WO2021219028A1 - 一种多功能光刻装置 - Google Patents

一种多功能光刻装置 Download PDF

Info

Publication number
WO2021219028A1
WO2021219028A1 PCT/CN2021/090681 CN2021090681W WO2021219028A1 WO 2021219028 A1 WO2021219028 A1 WO 2021219028A1 CN 2021090681 W CN2021090681 W CN 2021090681W WO 2021219028 A1 WO2021219028 A1 WO 2021219028A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
point
vacuum
axis
plate
Prior art date
Application number
PCT/CN2021/090681
Other languages
English (en)
French (fr)
Inventor
罗先刚
马晓亮
蒲明博
高平
李雄
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to JP2022565708A priority Critical patent/JP2023523987A/ja
Priority to EP21797324.7A priority patent/EP4130881A4/en
Priority to US17/997,503 priority patent/US11868055B2/en
Publication of WO2021219028A1 publication Critical patent/WO2021219028A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present disclosure relates to the technical field of optical micro-nano manufacturing equipment, and in particular to a multifunctional lithography device.
  • lithography technology mainly includes the following lithography modes: First, the contact mode, which exposes the mask directly to the silicon wafer coated with photoresist, which has the characteristics of high resolution, simple equipment, convenient operation, and low cost; Second, the proximity mode, compared to the contact mode, adds a detection system for measuring the gap between the mask and the photoresist. Exposure through a certain gap can avoid the easiness of the two due to the direct contact between the mask and the photoresist.
  • the Taber lithography mode which uses a high-precision and stable Z-direction motion positioning system to achieve fixed-point exposure and scanning exposure, and uses the self-imaging of periodic objects produced by the Taber effect for lithography ;
  • SP lithography mode using the short wavelength characteristics of SP can effectively resonantly couple the evanescent wave locally on the surface of the object, realize evanescent wave amplification transmission, resonance interference and local enhancement, so as to obtain more than traditional lithography diffraction Extreme graphics, using precision leveling and gap control technology in the device.
  • the present disclosure provides a multifunctional lithography apparatus to solve the problem that the current lithography apparatus can only implement a single lithography mode.
  • the present disclosure provides a multifunctional lithography apparatus, including: a vacuum carrier table 12 for placing a substrate 32, and controlling the air flow to make the substrate 32 adsorb to the vacuum carrier On the stage 12, a vacuum environment is provided for the substrate 32 and the mask plate 31 to control the gap between the substrate 32 and the mask plate 31; the mask holder 4 is arranged above the vacuum stage 12 , Used to fix the mask plate 31; the carrier motion system, set under the vacuum carrier table 12, used to adjust the position of the vacuum carrier table 12, so that the substrate 32 and the mask The distance between the templates 31 meets preset conditions; the ultraviolet light source system 6 is arranged above the mask plate 31 and is used to generate ultraviolet light for photolithography; the three-axis alignment optical path system 5 is used to make the ultraviolet light The light is aligned with the mask 31.
  • the slide table movement system includes: an XY-direction macro-motion system 2 for adjusting the displacement of the vacuum slide table 12 in the X-axis direction and the Y-axis direction; Z-direction macro and micro three points
  • the leveling system 3 is arranged on the XY-direction macro-motion system 2 and is used to realize the coarse adjustment and fine adjustment of the displacement of the vacuum carrier table 12 in the Z-axis direction.
  • the XY-direction macro-motion system 2 includes: a moving base plate 20, a first linear guide 21-1 is arranged on the moving base plate 20, and the direction is the Y-axis direction; the Y-direction moving plate 22 , Set on the first linear guide 21-1; second linear guide 21-2, set on the Y-direction moving plate 22, the direction is the X-axis direction, perpendicular to the Y-axis direction; X-direction The moving plate 23 is arranged on the second linear guide 21-2; the first linear actuator 15-1 is arranged on the moving bottom plate 20, and is used to make the Y-direction moving plate 22 move along the The first linear guide 21-1 moves; the second linear actuator 15-2 is provided on the Y-direction moving plate 22 for making the X-direction moving plate 23 along the second linear guide 21- 2 Move.
  • the Z-direction macro-micro three-point leveling system 3 is provided on the X-direction moving board 23 and includes: a coarse displacement closed loop system and an angular displacement mechanism, the coarse displacement closed loop system acts on the angular displacement mechanism ,
  • the vacuum bearing table is displaced in the Z-axis direction;
  • the coarse displacement closed-loop system includes: a Z-direction coarse displacement rotating motor for adjusting the displacement of the vacuum bearing table in the Z-axis direction, and the Z-axis direction It is perpendicular to the X-axis direction and the Y-axis direction;
  • the coarse displacement closed-loop system feedback controls the operation of the Z-direction coarse-displacement rotating motor according to the actual Z-direction displacement of the angular displacement mechanism; linear guide rail anti-deflection mechanism for It is ensured that the Z-direction coarse-displacement rotating motor only outputs Z-direction displacement;
  • a three-point incremental grating ruler 16 is used to read the Z-direction displacement actually generated by
  • the Z-direction macro-micro three-point leveling system 3 further includes: a three-point Z-direction fine displacement mechanism 11, which is arranged on the angular displacement mechanism 9 and is used to set the vacuum platform 12 Leveling and adjusting the angles of the vacuum carrier table 12 in the plane of the X-axis and Y-axis, and to realize the distance between the substrate 32 on the vacuum carrier table 12 and the mask plate 31 Fine-tuned.
  • a three-point Z-direction fine displacement mechanism 11 which is arranged on the angular displacement mechanism 9 and is used to set the vacuum platform 12 Leveling and adjusting the angles of the vacuum carrier table 12 in the plane of the X-axis and Y-axis, and to realize the distance between the substrate 32 on the vacuum carrier table 12 and the mask plate 31 Fine-tuned.
  • the three-point Z-direction fine displacement mechanism 11 includes: a mechanism base plate, a flange plate 18-1 is arranged in the middle of the mechanism base plate; a plurality of piezoelectric ceramic motor components 19 are evenly arranged on the The mechanism bottom plate is used to fine-tune the inclination angle of the vacuum carrier table 12 in the Z-axis direction, level the vacuum carrier table 12, and realize the substrate 32 on the vacuum carrier table 12 and the mask Fine adjustment of the distance between the templates 31; a universal ball support 26, which is arranged above the mechanism bottom plate, and is connected to the piezoelectric ceramic motor assembly 19; at least one tension spring 30 is connected to the mechanism bottom plate and sets the The plate of the universal ball support 26 is used to drive the plate to move downward along the Z axis when the piezoelectric ceramic motor assembly 19 is reset; the elastic reed 27 is arranged above the universal ball support 26, and the plurality of The piezoelectric ceramic motor assembly 19 is connected; the flange adapter 28 is arranged on the
  • the angular displacement mechanism 9 includes: a cross roller bearing 18-2, which is arranged above the plane of the angular displacement mechanism 9 and is connected to the flange 18-1 for driving the The flange 18-1; the angular displacement linear motor 10 is used to drive the cross roller bearing 18-2.
  • the compression spring is supported under the angular displacement mechanism.
  • a passive vibration isolation system including a marble platform and vibration isolation legs distributed at four corners of the marble platform; wherein the platform motion system is placed on the passive isolation Vibration system 1.
  • the three-axis alignment optical path system 5 includes: a double telephoto objective lens mounted on a three-axis symmetrical displacement system; a three-axis symmetrical displacement system for making the double telephoto objective lens along the X axis , Y-axis, Z-axis direction displacement; CCD camera, used to photograph the substrate 32 and the mask 31, and transmit the image to the computer, so that the computer determines whether the mask 31 and the substrate 32 are right allow.
  • a multifunctional lithography apparatus which includes: a passive vibration isolation system 1, an XY-direction macro-motion system 2, a Z-direction macro-micro three-point leveling system 3, a mask holder 4, and three-axis alignment Optical path system 5, UV light source system 6, control system 7, coarse displacement closed loop system 8, angular displacement mechanism 9, angular displacement linear motor 10, three-point Z-direction fine displacement mechanism 11, vacuum sheet table mechanism 12, linear guide rail anti-deflection Mechanism 13, Z-direction coarse displacement rotary motor 14, first linear actuator 15-1, second linear actuator 15-2, three-point incremental grating ruler 16, compression spring 17, cross roller bearing 18 , Pressure point ceramic motor assembly 19, motion base plate 20, first linear guide 21-1, second linear guide 21-2, Y-direction moving plate 22, X-direction moving plate 23, piezoelectric motor mounting accessories 24, piezoelectric Motor 25, universal ball support 26, elastic reed 27, flange adapter 28, bearing table support surface 29 and tension spring 30; the passive vibration isolation system 1 includes 4 evenly symmetric
  • the first linear guide rail 21-1 is placed on the mounting surface of the motion base plate 20 to realize the bearing of the Y-direction motion plate 22.
  • the linear actuator 15-1 pushes the Y-direction motion plate 22 to achieve Y-direction macro displacement.
  • the Y-direction motion plate 22 is installed on the plane to install the second linear guide 21-2 to carry the X-direction motion plate 23, and the Y-direction motion plate 22 is placed on the
  • the second linear actuator 15-2 pushes the X-direction moving plate 23 to realize the X-direction macro displacement, and the Z-direction macro-micro three-point leveling system 3 realizes the placement of the substrate on the carrier table and alignment with the mask mark, including coarse displacement
  • the closed-loop system 8 is placed on the XY macro-motion system 2.
  • the three-point linear guide anti-deflection mechanism 13 ensures that the Z-direction coarse displacement rotary motor 14 can only output the Z-direction displacement on the rotating cam, and the three-point incremental grating ruler 16 reads Z Displacement to the actual movement to realize the closed-loop control of the Z-direction coarse-displacement rotary motor 14.
  • the compression spring 17 supports the angular displacement mechanism 9 through the compression spring to reduce the static load of the Z-direction coarse displacement rotary motor 14 in the Z direction.
  • the angular displacement linear motor 10 pushes the three-point Z direction
  • the fine displacement mechanism 11 moves as a whole, and the cross roller bearing 18 is used as a rotating support structure to realize the overall angular displacement movement of the three-point Z-direction fine displacement mechanism 11.
  • the pressure point ceramic motor assembly 19 is composed of a piezoelectric motor mounting accessory 24 piezoelectric motor 25 two Part of the composition, the whole is installed on the three-point Z-direction precision displacement mechanism 11, the three-point piezoelectric motor 25 is installed on the universal ball support 26 through a ball head connection, and the upper and lower connecting plates of the piezoelectric motor 25 use tension springs 30 to achieve compression.
  • the electric motor 25 returns with a slight force, the elastic reed 27 is fixedly connected to the piezoelectric motor 25 at three points, and the center flange is connected to the lower plane of the supporting surface 29 of the bearing table to realize the uniform springback of the entire vacuum bearing table mechanism 12;
  • the film stage mechanism 12 adopts a multi-air hole method to complete the adsorption and blowing of the substrate.
  • the mask holder 4 adopts a pull-out fixed mask clamping method.
  • the three-point manual knob fixes the mask plate.
  • the three-axis alignment optical path system 5 includes three axes. Symmetrical displacement system System, telephoto objective lens, CCD camera and overall optical path system.
  • the double telephoto objective lens is installed in the three-axis symmetrical displacement system to achieve the XYZ direction displacement of the alignment objective lens, and the image is imaged to the PC end by the CCD camera to realize the mark on the mask substrate.
  • the ultraviolet light source system 6 includes a complete set of optical path systems, and uses a 365nm light source to position the exposure position in a Y-direction telescopic closed loop to realize the substrate exposure effect, and the control system 7 is used to realize the control of the device.
  • the system 7 constitutes the entire device, and the overall device control system 7 is also integrated with the overall device, and the exposure functions include: contact mode, proximity mode, Taber lithography mode, SP lithography mode four exposure modes; control system 7 includes All circuit systems of this device: PLC, power supply, driver, switch, cable arrangement, realize the perfection of the whole device.
  • the stator of the first linear actuator 15-1 is used on the moving bottom plate 20, the mover is installed on the Y-direction moving plate 22, and the Y-direction movement is realized by the low-friction guide of the first linear guide 21-1.
  • the plate 22 moves in the Y direction.
  • the stator of the second linear actuator 15-2 is installed on the Y-direction moving plate 22, and the mover is installed on the X-direction moving plate 23.
  • the X-direction moving plate is realized by the second linear guide 21-1. 23X movement.
  • the slide table movement system includes an XY-direction macro-motion system 2, a Z-direction macro-micro three-point leveling system 3, and a first linear actuator 15-1 and a second linear actuator 15 are used.
  • -2 is built with the first linear guide 21-1 and the second linear guide 21-2 to complete the XY displacement.
  • the coarse displacement closed-loop system 8 is placed on the upper grinding surface of the XY macromotion system 2.
  • a three-point design is adopted. Realize the rough leveling of the bearing table, the coarse displacement closed-loop system 8, the supporting angular displacement mechanism 9 make the three-point Z-direction fine displacement mechanism 11 have better fine-tuning, and the vacuum bearing table mechanism 12 is placed on the top layer to integrate all the movements. Sum, the final four-axis macro fine-tuning leveling function.
  • the coarse displacement closed-loop system 8 includes a linear guide anti-deflection mechanism 13, a Z-direction coarse displacement rotary motor 14, a three-point incremental grating ruler 16, a compression spring 17, and a cam mounting assembly, which passes through a three-point Z-direction
  • the rotation of the coarse displacement rotary motor 14 drives the cam movement, and the uneven rotation of the cam causes the plane height of the angular displacement mechanism 9 to change.
  • the linear guide anti-deflection mechanism 13 prevents the mechanism from being damaged due to excessive three-point lifting height difference, through three-point increments
  • the linear grating ruler 16 separately records the height difference of the three-point motor in the Z direction, and controls and adjusts the angular displacement mechanism 9 to be horizontal.
  • the linear guide anti-deflection mechanism 13 cam enters the descending process, and the compression spring bears the overall weight to avoid cam fatigue damage.
  • the angular displacement mechanism 9 adopts the angular displacement linear motor 10 and the stator is fixed on the outer ring mounting plate of the cross roller bearing 18, the mover is fixed on the three-point Z-direction precision displacement mechanism 11, and the three-point Z-direction precision
  • the displacement mechanism 11 is connected with the inner ring of the cross roller bearing 18 by screws, and the three-point Z-direction fine displacement mechanism 11 is pushed by the angular displacement linear motor 10 to achieve a small angle rotation with the center of the cross roller bearing 18 as the rotation axis, and the vacuum platform mechanism 12 can XY ⁇ displacement, and Z direction coarse and fine displacement adjustment and leveling.
  • the piezoelectric motor mounting accessory 24 fixes the piezoelectric motor 25, the top of the piezoelectric motor 25 is connected to the universal ball support 26 by a universal ball, and the elastic reed 27 realizes the elastic contraction of the fine displacement part.
  • the elastic reed 27 is connected to the center of the supporting surface 29 of the bearing table through a flange adapter 28 to realize the stable Z-direction fine displacement movement of the vacuum bearing table mechanism 12.
  • the multifunctional lithography device can realize the high-precision leveling of the carrier table and the alignment of the substrate 32 mark through the carrier table motion system, and the airflow can be controlled by the vacuum carrier table 12 to make the substrate 32 and The mask plate 31 is tightly attached.
  • the distance between the substrate 32 and the mask plate 31 can also be adjusted to meet expectations by adjusting the movement system of the carrier table.
  • the contact mode, proximity mode, and Taber light can be realized.
  • Four lithography exposure modes engraving mode and SP lithography mode.
  • FIG. 1 schematically shows a schematic diagram of a multifunctional lithography apparatus provided by an embodiment of the present disclosure
  • FIG. 2 schematically shows a schematic diagram of a movement system of a carrier table provided by an embodiment of the present disclosure
  • FIG. 3 schematically shows a schematic diagram of an XY macro-motion system 2 provided by an embodiment of the present disclosure
  • FIG. 4 schematically shows a schematic diagram of a Z-direction macro-micro three-point leveling system 3 provided by an embodiment of the present disclosure
  • FIG. 5 schematically shows a schematic diagram of a proximity mode exposure provided by an embodiment of the present disclosure
  • FIG. 6 schematically shows a schematic diagram of a contact mode exposure provided by an embodiment of the present disclosure
  • FIG. 7 schematically shows a schematic diagram of a Taber lithography mode provided by an embodiment of the present disclosure
  • FIG. 8 schematically shows a schematic diagram of an SP lithography mode provided by an embodiment of the present disclosure
  • 1-Passive vibration isolation system 2-XY-direction macro-motion system; 3-Z-direction macro-micro three-point leveling system; 4-mask holder; 5-three-axis alignment optical path system; 6-ultraviolet light source system; 7- Control system; 8-Coarse displacement closed-loop system; 9-Angular displacement mechanism; 10-Angular displacement linear motor; 11-Three-point Z-direction fine displacement mechanism; 12-Vacuum bearing table; 13-Linear guide anti-deflection mechanism; 14- Z-direction coarse displacement rotary motor; 15-1-first linear actuator; 15-2-second linear actuator 16-three-point incremental grating ruler; 17-compression spring; 18-1-flange Disk; 18-2-cross roller bearing; 19-piezoelectric ceramic motor assembly; 20-movement base plate; 21-1-first linear guide rail; 21-2-second linear guide rail; 22-Y-directional movement plate; 23-X-direction motion board; 24-piezoelectric motor mounting accessories; 25-piezoelectric motor; 26-universal ball support
  • Fig. 1 schematically shows a schematic diagram of a multifunctional lithography apparatus provided by an embodiment of the present disclosure.
  • a multifunctional lithography apparatus provided by an embodiment of the present disclosure includes: a vacuum stage 12, a mask holder 4, a stage movement system, an ultraviolet light source system 6, and a three-axis alignment optical path system 5.
  • a vacuum stage 12 As shown in FIG. 1, a multifunctional lithography apparatus provided by an embodiment of the present disclosure includes: a vacuum stage 12, a mask holder 4, a stage movement system, an ultraviolet light source system 6, and a three-axis alignment optical path system 5.
  • the functions and positional relationships of the components of the multifunctional lithography apparatus provided by the embodiments of the present disclosure are as follows.
  • the vacuum carrier table 12 is used to place the substrate 32, and the substrate 32 is adsorbed on the vacuum carrier table 12 by controlling the air flow, and a vacuum environment is provided for the substrate 32 and the mask plate 31 to control the substrate 32 and The gap between the mask plates 31.
  • the mask holder 4 is arranged above the vacuum stage 12 for fixing the mask plate 31.
  • the slide table movement system is arranged under the vacuum slide table 12 and is used to adjust the position of the vacuum slide table 12 so that the distance between the substrate 32 and the mask plate 31 meets a preset condition.
  • the ultraviolet light source system 6 is arranged above the mask plate 31 and is used to generate ultraviolet light for photolithography.
  • the three-axis alignment optical path system 5 is used to align the ultraviolet light to the mask plate 31.
  • the position of the vacuum stage 12 can be continuously adjusted coarsely and finely through the stage motion system, so that the substrate 32 on the vacuum stage 12 and the mask holder 4
  • the distance between the upper mask plates 31 meets the requirements of various photolithography modes.
  • the gap between the carrier table and the mask plate 31 is controlled by the carrier table movement system, and the substrate 32 is vacuum adsorbed on the carrier through the vacuum carrier table 12 by controlling the airflow of the dense holes on the surface.
  • the gap between the substrate 32 and the mask plate 31 is controllable.
  • the substrate 32 and the mask are adjusted by adjusting the table motion system and the vacuum table 12.
  • the template 31 is in hard contact, and at the same time, the closed space in the vacuum stage is used to create a vacuum environment to improve the tightness of the substrate 32 and the mask plate 31, thereby realizing the contact mode lithography technology.
  • the multifunctional lithography device can also implement the Taber mode lithography technology, making a grating on the mask plate 31, and transferring the required area pattern to the substrate 32 to realize an array pattern.
  • SP lithography mode technology can also be realized. By plating metals such as chrome and gold on the surface of the substrate, plasma resonance is generated under ultraviolet light irradiation to realize surface plasmon lithography.
  • the platform motion system includes the XY-direction macro-motion system 2 and the Z-direction macro-micro three-point leveling system 3.
  • the XY-direction macro-motion system 2 is used to adjust the displacement of the vacuum table 12 in the X-axis direction and the Y-axis direction;
  • the Z-direction macro-micro three-point leveling system 3 is set on the XY-direction macro-motion system 2 for use To realize the coarse adjustment and fine adjustment of the displacement of the vacuum bearing table 12 in the Z-axis direction.
  • the substrate 32 and the mask 31 are aligned, and the substrate 32 and the mask are adjusted according to the mode of lithography technology to be realized
  • the distance between 31 is convenient for the implementation of photolithography technology.
  • the schematic diagrams of the XY-direction macro-motion system 2 and the Z-direction macro-micro three-point leveling system 3 are shown in FIG. 2.
  • Fig. 2 schematically shows a schematic diagram of a slide table movement system provided by an embodiment of the present disclosure.
  • the XY-direction macro-motion system 2 is located at the bottom of the platform motion system.
  • the platform motion system is placed on the passive vibration isolation system 1.
  • the passive vibration isolation system 1 includes a marble platform and Vibration isolation legs distributed on the four corners of the marble platform, of which the thickness of the marble platform is about 200mm.
  • the passive vibration isolation system 1 is used to support the multifunctional lithography device and isolate the machinery and the bottom surface vibration.
  • the XY-direction macro-motion system 2 is the bottom of the platform motion system, which is the closest to the marble platform.
  • Fig. 3 schematically shows a schematic diagram of an XY macro-motion system 2 provided by an embodiment of the present disclosure.
  • the XY-direction macro-motion system 2 includes: a moving base plate 20, a first linear guide 21-1, a Y-direction moving plate 22, a second linear guide 21-2, an X-direction moving plate 23, and a first straight The linear actuator 15-1, the second linear actuator 15-2.
  • the first linear guide 21-1 is arranged on the moving bottom plate 20, the direction is the Y axis direction; the Y-direction moving plate 22 is arranged on the first linear guide 21-1; the second linear guide 21-2 is arranged on the Y On the moving plate 22, the direction is the X-axis direction and perpendicular to the Y-axis direction; the X-direction moving plate 23 is arranged on the second linear guide 21-2; the first linear actuator 15-1 is arranged on the moving bottom plate 20 , Used to move the Y-direction moving plate 22 along the first linear guide rail 21-1; the second linear actuator 15-2 is arranged on the Y-direction moving plate 22, used to make the X-direction moving plate 23 along the second straight line The guide rail 21-2 moves.
  • the Y-direction moving plate 22 is pushed to move along the first linear guide 21-1 by the first linear actuator 15-1, so that the vacuum stage 12 undergoes a Y-direction macro displacement, and passes through the second
  • the linear actuator 15-2 pushes the X-direction motion plate 23 to move along the second linear guide 21-2, causing the vacuum sheet table 12 to undergo X-direction macro displacement, thereby realizing the adjustment of the vacuum sheet table through the XY-direction macro-motion system 2 12 Displacement in the horizontal plane.
  • the Z-direction macro-micro three-point leveling system 3 is set on the X-direction moving board 23 of the XY-direction macro-motion system 2.
  • angular displacement mechanism 9 and coarse displacement closed loop system 8 Z-direction coarse displacement rotating motor 14, linear guide anti-deflection mechanism 13, three-point incremental grating ruler 16 constitute a coarse displacement closed-loop system 8, and the coarse-displacement closed-loop system 8 works together with the angular displacement mechanism 9 installation plane to make the vacuum platform 12 Displacement along the Z-axis direction can realize more accurate control of the Z-direction displacement of the vacuum bearing table 12.
  • the Z-direction coarse displacement rotary motor 14 is used to roughly adjust the displacement of the vacuum carrier 12 along the Z-axis, and the Z-axis direction is perpendicular to the X-axis direction and the Y-axis direction; the linear guide anti-deflection mechanism 13 is used to ensure the Z-direction
  • the coarse displacement rotating motor 14 only outputs the Z-direction displacement;
  • the three-point incremental grating ruler 16 is used to read the Z-direction displacement actually produced by the Z-direction coarse displacement rotating motor 14;
  • the coarse displacement closed-loop system 8 is used for the actual Z-direction generated Displacement, feedback controls the work of the Z-direction coarse displacement rotary motor 14.
  • the compression spring 17 supports the angular displacement mechanism 9 through a uniform compression force, and reduces the Z-direction static load of the Z-direction coarse displacement rotating motor 14.
  • the Z-direction macro-micro three-point leveling system 3 also includes: a three-point Z-direction fine displacement mechanism 11, which is arranged on the angular displacement mechanism 9 to level the vacuum platen 12 and adjust the vacuum platen 12 at X
  • the angle in the plane where the axis and the Y axis are, and the distance between the substrate 32 on the vacuum stage 12 and the mask plate 31 can be finely adjusted.
  • Fig. 4 schematically shows a schematic diagram of a Z-direction macro-micro three-point leveling system 3 provided by an embodiment of the present disclosure.
  • the three-point Z-direction fine displacement mechanism 11 includes: a mechanism base plate, a plurality of piezoelectric ceramic motor components 19, a universal ball support 26, at least one tension spring 30, an elastic reed 27, and a flange adapter 28, the supporting surface of the supporting table 29.
  • the middle part of the mechanism bottom plate is provided with a flange 18-1; a plurality of piezoelectric ceramic motor components 19 are evenly arranged on the edge of the mechanism bottom plate to fine-tune the inclination of the vacuum carrier table 12 in the Z-axis direction, so that the vacuum carrier table 12 Leveling, and to realize the fine adjustment of the distance between the substrate 32 on the vacuum stage 12 and the mask plate 31.
  • the piezoelectric ceramic motor assembly 19 is composed of a piezoelectric motor mounting accessory 24 and a piezoelectric motor 25,
  • the piezoelectric motor 25 is installed at one end of the piezoelectric motor mounting accessory 24, the ball head of the piezoelectric motor is connected and installed on the universal ball support 26;
  • the universal ball support 26 is set on the plate above the bottom plate of the mechanism, and the piezoelectric ceramic
  • the motor assembly 19 is connected;
  • the tension spring 30 connects the bottom plate of the mechanism and the plate with the universal ball support 26, which is used to drive the plate to move downward along the Z axis when the piezoelectric ceramic motor assembly 19 is reset;
  • the elastic spring 27 is set Above the universal ball support 26, it is connected with a plurality of piezoelectric ceramic motor components 19 to realize the uniform springback of the vacuum bearing table 12;
  • the flange adapter 28 is set on the elastic reed 27, through the elastic reed and the plate.
  • the round hole in the middle is connected with the flange 18-1, which is used to adjust the angle of the vacuum carrier 12 in the plane of the X axis and Y axis based on the drive of the flange 18-1; the supporting surface 29 of the carrier
  • the center is connected with the flange adapter 28, and the elastic reed is connected through the flange adapter 28, for placing the vacuum bearing table 12.
  • the angular displacement mechanism 9 includes: a cross roller bearing 18-2 and an angular displacement linear motor 10.
  • the cross roller bearing 18-2 is arranged on the plane of the angular displacement mechanism 9 and is connected to the flange 18-1 for driving the flange 18-1 to adjust the angle of the vacuum platform 12.
  • the angular displacement linear motor 10 is used to drive the cross roller bearing 18-2.
  • the angular displacement linear motor 10 drives the overall Z-direction movement of the three-point Z-direction fine displacement mechanism 11, and the cross roller bearing 18-2 serves as a rotating support structure to realize the overall angular displacement movement of the three-point Z-direction fine displacement mechanism 11. As shown in Fig.
  • the angular displacement mechanism 9 is supported on the Z-direction coarse displacement rotating motor 14 through a compression spring 17, and the angular displacement mechanism 9 is supported by the compression spring 17, so that the Z-direction coarse displacement rotating motor 14 can reduce the static load of the Z-direction coarse displacement rotating motor 14 in the Z direction.
  • the slide table movement system includes an XY-direction macro-motion system 2 and a Z-direction macro-micro three-point leveling system 3.
  • the XY-direction macro-motion system 2 is used to adjust the vacuum slide table 12 in the X and Y directions.
  • the rough displacement closed-loop system 8 is placed on the upper surface grinding plane of the XY-direction macro-motion system 2.
  • the three-point design scheme can realize the rough leveling of the vacuum table 12, and the angle supported by the coarse displacement closed-loop system 8.
  • the displacement mechanism 9 makes the three-point Z-direction fine displacement mechanism 11 have better fine-tuning.
  • the vacuum table 12 mechanism is placed on the top layer to integrate all the motion sums, and finally achieve macro-fine leveling and alignment.
  • the position of the vacuum carrier table 12 is adjusted by the movement system of the carrier table, and the air flow on the surface of the vacuum carrier table 12 is regulated (the surface of the vacuum carrier table is provided with multiple through holes for air flow). ), the substrate 32 is sucked and fixed on the vacuum stage 12, and by controlling the air flow, the gap distance between the substrate 32 and the mask plate 31 can be adjusted, which can be applied to different lithography modes; the mask holder 4 is independent It is installed on the marble in other parts, using the drawer type to replace the mask plate 31, and fix the mask plate 31 for the exposure process; the three-axis alignment optical path system 5 includes: double telephoto objective lens, three-axis symmetrical displacement system, CCD camera, among them, The dual telephoto objective lens is installed on a three-axis symmetrical displacement system.
  • the three-axis symmetrical displacement system is used to displace the dual telephoto objective lens along the X-axis, Y-axis, and Z-axis directions.
  • the CCD camera is used to photograph the substrate 32 and the mask 31, And the image is transmitted to the computer, so that the computer judges whether the mask 31 and the substrate 32 are aligned, the aligning light path system adopts a three-axis symmetric system to align the lithography marks, and improve the flexibility of adjusting the long focal length objective lens;
  • System 6 includes a complete set of light path system, using 365nm light source Y-direction displacement telescopic closed loop to locate the exposure position to achieve substrate 32 exposure, and UV light source system 6 adopts servo stepping Y-direction movement to improve the uniformity of light intensity in the exposure area.
  • control system may include PLC, power supply, driver, switch, cable arrangement, etc., used to control the embodiments of the present disclosure.
  • the various components of the multifunctional lithography device sequentially controls the motors in the slide table movement system according to the preset sequence to realize the position adjustment of the vacuum slide table 12, combined with the image fed back by the CCD camera, through the position adjustment, the substrate 32 and the mask 31
  • the ultraviolet light source system 6 is controlled to realize the exposure of the substrate 32, and then the photolithography is realized.
  • the control system is placed close to the motion device to improve the compactness of the device.
  • 5 to 8 respectively schematically show a schematic diagram of a proximity lithography mode, a contact lithography mode, a taber lithography mode, and a schematic diagram of the SP lithography mode.
  • the multifunctional lithography apparatus can realize the proximity mode lithography technology, realize the macro-micro displacement leveling of the vacuum stage 12 and determine the rising distance through the stage motion system, and control the vacuum bearing There is a gap between the substrate 32 on the stage 12 and the mask plate 31, and by controlling the airflow on the surface of the vacuum stage 12, the substrate 32 is vacuum sucked on the vacuum stage 12 to determine the gap between the substrate 32 and the mask plate 31 Controllable.
  • the multifunctional lithography apparatus provided by the embodiment of the present disclosure can realize the contact mode lithography technology, and the control method is similar to that of the proximity mode lithography, but after the mask plate 31 is in hard contact with the substrate 32, the vacuum substrate The outer sealing system of the stage is activated to vacuum the inside of the vacuum stage. At this time, the substrate 32 is vacuum sucked by the vacuum stage 12, and the substrate 32 is tightly attached to the mask plate 31. The vacuum environment improves the substrate 32 and the mask plate. 31 close exposure.
  • the multifunctional lithography apparatus provided by the embodiment of the present disclosure can realize the Taber lithography mode technology, making a grating on the mask plate 31, and transferring the required area pattern to the substrate 32 through the photoresist 33 , To achieve array graphics.
  • the multifunctional lithography device provided by the embodiment of the present disclosure can realize the SP lithography mode technology.
  • the surface of the substrate 32 and the photoresist 33 are chrome-plated, gold-plated, silver-plated and other metals (mark 34 in FIG. 8). (Shown), plasmon resonance is generated under ultraviolet light irradiation to realize surface plasmon lithography technology, that is, SP lithography mode technology.
  • a passive vibration isolation system 1 an XY-direction macro-motion system 2, a Z-direction macro-micro three-point leveling system 3, Mask holder 4, three-axis alignment light path system 5, ultraviolet light source system 6, control system 7, coarse displacement closed loop system 8, angular displacement mechanism 9, angular displacement linear motor 10, three-point Z-direction fine displacement mechanism 11, vacuum bearing Film stage mechanism 12, linear guide rail anti-deflection mechanism 13, Z-direction coarse displacement rotary motor 14, first linear actuator 15-1, second linear actuator 15-2, three-point incremental grating ruler 16, Compression spring 17, cross roller bearing 18, pressure point ceramic motor assembly 19, motion base plate 20, first linear guide 21-1, second linear guide 21-2, Y-direction moving plate 22, X-direction moving plate 23, Piezoelectric motor mounting accessories 24, piezoelectric motor 25, universal ball support 26, elastic reed 27, flange adapter 28, bearing table support surface 29 and tension spring 30; the passive vibration isolation system 1 includes 4
  • the second linear actuator 15-2 placed on the Y-direction moving plate 22 pushes the X-direction moving plate 23 to realize the X-direction macro displacement
  • the Z-direction macro-micro three-point leveling system 3 realizes the placement of the substrate on the carrier table and the The mask mark is aligned, including the coarse displacement closed-loop system 8 is placed on the XY macro-motion system 2
  • the three-point linear guide anti-deflection mechanism 13 ensures that the Z-direction coarse displacement rotary motor 14 can only output the Z-direction displacement on the rotating cam
  • the incremental grating 16 reads the actual movement displacement in the Z direction, and realizes the closed-loop control of the Z-direction coarse displacement rotating motor 14.
  • the compression spring 17 supports the angular displacement mechanism 9 through the compression spring to reduce the static load of the Z-direction coarse displacement rotating motor 14 in the Z direction.
  • the displacement linear motor 10 pushes the three-point Z-direction fine displacement mechanism 11 to move as a whole, and the cross roller bearing 18 is used as a rotating support structure to realize the overall angular displacement movement of the three-point Z-direction fine displacement mechanism 11.
  • the pressure-point ceramic motor assembly 19 is made of piezoelectric Motor mounting accessories 24 Piezo motor 25 consists of two parts, the whole is installed on the three-point Z-direction fine displacement mechanism 11.
  • the three-point piezoelectric motor 25 is installed on the universal ball support 26 through a ball joint, and the piezoelectric motor 25 is connected up and down
  • the plate adopts the tension spring 30 to realize the micro-force return of the piezoelectric motor 25.
  • the elastic reed 27 is fixedly connected with the piezoelectric motor 25 at three points, and the center flange is connected to the lower plane of the support surface 29 of the bearing table to realize the entire vacuum bearing.
  • the stage mechanism 12 rebounds evenly; the vacuum stage mechanism 12 adopts a multi-hole method to complete the adsorption and blowing of the substrate, the mask holder 4 adopts a pull-out fixed mask clamping method, and the three-point manual knob fixes the mask plate.
  • Axis alignment optical system System 5 includes a three-axis symmetrical displacement system, a telephoto objective lens, a CCD camera, and an overall optical path system.
  • the double-telephoto objective lens is installed on the three-axis symmetrical displacement system to achieve the XYZ direction displacement of the alignment objective lens, and the CCD camera is used to image to the PC end.
  • the ultraviolet light source system 6 includes a complete optical path system, and uses a 365nm light source to position the exposure position with a Y-direction displacement expansion and contraction loop to realize the substrate exposure effect.
  • the control system 7 is used to realize the control of the device.
  • a passive vibration isolation system 1 an XY-direction macro-motion system 2, a Z-direction macro-micro three-point leveling system 3, a mask holder 4, a three-axis alignment optical path system 5, and an ultraviolet light source
  • the system 6 and the control system 7 constitute the entire device, and the overall device control system 7 is also integrated with the overall device, and the exposure functions include: contact mode, proximity mode, Taber lithography mode, SP lithography mode four exposure modes;
  • the control system 7 includes all the circuit systems of the device: PLC, power supply, driver, switch, cable arrangement, and realizes the perfection of the entire device.
  • the stator of the first linear actuator 15-1 is used on the moving bottom plate 20, the mover is installed on the Y-direction moving plate 22, and the Y-direction movement is realized by the low-friction guide of the first linear guide 21-1.
  • the plate 22 moves in the Y direction.
  • the stator of the second linear actuator 15-2 is installed on the Y-direction moving plate 22, and the mover is installed on the X-direction moving plate 23.
  • the X-direction moving plate is realized by the second linear guide 21-1. 23X movement.
  • the slide table movement system includes an XY-direction macro-motion system 2, a Z-direction macro-micro three-point leveling system 3, and a first linear actuator 15-1 and a second linear actuator 15 are used.
  • -2 is built with the first linear guide 21-1 and the second linear guide 21-2 to complete the XY displacement.
  • the coarse displacement closed-loop system 8 is placed on the upper grinding surface of the XY macromotion system 2.
  • a three-point design is adopted. Realize the rough leveling of the bearing table, the coarse displacement closed-loop system 8, the supporting angular displacement mechanism 9 make the three-point Z-direction fine displacement mechanism 11 have better fine-tuning, and the vacuum bearing table mechanism 12 is placed on the top layer to integrate all the movements. Sum, the final four-axis macro fine-tuning leveling function.
  • the coarse displacement closed-loop system 8 includes a linear guide anti-deflection mechanism 13, a Z-direction coarse displacement rotary motor 14, a three-point incremental grating ruler 16, a compression spring 17, and a cam mounting assembly, which passes through a three-point Z-direction
  • the rotation of the coarse displacement rotary motor 14 drives the cam movement, and the uneven rotation of the cam causes the plane height of the angular displacement mechanism 9 to change.
  • the linear guide anti-deflection mechanism 13 prevents the mechanism from being damaged due to excessive three-point lifting height difference, through three-point increments
  • the linear grating ruler 16 separately records the height difference of the three-point motor in the Z direction, and controls and adjusts the angular displacement mechanism 9 to be horizontal.
  • the linear guide anti-deflection mechanism 13 cam enters the descending process, and the compression spring bears the overall weight to avoid cam fatigue damage.
  • the angular displacement mechanism 9 adopts the angular displacement linear motor 10 and the stator is fixed on the outer ring mounting plate of the cross roller bearing 18, the mover is fixed on the three-point Z-direction precision displacement mechanism 11, and the three-point Z-direction precision
  • the displacement mechanism 11 is screwed to the inner ring of the cross roller bearing 18, and the three-point Z-direction fine displacement mechanism 11 is driven by the angular displacement linear motor 10 to achieve a small angle rotation with the center of the cross roller bearing 18 as the rotation axis.
  • 12 can XY ⁇ displacement, and Z direction coarse and fine displacement adjustment and leveling.
  • the piezoelectric motor mounting accessory 24 fixes the piezoelectric motor 25, the top of the piezoelectric motor 25 is connected to the universal ball support 26 by a universal ball, and the elastic reed 27 realizes the elastic contraction of the fine displacement part.
  • the elastic reed 27 is connected to the center of the supporting surface 29 of the bearing table through a flange adapter 28 to realize the stable Z-direction fine displacement movement of the vacuum bearing table mechanism 12.

Abstract

本公开提供了一种多功能光刻装置,包括:真空承片台(12),用于放置基片,以及,通过控制气流使基片吸附于真空承片台(12)上,以控制基片(32)与掩模板(31)之间的间隙;掩模架(4),设于真空承片台(12)上方,用于固定掩模板(31);承片台运动系统,设于真空承片台(12)下方,用于调节真空承片台(12)的位置,使基片(32)和掩模板(31)之间的距离满足预设条件;紫外光源系统(6),设于掩模板(31)上方,用于产生用于光刻的紫外光;三轴对准光路系统(5),用于使紫外光对准掩模板(31)。该装置可以精确控制基片(32)与掩模板(31)之间的位置,可实现接触模式、接近模式、泰伯光刻模式、SP光刻模式四种光刻曝光模式。

Description

一种多功能光刻装置
本公开要求于2020年04月29日提交的、申请号为202010354566.X的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光学微纳制造装备技术领域,尤其涉及一种多功能光刻装置。
背景技术
目前,光刻技术主要包括以下几种光刻模式:其一,接触模式,将掩模板直接与涂有光刻胶的硅片接触曝光,具有分辨力高、设备简单、操作方便、成本低等特点;其二,接近模式,相比接触模式,增加了测量掩模板与光刻胶之间的间隙的检测系统,通过一定间隙进行曝光,可避免由于掩模板与光刻胶直接接触导致的两者容易被损伤和沾污等缺陷;其三,泰伯光刻模式,采用高精度、平稳性Z向运动定位系统实现定点曝光、扫描曝光的方式,利用泰伯效应产生的周期物体自成像进行光刻;其四,SP光刻模式,采用SP的短波长特性能够有效的共振耦合局域在物体表面的倏逝波,实现倏逝波放大传输、共振干涉以及局部增强,从而获得超过传统光刻衍射极限的图形,在装置方面采用精密调平和间隙控制技术。
在光刻技术发展和应用需求不断多样化的大背景下,采用单一光刻模式以无法满足微纳结构图形的制备需求,还会导致各单一光刻模式的装置利用率低下等问题。
发明内容
(一)要解决的技术问题
鉴于上述问题,本公开提供了一种多功能光刻装置,以解决目前光刻装置只能实现单一光刻模式的问题。
(二)技术方案
为了解决上述问题,本公开提供了一种多功能光刻装置,包括:真空承片台12,用于放置基片32,以及,通过控制气流使所述基片32吸附于所述真空承片台12上,并为所述基片32与掩模板31提供真空环境,以控制所述基片32与掩模板31之间的间隙;掩模架4,设于所述真空承片台12上方,用于固定所述掩模板31;承片台运动系统,设于所述真空承片台12下方,用于调节所述真空承片台12的位置,使所述基片32和所述掩模板31之间的距离满足预设条件;紫外光源系统6,设于所述掩模板31上方,用于产生用于光刻的紫外光;三轴对准光路系统5,用于使所述紫外光对准所述掩模板31。
根据本公开的实施例,所述承片台运动系统包括:XY向宏动系统2,用于调节所述真空承片台12在X轴方向和Y轴方向的位移;Z向宏微三点调平系统3,设于所述XY向宏动系统2上,用于实现所述真空承片台12在Z轴方向位移的粗调和精调。
根据本公开的实施例,所述XY向宏动系统2包括:运动底板20,第一直线导轨21-1,设于所述运动底板20上,方向为Y轴方向;Y向运动板22,设于所述第一直线导轨21-1上;第二直线导轨21-2,设于所述Y向运动板22上,方向为X轴方向,与所述Y轴方向垂直;X向运动板23,设于所述第二直线导轨21-2上;第一直线促动器15-1,设于所述运动底板20上,用于使所述Y向运动板22沿所述第一直线导轨21-1移动;第二直线促动器15-2,设于所述Y向运动板22上,用于使所述X向运动板23沿所述第二直线导轨21-2移动。
根据本公开的实施例,所述Z向宏微三点调平系统3设于所述X向运动板23上,包括:粗位移闭环系统和角位移机构,粗位移闭环系统作用于角位移机构,使所述真空承片台沿所述Z轴方向位移;粗位移闭环系统包括:Z向粗位移旋转电机,用于调节所述真空承片台沿Z轴方向的位移,所述Z轴方向与所述X轴方向和所述Y轴方向垂直;粗位 移闭环系统根据角位移机构实际产生的Z向位移,反馈控制所述Z向粗位移旋转电机的工作;直线导轨防偏机构,用于保证所述Z向粗位移旋转电机只输出Z向位移;三点增量式光栅尺16,用于读取所述Z向粗位移旋转电机实际产生的Z向位移。
根据本公开的实施例,所述Z向宏微三点调平系统3还包括:三点Z向精位移机构11,设于所述角位移机构9上,用于将所述真空承片台12调平,并调节所述真空承片台12在X轴、Y轴所在平面内的角度,以及,实现所述真空承片台12上的基片32与所述掩模板31之间距离的精调。
根据本公开的实施例,所述三点Z向精位移机构11包括:机构底板,所述机构底板中部设有法兰盘18-1;多个压电陶瓷电机组件19,均匀分设于所述机构底板,用于微调所述真空承片台12在Z轴方向的倾角,使所述真空承片台12调平,以及,实现所述真空承片台12上的基片32与所述掩模板31之间距离的精调;万向球支撑26,设于所述机构底板上方,与所述压电陶瓷电机组件19连接;至少一个拉伸弹簧30,连接所述机构底板和设置所述万向球支撑26的板件,用于当压电陶瓷电机组件19复位时,带动板件沿Z轴向下运动;弹性簧片27,设于万向球支撑26上方,与所述多个压电陶瓷电机组件19连接;法兰转接28,设于所述弹性簧片27上,通过所述弹性簧片、所述板件中的圆孔与所述法兰盘18-1连接,用于基于所述法兰盘18-1的驱动,调节所述真空承片台12在X轴、Y轴所在平面内的角度;承片台支撑面29,中心与所述法兰转接28连接,并通过所述法兰转接28连接所述弹性簧片27,用于放置所述真空承片台12。
根据本公开的实施例,所述角位移机构9包括:交叉滚子轴承18-2,设于所述角位移机构9的平面上方,与所述法兰盘18-1连接,用于驱动所述法兰盘18-1;角位移直线电机10,用于驱动所述交叉滚子轴承18-2。
根据本公开的实施例,压缩弹簧支撑于角位移机构下方。
根据本公开的实施例,还包括:被动隔振系统1,包括大理石平台和分布于所述大理石平台的4个角的隔振腿;其中,所述承片台运动系统放置于所述被动隔振系统1上。
根据本公开的实施例,所述三轴对准光路系统5包括:双长焦物镜,安装在三轴对称位移系统上;三轴对称位移系统,用于使所述双长焦物镜沿X轴、Y轴、Z轴方向位移;CCD相机,用于拍摄所述基片32和掩模板31,并将成像传给计算机,使所述计算机判断所述掩模板31和所述基片32是否对准。
本公开另一方面公开了一种多功能光刻装置,包括:被动隔振系统1、XY向宏动系统2、Z向宏微三点调平系统3、掩模架4、三轴对准光路系统5、紫外光源系统6、控制系统7、粗位移闭环系统8、角位移机构9、角位移直线电机10、三点Z向精位移机构11、真空承片台机构12、直线导轨防偏机构13、Z向粗位移旋转电机14、第一直线促动器15-1、第二直线促动器15-2、三点增量式光栅尺16、压缩弹簧17、交叉滚子轴承18、压点陶瓷电机组件19、运动底板20、第一直线导轨21-1、第二直线导轨21-2、Y向运动板22、X向运动板23、压电电机安装附件24、压电电机25、万向球支撑26、弹性簧片27、法兰转接28、承片台支撑面29和拉伸弹簧30;被动隔振系统1包括4个均匀对称放置的隔振腿和厚度200mm的大理石平台,XY向宏动系统2底层为运动底板20放置在被动隔振系统1上,运动底板20安装面上放置第一直线导轨21-1实现Y向运动板22承载,通过第一直线促动器15-1推动Y向运动板22实现Y向宏位移,Y向运动板22安装平面安装第二直线导轨21-2承载X向运动板23,Y向运动板22上放置的第二直线促动器15-2推动X向运动板23实现X向宏位移,Z向宏微三点调平系统3实现承片台上放置基片并与掩模板标记对准,包含粗位移闭环系统8放置在XY向宏动系统2上,三点直线导轨防偏机构13确保Z向粗位移旋转电机14能够在旋转凸轮只输出Z向位移,三点增量式光栅尺16读取Z向实际运动位移,实现Z向粗位移旋转电机14闭环控制,压缩弹簧17通过压缩弹簧支撑角位移机构9,减轻Z向粗位移旋转电机14Z向静态承载, 角位移直线电机10推动三点Z向精位移机构11整体运动,由交叉滚子轴承18作为旋转支撑结构,实现三点Z向精位移机构11整体角位移运动,压点陶瓷电机组件19由压电电机安装附件24压电电机25两部分组成,整体安装在三点Z向精位移机构11上,三点压电电机25通过球头连接安装在万向球支撑26上,压电电机25上下连接板采用拉伸弹簧30,实现压电电机25微受力回程,弹性簧片27三点与压电电机25固定连接,中心法兰连接在承片台支撑面29下平面,实现整个真空承片台机构12均匀回弹;真空承片台机构12采用多气孔方式完成基片的吸附与吹气,掩模架4采用抽拉式固定掩模夹持方式,三点手动旋钮固定掩模板,三轴对准光路系统5包含三轴对称位移系统、长焦物镜、CCD相机以及整体光路系统,双长焦物镜安装在三轴对称位移系统实现对准物镜的XYZ方向位移,并通过CCD相机成像到PC端,实现对掩模板基片标记对准判断,紫外光源系统6包含整套光路系统,采用365nm光源Y向位移伸缩闭环定位曝光位置,实现基片曝光效果,控制系统7用于实现本装置的控制。
根据本公开的实施例,被动隔振系统1、XY向宏动系统2、Z向宏微三点调平系统3、掩模架4、三轴对准光路系统5、紫外光源系统6、控制系统7组成整个装置,整体装置控制系统7也与整体装置放置在一体,并且曝光功能多样包含:接触模式、接近模式、泰伯光刻模式、SP光刻模式四种曝光形式;控制系统7包含本装置的所有电路系统:PLC、电源、驱动器、开关、线缆布置,实现了整个装置的完善。
根据本公开的实施例,采用第一直线促动器15-1定子在运动底板20,动子安装在Y向运动板22,通过第一直线导轨21-1低摩擦导向实现Y向运动板22Y向运动,同样方式,将第二直线促动器15-2定子安装在Y向运动板22,动子安装在X向运动板23,通过第二直线导轨21-1实现X向运动板23X向运动。
根据本公开的实施例,承片台运动系统包含XY向宏动系统2、Z向宏微三点调平系统3,使用第一直线促动器15-1、第二直线促动器15-2与第一直线导轨21-1、第二直线导轨21-2搭建完成XY向位移,粗位移 闭环系统8放置在XY向宏动系统2上表研磨面上,采用三点设计方案,实现承片台粗调平,粗位移闭环系统8、支撑角位移机构9使得三点Z向精位移机构11有更好的微调性,真空承片台机构12放置在最顶层,集成所有的运动总和,最终四轴宏微调平对准功能。
根据本公开的实施例,粗位移闭环系统8包含直线导轨防偏机构13、Z向粗位移旋转电机14、三点增量式光栅尺16、压缩弹簧17以及凸轮安装组件,通过三点Z向粗位移旋转电机14旋转带动凸轮运动,凸轮的不均匀性旋转,使得角位移机构9平面高度发生变化,直线导轨防偏机构13防止三点抬升高度差异过大导致机构损坏,通过三点增量式光栅尺16分别记录三点电机Z向高度差值,进行控制调整角位移机构9水平,直线导轨防偏机构13凸轮进入下降过程,压缩弹簧承受整体重量,避免凸轮疲劳损伤。
根据本公开的实施例,角位移机构9采用角位移直线电机10定子固定在交叉滚子轴承18外环安装板上,动子固定在三点Z向精位移机构11上,三点Z向精位移机构11与交叉滚子轴承18内环螺钉连接,通过角位移直线电机10推动三点Z向精位移机构11实现以交叉滚子轴承18中心为旋转轴的小角度旋转,真空承片台机构12可XYθ位移,以及Z向粗精位移调整调平。
根据本公开的实施例,压电电机安装附件24将压电电机25固定,压电电机25顶端采用万向球连接在万向球支撑26上,通过弹性簧片27实现精位移部分弹性收缩,弹性簧片27通过法兰转接28与承片台支撑面29中心连接,实现真空承片台机构12稳定Z向精位移运动。
(三)有益效果
本公开提供的一种多功能光刻装置,可通过承片台运动系统实现承片台高精度调平、基片32标记对准,可通过真空承片台12控制气流,使基片32与掩模板31紧密贴合,也可以通过调节承片台运动系统,将基片32与掩模板31之间的距离调节至满足期望,配合紫外光源系统6, 实现接触模式、接近模式、泰伯光刻模式、SP光刻模式四种光刻曝光模式。
附图说明
图1示意性示出了本公开实施例提供的一种多功能光刻装置的示意图;
图2示意性示出了本公开实施例提供的一种承片台运动系统的示意图;
图3示意性示出了本公开实施例提供的一种XY向宏动系统2的示意图;
图4示意性示出了本公开实施例提供的一种Z向宏微三点调平系统3的示意图;
图5示意性示出了本公开实施例提供的一种接近模式曝光示意图;
图6示意性示出了本公开实施例提供的一种接触模式曝光示意图;
图7示意性示出了本公开实施例提供的一种泰伯光刻模式示意图;
图8示意性示出了本公开实施例提供的一种SP光刻模式示意图;
附图标记说明:
1-被动隔振系统;2-XY向宏动系统;3-Z向宏微三点调平系统;4-掩模架;5-三轴对准光路系统;6-紫外光源系统;7-控制系统;8-粗位移闭环系统;9-角位移机构;10-角位移直线电机;11-三点Z向精位移机构;12-真空承片台;13-直线导轨防偏机构;14-Z向粗位移旋转电机;15-1-第一直线促动器;15-2-第二直线促动器16-三点增量式光栅尺;17-压缩弹簧;18-1-法兰盘;18-2-交叉滚子轴承;19-压电陶瓷电机组件;20-运动底板;21-1-第一直线导轨;21-2-第二直线导轨;22-Y向运动板;23-X向运动板;24-压电电机安装附件;25-压电电机;26-万向球支撑;27-弹性簧片;28-法兰转接;29-承片台支撑面;30-拉伸弹簧;31-掩模板;32-基片;33-光刻胶;34-金属。
具体实施方式
以下,将参照附图来描述本发明的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本发明实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本发明。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
图1示意性示出了本公开实施例提供的一种多功能光刻装置的示意图。
如图1所示,本公开实施例提供的一种多功能光刻装置,包括:真空承片台12,掩模架4,承片台运动系统,紫外光源系统6,三轴对准光路系统5。具体的,本公开实施例提供的一种多功能光刻装置的各组成部分的功能和位置关系如下。
真空承片台12,用于放置基片32,以及,通过控制气流使基片32吸附于真空承片台12上,并为基片32与掩模板31提供真空环境,以控制基片32与掩模板31之间的间隙。
掩模架4,设于真空承片台12上方,用于固定掩模板31。
承片台运动系统,设于真空承片台12下方,用于调节真空承片台12的位置,使基片32和掩模板31之间的距离满足预设条件。
紫外光源系统6,设于掩模板31上方,用于产生用于光刻的紫外光。
三轴对准光路系统5,用于使紫外光对准掩模板31。
根据本公开实施例提供的多功能光刻装置,可通过承片台运动系统对真空承片台12的位置继续粗调和精调,使真空承片台12上的基片32与掩模架4上的掩模板31之间的距离满足各种光刻模式的要求。例如,当实现接近模式光刻技术时,通过承片台运动系统控制承片台与掩模板 31间隙,并通过真空承片台12通过控制表面密孔的气流方式使基片32真空吸附在承片台上,从而使基片32与掩模板31间隙可控,再例如,基于接近模式光刻技术的调节条件,通过调节承片台运动系统和真空承片台12,使基片32与掩模板31发生硬接触,同时,利用真空承片台内的封闭空间制造真空环境,提高基片32与掩模板31的紧密度,从而实现接触模式光刻技术。该多功能光刻装置还可以实现泰伯模式光刻技术,在掩模板31上制作光栅,将所需区域图形传递到基片32上,实现阵列式图形。还可以实现SP光刻模式技术,通过在基板表面镀铬、镀金等金属,在紫外光照射下产生等离子体共振,实现表面等离子体光刻。
下面将对本公开实施例提供的多功能光刻装置的承片台运动系统的结构进行详细介绍。
如图1所示,承片台运动系统包括XY向宏动系统2和Z向宏微三点调平系统3。其中,XY向宏动系统2,用于调节真空承片台12在X轴方向和Y轴方向的位移;Z向宏微三点调平系统3,设于XY向宏动系统2上,用于实现真空承片台12在Z轴方向位移的粗调和精调。通过调节XY向宏动系统2和Z向宏微三点调平系统3,使基片32与掩模板31标记对准,并根据要实现的光刻技术的模式,调节基片32与掩模板31之间的距离,便于光刻技术的实施。具体的,XY向宏动系统2和Z向宏微三点调平系统3的结构示意图如图2所示。
图2示意性示出了本公开实施例提供的一种承片台运动系统的示意图。
如图2所示,XY向宏动系统2位于承片台运动系统的底部,参阅图1,承片台运动系统被放置于被动隔振系统1上,被动隔振系统1,包括大理石平台和分布于大理石平台的4个角的隔振腿,其中,大理石平台的厚度约为200mm。被动隔振系统1用于支撑多功能光刻装置装置并隔离机械以及底面震动。XY向宏动系统2为承片台运动系统的底部,与大理石平台最接近。
图3示意性示出了本公开实施例提供的一种XY向宏动系统2的示意图。
如图3所示,XY向宏动系统2包括:运动底板20,第一直线导轨21-1,Y向运动板22,第二直线导轨21-2,X向运动板23,第一直线促动器15-1,第二直线促动器15-2。其中,第一直线导轨21-1设于运动底板20上,方向为Y轴方向;Y向运动板22设于第一直线导轨21-1上;第二直线导轨21-2设于Y向运动板22上,方向为X轴方向,与Y轴方向垂直;X向运动板23设于第二直线导轨21-2上;第一直线促动器15-1设于运动底板20上,用于使Y向运动板22沿第一直线导轨21-1移动;第二直线促动器15-2设于Y向运动板22上,用于使X向运动板23沿第二直线导轨21-2移动。
根据本公开的实施例,通过第一直线促动器15-1推动Y向运动板22沿第一直线导轨21-1运动,使真空承片台12发生Y向宏位移,通过第二直线促动器15-2推动X向运动板23沿第二直线导轨21-2运动,使真空承片台12发生X向宏位移,从而实现了通过XY向宏动系统2调节真空承片台12在水平面内的位移。
如图2所示,XY向宏动系统2上方为Z向宏微三点调平系统3,Z向宏微三点调平系统3设于XY向宏动系统2的X向运动板23上,包括:角位移机构9和粗位移闭环系统8。Z向粗位移旋转电机14、直线导轨防偏机构13、三点增量式光栅尺16构成粗位移闭环系统8,粗位移闭环系统8共同作用角位移机构9安装平面,使真空承片台12沿Z轴方向位移,从而可实现对真空承片台12Z向位移较为准确的调控。其中,Z向粗位移旋转电机14,用于粗调真空承片台12沿Z轴方向的位移,Z轴方向与X轴方向和Y轴方向垂直;直线导轨防偏机构13用于保证Z向粗位移旋转电机14只输出Z向位移;三点增量式光栅尺16用于读取Z向粗位移旋转电机14实际产生的Z向位移;粗位移闭环系统8用于根据实际产生的Z向位移,反馈控制Z向粗位移旋转电机14的工作。压缩弹簧17通过均匀压缩力支撑角位移机构9,减轻Z向粗位移旋转电机14Z向静态承载。
Z向宏微三点调平系统3还包括:三点Z向精位移机构11,设于角位移机构9上,用于将真空承片台12调平,并调节真空承片台12在X 轴、Y轴所在平面内的角度,以及,实现真空承片台12上的基片32与掩模板31之间距离的精调。
图4示意性示出了本公开实施例提供的一种Z向宏微三点调平系统3的示意图。
如图4所示,三点Z向精位移机构11包括:机构底板,多个压电陶瓷电机组件19,万向球支撑26,至少一个拉伸弹簧30,弹性簧片27,法兰转接28,承片台支撑面29。其中,机构底板中部设有法兰盘18-1;多个压电陶瓷电机组件19均匀分设于机构底板边缘,用于微调真空承片台12在Z轴方向的倾角,使真空承片台12调平,以及,实现真空承片台12上的基片32与掩模板31之间距离的精调,具体的,压电陶瓷电机组件19由压电电机安装附件24和压电电机25组成,压电电机25安装于压电电机安装附件24的一端,压电电机的球头连接安装在万向球支撑26上;万向球支撑26设于机构底板上方的板件上,与压电陶瓷电机组件19连接;拉伸弹簧30连接机构底板和设置万向球支撑26的板件,用于当压电陶瓷电机组件19复位时,带动板件沿Z轴向下运动;弹性簧片27设于万向球支撑26上方,与多个压电陶瓷电机组件19连接,实现真空承片台12的均匀回弹;法兰转接28设于弹性簧片27上,通过弹性簧片、板件中的圆孔与法兰盘18-1连接,用于基于法兰盘18-1的驱动,调节真空承片台12在X轴、Y轴所在平面内的角度;承片台支撑面29的中心与法兰转接28连接,并通过法兰转接28连接弹性簧片,用于放置真空承片台12。
参考图2,角位移机构9包括:交叉滚子轴承18-2和角位移直线电机10。交叉滚子轴承18-2设于角位移机构9的平面上,与法兰盘18-1连接,用于驱动法兰盘18-1,从而调节真空承片台12的角度。角位移直线电机10,用于驱动交叉滚子轴承18-2。角位移直线电机10推动三点Z向精位移机构11整体的Z向运动,交叉滚子轴承18-2作为旋转支撑结构,实现三点Z向精位移机构11整体角位移运动。如图2所示,角位移机构9通过压缩弹簧17支撑于Z向粗位移旋转电机14上,通过 压缩弹簧17支撑角位移机构9,可减轻Z向粗位移旋转电机14Z向静态承载。
在本公开实施例中,承片台运动系统包含XY向宏动系统2和Z向宏微三点调平系统3,XY向宏动系统2用于调节真空承片台12在X、Y方向的运动,粗位移闭环系统8放置在XY向宏动系统2上表研磨平面上,采用三点设计方案,可实现对真空承片台12的粗调平,粗位移闭环系统8上支撑的角位移机构9使得三点Z向精位移机构11有更好的微调性,真空承片台12机构放置在最顶层,集成所有的运动总和,最终实现宏微调平对准。
根据本公开的实施例,真空承片台12受承片台运动系统的控制调节位置,并通过调控真空承片台12表面的气流(真空承片表面设有多个用于流通气流的通孔),将基片32吸附固定于真空承片台12上,并通过控制气流,可调节基片32与掩模板31之间的间隙距离,应用于不同的光刻模式;掩模架4属于独立于其他部分安装在大理石上,采用抽屉式取换掩模板31,固定掩模板31进行曝光过程;三轴对准光路系统5包括:双长焦物镜,三轴对称位移系统,CCD相机,其中,双长焦物镜安装在三轴对称位移系统上,三轴对称位移系统用于使双长焦物镜沿X轴、Y轴、Z轴方向位移,CCD相机用于拍摄基片32和掩模板31,并将成像传给计算机,使计算机判断掩模板31和所述基片32是否对准,对准光路系统采用三轴对称系统对光刻标记进行对准、提高长焦距物镜调整灵活性;紫外光源系统6包括整套光路系统,采用365nm光源Y向位移伸缩闭环定位曝光位置,实现基片32曝光,紫外光源系统6采用伺服步进式Y向运动,提高了曝光区域光强均匀性。
参阅图1,在本公开提供的一种多功能光刻装置旁边,还设有一控制系统,该控制系统可以包含PLC、电源、驱动器、开关、线缆布置等,用于控制本公开实施例提供的多功能光刻装置中的各组成部分。例如,控制系统按照预设的顺序依次控制承片台运动系统中的各个电机,实现真空承片台12的位置调节,结合CCD相机反馈的图像,通过位置调节,使基片32和掩模板31,当基片32和掩模板31之间的位置满足预设条 件后,控制紫外光源系统6实现基片32曝光,进而实现光刻。控制系统紧靠运动装置放置,提高装置的紧凑性。
图5~8分别示意性示出了接近光刻模式、接触光刻模式、泰伯光刻模式示意图、SP光刻模式的示意图。
如图5所示,本公开实施例提供的多功能光刻装置可实现接近模式光刻技术,通过承片台运动系统实现真空承片台12宏微位移调平以及确定上升距离,控制真空承片台12上的基片32与掩模板31间隙,并通过控制真空承片台12表面的气流,将基片32真空吸附在真空承片台12上,从而确定基片32与掩模板31间隙可控。
如图6所示,本公开实施例提供的多功能光刻装置可实现接触模式光刻技术,调控方式与接近模式光刻相似,但在掩模板31与基片32硬接触后,真空承片台的外层密封系统启动,使真空承片台内部真空,此时基片32被真空承片台12真空吸附,基片32与掩模板31贴紧,真空环境提高了基片32与掩模板31的紧贴曝光度。
如图7所示,本公开实施例提供的多功能光刻装置可实现泰伯光刻模式技术,在掩模板31上制作光栅,将所需区域图形通过光刻胶33传递到基片32上,实现阵列式图形。
如图8所示,本公开实施例提供的多功能光刻装置可实现SP光刻模式技术,通过基片32、光刻胶33表面镀铬、镀金、镀银等金属(图8中的标记34所示),在紫外光照射下产生等离子体共振,实现表面等离子体光刻技术,也就是SP光刻模式技术。
参阅图1-4,本公开实施例另一实施例提供了一种多功能光刻装置,包括:被动隔振系统1、XY向宏动系统2、Z向宏微三点调平系统3、掩模架4、三轴对准光路系统5、紫外光源系统6、控制系统7、粗位移闭环系统8、角位移机构9、角位移直线电机10、三点Z向精位移机构11、真空承片台机构12、直线导轨防偏机构13、Z向粗位移旋转电机14、第一直线促动器15-1、第二直线促动器15-2、三点增量式光栅尺16、压缩弹簧17、交叉滚子轴承18、压点陶瓷电机组件19、运动底板20、第一直线导轨21-1、第二直线导轨21-2、Y向运动板22、X向运动板 23、压电电机安装附件24、压电电机25、万向球支撑26、弹性簧片27、法兰转接28、承片台支撑面29和拉伸弹簧30;被动隔振系统1包括4个均匀对称放置的隔振腿和厚度200mm的大理石平台,XY向宏动系统2底层为运动底板20放置在被动隔振系统1上,运动底板20安装面上放置第一直线导轨21-1实现Y向运动板22承载,通过第一直线促动器15-1推动Y向运动板22实现Y向宏位移,Y向运动板22安装平面安装第二直线导轨21-2承载X向运动板23,Y向运动板22上放置的第二直线促动器15-2推动X向运动板23实现X向宏位移,Z向宏微三点调平系统3实现承片台上放置基片并与掩模板标记对准,包含粗位移闭环系统8放置在XY向宏动系统2上,三点直线导轨防偏机构13确保Z向粗位移旋转电机14能够在旋转凸轮只输出Z向位移,三点增量式光栅尺16读取Z向实际运动位移,实现Z向粗位移旋转电机14闭环控制,压缩弹簧17通过压缩弹簧支撑角位移机构9,减轻Z向粗位移旋转电机14Z向静态承载,角位移直线电机10推动三点Z向精位移机构11整体运动,由交叉滚子轴承18作为旋转支撑结构,实现三点Z向精位移机构11整体角位移运动,压点陶瓷电机组件19由压电电机安装附件24压电电机25两部分组成,整体安装在三点Z向精位移机构11上,三点压电电机25通过球头连接安装在万向球支撑26上,压电电机25上下连接板采用拉伸弹簧30,实现压电电机25微受力回程,弹性簧片27三点与压电电机25固定连接,中心法兰连接在承片台支撑面29下平面,实现整个真空承片台机构12均匀回弹;真空承片台机构12采用多气孔方式完成基片的吸附与吹气,掩模架4采用抽拉式固定掩模夹持方式,三点手动旋钮固定掩模板,三轴对准光路系统5包含三轴对称位移系统、长焦物镜、CCD相机以及整体光路系统,双长焦物镜安装在三轴对称位移系统实现对准物镜的XYZ方向位移,并通过CCD相机成像到PC端,实现对掩模板基片标记对准判断,紫外光源系统6包含整套光路系统,采用365nm光源Y向位移伸缩闭环定位曝光位置,实现基片曝光效果,控制系统7用于实现本装置的控制。
参阅图1,根据本公开的实施例,被动隔振系统1、XY向宏动系统2、Z向宏微三点调平系统3、掩模架4、三轴对准光路系统5、紫外光源系统6、控制系统7组成整个装置,整体装置控制系统7也与整体装置放置在一体,并且曝光功能多样包含:接触模式、接近模式、泰伯光刻模式、SP光刻模式四种曝光形式;控制系统7包含本装置的所有电路系统:PLC、电源、驱动器、开关、线缆布置,实现了整个装置的完善。
根据本公开的实施例,采用第一直线促动器15-1定子在运动底板20,动子安装在Y向运动板22,通过第一直线导轨21-1低摩擦导向实现Y向运动板22Y向运动,同样方式,将第二直线促动器15-2定子安装在Y向运动板22,动子安装在X向运动板23,通过第二直线导轨21-1实现X向运动板23X向运动。
根据本公开的实施例,承片台运动系统包含XY向宏动系统2、Z向宏微三点调平系统3,使用第一直线促动器15-1、第二直线促动器15-2与第一直线导轨21-1、第二直线导轨21-2搭建完成XY向位移,粗位移闭环系统8放置在XY向宏动系统2上表研磨面上,采用三点设计方案,实现承片台粗调平,粗位移闭环系统8、支撑角位移机构9使得三点Z向精位移机构11有更好的微调性,真空承片台机构12放置在最顶层,集成所有的运动总和,最终四轴宏微调平对准功能。
根据本公开的实施例,粗位移闭环系统8包含直线导轨防偏机构13、Z向粗位移旋转电机14、三点增量式光栅尺16、压缩弹簧17以及凸轮安装组件,通过三点Z向粗位移旋转电机14旋转带动凸轮运动,凸轮的不均匀性旋转,使得角位移机构9平面高度发生变化,直线导轨防偏机构13防止三点抬升高度差异过大导致机构损坏,通过三点增量式光栅尺16分别记录三点电机Z向高度差值,进行控制调整角位移机构9水平,直线导轨防偏机构13凸轮进入下降过程,压缩弹簧承受整体重量,避免凸轮疲劳损伤。
根据本公开的实施例,角位移机构9采用角位移直线电机10定子固定在交叉滚子轴承18外环安装板上,动子固定在三点Z向精位移机构11上,三点Z向精位移机构11与交叉滚子轴承18内环螺钉连接, 通过角位移直线电机10推动三点Z向精位移机构11实现以交叉滚子轴承18中心为旋转轴的小角度旋转,真空承片台机构12可XYθ位移,以及Z向粗精位移调整调平。
根据本公开的实施例,压电电机安装附件24将压电电机25固定,压电电机25顶端采用万向球连接在万向球支撑26上,通过弹性簧片27实现精位移部分弹性收缩,弹性簧片27通过法兰转接28与承片台支撑面29中心连接,实现真空承片台机构12稳定Z向精位移运动。
本领域技术人员可以理解,本发明的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本发明中。特别地,在不脱离本发明精神和教导的情况下,本发明的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本发明的范围。
尽管已经参照本发明的特定示例性实施例示出并描述了本发明,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本发明的精神和范围的情况下,可以对本发明进行形式和细节上的多种改变。因此,本发明的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (17)

  1. 一种多功能光刻装置,其特征在于,包括:
    真空承片台(12),用于放置基片(32),以及,通过控制气流使所述基片(32)吸附于所述真空承片台(12)上,并为所述基片(32)与掩模板(31)提供真空环境,以控制所述基片(32)与掩模板(31)之间的间隙;
    掩模架(4),设于所述真空承片台(12)上方,用于固定所述掩模板(31);
    承片台运动系统,设于所述真空承片台(12)下方,用于调节所述真空承片台(12)的位置,使所述基片(32)和所述掩模板(31)之间的距离满足预设条件;
    紫外光源系统(6),设于所述掩模板(31)上方,用于产生用于光刻的紫外光;
    三轴对准光路系统(5),用于使所述紫外光对准所述掩模板(31)。
  2. 根据权利要求1所述的装置,其特征在于,所述承片台运动系统包括:
    XY向宏动系统(2),用于调节所述真空承片台(12)在X轴方向和Y轴方向的位移;
    Z向宏微三点调平系统(3),设于所述XY向宏动系统(2)上,用于实现所述真空承片台(12)在Z轴方向位移的粗调和精调。
  3. 根据权利要求2所述的装置,其特征在于,所述XY向宏动系统(2)包括:
    运动底板(20),
    第一直线导轨(21-1),设于所述运动底板(20)上,方向为Y轴方向;
    Y向运动板(22),设于所述第一直线导轨(21-1)上;
    第二直线导轨(21-2),设于所述Y向运动板(22)上,方向为X轴方向,与所述Y轴方向垂直;
    X向运动板(23),设于所述第二直线导轨(21-2)上;
    第一直线促动器(15-1),设于所述运动底板(20)上,用于使所述Y向运动板(22)沿所述第一直线导轨(21-1)移动;
    第二直线促动器(15-2),设于所述Y向运动板(22)上,用于使所述X向运动板(23)沿所述第二直线导轨(21-2)移动。
  4. 根据权利要求3所述的装置,其特征在于,所述Z向宏微三点调平系统(3)设于所述X向运动板(23)上,包括:
    粗位移闭环系统(8)和角位移机构(9),粗位移闭环系统(8)作用于角位移机构(9),使所述真空承片台(12)沿Z轴方向位移;粗位移闭环系统(8)包括:
    Z向粗位移旋转电机(14),用于调节所述真空承片台(12)沿Z轴方向的位移,所述Z轴方向与所述X轴方向和所述Y轴方向垂直;粗位移闭环系统(8)根据角位移机构(9)实际产生的Z向位移,反馈控制所述Z向粗位移旋转电机(14)的工作;
    直线导轨防偏机构(13),用于保证所述Z向粗位移旋转电机(14)只输出Z向位移;
    三点增量式光栅尺(16),用于读取所述Z向粗位移旋转电机(14)实际产生的Z向位移。
  5. 根据权利要求4所述的装置,其特征在于,所述Z向宏微三点调平系统(3)还包括:
    三点Z向精位移机构(11),设于所述角位移机构(9)上,用于将所述真空承片台(12)调平,并调节所述真空承片台(12)在X轴、Y轴所在平面内的角度,以及,实现所述真空承片台(12)上的基片(32)与所述掩模板(31)之间距离的精调。
  6. 根据权利要求5所述的装置,其特征在于,所述三点Z向精位移机构(11)包括:
    机构底板,所述机构底板中部设有法兰盘(18-1);
    多个压电陶瓷电机组件(19),均匀分设于所述机构底板,用于微调所述真空承片台(12)在Z轴方向的倾角,使所述真空承片台(12) 调平,以及,实现所述真空承片台(12)上的基片(32)与所述掩模板(31)之间距离的精调;
    万向球支撑(26),设于所述机构底板上方,与所述压电陶瓷电机组件(19)连接;
    至少一个拉伸弹簧(30),连接所述机构底板和设置所述万向球支撑(26)的板件,用于板件复位;
    弹性簧片(27),设于万向球支撑(26)上方,与所述多个压电陶瓷电机组件(19)连接;
    法兰转接(28),设于所述弹性簧片(27)上,通过所述弹性簧片、所述板件中的圆孔与所述法兰盘(18-1)连接,用于基于所述法兰盘的驱动,调节所述真空承片台(12)在X轴、Y轴所在平面内的角度;
    承片台支撑面(29),中心与所述法兰转接(28)连接,并通过所述法兰转接(28)连接所述弹性簧片(27),用于放置所述真空承片台(12)。
  7. 根据权利要求6所述的装置,其特征在于,所述角位移机构(9)包括:
    交叉滚子轴承(18-2),设于所述角位移机构(9)的平面上方,与所述法兰盘(18-1)连接,用于驱动所述法兰盘(18-1);
    角位移直线电机(10),用于驱动所述交叉滚子轴承(18-2)。
  8. 根据权利要求4所述的装置,其特征在于,压缩弹簧(17)支撑于所述角位移机构(9)下方,用于减轻Z向粗位移旋转电机(14)Z向静态承载。
  9. 根据权利要求1所述的装置,其特征在于,还包括:
    被动隔振系统(1),包括大理石平台和分布于所述大理石平台的4个角的隔振腿;
    其中,所述承片台运动系统放置于所述被动隔振系统(1)上。
  10. 根据权利要求1所述的装置,其特征在于,所述三轴对准光路系统(5)包括:
    双长焦物镜,安装在三轴对称位移系统上;
    三轴对称位移系统,用于使所述双长焦物镜沿X轴、Y轴、Z轴方向位移;
    CCD相机,用于拍摄所述基片(32)和掩模板(31),并将成像传给计算机,使所述计算机判断所述掩模板(31)和所述基片(32)是否对准。
  11. 一种多功能光刻装置,其特征在于:包括:被动隔振系统(1)、XY向宏动系统(2)、Z向宏微三点调平系统(3)、掩模架(4)、三轴对准光路系统(5)、紫外光源系统(6)、控制系统(7)、粗位移闭环系统(8)、角位移机构(9)、角位移直线电机(10)、三点Z向精位移机构(11)、真空承片台机构(12)、直线导轨防偏机构(13)、Z向粗位移旋转电机(14)、第一直线促动器(15-1)、第二直线促动器(15-2)、三点增量式光栅尺(16)、压缩弹簧(17)、交叉滚子轴承(18)、压点陶瓷电机组件(19)、运动底板(20)、第一直线导轨(21-1)、第二直线导轨(21-2)、Y向运动板(22)、X向运动板(23)、压电电机安装附件(24)、压电电机(25)、万向球支撑(26)、弹性簧片(27)、法兰转接(28)、承片台支撑面(29)和拉伸弹簧(30);被动隔振系统(1)包括4个均匀对称放置的隔振腿和厚度200mm的大理石平台,XY向宏动系统(2)底层为运动底板(20)放置在被动隔振系统(1)上,运动底板(20)安装面上放置第一直线导轨(21-1)实现Y向运动板(22)承载,通过第一直线促动器(15-1)推动Y向运动板(22)实现Y向宏位移,Y向运动板(22)安装平面安装第二直线导轨(21-2)承载X向运动板(23),Y向运动板(22)上放置的第二直线促动器15-2推动X向运动板(23)实现X向宏位移,Z向宏微三点调平系统(3)实现承片台上放置基片并与掩模板标记对准,包含粗位移闭环系统(8)放置在XY向宏动系统(2)上,三点直线导轨防偏机构(13)确保Z向粗位移旋转电机(14)能够在旋转凸轮只输出Z向位移,三点增量式光栅尺(16)读取Z向实际运动位移,实现Z向粗位移旋转电机(14)闭环控制,压缩弹簧(17)通过压缩弹簧支撑角位移机构(9),减轻Z向粗位移旋转电机(14)Z向静态承载,角位移直线电机(10)推动三点Z向精位移机构(11)整 体运动,由交叉滚子轴承(18)作为旋转支撑结构,实现三点Z向精位移机构(11)整体角位移运动,压点陶瓷电机组件(19)由压电电机安装附件(24)压电电机(25)两部分组成,整体安装在Z向精位移机构(11)上,三点压电电机(25)通过球头连接安装在万向球支撑(26)上,压电电机(25)上下连接板采用拉伸弹簧(30),实现压电电机(25)微受力回程,弹性簧片(27)三点与压电电机(25)固定连接,中心法兰连接在承片台支撑面(29)下平面,实现整个真空承片台机构(12)均匀回弹;真空承片台机构(12)采用多气孔方式完成基片的吸附与吹气,掩模架(4)采用抽拉式固定掩模夹持方式,三点手动旋钮固定掩模板,三轴对准光路系统(5)包含三轴对称位移系统、长焦物镜、CCD相机以及整体光路系统,双长焦物镜安装在三轴对称位移系统实现对准物镜的XYZ方向位移,并通过CCD相机成像到PC端,实现对掩模板基片标记对准判断,紫外光源系统(6)包含整套光路系统,采用365nm光源Y向位移伸缩闭环定位曝光位置,实现基片曝光效果,控制系统(7)用于实现本装置的控制。
  12. 根据权利要求11所述一种多功能光刻装置,其特征在于:被动隔振系统(1)、XY向宏动系统(2)、Z向宏微三点调平系统(3)、掩模架(4)、三轴对准光路系统(5)、紫外光源系统(6)、控制系统(7)组成整个装置,整体装置控制系统(7)也与整体装置放置在一体,并且曝光功能多样包含:接触模式、接近模式、泰伯光刻模式、SP光刻模式四种曝光形式;控制系统(7)包含本装置的所有电路系统:PLC、电源、驱动器、开关、线缆布置,实现了整个装置的完善。
  13. 根据权利要求1所述一种多功能光刻装置,其特征在于:采用第一直线促动器(15-1)定子在运动底板(20),动子安装在Y向运动板(22),通过第一直线导轨(21-1)低摩擦导向实现Y向运动板(22)Y向运动,同样方式,将第二直线促动器(15-2)定子安装在Y向运动板(22),动子安装在X向运动板(23),通过第二直线导轨(21-1)实现X向运动板(23)X向运动。
  14. 根据权利要求11所述一种多功能光刻装置,其特征在于:承片台运动系统包含XY向宏动系统(2)、Z向宏微三点调平系统(3),使用第一直线促动器(15-1)、第二直线促动器(15-2)与第一直线导轨(21-1)、第二直线导轨(21-2)搭建完成XY向位移,粗位移闭环系统(8)放置在XY向宏动系统(2)上表研磨面上,采用三点设计方案,实现承片台粗调平,粗位移闭环系统(8)、支撑角位移机构(9)使得三点Z向精位移机构(11)有更好的微调性,真空承片台机构(12)放置在最顶层,集成所有的运动总和,最终四轴宏微调平对准功能。
  15. 根据权利要求11所述一种多功能光刻装置,其特征在于:粗位移闭环系统(8)包含直线导轨防偏机构(13)、Z向粗位移旋转电机(14)、三点增量式光栅尺(16)、压缩弹簧(17)以及凸轮安装组件,通过三点Z向粗位移旋转电机(14)旋转带动凸轮运动,凸轮的不均匀性旋转,使得角位移机构(9)平面高度发生变化,直线导轨防偏机构(13)防止三点抬升高度差异过大导致机构损坏,通过三点增量式光栅尺(16)分别记录三点电机Z向高度差值,进行控制调整角位移机构(9)水平,直线导轨防偏机构(13)凸轮进入下降过程,压缩弹簧承受整体重量,避免凸轮疲劳损伤。
  16. 根据权利要求11所述一种多功能光刻装置,其特征在于:角位移机构(9)采用角位移直线电机(10)定子固定在交叉滚子轴承(18)外环安装板上,动子固定在三点Z向精位移机构(11)上,三点Z向精位移机构(11)与交叉滚子轴承(18)内环螺钉连接,通过角位移直线电机(10)推动三点Z向精位移机构(11)实现以交叉滚子轴承(18)中心为旋转轴的小角度旋转,真空承片台机构(12)可XYθ位移,以及Z向粗精位移调整调平。
  17. 根据权利要求11所述一种多功能光刻装置,其特征在于:压电电机安装附件(24)将压电电机(25)固定,压电电机(25)顶端采用万向球连接在万向球支撑(26)上,通过弹性簧片(27)实现精位移部分弹性收缩,弹性簧片(27)通过法兰转接(28)与承片台支撑面(29)中心连接,实现真空承片台机构(12)稳定Z向精位移运动。
PCT/CN2021/090681 2020-04-29 2021-04-28 一种多功能光刻装置 WO2021219028A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022565708A JP2023523987A (ja) 2020-04-29 2021-04-28 多機能フォトリソグラフィ装置
EP21797324.7A EP4130881A4 (en) 2020-04-29 2021-04-28 MULTIFUNCTIONAL LITHOGRAPHIC DEVICE
US17/997,503 US11868055B2 (en) 2020-04-29 2021-04-28 Multifunctional lithography device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010354566.X 2020-04-29
CN202010354566.XA CN111352312B (zh) 2020-04-29 2020-04-29 一种多功能光刻装置

Publications (1)

Publication Number Publication Date
WO2021219028A1 true WO2021219028A1 (zh) 2021-11-04

Family

ID=71195048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090681 WO2021219028A1 (zh) 2020-04-29 2021-04-28 一种多功能光刻装置

Country Status (5)

Country Link
US (1) US11868055B2 (zh)
EP (1) EP4130881A4 (zh)
JP (1) JP2023523987A (zh)
CN (1) CN111352312B (zh)
WO (1) WO2021219028A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352312B (zh) 2020-04-29 2021-09-07 中国科学院光电技术研究所 一种多功能光刻装置
CN112255895B (zh) * 2020-11-12 2021-07-16 中国科学院光电技术研究所 一种可控跨尺度激光干涉光刻装置
CN116566242B (zh) * 2023-07-10 2023-09-22 上海隐冠半导体技术有限公司 一种压电驱动的物镜调节装置
CN116909108A (zh) * 2023-07-31 2023-10-20 苏州天准科技股份有限公司 一种非接触式曝光设备及曝光方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144719A (en) * 1996-01-22 2000-11-07 Canon Kabushiki Kaisha Exposure method, exposure device and device producing method
CN101063810A (zh) * 2007-05-29 2007-10-31 中国科学院光电技术研究所 紫外光照微纳图形气压压印和光刻两用复制装置
CN101206410A (zh) * 2007-12-17 2008-06-25 上海微电子装备有限公司 工件台平衡质量定位系统
CN111025855A (zh) * 2019-12-23 2020-04-17 中国科学院光电技术研究所 一种非接触自动中心对准套刻投影光刻机
CN111352312A (zh) * 2020-04-29 2020-06-30 中国科学院光电技术研究所 一种多功能光刻装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635600B2 (ja) * 1996-08-29 2005-04-06 キヤノン株式会社 送り装置
US6756751B2 (en) * 2002-02-15 2004-06-29 Active Precision, Inc. Multiple degree of freedom substrate manipulator
CN100470379C (zh) * 2007-07-19 2009-03-18 清华大学 一种光刻机硅片台双台交换系统
CN101241314B (zh) * 2008-03-11 2010-06-23 上海微电子装备有限公司 可补偿z向位置的六自由度精密定位台
CN102043351B (zh) * 2009-10-12 2012-11-14 上海微电子装备有限公司 一种调平调焦机构及采用该调平调焦机构的掩模台
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
CN103062283B (zh) * 2012-12-19 2014-10-29 哈尔滨工业大学 气浮球轴承角度解耦的零刚度隔振器与隔振系统
CN103926671B (zh) * 2013-01-11 2016-08-24 上海微电子装备有限公司 一种多自由度精密调整机构
JP6586835B2 (ja) * 2015-09-14 2019-10-09 ウシオ電機株式会社 プロキシミティ露光装置およびプロキシミティ露光方法
CN205787593U (zh) * 2016-05-31 2016-12-07 上海微电子装备有限公司 一种六自由度调整装置
WO2019155886A1 (ja) * 2018-02-08 2019-08-15 株式会社ブイ・テクノロジー 近接露光装置、近接露光方法、及び近接露光装置用光照射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144719A (en) * 1996-01-22 2000-11-07 Canon Kabushiki Kaisha Exposure method, exposure device and device producing method
CN101063810A (zh) * 2007-05-29 2007-10-31 中国科学院光电技术研究所 紫外光照微纳图形气压压印和光刻两用复制装置
CN101206410A (zh) * 2007-12-17 2008-06-25 上海微电子装备有限公司 工件台平衡质量定位系统
CN111025855A (zh) * 2019-12-23 2020-04-17 中国科学院光电技术研究所 一种非接触自动中心对准套刻投影光刻机
CN111352312A (zh) * 2020-04-29 2020-06-30 中国科学院光电技术研究所 一种多功能光刻装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130881A4 *

Also Published As

Publication number Publication date
JP2023523987A (ja) 2023-06-08
CN111352312B (zh) 2021-09-07
US20230129163A1 (en) 2023-04-27
US11868055B2 (en) 2024-01-09
EP4130881A1 (en) 2023-02-08
EP4130881A4 (en) 2023-09-13
CN111352312A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021219028A1 (zh) 一种多功能光刻装置
US4525852A (en) Alignment apparatus
JP6638774B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法
US10983438B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US20050274219A1 (en) Method and system to control movement of a body for nano-scale manufacturing
JPS62229853A (ja) 平面状マイクロリソグラフイレチクル用の撓曲マウント
WO2009009947A1 (fr) Système de commutation à deux étages pour une machine lithographique
JP2021140172A (ja) 露光装置、露光方法、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2021005101A (ja) 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
CN102537049A (zh) 径向气浮导向模块及应用其的光刻机运动平台
JP3719965B2 (ja) 位置合わせ装置及び位置合わせ方法
CN112965344A (zh) 光刻系统及其曝光补偿方法
JP7472958B2 (ja) 移動体装置、露光装置、及びデバイス製造方法
JP2000243693A (ja) ステージ装置及び露光装置
WO2021219007A1 (zh) 基于暗场莫尔条纹对准检测与控制的超分辨光刻装置
CN112255895B (zh) 一种可控跨尺度激光干涉光刻装置
CN113835308A (zh) 一种拼接曝光方法、装置及系统
CN103676488B (zh) 掩模交接机构及具有该掩模交接机构的掩模台
CN103376664B (zh) 一种具有工位切换功能的掩模台
CN117250832B (zh) 一种精密定位平台及光刻机
CN104570592A (zh) 一种大掩模版整形装置和方法
KR100926509B1 (ko) 레티클 스테이지
CN103376667A (zh) 一种用于曝光装置的掩模台
JPS61251027A (ja) 投影露光装置
CN102789144A (zh) 光刻对准系统参考板的调整机构及调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565708

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021797324

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE