前侧的肠系膜上动脉。
由于避让支撑架111的缺口位于避让区域1011,使得避让支撑架111于避让区域1011的覆盖率小于其余区域的覆盖率,从而在径向降低避让区域1011的支撑力,提高了避让区域1011的柔性,如此,增大了植入分支支架的操作空间,方便分支支架的近端部进入窗口131并锚定于内嵌分支103中。在覆膜支架100以及四个分支支架植入后,第一分支支架与第二分支支架更容易顺应对应分支血管的走向,提高分支支架的顺应性,从而避免了因避让区域1011的支撑力太大,而抬起第一分支支架与第二分支支架的中间部,导致第一分 支支架与第二分支支架向上翘起,使得植入后对两分支血管的压迫较大的问题出现。另外,覆膜支架100以及分支支架完全植入后,第一分支支架与第二分支支架的中间部夹设于避让区域以及血管内膜之间,而避让区域的支撑力减小及柔性提高,减小了对分支支架以及血管内膜的压迫,有利于分支支架释放以及分支支架内部血液流通。
在变更实施方式中,覆膜支架100应用于主动脉弓或胸主动脉中,覆膜支架100中窗口的数量不限,覆膜支架100中至少设置有第一窗口1311,在一些实施方式中,覆膜支架100中至少设置有2个窗口、3个窗口或其他数量的窗口。窗口之间的相对位置关系不限定。在一些实施方式中,覆膜支架100中设置有若干窗口,外科医生还可以采用原位开窗方式,在介入手术过程中,于患者体内对覆膜支架进行开窗操作;或者外科医生还可以采用预开窗方式,在介入手术之前,于患者体外对覆膜支架进行开窗操作,以在覆膜支架100上得到所述若干窗口以外的窗口。
在变更实施方式中,覆膜支架100省略设置至少部分内嵌分支103,上述四个分支支架的近端套设于对应窗口131中。
在本实施方式中,环形主支撑架110的材质采用具有良好生物相容性的镍钛合金材料制成,每个环形主支撑架110由一根镍钛合金丝绕制而成,镍钛合金丝的首尾两端通过钢套或其他工艺方式固定,可以理解,环形主支撑架110还可以由其他材料制成,例如,不锈钢等材料。主体覆膜13采用具有良好生物相容性的高分子材料PET制成,也可选取其他有效阻止流体渗透且适用于长期植入人体的PTFE、FEP等材质。在一些实施方式中,环形主支撑架110由管材切割而成,从而省略用于将环形主支撑架110两端固定起来的连接件(比如上述钢套)或其他工艺。
更为具体的,覆膜支架100还包括前壁(图1所示的前视图所示一侧)、后壁(图4所示的后视图所示一侧)及两个侧壁,所述前壁与所述后壁相对设置,每个侧壁连接于所述前壁与所述后壁之间,第一窗口1311与第二窗口1312沿管状主体101的周向设置并位于所述前壁,第三窗口1313与第四窗口1314沿管状主体101的周向设置并分别位于一个侧壁上。本实施方式中,第一窗口1311、第二窗口1312沿管状主体101的中轴线对称分布,第一内嵌分支1031、第二内嵌分支1032沿管状主体101的中轴线对称分布。在一些实施方式中,第三窗口1313与第四窗口1314沿管状主体101的中轴线对称分布,第三内嵌分支1033与第四内嵌分支1034沿管状主体101的中轴线对称分布。
可以理解,不限定第一窗口1311、第二窗口1312沿管状主体101的中轴线对称分布,例如,第一窗口1311与第二窗口1312的尺寸与形状可以不相同,不限定第一内嵌分支1031、第二内嵌分支1032沿管状主体101的中轴线对称分布;类似地,不限定第三窗口1313与第四窗口1314沿管状主体101的中轴线对称分布,例如,第三窗口1313与第四窗口1314的尺寸与形状可以不相同,不限定第三内嵌分支1033与第四内嵌分支1034沿管状主体101的中轴线对称分布。比如,第一窗口1311、第二窗口1312、第三窗口1313以及第四窗口1314在轴向上交错设置,即四个窗口131在轴向上的位置均不同。
如图1与图2所示,覆膜支架100还包括近端段105、变径段106及远端段107。变径段106连接于近端段105与远端段107之间。
本实施方式中,近端段105与远端段107大致呈直筒型,即近端段105为等径管体, 远端段107为等径管体。近端段105的管径大于远端段107的管径,从而更好的适应胸腹主动脉的解剖特征。变径段106包括依次连接的第一次段1061、第二次段1063及第三次段1065。第一次段1061与近端段105的远端相接。第三次段1065与远端段107的近端相接。第一次段1061的管径自第一次段1061的近端朝向第一次段1061的远端逐渐减小。第二次段1063为等径管体,第三次段1065的管径自第三次段1065的近端朝向第三次段1065的远端逐渐增大。第三窗口1313与第四窗口1314设置于第一次段1061的相对两侧,即用于植入至左右肾动脉的第三分支支架与第四分支支架用于在向覆膜支架100向内凹陷的第一次段1061处连接第三窗口1313与第四窗口1314,进而插入第三内嵌分支1033与第四内嵌分支1034中,如此,覆膜支架100大致呈哑铃型,能够为肾动脉分支支架提供富裕的空间,不会挤压到血管。可以理解,不限定近端段105为等径,不限定远端段107为等径,不限定第二次段1063为等径。
第一窗口1311、第二窗口1312均位于近端段105上,第三窗口1313及第四窗口1314位于变径段106的第一次段1061,避让区域1011从近端段105延伸至变径段106的第一次段1061。本实施方式中,第一窗口1311与第二窗口1312两者对应的管状主体101的轴向位置相同而组成第一组窗口,第三窗口1313与第四窗口1314两者对应的管状主体101的轴向位置相同而组成第二组窗口,所述第一组窗口与所述第二组窗口交错设置于管状主体101的不同的轴向位置,从而减小了收鞘的径向尺寸,有利于采用更小的鞘管进行输送。可以理解的是,第一窗口1311与第二窗口1312的轴向位置可不同,第三窗口1313与第四窗口1314的轴向位置可不同,从而进一步减小输送鞘管的直径。
第一内嵌分支1031与第二内嵌分支1032两者的近端开口对应的管状主体101的轴向位置相同而组成第一组分支近端开口,第三内嵌分支1033与第四内嵌分支1034两者的近端开口对应的管状主体101的轴向位置相同而组成第二组分支近端开口,第一组分支近端开口与第二组分支近端开口设置于管状主体101的不同的轴向位置,进一步减小了收鞘的径向尺寸,有利于采用更小的鞘管进行输送。可以理解的是,第一内嵌分支1031与第二内嵌分支1032的近端开口的轴向位置可不同,第三内嵌分支1033与第四内嵌分支1034的近端开口的轴向位置可不同,从而进一步减小输送鞘管的直径。
可以理解,管状主体101可以省略远端段107,以及变径段106的第三次段1065。可以理解,管状主体101还可以进一步省略变径段106的全部。
环形主支撑架110为多个波形110a串联而成的环状结构。环形主支撑架110的波形可以相同也可以不相同,波形可以为Z形波、M形波、V形波、正弦型波结构、或其它可径向压缩为很小直径的结构等。可以理解的是,本实施方式并不限定环形主支撑架110的具体结构,环形主支撑架110的波形可以根据需要设置,同时每个环形主支撑架110中的波形110a数量可根据需要设置。实际制备中,还可采用镍钛管切割定型形成裸支架,然后将裸支架缝合在主体覆膜13上。
环形主支撑架110为等高波形或高低波形支架,在一些实施方式中,主体骨架11中包括等高波形的环形主支架110以及高低波形的环形主支架110。波形110a包括波杆110b、波峰110c与波谷110d。波峰110c位于波杆110b的近端,波谷110d位于波杆110b的远端。相邻的两个波杆110b相对靠拢以使管状主体101收缩,相邻的两个波杆110b相对张 开以使管状主体101扩张。多个环形主支撑架110可等径延伸或非等径延伸。
波峰110c至波谷110d的高度为波高。环形主支撑架110的多个波形的波高可以相等,即为等高波形。环形主支撑架110的多个波形的波高可以不相等,即高低波形,例如,环形主支撑架110包括交替设置的高波与低波,所述高波的波高要大于所述低波的高度,所述高波超出所述低波的端部与主体覆膜13之间不缝合(相固定),使得在覆膜支架100弯曲时,高波的未固定在主体覆膜13的端部对应区域的主体覆膜13与环形主支撑架110分离形成孔隙,相邻的环形主支撑架110末端插入该孔隙中,从而覆膜支架100能够保持在弯曲状态下,提高分支支架的顺应性,减小了对血管的压迫。可以理解的是,每个环形主支撑架110中的波形110a的波高可根据需要进行设置。
多个环形主支撑架110分布于近端段105、变径段106及远端段107。其中,位于近端段105中的至少一个环形主支撑架110的波谷110d上还设有倒刺112,倒刺112用于提高覆膜支架100的锚定性。倒刺112大致由管状主体101的近端朝向管状主体101的远端延伸,本实施方式中,沿管状主体101的近端朝向管状主体101的远端方向,倒刺112设于近端段105的第三层的环形主支撑架110上,设置有倒刺112的环形主支撑架110由激光切割而成。可以理解,倒刺112还可以设于波峰110c和/或波杆110b。另外,倒刺112还可以设置在其他一个或多个环形主支撑架110上。
本实施方式中,将近端段105的最近端的一个环形主支撑架110称为第一环形主支撑架1100,第一环形主支撑架1100中包括第一高波1102、第二高波1104、第三高波1106及五个低波1108,第一高波1102位于第二高波1104与第三高波1106之间,第一高波1102与第二高波1104之间设有两个低波1108,第二高波1104与第三高波1106之间设有一个低波1108,第三高波1106与第一高波1102之间设有两个低波1108。在输送状态下,第一高波1102、第二高波1104、以及第三高波1106在输送器的控制下结合于一起,使得覆膜支架100的近端释放后,覆膜支架100近端的位置固定,并且直径被束缚在一定的范围内,便于在植入过程中沿轴线调整覆膜支架,或对其进行旋转,以便调整覆膜支架100的轴向与轴向位置,提高覆膜支架100释放的准确度。
在覆膜支架后释放之前,第一高波1102、第二高波1104、以及第三高波1106结合在一起,第一高波1102与第二高波1104之间形成第一开口,第三高波1106与第一高波1102之间形成第二开口,第二高波1104与第三高波1106之间形成第三开口,由于第一开口周向环绕的低波1108的数量,大于第三开口周向环绕的低波1108的数量,因此第一开口的面积大于第三开口的面积,同理,第二开口的面积大于第三开口的面积,第一开口的面积等于第二开口的面积。
即在后释放之前,第一高波1102、第二高波1104、以及第三高波1106结合在一起,覆膜支架100的近端形成了两个相对较大的开口,即第一开口与第二开口,便于第一开口与第二开口中从近端向远端穿置对应分支支架以及对应分支支架的引导导丝。比如第一开口用于从近端向远端穿置对应第一窗口及/或第三窗口的分支支架,以及对应分支支架的引导导丝;第二开口用于从近端向远端穿置对应第二窗口及/或第四窗口的分支支架,以及对应分支支架的引导导丝。
进行后释放,即是通过输送器控制第一环形主支撑架1100的第一高波1102、第二高 波1104、第三高波1106从输送器解脱,在一些实施方式中,先进行后释放,再进行半释放;或者先进行半释放,在进行后释放。
本实施方式中,第一窗口1311与第二窗口1312相切,且第一窗口1311与第二窗口1312之间的相切点与位于第一高波1102与第二高波1104之间的一个波谷110d对准设置。
覆膜支架100还包括四组第一显影件14。每组第一显影件14中的第一显影件14的数量为一个。每组第一显影件14固定于避让支撑架111靠近避让区域1011的波形110a的波谷110d处,即于避让区域1011的两侧均设有第一显影件14,用于标识出避让区域1011。本实施方式中,避让支架111为具缺口的开环结构,使得每个避让支撑架111形成两个断口1110。每个断口1110处的波谷110d均固定设有一组第一显影件14,以方便释放操作。
可以理解,不限定第一显影件14设置于断口1110处的波谷110d处,还可以设置于端块1110的波杆110b及/或波峰110c处,还可以设置于避让支撑架111中断口1110以外的波形110a的波谷110d、波杆110b及/或波峰110c处。不限定第一显影件14固定于避让支撑架111上,第一显影件14可以固定于主体覆膜13上,不限定每组第一显影件14中的第一显影件14的数量。
在一实施方式中,避让支撑架111包括多个串接的波形110a,所述波形110a包括波杆110b、波峰110c及波谷110d,所述至少一组第一显影件14设于所述主体覆膜13上,所述至少一组第一显影件14围绕所述避让支撑架111靠近所述避让区域1110的波杆110b、波峰110c及波谷110d中的至少一个设置。
在一实施方式中,避让支撑架111包括多个串接的波形110a,所述波形110a包括波杆110b、波峰110c及波谷110d,所述至少一组第一显影件14设于所述避让支撑架111上,所述至少一组第一显影件14设于所述避让支撑架111靠近所述避让区域1110的波杆110b、波峰110c及波谷110d中的至少一个。
管状主体101还包括三组第二显影件15,三组第二显影件15分别设置于近端段105、变径段106及远端段107。本实施方式中,近端段105中,以三个第二显影件15为一组的第二显影件15邻近管状主体101的近端开口设置,用于标记覆膜支架100的近端开口,以指示管状主体101的近端开口的方向是否与血管一致。其中,近端段105的前壁的中轴位置固定一个g字或8字结构的第二显影件15(简称近端段中部第二显影件15),与两侧对应圆周角120°位置分别固定一个o字结构的第二显影件15(简称近端段侧部第二显影件15)。可以理解,不限定近端段中部第二显影件15为g字或8字结构,不限定近端段侧部第二显影件15为o字结构,近端段中部第二显影件15的形状不同于近端段侧部第二显影件15的形状即可。变近段106中,一个o字结构的第二显影件15固定于第二次段1063的前壁的中轴位置(简称变径段中部第二显影件15),用于标记覆膜支架100的变径段106所在位置。可以理解,不限定变径段中部第二显影件15的形状结构,其也可以为其他形状,例如三角形等。远端段107中,以两个第二显影件15为一组的第二显影件15邻近管状主体101的远端开口设置,用于标识覆膜支架100的远端开口所在位置,其中一个o字结构的第二显影件15固定于远端段107的前壁的中轴位置,另一个g字结构的第二显影件15对应相对所述中轴位置的180度设置。可以理解,不限定远端段107上的两个第二显影件15的位置及形状。
可以理解,不限定第二显影件15于覆膜支架100的分布位置,不限定每组第二显影件15的数量,其能够标识覆膜支架100即可。本实施方式中,环形主支撑架110、内嵌分支103及第二显影件15可通过缝合固定在主体覆膜13上。可以理解,环形主支撑架110、内嵌分支103及第二显影件15还可通过其他工艺固定于主体覆膜13的内表面或外表面,例如,热合工艺等。
第一内嵌分支1031、第二内嵌分支1032、第三内嵌分支1033与第四内嵌分支1034的结构大致相同。请参阅图3,内嵌分支103(第一至第四内嵌分支)包括分支骨架1038及设于分支骨架1038上的分支覆膜1039,内嵌分支103包括设置于分支覆膜1039内表面和/或外表面的分支骨架1038,分支骨架1038可通过缝合或者热压的方式全部或者部分固定在分支覆膜1039的内表面或者外表面上。
分支骨架1038包括间隔设置的近端支撑环1041、多个分支支撑架1042及远端支撑环1043。多个分支支撑架1042沿轴向间隔设置。近端支撑环1041设于分支覆膜1039的近端开口,远端支撑环1043设于分支覆膜1039的远端开口并固定于主体覆膜13上的对应窗口131。其中,第一内嵌分支1031的远端支撑环1043固定于第一窗口1311。第二内嵌分支1032的远端支撑环1043固定于第二窗口1312。第三内嵌分支1033的远端支撑环1043固定于第三窗口1313。第四内嵌分支1034的远端支撑环1043固定于第四窗口1314。
至少一个内嵌分支的远端支撑环1043的开口方向相对管状主体101的轴向倾斜,远端支撑环1043倾斜缝合在分支覆膜1039以及管状主体101的主体覆膜13上,四个窗口131中的至少一个窗口131是倾斜设置在主体覆膜13上的,有利于在覆膜支架100的收紧状态(收鞘后的压缩状态)下,减小覆膜支架100的径向尺寸,便于使用更细的鞘管,以及在鞘管中容纳其他分支支架,减小覆膜支架100装配上的困难。所述开口方向为远端支撑环1043所在平面的法线方向。本实施方式中,远端支撑环1043的开口方向与管状主体101的夹角为锐角。
类似地,至少一个近端支撑环1041的开口方向相对管状主体101的轴向倾斜,至少一个近端支撑环1041倾斜缝合在分支覆膜1039及管状主体101的主体覆膜13上。
在变更实施方式中,覆膜支架100中的部分近端支撑环1041的开口方向相对管状主体101的轴向倾斜,及/或覆膜支架100中的部分远端支撑环1043的开口方向相对管状主体101的轴向倾斜。或者,覆膜支架100中的全部的近端支撑环1041的开口方向相对管状主体101的轴向倾斜,以及覆膜支架100中的全部的远端支撑环1043的开口方向相对管状主体101的轴向倾斜。
在本实施方式中,倾斜缝合的窗口131包括近端与远端,窗口131远端相对于同一窗口131的近端邻近覆膜支架100的轴线,即窗口131的远端向覆膜支架100的内部倾斜,从而避免分支支架与覆膜支架100的连接处,即窗口131接触血管内壁,减小对血管的刺激,防止主动脉夹层撕裂。
本实施方式中,近端支撑环1041与远端支撑环1043均为椭圆环。可以理解,近端支撑环1041与远端支撑环1043也可以为圆形或者其他形状,在此不作限定。分支支撑架1042大致为波浪形环。可以理解,不限定分支支撑架1042为波浪形环,其也可以为非波浪形环或其他结构。
本实施方式中,近端支撑环1041、远端支撑环1043及每个分支支撑架1042分别由一根镍钛合金丝绕制而成,镍钛合金丝的首尾两端通过钢套或其他工艺方式固定,可以理解,近端支撑环1041、分支支撑架1042及远端支撑环1043还可以由其他材料制成,例如,不锈钢等材料。分支覆膜1039采用具有良好生物相容性的高分子材料PET制成,也可选取其他有效阻止流体渗透且适用于长期植入人体的PTFE、FEP等材质。在一些实施方式中,近端支撑环1041、远端支撑环1043及每个分支支撑架1042中的至少一个由切割工艺制成。
内嵌分支103还包括第三显影件1045。第三显影件1045包括多个串接的波形。一个第三显影件1045固定缠绕于近端支撑环1041并环绕内嵌分支103一周,用于标识内嵌分支103的近端开口。一个第三显影件1045固定缠绕于远端支撑环1043,用于标识内嵌分支103的远端开口。本实施方式中,第三显影件1045为钽丝制成的缠绕丝。可以理解,第三显影件1045不限定为缠绕丝,其也可以为其他材料或结构,例如,第三显影件1045为设置于近端支撑环1041、远端支撑环1043或分支覆膜1039上的点状的显影标记。
在一种实施方式中,第三显影件1045呈环状,并作为一个分支支撑架1042设置在内嵌分支103的近端开口与远端开口之间的分支覆膜1039上,即至少一个内嵌分支103的一个分支支撑架1042为显影件,第三显影件1045固定于分支覆膜1039上。在这个实施方式中,第三显影件1045能够在植入过程中用于显影,其不仅能够指示内嵌分支103内部通道是否通畅,还能够起到支撑内嵌分支103的作用,使得内嵌分支103形成的通道不容易被挤压变形(比如压扁),有利于保持内嵌分支103的通畅。优选地,第三显影件1045的开口方向相对管状主体101的轴向倾斜,亦有利于覆膜支架100的收紧状态(收鞘后的压缩状态)下,减小覆膜支架100的径向尺寸,便于使用更细的鞘管,以及在鞘管中容纳其他分支支架,减小覆膜支架100装配上的困难。
可以理解,在变更实施方式中,一个第三显影件1045靠近近端支撑环1041设置,一个第三显影件1045靠近远端支撑环1043设置;第三显影件1045还可以设置于分支支撑架1042上;对每个内嵌分支103上的第三显影件1045的数量不作限定,例如可以为一个或多个。
请参阅图4,覆膜支架100还包括设于近端段105的后壁的多组连接结构19,用于穿设牵引导丝(图未示)。多组连接结构19位于管状主体101的管腔内或管腔外。连接结构19为通过缝合线缝入主体覆膜13并打结形成的环状结构。每组连接结构19分布于对应高度的环形主支撑架110的波峰110c或波峰110d附近,同组的连接结构19沿管状主体101的周向设置。可以理解的是,不限定连接结构19设置于环形主支撑架110的波峰110c或波峰110d,连接结构19还可以设置于环形主支撑架110的波杆110b。
本实施方式中,覆膜支架100采用分步释放,覆膜支架100的近端段105从输送器的鞘管中释放出来之后,牵引导丝穿置在多组连接结构19中从而在周向上限制近端段105张开的直径,使覆膜支架100处于半释放状态,即近端段105的前壁扩张,后壁被连接结构19收缩在牵引导丝周围,近端段105径向整体直径仍小于血管直径,以便于覆膜支架100在输送器的运送下可顺利进入主动脉腔,特别是主动脉夹层患者的相对较狭窄的主动脉中,此时通过造影观察覆膜支架100的位置是否适当,四个窗口位置是否对准对应的分支血管开口,当覆膜支架100位置不适当时,或四个窗口位置并未对准对应的分支血管开口时, 仍能够通过输送器较容易的在血管内调整覆膜支架100的位置,这个过程可以重复多次,直至将覆膜支架100释放到最适合的位置,确保覆膜支架100精确释放到患者需要的位置,四个窗口位置对准对应的分支血管开口,确保支架释放后的安全性,同时更好的发挥支架的治疗效果,扩张后覆膜支架100不覆盖或闭塞关键的分支动脉,且扩张后的覆膜支架100内的空间很好的隔绝了患处,为血液流过提供流动通道。
更为具体的,每组连接结构19包括第一连接结构191、第二连接结构193及第三连接结构195。本实施方式中,同组中的第一连接结构191、第二连接结构193及第三连接结构195的轴向位置大致相同。
由于牵引导丝的弹性作用,所述牵引导丝穿入第一连接结构191及第二连接结构193后,使得牵引导丝向管状主体101的中心方向回弹,牵引第一连接结构191向第二连接结构193方向靠拢,第一连接结构191带动与第一连接结构191的缝合位置的主体覆膜13向管状主体101的中心靠拢,第三连接结构193带动与第三连接结构193的缝合位置的主体覆膜13向管状主体101的中心靠拢。全部连接结构19穿入牵引导丝后,覆膜支架100的后壁在连接结构19及牵引导丝的作用下会向管状主体101的中心折叠,此状态称为半释放状态。
覆膜支架100处于所述半释放状态下时,管状主体101的近端段105的直径小于血管直径,近端段105并未完全支撑于血管壁内,如此,仍可根据需要在所述血管中自由旋转和纵向移动而调整位置,便于四个窗口131在半释放状态下精确定位至对应分支血管的开口。
调整完成后抽出牵引导丝,两侧的连接结构19及其对应位置的覆膜支架100失去牵引,向两侧回弹,此时近端段105完全展开,近端段105的直径大于血管直径,支撑并锚定于血管壁。
装配时,由一根牵引导丝由管状主体101的远端向管状主体101的近端(自下而上)依次穿入每组连接结构19,每组连接结构19中按照第三连接结构195、第一连接结构191后第二连接结构193的顺序穿入牵引导丝,其中第一连接结构191及第二连接结构193的穿入顺序可互换,保证轴向切面上第三连接结构195是最后释放的,有利于提高覆膜支架100释放的准确度。
可以理解,每组连接结构19连接结构包括沿管状主体101的周向间隔排列的至少两个连接结构19。
可以理解,在变更实施方式中,输送器中设置多个牵引导丝,其中每个牵引导丝用于穿插在相应的连接结构19中。
可以理解,不限定连接结构19仅设于管状主体101的后壁,其也可以设于管状主体101的前壁或侧壁,例如,在一实施方式中,一组连接结构19沿设有倒刺112的环形主支撑架110的周向设置,即至少一组连接结构19设置于具有倒刺112的环形主支撑架110上,或者设置于倒刺112的区域对应的主体覆膜13上,通过牵引导丝穿过多个连接结构19,原理同上,在此不作论述。在覆膜支架100的释放过程中,倒刺位置的管状主体101直径小于管状主体101完全释放时的直径,或者将管状主体101对应倒刺112的区域的直径收缩的比其近侧的管状主体101以及远侧的管状主体101的直径都小。换而言之,主体覆膜 13对应倒刺112的区域沿管状主体101的周向收紧,倒刺位置的管状主体101相对于其近侧以及远侧的管状主体101内凹,从而避免倒刺112在释放过程中接触划伤血管壁,或锚定在血管壁上不能调整释放位置,提高释放准确度以及安全性。
在一种实施方式中,连接结构19可以用其他环比如金属环代替,金属环可以设置在环形主支撑架110上,或者连接结构19可以用主体覆膜13上的孔洞来实现,至少一牵引导丝穿过孔洞收缩对应区段的直径以进行半释放。
可以理解,连接结构19至少为一组,每组连接结构19包括至少两个周向排列连接结构19,每组连接结构19设于主体覆膜13上或环形主支撑架110上,每组中的多个连接结构19沿管状主体101的周向排列用于穿设一牵引导丝,使得在覆膜支架100释放过程中,所述牵引导丝牵引连接结构19带动对应相连的主体覆膜13沿所述管状主体101的周向收紧,从而使所述覆膜支架100处于半释放状态。
需要说明的是,本实施方式提供的覆膜支架100适用于胸腹主动脉瘤,覆膜支架100植入至胸腹主动脉瘤的瘤体附近,主动脉中的血液在覆膜支架100的中空管腔内流动,避免血液继续冲刷瘤体,瘤体内没有血流,瘤体内的血液逐渐血栓化并被血管组织吸收,瘤体逐渐缩小。
本实施方式提供的覆膜支架100还适用于治疗胸腹主动脉夹层(aortic dissection,简称AD)。主动脉夹层是指主动脉内膜因各种原因出现裂口,主动脉腔内的血流从主动脉内膜裂口进入主动脉中膜,使中膜撕开分离,并沿主动脉长轴向近远端扩展,从而形成主动脉真假两腔的一种病理改变。主动脉夹层起病急骤危害巨大,撕裂的假腔血管壁薄弱,可形成动脉瘤或直接破裂造成大出血死亡,夹层形成后真腔受到压迫,真腔空间小。
以下对覆膜支架100适用于胸腹主动脉夹层作简单的说明。其一,由于覆膜支架100中包括四个内嵌分支31,相对于外嵌分支,占用真腔空间小。并且窗口131的远端是向覆膜支架100内倾斜缝合的,使得内嵌分支103与分支支架之间的连接处(窗口131处)接触夹层的几率较小,避免植入过程中出现夹层撕裂。其二,半释放状态下,方便覆膜支架100进入真腔,对准四个窗口13位置后,再进行覆膜支架100的完全释放,避免了近端段105与夹层贴合后再调整窗口位置造成的夹层撕裂,特别是近端段105具有倒刺的情况下。其三,腹腔干以及肠系膜上动脉分支支架对应窗口(第一窗口1311与第二窗口1312)下方的避让区域1011减小了管状主体101的径向支撑力,增加了分支支架植入对应内嵌分支103的操作空间,对夹层比较友好。避让区域1011减小了对分支支架以及夹层的压迫,有利于分支支架释放以及分支支架内部血液的流通。
请参阅图5,本申请第二实施方式提供的覆膜支架与第一实施方式提供的覆膜支架的不同在于,避让支撑架111包括避让部1113及与避让部1113连接设置的连接部1115。在本实施方式中,避让部1113与连接部1115一体成型。避让支撑架111于避让部1113的波形数量,要小于与避让部1113具相同圆周角的连接部1115的波形数量。通过减少避让部1113的波形数量,降低避让支撑架111于避让区域1011的覆盖率,实现降低避让区域1011的径向支撑力。
本实施方式中,避让部1113的波形数量为一个,位于避让部1113的波形为圆弧,与 避让部1113具相同圆周角的连接部1115的波形数量大于一个。可以理解,不限定避让部1113的波形为圆弧形,其也可以为其他形状,例如,三角形。
可以理解,不限定避让部1113的结构,在一实施方式中,避让区域1011中的主体覆膜13相对于避让区域1011周向上其他区域中的主体覆膜13,向所管状主体的内部凹陷。在一些实施方式中,避让部1113相对连接部1115朝向管状主体的内部凹陷,比如,通过调整避让支撑架111在避让区域1011的倾斜角度与延伸方向,使得在避让区域1011形成凹陷,主体覆膜13设置于主体骨架11上,主体覆膜13的轮廓与主体骨架11的轮廓一致;或者如第一实施方式中,避让区域1011对应避让支撑架111的缺口,避让区域1011对应的主体覆膜13向内凹陷。
避让区域1011向内凹陷,使得完全植入后,避让区域1011不接触第一分支支架以及第二分支支架,或者,在接触第一分支支架与第二分支支架的基础上,比现有的规则筒形或锥形的支架,避让区域与血管内壁之间的空间相对较大,为分支支架的植入提供了较大的操作空间,并减小了覆膜支架100的避让区域1011对分支支架以及血管内膜的压迫,有利于分支支架释放以及分支支架内部血液流通。
请参阅图6,本申请第三实施方式提供的覆膜支架与第一实施方式提供的覆膜支架的不同在于,避让支撑架111包括避让部1113及与避让部1113连接设置的连接部1115,位于避让部1113的波形的波高低于位于连接部1115的波形的波高。本实施方式中,相较于连接部1115,避让部1113的波形为矮波结构,如此,通过降低避让支撑架111于避让区域1011的覆盖率,实现降低避让区域1011的径向支撑力。
请参阅图7与图8,本申请第四实施方式提供的覆膜支架与第二实施方式提供的覆膜支架的不同在于,避让支撑架111包括第一避让支撑架111a及第二避让支撑架111b,其中第一避让支撑架111a的避让部1113的丝径还小于连接部1115的丝径,从而进一步降低避让支撑架111于避让区域1011的覆盖率,实现降低避让区域1011的径向支撑力。
本实施方式中,第一避让支撑架111a的避让部1113通过第一绕丝绕制而成,第一避让支撑架111a的连接部1115通过第二丝绕制而成,其中第二绕丝的丝径大于第一绕丝,于第一避让支撑架111a的连接部1115的每端通过固定套1117一一对应地与第一避让支撑架111a的避让部1113的一端固定相接,方便了避让支撑架111的制作与拆卸。可以理解,固定套1117可以为钢或其他具有良好生物相容性的材料制成。在一些实施方式中,第一避让支撑架111a由切割工艺一体成型,通过激光切割得到杆宽(对应上述丝径)不同的避让部1113与连接部1115。
第二避让支撑架111b与第二实施方式中的避让支撑架的结构相同,在此不作赘述。可以理解的是,第二避让支撑架111b的结构可以与第一避让支撑架111a的结构不相同。
请参阅图9与图10,本申请第五实施方式提供的覆膜支架与第一实施方式提供的覆膜支架的不同在于,每个断口1110分配有两组第一显影件14,一组第一显影件14靠近避让支撑架111的断口1110处的波峰110c设置,另一组第一显影件14靠近避让支撑架111的 断口1110处的波谷110d设置,每组第一显影件14中的第一显影件14的数量为两个,同组第一显影件14中的两个第一显影件14分别位于避位支撑架111的断口1110处的波杆110b的两侧。本实施方式中,第一显影件14为大致呈点状或环状的显影标记。
请参阅图11,本申请第六实施方式提供的覆膜支架与第五实施方式提供的覆膜支架的不同在于,每组第一显影件14中的数量为一个,以节约显影材料,同一断口1110周围的两个第一显影件14分别位于断口1110处的波杆110b的两侧。
请参阅图12与图13,本申请第七实施方式提供的覆膜支架与第一实施方式提供的覆膜支架的不同在于,在至少一个断口1110处的波杆110b设第一显影件14,第一显影件14为缠绕丝,比如钽丝,第一显影件14缠绕于波杆110b上。可以理解,于靠近其余断口1110处的第一显影件14可采用o字结构等形状的显影标记。可以理解,在变更实施方式中,可以四个断口1110均采用缠绕丝缠绕,或者较远端的两个断口1110采用缠绕丝缠绕。
请参阅图14,本申请第八实施方式提供的覆膜支架100与第一实施方式提供的覆膜支架的不同在于,调整了近端部105的环形主支撑架110的波峰110c与波谷110d的位置。
具体的,环形主支撑架110包括高波及低波,高波的波高大于低波的波高。
将近端段105的最近端的一个环形主支撑架110称为第一环形主支撑架1100。第一环形主支撑架1100的任意两个高波之间均间隔连接有低波。第一环形主支撑架1100的每个高波的波峰所位于的并平行于覆膜支架100的轴向的直线与第一窗口1311的位置错开设置。在周向上,第一环形主支撑架1100的多个高波设置于第一窗口1311的两侧,比如,在周向上,至少一个高波设置在第一窗口1311的顺时针方向的一侧,至少另一个高波设置在第一窗口1311的逆时针方向的一侧。在周向上,第一环形主支撑架1100的相邻的两个高波的波峰110c之间的间距包括不相等的第一间距与第三间距,以在形成不同面积的开口,方便分支支架从近端(即开口)处沿直线路径进入支架,从对应内嵌分支以及窗口中引出分支支架。
更为具体的,第一环形主支撑架1100包括第一高波1102、第二高波1104、第三高波1106及五个低波1108,第一高波1102位于第二高波1104与第三高波1106之间,第一高波1102与第二高波1104之间设有两个低波1108,第一高波1102与第三高波1106之间设有两个低波1108,第二高波1104与第三高波1106之间设有一个低波1108。在周向上,第一高波1102的波峰110c与第二高波1104的波峰110c之间的间距可以视作第一间距,第一高波1102的波峰110c与第三高波1106的波峰110c之间的间距可以视作第二间距,第三高波1106的波峰110c与第二高波1104的波峰110c之间的间距可以视作第三间距,第一间距与第三间距不相同。并且,第一间距与第二间距均大于第三间距。第一间距在轴向上对应第一窗口以及第三窗口,第二间距在轴向上对应第二窗口与第四窗口。
周向上,经过第一环形支撑架1100的高波的波峰且平行于覆膜支架的轴向的至少一条直线与第一窗口1311错开设置。本实施方式中,在周向上,第一高波1102的波峰110c、第二高波1104的波峰110c、第三高波1106的波峰110c均错开第一窗口1311设置。进一 步地,经过第一高波1102的波峰110c的并并行于覆膜支架100的轴向的直线位于第一窗口1311与第二窗口1312之间,并且,第一窗口1311与第二窗口1312的相切点M与第一环形主支撑架1103的第一高波1102位于同一轴线A-A上,换而言之,相切点M与第一环形主支撑架1103的第一高波1102的波峰110c对齐设置。第一窗口1311以及第二窗口1312均与轴线A-A相切。在变更实施方式中,在周向上,经过部分高波的波峰的并平行于覆膜支架100的轴向的直线与第一窗口1311的位置错开设置,或者,经过部分高波的波峰的并平行于覆膜支架100的轴向的直线与至少部分窗口的位置错开设置。
覆膜支架100进行后释放之前,第一环形主支撑架1100的三个高波(第一高波1102、第二高波1104、第三高波1106)在输送器的控制下结合在一起,三个高波(第一高波1102、第二高波1104、第三高波1106)之间形成三个开口,第一高波1102与第二高波1104之间形成第一开口(对应第一间距),第三高波1106与第一高波1102之间形成第二开口(对应第二间距),第二高波1104与第三高波1106之间形成第三开口(对应第三间距),第一开口(对应第一间距)对准第一窗口1311与第三窗口1313设置,第二开口(对应第二间距)与第二窗口1312以及第四窗口1314对准设置,便于在后释放之前,引导分支支架以及对应的分支引导导丝,穿过第一开口以及第二开口,并沿直线路径,穿过对应内嵌分支以及窗口131,最终进入对应的分支血管中。
由于第一开口与第二开口均大于第三开口,从而方便在后释放之前,分支支架从近端的第一开口以及第二开口处进入覆膜支架管腔中。进行后释放,即是通过输送器控制第一环形主支撑架1100的第一高波1102、第二高波1104、第三高波1106从输送器解脱,在一些实施方式中,先进行后释放,再进行半释放;或者先进行半释放,在进行后释放。
从第一环形主支撑架1100中的低波1108设置的数量可以看出,第二高波1104与第三高波1106之间的周向距离较小(间隔设置一个低波1108),使得在后释放之前,第二高波1104与第三高波1106之间的第三开口较小。第一高波1102与第二高波1104之间的周向距离(间隔设置两个低波1108),以及第一高波1102与第三高波1106之间的周向距离较大(间隔设置两个低波1108),使得第一高波1102与第二高波1104朝向近端的第一开口以及第一高波1102与第三高波1106朝向近端的第二开口较大,便于引导分支支架及其对应的分支引导导丝的通过。
请结合参阅图15,覆膜支架100的后壁上设有连接结构19,连接结构19固定于波杆110b的大致中间位置(即波峰110c和波谷110d之间的位置),使得波杆110b受力更均匀,避免波杆110b偏斜。在一些实施方式中,输送器中设置用于穿插至连接结构19中的多根牵引导丝。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围,以上各个实施方式中的具体方案可以相互适用。

Claims (35)

  1. 一种覆膜支架,其特征在于,包括管状主体,所述管状主体包括主体骨架及设于所述主体骨架的主体覆膜,所述主体覆膜上设有第一窗口,所述管状主体设有避让区域,所述避让区域邻接所述第一窗口的远端,所述主体骨架包括避让支撑架,所述避让支撑架于所述避让区域的覆盖率小于所述避让支撑架于其余区域的覆盖率。
  2. 如权利要求1所述的覆膜支架,其特征在于,所述避让支撑架为具有缺口的部分环形结构,所述缺口设置于所述避让区域中。
  3. 如权利要求1所述的覆膜支架,其特征在于,所述避让支撑架包括连接部及与所述连接部固定相接的避让部,所述避让部位于所述避让区域。
  4. 如权利要求3所述的覆膜支架,其特征在于,所述避让部的丝径小于所述连接部的丝径。
  5. 如权利要求3所述的覆膜支架,其特征在于,所述避让支撑架还包括固定套,所述连接部与所述避让部通过所述固定套固定相接,或者所述连接部与所述避让部一体成型。
  6. 如权利要求3所述的覆膜支架,其特征在于,所述避让支撑架还包括多个串接的波形,位于所述避让部的波形的波高低于位于所述连接部的波形的波高。
  7. 如权利要求3所述的覆膜支架,其特征在于,所述避让支撑架还包括多个串接的波形,位于所述避让部的波形数量,要小于与所述避让部具相同圆周角的连接部的波形数量。
  8. 如权利要求1所述的覆膜支架,其特征在于,所述主体骨架包括多个沿所述管状主体的轴向间隔设置的环形主支撑架,至少一所述环形主支撑架包括交错设置的高波与低波,所述高波的波高要大于所述低波的高度波高,所述高波超出所述低波的端部与所述主体覆膜之间不固定。
  9. 如权利要求8所述的覆膜支架,其特征在于,所述管状主体包括近端段,所述近端段的最近端的一个环形主支撑架为第一环形主支撑架,所述环形主支撑架包括多个串接的波形,所述波形包括波峰、波谷及波杆,所述波杆位于所述波峰与所述波谷之间,所述波峰至所述波谷的高度为波高;
    所述第一环形主支撑架中包括高波及低波,所述高波的波高大于所述低波的波高,任意两个所述高波之间均间隔连接有所述低波。
  10. 如权利要求9所述的覆膜支架,其特征在于,经过所述第一环形支撑架的所述高波的波峰且平行于所述覆膜支架的轴向的至少一条直线与所述第一窗口错开设置。
  11. 如权利要求10所述的覆膜支架,其特征在于,在周向上,所述第一环形主支撑架的多个所述高波设置于所述第一窗口的两侧。
  12. 如权利要求9所述的覆膜支架,其特征在于,在周向上,所述第一环形主支撑架的相邻的两个所述高波的波峰之间的间距包括不相等的第一间距与第三间距,所述第一间距大于所述第三间距,并在轴向上对应所述第一窗口设置。
  13. 如权利要求1所述的覆膜支架,其特征在于,所述管状主体还包括设于所述主体覆膜或所述避让支撑架上的至少一组第一显影件,所述第一显影件环绕所述避让区域的周围设置,用于标记所述避让区域。
  14. 如权利要求13所述的覆膜支架,其特征在于,所述第一显影件包括缠绕丝,所述 缠绕丝缠绕于所述避让支撑架上。
  15. 如权利要求13所述的覆膜支架,其特征在于,所述第一显影件包括点状的显影标记。
  16. 如权利要求13所述的覆膜支架,其特征在于,所述避让支撑架包括多个串接的波形,所述波形包括波峰、波谷及波杆,所述波杆位于所述波峰与所述波谷之间,所述避让支撑架中靠近所述避让区域的波形的波峰、波谷与波杆中的至少其中之一设有一组所述第一显影件。
  17. 如权利要求13所述的覆膜支架,其特征在于,所述避让支撑架包括多个串接的波形,所述波形包括波峰、波谷及波杆,所述波杆位于所述波峰与所述波谷之间,所述至少一组第一显影件设于所述主体覆膜上,所述至少一组第一显影件围绕所述避让支撑架中靠近所述避让区域的波峰、波谷及波杆中的至少一个设置。
  18. 如权利要求1所述的覆膜支架,其特征在于,所述主体覆膜上还设有第二窗口、第三窗口及第四窗口,所述第一窗口与所述第二窗口相对所述第三窗口与所述第四窗口靠近所述管状主体的近端。
  19. 如权利要求18所述的覆膜支架,其特征在于,所述管状主体包括连接设置的近端段与变径段,所述第一窗口与所述第二窗口位于所述近端段,所述第三窗口与所述第四窗口位于所述变径段,所述避让区域由所述变径段延伸至所述近端段。
  20. 如权利要求19所述的覆膜支架,其特征在于,所述变径段包括固定连接设置的第一次段与第二次段,所述第一次段与所述近端段相接,所述第一次段的管径自所述第一次段的近端朝向所述第一次段的远端逐渐减小,所述第三窗口与所述第四窗口位于所述第一次段。
  21. 如权利要求20所述的覆膜支架,其特征在于,所述变径段还包括与所述第二次段的远端固定相接的第三次段,所述第三次段的管径自所述第三次段的近端朝向所述第三次段的远端逐渐增大。
  22. 如权利要求19所述的覆膜支架,其特征在于,所述管状主体还包括远端段,所述远端段固定于所述变径段的远端,所述近端段的管径大于所述远端段的管径。
  23. 如权利要求22所述的覆膜支架,其特征在于,所述管状主体还包括多组第二显影件,所述多组第二显影件分布于所述近端段、所述变径段及所述远端段中的至少一个。
  24. 如权利要求19所述的覆膜支架,其特征在于,所述主体骨架包括多个沿所述管状主体的轴向间隔设置的环形主支撑架。
  25. 如权利要求24所述的覆膜支架,其特征在于,位于所述近端段的至少一个所述环形主支撑架设有倒刺,所述倒刺由所述管状主体的近端朝向所述管状主体的远端延伸。
  26. 如权利要求25所述的覆膜支架,其特征在于,所述管状主体还包括相对设置的前壁与后壁,所述第一窗口、所述第二窗口及所述避让区域均设置于所述前壁上,所述覆膜支架还包括设于所述近端段的所述后壁上的至少一组连接结构,所述至少一组连接结构设置于具有所述倒刺的环形主支撑架上,或者设置于所述倒刺的区域对应的所述主体覆膜上,所述连接结构用于穿设牵引导丝,使得所述覆膜支架的释放过程中,所述牵引导丝牵引所述连接结构对应所述倒刺的区域沿所述管状主体的周向收紧,从而使所述倒刺位置的管状 主体直径小于所述管状主体完全释放时的直径。
  27. 如权利要求24所述的覆膜支架,其特征在于,所述管状主体包括相对设置的前壁与后壁,所述第一窗口、所述第二窗口以及所避让区域均位于所述前壁上,所述覆膜支架还包括设于所述近端段的后壁的至少一组连接结构,每组所述连接结构包括至少两个连接结构,每组所述连接结构设于所述主体覆膜上或所述环形主支撑架上,每组连接结构沿所述管状主体的周向排列用于穿设牵引导丝,使得在所述覆膜支架释放过程中,所述牵引导丝牵引所述连接结构带动对应相连的管状主体沿周向收紧,从而使所述覆膜支架处于半释放状态。
  28. 如权利要求24所述的覆膜支架,其特征在于,所述管状主体包括相对设置的前壁与后壁,所述第一窗口、所述第二窗口以及所避让区域均位于所述前壁上,所述覆膜支架还包括设于所述近端段的后壁的至少一组连接结构,每组所述连接结构包括至少两个连接结构,所述环形主支撑架包括多个串接的波形,所述波形包括波峰、波谷及波杆,所述波杆位于所述波峰与所述波谷之间,所述连接结构固定于所述波杆上。
  29. 如权利要求18所述的覆膜支架,其特征在于,所述管状主体包括前壁、后壁及侧壁,所述前壁与所述后壁相对设置,所述侧壁连接于所述前壁与所述后壁之间,所述第一窗口与所述第二窗口与所避让区域均位于所述前壁上,所述第三窗口位于一个所述侧壁上,所述第四窗口位于另一个所述侧壁上。
  30. 如权利要求29所述的覆膜支架,其特征在于,所述覆膜支架还包括至少一收容于所述管状主体的内嵌分支,每个内嵌分支的远端固定设于所述第一窗口、所述第二窗口、所述第三窗口及所述第四窗口中的一个对应窗口,所述内嵌分支的近端朝向所述管状主体的近端延伸。
  31. 如权利要求30所述的覆膜支架,其特征在于,所述内嵌分支包括分支骨架及分支覆膜,所述分支覆膜设于所述分支骨架上,所述分支骨架包括设于所述分支覆膜的远端开口的远端支撑环,每个远端支撑环固定于所述第一窗口、所述第二窗口、所述第三窗口及所述第四窗口中的一个对应窗口,至少一个所述内嵌分支的远端支撑环的开口方向相对所述管状主体的轴向倾斜。
  32. 如权利要求30所述的覆膜支架,其特征在于,所述内嵌分支包括分支骨架及分支覆膜,所述分支覆膜设于所述分支骨架上,所述分支骨架包括设于所述分支覆膜的近端开口的近端支撑环,所述近端支撑环固定于所述主体覆膜上,至少一个所述近端支撑环的开口方向相对所述管状主体的轴向倾斜。
  33. 如权利要求31所述的覆膜支架,其特征在于,所述内嵌分支包括分支骨架及分支覆膜,所述分支覆膜设于所述分支骨架上,所述内嵌支架包括第三显影件,所述第三显影件设于所述内嵌分支的近端开口、所述内嵌分支的远端开口及所述内嵌分支的近端开口与远端开口之间分支覆膜的至少其中一个上。
  34. 如权利要求33所述的覆膜支架,其特征在于,所述分支骨架包括沿轴向间隔设置的多个分支支撑架,所述第三显影件呈环状,并作为一个所述分支支撑架设置在所述内嵌分支的近端开口与远端开口之间的分支覆膜上。
  35. 如权利要求1所述的覆膜支架,其特征在于,所述避让区域中的主体覆膜相对于 所述避让区域周向上其他区域中的主体覆膜向所述管状主体的内部凹陷。
PCT/CN2021/090906 2020-04-30 2021-04-29 覆膜支架 WO2021219074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010362241 2020-04-30
CN202010362241.6 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021219074A1 true WO2021219074A1 (zh) 2021-11-04

Family

ID=78331801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090906 WO2021219074A1 (zh) 2020-04-30 2021-04-29 覆膜支架

Country Status (1)

Country Link
WO (1) WO2021219074A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113876467A (zh) * 2021-12-08 2022-01-04 上海微创心脉医疗科技(集团)股份有限公司 覆膜支架
CN114504413A (zh) * 2022-01-19 2022-05-17 四川大学华西医院 植入式医疗器械及植入式医疗器械套件
WO2023124901A1 (zh) * 2021-12-31 2023-07-06 先健科技(深圳)有限公司 管腔支架
WO2023125387A1 (zh) * 2021-12-31 2023-07-06 先健科技(深圳)有限公司 覆膜支架
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器
CN117547382A (zh) * 2023-05-24 2024-02-13 杭州启明医疗器械股份有限公司 人工植入物的介入系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127040A1 (en) * 2009-04-28 2010-11-04 Endologix, Inc. Apparatus and method of placement of a graft or graft system
CN203935299U (zh) * 2014-06-25 2014-11-12 李雷 覆膜植入系统以及覆膜和支架分别植入的植入系统
JP2018051259A (ja) * 2016-09-30 2018-04-05 川澄化学工業株式会社 ステントグラフト、ステントグラフトセット、及び、ステントグラフト留置装置
US20180116832A1 (en) * 2015-05-08 2018-05-03 Jayandiran Pillai Stent and stent set
CN109938895A (zh) * 2017-12-20 2019-06-28 杭州唯强医疗科技有限公司 开窗型覆膜支架
CN109984862A (zh) * 2017-12-29 2019-07-09 杭州唯强医疗科技有限公司 一种可分步释放的主动脉覆膜支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127040A1 (en) * 2009-04-28 2010-11-04 Endologix, Inc. Apparatus and method of placement of a graft or graft system
CN203935299U (zh) * 2014-06-25 2014-11-12 李雷 覆膜植入系统以及覆膜和支架分别植入的植入系统
US20180116832A1 (en) * 2015-05-08 2018-05-03 Jayandiran Pillai Stent and stent set
JP2018051259A (ja) * 2016-09-30 2018-04-05 川澄化学工業株式会社 ステントグラフト、ステントグラフトセット、及び、ステントグラフト留置装置
CN109938895A (zh) * 2017-12-20 2019-06-28 杭州唯强医疗科技有限公司 开窗型覆膜支架
CN109984862A (zh) * 2017-12-29 2019-07-09 杭州唯强医疗科技有限公司 一种可分步释放的主动脉覆膜支架

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113876467A (zh) * 2021-12-08 2022-01-04 上海微创心脉医疗科技(集团)股份有限公司 覆膜支架
CN113876467B (zh) * 2021-12-08 2022-04-15 上海微创心脉医疗科技(集团)股份有限公司 覆膜支架
WO2023104001A1 (zh) * 2021-12-08 2023-06-15 上海微创心脉医疗科技(集团)股份有限公司 覆膜支架
WO2023124901A1 (zh) * 2021-12-31 2023-07-06 先健科技(深圳)有限公司 管腔支架
WO2023125387A1 (zh) * 2021-12-31 2023-07-06 先健科技(深圳)有限公司 覆膜支架
CN114504413A (zh) * 2022-01-19 2022-05-17 四川大学华西医院 植入式医疗器械及植入式医疗器械套件
CN114504413B (zh) * 2022-01-19 2023-08-15 四川大学华西医院 植入式医疗器械及植入式医疗器械套件
CN117547382A (zh) * 2023-05-24 2024-02-13 杭州启明医疗器械股份有限公司 人工植入物的介入系统
CN117547382B (zh) * 2023-05-24 2024-04-26 杭州启明医疗器械股份有限公司 人工植入物的介入系统
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器
CN117100456B (zh) * 2023-10-18 2024-02-02 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器

Similar Documents

Publication Publication Date Title
WO2021219074A1 (zh) 覆膜支架
US11589990B2 (en) Method and system for transcatheter intervention
US10492933B2 (en) Stent and kit of stents for adjustable interventional reduction of blood flow
US10575851B2 (en) Atrial appendage ligation
EP3007649B1 (en) Encircling implant delivery systems and methods
US12011551B2 (en) Fenestration devices, systems, and methods
US10507122B2 (en) Retracting or/and supporting periurethral tissue
JP5667544B2 (ja) ステントグラフトの近位端部を自動的に中心に配置する送達システム及び方法
ES2729853T3 (es) Dispositivo de captura dual para el sistema de injerto de stent
US11701216B2 (en) Stent to assist in arteriovenous fistula formation
JP2003522550A (ja) 咬合、固定、テンショニング、及び流向装置とその使用方法
JP2012196504A (ja) 解剖学的なオリフィス又は内腔の内周を制御するための方法及び装置
JPH11512950A (ja) インビボの血管バイパスを形成するためのカテーテル機器及び方法
CN109833112B (zh) 一种术中支架及其使用方法
WO2024125226A1 (zh) 一种覆膜支架
WO2019129151A1 (zh) 可用于腹主动脉疾病介入治疗的覆膜支架
US20230414339A1 (en) Membrane-Covered Stent
US20220218460A1 (en) Vascular reconstruction device
CN209236477U (zh) 一种近端分体式主动脉支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796231

Country of ref document: EP

Kind code of ref document: A1