WO2021219020A1 - 一种采用挤压成型工艺的燃气采暖壁挂炉 - Google Patents

一种采用挤压成型工艺的燃气采暖壁挂炉 Download PDF

Info

Publication number
WO2021219020A1
WO2021219020A1 PCT/CN2021/090653 CN2021090653W WO2021219020A1 WO 2021219020 A1 WO2021219020 A1 WO 2021219020A1 CN 2021090653 W CN2021090653 W CN 2021090653W WO 2021219020 A1 WO2021219020 A1 WO 2021219020A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
water channel
pair
heat
Prior art date
Application number
PCT/CN2021/090653
Other languages
English (en)
French (fr)
Inventor
桂雍
赵钦新
邵怀爽
王云刚
梁志远
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021219020A1 publication Critical patent/WO2021219020A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • F23L5/02Arrangements of fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/10Arrangements for sealing the margins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • F28F9/266Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators by screw-type connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention belongs to the field of household heating equipment, and in particular relates to a gas heating wall-hung boiler adopting an extrusion molding process.
  • Gas-fired heating wall-hung boilers convert the chemical energy of natural gas into heat energy to realize the heating supply terminal, and at the same time cooperate with floor heating. This is currently the most comfortable form of distributed heating for the human body.
  • the technical core of gas-fired wall-hung boilers is to use heat source, environment, and building system energy-saving concepts to carry out ultra-efficient and compact heat exchange of the flue gas generated after natural gas is burned with ultra-low oxygen, ultra-low nitrogen, and ultra-high efficiency, and to reduce the exhaust gas temperature. To below the water dew point temperature, in order to realize the deep dynamic energy saving and emission reduction of the system.
  • the low cost of molds enables the rapid response of the gas-fired wall-hung boiler using the extrusion molding process to give it strong vitality, indicating that the gas-fired wall-hung boiler using the extrusion molding process has great market demand and development prospects.
  • a gas heating wall-hung boiler adopting an extrusion molding process including:
  • Burner fan the burner fan is used to input mixed gas, and the mixed gas is uniformly mixed natural gas and air;
  • the heat exchanger pair one end of the isobaric air duct is connected with the burner fan, the other end of the isobaric air duct is connected with the heat exchanger pair, and the isobaric air duct is used to make the mixed gas equal Input the heat exchanger pair, the heat exchanger pair is provided with a combustion chamber;
  • the water channel is arranged on the outside of the heat exchanger pair;
  • the dew tray is arranged at the bottom of the heat exchanger pair;
  • the chimney is in communication with the dew-bearing pan
  • the mixed gas input to the heat exchanger pair is ignited by the combustion chamber arranged in the heat exchanger pair to form high-temperature flue gas, and the transmission process of the high-temperature flue gas in the heat exchanger pair
  • the medium and the water in the water channel arranged outside the heat exchanger pair fully exchange heat to form low-temperature flue gas and condensed water.
  • the low-temperature flue gas and the condensed water are separated at the dew tray.
  • the latter low-temperature flue gas is discharged through the chimney; the burner fan is located on the upper side, front and rear or left and right sides of the heat exchanger pair;
  • the heat exchanger pair is composed of a pair of heat exchangers that can be tightly sealed and butt-joined; each of the heat exchangers in the heat exchanger pair includes a water-cooled rectifying fin at the top of the heat exchanger, and Below the water-cooled rectifying fins, the combustion chamber and the heat exchange fins are arranged in sequence, and a grille is arranged in the combustion chamber.
  • Each heat exchanger has a heat exchanger sealing plate and a water channel sealing plate on both sides, so The heat exchanger sealing plate and the water channel sealing plate are respectively provided with heat exchanger screw holes and water channel connection holes;
  • the water channel includes a water inlet located at the bottom of the water channel and a water outlet located at the top of the water channel.
  • Each of the heat exchanger and the water channel in the heat exchanger pair is an extruded profile made of composite materials.
  • each heat exchanger in the heat exchanger pair is treated by silicon infiltration or anodized and plasticized, and the grille is made of stainless steel that is resistant to high temperature and dry burning deformation,
  • the materials of the isobaric air duct, the dew tray and the chimney are all made of plastic or composite materials.
  • the overall wall thickness of the heat exchanger pair is 2-8mm, the manufacturing mold corresponding to the flue gas side of each heat exchanger has a tongue ratio of no more than 6, and the water-cooled rectifying fins and the heat exchange The fins are regularly arranged at equal intervals; after the two heat exchangers are closely assembled in the heat exchanger pair, the water-cooled rectifying fins and the heat exchange fins of the two heat exchangers can be mutually
  • the two heat exchangers are arranged opposite each other, and the angle between the arrangement direction and the vertical direction is 0-60°, the height of the water-cooled rectifying fin is 5-25cm, and the combustion chamber is the heat exchanger Formed by cutting after extrusion molding, the height of the combustion chamber is 4-20cm, the surface of the heat exchanger is sprayed with heat-insulating materials or fixed with heat-insulating plates, and the heat exchange fins are After thermal calculation of the top temperature, cutting to remove the local over-temperature area.
  • the water-cooled rectifying fins and the heat exchange fins of the two heat exchangers in the heat exchanger pair can be evenly inserted into each other after the two heat exchangers of the heat exchanger pair are docked ,
  • the gap between any two adjacent fins in the comb-tooth fin structure is 0.5-3mm
  • the water-cooled rectifying fin and the heat exchange The wall surface of the fin is provided with extruded corrugations, and the form of the extruded corrugations is any one of a sawtooth shape, a rectangular shape, and a sine function waveform.
  • One side of the heat exchanger sealing plate of one of the heat exchangers is extruded with a 2-6mm ridge, and the other of the heat exchanger is on one side of the heat exchanger sealing plate. It has a groove corresponding to the size of the ridge, and the water channel sealing plate is provided with 1 to 3 square sealing grooves with a width of 2-5 mm or a semicircular sealing groove with a diameter of 2-5 mm.
  • the upper and lower ends of the water channel sealing plate on the same side of the two heat exchangers in the heat exchanger pair are cut to a predetermined height to match the water inlet and the water outlet.
  • the grille acts as a bluff body to effectively stabilize the flame in the combustion chamber and shorten the flame length.
  • the cross section of the bluff body column in the grille is circular, semicircular, rectangular or triangular.
  • the bluff body column is located below the center of the fin gap between any two adjacent water-cooled rectifying fins or any two adjacent heat exchange fins Below the center of the fin gap between the fins, the gap between any two adjacent bluff body columns is the same as the fin gap between any two adjacent water-cooled rectifying fins or any adjacent
  • the fin gap between the two heat exchange fins is consistent, the two ends of the bluff body column are bent, and the overall size of the grille is consistent with the combustion chamber in an I-shaped structure, so that the The grille can be stably arranged in the combustion chamber.
  • the overall length of the water channel is consistent with the length of the water channel sealing plate, and the height and width of the water channel are consistent with the height and width of the heat exchanger pair.
  • the water channel as a whole has a semi-Y-shaped structure, the The inner and outer sides of the upper part of the water channel are closed. After the two heat exchangers of the heat exchanger pair are connected in a sealed manner, the corresponding water channel of each heat exchanger is connected to form a cavity on the inner side of the upper part to form the combustion chamber.
  • the vertical height of the combustion chamber is 5-40mm
  • the neck of the combustion chamber is 5-60° from the vertical
  • the lower part of the water channel corresponding to each heat exchanger is vertical or 0-20° from the vertical
  • the inner side of the lower part of the water channel corresponding to each heat exchanger is opened to assemble with the heat exchanger pair and realize the heat exchange function.
  • the height of the lower vertical section of the water channel of the "Y"-shaped structure is consistent with the height of the heat exchanger pair, the water inlet and the water outlet are designed according to the water flow rate, and the water flow rate of the water inlet is controlled at 0.2 ⁇ 0.5m/s, the water flow rate of the water outlet is controlled at 0.9 ⁇ 1.8m/s, the ribs separate the water channel to form an "S"-shaped water channel, and the ribs are arranged so that the water flow rate in the water channel Control at 0.2 ⁇ 1.8m/s.
  • the inside or outside of the water inlet and the water outlet are provided with left and right penetrating extrusion ribs with a height of 6-18 mm, so as to leave room for drilling the connection hole of the equal pressure air passage and the screw hole of the water passage.
  • the hole diameters of the heat exchanger screw hole, the water passage connecting hole, the equal pressure air passage connecting hole, the water passage screw hole and the dew tray connecting hole are 2-10mm, and the heat exchanger is paired with
  • the isobaric air duct, the heat exchanger pair and the dew tray are connected and sealed with a sealing gasket, and the ridges and grooves on the heat exchanger sealing plates of the two heat exchangers
  • Sealant with elasticity and high temperature resistance is coated in between, and the square sealing groove or semi-circular sealing groove opened on the water channel sealing plate is installed with the size of the square sealing groove or semi-circular sealing groove.
  • the sealing strip or coated with a sealant with elasticity and high temperature resistance are 2-10mm, and the heat exchanger is paired with
  • the isobaric air duct, the heat exchanger pair and the dew tray are connected and sealed with a sealing gasket, and the ridges and grooves on the heat exchanger sealing plates of the two heat exchangers
  • the cutting height of the heat exchanger pair is selected according to the required heat exchange power, and at the same time, multiple pairs of the heat exchanger pair and the water channel are used to form a joint row heat supply unit to form a heat supply model with any required power.
  • the present invention has the following advantages:
  • the present invention adopts mature aluminum extrusion process to make heat exchanger pair, which is an extension of the extruded section in one-dimensional direction. It can be cut arbitrarily according to the length of the heat exchanger.
  • the structure is simple and the production efficiency is high.
  • the modular structure is suitable. Heating units of various power sizes.
  • the extrusion die has a short life, fast update and low price. It can easily realize the replacement of extruded aluminum heat exchange unit parts.
  • the heat exchange power specifications are complete, the market adaptability is strong, and the production cost is extremely low.
  • the structure, processing and assembly of the present invention are simple, and the flue gas side surface of the heat exchanger adopts the silicon infiltration process to strengthen the corrosion resistance of condensed water.
  • the modular flue type extruded aluminum heat exchanger can be connected by fully modular bolts, without welding technology, reliable in connection and sealing, convenient for disassembly and maintenance, meeting various heat exchange capacity requirements, and strong market adaptability.
  • Figure 1 is an overall schematic diagram of a gas-fired wall-hung boiler using an extrusion molding process according to the present invention.
  • Figure 2 is a three-dimensional schematic diagram of the assembly of the heat exchanger pair and the water channel.
  • Figure 3 is a three-dimensional schematic diagram of two heat exchangers in the heat exchanger pair.
  • Figure 4 is a three-dimensional schematic diagram of the grille.
  • Figure 5 is a three-dimensional schematic diagram of the water channel.
  • Fig. 6 is a front cross-sectional view of the heat exchanger pair at a certain angle to the vertical and with the heat exchange fins at the lower end inserted.
  • Figure 7(a) is a three-dimensional schematic diagram of a water channel designed with a half-Y-shaped structure.
  • Figure 7(b) is a three-dimensional schematic diagram of the assembly of a water channel with a half-Y-shaped structure and a single heat exchanger on one side of the heat exchanger.
  • a gas-fired wall-hung boiler using an extrusion molding process includes a burner fan 1, an equal pressure air duct 2, a heat exchanger pair 3, a water channel 4, a dew tray 5 and a chimney 6; a burner Fan 1 is used to input mixed gas, the above-mentioned mixed gas is uniformly mixed natural gas and air; one end of the equal pressure air duct 2 is connected to the burner fan 1, and the other end of the equal pressure air duct 2 is connected to the heat exchanger pair 3, etc.
  • the air pressure channel 2 is used to send the mixed gas to the heat exchanger pair 3 at equal pressure.
  • the heat exchanger pair 3 is provided with a combustion chamber 32; the water channel 4 is provided outside the heat exchanger pair 3, and the dew tray 5 is provided on the heat exchange At the bottom of the device pair 3, the chimney 6 is in communication with the dew tray 5;
  • the mixed gas input into the heat exchanger pair 3 is ignited by the combustion chamber 32 arranged in the heat exchanger pair 3 to form high-temperature flue gas.
  • the water working fluid in the water channel 4 outside 3 is fully heat-exchanged to form low-temperature flue gas and condensed water.
  • the low-temperature flue gas and condensed water are separated at the dew tray 5.
  • the separated low-temperature flue gas is discharged through the chimney 6, and after separation
  • the condensed water is carried on the dew tray 5.
  • the burner fan 1 is located on the upper side, front and rear or left and right sides of the heat exchanger pair 3; the position of the burner fan 1 is arranged according to the most efficient use of space.
  • the heat exchanger pair 3 is composed of a pair of heat exchangers 30 that can be tightly connected and sealed; each heat exchanger 30 in the heat exchanger pair 3 includes a water-cooled rectifier at the top of the heat exchanger 30
  • the fins 31 are provided with a combustion chamber 32 and heat exchange fins 33 in sequence below the water-cooled rectifying fins 31.
  • a grille 38 is provided in the combustion chamber 32, and the grille 38 is used to stabilize the flame in the combustion chamber 32 and shorten the flame length ,
  • Each heat exchanger 30 has a heat exchanger sealing plate 34 and a water channel sealing plate 35 on both sides.
  • the heat exchanger sealing plate 34 and the water channel sealing plate 35 are respectively provided with a heat exchanger screw hole 36 and a water channel connecting hole 37.
  • the heat exchanger screw holes 36 on the heat exchanger sealing plate 34 on both sides of the two heat exchangers 30 are matched to realize the sealed connection of the two heat exchangers 30.
  • the water channel 4 includes a water inlet 41 at the bottom of the water channel 4 and a water outlet 42 at the top of the water channel 4.
  • the inner side of the water channel 4 has regularly distributed ribs 43, and the upper side of the water channel 4 has a The pressure air duct connection hole 44, the equal pressure air duct connection hole 44 is used to realize the connection between the water channel 4 and the equal pressure air duct 2; the left and right sides of the water channel 4 are provided with water channel screw holes 45, and the water channel screw holes 45 are used to connect with the water channel sealing plate 35
  • the upper waterway connecting hole 37 is matched to realize the sealing of the waterway sealing plate 35 to the waterway 4; the lower side of the waterway 4 has a dew-bearing pan connection hole 46, and the dew-bearing pan connection hole 46 is used to realize the connection between the waterway 4 and the dew-bearing pan 5. connect.
  • Each heat exchanger in the heat exchanger pair 3 and the water channel 4 are extruded profiles made of composite materials.
  • each heat exchanger 30 and water channel 4 in the heat exchanger pair 3 are extruded profiles made of aluminum alloy.
  • each heat exchanger 30 and water channel 4 in the heat exchanger pair 3 are formed by extruding aluminum silicon-magnesium-based extruded aluminum material after undergoing an anodizing process.
  • each heat exchanger 30 in the heat exchanger pair 3 adopts siliconizing treatment or adopts anodizing and plastic plating treatment to strengthen the anti-condensate corrosion performance of the heat exchanger 30;
  • the grille 38 adopts high temperature resistance It is made of stainless steel that is resistant to dry-burning deformation;
  • the material of the equal pressure duct 2, the dew tray 5 and the chimney 6 are all made of cast aluminum, cast iron, carbon steel, stainless steel or composite materials. Further, the materials of the isobaric air duct 2, the dew tray 5 and the chimney 6 are all made of any one of cast aluminum, cast iron, carbon steel, stainless steel and plastic.
  • the overall wall thickness of the heat exchanger pair 3 is 2-8mm, and the manufacturing mold corresponding to the flue gas side of each heat exchanger 30 has a tongue ratio of no more than 6;
  • Each of the water-cooled rectifying fins 31 and the heat exchange fins 33 on the device 30 includes multiple, and the multiple water-cooled rectifying fins 31 and the multiple heat exchange fins 33 are regularly arranged at equal intervals;
  • the outer surface of the heat exchanger 3 is sprayed with a suitable thickness of insulation material or fixed insulation board, and heat exchange fins 33
  • the top temperature is calculated by thermal engineering and cut to remove the local over-temperature area.
  • the two heat exchangers 30 in the heat exchanger pair 3 can be connected tightly and tightly.
  • the water-cooled rectifying fins 31 and the heat exchange fins 33 of the two heat exchangers 30 in the heat exchanger pair 3 are in the two heat exchanger pairs 3
  • the comb-shaped fins The gap between any two adjacent fins in the fin structure 300 is 0.5-3mm, which is determined comprehensively according to the pressure head of the burner fan 1 and the heat exchange effect.
  • the water-cooled rectifying fin 31 and the heat exchange fin There are extruded corrugations 313 on the wall surface of 33.
  • the extruded corrugations 313 are in the form of zigzag, rectangular and sinusoidal waveforms to increase the effective heat exchange area of the heat exchanger pair 3 and enhance the heat exchanger pair
  • the flue gas disturbance in 3 further improves the heat transfer effect.
  • the corrugated shape is selected according to the production cost of the extrusion die, the heat exchange efficiency and the structural strength of the water-cooled rectifying fins 31 and the heat exchange fins 33.
  • the heat exchanger sealing plate 34 of one heat exchanger 30 of the heat exchanger pair 3 is extruded with a 2-6mm ridge 341, and the other heat exchanger 30 has a ridge 341 on one side of the heat exchanger sealing plate 34.
  • the above-mentioned convex ridge 341 cooperates with the groove 342 to play the role of positioning and sealing.
  • the water channel sealing plate 35 is provided with 1 to 3 square sealing grooves with a width of 2 to 5 mm.
  • the grille 38 acts as a bluff body to effectively stabilize the flame in the combustion chamber 32 and shorten the flame length.
  • the cross section of the bluff body column 381 in the grille 38 is circular, semicircular, rectangular or triangular.
  • the grid 38 includes a plurality of bluff body columns 381, which are arranged at intervals. After the two heat exchangers 30 in the heat exchanger pair 3 are butted, the bluff body columns 381 are located on any two adjacent water-cooled rectifying fins.
  • the interval between any adjacent two bluff body columns 381 is the same as that of any adjacent
  • the fin gap between the two water-cooled rectifying fins 31 or the fin gap between any two adjacent heat exchange fins 33 is the same, the two ends of the bluff body column 381 are bent, and the overall size of the grille 38 is the same as
  • the combustion chamber 32 has a uniform I-shaped structure, so that the grille 38 can be stably arranged in the combustion chamber 32.
  • the overall length of the water channel 4 is consistent with the length of the water channel sealing plate 35, the height and width of the water channel 4 are consistent with the height and width of the heat exchanger pair 3, and the dimensions of the water inlet 41 and the water outlet 42 are based on Water flow rate design, the water flow rate of the water inlet 41 is controlled at 0.2 ⁇ 0.5m/s, the water velocity at the outlet 42 is controlled at 0.9 ⁇ 1.8m/s, the rib 43 separates the water channel 4 to form an "S"-shaped water channel, the rib 43 The arrangement enables the water flow rate in the water channel 4 to be controlled at 0.2-1.8 m/s, and can avoid local overcooling or boiling in the water channel 4.
  • the inside or outside of the water inlet 41 and the water outlet 42 have left and right penetrating extruded ribs 412 with a thickness of 6-18mm to leave room for the drilling of the equal pressure air duct connecting hole 44 and the water duct screw hole 45 without affecting the inlet
  • the sealing structure of the water outlet 41 and the water outlet 42 have left and right penetrating extruded ribs 412 with a thickness of 6-18mm to leave room for the drilling of the equal pressure air duct connecting hole 44 and the water duct screw hole 45 without affecting the inlet.
  • the diameters of the heat exchanger screw hole 36, the water channel connecting hole 37, the equal pressure air channel connecting hole 44, the water channel screw hole 45 and the dew pan connecting hole 46 are 2-10mm, the heat exchanger pair 3 and the equal pressure air channel 2 and The heat exchanger pair 3 and the dew tray 5 are connected and sealed with a sealing gasket.
  • the corresponding convex ridges 341 and the grooves 342 on the heat exchanger sealing plates 34 of the two heat exchangers 30 are coated with elasticity, The high temperature resistant sealant is used to seal the heat exchanger pair 3 to prevent the flue gas leakage in the heat exchanger pair 3.
  • the square sealing groove or semicircular sealing groove opened on the water channel sealing plate 35 is installed with a square sealing groove Or a sealing strip with a suitable size for the semicircular sealing groove or a sealant with elasticity and high temperature resistance to prevent leakage of the hydraulic fluid between the heat exchanger pair 3 and the water channel 4.
  • the cutting height of the heat exchanger pair 3 is selected according to the required heat exchange power, and multiple pairs of heat exchanger pairs 3 and the water channel 4 are used to form a combined heat supply unit to form a heat supply model with any required power.
  • the heat exchange fins 33 of the two heat exchangers 30 are inserted into each other, and the arrangement direction of the two heat exchangers 30 is perpendicular to The directions are 1-60°, the upper space in the heat exchanger pair 3 is large, the lower space is small, and the heat exchange fins 33 at the lower part of the two heat exchangers 30 are partially inserted.
  • the larger combustion chamber 32 can make mixing Fuel gas burns more stably and increases combustion power.
  • the smaller flue gas channel matches the flue gas temperature and gradually reduces the volume to make the flue gas flow rate constant, which enhances heat exchange.
  • the heat exchanger needs to be tightly sealed with a sealing cover plate on the 3 end side.
  • the water channel 4 adopts a semi-Y-shaped structure as a whole, and the upper part of the water channel 4 is closed inside and outside.
  • each heat exchanger 30 A cavity is formed on the inner side of the upper part of the corresponding water channel 4 to form a combustion chamber 32.
  • the vertical part 321 of the combustion chamber 32 is 5-40mm high, and the neck 322 of the combustion chamber 32 is 5-60° from the vertical.
  • each heat exchanger 30 The lower part of the corresponding water channel 4 is vertical or 0-20° from the vertical, and the inner side of the lower part of the water channel 4 corresponding to each heat exchanger 30 is open, as shown in Figure 7(b), each heat exchanger 30 corresponds to The inner side of the lower part of the water channel 4 is open to assemble with the heat exchanger pair 3, so that the water working medium directly contacts the heat exchanger pair 3 to achieve sufficient heat exchange.
  • the end sides of the heat exchanger pair 3 and the water channel 4 need to be tightly sealed seal.
  • the water channel sealing plate 35 is separately manufactured to seal the water channel 4 with a half-Y-shaped structure.
  • the height of the lower vertical section of the water channel 4 with the half-Y-shaped structure is the same as the height of the heat exchanger pair 3.
  • the heat exchanger pair 3 of the present invention is made by an efficient and mature extruded aluminum process.
  • the flue gas side surface of the heat exchanger pair 3 adopts a siliconizing process to strengthen the condensed water corrosion resistance of the heat exchanger pair 3.
  • the excellent structural design makes It combines stable connection, positioning and sealing structure and excellent heat exchange performance; adopts water-cooled fins and built-in combustion chamber 32 to reduce pollutant emissions, symmetrical comb-tooth fin structure 300 and surface ripples optimize the temperature field distribution and expand Effective heat exchange area; diversified design of water channels provide flexible heating solutions; modular construction, arbitrary configuration to meet various heating power requirements, flexible and diverse; full bolt connection, reliable sealing and convenient disassembly and maintenance; extrusion molding process gas
  • the heating wall-hung boiler adopts extrusion technology, which has superior performance and unique price advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

本发明公开了一种采用挤压成型工艺的燃气采暖壁挂炉,包括燃烧器风机、等压风道、换热器对、水道、承露盘和烟囱;等压风道与燃烧器风机及换热器对均连通,换热器对中设置有燃烧室;水道设置于换热器对外侧,承露盘设置于换热器对的底部,烟囱与承露盘连通,换热器对由一对能够严丝合缝密封对接的换热器组成,换热器的烟气侧采用渗硅工艺强化抗冷凝水腐蚀性能;采用水冷翅片与内置式燃烧室降低污染物排放,对称梳齿状翅片结构与表面波纹优化温度场分布并扩大有效换热面积;换热器对中每个换热器均为采用复合材料的挤压型材,采用高效成熟的挤压成型工艺的燃气采暖壁挂炉,性能优越的同时价格优势得天独厚。

Description

一种采用挤压成型工艺的燃气采暖壁挂炉 技术领域
本发明属于家用供暖设备领域,具体涉及一种采用挤压成型工艺的燃气采暖壁挂炉。
背景技术
燃气采暖壁挂炉是将天然气的化学能转变成热能,进而以实现采暖的供应终端,同时配合地板采暖,这是目前使人体最具舒适感的分布式供热形式。燃气采暖壁挂炉的技术核心是通过运用热源、环境、建筑系统节能理念将天然气进行超低氧、超低氮、超高效率燃烧后产生的烟气进行超高效紧凑换热并将排烟温度降低到水露点温度以下,以实现系统深度动态节能减排。
近年来,市场上推出的新兴铸铝硅镁燃气采暖壁挂炉效率较高,结构紧凑但模具、材料价格昂贵,国内生产能力有限,核心技术受国外掌控;不锈钢盘管式燃气采暖壁挂炉价格低廉,设备投资成本低,市场占有量大,但换热效率较低,管壁较薄使其抗冷凝液腐蚀的综合性能降低,同时采用焊接工艺之后易发生应力腐蚀开裂(SCC)。
我国挤压铝工艺成熟,可根据换热器的长度对用于加工的材料进行任意的裁剪形成同系列多功率型号产品,结构简单生产效率高;此外,铝硅镁系挤压铝材料导热系数高,强度高,价格低廉同时铝硅镁系挤压铝材料在进行阳极氧化处理工艺后耐酸蚀性能优越,是制造商用燃气采暖壁挂炉换热器的理想材料。同时,模具费低廉使采用挤压成型工艺的燃气采暖壁挂炉市场快速响应赋予其强劲生命力,标示着采用挤压成型工艺的燃气采暖壁挂炉具有极大的市场需求与发展前景。
发明内容
为了打破国外铸铝硅镁燃气采暖壁挂炉的技术垄断,不锈钢盘管式燃气采暖壁挂炉抗冷凝液腐蚀的综合性能较差,冷凝效果差等问题,本发明提供一种采用挤压成型工艺的燃气采暖壁挂炉。
本发明通过以下技术方案予以实现:
一种采用挤压成型工艺的燃气采暖壁挂炉,包括:
燃烧器风机,所述燃烧器风机用于输入混合燃气,所述混合燃气为均匀混合的天然气与空气;
等压风道;
换热器对,所述等压风道的一端与燃烧器风机连通,所述等压风道的另一端与换热器对连通,所述等压风道用于使所述混合燃气等压输入所述换热器对,所述换热器对中设置有燃烧室;
水道,设置于所述换热器对的外侧;
承露盘,设置于所述换热器对的底部;
烟囱,与所述承露盘连通;
输入所述换热器对的所述混合燃气经设置于所述换热器对中的所述燃烧室点燃后形成高温烟气,所述高温烟气在所述换热器对中的传输过程中与设置于所述换热器对外侧的水道中的水工质充分换热后形成低温烟气及冷凝水,所述低温 烟气及所述冷凝水在所述承露盘处分离,分离后的所述低温烟气经所述烟囱排出;所述燃烧器风机位于所述换热器对的上侧,前后侧或左右侧;
所述换热器对由一对能够严丝合缝密封对接的换热器组成;所述换热器对中的每个所述换热器包括位于所述换热器顶端的水冷整流翅片,所述水冷整流翅片下方依次设置有所述燃烧室和换热翅片,所述燃烧室中设置有一个格栅,每个所述换热器两侧具有换热器密封板及水道密封板,所述换热器密封板及所述水道密封板上分别开有换热器螺丝孔和水道连接孔;
所述水道包括位于所述水道底部的进水口和位于所述水道顶部的出水口,所述水道内侧具有规律分布的筋板,所述水道上侧具有等压风道连接孔,所述水道左右两侧具有水道螺丝孔,所述水道下侧具有承露盘连接孔;
所述换热器对中每个所述换热器及所述水道均为采用复合材料的挤压型材。
所述换热器对中每个所述换热器的烟气侧表面均采用渗硅处理或采用阳极氧化并镀塑处理,所述格栅采用耐高温抗干烧变形的不锈钢材质制成,所述等压风道、所述承露盘和所述烟囱的材质均采用塑料或复合材质。
所述换热器对的整体壁厚为2~8mm,每个所述换热器的烟气侧所对应的制造模具具有不超过6的舌比且所述水冷整流翅片和所述换热翅片等间距规律排布;在所述换热器对中两个所述换热器严丝合缝装配后,两个所述换热器的所述水冷整流翅片及所述换热翅片能相互对插,且两个所述换热器的布置方向与垂直方向之间均呈0~60°夹角,所述水冷整流翅片高度为5~25cm,所述燃烧室为所述换热器对挤压成型后再切削加工而形成的,所述燃烧室的高度为4~20cm,在所述换热器对表面喷涂有隔热材料或固定有隔热板,所述换热翅片经热工计算顶部温度后切削去局部超温区域。
所述换热器对中两个所述换热器的所述水冷整流翅片和所述换热翅片在所述换热器对的两个所述换热器对接后能相互均匀对插,以形成中心对称的梳齿状翅片结构,所述梳齿状翅片结构中任意相邻的两个翅片之间的间隙为0.5~3mm,所述水冷整流翅片和所述换热翅片的壁面上具有挤压波纹,所述挤压波纹的形式为锯齿形、矩形及正弦函数波形中的任意一种。
所述换热器对中的一个所述换热器的所述换热器密封板一侧挤压有2~6mm凸脊,另一个所述换热器的所述换热器密封板一侧具有与所述凸脊的尺寸相对应的凹槽,所述水道密封板上开有1~3道2~5mm宽的方形密封槽或直径为2~5mm的半圆形密封槽,所述换热器对中的两个所述换热器同侧的所述水道密封板上下端切削去预设高度以匹配所述进水口和所述出水口。
所述格栅充当钝体能够有效稳定所述燃烧室内的火焰并缩短火焰长度,所述格栅中的钝体柱的截面为圆形,半圆形,矩形或三角形,所述换热器对中两个所述换热器对接后,所述钝体柱位于任意相邻的两个所述水冷整流翅片之间的翅片间隙的中央下方或任意相邻的两个所述换热翅片之间的翅片间隙的中央下方,任意相邻的两个所述钝体柱之间的间隔与任意相邻的两个所述水冷整流翅片之间的翅片间隙或任意相邻的两个所述换热翅片之间的翅片间隙一致,所述钝体柱两端弯折,且所述格栅整体尺寸与所述燃烧室一致呈“工”字形结构,以使所述格栅能够稳定的安置于所述燃烧室中。
所述水道的整体长度与所述水道密封板的长度一致,所述水道的高度及宽度与换热器对的高度及宽度一致,当所述水道整体为半“Y”字形结构时,所述水道的上部内外侧封闭,所述换热器对的两个所述换热器密封对接后,每个所述换热器对应的水道对接后上部内侧形成空腔以构成所述燃烧室,所述燃烧室的垂直 处高5~40mm,所述燃烧室的收颈处与垂直方向呈5~60°,每个所述换热器对应的水道下部竖直或与垂直方向呈0~20°,且每个所述换热器对应的水道下部内侧开放,以与换热器对装配并实现换热功能,所述水道密封板单独制造以密封半“Y”字形结构的所述水道,半“Y”字形结构的所述水道下部竖直段的高度与所述换热器对高度一致,所述进水口和所述出水口尺寸根据水流量流速设计,所述进水口水流速控制在0.2~0.5m/s,所述出水口水流速控制在0.9~1.8m/s,所述筋板割据所述水道形成“S”形水路通道,所述筋板排布使所述水道内的水流速控制在0.2~1.8m/s。
所述进水口与所述出水口内侧或外侧具有高度为6~18mm的左右贯通的挤压肋,以为等压风道连接孔和所述水道螺丝孔钻孔加工留下空间。
所述换热器螺丝孔、所述水道连接孔、所述等压风道连接孔、所述水道螺丝孔和所述承露盘连接孔的孔径为2~10mm,所述换热器对与所述等压风道及所述换热器对与所述承露盘之间采用密封垫片连接密封,两个所述换热器的所述换热器密封板上的凸脊与凹槽间涂塞有具有弹性、耐高温特性的密封胶,所述水道密封板上开设的方形密封槽或半圆形密封槽处安装有与方形密封槽或半圆形密封槽的尺寸相适配的密封条或涂塞有具有弹性、耐高温特性的密封胶。
根据所需换热功率选取所述换热器对的裁切高度,同时采用多对所述换热器对与所述水道构成联排供热机组,以形成任意所需功率供热机型。
与现有技术相比较,本发明具有如下优点:
1、本发明采用成熟的挤压铝工艺制作换热器对,是挤压截面一维方向上的延展,根据换热器的长度进行任意的裁剪,结构简单生产效率高,模块化组建适配各种功率大小的供热机组。
2、挤压模具寿命短,更新快,价格低,可轻松实现挤压铝换热单元件的更新换代速度快,换热功率规格齐全,市场适应性强,生产成本极低。
3、本发明结构、加工和装配简单,换热器对的烟气侧表面采用渗硅工艺以强化抗冷凝水腐蚀性能。
4、本发明中模块化烟道式挤压铝换热器内可采用全模块化螺栓连接,无焊接工艺,连接密封可靠并方便拆卸维护,满足各种换热容量需求,市场适应能力强。
附图说明
图1为本发明一种采用挤压成型工艺的燃气采暖壁挂炉的整体示意图。
图2为换热器对与水道装配立体示意图。
图3为换热器对中两个换热器的立体示意图。
图4为格栅立体示意图。
图5为水道立体示意图。
图6为与垂直方向呈一定角度且下端换热翅片对插的换热器对主视剖面图。
图7(a)为半“Y”字形结构设计的水道立体示意图。
图7(b)为半“Y”字形结构设计的水道与换热器对一侧单个换热器装配的立体示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步地详细描述:
实施例一
如图1所示,一种采用挤压成型工艺的燃气采暖壁挂炉,包括燃烧器风机1、等压风道2、换热器对3、水道4、承露盘5及烟囱6;燃烧器风机1用于输入混合燃气,上述混合燃气为均匀混合的天然气与空气;等压风道2的一端与燃烧器风机1连通,等压风道2的另一端与换热器对3连通,等压风道2用于使混合燃气等压送入换热器对3,换热器对3中设置有燃烧室32;水道4设置于换热器对3外侧,承露盘5设置于换热器对3的底部,烟囱6与承露盘5连通;
输入换热器对3的混合燃气经设置于换热器对3中的燃烧室32点燃后形成高温烟气,上述高温烟气在换热器对3中的传输过程中与设置于换热器对3外侧的水道4中的水工质充分换热后形成低温烟气及冷凝水,低温烟气及冷凝水在承露盘5处分离,分离后的低温烟气经烟囱6排出,分离后的冷凝水承载于承露盘5上。
燃烧器风机1位于换热器对3的上侧,前后侧或左右侧;燃烧器风机1的位置根据空间最有效利用方式布置。
如图2至图4所示,换热器对3由一对能够严丝合缝密封对接的换热器30组成;换热器对3中每个换热器30包括位于换热器30顶端的水冷整流翅片31,水冷整流翅片31下方依次设置有燃烧室32和换热翅片33,燃烧室32中设置有一个格栅38,格栅38用于稳定燃烧室32中的火焰并缩短火焰长度,每个换热器30两侧具有换热器密封板34及水道密封板35,换热器密封板34及水道密封板35上分别开有换热器螺丝孔36和水道连接孔37,两个换热器30两侧的换热器密封板34上的换热器螺丝孔36相配合,以实现两个换热器30的密封对接。
如图2、图3和图5所示,水道4包括位于水道4底部的进水口41和位于水道4顶部的出水口42,水道4内侧具有规律分布的筋板43,水道4上侧具有等压风道连接孔44,等压风道连接孔44用于实现水道4与等压风道2的连接;水道4左右两侧具有水道螺丝孔45,水道螺丝孔45用于与水道密封板35上的水道连接孔37相配合,以实现水道密封板35对水道4的密封;水道4下侧具有承露盘连接孔46,承露盘连接孔46用于实现水道4与承露盘5的连接。
换热器对3中每个换热器及水道4均为采用复合材料的挤压型材。具体地,换热器对3中每个换热器30及水道4均为采用铝合金的挤压型材。优选地,换热器对3中每个换热器30及水道4均为采用铝硅镁系挤压铝材料在进行阳极氧化处理工艺后挤压形成。
换热器对3中每个换热器30的烟气侧表面均采用渗硅处理或采用阳极氧化并镀塑处理,以强化换热器30的抗冷凝水腐蚀性能;格栅38采用耐高温抗干烧变形的不锈钢材质制成;等压风道2、承露盘5和烟囱6的材质均采用铸铝、铸铁、碳钢、不锈钢或复合材质。进一步地,等压风道2、承露盘5和烟囱6的材质均采用铸铝、铸铁、碳钢、不锈钢及塑料中的任意一种。
如图2和图3所示,换热器对3的整体壁厚为2~8mm,每个换热器30的烟气侧所对应的制造模具具有不超过6的舌比;每个换热器30上的水冷整流翅片31和换热翅片33均包括多个,且多个水冷整流翅片31和多个换热翅片33等间距规律排布;
请参阅图2、图3和图6,在换热器对3中两个换热器30严丝合缝装配后,两个换热器30的水冷整流翅片31及换热翅片33能相互对插,且两个换热器30的布置方向与垂直方向之间均呈0~60°夹角,水冷整流翅片31的高度为5~25cm,燃烧室32为换热器对3挤压成型后再切削加工而形成的,燃烧室32的高度为 4~20cm,为防止燃气未燃尽,在换热器对3外表面喷涂适当厚度的隔热材料或固定隔热板,换热翅片33经热工计算顶部温度后切削去局部超温区域。
换热器对3中两个换热器30可严丝合缝密封对接,换热器对3中两个换热器30的水冷整流翅片31和换热翅片33在换热器对3的两个换热器30密封对接后能相互均匀对插,以形成中心对称的梳齿状翅片结构300,有效地优化改善换热器对3中心惰性换热区以强化换热效果,梳齿状翅片结构300中任意相邻的两个翅片之间的间隙为0.5~3mm,根据燃烧器风机1压头和换热效果综合确定,请参阅图3,水冷整流翅片31和换热翅片33的壁面上具有挤压波纹313,挤压波纹313的形式为锯齿形、矩形及正弦函数波形中的任意一种,以增大换热器对3的有效换热面积且增强换热器对3中的烟气扰动,进一步提高传热效果,根据挤压模具制作成本,换热效率和水冷整流翅片31及换热翅片33结构强度情况选择波纹形状。
换热器对3中一个换热器30的换热器密封板34一侧挤压有2~6mm凸脊341,另一个换热器30的换热器密封板34一侧具有与凸脊341的尺寸相对应的凹槽342,装配时上述凸脊341与凹槽342相配合,以起到定位和密封的作用,水道密封板35上开有1~3道2~5mm宽的方形密封槽或直径为2~5mm的半圆形密封槽,换热器对3中两个换热器30同侧的水道密封板35上下端切削去特定高度以匹配进水口41和出水口42。
如图4所示,格栅38充当钝体能够有效稳定燃烧室32内的火焰并缩短火焰长度,格栅38中的钝体柱381的截面为圆形,半圆形,矩形或三角形,格栅38包括多个钝体柱381,多个钝体柱381间隔排布,换热器对3中两个换热器30对接后,钝体柱381位于任意相邻的两个水冷整流翅片31之间的翅片间隙的中央下方或任意相邻的两个换热翅片33之间的翅片间隙的中央上方,任意相邻的两个钝体柱381之间的间隔与任意相邻的两个水冷整流翅片31之间的翅片间隙或任意相邻的两个换热翅片33之间的翅片间隙一致,钝体柱381两端弯折,且格栅38整体尺寸与燃烧室32一致呈“工”字形结构,以使格栅38能够稳定的安置于燃烧室32中。
如图3和图5所示,水道4的整体长度与水道密封板35的长度一致,水道4的高度及宽度与换热器对3的高度及宽度一致,进水口41和出水口42尺寸根据水流量流速设计,进水口41水流速控制在0.2~0.5m/s,出水口42水流速控制在0.9~1.8m/s,筋板43割据水道4形成“S”形水路通道,筋板43排布使水道4内的水流速控制在0.2~1.8m/s,并且能够避免水道4内局部过冷或沸腾现象。
进水口41与出水口42内侧或外侧具有厚度为6~18mm的左右贯通的挤压肋412,以为等压风道连接孔44和水道螺丝孔45钻孔加工留下空间,同时不会影响进水口41与出水口42的密封结构。
换热器螺丝孔36、水道连接孔37、等压风道连接孔44、水道螺丝孔45和承露盘连接孔46的孔径为2~10mm,换热器对3与等压风道2及换热器对3与承露盘5之间采用密封垫片连接密封,两个换热器30的换热器密封板34上相对应的凸脊341与凹槽342间涂塞有具有弹性、耐高温特性的密封胶以密封换热器对3,防止换热器对3内的烟气漏气,水道密封板35上开设的方形密封槽或半圆形密封槽处安装有与方形密封槽或半圆形密封槽的尺寸相适配的密封条或涂塞有具有弹性、耐高温特性的密封胶,防止换热器对3与水道4间水工质泄露。
根据所需换热功率选取换热器对3的裁切高度,同时采用多对换热器对3 与水道4构成联排供热机组,从而以形成任意所需功率供热机型。
实施案例二
在本实施例中,对于与实施案例一相同的结构,给予相同的符号,并省略相同的说明。
如图6所示,在换热器对3中两个换热器30严丝合缝装配后,两个换热器30的换热翅片33相互对插,两个换热器30的布置方向与垂直方向之间均呈1~60°,换热器对3中的上部空间大下部空间小且两个换热器30下部的换热翅片33局部对插,较大的燃烧室32能够使混合燃气更稳定的燃烧,提高燃烧功率,渐小的烟气通道匹配烟温逐渐降低体积减小使烟气流速恒定,强化换热,换热器对3端侧需要密封盖板紧固密封。
实施案例三
在本实施例中,对于与实施案例一相同的结构,给予相同的符号,并省略相同的说明。
如图7(a)所示,水道4整体采用半“Y”字形结构,水道4的上部内外侧封闭,换热器对3的两个换热器30密封对接后,每个换热器30对应的水道4上部内侧形成空腔以构成燃烧室32,燃烧室32的垂直处321高5~40mm,燃烧室32的收颈处322与垂直方向呈5~60°,每个换热器30对应的水道4下部竖直或与垂直方向之间呈0~20°,且每个换热器30对应的水道4下部内侧开放,如图7(b)所示,每个换热器30对应的水道4下部内侧开放,以与换热器对3装配,使水工质直接接触换热器对3,以实现充分换热,换热器对3与水道4端侧需要密封盖板紧固密封。
水道密封板35单独制造以密封半“Y”字形结构的水道4,半“Y”字形结构的水道4下部竖直段的高度与换热器对3高度一致。
本发明换热器对3采用高效成熟的挤压铝工艺制成,换热器对3的烟气侧表面采用渗硅工艺强化换热器对3的抗冷凝水腐蚀性能,优良的结构设计使其兼具稳定的连接、定位和密封结构和卓越的换热性能;采用水冷翅片与内置式燃烧室32降低污染物排放,对称梳齿状翅片结构300与表面波纹优化温度场分布并扩大有效换热面积;多样化设计的水道提供灵活供热方案;模块化组建,任意配置满足各种供热功率需求,灵活多样;全螺栓连接,密封可靠同时方便拆卸维护;挤压成型工艺的燃气采暖壁挂炉采用挤压工艺,性能优越的同时价格优势得天独厚。

Claims (10)

  1. 一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:包括:
    燃烧器风机(1),所述燃烧器风机(1)用于输入混合燃气,所述混合燃气为均匀混合的天然气与空气;
    等压风道(2);
    换热器对(3),所述等压风道(2)的一端与燃烧器风机(1)连通,所述等压风道(2)的另一端与换热器对(3)连通,所述等压风道(2)用于使所述混合燃气等压输入所述换热器对(3),所述换热器对(3)中设置有燃烧室(32);
    水道(4),设置于所述换热器对(3)的外侧;
    承露盘(5),设置于所述换热器对(3)的底部;
    烟囱(6),与所述承露盘(5)连通;
    输入所述换热器对(3)的所述混合燃气经设置于所述换热器对(3)中的所述燃烧室(32)点燃后形成高温烟气,所述高温烟气在所述换热器对(3)中的传输过程中与设置于所述换热器对(3)外侧的水道(4)中的水工质充分换热后形成低温烟气及冷凝水,所述低温烟气及所述冷凝水在所述承露盘(5)处分离,分离后的所述低温烟气经所述烟囱(6)排出;
    所述燃烧器风机(1)位于所述换热器对(3)的上侧,前后侧或左右侧;
    所述换热器对(3)由一对能够严丝合缝密封对接的换热器(30)组成;所述换热器对(3)中的每个所述换热器(30)包括位于所述换热器(30)顶端的水冷整流翅片(31),所述水冷整流翅片(31)下方依次设置有所述燃烧室(32)和换热翅片(33),所述燃烧室(32)中设置有一个格栅(38),每个所述换热器(30)两侧具有换热器密封板(34)及水道密封板(35),所述换热器密封板(34)及所述水道密封板(35)上分别开有换热器螺丝孔(36)和水道连接孔(37);
    所述水道(4)包括位于所述水道(4)底部的进水口(41)和位于所述水道(4)顶部的出水口(42),所述水道(4)内侧具有规律分布的筋板(43),所述水道(4)上侧具有等压风道连接孔(44),所述水道(4)左右两侧具有水道螺丝孔(45),所述水道(4)下侧具有承露盘连接孔(46);
    所述换热器对(3)中每个所述换热器(30)及所述水道(4)均为采用复合材料的挤压型材。
  2. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述换热器对(3)中每个所述换热器(30)的烟气侧表面均采用渗硅处理或采用阳极氧化并镀塑处理,所述格栅(38)采用耐高温抗干烧变形的不锈钢材质制成,所述等压风道(2)、所述承露盘(5)及所述烟囱(6)的材质均采用塑料或复合材质。
  3. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述换热器对(3)的整体壁厚为2~8mm,每个所述换热器(30)的烟气侧所对应的制造模具具有不超过6的舌比且所述水冷整流翅片(31)和所述换热翅片(33)等间距规律排布;
    在所述换热器对(3)中两个所述换热器(30)严丝合缝装配后,两个所述换热器(30)的所述水冷整流翅片(31)及所述换热翅片(33)能相互对插,且两个所述换热器(30)的布置方向与垂直方向之间均呈0~60°夹角,所述水冷整流翅片(31)的高度为5~25cm;所述燃烧室(32)为所述换热器对(3)挤压成型后再切削加工而形成的,所述燃烧室(32)的高度为4~20cm;所述换热器 对(3)表面喷涂有隔热材料或固定有隔热板,所述换热翅片(33)经热工计算顶部温度后切削去局部超温区域。
  4. 根据权利要求3所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述换热器对(3)中两个所述换热器(30)的所述水冷整流翅片(31)和所述换热翅片(33)在所述换热器对(3)的两个所述换热器(30)对接后能相互均匀对插,以形成中心对称的梳齿状翅片结构(300),所述梳齿状翅片结构(300)中任意相邻的两个翅片之间的间隙为0.5~3mm,所述水冷整流翅片(31)和所述换热翅片(33)的壁面上具有挤压波纹(313),所述挤压波纹(313)的形式为锯齿形、矩形及正弦函数波形中的任意一种。
  5. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述换热器对(3)中的一个所述换热器(30)的所述换热器密封板(34)一侧挤压有2~6mm的凸脊(341),另一个所述换热器(30)的所述换热器密封板(34)一侧具有与所述凸脊(341)的尺寸相对应的凹槽(342),所述水道密封板(35)上开有1~3道2~5mm宽的方形密封槽或直径为2~5mm的半圆形密封槽,所述换热器对(3)中的两个所述换热器(30)同侧的所述水道密封板(35)上下端切削去预设高度以匹配所述进水口(41)和所述出水口(42)。
  6. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述格栅(38)充当钝体能够有效稳定所述燃烧室(32)内的火焰并缩短火焰长度,所述格栅(38)中的钝体柱(381)的截面为圆形、半圆形、矩形或三角形,所述换热器对(3)中两个所述换热器(30)对接后,所述钝体柱(381)位于任意相邻的两个所述水冷整流翅片(31)之间的翅片间隙的中央下方或任意相邻的两个所述换热翅片(33)之间的翅片间隙的中央上方,任意相邻的两个所述钝体柱(381)之间的间隔与任意相邻的两个所述水冷整流翅片(31)之间的翅片间隙或任意相邻的两个所述换热翅片(33)之间的翅片间隙一致,所述钝体柱(381)两端弯折,且所述格栅(38)整体尺寸与所述燃烧室(32)一致呈“工”字形结构,以使所述格栅(38)能够稳定的安置于所述燃烧室(32)中。
  7. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述水道(4)的整体长度与所述水道密封板(35)的长度一致,所述水道(4)的高度及宽度与换热器对(3)的高度及宽度一致,当所述水道(4)整体为半“Y”字形结构时,所述水道(4)的上部内外侧封闭,所述换热器对(3)的两个所述换热器(30)密封对接后,每个所述换热器(30)对应的水道(4)上部内侧形成空腔以构成所述燃烧室(32),所述燃烧室(32)的垂直处(321)高5~40mm,所述燃烧室(32)的收颈处(322)与垂直方向呈5~60°,每个所述换热器(30)对应的水道(4)下部竖直或与垂直方向之间呈0~20°,且每个所述换热器(30)对应的水道(4)下部内侧开放,以与换热器对(3)装配并实现换热功能,所述水道密封板(35)单独制造以密封半“Y”字形结构的所述水道(4),半“Y”字形结构的所述水道(4)下部竖直段的高度与所述换热器对(3)高度一致,所述进水口(41)和所述出水口(42)尺寸根据水流量流速设计,所述进水口(41)水流速控制在0.2~0.5m/s,所述出水口(42)水流速控制在0.9~1.8m/s,所述筋板(43)割据所述水道(4)形成“S”形水路通道,所述筋板(43)排布使所述水道内(4)的水流速控制在0.2~1.8m/s。
  8. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述进水口(41)与所述出水口(42)内侧或外侧具有高度为6~18mm的左右贯通的挤压肋(412),以为等压风道连接孔(44)和所述水道螺丝孔(45) 钻孔加工留下空间。
  9. 根据权利要求5所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:所述换热器螺丝孔(36)、所述水道连接孔(37)、所述等压风道连接孔(44)、所述水道螺丝孔(45)和所述承露盘连接孔(46)的孔径为2~10mm,所述换热器对(3)与所述等压风道(2)及所述换热器对(3)与所述承露盘(5)之间采用密封垫片连接密封,两个所述换热器(30)的所述换热器密封板(34)上相对应的凸脊(341)与凹槽(342)间涂塞有具有弹性、耐高温特性的密封胶,所述水道密封板(35)上开设的方形密封槽或半圆形密封槽处安装有与方形密封槽或半圆形密封槽的尺寸相适配的密封条或涂塞有具有弹性、耐高温特性的密封胶。
  10. 根据权利要求1所述的一种采用挤压成型工艺的燃气采暖壁挂炉,其特征在于:根据所需换热功率选取所述换热器对(3)的裁切高度,同时采用多对所述换热器对(3)与所述水道(4)构成联排供热机组,以形成任意所需功率供热机型。
PCT/CN2021/090653 2020-04-28 2021-04-28 一种采用挤压成型工艺的燃气采暖壁挂炉 WO2021219020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349839.1 2020-04-28
CN202010349839.1A CN111426060B (zh) 2020-04-28 2020-04-28 一种采用挤压成型工艺的燃气采暖壁挂炉

Publications (1)

Publication Number Publication Date
WO2021219020A1 true WO2021219020A1 (zh) 2021-11-04

Family

ID=71552172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090653 WO2021219020A1 (zh) 2020-04-28 2021-04-28 一种采用挤压成型工艺的燃气采暖壁挂炉

Country Status (2)

Country Link
CN (1) CN111426060B (zh)
WO (1) WO2021219020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117244351A (zh) * 2023-10-16 2023-12-19 江苏华星东方电力环保科技有限公司 一种带有热回收的一次烟气净化设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426060B (zh) * 2020-04-28 2024-04-12 西安交通大学 一种采用挤压成型工艺的燃气采暖壁挂炉

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843135A1 (en) * 1996-07-17 1998-05-20 Holding J.H. Deckers N.V. Sectional heating boiler and heating apparatus comprising such boiler
DE102008004837A1 (de) * 2008-01-17 2009-07-23 Robert Bosch Gmbh Gliederheizkessel
WO2015024712A1 (en) * 2013-08-20 2015-02-26 Bekaert Combustion Technology B.V. Sectional heat exchanger for use in a heat cell
WO2016055392A1 (en) * 2014-10-08 2016-04-14 Bekaert Combustion Technology B.V. Heat exchanger
CN109827335A (zh) * 2019-03-21 2019-05-31 西安交通大学 一种全模块化烟道式挤压铝冷凝换热器
CN109855308A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种模块化烟道式挤压铝冷凝换热器
CN109855286A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉
CN110006174A (zh) * 2019-03-21 2019-07-12 西安交通大学 一种模块化挤压铝冷凝换热器及冷凝式锅炉
CN209877375U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种全模块化烟道式挤压铝冷凝换热器结构
CN209877376U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种模块化烟道式挤压铝冷凝换热器结构
CN209877337U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉结构
CN111426060A (zh) * 2020-04-28 2020-07-17 西安交通大学 一种采用挤压成型工艺的燃气采暖壁挂炉
CN212057762U (zh) * 2020-04-28 2020-12-01 西安交通大学 一种采用挤压成型工艺的燃气采暖壁挂炉结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581074D2 (de) * 1994-09-21 1997-11-27 Rudolf Justl Brennwertkessel
CN102374798A (zh) * 2010-08-11 2012-03-14 海尔集团公司 换热器及节能沐浴器
CN205403154U (zh) * 2016-03-11 2016-07-27 中山市恒乐电器有限公司 一种倒置强鼓式水冷式全预混燃气热水器
CN109099588B (zh) * 2018-10-16 2023-08-04 西安交通大学 一种双水道铸铝硅冷凝式锅炉水路系统及工作方法
CN110822714B (zh) * 2019-11-01 2020-10-30 西安交通大学 一种窄间隙燃烧及换热的燃气冷凝锅炉

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843135A1 (en) * 1996-07-17 1998-05-20 Holding J.H. Deckers N.V. Sectional heating boiler and heating apparatus comprising such boiler
DE102008004837A1 (de) * 2008-01-17 2009-07-23 Robert Bosch Gmbh Gliederheizkessel
WO2015024712A1 (en) * 2013-08-20 2015-02-26 Bekaert Combustion Technology B.V. Sectional heat exchanger for use in a heat cell
WO2016055392A1 (en) * 2014-10-08 2016-04-14 Bekaert Combustion Technology B.V. Heat exchanger
CN109827335A (zh) * 2019-03-21 2019-05-31 西安交通大学 一种全模块化烟道式挤压铝冷凝换热器
CN109855308A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种模块化烟道式挤压铝冷凝换热器
CN109855286A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉
CN110006174A (zh) * 2019-03-21 2019-07-12 西安交通大学 一种模块化挤压铝冷凝换热器及冷凝式锅炉
CN209877375U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种全模块化烟道式挤压铝冷凝换热器结构
CN209877376U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种模块化烟道式挤压铝冷凝换热器结构
CN209877337U (zh) * 2019-03-21 2019-12-31 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉结构
CN111426060A (zh) * 2020-04-28 2020-07-17 西安交通大学 一种采用挤压成型工艺的燃气采暖壁挂炉
CN212057762U (zh) * 2020-04-28 2020-12-01 西安交通大学 一种采用挤压成型工艺的燃气采暖壁挂炉结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117244351A (zh) * 2023-10-16 2023-12-19 江苏华星东方电力环保科技有限公司 一种带有热回收的一次烟气净化设备
CN117244351B (zh) * 2023-10-16 2024-05-31 江苏华星东方电力环保科技有限公司 一种带有热回收的一次烟气净化设备

Also Published As

Publication number Publication date
CN111426060A (zh) 2020-07-17
CN111426060B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2021219020A1 (zh) 一种采用挤压成型工艺的燃气采暖壁挂炉
WO2017162018A1 (zh) 用于气-气热交换的逆流式翅片板换热器
CN111141028A (zh) 一种大调节比水冷预混燃烧高强度换热的燃气冷凝锅炉
CN110006174B (zh) 一种模块化挤压铝冷凝换热器及冷凝式锅炉
CN102635945B (zh) 一种贯流型窄间隙整体冷凝式热水锅炉
CN201892316U (zh) 一种平衡式燃气热水器排烟管
CN109855286B (zh) 一种多工艺复合成型的燃气采暖壁挂炉
CN110440256A (zh) 一种高效低NOx二级自身预热式烧嘴
CN109883051B (zh) 一种模块化商业燃气采暖挤压铝合金辐射炉膛
CN212157675U (zh) 一种燃烧换热一体化的燃气采暖壁挂炉体结构
CN212057762U (zh) 一种采用挤压成型工艺的燃气采暖壁挂炉结构
CN209877337U (zh) 一种多工艺复合成型的燃气采暖壁挂炉结构
CN111412656B (zh) 一种燃烧换热一体化的燃气采暖壁挂炉体
KR200284927Y1 (ko) 고효율 폐열회수장치
CN113375141A (zh) 一种高效节能的蒸汽锅炉
CN2826201Y (zh) 热超导燃气热风炉
WO2020133958A1 (zh) 新型热交换管
CN219283315U (zh) 燃烧室及燃油户外热风机
CN2845648Y (zh) 高效节能热水壶
CN209877377U (zh) 一种模块化商业燃气采暖挤压铝合金辐射炉膛结构
CN218469299U (zh) 海水型低氮冷凝一体常压热水锅炉
CN216011296U (zh) 一种热交换管
CN204574503U (zh) 一种扁平型冷凝式热交换器
CN218565581U (zh) 一种燃气热水器
CN216308199U (zh) 一种倒置燃烧式双水道高效热水加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797257

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21797257

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21797257

Country of ref document: EP

Kind code of ref document: A1