WO2021218717A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021218717A1
WO2021218717A1 PCT/CN2021/088532 CN2021088532W WO2021218717A1 WO 2021218717 A1 WO2021218717 A1 WO 2021218717A1 CN 2021088532 W CN2021088532 W CN 2021088532W WO 2021218717 A1 WO2021218717 A1 WO 2021218717A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
group
entity
rlc group
primary
Prior art date
Application number
PCT/CN2021/088532
Other languages
English (en)
French (fr)
Inventor
娄崇
范强
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21797446.8A priority Critical patent/EP4132083A4/en
Publication of WO2021218717A1 publication Critical patent/WO2021218717A1/zh
Priority to US18/048,453 priority patent/US20230116726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • 5 th generation, 5G mobile communication system requires new business application scenario. For example, ultra reliability low latency (URLLC) services.
  • URLLC ultra reliability low latency
  • the transmission delay and transmission reliability requirements of the communication system are extremely high. For example, for remote industrial control, intelligent transportation systems, distributed automation and other services, the transmission delay requirement is less than 5ms, and the transmission error rate is less than 10 -5 .
  • PDCP layer data replication transmission usually refers to copying the data packets carried by the radio into multiple identical data packets at the PDCP layer, and then submitting the multiple data packets to different radio link control (radio link control, RLC) entities for transmission , And then transmitted to the media access control (MAC) layer through different logical channels.
  • RLC radio link control
  • the embodiments of the present application provide a communication method and device, so as to configure multiple RLC entities for a terminal device to meet the requirements of high service reliability.
  • a communication method is provided, and the execution subject of the method is a terminal device.
  • the terminal device may also be a component (circuit, chip or other, etc.) in the terminal device, including: the terminal device receives the first configuration information and the second configuration information from the network device, and the first configuration information is used for For configuring the primary RLC group, the second configuration information is used to configure the secondary RLC group, and both the primary RLC group and the secondary RLC group include at least one RLC entity.
  • the terminal device determines the primary RLC group and the secondary RLC group according to the first configuration information and the second configuration information.
  • the primary RLC group and the secondary RLC group may be associated with PDCP entities of the same radio bearer.
  • the network device can configure the primary RLC group and the secondary RLC group for the terminal device, and the primary RLC group and the secondary RLC group can include at least one RLC entity.
  • the terminal device can copy the PDCP data packets to be transmitted into multiple copies at the PDCP layer, and submit them to the RLC entity in the primary RLC group or the secondary RLC group to meet the high reliability requirements of the service.
  • the first configuration information may also include a first indication information element, which is used to indicate the RLC entity belonging to the primary RLC group in the RLC group associated with the PDCP entity;
  • the second configuration information may also include a second indication information element , Used to indicate the RLC entity belonging to the secondary RLC group in the RLC group associated with the PDCP entity.
  • the terminal device may determine the RLC entities included in the primary RLC group according to the first indication information element, and determine the RLC entities included in the secondary RLC group according to the second indication information element. In this way, different RLC entities can be configured for different RLC groups.
  • the first configuration information may include the first indication information element, and the second configuration information no longer includes the second indication information element.
  • the terminal device may determine the RLC entity in the main RLC group according to the first indication information element. Afterwards, the terminal device can remove the RLC entities belonging to the primary RLC group from the RLC entities associated with the PDCP layer, and naturally determine the RLC entities belonging to the secondary RLC group; in contrast to the above, indicating the RLC entities in the primary RLC group and the secondary RLC group at the same time Compared with the solution, the signaling overhead can be reduced.
  • the first configuration information may not include the first indication information element, and the second configuration information may include the second indication information element.
  • the terminal device can also determine the RLC entities included in the primary RLC group and the secondary RLC group according to the second indication information element and all RLC entities associated with the PDCP entity.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate the main RLC entity in the main RLC group.
  • the second configuration information includes a fourth indication information element, and the fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the main RLC is used to transmit PDCP control PDUs, for example, PDCP status reports.
  • the first configuration information includes a fifth indication information element, and the fifth indication information element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity, and the initial state of the RLC entity It can specifically include an activated state and a deactivated state.
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the terminal device can configure the initial state of the RLC entities in the primary RLC group and the secondary RLC group. Among them, only the RLC entity in the active state can perform transmission. In addition, the activated state and the deactivated state of the RLC entity support subsequent modification, which is more flexible. For example, after the network device configures the initial state of the RLC entity for the terminal device, it can subsequently modify the initial state of the RLC entity through signaling such as RRC or MAC CE.
  • the method of the first aspect further includes: the terminal device determines the first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, where the first RLC group is the primary RLC group or the secondary RLC group
  • the terminal device copies the first PDCP data packet according to the number of RLC entities in the active state in the first RLC group; the terminal device delivers the copied first PDCP data packet to the first RLC group.
  • the terminal device determines the first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, where the first RLC group is the primary RLC group or the secondary RLC group
  • the terminal device copies the first PDCP data packet according to the number of RLC entities in the active state in the first RLC group; the terminal device delivers the copied first PDCP data packet to the first RLC group.
  • the main RLC group is in an active state.
  • the main RLC group is in a deactivated state.
  • the secondary RLC group when at least one RLC entity included in the secondary RLC group is in an activated state, the secondary RLC group is in an activated state. When all RLC entities included in the secondary RLC group are in a deactivated state, the secondary RLC group is in a deactivated state.
  • the terminal device can copy the PDCP data packet into multiple copies at the PDCP layer and submit them to different RLC entities in the first RLC group, thereby improving the reliability of data transmission.
  • the terminal device determines the first RLC group according to at least one of the activation status of the primary RLC group and the activation status of the secondary RLC group, including: the terminal device determines the first RLC group according to the activation status of the primary RLC group and the secondary RLC group. At least one of the active states of the RLC group, and the relationship between the amount of data to be sent and the threshold value, determine the first RLC group.
  • the terminal device can determine the relationship between the amount of data to be sent and the threshold; when the amount of data to be sent is greater than or equal to the threshold, this can be activated to start the offloading strategy.
  • the data to be sent can be delivered to the primary RLC group and the secondary RLC group at this time.
  • the specific delivery to the primary RLC group or the secondary RLC group depends on the specific offloading strategy. It can be seen that, on the basis of realizing load sharing, the reliability of business data is also improved. Or, if only one of the primary RLC group and the secondary RLC group is in the active state, then only the data to be sent is delivered to the primary RLC group or the secondary RLC group that is currently in the active state.
  • the PDCP data packet is preferentially delivered to the main RLC group. If the primary RLC group is in the inactive state and the secondary RLC group is in the active state, the PDCP data packet is delivered to the secondary RLC group.
  • a communication method is provided.
  • the execution subject of the second main method is network equipment.
  • the network device may also be a component (circuit, chip or other, etc.) in the network device, and the method includes:
  • the network device generates first configuration information and second configuration information.
  • the first configuration information is used to configure the primary RLC group
  • the second configuration information is used to configure the secondary RLC group.
  • Both the primary RLC group and the secondary RLC group include at least one RLC entity; the network The device sends the first configuration information and the second configuration information to the terminal device.
  • the first configuration information includes a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity of the Packet Data Convergence Protocol
  • the second configuration information includes a second indication information element, and the second indication information element is used to indicate the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the primary RLC group and the secondary RLC group are associated with PDCP entities of the same radio bearer.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate the main RLC entity in the main RLC group; and the second configuration information includes The fourth indication information element, where the fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the first configuration information further includes a fifth indication information element, and the fifth indication information element is used to indicate the RLC entities associated with the PDCP entity that belong to the primary RLC group The initial state of the RLC entity; the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity state.
  • a communication method is provided.
  • the execution subject of the method is a terminal device.
  • the terminal device may also be a component (chip, circuit, or other) in the terminal device, including: the terminal device generates a first data packet;
  • the second data packet may also be referred to as a segment of the first data packet.
  • the terminal device may determine the size of N 1 , N 2 to NM according to the ratio of N to M. For example, if the values of N and M are integers, the sizes of N 1 , N 2 to N M are equal, and the sizes are all N/M. For example, if the value of N is 4 and the value of M is 2, then the first data packet can be divided into two second data packets, the second data packet A and the second data packet B, respectively. And the number of repeated transmissions of the second data packet A and the second data packet B are both 2.
  • the first data packet can be divided into 3 second data packets, namely, second data packet A, second data packet B, and second data packet. C. If rounded up, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted 3 times. If rounded down, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted twice.
  • the terminal device may determine that the number of repeated transmissions of the first M-1 second data packet is (N/M) rounded , and the value may be rounded up or rounded down ,
  • the number of repeated transmissions of the M-th second data packet is N-(N/M) rounded *(M-1).
  • the value of N is 8
  • the value of M is 3
  • the first data packet is divided into three second data packets, which are the second data packet A, the second data packet B, and the second data packet C, respectively. If rounded up, the number of repeated transmissions of the second data packet A and the second data packet B is 3, and the number of repeated transmissions of the third data packet is 2. If the value is downward, the number of repeated transmissions of the second data packet A and the second data packet B is 2, and the number of repeated transmissions of the second data packet C is 4.
  • each of the foregoing second data packets may also carry first indication information, which is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • first indication information is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • the network device can better distinguish the initial transmission data packet and the retransmission data packet.
  • the fourth aspect provides a communication method, and the beneficial effects of the fourth aspect can be referred to the record of the third aspect.
  • the execution subject of the method in the fourth aspect is a network device.
  • the network device may also be a component in the network device (for example, a chip, circuit or other, etc.).
  • the second data packet can also be referred to as a segment of the first data packet; the first data packet is determined according to M second data packets.
  • the sizes of N 1 , N 2 to NM are equal, and the sizes are all rounded (N/M) or (N/M).
  • the terminal device may determine that N 1, N 2 repeatedly transmitted to N M M-1 in the front second number of data packets (N / M) rounding, the value may be rounded up or rounded down Integer, the number of repeated transmissions of the M-th second data packet is N-(N/M) rounded *(M-1).
  • each of the foregoing second data packets may also carry first indication information, which is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • a device which includes units or means for performing each step included in the first, second, third, or fourth aspects described above.
  • a device including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute the above-mentioned first, second, third or fourth aspect.
  • the processor includes one or more.
  • a device including a processor, configured to be connected to a memory and used to call a program stored in the memory to execute the above-mentioned first, second, third, or fourth aspect.
  • the memory may be located in the device or outside the device, and the processor includes one or more.
  • an apparatus including at least one processor and at least one memory, where the at least one processor is configured to execute the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a program is provided, when the program is executed by a processor, it is used to execute the method provided in the above-mentioned first aspect, second aspect, third aspect, or fourth aspect.
  • a tenth aspect provides a program product, such as a computer-readable storage medium, including the program of the first aspect, the second aspect, the third aspect, or the fourth aspect described above.
  • a computer-readable storage medium including a program, and when the program is executed by a processor, the method provided in the above-mentioned first, second, third, or fourth aspect is executed.
  • the above device may be a chip, and the processor may be realized by hardware or software.
  • the processor When realized by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when realized by software, the processor may be It is a general-purpose processor, realized by reading the software code stored in the memory, the memory can be integrated in the processor, can be located outside the processor, and exist independently.
  • the memory can be integrated with the processor, or the memory and the processor can be provided separately. In a specific implementation process, the memory and the processor may be integrated on the same chip, or may be separately arranged on different chips.
  • the embodiment of the present application does not limit the type of the memory and the way of setting the memory and the processor.
  • FIG. 1 is a schematic diagram of a PDCP layer repetition solution provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a DC separation bearer provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a repeated transmission method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIGS. 5 and 6 are schematic diagrams of the network architecture provided by the embodiments of this application.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of PDCP layer repetition provided by an embodiment of this application.
  • FIG. 9, FIG. 10, FIG. 11, and FIG. 12 are schematic diagrams of communication methods provided by embodiments of this application.
  • FIG. 13 and 14 are schematic diagrams of repeated transmission provided by an embodiment of the application.
  • 15 and 16 are schematic diagrams of communication devices provided by embodiments of this application.
  • CA Carrier aggregation
  • CA is a technology that aggregates at least two component carriers (CC) to support larger transmission bandwidth and high speed.
  • CC component carriers
  • LTE long term evolution
  • NR new radio
  • communication between terminal equipment and network equipment can be implemented using multiple CCs, thereby obtaining large bandwidth and high speed.
  • the cell that the terminal device accesses is the primary cell (primary Cell, PCell), the CC corresponding to the primary cell is the primary component carrier (primary component carrier, PCC), and the cell configured after the terminal device accesses the network is the secondary cell (SCell) ), the CC corresponding to the secondary cell is a secondary component carrier (SCC).
  • PCell primary cell
  • SCell secondary cell
  • SCC secondary component carrier
  • DC technology is introduced in LTE and NR to provide performance solutions under non-ideal transmission conditions between base stations.
  • a DC mode data is divided and combined at the packet data convergence protocol (PDCP) layer, and then the user data stream is simultaneously transmitted to the terminal device through multiple different base stations, thereby obtaining large bandwidth and high bandwidth. rate.
  • PDCP packet data convergence protocol
  • data can be divided or combined in other locations, such as the core network side, and then the user data stream is simultaneously transmitted to the terminal device through multiple different base stations.
  • one of the above-mentioned multiple base stations is a master node (master node, MN), and the remaining base stations are secondary nodes (secondary node, SN).
  • MN master node
  • SN secondary node
  • the MN and SN can use the same wireless standard or different wireless standards, which is not limited.
  • the MN can adopt the LTE system
  • the SN can adopt the NR system.
  • the repeated transmission of the PDCP layer may include: copying the data packets carried by the radio into multiple identical data packets at the PDCP layer, and then submitting the multiple data packets to different radio link control (radio link control, RLC) layers for transmission , And then transmitted to the media access control (MAC) layer through different logical channels.
  • RLC radio link control
  • MAC media access control
  • the logical channel can refer to the channel from the RLC layer to the MAC layer.
  • the duplicate transmission (duplication transmission) in the embodiment of the present application is different from the retransmission (retransmission).
  • Retransmission usually refers to sending the same data packet again after failure, or sending the same data packet multiple times in succession, while repeated transmission refers to copying a data packet into multiple data packets and passing the corresponding The logical channel is transmitted to the MAC layer.
  • the "repetition" in the embodiments of the present application can also be understood as "duplication”.
  • the logical channel is associated with the cell, or the logical channel is associated with the carrier
  • a logical channel may refer to a channel between the RLC layer and the MAC layer. If a certain cell or cells are allowed to be used in the configuration of the logical channel, it means that the data transmitted in the logical channel can be transmitted on this or these cells, or the resources on this or these cells can be allocated to the logical channel Used, at this time, it can be said that the logical channel is associated with this or these cells. Further, the data transmitted in the logical channel cannot be transmitted in other cells than the cell associated with the logical channel.
  • the logical channel corresponding to the data packet copied at the PDCP layer may have an association relationship with the cell. In some scenarios, if the cell association relationship is not configured, it indicates that the data transmitted in the logical channel can be transmitted on any cell.
  • a parameter A can be configured for the logical channel, and the value of the parameter A is used to indicate different cells, which means that the data transmitted in the logical channel can only be transmitted on the cell specified by the parameter A. For example, if parameter A is configured for logical channel 1, and parameter A indicates cells 1 and 2, then it indicates that the data in the logical channel can only be transmitted on cells 1 and 2. In this way, the logical channel 1 and the cell 1 and the cell 2 can be said to have an association relationship, which can also be said to be a binding relationship or a mapping relationship.
  • a network device When a network device performs dynamic authorization (also called dynamic scheduling), it uses downlink control information (DCI) to instruct the terminal device, information such as the time-frequency resource location of the scheduled transmission resource. For example, the base station can notify the terminal through DCI: receive data in the YYY frequency band at XXX time (downlink); and transmit data in the VVV frequency band at ZZZ time (uplink).
  • DCI downlink control information
  • the base station can notify the terminal through DCI: receive data in the YYY frequency band at XXX time (downlink); and transmit data in the VVV frequency band at ZZZ time (uplink).
  • the resources allocated by the base station through dynamic scheduling are effective once, that is, the resources allocated by the base station to the terminal through the DG can only be used once.
  • Configuring authorization can also be referred to as static/semi-static scheduling.
  • configuration authorization type 1 configured grant type 1
  • configuration authorization type 2 configured grant type 2
  • the terminal device can directly use the parameters configured by the network device to transmit service data without additional scheduling information.
  • the terminal device uses the type 2 uplink configuration authorization for service data transmission, it needs to receive an additional trigger message before it can perform service data transmission.
  • the resources allocated by the base station based on the configuration authorization are effective multiple times.
  • the base station informs the terminal through radio resource control (radio resource control, RRC) signaling, media access control (MAC) signaling, or physical layer signaling that it receives data in the YYY frequency band at XXX time, and then every cycle thereafter.
  • RRC radio resource control
  • MAC media access control
  • T can receive data in the YYY frequency band at XXX time; or, it can send data in the VVV frequency band at ZZZ time, and then can send data in the VVV frequency band at ZZZ time every period T.
  • RRC radio resource control
  • MAC media access control
  • the parameters of the configuration grant type 1 are configured through RRC signaling. After receiving the RRC signaling, the terminal device can configure the parameters of the grant type 1 according to the parameters of the configuration grant type 1, and use the resources of the configuration grant type 1 to perform uplink when there is data to be transmitted. transmission.
  • part of the parameters for configuring authorization type 2 is configured through RRC signaling, and then activated or deactivated through DCI, where DCI may include other parameters for configuring authorization type 2.
  • the terminal device receives the RRC signaling. When it comes to DCI, the parameters of grant type 2 can be configured according to the DCI and RRC signaling, and when there is data to be transmitted, the resources of the configured grant type 2 are used for uplink transmission.
  • a, b, and c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • Augmented reality is a new technology that "seamlessly" integrates real world information and virtual world information.
  • Information, sound, taste and touch, etc.) through computer and other science and technology, simulation and then superimposed, the virtual information is applied to the real world, perceived by the human senses, so as to achieve a sensory experience beyond reality.
  • AR technology the real environment and virtual objects can be superimposed on the same screen or space in real time, which not only shows the real world information, but also displays the virtual information at the same time. The two kinds of information complement and superimpose each other.
  • Virtual reality is an important direction of simulation technology. It is a collection of simulation technology and computer graphics man-machine interface technology, multimedia technology, sensor technology, network technology, etc. It mainly includes simulation environment and perception. , Natural skills and sensing equipment. VR users will feel completely in a virtual reality environment. The higher the resolution of VR, the more realistic the feeling of virtual reality.
  • AR and VR services have high-speed, low-latency, and high-reliability requirements.
  • the maximum end-to-end delay is required to be 5ms
  • the reliability requires a bit error rate of 10 -4
  • the rate is required to reach 0.1-1Gbps.
  • URLLC ultra-reliability low latency
  • a PDCP layer repetition scheme provided in this embodiment of the application.
  • the PDCP layer repetition in the DC and CA (DC-CA) hybrid mode is supported, thereby supporting higher Reliability.
  • 4 RLC entities can be activated.
  • two RLC entities can be located in the primary station MN, and two RLC entities can be located in the secondary station SN, so that PDCP can deliver PDCP data packets to the four activated RLC entities, and use four independent paths for data transmission, thereby Meet the stringent requirement that the error rate is less than 10 -4.
  • DRB data radio bearer
  • the description is made by taking the PDCP layer repetition in the DC-CA hybrid mode as an example.
  • RLC entities supported by one DRB are located in different base stations, and there are at least two RLC entities in one base station.
  • RLC entities supported by one DRB are located in different base stations, for example, two base stations (primary station and secondary station) each have an RLC entity; for PDCP layer duplication in CA mode, one DRB supports The RLC entities are located in the same base station.
  • the PDCP entity copies the PDCP data packet in 4 copies, and performs data transmission through 4 independent paths.
  • This scheme is more suitable for small packet transmission in industrial control systems. Services such as AR and VR have requirements for high speed, low latency and high reliability.
  • the use of the above four RLCs for data transmission at the same time causes a greater challenge to the system capacity, and the high rate and low delay cannot be satisfied.
  • a DC split bearer solution provided by this embodiment of the application includes: when the amount of data to be sent by the terminal device exceeds a pre-configured threshold, the PDCP entity allows the main RLC entity Or the auxiliary RLC entity submits the PDCP data packet.
  • the PDCP entity is only allowed to deliver PDCP data packets to the main RLC entity, so that load sharing and resource coordination functions can be implemented, which is beneficial to increase the user rate.
  • the above-mentioned DC separation bearer scheme can effectively realize load sharing, but when the channel condition is poor, the reliability of each data packet may not be satisfied.
  • the above solution is more suitable for enhanced mobile broadband (eMBB) services with a large amount of data and low reliability requirements.
  • eMBB enhanced mobile broadband
  • FIG. 3 is a scheme of repeated transmission provided by an embodiment of this application, which is mainly used to solve the problem of reliability of single carrier transmission in a non-CA scenario.
  • CG or DG resources can be used to repeatedly send multiple times in a continuous time slot (slot), and the number of repetitions can be semi-statically or dynamically indicated by the access network device, etc., which is not limited.
  • the resources used for repeated transmission can be considered as a group or a bundle of uplink grants.
  • the UE can repeatedly send the same MAC data packet in two consecutive time slots without waiting for the hybrid automatic repeat request (HARQ) of the MAC data packet. Feedback to meet the low-latency and high-reliability requirements of URLLC services.
  • HARQ hybrid automatic repeat request
  • the packet size is usually less than tens of bytes, and high reliability is achieved through continuous transmission multiple times.
  • the video encoding package is relatively large.
  • the size of the uplink authorized resource is fixed. Therefore, for this type of large packet, it needs to be segmented multiple times. For each segment, it is sent multiple times on the continuous CG resource, and the delay is too large.
  • Meet the low latency requirements of AR or VR services. For example, for an AR or VR service data packet, if the data packet needs to be divided into 3 segments, the number of repetitions is configured to 4, so a total of 3*4 12 time slots (slots) are required to complete the data packet transmission .
  • FIG. 4 is a schematic diagram of a communication system 100 according to an embodiment of the application.
  • the terminal device 130 accesses a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other terminal devices through the wireless network.
  • the wireless network includes a radio access network (RAN) 110 and a core network (CN).
  • RAN110 is used to connect the terminal device 130 to the wireless network
  • CN120 is used to manage the terminal device and provide a gateway for communication with the external network.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), or mobile terminal equipment (mobile terminal, MT) is a device that provides users with voice/data connectivity .
  • UE user equipment
  • MS mobile station
  • MT mobile terminal equipment
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • a network device is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal device to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, and can also be integrated into the baseband device, or part of it.
  • RAN equipment e.g., eNB
  • RAN equipment includes a baseband device and a radio frequency device, and the radio frequency device can be arranged remotely from the baseband device, such as a remote radio unit. , RRU) is arranged farther away from the BBU.
  • the control plane protocol layer structure can include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (MAC) layer and physical (physical, PHY) layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC Access control
  • PHY physical (physical, PHY) layer and other protocol layer functions.
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the PHY layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the functions of the above protocol layer can be implemented by one node or multiple nodes; for example, in an evolution structure, the RAN device can include a centralized unit (CU) and a distributed unit (DU), Multiple DUs can be centrally controlled by one CU. As shown in Figure 5, CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • the above division in the PDCP layer is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU, etc.; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay, and functions that need to meet the time delay requirement for processing time are set in the DU, and functions that do not need to meet the time delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, it can also be integrated in the DU, or partly remote, partly integrated in the DU, etc., and there is no restriction here.
  • control panel (CP) and user panel (UP) of the CU can also be separated and implemented by dividing them into different entities, which are the control plane CU entities. (CU-CP entity) and user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation to the terminal device or the CU without analyzing the signaling.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • the RRC layer or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal device, or converted from the received PHY layer signaling.
  • the RRC layer or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU may also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located on the terminal device side or the network device side according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node, etc., which is not limited.
  • PDCP layer and “PDCP entity” are not distinguished.
  • RLC layer and “RLC entity” are not distinguished, and can be replaced with each other.
  • the embodiments of the present application provide a communication method and device.
  • the method includes: a PDCP entity not only splits service data according to the relationship between the amount of data to be sent and the threshold value, so as to meet the high rate and low latency of service data. Requirements. Further, according to the number of RLC entities in the active state associated with the PDCP entity, the service data is copied to meet the high reliability requirements of the service data.
  • the communication method and device provided by the embodiments of the present application can meet the requirements of high-speed, low-latency, and high-reliability of services such as AR and VR.
  • an embodiment of the present application provides a flow chart of a communication method, and the flow includes:
  • Step S700 The PDCP entity obtains the primary RLC group and the secondary RLC group, the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity.
  • the primary RLC group can be replaced with the primary LCH group
  • the secondary RLC group can be replaced with a secondary LCH group
  • the primary LCH group can include at least one LCH
  • the secondary LCH can include at least one LCH. From the above description of the LCH, it can be known that the LCH refers to the channel between the RLC entity and the MAC entity. Therefore, one RLC entity corresponds to one LCH, and the two have a one-to-one correspondence.
  • the RLC entity and the LCH are not distinguished, and can be replaced with each other, and the RLC entity is taken as an example for description.
  • the primary RLC group can be replaced by the primary LCH group
  • the secondary RLC group can be replaced by the secondary RLC group.
  • the master RLC entity can be replaced by the master LCH and so on.
  • Step S701 The PDCP entity determines a first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, and the first RLC group is the primary RLC group or the secondary RLC group.
  • both the primary RLC group and the secondary RLC group may include at least one RLC entity.
  • the activation state of the main RLC group includes an activated state and a deactivated state. When at least one RLC entity included in the main RLC group is in the active state, the main RLC group can be considered to be in the active state; otherwise, the main RLC group is considered to be in the deactivated state.
  • the activation state of the secondary RLC group includes an activated state and a deactivated state. When at least one RLC entity included in the secondary RLC group is in the activated state, the secondary RLC group can be considered to be in the activated state; otherwise, the secondary RLC group is considered to be in the deactivated state. Active state.
  • the "deactivated state” can also be referred to as the "inactive state", and the two are not distinguished and can be replaced with each other.
  • the PDCP entity determines the first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group. Further, the first RLC group can also be determined according to the relationship between the amount of data to be sent and the threshold. In one possible implementation:
  • the PDCP entity may first determine the relationship between the amount of data to be sent and the threshold value. For example, if the amount of data to be sent is greater than or equal to (or greater than) the threshold value, the activation state of the primary RLC group and the secondary RLC group is further determined. If the primary RLC group and the secondary RLC group are both in an active state, the PDCP entity delivers the data packet to be sent to the primary RLC group or the secondary RLC group. And it can be delivered according to a preset method. For example, the PDCP entity copies the PDCP data packet and delivers the copied data packet to the primary RLC group or the secondary RLC group according to a certain ratio.
  • the ratio can be a preset ratio , Such as 1:4, here is only an example, not to limit the ratio.
  • the PDCP entity can determine the active state of the main RLC group. If the main RLC group is in the active state, it is determined to deliver the to-be-sent data packet to the main RLC group, that is, the above-mentioned first RLC group is the main RLC group.
  • the primary RLC group determines the active state of the secondary RLC group, and when the secondary RLC group is in the active state, it is determined to deliver the data packet to be sent to the secondary RLC group, that is, the above-mentioned first RLC group is the secondary RLC group.
  • the threshold value may be predetermined by a protocol, or configured by a network device, for example, configured through RRC signaling, and is not limited.
  • the value of the threshold value can be set or modified according to requirements in bytes, for example, the value is 50 bytes, 100 bytes, 200 bytes, and so on. It is also possible not to set the change threshold value, or set the threshold value to 0 or infinite.
  • the threshold When the threshold is set to infinity, it is equivalent to restricting the flow from the auxiliary RLC group, only from the main RLC group. For example, if the auxiliary RLC group is located at the auxiliary station and the main RLC group is located at the main station, the threshold is set to infinite , That is, restrict only diversion from the main station, or restrict diversion from the auxiliary station.
  • the threshold value When the threshold value is set to 0, it is equivalent to no restriction, and shunting is performed according to the active state of the primary RLC group and the secondary RLC group.
  • the threshold value When the threshold value is not set, it can default to only flow from the main RLC component or not restrict the shunt. At this time, the advantage of setting the threshold value to 0 or infinite is that the threshold value can be adjusted as needed in the future.
  • the above-mentioned "data volume to be sent” may specifically be: the sum of the data volume of the data to be sent in the PDCP entity and the data volume of the initial transmission data to be sent in the RLC entity in the active state associated with the PDCP entity.
  • the data to be sent in the PDCP entity includes: PDCP data protocol data unit (PDU), PDCP control PDU, and PDCP data service data unit (service data unit, SDU) that have not been submitted to the lower layers. ) (That is, the PDCP data SDU that has not been assembled into a PDCP data PDU) and so on.
  • the above-mentioned PDCP data PDU may include the initially transmitted PDCP data PDU, such as the PDCP data PDU that has not been delivered to the lower layer, and/or the retransmitted PDCP data PDU, etc.
  • the PDCP data PDU may also include a PDCP data PDU for retransmission.
  • PDCP data recovery PDCP data recovery
  • the sender PDCP entity may need to retransmit the PDCP data PDU, etc.
  • the above-mentioned PDCP data SDU may include the initially transmitted PDCP data SDU, for example, the PDCP data SDU that has not been assembled into a PDCP data PDU, and/or the retransmitted PDCP data SDU, etc.
  • the PDCP data SDU may also include PDCP data SDU for retransmission and so on.
  • the PDCP entity at the transmitting end may need to retransmit the PDCP data SDU, etc.
  • the data to be sent in the PDCP layer is set to include the first PDCP data packet
  • the first PDCP data packet may specifically be a PDCP data PDU, a PDCP control PDU, or a PDCP SDU.
  • the PDCP entity may determine to deliver the first PDCP data packet to the primary RLC group or the secondary RLC group according to the following conditions.
  • the PDCP entity can determine to deliver the first PDCP data packet to the primary RLC group or the secondary RLC group.
  • the specific delivery of the first PDCP data packet to the primary RLC group or the secondary RLC group depends on the current offloading protocol of the PDCP layer.
  • the amount of data to be sent is greater than or equal to the threshold.
  • the main RLC is in the active state
  • the auxiliary RLC is in the active state
  • the PDCP entity determines to deliver the first PDCP data packet to the main RLC group.
  • the amount of data to be sent is less than the threshold.
  • the main RLC group is in the active state.
  • the PDCP entity may determine to deliver the first PDCP data packet to the secondary RLC group.
  • the amount of data to be sent is less than the threshold.
  • the main RLC group is in a deactivated state and the auxiliary RLC group is in an activated state.
  • Step S702 The PDPC entity duplicates the first PDCP data packet according to the number of active RLC entities in the first RLC group.
  • the first RLC group may be the primary RLC group or the secondary RLC group.
  • the PDCP entity may copy the first PDCP data packet according to the number of RLC entities in the active state of the primary RLC group or the secondary RLC group.
  • the number of copied PDCP data packets may be equal to the number of RLC entities in all active states in the primary RLC group or the secondary RLC group. For example, if the master RLC entity includes RLC entity 1, RLC entity 2, and RLC entity 3.
  • the PDCP entity can copy the first PDCP data packet in 2 copies, and in the subsequent step S703, respectively submit the 2 copies of the copied PDCP data packet To RLC entity 1 and RLC entity 2 in the main RLC group.
  • the number of copied PDCP data packets may be less than the number of active RLC entities in the primary RLC group or the secondary RLC group. For example, when the reliability requirements of the current service are low, and/or when the current channel conditions are good, the PDCP entity does not need to copy too many PDCP data packets, thereby reducing transmission overhead.
  • the copy here refers to generating the same multiple data packets, and the copied data packet includes both the original data packet and the same data packet as the original data packet. Therefore, the above steps may also be replaced by the terminal device generating multiple identical first PDCP data packets according to the number of RLC entities in the active state in the first RLC group. Then, the multiple identical first PDCP data packets are delivered to the first RLC group, in the following step S703:
  • Step S703 The PDCP entity delivers the copied first PDCP data packet to the first RLC group.
  • the PDCP entity may submit a data packet to the RLC entity in an existing manner.
  • the data packet may be delivered to the RLC entity in the manner described in FIG. 7 above.
  • the data packet delivery manner corresponding to FIG. 7 can be used to instruct the terminal device to turn on or turn off through an RRC message or a system message.
  • a switch information element may be carried in the RRC reconfiguration message, which is used to instruct the terminal device whether to enable or disable the above-mentioned functions.
  • the data packet delivery method corresponding to FIG. 7 can also be set as the capability of the terminal device.
  • a capability indication is carried in the capability information of the terminal device, which is used to indicate whether the terminal device opens the data packet delivery method corresponding to FIG. 7.
  • the above-mentioned process corresponding to FIG. 7 can be applied to the terminal device side and also can be applied to the network device side.
  • the primary RLC group and the secondary RLC group may be located in the same or different network entities.
  • the primary RLC group may be located on the side of the primary base station MN, and the secondary RLC group may be located on the side of the secondary base station SN.
  • the primary RLC group may include RLC entity 1 and RLC entity 2
  • the secondary RLC group may include RLC entity 3 and RLC entity 4.
  • the data to be sent of the PDCP entity may include a first PDCP data packet (see the black-filled box in FIG. 8) and a second PDCP data packet (see the white-filled box in FIG. 8).
  • the PDCP entity may duplicate the first PDCP data packet in two copies, and deliver them to the RLC entity 1 and the RLC entity 2 in the main RLC group respectively.
  • the PDCP entity can copy the second PDCP data packet in two copies and deliver them to the RLC entity 3 and the RLC entity 4 in the secondary RLC group respectively.
  • the reliability of business data can also be improved.
  • an embodiment of the present application provides a flowchart of a communication method, and the method includes:
  • Step S901 The network device generates and sends first configuration information and second configuration information to the terminal device, where the first configuration information is used to configure the primary RLC group, and the second configuration information is used to configure the secondary RLC group.
  • the first configuration information and the second configuration information may be configured through the same message, for example, the message may be RRC reconfiguration, RRC resume (RRC resume), or RRC setup (setup).
  • the first configuration information and the second configuration information may be configured separately through different messages, for example, they may be configured separately in two times through an RRC reconfiguration message.
  • the primary RLC group and the secondary RLC group may be associated with PDCP entities of the same radio bearer.
  • Step S902 The terminal device determines the primary RLC group and the secondary RLC group according to the first configuration information and the second configuration information.
  • the master RLC group may include at least one RLC entity, and all RLC entities included in the master RLC group may be located in the same cell group, for example, a master cell group (MCG).
  • MCG master cell group
  • the secondary cell group may include at least one RLC entity, and all RLC entities included in the secondary RLC group may be located in the same cell group, for example, a secondary cell group (SCG).
  • SCG secondary cell group
  • the foregoing first configuration information may include a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to a primary RLC group among RLC entities associated with the PDCP entity.
  • the foregoing second configuration information may include a second indication information element, and the second indication information element is used to indicate the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • “PDCP-associated RLC entity” and “PDCP entity-corresponding RLC entity” are not distinguished and can be replaced with each other.
  • the first configuration information carries the first indication information element
  • the second configuration information does not carry the second indication information element.
  • the terminal device may determine the RLC entity belonging to the main RLC group among the RLC entities associated with the PDCP entity according to the first indication information element.
  • the RLC entities associated with the PDCP entity except for the RLC entities in the primary RLC group, they are the RLC entities in the secondary RLC group.
  • the RLC entity associated with the PDCP entity includes ⁇ RLC entity 1, RLC entity 2, RLC entity 3, RLC entity 4 ⁇ .
  • the terminal device determines that the primary RLC group includes ⁇ RLC entity 1, RLC entity 2 ⁇ according to the first indication information element, the terminal device can naturally determine that the secondary RLC group includes ⁇ RLC entity 3, RLC entity 4 ⁇ . Alternatively, only the second indication information element may be carried in the second configuration information. After the terminal device determines the secondary RLC group in the RLC entity associated with the PDCP entity, the remaining RLC entities are the primary RLC group. The process is similar to the above. No longer.
  • the first configuration information carries a first indication information element
  • the second configuration information carries a second indication information element.
  • the terminal device may determine the RLC entity included in the main RLC group among the RLC entities associated with the PDPC entity according to the first indication information element.
  • the terminal device may determine the RLC entity included in the secondary RLC group among the RLC entities associated with the PDCP entity according to the second indication information element.
  • the RLC entity associated with the PDCP entity includes ⁇ RLC entity 1, RLC entity 2, RLC entity 3, RLC entity 4 ⁇ .
  • the terminal device may determine that the primary RLC group includes ⁇ RLC entity 1, RLC entity 2 ⁇ according to the first indication information element, and determine that the secondary RLC group includes ⁇ RLC entity 3, RLC entity 4 ⁇ according to the second indication information element.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate the main RLC entity in the main RLC group.
  • the second configuration information includes a fourth indication information element, and the fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the primary RLC entity of the primary RLC group or the secondary RLC group can be used to transmit PDCP control PDUs, for example, PDCP status reports.
  • the primary RLC entity of the secondary RLC group can also be used to indicate to deactivate the PDCP layer duplication of the radio bearer, that is, all other associated RLC entities except the primary RLC entity in the primary RLC group and the secondary RLC group are After being deactivated, the primary RLC entity of the secondary RLC group and the primary RLC entity of the primary RLC group can be used to send data through a split bearer. Regarding the separation of the bearer, refer to the description in FIG. 2 for details, which will not be repeated here. Still using the above example, the primary RLC group includes ⁇ RLC entity 1, RLC entity 2 ⁇ , then the RLC entity 1 can be the primary RLC entity.
  • the secondary RLC group includes ⁇ RLC entity 3, RLC entity 4 ⁇ , then the RLC entity 3 may be the primary RLC entity.
  • the terminal device may also determine the initial state of the RLC entity included in the primary RLC group or the secondary RLC group.
  • the initial state may be an activated state initially configured by the network device for the RLC entity, and the initial state may include an activated state or a deactivated state, and so on.
  • the initial state may be the activation state of the RLC entity specified by the protocol in the initial stage.
  • the terminal device determines the initial state of the RLC entity. Subsequently, the RLC entity may or may not support modifying the initial state of the RLC entity.
  • the initial state configured by the network device for the RLC entity 1 is the active state.
  • the network device can modify the activation state of the RLC entity 1 to the deactivated state through RRC or media access control control element (MAC CE) and other signaling.
  • the network equipment can also dynamically activate or deactivate the RLC entity 1 through RRC or MAC CE signaling. For example, when the channel status is poor, the network equipment can activate the RLC entity 1 through MAC CE signaling, that is, the activation state of the RLC entity 1. Modified to active state.
  • a displayed information element may be used to indicate the initial state of the RLC entity included in the primary RLC group, or the initial state of the RLC entity included in the secondary RLC group.
  • the first configuration information includes a fifth indicator element, and the fifth indicator element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity, that is, the RLC entity included in the primary RLC group The initial state.
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity, that is, the initial state of the secondary RLC group.
  • the initial state of the primary RLC group or the secondary RLC group may be the default, or, as stipulated by the protocol, no additional instructions are required.
  • the terminal device may default to that the initial state of the RLC entity included in the primary RLC group or the secondary RLC group is the active state.
  • the displayed information element may indicate the initial state of the primary RLC group or the secondary RLC group. If the displayed cell indicates that the initial state of the main RLC group is the active state, the initial states of all RLC entities included in the main RLC group are the active state.
  • the displayed information element indicates that the initial state of the main RLC group is the inactive state
  • the initial states of all RLC entities included in the main RLC group are in the inactive state.
  • the indication process of the secondary RLC group is similar to the above, and will not be repeated here.
  • the network device can simultaneously configure the primary RLC group and the secondary RLC group for the terminal device, the primary RLC entity in the primary RLC group, the primary RLC entity in the secondary RLC entity group, and the primary RLC group and the secondary RLC entity.
  • the primary RLC group configured by the network device for the terminal device includes RLC entity 1 and RLC entity 2
  • the secondary RLC group includes RLC entity 3 and RLC entity 4.
  • the primary RLC entity in the primary RLC group is RLC entity 1
  • the primary RLC entity in the secondary RLC group is RLC entity 3, and so on.
  • the first configuration information may include a first indication information element, a third indication information element, and a fifth indication information element.
  • the first indicator cell is used to configure the primary RLC group
  • the third indicator cell is used to configure the primary RLC entity in the primary RLC group
  • the fifth indicator cell is used to configure the initial state of each RLC entity in the primary RLC group.
  • the second configuration information in mode 1 it is similar to the above-mentioned first configuration information, and will not be described in detail.
  • the first configuration information includes a first indication information element
  • the first indication information element is used to configure the main RLC group
  • the first indication information element may include a fifth indication information element for Configure the activation status of each RLC entity in the main RLC group.
  • the first configuration information also includes a third indication information element, which is used to configure the main RLC entity in the main RLC group.
  • the second configuration information in Manner 2 is similar to the above-mentioned first configuration information, and will not be repeated here.
  • the network device configures only the main RLC group for the terminal device.
  • the terminal device can determine the secondary RLC group according to all RLC entities associated with PDCP and the RLC entities included in the primary RLC group. Further, the network device can also configure the primary RLC entity included in the primary RLC group and the secondary RLC group, and the initial state of each RLC entity in the primary RLC group and the secondary RLC group for the terminal device.
  • the first configuration information may include a first indication information element, a third indication information element, and a fifth indication information element. The first indication information element is used to configure the main RLC group, and the third indication information element is used to configure the main RLC group.
  • the information element is used to configure the main RLC entity in the main RLC group, and the fifth indication information element is used to configure the initial state of the RLC entity in the main RLC group.
  • the second configuration information includes a fourth indication cell and a sixth indication cell.
  • the fourth indication cell is used to configure the primary RLC entity in the secondary RLC entity group, and the sixth indication cell is used to configure the RLC in the secondary RLC entity group.
  • the first configuration information includes a first indication cell for configuring the main RLC group; the first indication cell includes a fifth indication cell for configuring the main RLC group The initial state of the RLC entity.
  • the first configuration information also includes a third indication information element, which is used to configure the main RLC entity in the main RLC group.
  • the second configuration information includes a sixth indication cell and a fourth indication cell. The sixth indication cell is used to configure the initial state of the RLC entity in the secondary RLC group, and the fourth indication cell is used to configure the primary RLC in the secondary RLC group. entity.
  • the active state of the configurable main RLC group cannot be deactivated, that is, once the main RLC group is configured into the active state, it cannot be passively deactivated.
  • the active state of the main RLC group can be deactivated.
  • the active state of the main RLC group can be deactivated through a media access control control element (MAC CE) or physical layer signaling.
  • MAC CE media access control control element
  • the primary RLC entity in the primary RLC group or the secondary RLC group can be configured not to be deactivated, that is, once the primary RLC entity is configured into an activated state, it cannot be passively deactivated.
  • the active state of the configurable master RLC entity can be deactivated.
  • the active state of the main RLC can be deactivated through MAC CE or physical layer signaling.
  • a new primary RLC entity is designated to transmit PDCP control PDUs.
  • a new RLC entity can be designated by a predetermined rule.
  • the RLC entity with the lowest LCH identity or the RLC entity with the highest LCH identity can be designated as the new primary RLC entity, etc., which is not limited.
  • two RLC groups can be configured for the terminal device, namely the primary RLC group and the secondary RLC group.
  • the terminal device can copy the PDCP data packet according to the number of active RLC entities in the primary RLC group or the secondary RLC group to improve the reliability of the service data.
  • the process shown in FIG. 7 and the process shown in FIG. 9 may be used separately or in combination, and it is not limited.
  • a specific implementation may be: the terminal device receives the first configuration information and the second configuration information from the network device. The terminal device determines the primary RLC group and the secondary RLC group according to the first configuration information and the second configuration information.
  • the terminal device determines the first RLC group according to at least one of the active state of the primary RLC group and the secondary RLC group, the first RLC group is the primary RLC group or the secondary RLC group; the terminal device is in the active state according to the first RLC group For the number of RLC entities, copy the first PDCP data packet; the terminal device submits the copied first PDCP data packet to the first RLC entity.
  • a flow of a communication method is provided, and the flow may be specifically a more specific implementation manner used in combination with FIG. 7 and FIG. 9 described above. As shown in Figure 10, the process includes:
  • Step S1000 The access network device establishes at least one radio bearer for the UE.
  • the radio bearer may specifically be a data radio bearer (DRB) or a signaling radio bearer (SRB), etc.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • the configuration information of the radio bearer may be sent to the UE through an RRC message, and the RRC message may be a message such as RRC reconfiguration, RRC resume (RRC resume), or RRC setup (setup), which is not limited.
  • the configuration information of the radio bearer includes at least one of the following:
  • the radio bearer identifier is used to identify the radio bearer, which can be specifically a DRB identifier or an SRB identifier.
  • the PDCP configuration includes the RLC entity corresponding to the radio bearer or the PDCP configuration.
  • the RRC message may also include at least one of the following configurations:
  • Cell group configuration including the radio resource configuration of MCG or SCG.
  • a cell group configuration may include one MAC entity, and one or more RLC entities associated with it, and the configuration of a primary cell or one or more secondary cells.
  • the RLC bearer configuration (RLC bearer configuration) is used to configure an RLC entity, and the association relationship between the corresponding logical channel and the PDCP entity.
  • Step S1001 The access network device indicates the primary path (primary path) and/or the secondary path (secondary path) to the UE.
  • the indication information of the primary path and the secondary path may be sent to the UE through an RRC message, and the RRC message may be a message such as RRC reconfiguration, RRC recovery, or RRC establishment, which is not limited.
  • the RRC message may include at least one of the following configuration information.
  • Main path configuration information The main path may be a main RLC group or a main LCH group.
  • the primary path configuration information is specifically used to indicate the RLC entities belonging to the primary RLC group among all RLC entities associated with the PDCP entity.
  • the main RLC group may include at least one RLC entity.
  • the configuration information of the primary path may also include indication information of the primary RLC entity in the primary RLC group.
  • Secondary path configuration information the secondary path may be a secondary RLC group or a secondary LCH group.
  • the secondary path configuration information is specifically used to indicate the RLC entities belonging to the secondary RLC group among all RLC entities associated with the PDCP entity.
  • the configuration information of the secondary path also includes indication information of the primary RLC entity in the secondary RLC group.
  • the foregoing RRC message may only carry configuration information of the primary path, so that the RLC entities of other non-primary paths associated with the radio bearer or PDCP entity configuration are all secondary paths.
  • the foregoing RRC message may only carry the configuration information of the secondary path, so that the RLC entities of other non-secondary paths associated with the radio bearer or PDCP entity configuration are all the primary paths.
  • the foregoing RRC message may carry configuration information of the primary path and configuration information of the secondary path at the same time.
  • the foregoing RRC message may also include indication information of the initial state of the RLC entity corresponding to the PDCP entity, which is used to indicate whether the RLC entity corresponding to the PDCP entity is in an active state. For example, by carrying a displayed information element, it is indicated that the initial state of the RLC entity corresponding to the PDCP entity is activated. If the information element is not carried, it indicates that the initial state of the RLC entity corresponding to the PDCP entity is a deactivated state (deactivated). Another possible way is: the foregoing RRC message may not include the initial state of the RLC entity corresponding to the PDCP entity.
  • the UE may assume that the initial state of all RLC entities associated with the PDCP entity may be the active state.
  • the primary RLC in the primary RLC group, or the initial state of the primary RLC in the secondary RLC group refer to the record in the embodiment shown in FIG. 7, and no additional description is provided here.
  • Step S1002 The PDCP entity delivers the PDCP data packet to the primary RLC group or the secondary RLC group.
  • the PDCP data packet may be a PDCP PDU, and may include a PDCP data PDU and a PDCP control PDU, and the PDCP data packet may also be a copied PDCP PDU.
  • the PDCP entity delivers the PDCP data packet to the main RLC group: the amount of data to be sent is less than the threshold; the main RLC group is in the active state; the main RLC group is in the active state That is, at least one RLC entity in the main RLC group is in an active state.
  • the secondary RLC group can be in an activated state or a deactivated state.
  • the PDCP entity delivers the PDCP data packet to the secondary RLC group: the amount of data to be sent is less than the threshold; the primary RLC group is in a deactivated state and the secondary RLC group is activated State; the primary RLC group is in a deactivated state, that is, all RLC entities in the primary RLC group are in a deactivated state; wherein, the secondary RLC group is in an activated state, that is, at least one RLC entity in the secondary RLC group is in an activated state .
  • the PDCP entity delivers the PDCP data packet to the primary RLC group or the secondary RLC group: the amount of data to be sent is greater than or equal to the threshold; the primary RLC group is in the active state and the secondary RLC group The RLC group is in the active state; the primary RLC group is in the active state, that is, at least one RLC entity in the primary RLC group is in the active state; the secondary RLC group is in the active state, that is, at least one RLC entity in the secondary RLC group is Active state.
  • the amount of data to be sent includes the sum of the amount of PDCP data used for initial transmission (initial transmission) and the amount of RLC data
  • the amount of PDCP data may include the following data amount: PDCP data SDU, that is, it has not yet been assembled into PDCP
  • the PDCP data SDU of the data PDU the PDCP data PDU that has not been delivered to the lower layer
  • the PDCP control PDU the above-mentioned PDCP data PDU may include the initially transmitted PDCP data PDU, such as the PDCP data PDU that has not been delivered to the lower layer, and/or the retransmitted PDCP data PDU, etc.
  • a DRB in an acknowledgement mode (AM) mode it may also include a PDCP data PDU for retransmission.
  • PDCP data recovery PDCP data recovery
  • the sender PDCP entity may need to retransmit the PDCP data PDU, etc.
  • the above-mentioned PDCP data SDU may include the initially transmitted PDCP data SDU, for example, the PDCP data SDU that has not been assembled into a PDCP data PDU, and/or the retransmitted PDCP data SDU, etc.
  • DRB in AM mode it may also include PDCP data SDU for retransmission, etc.
  • the PDCP entity at the transmitting end may need to retransmit the PDCP data SDU, etc.
  • Step S1003 The PDCP entity delivers the PDCP data packet to the RLC entity. It can be known from the record in the above step S1002 that the PDCP entity can specifically deliver the PDCP data packet to the primary RLC group or the secondary RLC group. It can be specifically described in step S1003 that the PDCP data packet is delivered to specific RLC entities in the primary RLC group or the secondary RLC group. It can be understood that step S1002 and step S1003 can be combined into one step for processing, which is not limited.
  • the RLC entity may include all activated RLC entities in the primary RLC group or the secondary RLC group.
  • the number of PDCP replicated data packets is equal to the primary RLC group or the secondary RLC group Where is the number of RLC entities in the active state.
  • the RLC entity may include part of the RLC entities in the primary RLC group or the secondary RLC group. In this case, the number of PDCP replicated data packets is less than the active state in the primary RLC group or the secondary RLC group The number of RLC entities.
  • the PDCP entity decides to deliver the PDCP data packet to the main RLC group. If the active RLC entity in the main RLC group is the RLC entity 1, the PDCP entity decides to deliver the PDCP data packet to the RLC entity 1. If the active RLC entity 1 and the RLC entity 2 in the main RLC group, the PDCP entity decides to deliver the PDCP data packet to the RLC entity 1 and the RLC entity 2.
  • the PDCP entity needs to deliver the PDCP data packet to the primary RLC entity in the primary RLC group or the secondary RLC group.
  • the secondary RLC group is used to perform load sharing to meet the high-rate requirements of AR and VR services.
  • the primary RLC group and the secondary RLC group can contain multiple RLC entities, so that the separated data streams can perform PDCP repetition. At the same time, it can meet the requirements of lower latency and higher reliability for AR and VR services.
  • a flow of a communication method includes:
  • Step S1101 The terminal device generates a first data packet.
  • Step S1102 The terminal device segments the first data packet into M second data packets, and sends the M second data packets to the network device on the uplink authorized resource, and the M second data packets
  • the second data packet may also be referred to as a segment of the first data packet.
  • the configuration information of the CG resource may carry an information element indicating the number of repeated transmissions.
  • the uplink authorized resource is a dynamically scheduled resource, the number of repeated transmissions of the uplink authorized resource can be indicated by DCI; for type 2 CG resources, the initial number of repeated transmissions can be configured through the configuration message of the CG resource, and the subsequent DCI can be used to configure the number of repeated transmissions. Change the number of repeated transmissions.
  • the number of repeated transmissions in the embodiment of the present application includes the first transmission.
  • the terminal device may determine the size of N 1 , N 2 to NM according to the ratio of N to M. For example, if the values of N and M are integers, the sizes of N 1 , N 2 to N M are equal, and the sizes are all N/M. For example, if the value of N is 4 and the value of M is 2, then the first data packet can be divided into two second data packets, the second data packet A and the second data packet B, respectively. And the number of repeated transmissions of the second data packet A and the second data packet B are both 2.
  • the first data packet can be divided into 3 second data packets, namely, second data packet A, second data packet B, and second data packet. C. If rounded up, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted 3 times. If rounded down, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted twice.
  • the terminal device may determine that the number of repeated transmissions of the first M-1 second data packet is (N/M) rounded , and the value may be rounded up or rounded down ,
  • the number of repeated transmissions of the M-th second data packet is N-(N/M) rounded *(M-1).
  • the value of N is 8
  • the value of M is 3
  • the first data packet is divided into three second data packets, which are the second data packet A, the second data packet B, and the second data packet C, respectively. If rounded up, the number of repeated transmissions of the second data packet A and the second data packet B is 3, and the number of repeated transmissions of the third data packet is 2. If the value is downward, the number of repeated transmissions of the second data packet A and the second data packet B is 2, and the number of repeated transmissions of the second data packet C is 4.
  • each of the foregoing second data packets may also carry first indication information, which is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • first indication information is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • the uplink authorized resource can be flexibly divided into large packets. In order to achieve a good compromise between reliability and delay.
  • a flow of a communication method is provided.
  • the flow may be a specific implementation of the flow shown in FIG. 11, and the flow includes:
  • Step S1200 the access network device configures repeated transmission of the uplink authorized resource for the UE, and the repeated transmission of the uplink authorized resource includes the first number of repeated transmissions K1.
  • the uplink authorized resources may be configured authorized CG resources or dynamically authorized DG resources.
  • the first number of repeated transmissions K1 may be configured through an RRC message, and the RRC message may be RRC reconfiguration, RRC recovery, or RRC establishment, etc., which is not limited.
  • the first number of repeated transmissions K1 may be dynamically indicated by the uplink authorized DCI. If the uplink authorized resource is a DG resource, the DCI is used to schedule the DG resource. Or, if the uplink authorized resource is a CG resource, the DCI is used to activate or reactivate the CG resource.
  • Step S1201 The UE determines the data to be sent corresponding to the uplink authorized resource.
  • the data to be sent on the LCH corresponding to the SRB or DRB can be sent on the uplink authorized resource, and the MAC CE can also be sent on the uplink authorized resource.
  • the CG resource may be included in the allowed CG list of the LCH.
  • the allowed CG list of the LCH indicates that the LCH is allowed to be sent on the CGs in the list.
  • the allowed CG list is ⁇ CG1, CG2 ⁇ , and the CG1 and CG2 may be different CG resources.
  • the uplink grant is the CG1 resource
  • the LCH can be sent on the CG1 resource.
  • the uplink grant is a CG3 resource
  • the LCH cannot be sent on the CG3 resource.
  • the allowed CG list of the LCH may be configured by the access network device to the UE through an RRC message, and the RRC message may be RRC reconfiguration, RRC recovery, RRC establishment, and so on. Not limited.
  • the allowed priority list of the LCH may include the priority corresponding to the DG.
  • the priority may be the priority indicated in the DG, or the priority used by the DG pre-configured by RRC, for example, a priority of 1 indicates a high priority service, for example, the URLLC type service, and a priority of 0 indicates a low priority.
  • Priority services such as the eMBB type services. If the priority is the priority indicated in the DG, the priority can be indicated by a field in the DCI of the DG, or a special DCI format, or a special RNTI implicitly indicated.
  • Step S1202 The UE determines the second number of repeated transmissions K2.
  • the UE may determine the second number of repeated transmissions according to the resource size indicated by the uplink grant and the data to be sent.
  • the data to be sent may be the data to be sent of the LCH corresponding to SRB and DRB, (for example, it may be PDCP PDU, RLC SDU of SRB or DRB, RLC PDU of SRB or DRB, etc.), or MAC CE, or It is the data to be sent and MAC CE of the LCH corresponding to the SRB and DRB.
  • the second number of repeated transmissions is equal to the first number of repeated transmissions. At this time, there is no need to segment the data to be sent into multiple pieces of data. The package is sent.
  • the data to be sent on the LCH corresponding to the SRB or DRB is packaged to generate a MAC PDU.
  • the MAC PDU may include MAC CE in addition to the data to be sent on the LCH corresponding to the SRB or DRB.
  • buffer status report buffer status report
  • BSR buffer status report
  • PHR power headroom report
  • the UE first performs a new transmission of MAC PDU on the resource corresponding to the uplink grant, and then retransmits the MAC PDU on the repeated resource corresponding to the uplink grant until the number of transmissions reaches the second number of repeated transmissions, then stops the Repeated transmission of MAC PDU.
  • the redundancy version number used for the new transmission and retransmission of the MAC PDU may be configured by RRC or pre-set by the protocol, etc., and is not limited.
  • the access network device detects that the MAC PDU transmission fails, the HARQ corresponding to the MAC PDU may be scheduled for retransmission.
  • the first The second number of repeated transmissions is less than the first number of repeated transmissions.
  • the UE may determine that the data to be sent needs to be divided into N segments, and the segments may be RLC SDU segments, or RLC PDU segments, or PDCP data segments, or SRB Segmentation.
  • the segment if the segment is an RLC SDU segment, the RLC PDU corresponding to the segment may also include segment information.
  • the segment information may indicate whether the current segment is the first segment. Segment, the last segment, etc.
  • the segment is an SRB segment, such as an RRC message segment
  • the RRC message corresponding to the segment may also include segment information, for example, indicating whether the current segment is the first segment, or specific The segment number, for example, this is the first segment, the second segment, etc.
  • the UE when the UE assembles the MAC PDU, it can obtain the size of the data to be sent corresponding to the logical channel that can be transmitted in the MAC PDU of this transmission, so as to indicate the transmission size to The RLC entity corresponding to the logical channel.
  • the RLC entity determines whether the RLC SDU to be sent needs to be segmented and divided into several segments according to the size of the transmission. For example, RLC SDU#1 corresponding to logical channel A has 1000 bytes, MAC PDU The transmission size is 500 bytes, then the UE divides the RLC SDU#1 into two RLC SDU segments, RLC SDU#1 segment #1 size is 500 bytes, RLC SDU#1 segment#2 size is 500 byte.
  • the two segments of the data to be sent may be seg#1 and seg#2.
  • the UE first performs a new transmission of the first segment (ie, seg#1) in the uplink authorization, and then sends the retransmission of the first segment on the uplink authorization resource, and then transmits it on the uplink authorization resource.
  • the UE may determine that the number of repeated transmissions of the first N-1 segment is floor(K1/N), and the number of repeated transmissions of the Nth segment is K1-floor(K1/N) *(N-1), floor represents the function of rounding down.
  • the number of segment transmissions can be determined in multiple ways.
  • the specific method used to determine the transmission mode of each segment can be configured to the UE through an RRC message, or protocol presets, etc., which are not limited.
  • each segment data may also carry a first indication, which is used to indicate whether the data currently transmitted by the segment is newly transmitted or repeatedly transmitted.
  • the first indication may be physical layer signaling, such as a demodulation reference signal (DMRS), for example, a different DMRS is allocated to the UE, and DMRS#1 is used to indicate that the transmitted data is of the previous segment.
  • DMRS#2 is used to indicate that the transmitted data is a new transmission of the next segment, and may also be a physical uplink control channel (PUCCH), which functions similarly to the above-mentioned DMRS and will not be repeated.
  • the first indication may also be MAC, RLC, or PDCP control signaling.
  • MAC CE indicates that the transmitted data is repeated transmission of the previous segment, and may also indicate that the transmitted data is the next segment. Duan's new biography. Or, it can be indicated by whether the MAC CE is carried. For example, the MAC CE in the transmitted data indicates that the transmitted data is a repeated transmission of the previous segment. If the MAC CE is not carried, it indicates that the The transmitted data is the new transmission of the next segment, etc.
  • the UE may transmit the data to be sent on the uplink authorized resource in an existing manner, or may transmit the data to be sent in the manner in the flow of FIG. 12.
  • the UE may use an RRC reconfiguration message or a system message to indicate whether the UE currently uses the method in the process of FIG. 12 to transmit the data to be sent.
  • the RRC reconfiguration message or the system message may carry a switch cell. When the switch cell is turned on, the UE may transmit the data to be sent in the manner in the flow of FIG. 12. When the open cell is closed, the UE can transmit the data to be sent in the existing manner.
  • whether the UE supports the transmission of the data to be sent in the manner in the above-mentioned flowchart in FIG. 12 may be used as the capability of the UE.
  • a capability indicator may be carried in the capability information of the UE to indicate whether the UE can support the function.
  • the number of repeated transmissions of the segment can be flexibly determined, and the data of multiple segments can be transmitted on a fixed repeated transmission resource, thereby improving reliability. And to achieve a better compromise on time delay.
  • the methods provided in the embodiments of the present application are introduced from the perspective of interaction between a terminal device and a network device.
  • the terminal device and the network device may include a hardware structure and/or a software unit, and the above functions are implemented in the form of a hardware structure, a software unit, or a hardware structure plus a software unit. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software unit, or a hardware structure plus a software unit depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 15 is a schematic block diagram of an apparatus 1500 provided by an embodiment of the present application, which is used to implement the functions of a terminal device or a network device in the foregoing method.
  • the device may be a software unit or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device includes a communication unit 1501 and may also include a processing unit 1502.
  • the communication unit 1501 can communicate with each other.
  • the processing unit 1502 is used for processing. For example, according to the first configuration information and the second configuration information, the primary RLC group and the secondary RLC group are determined.
  • the communication unit 1501 may also be referred to as a communication interface, a transceiver unit, an input/output interface, and so on.
  • the communication unit 1501 may include a sending unit and/or a receiving unit, and so on.
  • the apparatus 1500 may implement the steps corresponding to the terminal device in the process shown in FIG. 9.
  • the apparatus 1500 may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1501 performs the transceiving operations on the terminal device side in the above method embodiment, and the processing unit 1502 is configured to perform the processing related operations on the terminal device side in the above method embodiment.
  • the communication unit 1501 is configured to receive first configuration information and second configuration information from a network device, the first configuration information is used to configure the primary radio link control RLC group, and the second configuration information is used to configure the secondary RLC group, the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity; the processing unit 1502 is configured to determine the primary RLC group according to the first configuration information and the second configuration information.
  • the RLC group and the secondary RLC group are configured to receive first configuration information and second configuration information from a network device, the first configuration information is used to configure the primary radio link control RLC group, and the second configuration information is used to configure the secondary RLC group, the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity; the processing unit 1502 is configured to determine the primary RLC group according to the first configuration information and the second configuration information. The RLC group and the secondary RLC group.
  • the first configuration information includes a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to the primary RLC group among RLC entities associated with a packet data convergence protocol PDCP entity;
  • the second configuration information includes a second indication information element, and the second indication information element is used to indicate the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the primary RLC group and the secondary RLC group are associated with PDCP entities of the same radio bearer.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate a main RLC entity in the main RLC group;
  • the second configuration information includes a fourth indication information element , The fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the first configuration information further includes a fifth indication information element, and the fifth indication information element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the processing unit 1502 is further configured to: determine a first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, where the first RLC group is the The primary RLC group or the secondary RLC group copies the first PDCP data packet according to the number of active RLC entities in the first RLC group, and delivers the copied first PDCP data packet to the first RLC group PDCP data packet.
  • the processing unit 1502 determines the first RLC group according to at least one of the activation state in the primary RLC group and the activation state in the secondary RLC group, it includes: according to the activation of the primary RLC group At least one of the state and the active state of the secondary RLC group, and the relationship between the amount of data to be sent and the threshold value, determine the first RLC group.
  • the processing unit 1502 determines the first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, and the relationship between the amount of data to be sent and the threshold value.
  • An RLC group including: determining that the amount of data to be sent is greater than or equal to a threshold; the primary RLC group and the secondary RLC group are both in an active state, and the terminal device determines that the first RLC group is the The primary RLC group or the secondary RLC group; or, the primary RLC group is in an active state, the secondary RLC group is in an inactive state, and the terminal device determines that the first RLC group is the primary RLC group; or, so The main RLC group is in an inactive state, the secondary RLC group is in an active state, and the terminal device determines that the first RLC group is a secondary RLC group.
  • the processing unit 1502 determines the size of the relationship between the amount of data to be sent and the threshold value according to at least one of the active state in the primary RLC group and the active state in the secondary RLC group.
  • the first RLC grouping includes: determining that the amount of data to be sent is less than or equal to a threshold value, the main RLC group is in an active state, and determining that the first RLC group is the main RLC group; or, the main RLC group The group is in an inactive state, the secondary RLC group is in an active state, and it is determined that the first RLC group is a secondary RLC group.
  • one RLC entity in the main RLC group is in an active state, and the main RLC group is in an active state; all RLC entities in the main RLC group are in an inactive state, and the main RLC group is in a non-active state.
  • the apparatus 1500 may implement the steps corresponding to the network device in the process shown in FIG. 9.
  • the apparatus 1500 may be a network device, or a chip or circuit configured in the network device.
  • the communication unit 1501 performs the transceiving operations on the network device side in the above method embodiment, and the processing unit 1502 is configured to perform the processing related operations on the network device side in the above method embodiment.
  • the processing unit 1502 is configured to generate first configuration information and second configuration information, where the first configuration information is used to configure a primary radio link control RLC group, and the second configuration information is used to configure a secondary RLC group;
  • the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity.
  • the communication unit 1501 is configured to send first configuration information and second configuration information to a terminal device.
  • the first configuration information includes a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to a primary RLC group among RLC entities associated with a Packet Data Convergence Protocol PDCP entity;
  • the second configuration information includes a second indication information element, and the second indication information element is used to indicate an RLC entity belonging to a secondary RLC group among RLC entities associated with the PDCP entity.
  • the primary RLC group and the secondary RLC group are associated with PDCP entities of the same radio bearer.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate a main RLC entity in the main RLC group;
  • the second configuration information includes a fourth indication information element , The fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the first configuration information further includes a fifth indication information element, and the fifth indication information element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the apparatus 1500 may implement the steps corresponding to the terminal device in the process shown in FIG. 11 above, and the apparatus 1500 may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1501 is used to perform the transceiving-related operations of the terminal device in the above method embodiment, and the processing unit 1502 is used to perform the processing related operations of the terminal device in the above method embodiment.
  • the processing unit 1502 is configured to generate the first data packet.
  • the processing unit 1502 is further configured to segment the first data packet into M second data packets, and on the uplink authorized resource, control the communication unit 1501 to send M second data packets to the network device.
  • N is greater than or equal to 1.
  • the processing unit 1502 may determine the size of N 1 , N 2 to NM according to the ratio of N to M. For example, if the values of N and M are integers, the sizes of N 1 , N 2 to N M are equal, and the sizes are all N/M. For example, if the value of N is 4 and the value of M is 2, then the first data packet can be divided into two second data packets, the second data packet A and the second data packet B, respectively. And the number of repeated transmissions of the second data packet A and the second data packet B are both 2.
  • the first data packet can be divided into 3 second data packets, namely, second data packet A, second data packet B, and second data packet. C. If rounded up, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted 3 times. If rounded down, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted twice.
  • the processing unit 1502 may determine that the number of repeated transmissions of the first M-1 second data packet is (N/M) rounded , and the value may be rounded up or rounded down. Integer, the number of repeated transmissions of the M-th second data packet is N-(N/M) rounded *(M-1). For example, the value of N is 8, the value of M is 3, and the first data packet is divided into three second data packets, which are the second data packet A, the second data packet B, and the second data packet C, respectively. If rounded up, the number of repeated transmissions of the second data packet A and the second data packet B is 3, and the number of repeated transmissions of the third data packet is 2. If the value is downward, the number of repeated transmissions of the second data packet A and the second data packet B is 2, and the number of repeated transmissions of the second data packet C is 4.
  • each of the foregoing second data packets may also carry first indication information, which is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • first indication information is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • the division of units in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional units in the various embodiments of this application can be integrated into one processing unit. In the device, it can also exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the functions of the communication unit in the foregoing embodiments may be realized by a transceiver, and the functions of the processing unit may be realized by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., which are used to implement the functions of the transmitting unit and/or the receiving unit, respectively.
  • FIG. 16 The following description will be given with reference to FIG. 16 as an example.
  • FIG. 16 is a schematic block diagram of an apparatus 1600 provided by an embodiment of the present application.
  • the apparatus 1600 shown in FIG. 16 may be a hardware circuit implementation of the apparatus shown in FIG. 15.
  • the device can perform the functions of the terminal device or the network device in the above method embodiment.
  • FIG. 16 only shows the main components of the communication device.
  • the communication device 1600 shown in FIG. 16 includes at least one processor 1601.
  • the communication device 1600 may further include at least one memory 1602 for storing program instructions and/or data.
  • the memory 1602 is coupled with the processor 1601.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which can be electrical, mechanical, or other forms, and is used for information exchange between devices, units, or modules.
  • the processor 1601 may operate in cooperation with the memory 1602, the processor 1601 may execute program instructions stored in the memory 1602, and at least one of the at least one memory 1602 may be included in the processor 1601.
  • the apparatus 1600 may further include a communication interface 1603 for communicating with other devices through a transmission medium, so that the communication apparatus 1600 may communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • connection medium between the processor 1601, the memory 1602, and the communication interface 1603 is not limited in the embodiment of the present application.
  • the memory 1602, the processor 1601, and the communication interface 1603 are connected by a communication bus 1604 in FIG. 16.
  • the bus is represented by a thick line in FIG. 16, and the connection mode between other components is only a schematic illustration , Not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the apparatus 1600 is used to implement the steps performed by the terminal device in the process shown in FIG. 9 above.
  • the communication interface 1603 is used to perform the transceiving-related operations on the terminal device side in the above embodiment
  • the processor 1601 is used to perform the processing related operations on the terminal device side in the above method embodiment.
  • the communication interface 1603 is used to receive first configuration information and second configuration information from a network device, the first configuration information is used to configure the primary radio link control RLC group, and the second configuration information is used to configure the secondary RLC group, the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity; a processing unit, configured to determine the primary RLC according to the first configuration information and the second configuration information Group and the secondary RLC group.
  • the first configuration information includes a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to the primary RLC group among RLC entities associated with a packet data convergence protocol PDCP entity;
  • the second configuration information includes a second indication information element, and the second indication information element is used to indicate the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the primary RLC group and the secondary RLC group are associated with PDCP entities of the same radio bearer.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate a main RLC entity in the main RLC group;
  • the second configuration information includes a fourth indication information element , The fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the first configuration information further includes a fifth indication information element, and the fifth indication information element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the processor 1601 is further configured to: determine a first RLC group according to at least one of the activation state of the primary RLC group and the activation state of the secondary RLC group, where the first RLC group is the The primary RLC group or the secondary RLC group copies the first PDCP data packet according to the number of active RLC entities in the first RLC group, and delivers the copied first PDCP data packet to the first RLC group PDCP data packet.
  • the processor 1601 determines the first RLC group according to at least one of the activation state in the primary RLC group and the activation state in the secondary RLC group
  • the processor 1601 includes: according to the activation of the primary RLC group At least one of the state and the active state of the secondary RLC group, and the relationship between the amount of data to be sent and the threshold value, determine the first RLC group.
  • the processor 1601 determines the first RLC group according to at least one of the active state of the primary RLC group and the active state of the secondary RLC group, and the relationship between the amount of data to be sent and the threshold value.
  • An RLC group including: determining that the amount of data to be sent is greater than or equal to a threshold; the primary RLC group and the secondary RLC group are both in an active state, and the terminal device determines that the first RLC group is the The primary RLC group or the secondary RLC group; or, the primary RLC group is in an active state, the secondary RLC group is in an inactive state, and the terminal device determines that the first RLC group is the primary RLC group; or, so The main RLC group is in an inactive state, the secondary RLC group is in an active state, and the terminal device determines that the first RLC group is a secondary RLC group.
  • the processor 1601 determines all the data according to at least one of the active state in the primary RLC group and the active state in the secondary RLC group, and the relationship between the amount of data to be sent and the threshold value.
  • the first RLC grouping includes: determining that the amount of data to be sent is less than or equal to a threshold value, the main RLC group is in an active state, and determining that the first RLC group is the main RLC group; or, the main RLC group The group is in an inactive state, the secondary RLC group is in an active state, and it is determined that the first RLC group is a secondary RLC group.
  • one RLC entity in the main RLC group is in an active state, and the main RLC group is in an active state; all RLC entities in the main RLC group are in an inactive state, and the main RLC group is in a non-active state.
  • the apparatus 1600 is used to implement the steps performed by the network device in the process shown in FIG. 9 above.
  • the communication interface 1603 is used to perform the transceiving-related operations on the network device side in the above embodiment, and the processor 1601 is used to perform the processing related operations on the network device in the above method embodiment.
  • the processor 1601 is configured to generate first configuration information and second configuration information, where the first configuration information is used to configure a primary radio link control RLC group, and the second configuration information is used to configure a secondary RLC group;
  • the primary RLC group includes at least one RLC entity, and the secondary RLC group includes at least one RLC entity.
  • the communication interface 1603 is used to send the first configuration information and the second configuration information to the terminal device.
  • the first configuration information includes a first indication information element, and the first indication information element is used to indicate an RLC entity belonging to a primary RLC group among RLC entities associated with a Packet Data Convergence Protocol PDCP entity;
  • the second configuration information includes a second indication information element, and the second indication information element is used to indicate an RLC entity belonging to a secondary RLC group among RLC entities associated with the PDCP entity.
  • the primary RLC group and the secondary RLC group are associated with PDCP entities of the same radio bearer.
  • the first configuration information includes a third indication information element, and the third indication information element is used to indicate a main RLC entity in the main RLC group;
  • the second configuration information includes a fourth indication information element , The fourth indication information element is used to indicate the primary RLC entity in the secondary RLC group.
  • the first configuration information further includes a fifth indication information element, and the fifth indication information element is used to indicate the initial state of the RLC entity belonging to the primary RLC group among the RLC entities associated with the PDCP entity
  • the second configuration information includes a sixth indication information element, and the sixth indication information element is used to indicate the initial state of the RLC entity belonging to the secondary RLC group among the RLC entities associated with the PDCP entity.
  • the apparatus 1600 may implement the steps corresponding to the terminal device in the process shown in FIG. 11 above, and the apparatus 1600 may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication interface 1603 is used to perform the transceiving-related operations of the terminal device in the above method embodiment, and the processor 1601 is used to perform the processing related operations of the terminal device in the above method embodiment.
  • the processor 1601 is configured to generate the first data packet.
  • the processor 1601 is further configured to segment the first data packet into M second data packets, and on the uplink authorized resource, control the communication interface 1603 to send M second data packets to the network device.
  • N is greater than or equal to 1.
  • the processor 1601 may determine the size of N 1 , N 2 to NM according to the ratio of N to M. For example, if the values of N and M are integers, the sizes of N 1 , N 2 to N M are equal, and the sizes are all N/M. For example, if the value of N is 4 and the value of M is 2, then the first data packet can be divided into two second data packets, the second data packet A and the second data packet B, respectively. And the number of repeated transmissions of the second data packet A and the second data packet B are both 2.
  • the first data packet can be divided into 3 second data packets, namely, second data packet A, second data packet B, and second data packet. C. If rounded up, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted 3 times. If rounded down, the second data packet A, the second data packet B, and the second data packet C can all be repeatedly transmitted twice.
  • the processor 1601 may determine that the number of repeated transmissions of the first M-1 second data packet is (N/M) rounded , and the value may be rounded up or rounded down. Integer, the number of repeated transmissions of the M-th second data packet is N-(N/M) rounded *(M-1). For example, the value of N is 8, the value of M is 3, and the first data packet is divided into three second data packets, which are the second data packet A, the second data packet B, and the second data packet C, respectively. If rounded up, the number of repeated transmissions of the second data packet A and the second data packet B is 3, and the number of repeated transmissions of the third data packet is 2. If the value is downward, the number of repeated transmissions of the second data packet A and the second data packet B is 2, and the number of repeated transmissions of the second data packet C is 4.
  • each of the foregoing second data packets may also carry first indication information, which is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • first indication information is used to indicate whether the current data packet is newly transmitted or retransmitted.
  • an embodiment of the present application also provides a device, which is used to execute the method in the flow shown in FIG. 9 above, or is used to execute the method in the flow shown in FIG. 11 above.
  • a computer-readable storage medium including a program. When the program is executed by a processor, the method in the flow shown in FIG. 9 is executed, or the method in the flow shown in FIG. 11 is executed.
  • a computer program product, the computer program product comprising computer program code when the computer program code is run on a computer, the computer is allowed to implement the method of the process shown in Figure 9 above, or the process shown in Figure 11 above In the method.
  • a chip includes: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor, the device executes the above shown in FIG. 9 The method of the process, or the method of executing the process shown in Figure 11 above.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can implement or execute The methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,该方法包括:终端设备接收来自网络设备的第一配置信息和第二配置信息,所述第一配置信息用于配置主RLC组,第二配置信息用于配置辅RLC组。终端设备根据第一配置信息和第二配置信息,确定主RLC组和辅RLC组。通过上述方案,网络设备可为终端设备配置主RLC组和辅RLC组,且主RLC组和辅RLC组可包括至少一个RLC实体。之后,终端设备可在PDCP层,将待传输的PDCP数据包,复制成多份,递交给主RLC组或辅RLC组中的RLC实体,从而满足业务的高可靠性要求。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年04月30日提交国家知识产权局、申请号为202010360380.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5 th generation,5G)移动通信系统,需要应用新的业务场景。例如,超可靠低时延(ultra reliability low latency,URLLC)业务。对通信系统的传输时延以及传输可靠性要求极高。例如,对于远程工业控制,智能交通系统,分布式自动化等业务,传输时延要求小于5ms,传输错误率要求小于10 -5
面对新的业务需求,第三代合作伙伴计划(3rd generation partner project,3GPP)提出了分组数据汇聚协议(packet data convergence protocol,PDCP)层数据复制(duplication)传输的方案,以满足业务的高可靠性需求。PDCP层数据复制传输通常指将无线承载的数据包在PDCP层复制成多个相同的数据包,然后将多个数据包分别递交给不同的无线链路控制(radio link control,RLC)实体进行传输,进而通过不同的逻辑信道传输到媒体接入控制(media access control,MAC)层。
通过上述分析可知,在上述PDCP层数据复制传输的方案中,需要多个RLC实体传输复制后的数据包。如何为终端设备配置多个RLC实体,以满足业务的高可靠性要求,是本申请待解决的技术问题。
发明内容
本申请实施例提供一种通信方法及装置,以实现为终端设备配置多个RLC实体,满足业务高可靠性的要求。
第一方面,提供一种通信方法,该方法的执行主体为终端设备。可以理解的是,终端设备还可以是终端设备中的部件(电路、芯片或其它等),包括:终端设备接收来自网络设备的第一配置信息和第二配置信息,所述第一配置信息用于配置主RLC组,第二配置信息用于配置辅RLC组,主RLC组和辅RLC组均包括至少一个RLC实体。终端设备根据第一配置信息和第二配置信息,确定主RLC组和辅RLC组。可选的,主RLC组和辅RLC组可关联同一个无线承载的PDCP实体。
通过上述方案,网络设备可为终端设备配置主RLC组和辅RLC组,且主RLC组和辅RLC组可包括至少一个RLC实体。之后,终端设备可在PDCP层将待传输的PDCP数据包,复制成多份,递交给主RLC组或辅RLC组中的RLC实体,满足业务的高可靠性要求。
可选的,第一配置信息中还可以包括第一指示信元,用于指示PDCP实体相关联的RLC组中属于主RLC组的RLC实体;第二配置信息中还可以包括第二指示信元,用于指示PDCP实体相关联的RLC组中属于辅RLC组的RLC实体。相应的,终端设备可根据第一指示信元,确定主RLC组所包括的RLC实体,根据第二指示信元,确定辅RLC组所包括的RLC实体。从而可实现为不同的RLC组配置不同的RLC实体。
在一种可能的实现方式中,第一配置信息中可包括第一指示信元,第二配置信息中不再包括第二指示信元。终端设备可根据第一指示信元,确定主RLC组中的RLC实体。之后,终端设备可在PDCP层所关联的RLC实体中,除去属于主RLC组的RLC实体,自然可确定属于辅RLC组的RLC实体;相对于上述同时指示主RLC组和辅RLC组中RLC实体的方案相比,可减少信令开销。或者,第一配置信息中可不包括第一指示信元,第二配置信息中包括第二指示信元。终端设备同样可根据第二指示信元,以及PDCP实体相关联的所有RLC实体,确定主RLC组和辅RLC组中所包括的RLC实体。过程与上述相似,不再额外说明。可选的,第一配置信息中包括第三指示信元,第三指示信元用于指示主RLC组中的主RLC实体。第二配置信息中包括第四指示信元,第四指示信元用于指示辅RLC组中的主RLC实体。所述主RLC用于传输PDCP控制PDU,例如,PDCP状态报告等。
可选的,第一配置信息中包括第五指示信元,第五指示信元用于指示PDCP实体所关联的RLC实体中属于主RLC组的RLC实体的初始状态,所述RLC实体的初始状态可具体包括激活态和去激活态。第二配置信息中包括第六指示信元,第六指示信元用于指示PDCP实体相关联的RLC实体中属于辅RLC组的RLC实体的初始状态。
通过上述方法,终端设备可为主RLC组和辅RLC组中的RLC实体配置初始状态。其中,只有处于激活态的RLC实体才能进行传输。且RLC实体的激活态与去激活态支持后续修改,灵活性较高。比如,在网络设备为终端设备配置RLC实体的初始状态后,后续还可通过RRC或MAC CE等信令,修改RLC实体的初始状态。
可选的,第一方面的方法还包括:终端设备根据主RLC组的激活状态和辅RLC组的激活状态中的至少一个,确定第一RLC组,第一RLC组为主RLC组或辅RLC组;终端设备根据第一RLC组中处于激活态的RLC实体的数目,复制第一PDCP数据包;终端设备向第一RLC组递交复制后的第一PDCP数据包。需要说明的是,当主RLC组所包括的至少一个RLC实体处于激活态时,则主RLC组处于激活态。而当主RLC组所包括的所有RLC实体均处于去激活态时,则主RLC组处于去激活态。同理,当辅RLC组所包括的至少一个RLC实体处于激活态时,则辅RLC组处于激活态。而当辅RLC组所包括的所有RLC实体均处于去激活态时,则辅RLC组处于去激活态。
通过上述方案,终端设备在PDCP层可将PDCP数据包复制成多份,且递交给第一RLC组中的不同RLC实体,从而可提高数据传输的可靠性。
在一种可能的实现方式中,终端设备根据主RLC组中的激活状态和辅RLC组的激活状态中的至少一个,确定第一RLC组,包括:终端设备根据主RLC组的激活状态和辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定第一RLC组。
比如,终端设备可确定待发送数据的数据量与门限值的大小关系;当待发送数据的数据量大于或等于门限值时,启此可启动分流策略。例如,当主RLC组和辅RLC组均处于激活状时,此时可将待发送数据递交给主RLC组和辅RLC组。针对每一个数据数,具体 递交给主RLC组或辅RLC组,取决于具体的分流策略。可见,此时在实现分担负荷的基础上,还提高了业务数据的可靠性。或者,若主RLC组和辅RLC组中仅有一个处于激活态,那么仅将待发送数据递交给当前处于激活态的主RLC组或辅RLC组。
当待发送数据的数据量小于或等于门限值时,优先将PDCP数据包递交给主RLC组。若主RLC组处于非激活态,且辅RLC组处于激活态时,才将PDCP数据包递交给辅RLC组。
第二方面,提供一种通信方法,第二方面的有益效果可参见上述第一方面,不再赘述。第二主面方法的执行主体为网络设备。可以理解的是,网络设备还可以是网络设备中的部件(电路、芯片或其它等),该方法包括:
网络设备生成第一配置信息和第二配置信息,第一配置信息用于配置主RLC组,第二配置信息用于配置辅RLC组,主RLC组和辅RLC组均包括至少一个RLC实体;网络设备向终端设备发送第一配置信息和第二配置信息。
在一种可能的实现方式中,第一配置信息中包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于主RLC组的RLC实体;和/或,第二配置信息中包括第二指示信元,所述第二指示信元用于指示PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体。可选的,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
在一种可能的实现方式中,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
在一种可能的实现方式中,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
第三方面,提供一种通信方法,该方法的执行主体为终端设备,终端设备还可以为终端设备中的部件(芯片、电路或其它),包括:终端设备生成第一数据包;终端设备将所述第一数据包分段,分成M个第二数据包,并在上行授权资源上,向网络设备发送所述M个第二数据包,所述M个第二数据包的发送次数分别为N 1、N 2至N M,N 1+N 2…+N M=N,N为所述上行授权资源的重复传输次数,M大于或等于2,N大于或等于1。可选的,第二数据包还可称为第一数据包的分段。
在一种可能的实现方式中,终端设备可根据N与M的比值,确定N 1、N 2至N M的大小。例如,若N与M的取值为整数,则N 1、N 2至N M的大小相等,且大小均为N/M。例如,N的取值为4,M的取值为2,则可将第一数据包分成2个第二数据包,分别为第二数据包A和第二数据包B。且第二数据包A和第二数据包B的重复传输次数均为2。或者,若N与M的取值为非整数,则N 1、N 2至N M的大小相等,且大小均为(N/M) 取整,所述取整可为向上取整,或者,向下取整等,不作限定。例如,N的取值为8,M的取值为3,则可将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输3次。若向下取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输2次。
在另一种可能的实现方式中,终端设备可确定前M-1个第二数据包的重复传输次数为(N/M) 取整,所述取值可为向上取整或向下取整,第M个第二数据包的重复传输次数为N-(N/M) 取整*(M-1)。例如,N的取值为8,M的取值为3,将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A与第二数据包B的重复传输次数为3,第三数据包的重复传输次数为2。若向下取值,则第二数据包A与第二数据包B的重复传输次数为2,则第二数据包C的重复传输次数为4。
在目前的方案中,在固定的上行授权传输资源上只能传输相同的数据,因此对于大包需要多次分段才能完成传输,而在上述方案中,在上行授权资源上可灵活的对大包分段,从而在可靠性与时延上取得一个较好的折中。
可选的,上述每个第二数据包中还可携带第一指示信息,用于指示当前数据包是新传的,还是重传的。针对M个第二数据包中的任一个第二数据包,设定该数据包传输3次,那可以认为该第二数据的第一次传输为该第二数据包的初传,剩余两次为该第二数据包的重传。通过上述方法,使得网络设备可较好的区分初传数据包和重传数据包。
第四方面,提供一种通信方法,第四方面的有益效果可参见上述第三方面的记载。第四方面方法的执行主体为网络设备,网络设备还可以为网络设备中的部件(例如,芯片、电路或其它等),该方法包括:在上行授权资源上,接收来自终端设备的M个第二数据包,所述M个第二数据包的发送次数分别为N 1、N 2至N M,N 1+N 2…+N M=N,N为所述上行授权资源的重复传输次数,M大于或等于2,N大于或等于1;可选的,第二数据包还可称为第一数据包的分段;根据M个第二数据包,确定第一数据包。
在一种可能的实现方式中,N 1、N 2至N M的大小相等,且大小均为(N/M) 取整或者(N/M)。或者,终端设备可确定N 1、N 2至N M中前M-1个第二数据包的重复传输次数为(N/M) 取整,所述取值可为向上取整或向下取整,第M个第二数据包的重复传输次数为N-(N/M) 取整*(M-1)。
可选的,上述每个第二数据包中还可携带第一指示信息,用于指示当前数据包是新传的,还是重传的。
第五方面,提供一种装置,包括用于执行上述第一方面、第二方面、第三方面或第四方面所包括的各个步骤的单元或手段(means)。
第六方面,提供一种装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面、第二方面、第三方面或第四方面所提供的方法,该处理器包括一个或多个。
第七方面,提供一种装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面、第二方面、第三方面或第四方面所提供的方法,该存储器可以位于该装置之内,也可以位于该装置之外,且该处理器包括一个或多个。
第八方面,提供一装置,包括至少一个处理器和至少一个存储器,所述至少一个处理器用于执行上述第一方面、第二方面、第三方面或第四方面所提供的方法。
第九方面,提供一种程序,该程序在被处理器执行时用于执行以上述第一方面、第二方面、第三方面或第四方面所提供的方法。
第十方面,提供一种程序产品,例如计算机可读存储介质,包括上述第一方面、第二方面、第三方面或第四方面的程序。
第十一方面,提供一种计算机可读存储介质,包括程序,当程序被处理器运行时,上述第一方面、第二方面、第三方面或第四方面所提供的方法被执行。
以上装置可以是一个芯片,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。以上处理器为一个或多个,存储器为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
附图说明
图1为本申请实施例提供的PDCP层重复方案的一示意图;
图2为本申请实施例提供的DC分离承载的一示意图;
图3为本申请实施例提供的重复传输方式的一示意图;
图4为本申请实施例提供的通信系统的一示意图;
图5和图6为本申请实施例提供的网络架构的示意图;
图7为本申请实施例提供的通信方法的一示意图;
图8为本申请实施例提供的PDCP层重复的一示意图;
图9、图10、图11和图12为本申请实施例提供的通信方法的示意图;
图13和图14为本申请实施例提供的重复传输的示意图;
图15和图16为本申请实施例提供的通信装置的示意图。
具体实施方式
下面将对本申请实施例涉及的部分名词或术语进行介绍:
1、载波聚合(carrier aggregation,CA)
CA是将至少2个分量载波(component carrier,CC)聚合在一起,以支持更大传输带宽和高速率的技术。在长期演进(long term evolution,LTE)和新无线电(new radio,NR)通信系统中,终端设备和网络设备之间的通信可以使用多个CC实现,从而获得大带宽和高速率。终端设备接入的小区为主小区(primary Cell,PCell),主小区对应的CC为主分量载波(primary component carrier,PCC),终端设备接入网络后配置的小区为辅小区(secondary cell,SCell),辅小区对应的CC为辅载波单元(secondary component carrier,SCC)。
2、双连接(dual connectivity,DC)
由于单个基站的带宽资源和覆盖范围有限。因此,LTE和NR中引入了DC技术,用于提供基站间非理想传输条件下的性能解决方案。在一种DC方式下,数据在分组数据汇聚协议(packet data convergence protocol,PDCP)层进行分割和合并,之后将用户数据流通过多个不同的基站同时传输给终端设备,从而获得大带宽和高速率。在其它DC方式下,数据可以在其它位置,例如核心网侧,进行分割或合并,之后将用户数据流通过多个不同的基站同时传输给终端设备。其中,上述多个基站中的一个基站为主站(master node,MN), 剩余的基站为辅站(secondary node,SN)。MN与SN可以采用同一无线制式,或者不同的无线制式,不作限定。例如,MN可采用LTE制式,SN可采用NR制式。
3、PDCP层的重复(duplication)传输
PDCP层的重复传输可包括:将无线承载的数据包在PDCP层复制成多个相同的数据包,然后将多个数据包递交给不同的无线链路控制(radio link control,RLC)层进行传输,进而通过不同的逻辑信道传输到媒体接入控制(media access control,MAC)层。其中,逻辑信道可指RLC层至MAC层之间的信道。
需要说明的是,本申请实施例中的重复传输(duplication transmission)并不同于重新传输(retransmission)。重新传输通常是指将同一个数据包发送失败后的再次发送,或者是指将同一个数据包连续发送多次,而重复传输是指将一个数据包复制成多个数据包,分别通过对应的逻辑信道传输到MAC层。本申请实施例中的“重复”,也可以理解为“复制”。
4、逻辑信道与小区关联,或者,逻辑信道与载波关联
逻辑信道(logic channel,LCH)可指RLC层与MAC层之间的信道。如果在逻辑信道的配置中指示了某个或某些小区允许使用,则表示该逻辑信道中传输的数据可以在这个或这些小区上传输,或者这个或这些小区上的资源可以分配给该逻辑信道使用,此时可以称为逻辑信道与这个或这些小区关联。进一步的,逻辑信道中传输的数据不可在与逻辑信道所关联的小区之外的其它小区上传输。在PDCP层复制的数据包对应的逻辑信道可以与小区具有关联关系。在一些场景中,如果没有配置小区关联关系,则表明该逻辑信道中传输的数据可以在任意小区上进行传输。
例如,可以为逻辑信道配置一个参数A,通过参数A的取值来指示不同的小区,表示该逻辑信道中传输的数据只能在参数A指定的小区上进行传输。例如为逻辑信道1配置了参数A,参数A指示小区1和2,那么就表明该逻辑信道中的数据只能在小区1和2上传输。这样,逻辑信道1和小区1以及小区2就可以称为是具有关联关系,也可以说是绑定关系或者映射关系的。
5、动态授权(dynamic grant,DG)
网络设备进行动态授权(又称为动态调度)时,通过下行控制信息(downlink control information,DCI)指示终端设备,被调度的传输资源的时频资源位置等信息。例如,基站可通过DCI通知终端:在XXX时间YYY频段接收数据(下行);在ZZZ时间VVV频段可以发送数据(上行)。基站通过动态调度分配的资源是一次有效的,也就是,基站通过DG为终端分配的资源只能使用一次。
6、配置授权(configured grant,CG)
配置授权也可以称为静态/半静态调度。目前定义了两类配置授权,分别为配置授权类型1(configured grant type 1)和配置授权类型2(configured grant type 2)。两者的区别在于,配置授权类型1的参数都是由网络设备预先配置的,因此,终端设备直接利用网络设备配置的参数,进行业务数据传输即可,无需额外的调度信息。而终端设备在使用类型2的上行配置授权进行业务数据传输时,需要额外接收一个触发信息,才能进行业务数据传输。
其中,基站基于配置授权分配的资源是多次有效的。例如,基站通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(media access control,MAC)信令或物理层信令通知终端:在XXX时间YYY频段接收数据,之后每隔周期T可以在XXX时 间YYY频段接收数据;或者,在ZZZ时间VVV频段可以发送数据,之后每隔周期T可以在ZZZ时间VVV频段发送数据。可见上述分配的上行传输资源或下行传输资源是多次有效的。
例如,配置授权类型1的参数通过RRC信令进行配置,终端设备接收到该RRC信令之后,可以根据配置授权类型1的参数,在有数据需要传输时,利用配置授权类型1的资源进行上行传输。再如,配置授权类型2的部分参数通过RRC信令进行配置,而后通过DCI进行激活或去激活,其中DCI可以包括配置授权类型2的其它参数,终端设备接收到该RRC信令之后,在接收到DCI的时候,可以根据DCI和RRC信令中配置授权类型2的参数,在有数据需要传输时,利用配置授权类型2的资源进行上行传输。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,和c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
增强现实(augmented reality,AR)是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,可以把原本现实世界在一定时间空间范围内很难体验到的实体信息(例如,视觉信息,声音,味道和触觉等),通过电脑等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实的世界,被人类感官所感知,从而达到超越现实的感官体验。通过AR技术,可以将真实的环境和虚拟的物体实时地叠加到同一个画面或空间,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。
虚拟现实(virtual reality,VR)是仿真技术的一个重要方向,是仿真技术与计算机图形学人机接口技术、多媒体技术、传感技术、网络技术等多种技术的集合,主要包括模拟环境、感知、自然技能和传感设备等方面。VR使用者会完全感觉处于一个虚拟现实环境中,VR的分辨率越高,虚拟现实给人的感觉越逼真。
其中,AR以及VR业务具有高速率、低时延和高可靠性的要求。例如,针对渲染以及人机交互游戏体验类业务,要求最大的端到端时延为5ms,可靠性要求10 -4的误码率,速率要求达到0.1-1Gbps。针对AR以及VR等超可靠低时延(ultra reliability low latency,URLLC)业务,如何满足其高速率,低时延和高可靠性的要求,是当前的研究热点。
请参见图1,为本申请实施例提供的一种PDCP层重复的方案,在该PDCP层重复的方案中,支持DC以及CA(DC-CA)混合模式下的PDCP层重复,从而支持更高的可靠性。如图1所示,针对一个数据无线承载(data radio bearer,DRB),可以支持激活4个RLC实体。例如,两个RLC实体可位于主站MN中,两个RLC实体可位于辅站SN中,这样PDCP可以向激活的4个RLC实体递交PDCP数据包,利用4个独立的路径进行数据传输,从而满足错误率小于10 -4的严苛要求。在图1中,是以DC-CA混合模式下的PDCP层重复为例进行描述的。在DC-CA混合模式下,一个DRB支持的RLC实体位于不同的基站,且存在一个基站内具有至少两个RLC实体的情况。对于DC模式下的PDCP层重复,一个DRB支持的RLC实体位于不同的基站,例如两个基站(主站和辅站)分别具有一个RLC实体;对于CA模式下的PDCP层重复,一个DRB支持的RLC实体位于同一个基站。
通过上述描述可以看出,在图1的方案中,PDCP实体将PDCP数据包复制4份,通过4个独立的路径进行数据传输。该方案更适合应用于工业控制系统中的小包传输。而AR和VR等业务具有高速率、低时延和高可靠性的要求。当用户数量较多或者信道状况较差时,同时利用上述4个RLC进行数据传输,对系统容量造成较大的挑站,高速率和低时延无法得到满足。
请参见图2,为本申请实施例提供的一种DC分离承载(split bearer)的方案,包括:当终端设备的待发送数据量超过预配置的门限值时,PDCP实体允许向主RLC实体或者辅RLC实体递交PDCP数据包。而当UE的待发送数据量低于门限值时,PDCP实体仅允许向主RLC实体递交PDCP数据包,从而可以实现负荷分担和资源协调功能,有利于提高用户速率。
上述DC分离承载的方案,可以有效的实现负荷分担,但当信道状况较差时,每一个数据包的可靠性可能无法得到满足。上述方案更适用于数据量较大,可靠性要求较低的增强的移动带宽(enhanced mobile broadband,eMBB)业务。对于要求高速率、低时延和高可靠性的AR或VR等业务,并不能满足需求。
请参见图3,为本申请实施例提供的重复发送的一种方案,主要用于解决非CA场景下单载波传输可靠性的问题。针对一个MAC数据包,在连续的时隙(slot)可以利用CG或者DG资源重复发送多次,重复次数可以由接入网设备半静态或者动态指示等,不作限定。针对一个MAC数据包,重复发送所使用的资源可以认为是一组或者一捆(bundle)上行授权。如图3所示,当重复次数被配置为2时,UE可以在连续两个时隙重复发送同一MAC数据包,且无需等待MAC数据包的混合自动请求重传(hybrid automatic repeat request,HARQ)反馈,从而满足URLLC业务的低时延和高可靠性的要求。
针对上述重复发送的方案,主要应用于工业控制系统中的小包传输场景,包大小通常在几十字节以下,通过连续发送多次实现高可靠性。然而对于AR或VR等业务的高分辨率视频流而言,视频编码包较大。对于CG资源调度,上行授权资源的大小是固定的,因此对于此类大包,需要进行多次分段,对于每一个分段,在连续的CG资源上发送多次,时延较大,不能满足AR或VR等业务的低时延要求。例如,对于一AR或VR业务的数据包,若需要对该数据包分成3段,重复次数配置为4,因此一共需要3*4=12个时隙(slot),才能完成该数据包的传输。
请参见图4,其为本申请实施例提供的一种通信系统100的示意图。如图4所示,终端设备130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端设备通信。该无线网络包括无线接入网络(radio access network,RAN)110和核心网(core network,CN)。其中,RAN110用于将终端设备130接入到无线网络,CN120用于对终端设备进行管理,并提供与外网通信的网关。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端设备(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、或智慧家庭(smart home)中的无线终端设备等。
网络设备是无线网络中的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
请参见图5,为本申请实施例提供的一种网络架构的示意图。如图5所示,该网络架构包括CN设备和RAN设备。其中,RAN设备包括基带装置和射频装置,基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在长期演进(Long Term Evolution,LTE)通信系统中,RAN设备(例如,eNB)包括基带装置和射频装置,射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端设备之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和PHY层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
上述协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图5所示,CU和DU可以根据无线网络的协 议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
上述在PDCP层划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU等;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU等。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU等。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远,部分集成在DU中等,在此不作任何限制。
请参见图6,相对于图5所示的架构,还可以将CU的控制面(control panel,CP)和用户面(user panel,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装透传给终端设备或CU。以下实施例中,如果涉及这种信令在DU和终端设备之间的传输,DU对信令的发送或接收包括这种场景。例如,RRC层或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC层或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中,CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备侧或网络设备侧。当其采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备等,不作限定。
在本申请实施例的以下描述中,“PDCP层”与“PDCP实体”二者不作区分。“RLC层”与“RLC实体”两者不作区分,可相互替换。
本申请实施例提供一种通信方法及装置,该方法包括:PDCP实体不但根据待发送数据的数据量与门限值的大小关系,对业务数据进行分流,满足业务数据的高速率和低时延的要求。进一步,还根据PDCP实体所关联的处于激活态RLC实体的数目,对业务数据进行复制,满足业务数据的高可靠性要求。综合上述,本申请实施例所提供的通信方法及装置,可满足AR和VR等业务的高速率、低时延和较高可靠性等要求。
如图7所示,本申请实施例提供一种通信方法的流程图,该流程包括:
步骤S700:PDCP实体获取主RLC组和辅RLC组,主RLC组包括至少一个RLC实体,辅RLC组包括至少一个RLC实体。可选地,主RLC组可替换为主LCH组,辅RLC组可替换为辅LCH组,主LCH组可包括至少一个LCH,辅LCH可包括至少一个LCH。通过上述LCH的说明可知,LCH指RLC实体与MAC实体之间的信道。因此,一个RLC实体对应于一个LCH,两者是一一对应的关系。在以下的描述中,RLC实体与LCH两者不作区分,可相互替换,以RLC实体为例进行描述。例如,在以下的描述中,主RLC组可替换为主LCH组,辅RLC组可替换为辅RLC组。主RLC实体可替换为主LCH等。
步骤S701:PDCP实体根据主RLC组的激活状态和辅RLC组的激活状态中的至少一个,确定第一RLC组,第一RLC组为主RLC组或辅RLC组。
通过上述记载可知,主RLC组和辅RLC组可均包括至少一个RLC实体。主RLC组的激活状态包括激活态和去激活态。当主RLC组中所包括的至少一个RLC实体处于激活态时,可认为主RLC组处于激活态;否则认为主RLC组处于去激活态。同理,辅RLC组的激活状态包括激活态和去激活态,当辅RLC组中所包括的至少一个RLC实体处于激活态时,可认为辅RLC组处于激活态;否则认为辅RLC组处于去激活态。可选的,“去激活态”还可称为“非激活态”,两者不作区分,可相互替换。
在本申请实施例中,PDCP实体除了根据主RLC组的激活状态和辅RLC组的激活状态中的至少于一个,确定第一RLC组。进一步的,还可根据待发送数据的数据量与门限的大小关系,确定第一RLC组。在一种可能的实现方式中:
PDCP实体可首先确定待发送数据的数据量与门限值的大小关系。比如,若待发送数据的数据量大于或等于(或者,大于)门限值,则进一步判断主RLC组和辅RLC组的激活状态。若主RLC组和辅RLC组均处于激活态,则PDCP实体将待发送数据包递交给主RLC组或辅RLC组。且可以根据预设的方式进行递交,比如,PDCP实体将PDCP数据包进行复制,并按照一定的比例,将复制的数据包递交给主RLC组或辅RLC组,该比例可以为预设的比例,例如1:4,此处仅为举例,并非用于限制该比例。或者,若待发送数据的数据量小于(或者,小于或等于)门限值,则PDCP实体可判断主RLC组的激活状态。若主RLC组处于激活状态,则确定将待发送数据包递交给主RLC组,即上述第一RLC组为主RLC组。或者,若主RLC组处于去激活态,则判断辅RLC组的激活态,当辅RLC组处于激活态时,则确定将待发送数据包递交给辅RLC组,即上述第一RLC组为辅RLC组。所述门限值可为协议预定的,或者,网络设备配置的,例如通过RRC信令配置,不作限定。所述门限值的取值可以字节为单位,根据需求进行设置或修改,例如取值为50字节、100字节、200字节等。也可以不设置改门限值,或者将该门限值设为0或无限大。门限值设置为无限大时,相当于限制不从辅RLC组分流,只能从主RLC组分流,例如,辅RLC组位于辅站,主RLC组位于主站,则设置门限值无限大,即限制只从主站分流,或限制不从辅站分流。门限值设置为0时,相当于不做限制,根据主RLC组和辅RLC组的激活态进行分流。不设置门限值时,可以默认只从主RLC组分流或不对分流做限制,此时,设置门限值为0或无限大的好处在于,后续可以根据需要调整门限值。可选的,上述“待发送数据的数据量”可具体为:PDCP实体中待发送数据的数据量以及PDCP实体相关联处于激活态的RLC实体中待发送的初传数据的数据量之和。所述PDCP实体中的待发送数据包括:还没有递交到下层(lower layers)的PDCP数据协议数据单元(protocol data unit,PDU)、PDCP控制PDU、以及PDCP数据服务数据单元(service data unit,SDU)(即还没有组装成PDCP数据PDU的PDCP数据SDU)等。进一步的,上述PDCP数据PDU可包括初传的PDCP数据PDU,例如还没有递交给下层的PDCP数据PDU,和/或重传的PDCP数据PDU等。例如,对于确认模式(acknowledgement mode,AM)模式的DRB,还可以包括用于重传的PDCP数据PDU。例如,当PDCP数据恢复(PDCP data recovery)时,发送端PDCP实体可能需要进行重传PDCP数据PDU等。进一步的,上述PDCP数据SDU可以包括初传的PDCP数据SDU,例如还没有组装成PDCP数据PDU的PDCP数据SDU,和/或重传的PDCP数据SDU等。例如,对于AM模式的DRB,还可以包括用于 重传的PDCP数据SDU等。例如,当PDCP实体重建立时,发送端PDCP实体可能需要重传PDCP数据SDU等。
在本申请实施例中,设定PDCP层的待发送数据中包括第一PDCP数据包,所述第一PDCP数据包可具体为PDCP数据PDU、PDCP控制PDU或PDCP SDU。具体的,PDCP实体可根据以下条件,确定将该第一PDCP数据包,递交给主RLC组或辅RLC组。
例如,在一种可能的实现方式中,可认为当满足以下条件时,PDCP实体可确定将第一PDCP数据包递交给主RLC组或辅RLC组。可选的,具体将第一PDCP数据包递交给主RLC组或辅RLC组,取决当前PDCP层的分流协议。
1、待发送数据的数据量大于或等于门限。
2、主RLC处于激活态,且辅RLC处于激活态。
或者,在另一种可能的实现方式中,可认为满足以下条件时,PDCP实体确定将第一PDCP数据包递交给主RLC组。
1、待发送数据的数据量小于门限值。
2、主RLC组处于激活态。
例如,在又一种可能的实现方式中,可认为满足以下条件时,PDCP实体可确定将第一PDCP数据包递交给辅RLC组。
1、待发送数据的数据量小于门限值。
2、主RLC组处于去激活态且辅RLC组处于激活态。
步骤S702:PDPC实体根据第一RLC组中处于激活态的RLC实体的数目,复制(duplicate)第一PDCP数据包。
通过上述描述可知,第一RLC组可为主RLC组或辅RLC组。PDCP实体可根据主RLC组或辅RLC组处于激活态的RLC实体的数目,复制第一PDCP数据包。可选的,复制的PDCP数据包的数目可等于主RLC组或辅RLC组中处于全部激活态的RLC实体的数目。例如,若主RLC实体中包括RLC实体1、RLC实体2和RLC实体3。若RLC实体1和RLC实体2处于激活态,RLC实体3处于去激活态,则PDCP实体可将第一PDCP数据包复制2份,在后续步骤S703中,分别将复制的2份PDCP数据包递交给主RLC组中的RLC实体1和RLC实体2。或者,复制的PDCP数据包的数目可小于主RLC组或辅RLC组中处于激活态的RLC实体的数目。例如,当前业务的可靠性要求较低,和/或,当前信道的条件较好时,PDCP实体没有必要将PDCP数据包复制太多份,从而可减少传输开销。
这里的复制是指生成相同的多个数据包,复制后的数据包既包括原始的数据包也包括跟原始的数据包相同的数据包。因此,以上步骤也可以替换为,终端设备根据第一RLC组中处于激活态的RLC实体的数目,生成多个相同的第一PDCP数据包。而后,将多个相同的第一PDCP数据包递交给第一RLC组,如下步骤S703:
步骤S703:PDCP实体向第一RLC组递交复制后的第一PDCP数据包。
通过上述描述可以看出,在本申请实施例中,在利用主RLC组和辅RLC组对待发送数据包进行分流的基础上,还可根据主RLC组或辅RLC组所包括的激活态RLC实体的数目,对待发送数据包进行复制。从而在保证待发送数据包对应业务的传输速率和时延的前提下,还可保证业务传输的可靠性,满足AR和VR等业务的需求。
可选的,在本申请实施例中,PDCP实体可按照现有的方式,向RLC实体递交数据包。或者,可按照上述图7所描述的方式,向RLC实体递交数据包。在一种可能的实现方式中,上述图7所对应的递交数据包的方式,可通过RRC消息或系统消息指示终端设备开启或关闭。例如,在RRC重配置消息中可携带一个开关信元,用于指示终端设备是否开启或关闭上述功能。或者,上述图7所对应的递交数据包的方式,还可设置为终端设备的能力。例如,在终端设备的能力信息中携带一个能力指示,用于指示终端设备是否开启上述图7所对应递交数据包的方式。
在本申请实施例中,上述图7所对应的流程,可应用于终端设备侧,也可应用于网络设备侧。当上述图7所对应的流程,应用于网络设备侧时,主RLC组和辅RLC组可位于相同或不同的网络实体内。例如,在一种可能的实现方式中,如图8所示,主RLC组可位于主基站MN侧,辅RLC组可位于辅基站SN侧。继续参见图8所示,主RLC组可包括RLC实体1和RLC实体2,辅RLC组可包括RLC实体3和RLC实体4。其中,PDCP实体的待发送数据中可包括第一PDCP数据包(可参见图8中的黑色填充的方框)和第二PDCP数据包(可参见图8中的白色填充的方框)。其中,PDCP实体可将第一PDCP数据包复制两份,分别递交给主RLC组中的RLC实体1和RLC实体2。同理,PDCP实体可将第二PDCP数据包复制两份,分别递交给辅RLC组中的RLC实体3和RLC实体4。在实现负荷分担,有效分流的基础上,还可提高业务数据的可靠性。
如图9所示,本申请实施例提供一种通信方法的流程图,该方法包括:
步骤S901:网络设备生成并向终端设备发送第一配置信息和第二配置信息,所述第一配置信息用于配置主RLC组,第二配置信息用于配置辅RLC组。可选的,第一配置信息和第二配置信息可通过同一消息配置,例如该消息可以是RRC重配置、RRC恢复(RRC resume)或RRC建立(set up)等。或者,第一配置信息和第二配置信息可通过不同消息分别配置,例如可通过RRC重配置消息分两次分别配置等。可选的,主RLC组和辅RLC组可关联到同一个无线承载的PDCP实体。
步骤S902:终端设备根据第一配置信息和第二配置信息,确定主RLC组和辅RLC组。可选的,主RLC组可包括至少一个RLC实体,主RLC组所包括的所有RLC实体可以位于同一个小区组,例如,主小区组(master cell group,MCG)。同理,辅小区组可包括至少一个RLC实体,辅RLC组所包括的所有RLC实体可位于同一个小区组,例如,辅小区组(secondary cell group,SCG)。
可选的,上述第一配置信息中可包括第一指示信元,第一指示信元用于指示PDCP实体所关联的RLC实体中属于主RLC组的RLC实体。上述第二配置信息中可包括第二指示信元,第二指示信元用于指示PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体。在以下描述中,“PDCP相关联的RLC实体”与“PDCP实体相对应的RLC实体”,两者不作区分,可相互替换。
在一种可能的实现方式中,第一配置信息中携带第一指示信元,且第二配置信息中不携带第二指示信元。终端设备可根据第一指示信元,在PDCP实体所关联的RLC实体中,确定属于主RLC组的RLC实体。PDCP实体所关联的RLC实体中,除主RLC组中的RLC实体外,即为辅RLC组的RLC实体。比如,PDCP实体所关联的RLC实体包括{RLC实体1,RLC实体2,RLC实体3,RLC实体4}。若终端设备根据第一指示信元,确定主 RLC组包括{RLC实体1,RLC实体2},那么终端设备自然可确定辅RLC组包括{RLC实体3,RLC实体4}。或者,可仅在第二配置信息中携带第二指示信元,终端设备在PDCP实体所关联的RLC实体中,确定辅RLC组后,剩余的RLC实体即为主RLC组,过程与上述相似,不再赘述。
在另一种可能的实现方式中,第一配置信息中携带有第一指示信元,且第二配置信息中携带有第二指示信元。终端设备可根据第一指示信元,在PDPC实体相关联的RLC实体中,确定主RLC组所包括的RLC实体。终端设备可根据第二指示信元,在PDCP实体相关联的RLC实体中,确定辅RLC组所包括的RLC实体。例如,仍沿用上述举例,PDCP实体相关联的RLC实体包括{RLC实体1,RLC实体2,RLC实体3,RLC实体4}。终端设备可根据第一指示信元,确定主RLC组包括{RLC实体1,RLC实体2},根据第二指示信元,确定辅RLC组包括{RLC实体3,RLC实体4}。
进一步,可选的,第一配置信息中包括第三指示信元,第三指示信元用于指示主RLC组内的主RLC实体。第二配置信息中包括第四指示信元,第四指示信元用于指示辅RLC组内的主RLC实体。所述主RLC组或辅RLC组的主RLC实体可以用来传输PDCP控制PDU,例如,PDCP状态报告等。可选的,所述辅RLC组的主RLC实体还可以用来指示去激活无线承载的PDCP层复制,即除了主RLC组和辅RLC组中的主RLC实体之外的其他关联的RLC实体均被去激活后,可以使用所述辅RLC组的主RLC实体以及所述主RLC组的主RLC实体通过分离承载(split bearer)发送数据。关于分离承载可具体参见图2中的说明,在此不再赘述。仍沿用上述举例,主RLC组包括{RLC实体1,RLC实体2},则RLC实体1可为主RLC实体。辅RLC组包括{RLC实体3,RLC实体4},则RLC实体3可为主RLC实体。
进一步的,终端设备还可以确定主RLC组或辅RLC组中所包括RLC实体的初始状态。所述初始状态可为网络设备为RLC实体初始配置的激活状态,所述初始状态可包括激活态或去激活态等。或者,所述初始状态可为在初始阶段,协议规定的RLC实体的激活状态。可选的,终端设备在确定RLC实体的初始状态后。后续,所述RLC实体可支持或不支持修改RLC实体的初始状态。例如,网络设备为RLC实体1配置的初始状态为激活态。后续根据信道情况或者业务需求,网络设备可通过RRC或媒体接入控制控制元素(media access control control element,MAC CE)等信令,将RLC实体1的激活状态修改为去激活态等。网络设备还可以通过RRC或者MAC CE等信令,动态激活或者去激活RLC实体1,比如当信道状态较差时,网络设备可通过MAC CE信令激活RLC实体1,即将RLC实体1的激活状态修改为激活态。
在一种可能的实现方式中,可通过一个显示的信元指示主RLC组中所包括RLC实体的初始状态,或者,辅RLC组中所包括RLC实体的初始状态。例如,第一配置信息中包括第五指示信元,第五指示信元用于指示PDCP实体所关联的RLC实体中属于主RLC组的RLC实体的初始状态,即主RLC组中所包括RLC实体的初始状态。第二配置信息中包括第六指示信元,第六指示信元用于指示PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体的初始状态,即辅RLC组的初始状态。或者,在另一种可能的实现方式中,主RLC组或辅RLC组的初始状态可为默认的,或者,协议规定的,无需额外的指示。此时,终端设备可默认主RLC组或辅RLC组所包括RLC实体的初始状态均为激活态。或者,在又一种可能的实现方式中,显示的信元可指示主RLC组或辅RLC组的初始状态。若显 示的信元指示主RLC组的初始状态为激活态,则主RLC组所包括的所有RLC实体的初始状态均为激活态。或者,若显示的信元指示主RLC组的初始状态为非激活态,则主RLC组所包括的所有RLC实体的初始状态均为非激活态。关于辅RLC组的指示过程与上述相似,在此不再赘述。
在一种可能的实现方式中,网络设备可为终端设备同时配置主RLC组和辅RLC组,主RLC组中的主RLC实体,辅RLC实体组中的主RLC实体,以及主RLC组和辅RLC组中每个RLC实体的初始激活状态。例如,网络设备为终端设备配置的主RLC组中包括RLC实体1和RLC实体2,辅RLC组中包括RLC实体3和RLC实体4。主RLC组中的主RLC实体为RLC实体1,辅RLC组中的主RLC实体为RLC实体3等。主RLC组中的RLC实体1和RLC实体2的初始状态为激活,辅RLC组中的RLC实体3的初始状态为激活,RLC实体4的初始激活状态为去激活。例如,参见下述方式1所示,所述第一配置信息中可包括第一指示信元、第三指示信元和第五指示信元。所述第一指示信元用于配置主RLC组,第三指示信元用于配置主RLC组中的主RLC实体,第五指示信元用于配置主RLC组中每个RLC实体的初始状态。关于方式1中第二配置信息,与上述第一配置信息相似,不再赘述。或者,参见下述方式2所示,第一配置信息中包括第一指示信元,第一指示信元用于配置主RLC组,第一指示信元中可包括第五指示信元,用于配置主RLC组中每个RLC实体的激活状态。进一步的,第一配置信息中还包括第三指示信元,用于配置主RLC组中的主RLC实体。方式2中第二配置信息与上述第一配置信息相似,不再赘述。
或者,在另一种可能的实现方式中,网络设备为仅为终端设备配置主RLC组。终端设备根据PDCP相关联的所有RLC实体,以及主RLC组中包括的RLC实体,可确定辅RLC组。进一步的,网络设备还可为终端设备配置主RLC组和辅RLC组中包括的主RLC实体,以及主RLC组和辅RLC组中每个RLC实体的初始状态。例如,参见下述方式3所示,第一配置信息中可包括第一指示信元、第三指示信元和第五指示信元,第一指示信元用于配置主RLC组,第三指示信元用于配置主RLC组中的主RLC实体,第五指示信元用于配置主RLC组中RLC实体的初始状态。第二配置信息中包括第四指示信元和第六指示信元,第四指示信元用于配置辅RLC实体组中的主RLC实体,第六指示信元用于配置辅RLC实体中的RLC实体的初始状态。或者,参见下述方式4所示,第一配置信息中包括第一指示信元,用于配置主RLC组;第一指示信元中包括第五指示信元,用于配置主RLC组中的RLC实体的初始状态。进一步的,第一配置信息中还包括第三指示信元,用于配置主RLC组中的主RLC实体。第二配置信息包括第六指示信元和第四指示信元,第六指示信元用于配置辅RLC组中RLC实体的初始状态,第四指示信元用于配置辅RLC组中的主RLC实体。
Figure PCTCN2021088532-appb-000001
Figure PCTCN2021088532-appb-000002
Figure PCTCN2021088532-appb-000003
在一种可能的实现方式中,可配置主RLC组的激活态为不可被去激活,即主RLC组一旦被配置成激活态后,不可以被动的去激活。或者,主RLC组的激活态可以被去激活,例如,可通过媒体接入控制控制元素(media access control control element,MAC CE)或物理层信令,将主RLC组的激活态去激活。
在另一种可能的实现方式中,可配置主RLC组或辅RLC组中的主RLC实体为不可被去激活,即主RLC实体一旦被配置成激活态后,不可以被动的去激活。或者,可配置主RLC实体的激活态可被去激活。例如,可通过MAC CE或物理层信令去激活主RLC的激活态。此种情况下,若主RLC实体被去激活,则在主RLC组或辅RLC组中,指定新的主RLC实体,用于传输PDCP的控制PDU。例如,可通过预定的规则指定新的RLC实体。例如,可指定LCH标识最低的RLC实体或LCH标识最高的RLC实体为新的主RLC实体等,不作限定。
通过上述方法,可为终端设备配置两个RLC组,分别为主RLC组和辅RLC组。之后,终端设备可根据主RLC组或辅RLC组中激活态的RLC实体的数目,复制PDCP数据包,提高业务数据的可靠性。
在本申请实施例中,上述图7所示的流程与图9所示的流程,可以单独使合,或者,相结合使用,不作限定。例如,当上述图7所示的流程与图9所示的流程相结合使用时的一种具体实现可为:终端设备接收来自网络设备的第一配置信息和第二配置信息。终端设备根据第一配置信息和第二配置信息,确定主RLC组和辅RLC组。终端设备根据主RLC组和辅RLC组的激活状态中的至少一个,确定第一RLC组,所述第一RLC组为主RLC组或辅RLC组;终端设备根据第一RLC组中处于激活态RLC实体的数目,复制第一PDCP数据包;终端设备向第一RLC实体递交复制后的第一PDCP数据包。
如图10所示,提供一种通信方法的流程,该流程可具体为上述图7与图9相结合使用的一种更具体的实现方式。如图10所示,该流程包括:
步骤S1000:接入网设备为UE建立至少一个无线承载。所述无线承载可具体为数据无线承载(data radio bearer,DRB)或信令无线承载(signal radio bearer,SRB)等。
所述无线承载的配置信息可以通过RRC消息发送给UE,所述RRC消息可以是RRC重配置、RRC恢复(RRC resume)或RRC建立(set up)等消息,不作限定。所述无线承载的配置信息中包括以下中的至少一项:
1、无线承载标识,用于标识无线承载,可具体为DRB标识或SRB标识。
2、PDCP配置,包括无线承载或者PDCP配置对应的RLC实体。
进一步,可选的,所述RRC消息中还可以包括以下至少一种配置:
1、小区组配置(cell group configuration),包含MCG或SCG的无线资源配置。其中,一个小区组配置可以包括一个MAC实体、以及关联一个或多个RLC实体,以及主小区或者一个或多个辅小区的配置。
2、RLC承载配置(RLC bearer configuration),用于配置一个RLC实体,对应的逻辑信道与PDCP实体的关联关系。
步骤S1001:接入网设备向UE指示主路径(primary path)和/或辅路径(secondary path)。
所述主路径和辅路径的指示信息可以通过RRC消息发送给UE,所述RRC消息可以是RRC重配置、RRC恢复或RRC建立等消息,不作限定。RRC消息中可包括以下至少一种配置信息。
1、主路径配置信息,所述主路径可以是主RLC组,或者,主LCH组。所述主路径配置信息,具体用于指示PDCP实体相关联的所有RLC实体中,属于主RLC组的RLC实体。所述主RLC组可以包括至少一个RLC实体。可选的,主路径的配置信息中还可包括主RLC组中的主RLC实体的指示信息。
2、辅路径配置信息,所述辅路径可以是辅RLC组,或者,辅LCH组。所述辅路径配置信息,具体用于指示PDCP实体相关联的所有RLC实体中,属于辅RLC组的RLC实体。可选的,辅路径的配置信息中还包括辅RLC组中的主RLC实体的指示信息。
在一种可能的实现方式中,上述RRC消息中可仅携带主路径的配置信息,这样与无线承载或者PDCP实体配置相关联的其它非主路径的RLC实体均为辅路径。或者,上述RRC消息中可仅携带辅路径的配置信息,这样与无线承载或者PDCP实体配置相关联的其它非辅路径的RLC实体均为主路径。
在另一种可能的实现方式中,上述RRC消息可同时携带主路径的配置信息和辅路径的配置信息。
可选的,上述RRC消息中还可以包括PDCP实体对应的RLC实体初始状态的指示信息,用于指示PDCP实体对应的RLC实体是否处于激活状态。例如,通过携带一个显示的信元指示所述PDCP实体对应的RLC实体的初始状态为激活态(activated)。若没有携带该信元,则指示所述PDCP实体对应的RLC实体的初始状态为去激活态(deactivated)。另一种可能的方式是:上述RRC消息中还可以不包含所述PDCP实体对应的RLC实体的初始状态。在这种情况下,UE可默认PDCP实体所关联的所有RLC实体的初始状态可均为激活态。关于主RLC组中的主RLC,或者,辅RLC组中的主RLC的初始状态,可参见上述图7所示实施例中的记载,在此不再额外说明。
步骤S1002:PDCP实体将PDCP数据包递交给主RLC组或辅RLC组。可选的,所述PDCP数据包可以是PDCP PDU,可以包含PDCP数据PDU以及PDCP控制PDU,所述PDCP数据包还可以是复制的PDCP PDU。
可选的,以下至少一种条件满足时,PDCP实体将PDCP数据包递交给主RLC组:待发送数据量小于门限值;所述主RLC组处于激活态;所述主RLC组处于激活态即所述主RLC组中至少一个RLC实体为激活态。这种情况下,辅RLC组可以处于激活态或者去激活态。
可选的,以下至少一种条件满足时,PDCP实体将PDCP数据包递交给辅RLC组:待发送数据量小于门限值;所述主RLC组处于去激活态并且所述辅RLC组处于激活态;所述主RLC组处于去激活态即所述主RLC组中所有RLC实体处于去激活态;其中,所述辅RLC组处于激活态即所述辅RLC组中至少一个RLC实体为激活态。
可选的,以下至少一种条件满足时,PDCP实体将PDCP数据包递交给主RLC组或者辅RLC组:待发送数据量大于等于门限值;所述主RLC组处于激活态并且所述辅RLC组处于激活态;所述主RLC组处于激活态即所述主RLC组中至少一个RLC实体为激活态;所述辅RLC组处于激活态即所述辅RLC组中的至少一个RLC实体为激活态。
进一步地,所述待发送数据量包含用于初始传输(initial transmission)的PDCP数据量以及RLC数据量的总和,所述PDCP数据量可以包含以下数据量:PDCP数据SDU,即还没有组装成PDCP数据PDU的PDCP数据SDU;还没有递交到下层的PDCP数据PDU;PDCP控制PDU。进一步的,上述PDCP数据PDU可包括初传的PDCP数据PDU,例如还没有递交给下层的PDCP数据PDU,和/或重传的PDCP数据PDU等。例如,对于确认模式(acknowledgement mode,AM)模式的DRB,还可以包括用于重传的PDCP数据PDU。例如,当PDCP数据恢复(PDCP data recovery)时,发送端PDCP实体可能需要进行重传PDCP数据PDU等。进一步的,上述PDCP数据SDU可以包括初传的PDCP数据SDU,例如还没有组装成PDCP数据PDU的PDCP数据SDU,和/或重传的PDCP数据SDU等。例如,对于AM模式的DRB,还可以包括用于重传的PDCP数据SDU等。例如,当PDCP实体重建立时,发送端PDCP实体可能需要重传PDCP数据SDU等。
步骤S1003:PDCP实体将PDCP数据包递交给RLC实体。通过上述步骤S1002中的记载可知,PDCP实体可具体将PDCP数据包递交给主RLC组或辅RLC组。在步骤S1003中可具体描述,将PDCP数据包递交给主RLC组或辅RLC组中的具体那些RLC实体。可以理解的是,步骤S1002与步骤S1003可合并成一个步骤进行处理,不作限定。
可选的,所述RLC实体中可以包含所述主RLC组或辅RLC组中的全部激活的RLC实体,这种情况下,PDCP复制数据包的个数等于所述主RLC组或辅RLC组中为激活态的RLC实体的个数。或者,所述RLC实体可以包含所述主RLC组或辅RLC组中的部分RLC实体,这种情况下,PDCP复制数据包的个数小于所述主RLC组或辅RLC组中为激活态的RLC实体的个数。
例如,PDCP实体决定将PDCP数据包递交给主RLC组,若主RLC组中处于激活态的为RLC实体1,则PDCP实体决定将PDCP数据包递交给RLC实体1。若主RLC组中处于激活态的为RLC实体1以及RLC实体2,则PDCP实体决定将PDCP数据包递交给RLC实体1以及RLC实体2。
可选的,若所述PDCP数据包为PDCP控制PDU时,则PDCP实体需要将该PDCP数据包递交给主RLC组或辅RLC组中的主RLC实体。
在本申请实施例中,通过辅RLC组进行负荷分担,满足AR以及VR业务具有高速率的要求,同时主RLC组以及辅RLC组可以包含多个RLC实体,使得分离数据流可以进行PDCP重复,同时又可以满足AR以及VR业务较低时延和较高可靠性的要求。
如图11所示,提供一种通信方法的流程,该流程包括:
步骤S1101:终端设备生成第一数据包。
步骤S1102:终端设备将所述第一数据包分段,分成M个第二数据包,并在上行授权资源上,向网络设备发送所述M个第二数据包,所述M个第二数据包的发送次数分别为N 1、N 2至N M,N 1+N 2…+N M=N,N为所述上行授权资源的重复传输次数,M大于或等于2,N大于或等于1。可选的,第二数据包还可称为第一数据包的分段。
其中,若所述上行授权资源为CG资源,则该CG资源的配置信息中可携带有指示该重复传输次数的信元。或者,若上行授权资源为动态调度资源,则该上行授权资源的重复传输次数可以通过DCI指示;对于类型2的CG资源,可以通过CG资源的配置消息配置上述初始重复传输次数,后续通过DCI可更改该重复传输次数。可选的,本申请实施例中的重复传输次数中包括首次传输。
在一种可能的实现方式中,终端设备可根据N与M的比值,确定N 1、N 2至N M的大小。例如,若N与M的取值为整数,则N 1、N 2至N M的大小相等,且大小均为N/M。例如,N的取值为4,M的取值为2,则可将第一数据包分成2个第二数据包,分别为第二数据包A和第二数据包B。且第二数据包A和第二数据包B的重复传输次数均为2。或者,若N与M的取值为非整数,则N 1、N 2至N M的大小相等,且大小均为(N/M) 取整,所述取整可为向上取整,或者,向下取整等,不作限定。例如,N的取值为8,M的取值为3,则可将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输3次。若向下取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输2次。
在另一种可能的实现方式中,终端设备可确定前M-1个第二数据包的重复传输次数为(N/M) 取整,所述取值可为向上取整或向下取整,第M个第二数据包的重复传输次数为N-(N/M) 取整*(M-1)。例如,N的取值为8,M的取值为3,将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A与第二数据包B的重复传输次数为3,第三数据包的重复传输次数为2。若向下取值,则第二数据包A与第二数据包B的重复传输次数为2,则第二数据包C的重复传输次数为4。
可选的,上述每个第二数据包中还可携带第一指示信息,用于指示当前数据包是新传的,还是重传的。针对M个第二数据包中的任一个第二数据包,设定该数据包传输3次,那可以认为该第二数据的第一次传输为该第二数据包的初传,剩余两次为该第二数据包的重传。
目前,在固定的上行授权传输资源上只能传输相同的数据,因此对于大包需要多次分段才能完成传输,而在本申请实施例中,在上行授权资源上可灵活的对大包分段,从而在可靠性与时延上取得一个较好的折中。
如图12所示,提供一种通信方法的流程,该流程可具体为上述图11所示流程的一种具体实现方式,该流程包括:
步骤S1200:接入网设备为UE配置上行授权资源的重复传输,该上行授权资源的重复传输中包括第一重复传输次数K1。所述上行授权资源可以是配置授权CG资源或动态授权DG资源。
其中,第一重复传输次数K1可以通过RRC消息配置,所述RRC消息可以是RRC重配置、RRC恢复或RRC建立等,不作限定。或者,第一重复传输次数K1可以通过上行授 权的DCI动态指示。若所述上行授权资源为DG资源,则所述DCI用于调度所述DG资源。或者,若所述上行授权资源为CG资源,则所述DCI用于激活或重激活所述CG资源。
步骤S1201:UE确定上行授权资源对应的待发送数据。可选的,SRB或DRB对应的LCH的待发送数据可以在上行授权资源发送,MAC CE也可以在上行授权资源发送。
在一种可能的实现方式中,若所述上行授权为CG资源,则所述LCH的允许CG列表中可以包括所述CG资源。所述LCH的允许CG列表表示所述LCH允许在所述列表中的CG上发送。例如,允许CG列表为{CG1,CG2},所述CG1与CG2可以为不同的CG资源。若所述上行授权为CG1资源,则所述LCH可以在CG1资源上发送。若所述上行授权为CG3资源,则所述LCH不可以在CG3资源发送。所述LCH的允许CG列表可以由接入网设备通过RRC消息配置给UE,所述RRC消息可以是RRC重配置,RRC恢复,RRC建立等。不作限定。
在另一种可能的实现方式中,若所述上行授权为DG资源,则所述LCH的允许优先级列表中可以包含所述DG对应的优先级。所述优先级可以是DG中指示的优先级,或者RRC预配置该DG使用的优先级,例如优先级为1时表示高优先级业务,例如所述URLLC类型业务,优先级为0时表示低优先级业务,例如所述eMBB类型业务。若所述优先级是DG中指示的优先级,该优先级可以通过DG的DCI中的字段显示指示,或者特殊的DCI格式,或者特殊的RNTI隐式指示。
步骤S1202:UE确定第二重复传输次数K2。
可选的,UE可以根据上行授权指示的资源大小以及待发送数据,确定第二重复传输次数。所述待发送数据可以是SRB、DRB对应的LCH的待发送数据,(例如,可以是PDCP PDU、SRB或DRB的RLC SDU、SRB或DRB的RLC PDU等),还可以是MAC CE,还可以是所述SRB、DRB对应的LCH的待发送数据以及MAC CE等。
在一种可能的实现方式中,若待发送数据能够在所述上行授权资源上发送,第二重复传输次数等于第一重复传输次数,此时,不需要将待发送数据分段成多份数据包发送。
例如,对所述SRB或者DRB对应的LCH的待发送数据进行组包,生成MAC PDU,所述MAC PDU除了包括所述SRB或DRB对应的LCH的待发送数据之外,还可以包括MAC CE,例如缓冲状态报告(buffer status report,BSR),功率余量报告(power headroom report,PHR)等。UE在所述上行授权对应的资源上首先进行MAC PDU的新传,之后在所述上行授权对应的重复资源上进行MAC PDU的重传,直至传输次数达到第二重复传输次数,则停止所述MAC PDU的重复发送。所述MAC PDU的新传以及重传用的冗余版本号可以由RRC配置或者协议预设定等,不作限定。
如图13所示,第二重复传输次数K2=4,则UE则在所述上行授权对应的资源上首先进行新传,然后在上行授权资源上进行三次重复传输。可选的,若接入网设备检测所述MAC PDU发送失败时,可以对所述MAC PDU对应的HARQ进行调度重传。
在另一种可能的实现方式中,若所述待发送数据不能在所述上行授权资源上发送时,即所述上行授权的资源大小不能够容下所述待发送数据时,则所述第二重复传输次数小于第一重复传输次数。
可选的,UE可确定所述待发送数据需要分N个分段,所述分段可以是RLC SDU的分段,或者RLC PDU的分段,或者,PDCP数据的分段,还可以是SRB的分段。可选的,若所述分段为RLC SDU的分段,则所述分段对应的RLC PDU中还可以包含分段信息,例 如所述分段信息可指示当前分段是否是第一个分段,最后一个分段等。或者,若所述分段为SRB的分段,例如RRC消息分段,则所述分段对应的RRC消息还可以包含分段信息,例如指示当前分段是否是第一个分段,或者具体的分段号,例如这是第一个分段,第二个分段等。
在一种分段的可能的实现方式中,UE在组装MAC PDU时,可获取逻辑信道对应的待发送数据中能够在本次传输的MAC PDU中传输的大小,从而将该传输的大小指示给所述逻辑信道对应的RLC实体,该RLC实体根据该传输的大小确定是否需要将待发送的RLC SDU分段以及分成几段,例如逻辑信道A对应的RLC SDU#1有1000字节,MAC PDU传输的大小为500字节,则UE将该RLC SDU#1分成两个RLC SDU的分段,RLC SDU#1分段#1大小为500字节,RLC SDU#1分段#2大小为500字节。
在一种可能的实现方式中,UE确定第二重复传输次数K2=第一重复传输次数K1/N。
如图14所示,K1=4,N=2,则K2=K1/N=2。该待发送数据的两个分段可为seg#1和seg#2。则UE首先在所述上行授权进行第一个分段(即seg#1)的新传,然后在所述上行授权资源上发送所述第一个分段的重传,然后在上行授权资源上发送第二个分段(即seg#2)的新传,最后在上行授权资源上发送第二个分段的重传。
在另一种可能的实现方式中,UE确定前N-1个分段的重复传输次数为ceil(K1/N),第N个分段的重复传输次数为K1-ceil(K1/N)*(N-1),ceil表示向上取整函数。例如,K1=8,N=3,则第一分段可以传输2次,第二分段可以传输2次,第三分段可以传输4次。
在又一种可能的实现方式中,UE可确定前N-1个分段的重复传输次数为floor(K1/N),第N个分段的重复传输次数为K1-floor(K1/N)*(N-1),floor表示向下取整函数。仍沿用上述举例,K1=8,N=3,则第一个分段可以传输3次,第二个分段可以传输3次,第三个分段可以传输2次。
在另一种可能的实现方式中,UE可确定N个分段的重复次数为ceil(K1/N)。仍沿用上述举例,K1=8,N=3,则第一个分段可以传输2次,第二个分段可以传输2次,第三个分段可以传输2次。
通过上述记载可知,分段的传输次数由多种确定方式。具体采用哪一种方式确定每个分段的传输方式,可以通过RRC消息配置给UE,或者,协议预设等,不作限定。
可选的,每个分段数据中还可携带第一指示,用于指示当前分段传输的数据是新传的,还是重复传输的。所述第一指示可以是物理层信令,例如解调参考信号(demodulation reference signal,DMRS),例如给UE分配不同的DMRS,DMRS#1用于指示所述传输的数据为上一个分段的重复传输,DMRS#2用于指示所述传输的数据为下一个分段的新传,还可以是物理上行控制信道(physical uplink control channel,PUCCH),作用与上述DMRS相似,不再赘述。或者,所述第一指示还可以是MAC,RLC或者PDCP的控制信令,例如MAC CE指示所述传输的数据为上一个分段的重复传输,还可以指示所述传输的数据为下一个分段的新传。或者,可以通过是否携带所述MAC CE来指示,例如所述传输的数据中携带了所述MAC CE表示所述传输的数据为上一个分段的重复传输,若没有携带所述MAC CE表示所述传输的数据为下一个分段的新传等。
可选的,UE可按照现有的方式,在上行授权资源上传输待发送数据,或者,可按照图12流程中的方式传输待发送数据。例如,UE可以通过RRC重配置消息或系统消息,指示UE当前是否采用图12流程中的方式传输待发送数据。比如,RRC重配置消息或系 统消息中可携带一个开关信元,当所述开关信元开启时,则UE可按照图12流程中的方式传输待发送数据。而当所述开启信元关闭时,则UE可按照现有的方式传输待发送数据。或者,可将UE是否支持上述图12流程中的方式传输待发送数据,作为UE的能力。例如,在UE的能力信息中可携带一个能力指示,用于指示所述UE是否可以支持所述功能。
在本申请实施例中,通过比较上行授权指示的资源大小以及待发送数据大小,灵活确定分段的重复传输次数,可以在固定的重复传输资源上传输多个分段的数据,从而在可靠性以及时延上取得一个较好的折中。
上述本申请实施例提供的方法中,分别从终端设备和网络设备交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的功能,终端设备和网络设备可以包括硬件结构和/或软件单元,以硬件结构、软件单元,或硬件结构加软件单元的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件单元,还是硬件结构加软件单元的方式来执行,取决于技术方案的特定应用和设计约束条件。
以上结合图1至图14详细说明了本申请实施例提供的方法。以下结合图15和图16详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可参见上文方法实施例中的描述。
图15是本申请实施例提供的装置1500的示意性框图,用于实现上述方法中终端设备或网络设备的功能。例如,该装置可以为软件单元或芯片系统。所述芯片系统可以由芯片构成,也可以包括芯片和其它分立器件。该装置包括通信单元1501,还可包括处理单元1502。通信单元1501,可以与处部进行通信。处理单元1502,用于进行处理。例如,根据第一配置信息和第二配置信息,确定主RLC组和辅RLC组等。通信单元1501,还可以称为通信接口、收发单元、输入\输出接口等。例如,通信单元1501可以包括发送单元和/或接收单元等。
在一种示例中,装置1500可实现对应于图9所示流程中用终端设备执行的步骤,所述装置1500可以是终端设备,或者配置于终端设备中的芯片或电路。通信单元1501执行上文方法实施例中终端设备侧的收发操作,处理单元1502用于执行上文方法实施例中终端设备侧的处理相关操作。
比如,通信单元1501,用于接收来自网络设备的第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组,所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体;处理单元1502,用于根据所述第一配置信息和所述第二配置信息,确定所述主RLC组和所述辅RLC组。
可选的,所述第一配置信息包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体;所述第二配置信息包括第二指示信元,所述第二指示信元用于指示PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体。
可选的,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
可选的,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
可选的,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
可选的,处理单元1502,还用于:根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,确定第一RLC组,所述第一RLC组为所述主RLC组或所述辅RLC组,根据所述第一RLC组中处于激活态的RLC实体的数目,复制第一PDCP数据包,以及向所述第一RLC组递交复制后的所述第一PDCP数据包。
可选的,处理单元1502在根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,确定第一RLC组时,包括:根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组。
可选的,处理单元1502在根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组,包括:确定待发送数据的数据量大于或等于门限值;所述主RLC组和所述辅RLC组均处于激活态,所述终端设备确定所述第一RLC组为所述主RLC组或所述辅RLC组;或者,所述主RLC组处于激活态,所述辅RLC组处于非激活态,所述终端设备确定所述第一RLC组为主RLC组;或者,所述主RLC组处于非激活态,所述辅RLC组处于激活态,所述终端设备确定所述第一RLC组为辅RLC组。
可选的,处理单元1502在根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC分组时,包括:确定待发送数据的数据量小于或等于门限值,所述主RLC组处于激活态,确定所述第一RLC组为主RLC组;或者,所述主RLC组处于非激活态,所述辅RLC组处于激活态,确定所述第一RLC组为辅RLC组。
可选的,所述主RLC组中的一个RLC实体处于激活态,所述主RLC组处于激活态;所述主RLC组中的所有RLC实体均处于非激活态,所述主RLC组处于非激活态;所述辅RLC组中的一个RLC实体处于激活态,所述辅RLC组处于激活态;所述辅RLC组中的所有RLC实体均处于非激活态,所述辅RLC组处于非激活态。
在另一种示例中,装置1500可实现对应于图9所示流程中网络设备执行的步骤,所述装置1500可以是网络设备,或者配置于网络设备中的芯片或电路。通信单元1501执行上文方法实施例中网络设备侧的收发操作,处理单元1502用于执行上文方法实施例中网络设备侧的处理相关操作。
比如,处理单元1502,用于生成第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组;所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体。通信单元1501,用于向终端设备发送第一配置信息和第二配置信息。
可选的,所述第一配置信息中包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于主RLC组的RLC实体;所述第二配置信息中包括第二指示信元,所述第二指示信元用于指示所述PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体。
可选的,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
可选的,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
可选的,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
在一种示例中,装置1500可实现对应于上文图11所示流程中终端设备执行的步骤,所述装置1500可以是终端设备,或者配置于终端设备的芯片或电路。通信单元1501用于执行上文方法实施例中终端设备的收发相关操作,处理单元1502用于执行上文方法实施例中终端设备的处理相关操作。
在一种示例中,处理单元1502,用于生成第一数据包。处理单元1502,还用于将第一数据包分段,分成M个第二数据包,并在上行授权资源上,控制通信单元1501向网络设备发送M个第二个数据包。所述M个第二数据包的发送次数分别为N 1、N 2至N M,N 1+N 2…+N M=N,N为所述上行授权资源的重复传输次数,M大于或等于2,N大于或等于1。
在一种可能的实现方式中,处理单元1502可根据N与M的比值,确定N 1、N 2至N M的大小。例如,若N与M的取值为整数,则N 1、N 2至N M的大小相等,且大小均为N/M。例如,N的取值为4,M的取值为2,则可将第一数据包分成2个第二数据包,分别为第二数据包A和第二数据包B。且第二数据包A和第二数据包B的重复传输次数均为2。或者,若N与M的取值为非整数,则N 1、N 2至N M的大小相等,且大小均为(N/M) 取整,所述取整可为向上取整,或者,向下取整等,不作限定。例如,N的取值为8,M的取值为3,则可将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输3次。若向下取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输2次。
在另一种可能的实现方式中,处理单元1502可确定前M-1个第二数据包的重复传输次数为(N/M) 取整,所述取值可为向上取整或向下取整,第M个第二数据包的重复传输次数为N-(N/M) 取整*(M-1)。例如,N的取值为8,M的取值为3,将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A与第二数据包B的重复传输次数为3,第三数据包的重复传输次数为2。若向下取值,则第二数据包A与第二数据包B的重复传输次数为2,则第二数据包C的重复传输次数为4。
可选的,上述每个第二数据包中还可携带第一指示信息,用于指示当前数据包是新传的,还是重传的。针对M个第二数据包中的任一个第二数据包,设定该数据包传输3次,那可以认为该第二数据的第一次传输为该第二数据包的初传,剩余两次为该第二数据包的重传。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器 中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可以理解的是,上述实施例中的通信单元的功能可以由收发器实现,处理单元的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送单元和/或接收单元的功能。以下结合图16举例进行说明。
图16是本申请实施例提供的装置1600的示意性框图,图16所示的装置1600可以为图15所示的装置的一种硬件电路的实现方式。该装置可执行上述方法实施例中终端设备或网络设备的功能。为了便于说明,图16仅示出该通信装置的主要部件。
图16所示的通信装置1600包括至少一个处理器1601。通信装置1600还可以包括至少一个存储器1602,用于存储程序指令和/或数据。存储器1602和处理器1601耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1601可以和存储器1602协同操作,处理器1601可以执行存储器1602中存储的程序指令,所述至少一个存储器中1602中的至少一个可以包括于处理器1601中。
装置1600还可以包括通信接口1603,用于通过传输介质和其它设备进行通信,从而用于通信装置1600可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
应理解,本申请实施例中不限定上述处理器1601、存储器1602以及通信接口1603之间的连接介质。本申请实施例在图16中以存储器1602、处理器1601以及通信接口1603之间通过通信总线1604连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1600用于实现上述图9所示流程中用终端设备执行的步骤。通信接口1603用于执行上文实施例中终端设备侧的收发相关操作,处理器1601用于执行上文方法实施例中终端设备侧的处理相关操作。
比如,通信接口1603,用于接收来自网络设备的第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组,所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体;处理单元,用于根据所述第一配置信息和所述第二配置信息,确定所述主RLC组和所述辅RLC组。
可选的,所述第一配置信息包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体;所述第二配置信息包括第二指示信元,所述第二指示信元用于指示PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体。
可选的,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
可选的,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
可选的,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
可选的,处理器1601,还用于:根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,确定第一RLC组,所述第一RLC组为所述主RLC组或所述辅RLC组,根据所述第一RLC组中处于激活态的RLC实体的数目,复制第一PDCP数据包,以及向所述第一RLC组递交复制后的所述第一PDCP数据包。
可选的,处理器1601在根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,确定第一RLC组时,包括:根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组。
可选的,处理器1601在根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组,包括:确定待发送数据的数据量大于或等于门限值;所述主RLC组和所述辅RLC组均处于激活态,所述终端设备确定所述第一RLC组为所述主RLC组或所述辅RLC组;或者,所述主RLC组处于激活态,所述辅RLC组处于非激活态,所述终端设备确定所述第一RLC组为主RLC组;或者,所述主RLC组处于非激活态,所述辅RLC组处于激活态,所述终端设备确定所述第一RLC组为辅RLC组。
可选的,处理器1601在根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC分组时,包括:确定待发送数据的数据量小于或等于门限值,所述主RLC组处于激活态,确定所述第一RLC组为主RLC组;或者,所述主RLC组处于非激活态,所述辅RLC组处于激活态,确定所述第一RLC组为辅RLC组。
可选的,所述主RLC组中的一个RLC实体处于激活态,所述主RLC组处于激活态;所述主RLC组中的所有RLC实体均处于非激活态,所述主RLC组处于非激活态;所述辅RLC组中的一个RLC实体处于激活态,所述辅RLC组处于激活态;所述辅RLC组中的所有RLC实体均处于非激活态,所述辅RLC组处于非激活态。
在一种示例中,装置1600用于实现上述图9所示流程中网络设备执行的步骤。通信接口1603用于执行上文实施例中网络设备侧的收发相关操作,处理器1601用于执行上文方法实施例中网络设备的处理相关操作。
比如,处理器1601,用于生成第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组;所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体。通信接口1603,用于向终端设备发送第一配置信息和第二配置信息。
可选的,所述第一配置信息中包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于主RLC组的RLC实体;所述第二配置信息中包括第二指示信元,所述第二指示信元用于指示所述PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体。
可选的,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
可选的,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
可选的,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
在一种示例中,装置1600可实现对应于上文图11所示流程中终端设备执行的步骤,所述装置1600可以是终端设备,或者配置于终端设备的芯片或电路。通信接口1603用于执行上文方法实施例中终端设备的收发相关操作,处理器1601用于执行上文方法实施例中终端设备的处理相关操作。
在一种示例中,处理器1601,用于生成第一数据包。处理器1601,还用于将第一数据包分段,分成M个第二数据包,并在上行授权资源上,控制通信接口1603向网络设备发送M个第二个数据包。所述M个第二数据包的发送次数分别为N 1、N 2至N M,N 1+N 2…+N M=N,N为所述上行授权资源的重复传输次数,M大于或等于2,N大于或等于1。
在一种可能的实现方式中,处理器1601可根据N与M的比值,确定N 1、N 2至N M的大小。例如,若N与M的取值为整数,则N 1、N 2至N M的大小相等,且大小均为N/M。例如,N的取值为4,M的取值为2,则可将第一数据包分成2个第二数据包,分别为第二数据包A和第二数据包B。且第二数据包A和第二数据包B的重复传输次数均为2。或者,若N与M的取值为非整数,则N 1、N 2至N M的大小相等,且大小均为(N/M) 取整,所述取整可为向上取整,或者,向下取整等,不作限定。例如,N的取值为8,M的取值为3,则可将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输3次。若向下取整,则第二数据包A、第二数据包B和第二数据包C可均重复传输2次。
在另一种可能的实现方式中,处理器1601可确定前M-1个第二数据包的重复传输次数为(N/M) 取整,所述取值可为向上取整或向下取整,第M个第二数据包的重复传输次数为N-(N/M) 取整*(M-1)。例如,N的取值为8,M的取值为3,将第一数据包分为3个第二数据包,分别为第二数据包A、第二数据包B和第二数据包C。若向上取整,则第二数据包A与第二数据包B的重复传输次数为3,第三数据包的重复传输次数为2。若向下取值,则第二数据包A与第二数据包B的重复传输次数为2,则第二数据包C的重复传输次数为4。
可选的,上述每个第二数据包中还可携带第一指示信息,用于指示当前数据包是新传的,还是重传的。针对M个第二数据包中的任一个第二数据包,设定该数据包传输3次,那可以认为该第二数据的第一次传输为该第二数据包的初传,剩余两次为该第二数据包的重传。
进一步的,本申请实施例还提供一种装置,所述装置用于执行上文图9所示流程中的方法,或者,用于执行上文图11所示流程中的方法。一种计算机可读存储介质,包括程序,当所述程序被处理器运行时,上文图9所示流程中的方法被执行,或者,上文图11所示流程中的方法被执行。一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当 所述计算机程序代码在计算机上运行时,使得计算机实现上文图9所示流程的方法,或者实现上文图11所示流程中的方法。一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置执行上文图9所示流程的方法,或者,执行上文图11所示流程的方法。
本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组,所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体;
    所述终端设备根据所述第一配置信息和所述第二配置信息,确定所述主RLC组和所述辅RLC组。
  2. 如权利要求1所述的方法,其特征在于,所述第一配置信息包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体;所述第二配置信息包括第二指示信元,所述第二指示信元用于指示PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体。
  3. 如权利要求1或2所述的方法,其特征在于,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,还包括:
    所述终端设备根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,确定第一RLC组,所述第一RLC组为所述主RLC组或所述辅RLC组;
    所述终端设备根据所述第一RLC组中处于激活态的RLC实体的数目,复制第一PDCP数据包;
    所述终端设备向所述第一RLC组递交复制后的所述第一PDCP数据包。
  7. 如权利要求6所述的方法,其特征在于,所述终端设备根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,确定第一RLC组,包括:
    所述终端设备根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备根据所述主RLC组的激活状态和所述辅RLC组的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC组,包括:
    所述终端设备确定待发送数据的数据量大于或等于门限值;
    所述主RLC组和所述辅RLC组均处于激活态,所述终端设备确定所述第一RLC组为所述主RLC组或所述辅RLC组;或者,
    所述主RLC组处于激活态,所述辅RLC组处于非激活态,所述终端设备确定所述第一RLC组为主RLC组;或者,
    所述主RLC组处于非激活态,所述辅RLC组处于激活态,所述终端设备确定所述第一RLC组为辅RLC组。
  9. 如权利要求7所述的方法,其特征在于,所述终端设备根据所述主RLC组中的激活状态和所述辅RLC组中的激活状态中的至少一个,以及待发送数据的数据量与门限值的大小关系,确定所述第一RLC分组,包括:
    所述终端设备确定待发送数据的数据量小于或等于门限值,
    所述主RLC组处于激活态,所述终端设备确定所述第一RLC组为主RLC组;或者,
    所述主RLC组处于非激活态,所述辅RLC组处于激活态,所述终端设备确定所述第一RLC组为辅RLC组。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述主RLC组中的一个RLC实体处于激活态,所述主RLC组处于激活态;所述主RLC组中的所有RLC实体均处于非激活态,所述主RLC组处于非激活态;
    所述辅RLC组中的一个RLC实体处于激活态,所述辅RLC组处于激活态;所述辅RLC组中的所有RLC实体均处于非激活态,所述辅RLC组处于非激活态。
  11. 一种通信方法,其特征在于,包括:
    网络设备生成第一配置信息和第二配置信息,所述第一配置信息用于配置主无线链路控制RLC组,所述第二配置信息用于配置辅RLC组;所述主RLC组包括至少一个RLC实体,所述辅RLC组包括至少一个RLC实体;
    所述网络设备向终端设备发送所述第一配置信息和所述第二配置信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一配置信息中包括第一指示信元,所述第一指示信元用于指示分组数据汇聚协议PDCP实体所关联的RLC实体中属于主RLC组的RLC实体;所述第二配置信息中包括第二指示信元,所述第二指示信元用于指示PDCP实体所关联的RLC实体中属于辅RLC组的RLC实体。
  13. 如权利要求11或12所述的方法,其特征在于,所述主RLC组和所述辅RLC组关联同一个无线承载的PDCP实体。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述第一配置信息包括第三指示信元,所述第三指示信元用于指示所述主RLC组中的主RLC实体;所述第二配置信息包括第四指示信元,所述第四指示信元用于指示所述辅RLC组中的主RLC实体。
  15. 如权利要求11至14中任一项所述的方法,其特征在于,所述第一配置信息还包括第五指示信元,所述第五指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述主RLC组的RLC实体的初始状态;所述第二配置信息包括第六指示信元,所述第六指示信元用于指示所述PDCP实体所关联的RLC实体中属于所述辅RLC组的RLC实体的初始状态。
  16. 一种装置,其特征在于,包括用于执行权利要求1至10任一项所述的方法的各步骤的单元,或者,执行权利要求11至15任一项所述的方法的各步骤的单元。
  17. 一种装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行权利要求1至10任一项所述的方法,或者,执行权利要求11至15任一项所述的方法。
  18. 一种装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至10任一项所述的方法,或者,执行如权利要求11至15任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至10中任一项所述的方法被执行,或者,如权利要求11至15中任一项所述的方法被执行。
PCT/CN2021/088532 2020-04-30 2021-04-20 一种通信方法及装置 WO2021218717A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21797446.8A EP4132083A4 (en) 2020-04-30 2021-04-20 COMMUNICATION METHOD AND DEVICE
US18/048,453 US20230116726A1 (en) 2020-04-30 2022-10-21 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010360380.5 2020-04-30
CN202010360380.5A CN113596914A (zh) 2020-04-30 2020-04-30 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/048,453 Continuation US20230116726A1 (en) 2020-04-30 2022-10-21 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021218717A1 true WO2021218717A1 (zh) 2021-11-04

Family

ID=78236858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088532 WO2021218717A1 (zh) 2020-04-30 2021-04-20 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230116726A1 (zh)
EP (1) EP4132083A4 (zh)
CN (1) CN113596914A (zh)
WO (1) WO2021218717A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN110691424A (zh) * 2018-01-12 2020-01-14 华为技术有限公司 一种cu-du架构下重复模式的通信处理方法和设备
CN111315027A (zh) * 2018-12-11 2020-06-19 夏普株式会社 用户设备及其方法、基站及其方法
WO2020204386A1 (en) * 2019-04-02 2020-10-08 Lg Electronics Inc. Method and apparatus for processing data unit based on rlc group in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3738249B1 (en) * 2018-01-10 2023-03-01 FG Innovation Company Limited Methods and devices for packet data convergence protocol (pdcp) data transmission in wireless communication systems
WO2019194528A1 (en) * 2018-04-03 2019-10-10 Lg Electronics Inc. Method and apparatus for performing transmission
EP3813417A4 (en) * 2018-08-01 2021-08-25 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR CONTROLLING DOUBLE PACKET TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN110691424A (zh) * 2018-01-12 2020-01-14 华为技术有限公司 一种cu-du架构下重复模式的通信处理方法和设备
CN111315027A (zh) * 2018-12-11 2020-06-19 夏普株式会社 用户设备及其方法、基站及其方法
WO2020204386A1 (en) * 2019-04-02 2020-10-08 Lg Electronics Inc. Method and apparatus for processing data unit based on rlc group in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Summary of e-mail discussion 108#52 on PDCP running CR for NR IIOT", 3GPP DRAFT; R2-2001280, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20200224 - 20200306, 13 February 2020 (2020-02-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849589 *
SHARP: "PDCP duplication states of the associated RLC entities when duplicationState is absent", 3GPP DRAFT; R2-2002862, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. bis e-meeting; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051871043 *

Also Published As

Publication number Publication date
EP4132083A4 (en) 2023-09-27
EP4132083A1 (en) 2023-02-08
CN113596914A (zh) 2021-11-02
US20230116726A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
US11445404B2 (en) Method and apparatus for wireless communication in wireless communication system
WO2021218742A1 (zh) 信息反馈、资源调度方法、终端及网络设备
WO2020221260A1 (zh) 一种通信方法及通信装置
US11711167B2 (en) Apparatus, method and computer program
RU2732488C1 (ru) Устройство связи, способ связи и компьютерная программа
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
JP2020532159A (ja) データ処理の方法及び装置
WO2018228501A1 (zh) 通信方法及装置
WO2021218717A1 (zh) 一种通信方法及装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
US20220338288A1 (en) Communication method and apparatus
CN109644381A (zh) 数据处理方法及相关产品
WO2020015617A1 (zh) 一种通信方法及装置
CN111224758B (zh) 一种重复传输指示方法、基站及终端
JP4662498B2 (ja) 無線通信システムにおいて送信効率を向上させる方法及び装置
WO2023273973A1 (zh) 一种通信方法及通信装置
US20230262809A1 (en) Methods and Apparatus for Logical Channel Aggregation
JP7155399B2 (ja) 装置、方法およびコンピュータプログラム
WO2024114395A1 (zh) 一种通信方法以及相关装置
WO2024098267A1 (zh) 数据传输装置、数据发送装置以及方法
WO2023082953A1 (zh) 业务发送和接收方法、装置及存储介质
WO2023124751A1 (zh) 一种数据传输方法、装置、终端及网络设备
WO2023179655A1 (zh) 波形切换方法、设备及可读存储介质
WO2023082948A1 (zh) 数据传输方法及通信装置
WO2017140277A1 (zh) 无线链路控制功能实体及其处理数据的方法、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021797446

Country of ref document: EP

Effective date: 20221031

NENP Non-entry into the national phase

Ref country code: DE