WO2021218719A1 - 物理下行共享信道接收、发送方法及设备、装置、介质 - Google Patents

物理下行共享信道接收、发送方法及设备、装置、介质 Download PDF

Info

Publication number
WO2021218719A1
WO2021218719A1 PCT/CN2021/088547 CN2021088547W WO2021218719A1 WO 2021218719 A1 WO2021218719 A1 WO 2021218719A1 CN 2021088547 W CN2021088547 W CN 2021088547W WO 2021218719 A1 WO2021218719 A1 WO 2021218719A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
scs
pdsch
dci
multiple carriers
Prior art date
Application number
PCT/CN2021/088547
Other languages
English (en)
French (fr)
Inventor
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21796881.7A priority Critical patent/EP4145930A4/en
Priority to US17/922,341 priority patent/US20230180250A1/en
Publication of WO2021218719A1 publication Critical patent/WO2021218719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, equipment, device, and medium for receiving and sending a physical downlink shared channel.
  • the new wireless communication system (ie, 5G NR (5Generation New RAT; RAT: Radio Access Technology)) supports flexible timing relationships.
  • PDSCH Physical Downlink Shared CHannel
  • the PDCCH Physical Downlink Control CHannel
  • HARQ-ACK timing namely K1
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • the TDRA (Time Domain Resource Assignment) indication field in the DCI (Downlink Control Information) format used by the PDCCH indicates the time slot of the PDSCH and the PDCCH (or DCI, because DCI is The specific transmission format of the PDCCH is considered to be equivalent from the description of the scheduling and feedback relationship)
  • the PDSCH-to-HARQ_feedback timing indication field in the DCI format indicates the number of time slots K1 between the end of the PDSCH and the beginning of HARQ-ACK, that is, the PDSCH transmitted in time slot n is in time slot n+ HARQ-ACK transmission is performed in K1.
  • Fig. 1 is a schematic diagram of downlink scheduling timing and HARQ-ACK feedback timing, as shown in Fig. 1.
  • K 0 is defined based on the numerology of PDSCH (baseband parameters, which can include a series of parameters including subcarrier spacing)
  • ⁇ PDSCH is the sub-carrier spacing of PDSCH
  • ⁇ PDCCH is the sub-carrier spacing of PDCCH (that is, the channel that carries this DCI).
  • the above formula shows that if the sub-carrier spacing of PDCCH and PDSCH is different (for example, when PDCCH and PDSCH are transmitted on different carriers, that is, when DCI cross-carrier schedules PDSCH transmission on one carrier), the SCS (subcarrier Interval, sub-carrier space) difference, convert the number of the time slot n of the transmission DCI into a time slot number under the SCS corresponding to the PDSCH as a reference time slot Then in this reference time slot On the basis of, the time slot in which the PDSCH transmission is obtained is obtained by offsetting K0 time slots.
  • Fig. 2 is a schematic diagram when the time slot is shifted by K0, as shown in Fig. 2 after the offset.
  • one PDCCH can only schedule one PDSCH transmission on one carrier, and the PDSCH and PDCCH can be on the same carrier (that is, this carrier is scheduled), or they can be on different carriers (that is, cross-carrier scheduling).
  • the disadvantage of the related technology is that when one DCI can schedule PDSCHs on multiple carriers for transmission at the same time, there is no solution to determine the PDSCH transmission time slots on multiple carriers according to the same scheduling timing (ie K0) value notified in the DCI. .
  • the present disclosure provides a physical downlink shared channel receiving and sending method, equipment, device, and medium to provide that when one DCI can schedule PDSCH on multiple carriers for transmission at the same time, it can be based on the same scheduling timing notified in the DCI
  • the (ie, K0) value determines the technical solution for PDSCH transmission time slots on multiple carriers.
  • An embodiment of the present disclosure provides a PDSCH receiving method, including:
  • Receiving the first DCI, and the first DCI is scheduled for PDSCH transmission on multiple carriers;
  • the scheduled PDSCH is received.
  • the reference SCS is one of the following SCS:
  • receiving the scheduled PDSCH includes:
  • the PDSCH is received in the determined time-domain symbol set.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the respective SCS of the multiple carriers determines the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as a reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCSs of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • An embodiment of the present disclosure provides a PDSCH transmission method, including:
  • the scheduled PDSCH is sent in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines the time unit where the PDSCH transmission on the multiple carriers is based on the reference SCS or the respective SCS of the multiple carriers .
  • the reference SCS is one of the following SCS:
  • sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers includes:
  • the method when the time unit offset is indicated by the indication field in the first DCI, before sending the first DCI, the method further includes:
  • the method when the time unit offset is pre-configured by high-layer signaling, before sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, the method further includes:
  • the time unit where the PDSCH transmission on the multiple carriers is located is determined.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the terminal when determining that the terminal determines the time unit of PDSCH transmission on the multiple carriers according to the reference SCS or the respective SCSs of the multiple carriers, it further includes: determining that the terminal offsets according to a time unit, and referring to the SCS Or the respective SCSs of the multiple carriers determine the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is located according to a time unit offset and referring to the SCS includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and referring to the SCS includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as a reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCS of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • An embodiment of the present disclosure provides a terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • Receiving the first DCI, and the first DCI is scheduled for PDSCH transmission on multiple carriers;
  • Transceiver used to receive and send data under the control of the processor.
  • the reference SCS is one of the following SCS:
  • receiving the scheduled PDSCH includes:
  • the PDSCH is received in the determined time-domain symbol set.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the respective SCS of the multiple carriers determines the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as a reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCSs of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • An embodiment of the present disclosure provides a base station, including:
  • the processor is used to read the program in the memory and execute the following process:
  • the scheduled PDSCH is sent in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines the time unit where the PDSCH transmission on the multiple carriers is based on the reference SCS or the respective SCS of the multiple carriers ;
  • Transceiver used to receive and send data under the control of the processor.
  • the reference SCS is one of the following SCS:
  • sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers includes:
  • the method when the time unit offset is indicated by the indication field in the first DCI, before sending the first DCI, the method further includes:
  • the method when the time unit offset is pre-configured by high-layer signaling, before sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, the method further includes:
  • the time unit where the PDSCH transmission on the multiple carriers is located is determined.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the terminal when determining that the terminal determines the time unit of PDSCH transmission on the multiple carriers according to the reference SCS or the respective SCSs of the multiple carriers, it further includes: determining that the terminal offsets according to a time unit, and referring to the SCS Or the respective SCSs of the multiple carriers determine the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is located according to a time unit offset and referring to the SCS includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and referring to the SCS includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS of the SCSs of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as the reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in the time unit overlapping with the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCS of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • An embodiment of the present disclosure provides a PDSCH receiving device, including:
  • the first receiving module is configured to receive the first DCI, and the first DCI is scheduled to perform PDSCH transmission on multiple carriers;
  • a determining module configured to determine the time unit where PDSCH transmission on the multiple carriers is located according to the reference SCS or the respective SCS of the multiple carriers;
  • the second receiving module is configured to receive the scheduled PDSCH in the determined time unit on the multiple carriers.
  • An embodiment of the present disclosure provides a PDSCH sending device, including:
  • the first sending module is configured to send a first DCI, and the first DCI schedules multiple carriers for PDSCH transmission;
  • the second sending module is configured to send the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines that the multiple carriers are on the multiple carriers according to the reference SCS or the respective SCS of the multiple carriers.
  • the time unit in which the PDSCH is transmitted is configured to send the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines that the multiple carriers are on the multiple carriers according to the reference SCS or the respective SCS of the multiple carriers.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program for executing the above-mentioned PDSCH receiving method and/or PDSCH sending method.
  • the time unit of PDSCH transmission on the multiple carriers scheduled by the first DCI is determined according to the reference SCS or the respective SCS of multiple scheduled carriers, it can ensure that the terminal and the base station Understand and determine the time unit of PDSCH transmission on each carrier consistently, so as to ensure normal transmission when one DCI schedules PDSCH transmission on multiple carriers.
  • FIG. 1 is a schematic diagram of downlink scheduling timing and HARQ-ACK feedback timing in the background art
  • FIG. 2 is a schematic diagram when the time slot is shifted by K0 in the background technology
  • FIG. 3 is a schematic diagram of the implementation process of the PDSCH receiving method on the terminal side in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of the implementation process of the PDSCH transmission method on the base station side in an embodiment of the disclosure
  • FIG. 5 is a schematic diagram 1 of the DCI scheduling time slot in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram 2 of the DCI scheduling time slot in an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram 3 of the DCI scheduling time slot in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram 4 of a DCI scheduling time slot in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram 5 of the DCI scheduling time slot in an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a terminal structure in an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the structure of a base station in an embodiment of the disclosure.
  • one DCI may need to be considered for scheduling multiple carriers, that is, one DCI is scheduled to perform PDSCH transmission on multiple carriers at the same time.
  • multiple carriers may have different baseband parameters (numerology, such as sub-carrier spacing SCS, etc.), how to determine the PDSCH transmission time slot on each carrier according to the same scheduling timing (ie K0) value notified in the DCI on different carriers There is no clear method yet.
  • the embodiment of the present disclosure provides a PDSCH reception and transmission scheme.
  • the scheme when a DCI schedules PDSCH transmission on multiple carriers, each of the multiple carriers is determined according to the reference SCS or according to the respective SCS of the scheduled carrier.
  • the time unit of PDSCH transmission on the carrier, where the reference SCS may be the SCS corresponding to DCI transmission, the maximum value of the SCS of multiple scheduled carriers, and the minimum of the SCS of multiple scheduled carriers.
  • Figure 3 is a schematic diagram of the implementation process of the PDSCH receiving method on the terminal side. As shown in the figure, it may include:
  • Step 301 Receive a first DCI, and the first DCI is scheduled to perform PDSCH transmission on multiple carriers.
  • Step 302 Determine the time unit where PDSCH transmission on the multiple carriers is based on the reference SCS or the respective SCS of the multiple carriers;
  • Step 303 Receive the scheduled PDSCH in the determined time units on the multiple carriers.
  • the reference SCS is one of the following SCS:
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the respective SCS of the multiple carriers determines the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined The PDSCH is transmitted in the first or last time unit.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as a reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, according to the time when the first DCI is transmitted Unit (that is, DCI corresponds to the time unit determined by its SCS on its transmission carrier) and the time unit offset, determine a reference time unit (that is, this reference time unit is the time unit on the carrier where the first DCI transmission is located), On each of the multiple scheduled carriers, determining to transmit the PDSCH in a time unit overlapping with the reference time unit;
  • the time unit offset is based on the length of the time unit determined by the SCS of the first DCI. For example, if the time unit offset is 1, it means that it is a time unit determined by the SCS of the first DCI.
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers.
  • the time unit of the first DCI transmission that is, the time unit determined by the DCI corresponding to its SCS on its transmission carrier
  • the SCS of the first DCI, the maximum SCS, and the time unit offset are determined in the
  • the time unit for transmitting PDSCH That is, determine to transmit the PDSCH in this time unit on the carrier corresponding to the maximum SCS), and use this time unit as the reference time unit (that is, the time unit on the carrier corresponding to the reference SCS), in the multiple scheduled carriers Determine to transmit the PDSCH in a time unit overlapping with the reference time unit on each carrier except the carrier corresponding to the largest SCS;
  • the time unit offset is based on the length of the time unit determined by the largest SCS in the SCS of multiple carriers. For example, if the time unit offset is 1, it means that it is the largest SCS in the SCS of multiple carriers. Determined time unit.
  • the time unit offset is a time unit offset determined based on the smallest SCS of the multiple carriers.
  • the time unit in which the first DCI is transmitted (that is, the time unit determined by the DCI corresponding to its SCS on its transmission carrier), the SCS of the first DCI, the smallest SCS, and the time unit offset are determined
  • the time unit for transmitting PDSCH on the carrier corresponding to the smallest SCS among the multiple carriers (it may be one or multiple, if there are multiple, the time slot for transmitting PDSCH determined on each carrier is the same) (That is, it is determined that the PDSCH is transmitted in this time unit on the carrier corresponding to the smallest SCS), and the time unit is used as the reference time unit (that is, the time unit corresponding to the carrier of the reference SCS), in the multiple scheduled carriers Determine to transmit the PDSCH in a time unit overlapping with the reference time unit on each carrier except the carrier corresponding to the minimum S
  • the time unit offset is the unit of the length of the time unit determined by the smallest SCS in the SCS of multiple carriers. For example, if the time unit offset is 1, it means that it is the smallest SCS in the SCS of multiple carriers. Determined time unit.
  • the reference SCS when the reference SCS is the SCS of the first DCI, or when the reference SCS is the smallest SCS among the SCS of the multiple carriers, it may appear on a certain carrier. For time units that overlap with the reference time unit, at this time, it is determined to transmit the PDSCH in each overlapping time unit, or it is determined to transmit the PDSCH in the first or last time unit.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset may specifically include: the time unit offset between the first DCI and the scheduled PDSCH; specifically, it may be the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located. Time unit interval between time units.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • receiving the scheduled PDSCH includes:
  • the PDSCH is received in the determined time-domain symbol set.
  • Figure 4 is a schematic diagram of the implementation process of the PDSCH transmission method on the base station side. As shown in the figure, it may include:
  • Step 401 Send a first DCI, and the first DCI is scheduled for PDSCH transmission on multiple carriers.
  • Step 402 Send the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines where the PDSCH transmission on the multiple carriers is based on the reference SCS or the respective SCS of the multiple carriers Time unit.
  • the reference SCS is one of the following SCS:
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers includes:
  • the terminal when determining that the terminal determines the time unit of PDSCH transmission on the multiple carriers according to the reference SCS or the respective SCSs of the multiple carriers, it further includes: determining that the terminal offsets according to a time unit, and referring to the SCS Or the respective SCSs of the multiple carriers determine the time unit where the PDSCH transmission on the multiple carriers is located.
  • the method when the time unit offset is indicated by the indication field in the first DCI, before sending the first DCI, the method further includes:
  • the method when the time unit offset is pre-configured by high-layer signaling, before the scheduled PDSCH is sent in the time unit for PDSCH transmission on the multiple carriers, the method further includes:
  • the time unit where the PDSCH transmission on the multiple carriers is located is determined.
  • time unit offset is pre-configured by high-level signaling (for example, RRC (Radio Resource Control)
  • RRC Radio Resource Control
  • determining that the terminal determines the time unit in which PDSCH transmission on the multiple carriers is based on a time unit offset and referring to SCS includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined The PDSCH is transmitted in the first or last time unit.
  • determining that the terminal determines the time unit in which PDSCH transmissions on the multiple carriers are located according to a time unit offset and referring to the SCS includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS of the SCSs of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as the reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in the time unit overlapping with the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, according to the time when the first DCI is transmitted Unit (that is, DCI corresponds to the time unit determined by its SCS on its transmission carrier) and the time unit offset, determine a reference time unit (that is, this reference time unit is the time unit on the carrier where the first DCI transmission is located), On each of the multiple scheduled carriers, determining to transmit the PDSCH in a time unit overlapping with the reference time unit;
  • the time unit offset is based on the length of the time unit determined by the SCS of the first DCI. For example, if the time unit offset is 1, it means that it is a time unit determined by the SCS of the first DCI.
  • the time unit offset is a time unit offset determined based on the largest SCS in the SCS of the multiple carriers.
  • the time unit of the first DCI transmission that is, the time unit determined by the DCI corresponding to its SCS on its transmission carrier
  • the SCS of the first DCI, the maximum SCS, and the time unit offset are determined in the
  • the time unit for transmitting PDSCH That is, determine to transmit the PDSCH in this time unit on the carrier corresponding to the maximum SCS), and use this time unit as the reference time unit (that is, the time unit on the carrier corresponding to the reference SCS), in the multiple scheduled carriers Determine to transmit the PDSCH in a time unit overlapping with the reference time unit on each carrier except the carrier corresponding to the largest SCS;
  • the time unit offset is based on the length of the time unit determined by the largest SCS in the SCS of multiple carriers. For example, if the time unit offset is 1, it means that it is the largest SCS in the SCS of multiple carriers. Determined time unit.
  • the time unit offset is a time unit offset determined based on the smallest SCS of the multiple carriers.
  • the time unit in which the first DCI is transmitted (that is, the time unit determined by the DCI corresponding to its SCS on its transmission carrier), the SCS of the first DCI, the smallest SCS, and the time unit offset are determined
  • the time unit for transmitting PDSCH on the carrier corresponding to the smallest SCS among the multiple carriers (it may be one or multiple, if there are multiple, the time slot for transmitting PDSCH determined on each carrier is the same) (That is, it is determined that the PDSCH is transmitted in this time unit on the carrier corresponding to the smallest SCS), and the time unit is used as the reference time unit (that is, the time unit corresponding to the carrier of the reference SCS), in the multiple scheduled carriers
  • the reference time unit that is, the time unit corresponding to the carrier of the reference SCS
  • the time unit offset is the unit of the length of the time unit determined by the smallest SCS in the SCS of multiple carriers. For example, if the time unit offset is 1, it means that it is the smallest SCS in the SCS of multiple carriers. Determined time unit.
  • the reference SCS when the reference SCS is the SCS of the first DCI, or when the reference SCS is the smallest SCS among the SCS of the multiple carriers, it may appear on a certain carrier. For time units that overlap with the reference time unit, at this time, it is determined to transmit the PDSCH in each overlapping time unit, or it is determined to transmit the PDSCH in the first or last time unit.
  • determining that the terminal determines the time unit in which PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCS of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the first The SCS of the DCI, the SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • the behavior of the base station and the terminal are equal.
  • the base station determines by itself the time unit in which the PDSCH transmission on each carrier is located, and the base station can determine by itself in which time unit the first DCI is sent.
  • the base station may determine the time unit offset between the first DCI and the scheduled PDSCH according to the time unit of the first DCI transmission determined above and the time unit of the scheduled PDSCH transmission, and then the corresponding indication in the first DCI
  • the field is set to indicate the state of this time unit offset, so that the terminal is indicated in the first DCI to determine the time unit offset used to determine the time unit of PDSCH transmission; on the terminal side, because the base station does not know where to send the first DCI and scheduled PDSCH, so it is necessary to detect the first DCI in the opportunity of transmitting DCI.
  • the time unit offset indicated in the first DCI and the time unit of receiving the first DCI When the first DCI is detected, according to the time unit offset indicated in the first DCI and the time unit of receiving the first DCI, according to Pre-defined scheduling timing to infer the time unit of PDSCH transmission (that is, according to the time unit offset, and refer to the SCS or the SCS of each scheduled carrier, determine the time unit of PDSCH transmission on multiple carriers in the above manner ); Therefore, the behavior of the base station and the terminal in determining the time unit of PDSCH transmission is different.
  • the base station does not need to determine the time unit of the PDSCH transmission completely according to the method of the terminal side, but needs to determine the time unit of the PDSCH transmission on the terminal side.
  • the time unit where the good first DCI transmission is located and the time unit where the PDSCH transmission is located are deduced from the time unit offset and notified to the terminal.
  • the behavior of the base station side may be: when the reference SCS is the SCS of the first DCI, the time unit offset is a time unit determined based on the SCS of the first DCI Offset, the base station can find a time unit defined by SCS based on the first DCI that overlaps these time units according to the time unit where PDSCH transmission is determined on multiple scheduled carriers, as a reference time unit, and determine The time unit offset between the first DCI and the reference time unit is used as the time unit offset notified to the terminal, so as to help the terminal determine the time unit offset on each of the multiple scheduled carriers according to the above method 1.
  • the PDSCH is transmitted in time units where the reference time unit overlaps;
  • the behavior of the base station side may be: when the reference SCS is the largest SCS among the SCS of the multiple carriers, the time unit offset is based on the SCS of the multiple carriers According to the time unit of the scheduled PDSCH transmission determined on each carrier, the base station finds a time unit defined based on the maximum SCS that overlaps with these time units (such as the maximum SCS). A time unit on the carrier) is used as a reference time unit, and the time unit offset between the first DCI and the reference time unit is determined as the time unit offset notified to the terminal, thereby helping the terminal to be scheduled according to the above method 2 Determine to transmit the PDSCH in a time unit overlapping the reference time unit on each of the multiple carriers;
  • the behavior of the base station side may be: when the reference SCS is the smallest SCS among the SCS of the multiple carriers, the time unit offset is based on the SCS of the multiple carriers According to the time unit of the scheduled PDSCH transmission determined on each carrier, the base station finds a time unit defined based on the minimum SCS that overlaps with these time units (such as the minimum SCS). A time unit on the carrier) is used as a reference time unit, and the time unit offset between the first DCI and the reference time unit is determined as the time unit offset notified to the terminal, thereby helping the terminal to be scheduled according to the above method 3. Determine to transmit the PDSCH in a time unit overlapping the reference time unit on each of the multiple carriers;
  • the behavior of the base station side may be: for each of the multiple carriers, the time unit offset is a time unit offset determined according to the SCS of the current carrier, and at each carrier The carrier determines a time unit offset common to multiple carriers based on the determined time unit of PDSCH transmission and the time slot interval of the first DCI, SCS, etc., as the time unit offset notified to the terminal, thereby helping the terminal follow the above method 4 On each of the multiple carriers that are scheduled, determine to transmit the PDSCH in a time unit that overlaps the reference time unit.
  • the base station determines the time unit offset by itself, and determines which time unit to send the first DCI, so that after making this decision, it can directly reuse the similar terminal side according to the time unit offset, and reference
  • the SCS or the SCS of each scheduled carrier determines the time unit where the PDSCH transmission on multiple carriers is located in the above-mentioned manner.
  • the base station may set the corresponding indication field in the first DCI to indicate the state of this time unit offset, so as to indicate to the terminal in the first DCI the time unit offset used to determine the time unit for PDSCH transmission; and the terminal side, Because the base station does not know where to send the first DCI and the scheduled PDSCH, it is necessary to detect the first DCI in the opportunity of transmitting DCI.
  • the offset according to the time unit indicated in the first DCI And the time unit of receiving the first DCI infer the time unit of PDSCH transmission according to the predefined scheduling timing (that is, according to the time unit offset, and referring to the SCS or the SCS of each scheduled carrier, it is determined according to the above method
  • the time unit of PDSCH transmission on multiple carriers therefore, the behavior of the base station and the terminal in determining the time unit of PDSCH transmission is different.
  • the base station does not need to determine the time unit completely according to the method of the terminal side.
  • the base station can determine the time unit by itself
  • the offset is notified to the terminal, and the terminal needs to obtain the time unit offset according to the notification of the base station.
  • the behavior of the base station side can be: the base station determines the time unit offset by itself, and after determining it, it can completely use the above-mentioned terminal side according to the transmission time unit of the first DCI determined by itself.
  • the method 1-4 determines the time unit where the PDSCH transmission on the scheduled carrier is located, so that the PDSCH is sent in the corresponding time unit.
  • the base station does not need to determine the time unit offset and carry it in the DCI to notify the terminal. Both the base station and the terminal have known the time unit offset , Then both the base station and the terminal determine the PDSCH transmission position based on a known time unit offset, but the base station can still adjust the time unit of PDSCH transmission, because it can be done by adjusting where the first DCI is sent. After the base station side determines the time unit of the first DCI transmission, it can use the same method (and the same way as the terminal side) to determine the time unit offset according to the time unit of the first DCI transmission. The unit and time unit offset are used to determine the time unit where the PDSCH transmission on each carrier is located, and the terminal needs to receive the first DCI time unit and the known time unit offset according to the above methods 1-4 Find the PDSCH transmission time unit on each carrier.
  • the TDRA indicator field in the DCI indicates a starting symbol (for example, the first symbol or the symbol numbered 0),
  • the transmission length for example, 8 symbols
  • a K0 1;
  • the SCS of carrier 1 is 30kHz, and the SCS of carrier 2 is 15kH.
  • the PDSCH is transmitted on the symbols and the 1-8th symbols in slot k of carrier 2.
  • a reference time slot on carrier 1 (the carrier where DCI transmission is located) is determined to be time slot 2k+K0, that is, time slot 2k+1.
  • the time slot overlapped by the reference time slot is the time slot 2k+1 on carrier 1 (because carrier 1 is the carrier where the DCI transmission is located), then it is determined that the scheduled PDSCH on carrier 1 is transmitted in the time slot 2k+1 on carrier 1
  • the specific time domain position is determined to be the 1st to 8th in the time slot 2k+1 on the carrier 1.
  • FIG. 5 is a schematic diagram of DCI scheduling time slot 1. As shown in Figure 5, the terminals are respectively on the carrier. The PDSCH is received on the 1-8th symbols in slot 2k+1 of 1, and the 1-8th symbols in slot k of carrier 2.
  • the reference time slot corresponding to the time slot where the scheduled PDSCH transmission on carrier 2 is located is the time slot 2k+1 on carrier 1, and the time slot 2k+1 on carrier 1 and the DCI transmission on carrier 1 are located
  • the time slot interval is 1 time slot)
  • the DCI carrying this TDRA indication is sent to the terminal in the time slot 2k of carrier 1, and further according to this time domain resource allocation, the 1-8th symbols in the time slot 2k+1 of carrier 1, and
  • the PDSCH is transmitted on symbols 1-8 in slot k of carrier 2.
  • the specific time domain position is determined to be the 1st to 8th in the time slot 2k+1 on carrier 1. Symbol, take the time slot 2k+1 where the scheduled PDSCH transmission on carrier 1 is located as the reference time slot, and determine the other scheduled carriers that do not correspond to the largest SCS carrier (ie, carrier 2) that overlaps this reference time slot
  • the time slot is the time slot k on carrier 2. It is determined that the scheduled PDSCH on carrier 2 is transmitted in the time slot k on carrier 2, and the specific time domain position is determined according to the SLIV in TDRA indicated in the DCI.
  • Figure 5 is a schematic diagram 1 of DCI scheduling time slots. Specifically, as shown in Figure 5, the terminals are in the first to eighth in time slot 2k+1 of carrier 1. The PDSCH is received on symbols 1 and 8 in slot k of carrier 2.
  • Figure 6 shows the schematic diagram 2 of the DCI scheduling time slot. Specifically, as shown in Figure 6, the terminal is in the first to eight symbols in the time slot 2k+3 of carrier 1, and the first to eight symbols of carrier 2 The PDSCH is received on the 1-8th symbols in the slot k+1.
  • Figure 7 is a schematic diagram 3 of the DCI scheduling time slot, as shown in Figure 7.
  • Fig. 8 is a schematic diagram 4 of the DCI scheduling time slot, as shown in Fig. 8.
  • PDSCH is sent on the symbol.
  • FIG. 9 is the schematic diagram 5 of the DCI scheduling time slot, as shown in the figure 9; the terminal receives the PDSCH on the 1-8th symbols in the time slot 2k+1 of carrier 1 and the 1-8th symbols in the time slot k+1 of carrier 2, respectively.
  • K0 based on time slots is taken as an example, and the above solution is also applicable to K0 based on sub-time slots or other time unit definition methods;
  • the SCS of carrier 1 and carrier 2 are only examples, and other SCS combinations may also be used;
  • the DCI on carrier 1 simultaneously schedules the PDSCH on carrier 1 and carrier 2 as an example, and the DCI on one carrier can schedule more carriers;
  • the scheduled carrier may include the carrier on which the DCI transmission is located or not (that is, if carrier 1 sends DCI, the DCI-scheduled carrier may include or not include carrier 1);
  • DCI schedules four carriers, two carriers correspond to 30kHz SCS, and two carriers correspond to 15kHz SCS, then refer to SCS according to the above method.
  • maximum SCS there are two carriers with reference SCS, then in the above method 2, you can directly determine the transmission time slot of the scheduled PDSCH on these two carriers, and use this time slot as a reference to determine the other two 15kHz
  • one carrier corresponds to 60kHz SCS, two carriers correspond to 30kHz SCS, and one carrier corresponds to 15kHz SCS.
  • the solutions in the embodiments are also applicable; the above methods are applicable to FDD Both (Frequency Division Duplex) and TDD (Time Division Duplex) are applicable.
  • one DCI scheduling multiple carriers is used as a description method, where DCI can be replaced with PDCCH, DCI is the bearer content of PDCCH, and different DCI formats correspond to different scheduling requirements and scenarios.
  • DCI and PDCCH can be equivalent, that is, sending a DCI is equivalent to sending a PDCCH (this PDCCH is transmitted in this DCI format), and receiving a DCI is equivalent to receiving a PDCCH (this PDCCH is transmitted in this DCI format), according to DCI performing related operations is equivalent to performing related operations based on PDCCH; among them, when BWP (BandWidth Part) is divided on a carrier, PDSCH transmission on a carrier specifically refers to PDSCH transmission on a certain BWP on this carrier This BWP is an activated BWP. Therefore, multiple carriers can also be replaced with multiple BWPs. When a DCI schedules multiple BWPs on a carrier, the above scheme is also applicable. Therefore, when the carrier is replaced with BWP, it is not The above method can be used to restrict whether multiple BWPs correspond to the same carrier or different carriers.
  • the formula It is only an example (where Ks is the number of the time slot for transmitting PDSCH). It is usually used in the case that there is no time slot offset between different carriers (that is, the timing of different carriers is synchronized and aligned). There is a time slot offset (that is, the definitions of different carriers are not synchronized or aligned. For example, the starting position of the time slot on carrier 1 does not exist with the starting position of the time slot on carrier 2, and there may be a deviation of X symbols. Shift), you can use the formula To determine the number of the time slot for transmitting the PDSCH, replace this formula with the formula in the foregoing embodiment, and the solution in the embodiment of the present disclosure can also be adopted.
  • the embodiments of the present disclosure also provide a base station side device, user equipment, PDSCH receiving device, PDSCH sending device, and computer-readable storage medium.
  • the principle of these devices to solve the problem is related to the PDSCH receiving method and PDSCH sending.
  • the methods are similar, so the implementation of these devices can refer to the implementation of the method, and the repetition will not be repeated.
  • Figure 10 is a schematic diagram of the terminal structure, as shown in the figure, including:
  • the processor 1000 is configured to read a program in the memory 1020 and execute the following process:
  • Receiving the first DCI, and the first DCI is scheduled for PDSCH transmission on multiple carriers;
  • the transceiver 1010 is configured to receive and send data under the control of the processor 1000.
  • the reference SCS is one of the following SCS:
  • receiving the scheduled PDSCH includes:
  • the PDSCH is received in the determined time-domain symbol set.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the respective SCS of the multiple carriers determines the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining the time unit where the PDSCH transmission on the multiple carriers is located includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS of the SCSs of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as the reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in the time unit overlapping with the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCSs of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1010 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 1030 may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • An embodiment of the present disclosure provides a PDSCH receiving device, including:
  • the first receiving module is configured to receive the first DCI, and the first DCI is scheduled to perform PDSCH transmission on multiple carriers;
  • a determining module configured to determine the time unit where PDSCH transmission on the multiple carriers is located according to the reference SCS or the respective SCS of the multiple carriers;
  • the second receiving module is configured to receive the scheduled PDSCH in the determined time unit on the multiple carriers.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same one or more software or hardware.
  • FIG 11 is a schematic diagram of the base station structure. As shown in the figure, the base station includes:
  • the processor 1100 is configured to read a program in the memory 1120, and execute the following process:
  • the scheduled PDSCH is sent in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines the time unit where the PDSCH transmission on the multiple carriers is based on the reference SCS or the respective SCS of the multiple carriers ;
  • the transceiver 1110 is configured to receive and send data under the control of the processor 1100.
  • the reference SCS is one of the following SCS:
  • sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers includes:
  • the method when the time unit offset is indicated by the indication field in the first DCI, before sending the first DCI, the method further includes:
  • the method when the time unit offset is pre-configured by high-layer signaling, before sending the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, the method further includes:
  • the time unit where the PDSCH transmission on the multiple carriers is located is determined.
  • the time unit is: a pre-defined time period, or sub-frame, or time slot, or sub-time slot formed by A symbols, where A is a positive integer.
  • the terminal when determining that the terminal determines the time unit of PDSCH transmission on the multiple carriers according to the reference SCS or the respective SCSs of the multiple carriers, it further includes: determining that the terminal offsets according to a time unit, and referring to the SCS Or the respective SCSs of the multiple carriers determine the time unit where the PDSCH transmission on the multiple carriers is located.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is located according to a time unit offset and referring to the SCS includes:
  • the time unit offset is a time unit offset determined based on the reference SCS, and a reference time unit based on the reference SCS is determined according to the time unit where the first DCI is transmitted and the time unit offset, On each of the multiple carriers that are scheduled, it is determined to transmit the PDSCH in a time unit overlapping with the reference time unit.
  • the PDSCH is transmitted in each overlapping time unit, or it is determined that the PDSCH is transmitted in each overlapping time unit.
  • the PDSCH is transmitted in the first or last time unit.
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and referring to the SCS includes one of the following methods:
  • the time unit offset is a time unit offset determined based on the SCS of the first DCI, based on the time unit where the first DCI is transmitted and the time unit According to the time unit offset, a reference time unit is determined, and on each of the multiple carriers that are scheduled, the PDSCH is determined to be transmitted in a time unit that overlaps the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the largest SCS of the SCSs of the multiple carriers, according to the first
  • the time unit for DCI transmission, the SCS of the first DCI, the maximum SCS, and the time unit offset determine the time unit for transmitting PDSCH on the carrier corresponding to the maximum SCS among the multiple carriers, and Using this time unit as the reference time unit, on each of the multiple scheduled carriers except the carrier corresponding to the largest SCS, determine to transmit the PDSCH in the time unit overlapping with the reference time unit; or,
  • the time unit offset is a time unit offset determined based on the smallest SCS in the SCS of the multiple carriers, and according to the first The time unit where the DCI is transmitted, the SCS of the first DCI, the minimum SCS, and the time unit offset, determine the time unit for transmitting PDSCH on the carrier corresponding to the minimum SCS among the multiple carriers, And this time unit is used as the reference time unit, and on each of the multiple scheduled carriers except the carrier corresponding to the smallest SCS, it is determined to transmit the PDSCH in the time unit that overlaps the reference time unit. .
  • determining that the terminal determines the time unit in which the PDSCH transmission on the multiple carriers is based on a time unit offset and the respective SCS of the multiple carriers includes:
  • the time unit offset is a time unit offset determined according to the SCS of the current carrier, and according to the time unit in which the first DCI is transmitted, the SCS of the first DCI , The SCS of the current carrier and the time unit offset determine the time unit for transmitting the PDSCH on the current carrier.
  • the time unit offset is the time unit offset between the first DCI and the scheduled PDSCH.
  • the time unit offset is the time unit interval between the time unit where the first DCI transmission is located and the time unit where the scheduled PDSCH transmission is located.
  • the time unit offset is determined by the indication field in the first DCI, or configured through high-layer signaling.
  • the time unit offset is shared for the PDSCH on the multiple carriers.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1110 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 when performing operations.
  • An embodiment of the present disclosure provides a PDSCH sending device, including:
  • the first sending module is configured to send a first DCI, and the first DCI schedules multiple carriers for PDSCH transmission;
  • the second sending module is configured to send the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines that the multiple carriers are on the multiple carriers according to the reference SCS or the respective SCS of the multiple carriers.
  • the time unit in which the PDSCH is transmitted is configured to send the scheduled PDSCH in the time unit for transmitting the PDSCH on the multiple carriers, where it is determined that the terminal determines that the multiple carriers are on the multiple carriers according to the reference SCS or the respective SCS of the multiple carriers.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same one or more software or hardware.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program for executing the above-mentioned PDSCH receiving method and/or PDSCH sending method.
  • the time unit for PDSCH transmission on multiple carriers scheduled by the first DCI is determined according to the reference SCS or the respective SCS of each scheduled carrier.
  • the terminal and the base station determine the scheduling timing design for PDSCH transmission on multiple carriers scheduled by one DCI, so that the time unit of PDSCH transmission on each carrier can be determined, so that the scheduled PDSCH can be sent and received.
  • the embodiment of the present disclosure provides a scheduling timing design when one DCI schedules PDSCH transmission on multiple carriers, so that it can ensure that the terminal and the base station understand the same time unit to determine the PDSCH transmission on each carrier, and ensure one DCI Schedule normal transmission during PDSCH transmission on multiple carriers.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • each module is only a division of logical functions, and can be fully or partially integrated into a physical entity during actual implementation, or can be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or one or Multiple microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种物理下行共享信道接收、发送方法及设备、装置、介质,包括:终端接收调度多个载波进行物理下行共享信道传输的下行控制信息;根据参考子载波间隔或者多个载波各自的子载波间隔,确定多个载波上的物理下行共享信道传输所在的时间单元;在多个载波上的确定的时间单元中,接收被调度的物理下行共享信道。基站发送下行控制信息,在多个载波上传输物理下行共享信道的时间单元中发送被调度的物理下行共享信道,其中,确定终端根据参考子载波间隔或者多个载波各自的子载波间隔,确定多个载波上的物理下行共享信道传输所在的时间单元。

Description

物理下行共享信道接收、发送方法及设备、装置、介质
相关申请的交叉引用
本申请主张在2020年4月30日在中国提交的中国专利申请号No.202010362370.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种物理下行共享信道接收、发送方法及设备、装置、介质。
背景技术
新的无线通信系统(即5G NR(第五代新无线接入技术,5Generation New RAT;RAT:无线接入技术,Radio Access Technology))中支持灵活的定时关系。对于PDSCH(物理下行共享信道,Physical Downlink Shared CHannel),承载其调度信息的PDCCH(物理下行控制信道,Physical Downlink Control CHannel)指示PDSCH与PDCCH之间的调度时序关系(Scheduling timing,即K0)以及PDSCH到其对应的HARQ-ACK(混合自动重传请求应答,Hybrid automatic repeat request acknowledgement)之间的反馈时序关系(HARQ-ACK timing,即K1)。
具体地,PDCCH所使用的DCI(下行控制信息,Downlink Control Information)格式中的TDRA(时域资源分配,Time Domain Resource Assignment)指示域指示PDSCH所在时隙与PDCCH(也可以说DCI,因为DCI是PDCCH的具体传输格式,两者从描述调度和反馈关系上认为等价)所在时隙的时隙偏移K0。DCI格式中的PDSCH到HARQ-ACK反馈定时(PDSCH-to-HARQ_feedback timing)指示域指示PDSCH结束到HARQ-ACK开始之间的时隙个数K1,即时隙n中传输的PDSCH在时隙n+K1中进行HARQ-ACK传输,图1为下行调度时序和HARQ-ACK反馈时序的示意图,如图1所示。
具体的,在时隙n中传输的DCI,调度在时隙
Figure PCTCN2021088547-appb-000001
中传输PDSCH,其中,K 0is是基于PDSCH的numerology(基带参数,可以包括子载波间隔在内的一些列参数)定义的,即K0=1表示的是基于PDSCH的numerology定义的一个时隙,μ PDSCH为PDSCH的子载波间隔,μ PDCCH为PDCCH(即承载这个DCI的信道)的子载波间隔。
上述公式表明,如果PDCCH和PDSCH的子载波间隔不同(比如PDCCH和PDSCH在不同的载波上传输时,即DCI跨载波调度一个载波上的PDSCH传输时),则先根据两者的SCS(子载波间隔,sub-carrier space)差异,将传输DCI的时隙n的编号转化为PDSCH对应的SCS下的一个时隙编号作为参考时隙
Figure PCTCN2021088547-appb-000002
然后在这个参考时隙
Figure PCTCN2021088547-appb-000003
的基础上,通过偏移K0个时隙得到PDSCH传输所在的时隙,图2为时隙偏移K0个时的示意图,偏移后如图2所示。
目前一个PDCCH仅能调度一个载波上的一个PDSCH传输,PDSCH和PDCCH可以在相同的载波(即本载波调度),也可以在不同的载波(即跨载波调度)。
相关技术的不足在于,当一个DCI可以同时调度多个载波上的PDSCH进行传输时,还没有方案能够根据DCI中通知的同一个调度时序(即K0)值确定多个载波上的PDSCH传输时隙。
发明内容
本公开提供了一种物理下行共享信道接收、发送方法及设备、装置、介质,用以提供当一个DCI可以同时调度多个载波上的PDSCH进行传输时,能够根据DCI中通知的同一个调度时序(即K0)值确定多个载波上的PDSCH传输时隙的技术方案。
本公开实施例中提供了一种PDSCH接收方法,包括:
接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
在所述多个载波上的确定的时间单元中,接收被调度的PDSCH。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
在确定的时域符号集合中接收PDSCH。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在所述根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传 输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
本公开实施例中提供了一种PDSCH发送方法,包括:
发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
实施中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
实施中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定 所述多个载波上的PDSCH传输所在的时间单元。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时 间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
本公开实施例中提供了一种终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
在所述多个载波上的确定的时间单元中,接收被调度的PDSCH;
收发机,用于在处理器的控制下接收和发送数据。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
在确定的时域符号集合中接收PDSCH。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在所述根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于 所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
本公开实施例中提供了一种基站,包括:
处理器,用于读取存储器中的程序,执行下列过程:
发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
收发机,用于在处理器的控制下接收和发送数据。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
实施中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
实施中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
本公开实施例中提供了一种PDSCH接收装置,包括:
第一接收模块,用于接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
确定模块,用于根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
第二接收模块,用于在所述多个载波上的确定的时间单元中,接收被调 度的PDSCH。
本公开实施例中提供了一种PDSCH发送装置,包括:
第一发送模块,用于发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
第二发送模块,用于在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述PDSCH接收方法和/或PDSCH发送方法的计算机程序。
本公开有益效果如下:
在本公开实施例提供的技术方案中,由于是根据参考SCS或者多个被调度载波各自的SCS,确定第一DCI调度的多个载波上的PDSCH传输所在的时间单元,因此可以保证终端和基站理解一致的确定出每个载波上的PDSCH传输所在时间单元,从而保证一个DCI调度多个载波上进行PDSCH传输时的正常传输。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为背景技术中下行调度时序和HARQ-ACK反馈时序的示意图;
图2为背景技术中时隙偏移K0个时的示意图;
图3为本公开实施例中的终端侧的PDSCH接收方法实施流程示意图;
图4为本公开实施例中的基站侧的PDSCH发送方法实施流程示意图;
图5为本公开实施例中的DCI调度时隙示意图1;
图6为本公开实施例中的DCI调度时隙示意图2;
图7为本公开实施例中的DCI调度时隙示意图3;
图8为本公开实施例中的DCI调度时隙示意图4;
图9为本公开实施例中的DCI调度时隙示意图5;
图10为本公开实施例中的终端结构示意图;
图11为本公开实施例中的基站结构示意图。
具体实施方式
为了增加调度的效率,节省DCI开销,面对可能需要考虑采用一个DCI调度多个载波的方式,即一个DCI同时调度在多个载波上进行PDSCH传输。考虑到多个载波可能具有不同的基带参数(numerology,如子载波间隔SCS等),不同载波上如何根据DCI中通知的同一个调度时序(即K0)值确定每个载波上的PDSCH传输时隙还没有明确的方法。
基于此,本公开实施例中提供了PDSCH接收与发送方案,方案中,当一个DCI调度多个载波上的PDSCH传输时,根据参考SCS或者根据被调度载波各自的SCS确定多个载波中每个载波上的PDSCH传输的时间单元,其中,参考SCS可以是DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
下面结合附图对本公开的具体实施方式进行说明。
在说明过程中,将分别从终端与基站侧的实施进行说明,然后还将给出二者配合实施的实例以更好地理解本公开实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当终端与基站分开实施时,其也各自解决终端侧、基站侧的问题,而二者结合使用时,会获得更好的技术效果。
图3为终端侧的PDSCH接收方法实施流程示意图,如图所示,可以包括:
步骤301、接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
步骤302、根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
步骤303、在所述多个载波上的确定的时间单元中,接收被调度的PDSCH。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多 个载波的SCS的最小值。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在所述根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
具体实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
具体实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时 间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
具体的,可以如下:
方式1:当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)以及所述时间单元偏移,确定一个参考时间单元(即这个参考时间单元是第一DCI传输所在的载波上的时间单元),在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
其中,时间单元偏移是以第一DCI的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以第一DCI的SCS确定的时间单元。
方式2:当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波(可能是一个,也可能是多个,如果是多个,在每个载波上确定的传输PDSCH的时隙是相同的)上传输PDSCH的时间单元(即确定在对应所述最大SCS的载波上在此时间单元中传输PDSCH),并以此时间单元作为参考时间单元(即对应参考SCS的载波上的时间单元),在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
其中,时间单元偏移是以多个载波的SCS中最大的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以多个载波的SCS中最大的SCS确定的时间单元。
方式3:当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波(可能是一个,也可能是多个,如果是多个,在每个载波上确定的传输PDSCH的时隙是相同的)上传输PDSCH的时间单元(即确定在对应所述最小SCS的载波上在此时间单元中传输PDSCH),并以此时间单元作为参考时间单元(即对应参考SCS的载波上的时间单元),在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
其中,时间单元偏移是以多个载波的SCS中最小的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以多个载波的SCS中最小的SCS确定的时间单元。
具体实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体的,在上述方式1和方式3中,当存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
事实上,当所述参考SCS为所述第一DCI的SCS时,或,当所述参考SCS为所述多个载波的SCS中最小的SCS时,实际应用中,满足这两个条件会出现存在多个与参考时间单元重叠的时间单元。
也即,当所述参考SCS为所述第一DCI的SCS时,或,当所述参考SCS为所述多个载波的SCS中最小的SCS时,可能会出现在某个载波上,存在多个与参考时间单元重叠的时间单元,此时确定在每一个重叠的时间单元中都 传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体实施中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
具体实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
具体实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
具体的,时间单元偏移具体可以包括:所述第一DCI与被调度的PDSCH之间的时间单元偏移;具体的,可以是第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
具体实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
具体实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
实施中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
在确定的时域符号集合中接收PDSCH。
图4为基站侧的PDSCH发送方法实施流程示意图,如图所示,可以包括:
步骤401、发送第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
步骤402、在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定 所述多个载波上的PDSCH传输所在的时间单元。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
实施中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
具体实施中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
具体实施中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
具体的,当时间单元偏移是由高层信令(例如RRC(无线资源控制,Radio Resource Control))预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,还包括:
根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
具体实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
具体实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述 参考时间单元重叠的时间单元中传输PDSCH。
具体的,可以按如下方式实施:
方式1:当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)以及所述时间单元偏移,确定一个参考时间单元(即这个参考时间单元是第一DCI传输所在的载波上的时间单元),在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
其中,时间单元偏移是以第一DCI的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以第一DCI的SCS确定的时间单元。
方式2:当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波(可能是一个,也可能是多个,如果是多个,在每个载波上确定的传输PDSCH的时隙是相同的)上传输PDSCH的时间单元(即确定在对应所述最大SCS的载波上在此时间单元中传输PDSCH),并以此时间单元作为参考时间单元(即对应参考SCS的载波上的时间单元),在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
其中,时间单元偏移是以多个载波的SCS中最大的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以多个载波的SCS中最大的SCS确定的时间单元。
方式3:当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元(即DCI在其传输载波上对应其SCS确定的时间单元)、所述第一DCI的SCS、所述最小的SCS以及所述时 间单元偏移,确定在所述多个载波中对应所述最小SCS的载波(可能是一个,也可能是多个,如果是多个,在每个载波上确定的传输PDSCH的时隙是相同的)上传输PDSCH的时间单元(即确定在对应所述最小SCS的载波上在此时间单元中传输PDSCH),并以此时间单元作为参考时间单元(即对应参考SCS的载波上的时间单元),在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
其中,时间单元偏移是以多个载波的SCS中最小的SCS确定的时间单元的长度为单位的,例如时间单元偏移是1,则表示是1个以多个载波的SCS中最小的SCS确定的时间单元。
具体实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体的,上述方式1和方式3中,当存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
事实上,当所述参考SCS为所述第一DCI的SCS时,或,当所述参考SCS为所述多个载波的SCS中最小的SCS时,实际应用中,满足这两个条件会出现存在多个与参考时间单元重叠的时间单元。
也即,当所述参考SCS为所述第一DCI的SCS时,或,当所述参考SCS为所述多个载波的SCS中最小的SCS时,可能会出现在某个载波上,存在多个与参考时间单元重叠的时间单元,此时确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
具体实施中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
方式4:针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
具体实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
关于传输PDSCH的时间单元、时间单元偏移的实施中,基站的行为和终端是对等的。
具体的,如果时间单元偏移是通过DCI通知的:
一种实现方式中:基站是自行确定每个载波上PDSCH传输所在的时间单元的,并且基站可以自行确定在哪个时间单元发送第一DCI。基站可以根据上述决策的第一DCI传输的时间单元以及被调度的PDSCH传输的时间单元,确定第一DCI和被调度的PDSCH之间的时间单元偏移,并将第一DCI中的对应的指示域设置为指示这个时间单元偏移的状态,从而在第一DCI中向终端指示用于确定PDSCH传输所在时间单元的时间单元偏移;而终端侧,因为并不知道基站要在哪里发送第一DCI和被调度的PDSCH,所以需要在传输DCI的机会中检测第一DCI,当检测到第一DCI时,根据第一DCI中指示的时间单元偏移以及接收到第一DCI的时间单元,按照预先定义好的调度时序来推断出PDSCH传输所在的时间单元(即根据时间单元偏移,以及参考SCS或被调度的各载波的SCS,按照上述方式确定多个载波上的PDSCH传输所在的时间单元);所以基站和终端确定PDSCH传输所在时间单元的行为是有所不同的,基站并不需要完全按照终端侧的方式去确定,而是需要按照终端侧确定PDSCH传输所在时间单元的方式,根据决定好的第一DCI传输所在的时间单元和PDSCH传输所在的时间单元,反推出时间单元偏移并通知给终端。
比如当终端采用上述方式1时,基站侧的行为可以是:当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,基站可以根据在被调度的多个载波上确定的PDSCH传 输所在的时间单元,找到与这些时间单元都重叠的一个基于第一DCI的SCS定义的时间单元,作为参考时间单元,并确定第一DCI和参考时间单元之间的时间单元偏移,作为通知给终端的时间单元偏移,从而帮助终端按照上述方式1在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
比如当终端采用上述方式2时,基站侧的行为可以是:当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,基站根据每个载波上确定的被调度的PDSCH传输所在的时间单元,找到与这些时间单元都重叠的一个基于最大SCS定义的时间单元(比如最大SCS的载波上的一个时间单元),作为参考时间单元,并确定第一DCI和参考时间单元之间的时间单元偏移,作为通知给终端的时间单元偏移,从而帮助终端按照上述方式2在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
比如当终端采用上述方式3时,基站侧的行为可以是:当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,基站根据每个载波上确定的被调度的PDSCH传输所在的时间单元,找到与这些时间单元都重叠的一个基于最小SCS定义的时间单元(比如最小SCS的载波上的一个时间单元),作为参考时间单元,并确定第一DCI和参考时间单元之间的时间单元偏移,作为通知给终端的时间单元偏移,从而帮助终端按照上述方式3在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;
比如当终端采用上述方式4时,基站侧的行为可以是:针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,在每个载波上根据确定的PDSCH传输所在时间单元与第一DCI的时隙间隔、SCS等信息确定多个载波共同的一个时间单元偏移,作为通知给终端的时间单元偏移,从而帮助终端按照上述方式4在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
另一种实现方式中:基站是自行确定时间单元偏移,并且自行确定在哪个时间单元发送第一DCI,从而在做了这个决策之后,可以直接重用类似终端侧根据时间单元偏移,以及参考SCS或被调度的各载波的SCS,按照上述方式确定多个载波上的PDSCH传输所在的时间单元。基站可以将第一DCI中的对应的指示域设置为指示这个时间单元偏移的状态,从而在第一DCI中向终端指示用于确定PDSCH传输所在时间单元的时间单元偏移;而终端侧,因为并不知道基站要在哪里发送第一DCI和被调度的PDSCH,所以需要在传输DCI的机会中检测第一DCI,当检测到第一DCI时,根据第一DCI中指示的时间单元偏移以及接收到第一DCI的时间单元,按照预先定义好的调度时序来推断出PDSCH传输所在的时间单元(即根据时间单元偏移,以及参考SCS或被调度的各载波的SCS,按照上述方式确定多个载波上的PDSCH传输所在的时间单元);所以基站和终端确定PDSCH传输所在时间单元的行为是有所不同的,基站并不需要完全按照终端侧的方式去确定,基站可以自行确定时间单元偏移并通知给终端,而终端则是需要根据基站的通知得到时间单元偏移。
比如当终端采用上述方式1-4时,基站侧的行为可以是:基站自行确定时间单元偏移,在确定了之后,可以根据其自身确定的第一DCI的传输时间单元,完全沿用上述终端侧的方式1-4确定被调度的载波上的PDSCH传输所在的时间单元,从而在对应的时间单元中发送PDSCH。
如果时间单元偏移是一个高层信令预先配置的固定值,则基站就不需要确定出这个时间单元偏移并且携带在DCI中通知给终端,基站和终端对时间单元偏移都是已知的,那么基站和终端都是根据一个已经知道的时间单元偏移来确定PDSCH传输位置的,但基站仍旧可以调整PDSCH传输的时间单元,因为通过调整在哪发第一DCI就能做到了,具体的基站侧在确定了第一DCI传输的时间单元之后,就可以按照上述基站自行确定时间单元偏移的相同方式(及采用同终端侧的方式1-4的方式)来根据第一DCI传输的时间单元和时间单元偏移,来确定每个载波上的PDSCH传输所在的时间单元,而终端则需要根据接收到第一DCI的时间单元,以及已知的时间单元偏移,按照上述方式1-4找到每个载波上的PDSCH传输时间单元。
下面通过实例进行说明。
假设载波1上时隙2k中存在一个DCI调度载波1和载波2上进行PDSCH传输,该DCI中的TDRA指示域指示一个起始符号(例如为第一个符号,或编号为0的符号)、传输长度(例如为8个符号)以及一个K0=1;载波1的SCS为30kHz,载波2的SCS为15kH在,以一个时间单元被定义为一个时隙为例,则可以按如下方式实施:
一、方式1:
以DCI的SCS为参考SCS,确定K0是以30kHz的时隙为单位的,即K0=1表示的是30kH SCS的载波上的一个时隙的长度,则:
基站侧:
希望在时隙2k中发送一个DCI调度在载波1上的时隙2k+1中以及载波2上的时隙k中传输PDSCH,则根据类似终端确定PDSCH传输所在时隙的方式(即参考载波1上的SCS,则载波1和载波2上被调度的PDSCH传输所在时隙对应的参考时隙是载波1上的时隙2k+1,而载波1上的时隙2k+1与载波1上的DCI传输所在的时隙间隔1个时隙),可以确定需要指示K0=1,从而设置DCI中的TDRA指示域指示一个起始符号为第一个符号、传输长度为8个符号、且K0=1的组合,将携带这个TDRA指示的DCI在载波1的时隙2k中发送给终端,并进一步根据这样的时域资源分配,分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k中的第1-8个符号上发送PDSCH。
终端侧:
根据DCI传输所在的时隙2k以及K0,确定载波1(DCI传输所在载波)上的一个参考时隙为时隙2k+K0即时隙2k+1,基于这个参考时隙,确定载波1上与这个参考时隙重叠的时隙即载波1上的时隙2k+1(因为载波1就是DCI传输所在的载波),则确定载波1上被调度的PDSCH在载波1上的时隙2k+1中传输,进一步根据DCI中指示的TDRA中的SLIV(起始符号和传输长度,Start and length indicator value),确定其具体的时域位置就是载波1上的时隙2k+1中的第1到8个符号,确定载波2上与这个参考时隙重叠的时隙即载波2上的时隙k,则确定载波2上被调度的PDSCH在载波2上的时隙k中传 输,进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波2上的时隙k中的第1到8个符号,图5为DCI调度时隙示意图1,具体如图5所示,终端分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k中的第1-8个符号上接收PDSCH。
二、方式2:
以载波1和载波2的SCS中的最大SCS作为参考SCS(载波1的SCS),确定K0是以30kHz的时隙为单位的,即K0=1表示的是30kH SCS的载波上的一个时隙的长度,则:
基站侧:
希望在时隙2k中发送一个DCI调度在载波1上的时隙2k+1中以及载波2上的时隙k中传输PDSCH,则根据类似终端确定PDSCH传输所在时隙的方式(即参考载波1上的SCS,则载波2上被调度的PDSCH传输所在时隙对应的参考时隙是载波1上的时隙2k+1,而载波1上的时隙2k+1与载波1上的DCI传输所在的时隙间隔1个时隙),可以确定需要指示K0=1,从而设置DCI中的TDRA指示域指示一个起始符号为第一个符号、传输长度为8个符号、且K0=1的组合,将携带这个TDRA指示的DCI在载波1的时隙2k中发送给终端,并进一步根据这样的时域资源分配,分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k中的第1-8个符号上发送PDSCH。
终端侧:
确定被调度的载波中载波1的SCS最大,则以被调度的载波1为参考,根据DCI传输所在的时隙2k、K0以及DCI的SCS(μ PDCCH=1)和载波1上被调度的PDSCH的SCS(μ PDSCH=1),按照公式
Figure PCTCN2021088547-appb-000004
确定载波1上被调度的PDSCH传输所在时隙为载波1上的时隙
Figure PCTCN2021088547-appb-000005
实际上因为DCI就在载波1上,所以DCI与载波1上被调度的PDSCH的SCS相同,则公式中
Figure PCTCN2021088547-appb-000006
因此也可以直接根据DCI所在时隙2k以及K1 来确定,进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波1上的时隙2k+1中的第1到8个符号,以载波1上的被调度PDSCH传输所在的时隙2k+1为参考时隙,确定被调度的载波中的其他不对应最大SCS的载波(即载波2)上与这个参考时隙重叠的时隙即载波2上的时隙k,则确定载波2上被调度的PDSCH在载波2上的时隙k中传输,进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波2上的时隙k中的第1到8个符号,图5为DCI调度时隙示意图1,具体如图5所示,终端分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k中的第1-8个符号上接收PDSCH。
三、方式3:
以载波1和载波2的SCS中的最小SCS作为参考SCS(载波2的SCS),确定K0是以15kHz的时隙为单位的,即K0=1表示的是15kH SCS的载波上的一个时隙的长度,则:
1、第一种方式:
预先约定与根据参考SCS确定的参考时隙重叠的其他载波上的时隙为多个时,确定在重叠的最后一个时隙中传输PDSCH,则:
基站侧:
希望在时隙2k中发送一个DCI调度在载波1上的时隙2k+3中以及载波2上的时隙k+1中传输PDSCH,则根据类似终端确定PDSCH传输所在时隙的方法(即根据载波1上的DCI(μ PDCCH=1)调度载波2上的PDSCH(μ PDSCH=0)的调度时序设计
Figure PCTCN2021088547-appb-000007
可以确定当K0=1是满足载波1上的DCI可以调度载波2上的时隙k+1中的PDSCH,且载波2上的时隙k+1作为参考时隙时,载波1上的时隙2k+3是最后一个与之重叠的时隙,因此载波2上的PDSCH是在时隙2k+3中传输),可以确定需要指示K0=1,从而设置DCI中的TDRA指示域指示一个起始符号为第一个符号、传输长度为8个符号、且K0=1的组合,将携带这个TDRA指示的DCI在载波1的时隙2k中发送 给终端,并进一步根据这样的时域资源分配,分别在载波1的时隙2k+3中的第1-8个符号、以及载波2的时隙k+1中的第1-8个符号上发送PDSCH。
终端侧:
确定被调度的载波中载波2的SCS最小,则以被调度的载波2为参考,根据DCI传输所在的时隙2k、K0以及DCI的SCS(μ PDCCH=1)和载波2上被调度的PDSCH的SCS(μ PDSCH=0),按照公式
Figure PCTCN2021088547-appb-000008
确定载波2上被调度的PDSCH传输所在时隙为载波2上的时隙
Figure PCTCN2021088547-appb-000009
进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波2上的时隙k+1中的第1到8个符号,以载波2上的被调度PDSCH传输所在的时隙k+1为参考时隙,确定被调度的载波中的其他不对应最小SCS的载波(即载波1)上与这个参考时隙重叠的最后一个时隙即载波1上的时隙2k+3,则确定载波1上被调度的PDSCH在载波1上的时隙2k+3中传输,进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波1上的时隙2k+3中的第1到8个符号,图6为DCI调度时隙示意图2,具体如图6所示,终端分别在载波1的时隙2k+3中的第1-8个符号、以及载波2的时隙k+1中的第1-8个符号上接收PDSCH。
2、第二种方式:
预先约定与根据参考SCS确定的参考时隙重叠的其他载波上的时隙为多个时,确定在重叠的第一个时隙中传输PDSCH,则,具体的过程类似上述第一种方式,不再赘述,二者不同在于在载波1上确定的与载波2上的参考时隙k+1重叠的第一个时隙为时隙2k+2,即载波1上被调度的PDSCH在时隙2k+2中传输,图7为DCI调度时隙示意图3,具体如图7所示。
3、第三种方式:
预先约定与根据参考SCS确定的参考时隙重叠的其他载波上的时隙为多个时,确定在重叠的每一个时隙中都传输PDSCH,则,具体的过程类似上述 第一种方式,不再赘述,二者不同在于在载波1上确定的与载波2上的参考时隙k+1重叠的时隙为时隙2k+2以及2k+3,即载波1上被调度的PDSCH有两个,分别在时隙2k+2和2k+3中传输,图8为DCI调度时隙示意图4,具体如图8所示。
四、方式4:
分别对载波1和载波2,根据各自的SCS按照相关技术中的PDCCH调度PDSCH的调度时序设计确定载波1和载波2上PDSCH传输所在的时隙,则:
基站侧:
希望在时隙2k中发送一个DCI调度在载波1上的时隙2k+1中以及载波2上的时隙k+1中传输PDSCH,则根据调度时序的设计(即
Figure PCTCN2021088547-appb-000010
中,根据每个载波上的μ PDSCH与μ PDCCH的值,确定K0=1时可以实现调度载波1上的时隙2k+1以及载波2上的时隙k+1),可以确定需要指示K0=1,从而设置DCI中的TDRA指示域指示一个起始符号为第一个符号、传输长度为8个符号、且K0=1的组合,将携带这个TDRA指示的DCI在载波1的时隙2k中发送给终端,并进一步根据这样的时域资源分配,分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k+1中的第1-8个符号上发送PDSCH。
终端侧:
根据DCI传输所在的时隙2k、K0以及DCI的SCS(μ PDCCH=1)和载波1上被调度的PDSCH的SCS(μ PDSCH=1),按照公式
Figure PCTCN2021088547-appb-000011
确定载波1上被调度的PDSCH传输所在时隙为载波1上的时隙
Figure PCTCN2021088547-appb-000012
实际上因为DCI就在载波1上,所以DCI与载波1上被调度的PDSCH的SCS相 同,则公式中
Figure PCTCN2021088547-appb-000013
因此也可以直接根据DCI所在时隙2k以及K1来确定,进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波1上的时隙2k+1中的第1到8个符号;根据DCI传输所在的时隙2k、K0以及DCI的SCS(μ PDCCH=1)和载波2上被调度的PDSCH的SCS(μ PDSCH=0),按照公式
Figure PCTCN2021088547-appb-000014
确定载波2上被调度的PDSCH传输所在时隙为载波2上的时隙
Figure PCTCN2021088547-appb-000015
进一步根据DCI中指示的TDRA中的SLIV,确定其具体的时域位置就是载波2上的时隙k+1中的第1到8个符号,图9为DCI调度时隙示意图5,具体如图9所示;终端分别在载波1的时隙2k+1中的第1-8个符号、以及载波2的时隙k+1中的第1-8个符号上接收PDSCH。
需要说明的,上述实施例中,仅以基于时隙的K0为例,对于基于子时隙或者其他时间单元定义方式的K0,上述方案同样适用;
上述实施例中,载波1和载波2的SCS仅为示例,还可以是其他的SCS组合;
载波1上的DCI同时调度载波1和载波2上的PDSCH也为示例,还可以是一个载波上的DCI调度更多个载波;
被调度的载波可以包含DCI传输所在的载波或者不包含(即如果是载波1发送DCI,DCI调度的载波可以包含或者不包含载波1);
被调度的多个载波中可能存在2个或者以上的载波具有相同的SCS,例如DCI调度4个载波,有2个载波对应30kHz SCS,有2个载波对应15kHz SCS,则按照上述方式参考SCS是最大SCS时,有两个载波具有参考SCS,则在上述方式2中,可以直接先确定这两个载波上被调度的PDSCH的传输时隙,并以这个时隙为参考,确定其他两个15kHz上的传输PDSCH的时隙;还可能是1个载波对应60kHz SCS,两个载波对应30kHz SCS,一个载波对 应15kHz SCS等,上述各种组合中,实施例中的方案同样适用;上述方式对FDD(频分复用,Frequency Division Duplex)和TDD(时分复用,Time Division Duplex)都适用。
需要说明的,本公开实施例中以一个DCI调度多个载波作为一种描述方式,其中,DCI可以替换为PDCCH,DCI是PDCCH的承载内容,不同的DCI格式对应了不同的调度需求和场景,因此在传输上,DCI和PDCCH可以等价,即发送一个DCI等同于发送一个PDCCH(这个PDCCH使用这个DCI格式传输),接收一个DCI等同于接收一个PDCCH(这个PDCCH使用这个DCI格式传输),根据DCI执行相关操作等同于根据PDCCH执行相关操作;其中,在一个载波上划分了BWP(带宽部分,BandWidth Part)时,一个载波上的PDSCH传输具体是指这个载波上的某个BWP上的PDSCH传输,这个BWP是激活的BWP,因此,多个载波也可以替换为多个BWP,当一个DCI调度一个载波上的多个BWP时,上述方案同样适用,因此这里将载波替换为BWP时,并不限制多个BWP是对应同一个载波还是不同载波的,都可以使用上述方式。
实施例中,当DCI的SCS和被调度的PDSCH所在载波的SCS不同时,公式
Figure PCTCN2021088547-appb-000016
仅为示例(其中Ks为确定的传输PDSCH的时隙编号),通常应用于不同载波之间没有时隙偏移的情况(即不同载波的定时是同步、对齐的情况),当不同载波之间存在时隙偏移(即不同载波的定义不同步、不对齐,例如载波1上的时隙的起始位置并不与载波2上的时隙的起始位置存在,可能存在X个符号的偏移),则可以使用公式
Figure PCTCN2021088547-appb-000017
确定的传输PDSCH的时隙编号,将这个公式替换上述实施例中的公式,同样可以采用本公开实施例中的方案。
基于同一发明构思,本公开实施例中还提供了一种基站侧设备、用户设备、PDSCH接收装置、PDSCH发送装置、计算机可读存储介质,由于这些 设备解决问题的原理与PDSCH接收方法、PDSCH发送方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
图10为终端结构示意图,如图所示,包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
在所述多个载波上的确定的时间单元中,接收被调度的PDSCH;
收发机1010,用于在处理器1000的控制下接收和发送数据。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
在确定的时域符号集合中接收PDSCH。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在所述根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所 述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定 所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
本公开实施例中提供了一种PDSCH接收装置,包括:
第一接收模块,用于接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
确定模块,用于根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
第二接收模块,用于在所述多个载波上的确定的时间单元中,接收被调度的PDSCH。
具体实施可以参见终端侧PDSCH接收方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图11为基站结构示意图,如图所示,基站中包括:
处理器1100,用于读取存储器1120中的程序,执行下列过程:
发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
收发机1110,用于在处理器1100的控制下接收和发送数据。
实施中,所述参考SCS为以下SCS之一:
DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
实施中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
实施中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
实施中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
实施中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
实施中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
实施中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
实施中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
实施中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
实施中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
实施中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。 处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
本公开实施例中提供了一种PDSCH发送装置,包括:
第一发送模块,用于发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
第二发送模块,用于在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
具体实施可以参见基站侧PDSCH发送方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述PDSCH接收方法和/或PDSCH发送方法的计算机程序。
具体实施可以参见终端侧PDSCH接收方法和/或基站侧PDSCH发送方法的实施。
综上所述,在本公开实施例提供的技术方案中,根据参考SCS或者每个被调度载波各自的SCS,确定第一DCI调度的多个载波上的PDSCH传输所在的时间单元。
具体的,终端和基站确定一个DCI调度的多个载波上的PDSCH传输时的调度时序设计,从而可以确定出每个载波上的PDSCH传输所在时间单元,从而可以进行被调度的PDSCH的收发。
本公开实施例给出了一种一个DCI调度多个载波上的PDSCH传输时的调度时序设计,从而可以保证终端和基站理解一致的确定出每个载波上的PDSCH传输所在时间单元,保证一个DCI调度多个载波上进行PDSCH传输时的正常传输。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或 结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通 过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (63)

  1. 一种物理下行共享信道PDSCH接收方法,包括:
    接收第一下行控制信息DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
    根据参考子载波间隔SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
    在所述多个载波上的确定的时间单元中,接收被调度的PDSCH。
  2. 如权利要求1所述的方法,其中,所述参考SCS为以下SCS之一:
    DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
  3. 如权利要求1所述的方法,其中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
    分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
    在确定的时域符号集合中接收PDSCH。
  4. 如权利要求1所述的方法,其中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
  5. 如权利要求1至4任一所述的方法,其中,在所述根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  6. 如权利要求5所述的方法,其中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  7. 如权利要求6所述的方法,其中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  8. 如权利要求7所述的方法,其中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
    当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  9. 如权利要求7所述的方法,其中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  10. 如权利要求5所述的方法,其中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
  11. 如权利要求5至10任一所述的方法,其中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
  12. 如权利要求11所述的方法,其中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
  13. 如权利要求5至10任一所述的方法,其中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
  14. 如权利要求5至10任一所述的方法,其中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
  15. 一种PDSCH发送方法,包括:
    发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
    在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  16. 如权利要求15所述的方法,其中,所述参考SCS为以下SCS之一:
    DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
  17. 如权利要求15所述的方法,其中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
    分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
  18. 如权利要求15所述的方法,其中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
    确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
  19. 如权利要求15所述的方法,其中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
    根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  20. 如权利要求15所述的方法,其中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
  21. 如权利要求15至20任一所述的方法,其中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  22. 如权利要求21所述的方法,其中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  23. 如权利要求22所述的方法,其中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  24. 如权利要求22所述的方法,其中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以 下方式之一:
    当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  25. 如权利要求24所述的方法,其中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  26. 如权利要求21所述的方法,其中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传 输PDSCH的时间单元。
  27. 如权利要求21至26任一所述的方法,其中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
  28. 如权利要求27所述的方法,其中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
  29. 如权利要求21至26任一所述的方法,其中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
  30. 如权利要求21至26任一所述的方法,其中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
  31. 一种终端,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
    根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
    在所述多个载波上的确定的时间单元中,接收被调度的PDSCH;
    收发机,用于在处理器的控制下接收和发送数据。
  32. 如权利要求31所述的终端,其中,所述参考SCS为以下SCS之一:
    DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
  33. 如权利要求31所述的终端,其中,在所述多个载波上的确定的时间单元中,接收被调度的PDSCH,包括:
    分别在所述多个载波上的每个载波上,在确定的时间单元中,根据所述第一DCI中的指示域确定的起始符号和传输长度,确定PDSCH传输的时域符号集合;
    在确定的时域符号集合中接收PDSCH。
  34. 如权利要求31所述的终端,其中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
  35. 如权利要求31至34任一所述的终端,其中,在所述根据参考SCS 或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  36. 如权利要求35所述的终端,其中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  37. 如权利要求36所述的终端,其中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  38. 如权利要求37所述的终端,其中,根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
    当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单 元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  39. 如权利要求37所述的终端,其中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  40. 如权利要求35所述的终端,其中,根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
  41. 如权利要求35至40任一所述的终端,其中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
  42. 如权利要求41所述的终端,其中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
  43. 如权利要求35至40任一所述的终端,其中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
  44. 如权利要求35至40任一所述的终端,其中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
  45. 一种基站,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
    在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其 中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
    收发机,用于在处理器的控制下接收和发送数据。
  46. 如权利要求45所述的基站,其中,所述参考SCS为以下SCS之一:
    DCI传输对应的SCS、被调度的多个载波的SCS的最大值、被调度的多个载波的SCS的最小值。
  47. 如权利要求45所述的基站,其中,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,包括:
    分别在所述多个载波上的每个载波上,在传输PDSCH的时间单元中,在所述第一DCI中的指示域所指示的起始符号和传输长度组成的时域符号集合中,发送PDSCH。
  48. 如权利要求45所述的基站,其中,当时间单元偏移是由第一DCI中的指示域所指示时,在发送第一DCI之前,进一步包括:
    确定由第一DCI调度的多个载波上的PDSCH在每个载波上传输所在的时间单元,并基于所述时间单元,以及参考SCS或者被调度的多个载波各自的SCS,确定所述第一DCI中所指示的时间单元偏移。
  49. 如权利要求45所述的基站,其中,当时间单元偏移是由高层信令预先配置时,在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH之前,进一步包括:
    根据时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  50. 如权利要求45所述的基站,其中,所述时间单元为:预先定义的A个符号构成的时间段、或子帧、或时隙、或子时隙,其中,A为正整数。
  51. 如权利要求45至50任一所述的基站,其中,在确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元时,进一步包括:确定终端根据一个时间单元偏移,以及参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  52. 如权利要求51所述的基站,其中,确定终端根据一个时间单元偏移, 以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    所述时间单元偏移是基于所述参考SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个基于所述参考SCS的参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  53. 如权利要求52所述的基站,其中,当在被调度的多个载波中的每个载波上,存在多个与所述参考时间单元重叠的时间单元时,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  54. 如权利要求52所述的基站,其中,确定终端根据一个时间单元偏移,以及参考SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括以下方式之一:
    当所述参考SCS为所述第一DCI的SCS时,所述时间单元偏移为基于所述第一DCI的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元以及所述时间单元偏移,确定一个参考时间单元,在被调度的多个载波中的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最大的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最大的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最大SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最大SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多个载波中的除了对应最大SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH;或,
    当所述参考SCS为所述多个载波的SCS中最小的SCS时,所述时间单元偏移为基于所述多个载波的SCS中最小的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、所述最小的SCS以及所述时间单元偏移,确定在所述多个载波中对应所述最小SCS的载波上传输PDSCH的时间单元,并以此时间单元作为参考时间单元,在被调度的多 个载波中的除了对应所述最小SCS的载波之外的每个载波上,确定在与所述参考时间单元重叠的时间单元中传输PDSCH。
  55. 如权利要求54所述的基站,其中,若存在多个与所述参考时间单元重叠的时间单元,确定在每一个重叠的时间单元中都传输PDSCH,或者,确定在其中第一个或最后一个时间单元中传输PDSCH。
  56. 如权利要求51所述的基站,其中,确定终端根据一个时间单元偏移,以及所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元,包括:
    针对所述多个载波中的每个载波,所述时间单元偏移为根据当前载波的SCS确定的时间单元偏移,根据所述第一DCI传输所在的时间单元、所述第一DCI的SCS、当前载波的SCS以及所述时间单元偏移,确定当前载波上传输PDSCH的时间单元。
  57. 如权利要求51至56任一所述的基站,其中,所述时间单元偏移为所述第一DCI与被调度的PDSCH之间的时间单元偏移。
  58. 如权利要求57所述的基站,其中,所述时间单元偏移为第一DCI传输所在的时间单元与被调度的PDSCH传输所在的时间内单元之间的时间单元间隔。
  59. 如权利要求51至56任一所述的基站,其中,所述时间单元偏移是由所述第一DCI中的指示域确定的,或者是通过高层信令配置的。
  60. 如权利要求51至56任一所述的基站,其中,所述时间单元偏移对所述多个载波上的PDSCH是共享的。
  61. 一种PDSCH接收装置,包括:
    第一接收模块,用于接收第一DCI,所述第一DCI调度在多个载波上进行PDSCH传输;
    确定模块,用于根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元;
    第二接收模块,用于在所述多个载波上的确定的时间单元中,接收被调度的PDSCH。
  62. 一种PDSCH发送装置,包括:
    第一发送模块,用于发送第一DCI,所述第一DCI调度多个载波进行PDSCH传输;
    第二发送模块,用于在所述多个载波上传输PDSCH的时间单元中发送被调度的PDSCH,其中,确定终端根据参考SCS或者所述多个载波各自的SCS,确定所述多个载波上的PDSCH传输所在的时间单元。
  63. 一种计算机可读存储介质,所述计算机可读存储介质存储有执行权利要求1至30任一所述方法的计算机程序。
PCT/CN2021/088547 2020-04-30 2021-04-21 物理下行共享信道接收、发送方法及设备、装置、介质 WO2021218719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21796881.7A EP4145930A4 (en) 2020-04-30 2021-04-21 RECEIVING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, TRANSMITTING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, APPARATUS AND MEDIUM
US17/922,341 US20230180250A1 (en) 2020-04-30 2021-04-21 Physical downlink shared channel reception method and device, physical downlink shared channel transmission method and device, apparatus and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010362370.5 2020-04-30
CN202010362370.5A CN113596996B (zh) 2020-04-30 2020-04-30 物理下行共享信道接收、发送方法及设备、装置、介质

Publications (1)

Publication Number Publication Date
WO2021218719A1 true WO2021218719A1 (zh) 2021-11-04

Family

ID=78237159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088547 WO2021218719A1 (zh) 2020-04-30 2021-04-21 物理下行共享信道接收、发送方法及设备、装置、介质

Country Status (4)

Country Link
US (1) US20230180250A1 (zh)
EP (1) EP4145930A4 (zh)
CN (2) CN113596996B (zh)
WO (1) WO2021218719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036282A1 (en) * 2022-08-11 2024-02-15 Apple Inc. Pdsch processing time consideration for multi-cell pdsch scheduling with a single dci

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636616A (zh) * 2018-06-22 2019-12-31 华为技术有限公司 无线通信方法及装置
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460705A (zh) * 2017-03-23 2022-12-09 苹果公司 基站和用户设备的基带处理器及方法
CN109842477B (zh) * 2017-11-29 2022-08-02 中兴通讯股份有限公司 信息解码、码本处理方法及装置、存储介质、处理器
CN114142982A (zh) * 2018-07-12 2022-03-04 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备
CN113543321B (zh) * 2020-04-15 2024-04-05 大唐移动通信设备有限公司 Harq-ack反馈时序的确定方法及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636616A (zh) * 2018-06-22 2019-12-31 华为技术有限公司 无线通信方法及装置
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145930A4 *
ZTE CORPORATION: "Remaining issues on cross-carrier scheduling", 3GPP DRAFT; R1-1911974, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823155 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036282A1 (en) * 2022-08-11 2024-02-15 Apple Inc. Pdsch processing time consideration for multi-cell pdsch scheduling with a single dci

Also Published As

Publication number Publication date
CN113596996B (zh) 2024-01-09
US20230180250A1 (en) 2023-06-08
EP4145930A4 (en) 2023-09-27
CN117750520A (zh) 2024-03-22
CN113596996A (zh) 2021-11-02
EP4145930A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
EP2856685B1 (en) Hybrid automatic repeat request (harq) mapping for carrier aggregation (ca)
WO2020143608A1 (zh) 信息传输方法、终端及网络设备
JP7001306B2 (ja) 無線通信方法、通信装置およびプログラム
KR101847671B1 (ko) 데이터 송신 방법 및 그 장치
KR101814437B1 (ko) 방법 및 장치
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
TWI604706B (zh) 載波聚合確認位元
US20210007139A1 (en) Method and apparatus for transmitting uplink information
US20140334359A1 (en) Systems and methods for carrier aggregation
JP6416893B2 (ja) Pucchリソース割り当ておよび使用
EP3163957B1 (en) Method and device for configuring and sending uplink control channel, base station and user equipment
WO2014067140A1 (zh) 一种信息传输方法、用户设备及基站
CN102594533B (zh) 一种发送和接收反馈信息的方法、系统及装置
WO2014079310A1 (zh) 时分双工tdd保护频带内的数据传输方法和设备
CN113796147A (zh) 发送或接收用于多传送块调度的信号的方法及其装置
WO2013189252A1 (zh) 一种ack/nack反馈比特数确定方法及装置
CN102291227B (zh) 一种发送和接收反馈信息的方法、系统及装置
CN102223728A (zh) 一种进行调度的方法、系统和设备
WO2011150965A1 (en) Apparatus and method for providing carrier information
WO2021147695A1 (zh) 一种信息调度方法、装置、设备和存储介质
CN108521669A (zh) 使用多个服务小区发送上行链路数据的方法和设备
AU2013373816A1 (en) Reference signal transmission from multiple cells in dormant mode
US20170141904A1 (en) Method and apparatus for transmitting ack/nack
WO2012022370A2 (en) Scheduling component carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796881

Country of ref document: EP

Effective date: 20221130