WO2021218099A1 - 动态图形光彩变色膜 - Google Patents

动态图形光彩变色膜 Download PDF

Info

Publication number
WO2021218099A1
WO2021218099A1 PCT/CN2020/126826 CN2020126826W WO2021218099A1 WO 2021218099 A1 WO2021218099 A1 WO 2021218099A1 CN 2020126826 W CN2020126826 W CN 2020126826W WO 2021218099 A1 WO2021218099 A1 WO 2021218099A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
layer
medium layer
nano
transparent medium
Prior art date
Application number
PCT/CN2020/126826
Other languages
English (en)
French (fr)
Inventor
朱昊枢
叶瑞
孙营春
左志成
蔡文静
罗明辉
陈林森
朱志坚
Original Assignee
苏州苏大维格科技集团股份有限公司
苏大维格(盐城)光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏大维格(盐城)光电科技有限公司 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021218099A1 publication Critical patent/WO2021218099A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Definitions

  • the utility model relates to the field of anti-counterfeiting technology, in particular to a dynamic graphic bright color changing film.
  • the optical anti-counterfeiting technology which has emerged with the development of science and technology in the current era, is a means of anti-counterfeiting mainly using physical optics.
  • the basic principle is that when light propagates in various carrier media, various optical characteristics such as transmission, refraction, diffraction, etc. will make the formed anti-counterfeiting product obtain corresponding optical effects when observed.
  • the existing anti-counterfeiting film generally has a grating structure on the information medium layer to form an image, and uses the principle of diffraction to realize image anti-counterfeiting. In order to achieve color change, a color layer is generally provided on the grating structure to achieve the effect of color change.
  • such existing anti-counterfeiting films generally have problems such as easy forgery and poor anti-counterfeiting.
  • the purpose of the utility model is to provide a dynamic graphic bright color changing film, which can realize dynamic change and light color changing effects, is not easy to imitate, and has strong anti-counterfeiting properties.
  • a dynamic graphic color-changing film which in turn includes a base film layer, an information medium layer, a first transparent medium layer, a second transparent medium layer, a reflective layer, and a bottom layer.
  • the information medium layer is provided with a first micro-nano layer showing a dynamic laser effect.
  • Structure, a side of the first transparent medium layer close to the information medium layer is provided with a second micro-nano structure corresponding to the first micro-nano structure, and the first micro-nano structure is matched with the second micro-nano structure.
  • the transverse cross-sectional shape of the first micro-nano structure and the second micro-nano structure is arc, triangle, square, rectangle, trapezoid, or irregular shape, or a combination of two or more arbitrary shapes.
  • first micro-nano structure and the second micro-nano structure both include a plurality of strip-like structures, the strip-like structures are arranged according to Fresnel law, and the cross-section of the strip-like structure is arc-shaped, and the strip-like structure The curvature of s decreases successively.
  • first micro-nano structure and the second micro-nano structure both include a plurality of grating units, two adjacent grating units are arranged in mirror or non-mirror, and the grating units include multiple orientation angles and/ Or gratings with different periods are arranged in a grating array.
  • first micro/nano structure and the second micro/nano structure both include at least a first micro/nano substructure and a second micro/nano substructure with different orientation angles and/or periods.
  • the first micro/nano structure The second micro/nano substructure is nested with each other, or the first micro/nano substructure is adjacent to the second micro/nano substructure.
  • the refractive index of the second transparent medium layer is 1.38-1.51
  • the refractive index of the second transparent medium layer is smaller than the refractive index of the first transparent medium layer
  • the refractive index of the second transparent medium layer is smaller than the reflective index.
  • the refractive index of the layer is 1.38-1.51
  • the thickness of the first transparent medium layer is 10-80nm
  • the thickness of the second transparent medium layer is 150nm-1000nm
  • the reflective layer is a metal layer with a thickness of 10-50nm
  • the thickness of the first transparent medium layer The thickness is smaller than that of the second transparent medium layer
  • the thickness of the reflective layer is smaller than that of the second transparent medium layer.
  • the bottom layer is a hot melt adhesive layer
  • the information medium layer is a release material
  • the dynamic graphic color-changing film further includes a release layer, the bottom layer is a pressure-sensitive adhesive layer, and the release layer is arranged on the pressure-sensitive adhesive layer.
  • the first transparent medium layer, the second transparent medium layer and the reflective layer of the dynamic graphic color-changing film of the present invention follow the principle of multi-level guided mode resonance.
  • the dynamic graphic color-changing film When the dynamic graphic color-changing film is rotated, the dynamic graphic color can be viewed from any angle.
  • the color-changing film not only has a dynamic effect, but also has a light-changing effect.
  • the combination of the two effects improves the anti-counterfeiting performance of the dynamic graphic color-changing film; and the pattern appears, hides or replaces with different visual angles, and it can also show the movement of the same pattern
  • the picture or custom effect provides a richer design and visual experience.
  • Fig. 1 is a schematic diagram of the structure of the dynamic pattern color-changing film of the first embodiment of the present invention.
  • Fig. 2 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 0°.
  • Fig. 3 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 45°.
  • Fig. 4 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 80°.
  • Fig. 5 is a schematic diagram of the structure of the dynamic pattern color-changing film of the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 5.
  • Fig. 7 is a schematic diagram of the structure of the dynamic pattern color-changing film according to the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 7.
  • Fig. 9 is a schematic diagram of the structure of the dynamic pattern color-changing film of the fifth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 9.
  • FIG. 11 is a schematic diagram of the structure of the dynamic pattern color-changing film of the sixth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 11.
  • FIG. 13 is a schematic diagram of the structure of the dynamic pattern color-changing film of the seventh embodiment of the present invention.
  • Fig. 1 is a schematic diagram of the structure of the dynamic pattern color-changing film of the first embodiment of the present invention.
  • the dynamic graphic color-changing film 10 a includes a base film layer 12, an information medium layer 13 a, a first transparent medium layer 14 a, a second transparent medium layer 15, a reflective layer 16 and a bottom layer 17 in sequence.
  • the information medium layer 13a is provided with a first micro-nano structure 131a showing a dynamic laser effect, and a second micro-nano structure corresponding to the first micro-nano structure 131a is provided on the side of the first transparent medium layer 14a close to the information medium layer 13a 141a, the first micro-nano structure 131a is matched with the second micro-nano structure 141a, the refractive index of the second transparent medium layer 15 is smaller than that of the first transparent medium layer 14a, and the refractive index of the second transparent medium layer 15 is smaller than that of the reflective layer 16.
  • the refractive index is provided with a first micro-nano structure 131a showing a dynamic laser effect, and a second micro-nano structure corresponding to the first micro-nano structure 131a is provided on the side of the first transparent medium layer 14a close to the information medium layer 13a 141a, the first micro-nano structure 131a is matched with the second micro-nano structure 141
  • the material of the base film layer 12 is thermoplastic polyester (PET), but is not limited to this;
  • the material of the information medium layer 13a is a transparent material, preferably, the material of the information medium layer 13a is polymethylmethacrylate.
  • Ester (PMMA) the thickness of the first transparent medium layer 14a is 10-80nm, preferably, the material of the first transparent medium layer 14a is zinc sulfide, but not limited to this;
  • the refractive index of the second transparent medium layer 15 It is 1.38-1.51, and its thickness is 150nm-1000nm.
  • the material of the second transparent medium layer 15 is polymethylmethacrylate (PMMA), but it is not limited to this;
  • the reflective layer 16 is a metal layer, which The thickness is 10-50 nm.
  • the material of the reflective layer 16 is aluminum, but it is not limited thereto.
  • the thickness of the first transparent medium layer 14 a is smaller than that of the second transparent medium layer 15, and the thickness of the reflective layer 16 is smaller than that of the second transparent medium layer 15.
  • Both the first micro-nano structure 131a and the second micro-nano structure 141a include a plurality of strip-like structures.
  • the strip-like structures are arranged according to the Fresnel law, and the cross-sections of the strip-like structures are arc-shaped, and the arc-shaped curvatures of the strip-like structures are successively Decreasing.
  • the lateral cross-sectional shape of the first micro-nano structure 131a and the second micro-nano structure 141a may also be triangular, square, rectangular, trapezoidal, or irregular, or a combination of two or more arbitrary shapes.
  • the information medium layer 13a is formed on the base film layer 12 by coating, and the first micro/nano structure 131a is formed on the information medium layer 13a by nano-imprint technology.
  • the first transparent medium layer is formed by evaporation on the side of the information medium layer 13a with the first micro-nano structure 131a, and the surface of the first transparent medium layer 14a in contact with the information medium layer 13a will be formed with the first micro-nano structure
  • the second micro-nano structure 141a corresponding to 131a.
  • a second transparent medium layer 15 is formed on the other surface of the first transparent medium layer 14a away from the second micro-nano structure 141a by vacuum evaporation or coating.
  • the reflective layer 16 is formed on the second transparent medium layer 15 by vacuum evaporation.
  • a transparent material is coated on the reflective layer 16 to form the bottom layer 17.
  • the bottom layer 17 is polymethyl methacrylate (PMMA).
  • the working principle of the dynamic graphic color-changing film 10a of this embodiment is roughly as follows: Since the second micro-nano structure 141a is strip-shaped and has an arc-shaped cross section, when observed, the dynamic graphic color-changing film 10a will have a beam effect, plus the first The curvature of the two micro-nano structures 141a gradually decreases. Therefore, when the dynamic pattern color-changing film 10a is rotated, the light beam changes dynamically as the viewing angle changes. Since the first transparent medium layer 14a, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the observation angle changes, the color of the light beam also changes.
  • the anti-counterfeiting laser effect of the dynamic light beam Combined with the anti-counterfeiting effect of discoloration, the product not only presents a rich dynamic light discoloration effect, but also has a very high anti-counterfeiting effect.
  • Fig. 2 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 0°.
  • Fig. 3 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 45°.
  • Fig. 4 is a reflection spectrum diagram of the dynamic graphic color-changing film of Fig. 1 at an observation angle of 80°.
  • Figure 2- Figure 4 as the viewing angle becomes larger, the trough position is red-shifted, and the color of the product changes. Specifically, as the viewing angle changes (0° to 80°), the color changes from light green to light pink, and then to light yellow, and the second micro-nano structure 141a produces a dynamic light and shadow effect perpendicular to the tangent direction of the arc.
  • the product not only presents a rich dynamic dazzling light-change effect, but also has a very high anti-counterfeiting effect.
  • the test conditions for the reflection spectra of FIGS. 2 to 4 include: the thickness of the first transparent medium layer 14a is 60 nm and the refractive index is 2.4; the reflective layer 16 is an aluminum layer, and the thickness of the aluminum layer is 30 nm; The refractive index of the second transparent medium layer 15 is 1.49, and its thickness is 800 nm.
  • the structure of the dynamic graphic color-changing film 10b of this embodiment is the same as the structure of the dynamic graphic color-changing film 10a of the first embodiment, except that the bottom layer 17 of this embodiment is a hot melt adhesive layer, and the information medium layer 13a is specifically a release type. Resin layer.
  • the material of the bottom layer 17 is hot melt adhesive
  • the material of the information medium layer 13a is release resin.
  • the hot melt adhesive layer and the hot melt adhesive layer are heated and pressurized. After the printing substrate is combined, the base film layer 12 and the information medium layer 13a are peeled off, and the remaining layers will be transferred to the hot-stamping substrate. After hot-stamping, the first transparent medium layer 14a is located on the outer surface.
  • the working principle of the dynamic graphic color-changing film 10b of this embodiment is roughly as follows: Since the second micro-nano structure 141a is strip-shaped and has an arc-shaped cross-section, when observed, the dynamic graphic color-changing film 10b will have a beam effect. The curvature of the two micro-nano structures 141a gradually decreases. Therefore, when the dynamic pattern color-changing film 10b is rotated, the light beam changes dynamically as the viewing angle changes. Since the first transparent medium layer 14a, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the observation angle changes, the color of the light beam also changes.
  • the anti-counterfeiting laser effect of the dynamic light beam Combined with the anti-counterfeiting effect of discoloration, the product not only presents a rich dynamic light discoloration effect, but also has a very high anti-counterfeiting effect.
  • FIG. 5 is a schematic diagram of the structure of the dynamic pattern color-changing film of the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 5.
  • the structure of the dynamic pattern color-changing film 10c of this embodiment is substantially the same as the structure of the dynamic pattern color-changing film 10b of the second embodiment.
  • the difference is that the first micro-nano structure of this embodiment
  • Both the 131c and the second micro-nano structure 141c include a plurality of grating units 1411, and two adjacent grating units 1411 are arranged in a mirror image. In other embodiments, two adjacent grating units 1411 may also be arranged in a non-mirrored manner.
  • the grating unit 1411 includes multiple gratings 14111 with different orientation angles.
  • the gratings 14111 are arranged in an array, and the orientation angles of the gratings 14111 are arranged in a certain regularity.
  • the orientation angle of the grating 14111 gradually increases or decreases.
  • the orientation angle of the grating 14111 is centrally symmetrically distributed.
  • the cross section of the grating 14111 is rectangular, but it is not limited to this.
  • the working principle of the dynamic graphic color-changing film 10c of this embodiment is roughly as follows: Since two adjacent grating units 1411 in the second micro-nano structure 141c are arranged in mirror images, and the orientation angles of the gratings 14111 are different, the rotation dynamics When the graphic color-changing film 10c is changed, the light beams move toward each other with the change of the observation angle, showing a dynamic change. Since the first transparent medium layer 14c, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the viewing angle changes, the color of the light beam also changes.
  • the anti-counterfeiting laser effect of the dynamic light beam Combined with the anti-counterfeiting effect of discoloration, the product not only presents a rich dynamic light discoloration effect, but also has a very high anti-counterfeiting effect.
  • FIG. 7 is a schematic diagram of the structure of the dynamic pattern color-changing film according to the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 7.
  • the structure of the dynamic graphic color-changing film 10d of this embodiment is substantially the same as the structure of the dynamic graphic color-changing film 10c of the third embodiment, except that the grating unit 1411 of this embodiment includes Various gratings 14111 with different periods.
  • the grating 14111 is arranged in an array, and the orientation angle of the grating 14111 is arranged in a certain regularity.
  • the period of the grating 14111 gradually increases or decreases.
  • the period of the grating 14111 is distributed symmetrically.
  • the cross section of the grating 14111 is rectangular, but it is not limited to this.
  • the working principle of the dynamic graphic color-changing film 10d of this embodiment is roughly as follows: Since the two adjacent grating units 1411 in the second micro-nano structure 141d are arranged in mirror images, and the period of the grating 14111 is different, the dynamic graphic is rotated In the case of the brilliance color changing film 10d, as the observation angle changes, the light beams move toward each other, showing a dynamic change. Since the first transparent medium layer 14d, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the viewing angle changes, the color of the light beam also changes.
  • FIG. 9 is a schematic diagram of the structure of the dynamic pattern color-changing film of the fifth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 9.
  • the structure of the dynamic pattern color-changing film 10e of this embodiment is substantially the same as the structure of the dynamic pattern color-changing film 10c of the third embodiment, except that the first micro-nano structure of this embodiment
  • Both the 131e and the second micro-nano structure 141e include at least a first micro-nano sub-structure 1412 and a second micro-nano sub-structure 1413 with different orientation angles.
  • the first micro-nano sub-structure 1412 and the second micro-nano sub-structure 1413 are embedded in each other. Set of settings.
  • the first micro-nano sub-structure 1412 and the second micro-nano sub-structure 1413 are both multiple, the first micro-nano sub-structures 1412 are arranged in an array, and the first micro-nano sub-structure 1412 and the second micro-nano sub-structure 1413 are arranged in an array. There are multiple orientation angles. Each first micro/nano substructure 1412 with a different orientation angle corresponds to one or more second micro/nano substructures 1413 with different orientation angles. The area of the second micro/nano substructure 1413 is smaller than The area of the first micro-nano substructure 1412 is not limited to this.
  • the cross-sections of the first micro-nano substructure 1412 and the second micro-nano substructure 1413 are rectangular, but not limited thereto.
  • the orientation angles of the first micro-nano sub-structure 1412 and the second micro-nano sub-structure 1413 are both one kind, and one kind of the first micro-nano sub-structure 1412 corresponds to a kind of the second micro-nano sub-structure 1413.
  • the working principle of the dynamic graphic color-changing film 10e of this embodiment is roughly as follows: Since the first micro-nano substructure 1412 and the second micro-nano substructure 1413 are nested with each other, plus the orientation angle of the first micro-nano substructure 1412 and The orientation angles of the second micro-nano substructures 1413 are not the same. Therefore, when the dynamic pattern color-changing film 10e is rotated, as the observation angle changes, the light beam exhibits a dynamic change with a sand point effect. Since the first transparent medium layer 14e, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the viewing angle changes, the color of the light beam also changes.
  • the anti-counterfeiting laser effect of the dynamic light beam is similar to The combination of the anti-counterfeiting effect of discoloration makes the product not only present a rich dynamic light discoloration effect, but also has a high degree of anti-counterfeiting.
  • FIG. 11 is a schematic diagram of the structure of the dynamic pattern color-changing film of the sixth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of grating distribution of the first transparent medium layer in FIG. 11.
  • the structure of the dynamic pattern color-changing film 10f of this embodiment is substantially the same as the structure of the dynamic pattern color-changing film 10e of the fifth embodiment. The difference is that the second micronano The structure 1413 is adjacent to the first micro-nano substructure 1412.
  • first micro/nano substructure 1412 and the second micro/nano substructure 1413 are arranged in an array, and the orientation angles of the first micro/nano substructure 1412 and the second micro/nano substructure 1413 are various, and each orientation angle is different.
  • the same first micro/nano substructure 1412 is adjacent to one or more second micro/nano substructures 1413 with different orientation angles, and the area of the second micro/nano substructure 1413 is smaller than the area of the first micro/nano substructure 1412, But it is not limited to this.
  • the working principle of the dynamic pattern color-changing film 10f of this embodiment is roughly as follows: Since the second micro-nano substructure 1413 is located on both sides of the first micro-nano substructure 1412, plus the orientation angle of the first micro-nano substructure 1412 and the first micro-nano substructure 1412 The orientation angles of the two micro-nano substructures 1413 are not the same. Therefore, when the dynamic graphic color-changing film 10f is rotated, as the observation angle changes, the light beam exhibits a dynamic change with a sand point effect. Since the first transparent medium layer 14f, the second transparent medium layer 15 and the reflective layer 16 follow the principle of multi-level guided mode resonance, as the viewing angle changes, the color of the light beam also changes.
  • the anti-counterfeiting laser effect of the dynamic light beam is similar to The combination of the anti-counterfeiting effect of discoloration makes the product not only present a rich dynamic light discoloration effect, but also has a high degree of anti-counterfeiting.
  • FIG. 13 is a schematic diagram of the structure of the dynamic pattern color-changing film of the seventh embodiment of the present invention.
  • the structure of the dynamic graphic color-changing film 10g of this embodiment is substantially the same as the structure of the dynamic graphic color-changing film 10f of the sixth embodiment. The difference is that the dynamic graphic color-changing film 10g of this embodiment also includes The release layer 18 and the bottom layer 17 are pressure-sensitive adhesive layers.
  • the dynamic graphic color-changing film 10g includes a base film layer 12, an information medium layer 13d, a first transparent medium layer 14d, a second transparent medium layer 15, a reflective layer 16, a bottom layer 17, and a release layer 18 in sequence.
  • the release layer 18 is disposed on the pressure-sensitive adhesive layer. Further, the release layer 18 can be specifically a release paper, but it is not limited thereto.
  • the bottom layer 17 is a pressure-sensitive adhesive layer.
  • the release layer 18 is peeled off, and the pressure-sensitive adhesive layer is attached to the object.
  • the dynamic graphic color-changing film 10a, 10b, 10c, 10d, 10e, 10f, 10g when viewed from any angle, the dynamic graphic color-changing film 10a, 10b, 10c, 10d, 10e, 10f, 10g is not only dynamic
  • the combination of the two effects improves the anti-counterfeiting performance of the dynamic graphic color-changing film 10a, 10b, 10c, 10d, 10e, 10f, 10g; and the pattern appears, hides or replaces with different visual angles , Can also display the same pattern of mobile screen or custom effects, providing a richer design and visual experience.
  • the terms “installed”, “connected”, and “connected” shall be interpreted broadly, for example, it may be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or a connection between two components.
  • installed shall be interpreted broadly, for example, it may be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or a connection between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种动态图形光彩变色膜(10a),依次包括基膜层(12)、信息介质层(13a)、第一透明介质层(14a)、第二透明介质层(15)、反射层(16)和底层(17),信息介质层(13a)上设有呈动态镭射效果的第一微纳结构(131a),第一透明介质层(14a)靠近信息介质层(13a)的一面上设有与第一微纳结构(131a)相对应的第二微纳结构(141a),第一微纳结构(131a)与第二微纳结构(141a)配合。动态图形光彩变色膜(10a)能实现动态变化和光变色效果,并且不易仿造,防伪性强。

Description

动态图形光彩变色膜
本申请要求了申请日为2020年04月27日,申请号为202020668556.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及防伪技术领域,特别是涉及一种动态图形光彩变色膜。
背景技术
随着当今时代科技发展而兴起的光学防伪技术是一种主要利用物理光学对产品进行防伪的手段。其基本原理是利用光在各种承载介质中传播时,所产生的透射、折射、衍射等各种光学特性会使形成的防伪产品在观察时获得相应的光学效果。现有的防伪膜一般在信息介质层上设置光栅结构,形成图像,利用衍射原理,实现图像防伪,而为了实现颜色变色,一般在光栅结构上设置颜色层,以达到变色的效果。但这种现有的防伪膜一般会存在易仿造,防伪性差等问题。
实用新型内容
本实用新型的目的在于提供一种动态图形光彩变色膜,能实现动态变化和光变色效果,并且不易仿造,防伪性强。
一种动态图形光彩变色膜,依次包括基膜层、信息介质层、第一透明介质层、第二透明介质层、反射层和底层,信息介质层上设有呈动态镭射效果的第一微纳结构,第一透明介质层靠近信息介质层的一面上设有与第一微纳结构相对应的第二微纳结构,第一微纳结构与第二微纳结构配合。
进一步地,所述第一微纳结构和所述第二微纳结构的横向截面形状为弧形、三角形、正方形、矩形、梯形、或不规则形,或为两种以上任意形状的组合。
进一步地,所述第一微纳结构和所述第二微纳结构均包括多个条状结构,条状结构按照菲涅尔规律排布,且条状结构的截面呈弧形,条状结构的曲率依次递减。
进一步地,所述第一微纳结构和所述第二微纳结构均包括多个光栅单元,相邻的两个光栅单元呈镜像或非镜像排布,光栅单元内包括多种取向角度和/或周期不相同的光栅,光栅阵列排布。
进一步地,所述第一微纳结构和所述第二微纳结构均至少包括取向角度和/或周期不相同的第一微纳子结构和第二微纳子结构,第一微纳子结构与第二微纳子结构相互嵌套设置,或者第一微纳子结构与第二微纳子结构相邻。
进一步地,所述第二透明介质层的折射率为1.38-1.51,所述第二透明介质层的折射率小于所述第一透明介质层的折射率,第二透明介质层的折射率小于反射层的折射率。
进一步地,所述第一透明介质层的厚度为10-80nm,第二透明介质层的厚度为150nm-1000nm,所述反射层为金属层,其厚度为10-50nm,第一透明介质层的厚度小于第二透明介质层,反射层的厚度小于第二透明介质层。
进一步地,所述底层为热熔胶层,信息介质层为离型材料。
进一步地,所述动态图形光彩变色膜还包括离型层,底层为压敏胶层,离型层设置在压敏胶层上。
本实用新型的动态图形光彩变色膜的第一透明介质层、第二透明介质层和反射层三者遵循多级导模共振原理,转动动态图形光彩变色膜时,从任何角度观察,动态图形光彩变色膜不仅具有动态效果,而且还具有光变色效果,两种效果结合,提高了动态图形光彩变色膜防伪性能;并且图案随着视觉角度不同而显现、隐藏或替换,还可显示同一图案的移动画面或自定义效果,提供更加丰富的设计性和视觉体验。
附图说明
图1为本实用新型第一实施例的动态图形光彩变色膜的结构示意图。
图2为图1的动态图形光彩变色膜在0°观察角时的反射光谱图。
图3为图1的动态图形光彩变色膜在45°观察角时的反射光谱图。
图4为图1的动态图形光彩变色膜在80°观察角时的反射光谱图。
图5为本实用新型第三实施例的动态图形光彩变色膜的结构示意图。
图6为图5中第一透明介质层的光栅分布示意图。
图7为本实用新型第四实施例的动态图形光彩变色膜的结构示意图。
图8为图7中第一透明介质层的光栅分布示意图。
图9为本实用新型第五实施例的动态图形光彩变色膜的结构示意图。
图10为图9中第一透明介质层的光栅分布示意图。
图11为本实用新型第六实施例的动态图形光彩变色膜的结构示意图。
图12为图11中第一透明介质层的光栅分布示意图。
图13为本实用新型第七实施例的动态图形光彩变色膜的结构示意图。
具体实施方式
下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。
第一实施例
图1为本实用新型第一实施例的动态图形光彩变色膜的结构示意图。如图1所示,动态图形光彩变色膜10a依次包括基膜层12、信息介质层13a、第一透明介质层14a、第二透明介质层15、反射层16和底层17。信息介质层13a上设有呈动态镭射效果的第一微纳结构131a,第一透明介质层14a靠近信息介质层13a的一面上设有与第一微纳结构131a相对应的第二微纳结构141a,第一微纳结构131a与第二微纳结构141a配合,第二透明介质层15的折射率小于第一透明介质层14a的折射率,第二透明介质层15的折射率小于反射层16的折射率。
具体地,基膜层12的材料为热塑性聚酯(PET),但并不以此为限;信息介质层13a的材料为透明材料,优选地,信息介质层13a的材料为聚甲基丙烯酸甲酯(PMMA);第一透明介质层14a的厚度为10-80nm,优选地,第一透明介质层14a的材料为硫化锌,但并不以此为限;第二透明介质层15的折射率为1.38-1.51,其厚度为150nm-1000nm,优选地,第二透明介质层15的材料为聚甲基丙烯酸甲酯(PMMA),但并不以此为限;反射层16为金属层,其厚度为10-50nm,优选地,反射层16的材料为铝,但并不以此为限。第一透明介质层14a的厚度小于第二透明介质层15,反射层16的厚度小于第二透明介质层15。
第一微纳结构131a和第二微纳结构141a均包括多个条状结构,条状结构按照菲涅尔规律排布,且条状结构的截面呈弧形,条状结构的弧形曲率依次递减。在其他实施例中,第一微纳结构131a和第二微纳结构141a的横向截面形状还可以为三角形、正方形、矩形、梯形、或不规则形,或为两种以上任意形状的组合。
在本实施例中,信息介质层13a通过涂布的方式形成在基膜层12上,并在信息介质层13a上通过纳米压印技术形成第一微纳结构131a。将第一透明介质层通过蒸镀的方式形成在信息介质层13a具有第一微纳结构131a的一面上,第一透明介质层14a与信息介质层13a接触的表面将形成与第一微纳结构131a相对应的第二微纳结构141a。在第一透明介质层14a远离第二微纳结构141a的另一表面通过真空蒸镀或者涂布方式形成第二透明介质层15。在第二透明介质层15上采用真空蒸镀的方式形成反射层16。再在反射层16上涂布透明材料,以形成底层17,优选地,底层17为聚甲基丙烯酸甲酯(PMMA)。
本实施例的动态图形光彩变色膜10a的工作原理大致为:由于第二微纳结构141a呈条状且截面为弧形,当观察时,动态图形光彩变色膜10a会出现光柱效果,加上第二微纳结构141a的曲率依次递减,因此,在转动动态图形光彩变色膜10a时,随着观察角度的变化,光柱出现动态变化。由于第一透 明介质层14a、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着发生变化,动态光柱的防伪镭射效果与变色的防伪效果结合,使产品不仅呈现丰富的动态光变色效果,而且具有极高的防伪性。
图2为图1的动态图形光彩变色膜在0°观察角时的反射光谱图。图3为图1的动态图形光彩变色膜在45°观察角时的反射光谱图。图4为图1的动态图形光彩变色膜在80°观察角时的反射光谱图。如图2-图4所示,随着观察角度变大,波谷位置发生红移,产品呈现的颜色发生变化。具体地,随着观察角度的变化(0°到80°)颜色由浅绿变为淡粉,继而变成淡黄,同时第二微纳结构141a产生垂直于弧线切线方向的动态光影效果。将动态防伪镭射效果与变色的防伪效果相结合,产品不仅呈现丰富的动态炫彩光变效果,而且具有极高的防伪性。在本实施例中,图2-图4的反射光谱图的测试条件包括:第一透明介质层14a的厚度为60nm,其折射率为2.4;反射层16为铝层,铝层厚度为30nm;第二透明介质层15的折射率为1.49,其厚度为800nm。
第二实施例
本实施例动态图形光彩变色膜10b的结构与第一实施例的动态图形光彩变色膜10a的结构相同,不同在于,本实施例的底层17为热熔胶层,信息介质层13a具体为离型树脂层。
在本实施例中,底层17的材料为热熔胶,信息介质层13a的材料为离型树脂,使用本实施例的动态图形光彩变色膜10b时,通过加热加压将热熔胶层与烫印底材结合,剥离基膜层12和信息介质层13a,其余层将被转移至烫印底材上,烫印后第一透明介质层14a位于外表面。
本实施例的动态图形光彩变色膜10b的工作原理大致为:由于第二微纳结构141a呈条状且截面为弧形,当观察时,动态图形光彩变色膜10b会出现光柱效果,加上第二微纳结构141a的曲率依次递减,因此,在转动动态图形光彩变色膜10b时,随着观察角度的变化,光柱出现动态变化。由于第一透 明介质层14a、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着发生变化,动态光柱的防伪镭射效果与变色的防伪效果结合,使产品不仅呈现丰富的动态光变色效果,而且具有极高的防伪性。
第三实施例
图5为本实用新型第三实施例的动态图形光彩变色膜的结构示意图。图6为图5中第一透明介质层的光栅分布示意图。如图5和图6所示,本实施例的动态图形光彩变色膜10c的结构与第二实施例的动态图形光彩变色膜10b的结构大致相同,不同在于,本实施例的第一微纳结构131c和第二微纳结构141c均包括多个光栅单元1411,相邻的两个光栅单元1411呈镜像排布。在其他实施例中,相邻的两个光栅单元1411还可以呈非镜像排布。
具体地,光栅单元1411内包括多种取向角度不相同的光栅14111,光栅14111阵列排布,光栅14111的取向角度呈一定规律排布,例如,光栅14111的取向角度逐渐递增或递减,优选地,光栅14111的取向角度呈中心对称分布。在本实施例中,光栅14111的截面呈矩形,但并不以此为限。
本实施例的动态图形光彩变色膜10c的工作原理大致为:由于第二微纳结构141c内相邻的两个光栅单元1411呈镜像排布,并且加上光栅14111的取向角度不同,在转动动态图形光彩变色膜10c时,随着观察角度的变化,光柱相向运动,呈动态变化。由于第一透明介质层14c、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着发生变化,动态光柱的防伪镭射效果与变色的防伪效果结合,使产品不仅呈现丰富的动态光变色效果,而且具有极高的防伪性。
第四实施例
图7为本实用新型第四实施例的动态图形光彩变色膜的结构示意图。图8为图7中第一透明介质层的光栅分布示意图。如图7和图8所示,本实施例的动态图形光彩变色膜10d的结构与第三实施例的动态图形光彩变色膜 10c的结构大致相同,不同在于,本实施例的光栅单元1411内包括多种周期不相同的光栅14111。
具体地,光栅14111阵列排布,光栅14111的取向角度呈一定规律排布,例如,光栅14111的周期逐渐递增或递减,优选地,光栅14111的周期呈中心对称分布。在本实施例中,光栅14111的截面呈矩形,但并不以此为限。
本实施例的动态图形光彩变色膜10d的工作原理大致为:由于第二微纳结构141d内相邻的两个光栅单元1411呈镜像排布,并且加上光栅14111的周期不同,在转动动态图形光彩变色膜10d时,随着观察角度的变化,光柱相向运动,呈动态变化。由于第一透明介质层14d、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着发生变化。
第五实施例
图9为本实用新型第五实施例的动态图形光彩变色膜的结构示意图。图10为图9中第一透明介质层的光栅分布示意图。如图9和图10所示,本实施例的动态图形光彩变色膜10e的结构与第三实施例的动态图形光彩变色膜10c的结构大致相同,不同在于,本实施例的第一微纳结构131e和第二微纳结构141e均至少包括取向角度各不相同的第一微纳子结构1412和第二微纳子结构1413,第一微纳子结构1412与第二微纳子结构1413相互嵌套设置。
具体地,第一微纳子结构1412和第二微纳子结构1413均为多个,第一微纳子结构1412阵列排布,第一微纳子结构1412和第二微纳子结构1413的取向角度均为多种,每种取向角度不相同的第一微纳子结构1412对应一种或多种取向角度不相同的第二微纳子结构1413,第二微纳子结构1413的面积小于第一微纳子结构1412的面积,但并不以此为限。第一微纳子结构1412和第二微纳子结构1413的截面呈矩形,但并不以此为限。在其他实施例中,第一微纳子结构1412和第二微纳子结构1413的取向角度均为一种,一种第一微纳子结构1412对应一种第二微纳子结构1413。
本实施例的动态图形光彩变色膜10e的工作原理大致为:由于第一微纳子结构1412与第二微纳子结构1413相互嵌套设置,加上第一微纳子结构1412的取向角度与第二微纳子结构1413的取向角度不相同,因此,在转动动态图形光彩变色膜10e时,随着观察角度的变化,光柱出现具有沙点效果的动态变化。由于第一透明介质层14e、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着变化,动态光柱的防伪镭射效果与变色的防伪效果结合,使产品不仅呈现丰富的动态光变色效果,而且具有极高的防伪性。
第六实施例
图11为本实用新型第六实施例的动态图形光彩变色膜的结构示意图。图12为图11中第一透明介质层的光栅分布示意图。如图11和图12所示,本实施例的动态图形光彩变色膜10f的结构与第五实施例的动态图形光彩变色膜10e的结构大致相同,不同在于,本实施例的第二微纳子结构1413与第一微纳子结构1412相邻。
具体地,第一微纳子结构1412和第二微纳子结构1413阵列排布,第一微纳子结构1412和第二微纳子结构1413的取向角度均为多种,每种取向角度不相同的第一微纳子结构1412与一种或多种取向角度不相同的第二微纳子结构1413相邻,第二微纳子结构1413的面积小于第一微纳子结构1412的面积,但并不以此为限。
本实施例的动态图形光彩变色膜10f的工作原理大致为:由于第二微纳子结构1413位于第一微纳子结构1412的两侧,加上第一微纳子结构1412的取向角度与第二微纳子结构1413的取向角度不相同,因此,在转动动态图形光彩变色膜10f时,随着观察角度的变化,光柱出现具有沙点效果的动态变化。由于第一透明介质层14f、第二透明介质层15和反射层16三者遵循多级导模共振原理,随着观察角度的变化,光柱的颜色也随着变化,动态光柱的防伪镭射效果与变色的防伪效果结合,使产品不仅呈现丰富的动态光变色效 果,而且具有极高的防伪性。
第七实施例
图13为本实用新型第七实施例的动态图形光彩变色膜的结构示意图。如图13所示,本实施例的动态图形光彩变色膜10g的结构与第六实施例的动态图形光彩变色膜10f的结构大致相同,不同在于,本实施例的动态图形光彩变色膜10g还包括离型层18,并且底层17为压敏胶层。
具体地,动态图形光彩变色膜10g依次包括基膜层12、信息介质层13d、第一透明介质层14d、第二透明介质层15、反射层16、底层17和离型层18。离型层18设置在压敏胶层上,进一步地,离型层18可具体为离型纸,但并不以此为限。
在本实施例中,底层17为压敏胶层,使用本实施例的动态图形光彩变色膜10g时,剥离离型层18,将压敏胶层贴附在物体上。
本实用新型的动态图形光彩变色膜10a、10b、10c、10d、10e、10f、10g的第一透明介质层14a、14c、14d第二透明介质层15和反射层16三者遵循多级导模共振原理,转动动态图形光彩变色膜10a、10b、10c、10d、10e、10f、10g时,从任何角度观察,动态图形光彩变色膜10a、10b、10c、10d、10e、10f、10g不仅具有动态效果,而且还具有光变色效果,两种效果结合,提高了动态图形光彩变色膜10a、10b、10c、10d、10e、10f、10g防伪性能;并且图案随着视觉角度不同而显现、隐藏或替换,还可显示同一图案的移动画面或自定义效果,提供更加丰富的设计性和视觉体验。
在本文中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语的具体含义。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性 的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在本文中,用于描述元件的序列形容词“第一”、“第二”等仅仅是为了区别属性类似的元件,并不意味着这样描述的元件必须依照给定的顺序,或者时间、空间、等级或其它的限制。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种动态图形光彩变色膜,其特征在于,依次包括基膜层、信息介质层、第一透明介质层、第二透明介质层、反射层和底层,所述信息介质层上设有呈动态镭射效果的第一微纳结构,所述第一透明介质层靠近所述信息介质层的一面上设有与所述第一微纳结构相对应的第二微纳结构,所述第一微纳结构与所述第二微纳结构配合。
  2. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第一微纳结构和所述第二微纳结构的横向截面形状为弧形、三角形、正方形、矩形、梯形、或不规则形,或为两种以上任意形状的组合。
  3. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第一微纳结构和所述第二微纳结构均包括多个条状结构,所述条状结构按照菲涅尔规律排布,且所述条状结构的截面呈弧形,所述条状结构的曲率依次递减。
  4. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第一微纳结构和所述第二微纳结构均包括多个光栅单元,相邻的两个所述光栅单元呈镜像或非镜像排布,所述光栅单元内包括多种取向角度和/或周期不相同的光栅,所述光栅阵列排布。
  5. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第一微纳结构和所述第二微纳结构均至少包括取向角度和/或周期不相同的第一微纳子结构和第二微纳子结构,所述第一微纳子结构与所述第二微纳子结构相互嵌套设置,或者所述第一微纳子结构与所述第二微纳子结构相邻。
  6. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第二透明介质层的折射率为1.38-1.51,所述第二透明介质层的折射率小于所述第一透明介质层的折射率,所述第二透明介质层的折射率小于所述反射层的折射率。
  7. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述第一透明介质层的厚度为10-80nm,所述第二透明介质层的厚度为150nm-1000nm, 所述反射层为金属层,其厚度为10-50nm,所述第一透明介质层的厚度小于所述第二透明介质层,所述反射层的厚度小于所述第二透明介质层。
  8. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述底层为热熔胶层,所述信息介质层为离型材料。
  9. 如权利要求1所述的动态图形光彩变色膜,其特征在于,所述动态图形光彩变色膜还包括离型层,所述底层为压敏胶层,所述离型层设置在所述压敏胶层上。
PCT/CN2020/126826 2020-04-27 2020-11-05 动态图形光彩变色膜 WO2021218099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020668556.9 2020-04-27
CN202020668556.9U CN211787902U (zh) 2020-04-27 2020-04-27 动态图形光彩变色膜

Publications (1)

Publication Number Publication Date
WO2021218099A1 true WO2021218099A1 (zh) 2021-11-04

Family

ID=72957499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126826 WO2021218099A1 (zh) 2020-04-27 2020-11-05 动态图形光彩变色膜

Country Status (2)

Country Link
CN (1) CN211787902U (zh)
WO (1) WO2021218099A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224050A (ja) * 1998-02-05 1999-08-17 Toppan Printing Co Ltd 偽造防止媒体、シール及び転写箔
JP2011173379A (ja) * 2010-02-25 2011-09-08 Toppan Printing Co Ltd 表示体及びその製造方法
CN102514443A (zh) * 2011-12-09 2012-06-27 中钞特种防伪科技有限公司 一种光学防伪元件
CN103832114A (zh) * 2012-11-27 2014-06-04 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104101926A (zh) * 2014-03-13 2014-10-15 徐平 防伪光栅、防伪商标、烫金膜及复合膜
CN106915170A (zh) * 2015-12-28 2017-07-04 苏州苏大维格光电科技股份有限公司 金属色烫印膜及其制备方法和使用方法
CN208256167U (zh) * 2018-06-14 2018-12-18 武汉华工图像技术开发有限公司 一种光变全息防伪标识
CN208298458U (zh) * 2018-06-14 2018-12-28 武汉华工图像技术开发有限公司 一种光变全息防伪标识
CN210085350U (zh) * 2018-12-29 2020-02-18 苏州苏大维格科技集团股份有限公司 复合金属膜和包装材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224050A (ja) * 1998-02-05 1999-08-17 Toppan Printing Co Ltd 偽造防止媒体、シール及び転写箔
JP2011173379A (ja) * 2010-02-25 2011-09-08 Toppan Printing Co Ltd 表示体及びその製造方法
CN102514443A (zh) * 2011-12-09 2012-06-27 中钞特种防伪科技有限公司 一种光学防伪元件
CN103832114A (zh) * 2012-11-27 2014-06-04 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104101926A (zh) * 2014-03-13 2014-10-15 徐平 防伪光栅、防伪商标、烫金膜及复合膜
CN106915170A (zh) * 2015-12-28 2017-07-04 苏州苏大维格光电科技股份有限公司 金属色烫印膜及其制备方法和使用方法
CN208256167U (zh) * 2018-06-14 2018-12-18 武汉华工图像技术开发有限公司 一种光变全息防伪标识
CN208298458U (zh) * 2018-06-14 2018-12-28 武汉华工图像技术开发有限公司 一种光变全息防伪标识
CN210085350U (zh) * 2018-12-29 2020-02-18 苏州苏大维格科技集团股份有限公司 复合金属膜和包装材料

Also Published As

Publication number Publication date
CN211787902U (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US10322602B2 (en) Display and labeled article
US10627552B2 (en) Retroreflective articles including a security mark
US9789726B2 (en) Optically variable areal pattern
CN104428694B (zh) 利用菲涅尔透镜膜的装饰性膜制品
US7506987B2 (en) Two-sided corner-cube retroreflectors and methods of manufacturing the same
JP5938963B2 (ja) 表示体及びラベル付き物品
JP6089387B2 (ja) 表示体及びラベル付き物品
JP4983899B2 (ja) 表示体及びラベル付き物品
JP4983948B2 (ja) 表示体及び表示体付き物品
KR20000069387A (ko) 재귀반사성 시트
TW200301851A (en) Diffractive safety element
JP6520360B2 (ja) 表示体、物品、原版、および、原版の製造方法
WO2013104917A1 (en) Security device
CN109387889A (zh) 抗反射结构、显示装置及抗反射结构制作方法
JP5927349B2 (ja) 外光利用型表示体
CN111344604A (zh) 光学体
JP2012078447A (ja) 表示体及びラベル付き物品
WO2021218099A1 (zh) 动态图形光彩变色膜
JP5203681B2 (ja) 角度依存性再帰反射材
US10780729B2 (en) Information recording medium and individual certificate medium
TWI815976B (zh) 光學可變化元件、防偽文件、光學可變化元件的製造方法、防偽文件的製造方法
CN211787901U (zh) 复合膜
WO2020238125A1 (zh) 光学膜片
KR20210086559A (ko) 재귀 반사 시트 및 이를 이용한 차량용 번호판
CN212147776U (zh) 烫印膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933458

Country of ref document: EP

Kind code of ref document: A1