WO2021217730A1 - 无损检测装置及无损检测方法 - Google Patents

无损检测装置及无损检测方法 Download PDF

Info

Publication number
WO2021217730A1
WO2021217730A1 PCT/CN2020/090156 CN2020090156W WO2021217730A1 WO 2021217730 A1 WO2021217730 A1 WO 2021217730A1 CN 2020090156 W CN2020090156 W CN 2020090156W WO 2021217730 A1 WO2021217730 A1 WO 2021217730A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
signal
destructive testing
housing
component
Prior art date
Application number
PCT/CN2020/090156
Other languages
English (en)
French (fr)
Inventor
刘小川
秦经刚
周超
武玉
李建刚
Original Assignee
中国科学院合肥物质科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院合肥物质科学研究院 filed Critical 中国科学院合肥物质科学研究院
Priority to EP20933617.1A priority Critical patent/EP4145122A4/en
Publication of WO2021217730A1 publication Critical patent/WO2021217730A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • G01N29/226Handheld or portable devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • G01N29/326Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise compensating for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to the technical field of low-temperature detection, in particular to non-destructive testing devices and non-destructive testing methods applied in the technical fields of fusion, accelerator engineering, high-temperature superconductivity and aerospace.
  • Nuclear fusion energy is an energy source that uses nuclear fusion reactions to generate energy. It has the characteristics of safety, cleanliness, and almost unlimited energy, and plays an important role in the national science and technology development plan.
  • One of the foundations of magnetic confinement nuclear fusion technology lies in superconducting magnet technology, and superconducting magnets usually need to work under extreme conditions.
  • a superconducting magnet applied to a magnetically confined nuclear fusion device may need to maintain a superconducting state under the extreme conditions of a temperature of a few K, a current of tens of thousands of amperes, an electromagnetic force of a few hundred kilonews, and a strong magnetic field of more than ten specialties. Steady-state operation may also endure hundreds of thousands of electromagnetic cycles.
  • the superconducting magnet During the preparation and operation of the magnetic confinement nuclear fusion device, if the superconducting magnet has defects, it will not only cause the magnet itself to fail to operate safely, but also affect the entire device and cause huge economic losses.
  • ice coils used as high-temperature superconducting coils have recently been studied; when they experience large temperature changes, such as when the temperature drops from room temperature to liquid nitrogen temperature, cracks are likely to occur in the ice coils, which affects its performance.
  • the art needs a non-destructive testing device and a non-destructive testing method that can be applied to low-temperature conditions.
  • Non-destructive testing devices and methods are usually used in normal temperature and high temperature environments.
  • the minimum operating temperature of an existing non-destructive testing equipment is minus 40°C. If the temperature is lower than the minimum operating temperature, the performance of the non-destructive testing equipment will be affected, or even permanent damage to the equipment. How to realize a non-destructive testing device and method suitable for low-temperature environments has become an urgent problem to be solved in this field.
  • the purpose of the present invention is to provide a non-destructive testing technology that can be applied to a low-temperature environment.
  • a non-destructive testing device including: an excitation component, a collection component, and a probe, the excitation component is connected to the probe and provides energy to the probe; the probe provides energy to the workpiece to be tested Transmit a first signal and receive a second signal corresponding to the first signal; the collection component is connected to the probe, and collects the first signal and the second signal from the probe; wherein
  • the non-destructive testing device further includes a probe peripheral component that surrounds the probe, thereby forming a first space at the periphery of the probe that isolates the probe from the external environment.
  • the non-destructive testing device further includes a temperature control component, the temperature control component is arranged in the first space, and includes a probe housing and a temperature control element; the probe housing surrounds the probe and interacts with the The probe is in close contact; the temperature control element is arranged on the probe housing, is connected to the excitation part and the collection part, can generate heat through the excitation of the excitation part, and transfer the detected temperature to all The collecting part can thereby realize the temperature control of the first space.
  • the temperature control component is arranged in the first space, and includes a probe housing and a temperature control element; the probe housing surrounds the probe and interacts with the The probe is in close contact; the temperature control element is arranged on the probe housing, is connected to the excitation part and the collection part, can generate heat through the excitation of the excitation part, and transfer the detected temperature to all The collecting part can thereby realize the temperature control of the first space.
  • the probe peripheral components include: a cover plate, a bottom plate, and a first housing, and the cover plate, the bottom plate and the first housing are combined to form the first space.
  • the probe peripheral assembly further includes a second housing surrounding the first housing, thereby forming a second space between the second housing and the first housing.
  • the probe peripheral assembly further includes a vacuum port provided on the second housing, so that a vacuum can be formed in the second space through the vacuum port.
  • the probe is an ultrasonic probe; the first signal transmitted by the probe is an ultrasonic signal that penetrates the bottom plate, and the second signal received by the probe is an ultrasonic signal that penetrates the bottom plate and returns.
  • the bottom plate is made of organic glass or polyimide material.
  • a coupling agent is provided between the bottom surface of the bottom plate and the workpiece to be tested.
  • the probe housing is made of a material with good thermal conductivity.
  • the probe housing is made of copper.
  • the probe is an electromagnetic probe
  • the first signal emitted by the probe is an electromagnetic signal that penetrates the bottom plate
  • the second signal received by the probe is an electromagnetic signal that penetrates the bottom plate and returns.
  • a non-destructive testing method including the following steps: arranging a probe peripheral component on the periphery of the probe, thereby forming a first space that isolates the probe from the external environment; The peripheral components of the probe are set together at a working position near the workpiece to be inspected; energy is provided to the probe through the excitation component; and the probe transmits a first signal to the workpiece to be inspected and receives a first signal corresponding to the first signal. Corresponding second signal; and collecting the first signal and the second signal from the probe through a collecting component.
  • non-destructive testing device and the non-destructive testing method of the embodiments of the present invention simple and easy non-destructive testing suitable for low-temperature environments, such as non-destructive testing of superconducting magnets, can be realized.
  • Fig. 1 is a schematic diagram of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a probe peripheral component and a temperature control component of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a temperature control component of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a cover plate of a probe peripheral component of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 5 is a flowchart of a non-destructive testing method according to an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of a non-destructive testing device according to an embodiment of the present invention.
  • An application scenario of the non-destructive testing device 10 according to the embodiment of the present invention is to perform non-destructive testing of a workpiece 15 (such as a superconducting magnet or a superconducting conductor) to be tested, especially at a low temperature (for example, at a temperature of 4K to 200K). ) Perform non-destructive testing.
  • a workpiece 15 such as a superconducting magnet or a superconducting conductor
  • the non-destructive testing device 10 includes an excitation component 11, an acquisition component 12 and a probe 13, wherein the excitation component 11 and the acquisition component 12 are both connected to the probe 13.
  • connection includes not only a physical wired connection, but also a direct or indirect, wired or wireless connection between two or more devices and components in a broad sense, including the transmission of information between devices and components. Any connection form of, signal or data.
  • the excitation component 11 and the acquisition component 12 may be in the detection site, and are directly connected to the probe 13 through wires or cables.
  • one or both of the excitation component 11 and the acquisition component 12 may be far away from the detection site, and wirelessly connected to the probe 13 using wireless communication technology.
  • Usable wireless communication technologies include: radio communication, wireless local area network technologies such as WiFi, cellular network technologies (2G, 3G, 4G, 5G), etc., and the scope of the present invention is not limited by this.
  • the first embodiment of the present invention uses ultrasonic technology to realize non-destructive testing.
  • the probe 13 is an ultrasonic probe.
  • the probe 13 may be an ultrasonic probe mainly composed of piezoelectric materials, which can transmit and receive ultrasonic waves.
  • the first embodiment of the present invention adopts ultrasonic waves with a frequency exceeding 20 KHz (for example, 1-5 MHz), which has good directivity, strong reflection ability, and is easy to obtain concentrated sound energy.
  • the excitation component 11 is a high-frequency generator capable of generating a high-frequency pulse excitation signal, which provides energy to the probe 13, that is, provides a high-frequency pulse excitation signal; the acquisition component 12 is able to collect from the probe A data collector for signals and/or data.
  • the high-frequency pulse excitation signal generated by the high-frequency generator is transmitted to the probe 13, and the probe 13 generates ultrasonic waves under the excitation of the high-frequency pulse excitation signal, that is, the emission wave, and the emission wave propagates toward the workpiece 15. If there is a defect on the surface or inside of the workpiece 15, such a defect will convert part of the emitted wave into a defect wave, and the defect wave will be reflected back to the probe 13; the rest of the emitted wave will also be reflected back to the probe 13 (for example, by The surface of the workpiece or the end surface on the other side reflects), forming a bottom wave.
  • the ultrasonic waves reflected back to the probe 13 are converted into return signals and/or return data, and then collected by the data collector.
  • analyzing the emitted wave, defect wave, and bottom wave for example, analyzing its position relative to the baseline, analyzing the amplitude and shape of the defect wave, etc., the location of the defect, the size of the defect, and the nature of the defect can be determined. If the return signal only has a bottom wave, it can be determined that the workpiece 15 to be inspected has no defects.
  • the probe transmits a first signal to the workpiece 15 to be inspected, and receives a second signal corresponding to the first signal.
  • the first signal when there are no defects on the surface or inside of the workpiece 15 to be inspected, the first signal includes the emitted wave, and the second signal includes the bottom wave corresponding to the emitted wave;
  • the first signal when there are defects on the surface or inside of the, the first signal includes the transmitted wave, and the second signal includes the bottom wave and the defect wave.
  • the non-destructive testing device 10 further includes a probe peripheral component 14 that surrounds the probe 13 so as to form a first space at the periphery of the probe 13 that isolates the probe 13 from the external environment.
  • the first space is formed between the probe 13 and the probe peripheral component 14.
  • FIG. 1 is a schematic diagram of a non-destructive testing device 10 according to an embodiment of the present invention, and is not intended to limit the present invention to the direct contact between the probe 13 and the workpiece 15 to be tested.
  • the probe 13 is isolated from the workpiece 15 to be inspected, and at least a part of the peripheral component 14 of the probe is separated.
  • the surface of the probe 13 closest to the workpiece 15 to be inspected is referred to as the bottom surface of the probe 13.
  • the probe peripheral component 14 surrounds the probe 13, wherein the probe peripheral component 14 directly contacts the bottom surface of the probe 13, but does not directly contact the outer peripheral surface of the probe 13; the first space is formed in the probe 13 Between the surface other than the bottom surface and the peripheral component 14 of the probe. Therefore, through the probe peripheral component 14, the working performance of the probe 13 can be maintained, and the thermal insulation between the probe 13 and the external environment can be maintained.
  • the probe 13 is an ultrasonic probe made of piezoelectric material.
  • the piezoelectric effect of piezoelectric materials has practical value only within a certain temperature range, and the ultrasonic probe may not work if the temperature is too low or too high.
  • the temperature of the workpiece 15 to be tested is relatively low (for example, the temperature is 4K to 200K), and the temperature of the external environment of the probe 13 is also relatively low.
  • the probe peripheral component 14 it can be ensured that the working temperature of the probe 13 is within an appropriate temperature range (for example, 10°C to 70°C), so that the probe 13 can work normally.
  • Fig. 2 is a schematic diagram of a probe peripheral component and a temperature control component of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a temperature control component of a non-destructive testing device according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a cover plate of a probe peripheral component of a non-destructive testing device according to an embodiment of the present invention.
  • the non-destructive testing device 10 further includes a temperature control component 16.
  • the temperature control assembly 16 is disposed in the first space, and includes a probe housing 161 and a temperature control element 162.
  • the probe housing 161 surrounds the probe 13 and is in close contact with the probe 13; the temperature control element 162 is disposed on the probe housing 161 and can generate heat to control the temperature of the probe 13.
  • the temperature control component 16 can heat the probe 13 and control the temperature of the probe 13, thereby helping to ensure that the working temperature of the probe 13 is within an appropriate temperature range (for example, 10°C to 70°C).
  • the probe cover 161 is a metal cover, for example, a copper cover made of copper.
  • a metal cover for example, a copper cover made of copper.
  • any other materials that can achieve effective heat transfer between the probe and the probe cover such as non-metallic materials such as diamond and silicon, can be used.
  • the exemplary metal outer cover or copper outer cover does not constitute a limitation of the present invention.
  • the probe housing 161 is in close contact with the probe 13.
  • the probe cover 161 can directly contact the probe 13, that is, there is no other medium or material between the probe cover 161 and the probe 13.
  • the probe housing 161 may be in close contact with the probe 13 using a thermally conductive material, for example, a thermally conductive silica gel layer is provided between the probe housing 161 and the probe 13.
  • a thermally conductive material for example, a thermally conductive silica gel layer is provided between the probe housing 161 and the probe 13.
  • the temperature control element 162 is a metal heating plate.
  • the temperature control element 162 is connected to the excitation part 11 (the connection relationship is not shown), and is arranged in close contact with the probe housing 161.
  • the excitation component 11 applies current to the temperature control element 162, and the temperature control element 162 converts electrical energy into heat energy, thereby generating heat.
  • the heat is transferred to the probe housing 161 and then to the probe 13 so that the probe 13 can be heated or the temperature of the probe 13 can be controlled.
  • the number of temperature control elements 162 can be 2-10, for example 6, as shown in FIGS. 2 and 3.
  • the heating temperature of the temperature control element 162 can be set at 10°C to 70°C.
  • the temperature control element 162 may also be a coil.
  • the excitation component 11 applies an alternating current to the coil, so that an induced current is generated in the probe housing 161, which in turn causes the probe housing 161 to generate heat, thereby realizing heating or temperature control of the probe 13.
  • the temperature control element 162 may also be a temperature sensor, such as a thermal resistance temperature sensor, and is connected to the collecting component 12 (the connection relationship is not shown). Thereby, the temperature control element 162 can detect the temperature of the position where it is installed, for example, detect the temperature of the first space, and transmit the detected temperature to the collecting part 12. In this way, the temperature profile of the first space can be obtained. Based on the detected temperature, for example, by increasing or decreasing the current applied to the temperature control element 162, the temperature of the first space can be controlled. In other words, the temperature control element 162 can have both heating and temperature control functions.
  • the temperature control assembly 16 may also include an independent temperature sensor (not shown).
  • the temperature sensor is arranged in the first space or on the probe housing 161, so that the temperature of the installed position can be detected, and the temperature of the first space can be controlled based on the detected temperature.
  • the probe peripheral assembly 14 includes a cover plate 141, a bottom plate 142, and a first housing 143, and the cover plate 141, the bottom plate 142, and the first housing 143 combine to form a first space.
  • the first space can maintain normal temperature and pressure.
  • the cover plate 141 includes a mounting hole 1411, a center hole 1412 and a wire groove 1413.
  • the cover plate 141 and the first housing 143 may be assembled together through the mounting hole 1411.
  • the central hole 1412 and the wire slot 1413 are used to allow the wires or cables connected to the probe 13 to pass through.
  • the central hole 1412 and the wire groove 1413 can be sealed before the detection, so as to maintain the isolation of the first space from the external environment.
  • the bottom plate 142 is made of organic glass or polyimide material, so as to provide good guidance/sound transmission performance for the ultrasonic waves and reflected ultrasonic waves emitted by the probe 13 and at the same time provide a certain thermal insulation performance.
  • organic glass or polyimide material so as to provide good guidance/sound transmission performance for the ultrasonic waves and reflected ultrasonic waves emitted by the probe 13 and at the same time provide a certain thermal insulation performance.
  • the material of the bottom plate 142 does not constitute a limitation to the present invention.
  • the bottom plate 142 is shown in the shape of a flat plate in FIG. 2, according to actual application scenarios of the present invention, the bottom plate 142 may also include a curved surface or be formed in other shapes to keep consistent with the surface or shape of the workpiece to be monitored.
  • the ultrasonic signal emitted by the probe 13 penetrates the bottom plate 142, and the probe 13 receives the ultrasonic signal returned through the bottom plate 142.
  • the bottom surface of the bottom plate 142 is provided with a couplant.
  • the couplant used is a low-temperature couplant.
  • CryoSoniXTM cryogenic coupling agent available from Echo Ultrasonics, LLC in the United States.
  • the use of low-temperature couplant can eliminate the gap between the bottom plate 142 and the workpiece 15 that may cause abnormal reflection of ultrasonic waves, effectively promote the propagation of ultrasonic waves between the bottom plate 142 and the workpiece 15 to be tested, and improve the ultrasonic detection effect under low temperature conditions. .
  • a coupling agent such as a low temperature coupling agent, is provided on the contact surface between the probe 13 and the bottom plate 142 to further improve the ultrasonic detection effect under low temperature conditions.
  • the first housing 143 is made of a steel material. Those skilled in the art can understand that the first housing 143 may also be made of other materials that are easy to process and assemble. In the first embodiment, the first housing 143 is formed in a cylindrical shape. The shape and material of the first housing 143 do not constitute a limitation to the present invention.
  • the probe peripheral assembly 14 further includes a second housing 144 surrounding the first housing 143 so as to form a second space between the second housing 144 and the first housing 143.
  • the second housing 144 surrounds the first housing 143 from the periphery, so that the probe 13 (or the probe 13 together with the temperature control component 16) is further isolated from the external environment of the non-destructive testing device 10.
  • the second housing 144 is made of steel material. Those skilled in the art can understand that the second housing 144 may also be made of other materials that are easy to process and assemble.
  • the second housing 144 is formed in a cylindrical shape corresponding to the first housing 143. The shape and material of the second housing 144 do not constitute a limitation to the present invention.
  • the probe peripheral assembly 14 further includes a vacuum port 145 provided on the second housing 144, so that a vacuum can be formed in the second space through the vacuum port 145.
  • a vacuum can be formed in the second space through the vacuum port 145.
  • one end of the vacuum suction port 145 is connected to the second space, and the other end is connected to an external vacuum pump (not shown), so that the vacuum state of the second space is realized by the operation of the vacuum pump.
  • the vacuum degree of the second space can be maintained at 10 Pa to 10 -5 Pa, thereby achieving further isolation from the external environment of the non-destructive testing device 10.
  • the non-destructive testing device 10 may not include the vacuum exhaust port 145.
  • the second space is filled with foam material or air, so as to further isolate the probe 13 (or the probe 13 together with the temperature control component 16) from the external environment.
  • the second embodiment of the present invention uses electromagnetic detection.
  • the same reference numerals are used for the same components as the first embodiment, and the description of the same or similar structure or function as the first embodiment will be omitted as appropriate to avoid unnecessary repetition.
  • the non-destructive testing device 10 includes an excitation component 11, an acquisition component 12 and a probe 13, wherein the excitation component 11 and the acquisition component 12 are both connected to the probe 13.
  • the second embodiment of the present invention adopts electromagnetic detection technology to realize non-destructive detection.
  • the probe 13 is an electromagnetic probe. Through the excitation of the excitation component 11, the probe 13 transmits a first signal to the workpiece 15 to be inspected, and receives a second signal corresponding to the first signal.
  • the first signal emitted by the probe 13 is an electromagnetic signal penetrating the bottom plate 142, and the second signal received by the probe 13 is an electromagnetic signal returning through the bottom plate 142.
  • the probe 13 is an electromagnetic probe.
  • the probe 13 can emit one or more of microwaves, infrared rays, X-rays, and gamma rays. If there is a defect on the surface or inside of the workpiece 15, an abnormality will appear in the returned electromagnetic signal. This abnormality can be detected to determine the location, size, and nature of the defect.
  • the non-destructive testing device 10 further includes a probe peripheral component 14 that surrounds the probe 13 so as to form a first space at the periphery of the probe 13 that isolates the probe 13 from the external environment.
  • the non-destructive testing device 10 further includes a temperature control component 16.
  • the temperature control assembly 16 is disposed in the first space, and includes a probe housing 161 and a temperature control element 162.
  • the probe housing 161 surrounds the probe 13 and is in close contact with the probe 13; the temperature control element 162 is disposed on the probe housing 161 and can generate heat to control the temperature of the probe 13.
  • the probe peripheral assembly 14 includes a cover plate 141, a bottom plate 142 and a first housing 143, and the cover plate 141, the bottom plate 142 and the first housing 143 are combined to form a first space.
  • the bottom plate 142 according to the second embodiment of the present invention does not need to use a material with good sound transmission. Instead, the bottom plate 142 is made of a metal material with good conductivity, so as to provide good transmission performance for the electromagnetic waves emitted and reflected by the probe 13.
  • the difference from the first embodiment is that there is no need to use a low-temperature couplant between the probe 13 and the bottom plate 142 and between the bottom plate 142 and the workpiece 15 to be tested to improve the propagation and reflection of ultrasonic waves under low temperature conditions.
  • the probe peripheral assembly 14 further includes a second housing 144 surrounding the first housing 143 so as to form a second space between the second housing 144 and the first housing 143.
  • the probe peripheral assembly 14 further includes a vacuum port 145 provided on the second housing 144, so that a vacuum can be formed in the second space through the vacuum port 145.
  • the non-destructive testing method according to the embodiment of the present invention includes:
  • non-destructive testing method according to the embodiment of the present invention can be arbitrarily combined with one or more features of the non-destructive testing device described above, and such a combination is also within the scope of the present invention.
  • the non-destructive testing method according to the embodiment of the present invention may adopt ultrasonic testing technical means or electromagnetic testing technical means.
  • a non-destructive testing method at low temperature may specifically include the following steps:
  • the bottom plate (that is, the acoustic sensor wedge) is designed in an arc or flat shape to ensure a good coupling between the bottom plate and the workpiece to be detected.
  • the non-destructive testing method may include a testing process.
  • a testing process a test piece made of 304 steel is used, and the test piece is placed at the liquid helium temperature (about 4K) for 40 minutes, and the vacuum is drawn through the vacuum port to make the vacuum degree reach 0.3Pa, and then the vacuum port is sealed. Start the power supply of the temperature control element and make the temperature of the temperature control element reach 70°C, apply a low-temperature couplant on the test workpiece, use the probe to detect, and analyze the test results.
  • the bottom wave height is 80% of the emitted wave height in a test performed on a similar test workpiece at normal temperature (about 25° C.), and the bottom wave height is 75% of the emitted wave height in the above-mentioned low temperature test.
  • the above low temperature test proves the feasibility of the embodiment of the present invention.
  • the above method is completed by using a mechanical arm or similar automatic equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

无损检测装置(10)及无损检测方法,其中,无损检测装置(10)包括:激励部件(11)、采集部件(12)和探头(13),激励部件(11)连接至探头(13),并向探头(13)提供能量;探头(13)向待检测工件(15)发射第一信号并接收与第一信号相对应的第二信号;采集部件(12)连接至探头(13),并从探头(13)采集第一信号和第二信号;其中,无损检测装置(10)还包括探头外围组件(14),探头外围组件(14)包围探头(13),从而在探头(13)的外围形成使得探头(13)与外部环境隔绝的第一空间。无损检测装置(10)适用于低温环境的简单易行的无损检测,对超导磁体的无损检测。

Description

无损检测装置及无损检测方法 技术领域
本发明涉及低温检测的技术领域,尤其涉及应用于聚变、加速器工程、高温超导及航空航天等技术领域的无损检测装置及无损检测方法。
背景技术
核聚变能源是利用核聚变反应产生能量的能源,其具有安全、清洁、能量几乎无限等特点,在国家科技发展规划中处于重要地位。磁约束核聚变技术的基础之一在于超导磁体技术,而超导磁体通常需要在极端条件下工作。例如,应用于磁约束核聚变装置的超导磁体可能需要在几开的温度、几万安的电流、几百千牛的电磁力和十几特的强磁场的极端条件下保持超导态而稳态运行,同时还可能会承受数十万次的电磁循环。在磁约束核聚变装置的制备和运行过程中,如果超导磁体存在缺陷,不但会导致磁体本身无法安全运行,还会影响整体装置,造成巨大经济损失。例如,最近对用作高温超导线圈的冰线圈展开了研究;在经历较大温度变化时,例如从常温降至液氮温度时,冰线圈中容易出现裂纹,从而影响其性能。为了能够了解超导磁体的状况,本领域需要一种能够应用于低温条件的无损检测装置及无损检测方法。
现有的无损检测装置及方法通常用于常温和高温环境。例如,一种现有无损检测设备的最低使用温度为零下40℃,如果温度低于该最低使用温度,则会影响该无损检测设备的性能,甚至给该设备带来永久损害。如何实现一种适用于低温环境的无损检测装置及方法,成为本领域亟待解决的问题。
背景技术部分公开的信息只是为了加强对本发明的一般背景的理解,不应视为承认或默认这种信息构成本领域技术人员已知的现有技术。
发明内容
鉴于上述问题,本发明的目的是提供一种能够应用于低温环境的无损检测的技术。
根据本发明的一方面,提供了一种无损检测装置,包括:激励部件、采集部件和探头,所述激励部件连接至所述探头,并向所述探头提供能量;所述探头向待检测工件发射第一信号并接收与所述第一信号相对应的第二信号;所述采集部件连接至所述探头,并从所述探头采集所述第一信号和所述第二信号;其中,所述无损检测装置还包括探头外围组件,所述探头外围组件包围所述探头,从而在所述探头的外围形成使 得所述探头与外部环境隔绝的第一空间。
可选的,所述无损检测装置还包括温控组件,所述温控组件设置在所述第一空间中,并且包括探头外罩和温控元件;所述探头外罩包围所述探头并与所述探头紧密接触;所述温控元件设置在所述探头外罩上,与所述激励部件和所述采集部件连接,能够通过所述激励部件的激励而产生热量,并且将检测到的温度传递至所述采集部件,从而能够实现对所述第一空间的温度控制。
可选的,所述探头外围组件包括:盖板、底板和第一壳体,所述盖板、所述底板和所述第一壳体组合形成所述第一空间。
可选的,所述探头外围组件还包括包围所述第一壳体的第二壳体,从而在所述第二壳体与所述第一壳体之间形成第二空间。
可选的,所述探头外围组件还包括设置在所述第二壳体上的真空抽口,从而能够通过所述真空抽口使得所述第二空间中形成真空。
可选的,所述探头是超声波探头;所述探头发射的第一信号是穿透所述底板的超声波信号,所述探头接收的第二信号是穿透所述底板返回的超声波信号。
可选的,所述底板由有机玻璃或聚酰亚胺材料制成。
可选的,所述底板的底面和所述待检测工件之间设置有耦合剂。
可选的,所述探头外罩由具备良好导热性的材料制成。
可选的,所述探头外罩由铜制成。
可选的,所述探头是电磁探头,所述探头发射的第一信号是穿透所述底板的电磁信号,所述探头接收的第二信号是穿透所述底板返回的电磁信号。
根据本发明的另一方面,提供了一种无损检测方法,包括以下步骤:在探头的外围设置探头外围组件,从而形成使得所述探头与外部环境隔绝的第一空间;将所述探头和所述探头外围组件一起设置于待检测工件附近的工作位置;通过激励部件,向所述探头提供能量;通过所述探头,向所述待检测工件发射第一信号并接收与所述第一信号相对应的第二信号;以及通过采集部件,从所述探头采集所述第一信号和所述第二信号。
根据本发明实施例的无损检测装置及无损检测方法,能够实现适用于低温环境的简单易行的无损检测,例如对超导磁体的无损检测。
附图说明
图1是根据本发明实施例的无损检测装置的示意图。
图2是根据本发明实施例的无损检测装置的探头外围组件和温控组件的示意图。
图3是根据本发明实施例的无损检测装置的温控组件的示意图。
图4是根据本发明实施例的无损检测装置的探头外围组件的盖板的示意图。
图5是根据本发明实施例的无损检测方法的流程图。
为了清楚地进行描述,省略了与本发明技术实质无密切关系的部分;并且在说明书和附图中,相同或相似的元件由相同的附图标记表示。应理解的是,为了说明本发明的基本原理及各个特征,附图呈现一定程度的简化表示,本发明的范围并不限于附图中表示的形式。
具体实施方式
下面将结合附图详细描述本发明的实施例。尽管结合示例性实施例描述了本发明,但应该理解,本说明书并未意欲将本发明限制于这些示例性实施例。相反,本发明不仅意欲覆盖这些示例性实施例,而且也覆盖包含在由所附权利要求书限定的本发明的实质和范围内的各种替代、修改、等价形式。
第一实施例
图1是根据本发明实施例的无损检测装置的示意图。
根据本发明实施例的无损检测装置10的一种应用场景是,对待检测工件15(例如超导磁体或超导导体)进行无损检测,特别是在低温下(例如,在4K至200K的温度下)进行无损检测。
如图1所示,根据本发明第一实施例的无损检测装置10包括激励部件11、采集部件12和探头13,其中激励部件11和采集部件12均连接至探头13。
本文中所述的“连接”不但包括物理上的有线连接,还包括广泛意义上的两个或更多装置、部件之间的直接或间接、有线或无线连接,包括装置、部件之间传递信息、信号或数据的任何连接形式。
根据本发明的实际应用场景,激励部件11和采集部件12可以处于检测现场,通过导线或缆线直接连接至探头13。或者,激励部件11和采集部件12中的一者或两者可以远离检测现场,利用无线通信技术无线连接至探头13。可以利用的无线通信技术包括:无线电通信、诸如WiFi的无线局域网络技术、蜂窝网络技术(2G、3G、4G、5G)等等,本发明的范围不受此限制。
本发明的第一实施例采用了超声波技术来实现无损检测。探头13是超声波探头。例如探头13可以是主要由压电材料构成的超声波探头,其既可以发射超声波,也可以接收超声波。
本发明的第一实施例采用频率超过20KHz赫兹(例如1-5MHz)的超声波,其方向性好,反射能力强,易于获得较集中的声能。
根据本发明的第一实施例,激励部件11是能够产生高频脉冲激励信号的高频发生器,其向探头13提供能量,亦即提供高频脉冲激励信号;采集部件12是能够从探头采集信号和/或数据的数据采集器。
高频发生器产生的高频脉冲激励信号传递至探头13,探头13在高频脉冲激励信号的激励下产生超声波,即发射波,发射波朝向工件15传播。如果工件15的表面或内部存在缺陷,那么这样的缺陷会将发射波的一部分转换为缺陷波,缺陷波会反射回到探头13;发射波的其余部分也会反射回到探头13(例如,被工件的表面或另一侧的端面反射),形成底波。反射回到探头13超声波被转换为返回信号和/或返回数据,并随后被数据采集器采集。
通过对发射波、缺陷波、底波进行分析,例如,分析其相对于基线的位置,分析缺陷波的幅度和形状等,可以确定缺陷的位置、缺陷的大小、缺陷的性质等。如果返回信号只有底波,则可以确定待检测工件15无缺陷。
换言之,通过高频脉冲激励信号的激励,探头向待检测工件15发射第一信号,并且接收与第一信号相对应的第二信号。根据本发明的第一实施例,在待检测工件15的表面或内部不存在缺陷的情况下,第一信号包括发射波,第二信号包括与发射波相对应的底波;在待检测工件15的表面或内部存在缺陷的情况下,第一信号包括发射波,第二信号包括底波和缺陷波。
对于本发明第一实施例的上述描述仅是一种示例,并非意图将本发明限制为上文描述的具体形式。本领域技术人员可以理解,生成、发射和接收超声波的任何技术手段以及对超声波信号的任何处理和分析,均在本发明的范围之内。
根据本发明的第一实施例,无损检测装置10还包括探头外围组件14,探头外围组件14包围探头13,从而在探头13的外围形成使得探头13与外部环境隔绝的第一空间。换言之,第一空间形成在探头13和探头外围组件14之间。
根据本发明的第一实施例,上文所述的“隔绝”表示温度/热量意义上的隔绝,即绝热。而且,图1是根据本发明实施例的无损检测装置10的示意图,并非意在将本发明限制为探头13与待检测工件15直接接触。事实上,如下文结合附图所描述的那样,探头13与待检测工件15是隔绝的,至少隔开探头外围组件14的一部分。
为了便于描述,最接近待检测工件15的探头13的表面称为探头13的底面。根据本发明的第一实施例,探头外围组件14包围探头13,其中,探头外围组件14与探头13的底面直接接触,但与探头13的外周面不直接接触;第一空间形成在探头13的除底面之外的表面与探头外围组件14之间。从而,通过探头外围组件14,既能够保持探头13的工作性能,又能够保持探头13与外部环境之间的绝热。
根据本发明的第一实施例,探头13是由压电材料构成的超声波探头。如本领域技 术人员所知,压电材料的压电效应,只有在一定温度范围内才具有实用价值,温度过低或过高都可能导致超声波探头无法工作。对于本发明的一种应用场景,即对低温超导导体进行无损检测,待检测工件15的温度较低(例如,温度为4K至200K),探头13的外部环境温度也相应较低。通过探头外围组件14,能够保证探头13的工作温度处于适当的温度范围内(例如10℃至70℃),从而使得探头13能够正常工作。
图2是根据本发明实施例的无损检测装置的探头外围组件和温控组件的示意图。图3是根据本发明实施例的无损检测装置的温控组件的示意图。图4是根据本发明实施例的无损检测装置的探头外围组件的盖板的示意图。
根据本发明的第一实施例,无损检测装置10还包括温控组件16。温控组件16设置在第一空间中,并且包括探头外罩161和温控元件162。探头外罩161包围探头13并与探头13紧密接触;温控元件162设置在探头外罩161上,并且能够产生热量从而控制探头13的温度。
根据本发明的应用场景,温控组件16能够对探头13进行加热并控制探头13的温度,从而有助于保证探头13的工作温度处于适当的温度范围内(例如10℃至70℃)。
在第一实施例中,探头外罩161为金属外罩,例如是由铜制成的铜外罩。本领域技术人员可以理解,根据实际应用场景和实际考虑因素(如成本等),可以采用能够实现探头与探头外罩之间的有效热传递的任何其他材料,例如,金刚石、硅等非金属材料,或者银、铜、金、铝等金属材料。示例性的金属外罩或铜外罩不构成对本发明的限制。
此外,根据本发明的第一实施例,探头外罩161与探头13紧密接触。探头外罩161可以与探头13直接接触,即,探头外罩161与探头13之间没有其他介质或材料。或者,探头外罩161可以利用导热材料与探头13紧密接触,例如探头外罩161与探头13之间设置有导热硅胶层。本领域技术人员可以理解,只要能够实现良好的热传递,探头外罩161与探头13之间的具体接触情况并不构成对本发明的限制。
在第一实施例中,温控元件162为金属加热片。温控元件162连接至激励部件11(连接关系未示出),并且设置为与探头外罩161紧密接触。激励部件11对温控元件162施加电流,温控元件162将电能转换为热能,从而产生热量。热量传递至探头外罩161并随后传递至探头13,从而能够对探头13进行加热,或者控制探头13的温度。温控元件162的数量可以是2-10个,例如6个,如图2和图3所示。温控元件162的加热温度可以设置在10℃至70℃。
此外,根据本发明的其他实施例,温控元件162也可以是线圈。激励部件11对线圈施加交变电流从而使得探头外罩161中产生感应电流,进而使得探头外罩161发热,从而实现对探头13的加热或温度控制。
本领域技术人员可以理解,温控元件的具体形式、构造、数量、设置温度等均不构成对本发明的限制。
此外,根据本发明的其他实施例,温控元件162还可以是温度传感器,例如热电阻温度传感器,并且与采集部件12连接(连接关系未示出)。从而,温控元件162能够对其所设置位置的温度进行检测,例如对第一空间的温度进行检测,并且将检测到的温度传递至采集部件12。这样,可以得到第一空间的温度曲线。基于检测到的温度,例如通过增强或减弱施加至温控元件162的电流,可以对第一空间进行温度控制。换言之,温控元件162可以同时具备加热与温控功能。
替代性地,温控组件16也可以包括独立的温度传感器(未示出)。温度传感器设置在第一空间中,或者设置在探头外罩161上,从而能够对所设置位置的温度进行检测,并且能够基于检测到的温度对第一空间进行温度控制。
根据本发明的第一实施例,探头外围组件14包括盖板141、底板142和第一壳体143,盖板141、底板142和第一壳体143组合形成第一空间。在工作过程中,第一空间可以保持常温常压。
换言之,盖板141、底板142和第一壳体143一起围成一个相对封闭的空间,探头13(或者,探头13连同温控组件16一起)处于该相对封闭的空间中,从而使得探头13与无损检测装置10的外部环境隔绝。
如图4所示,盖板141包括安装孔1411、中心孔1412和线槽1413。例如,盖板141和第一壳体143可以通过安装孔1411组装在一起。中心孔1412和线槽1413用于使得与探头13连接的导线或缆线通过。根据本发明的实际应用场景,在检测之前可以对中心孔1412和线槽1413进行密封,以维持第一空间与外部环境的隔绝。
根据本发明的第一实施例,底板142由有机玻璃或聚酰亚胺材料制成,从而对探头13发射的超声波和反射的超声波提供良好的引导/声透射性能,同时提供一定的绝热性能。本领域技术人员可以理解,根据本发明的实际应用场景,可以选择具备良好声透射性和/或绝热性的其他材料。底板142的材料不构成对本发明的限制。
此外,尽管在图2中底板142示出为平板形状,但根据本发明的实际应用场景,底板142也可以包括弧面或形成为其他形状,以与待监测工件的表面或形状保持一致。
根据本发明的第一实施例,探头13发射的超声波信号穿透底板142,并且,探头13接收穿透底板142返回的超声波信号。
根据本发明的第一实施例,底板142的底面设置有耦合剂。根据本发明的实际应用场景,所使用的耦合剂为低温耦合剂。例如,可从美国Echo Ultrasonics,LLC获得的CryoSoniX TM低温耦合剂。通过使用低温耦合剂,能够消除可能导致超声波异常反射的底板142和待检测工件15之间的空隙,有效促进超声波在底板142和待检测工件15之间 的传播,改善低温条件下的超声检测效果。
可选的,在探头13和底板142之间的接触面设置耦合剂,例如低温耦合剂,以进一步改善低温条件下的超声检测效果。
根据本发明的第一实施例,第一壳体143由钢材料制成。本领域技术人员可以理解,第一壳体143也可以由容易进行加工和装配的其他材料制成。在第一实施例中,第一壳体143形成为圆筒形。第一壳体143的形状和材料不构成对本发明的限制。
根据本发明的第一实施例,探头外围组件14还包括包围第一壳体143的第二壳体144,从而在第二壳体144与第一壳体143之间形成第二空间。如图2所示,第二壳体144从外围包围第一壳体143,从而使得探头13(或者,探头13连同温控组件16一起)进一步与无损检测装置10的外部环境隔绝。
第二壳体144由钢材料制成。本领域技术人员可以理解,第二壳体144也可以由容易进行加工和装配的其他材料制成。在第一实施例中,第二壳体144形成为与第一壳体143相对应的圆筒形。第二壳体144的形状和材料不构成对本发明的限制。
根据本发明的第一实施例,探头外围组件14还包括设置在第二壳体144上的真空抽口145,从而能够通过真空抽口145使得第二空间中形成真空。根据本发明的第一实施例,真空抽口145的一端连接至第二空间,另一端连接至外部的真空泵(未示出),从而通过真空泵的工作实现第二空间的真空状态。根据本发明的实际应用场景,第二空间的真空度可以保持在10Pa至10 -5Pa,从而实现与无损检测装置10的外部环境的进一步隔绝。
替代性的,无损检测装置10可以不包括真空抽口145。第二空间填充泡沫材料或空气,从而实现探头13(或者,探头13连同温控组件16一起)与外部环境的进一步隔绝。
第二实施例
下面结合附图说明本发明的第二实施例。
与第一实施例的不同之处在于,本发明的第二实施例采用电磁检测。在下文的描述中,与第一实施例相同的部件使用相同的附图标记,而且将适当地省略与第一实施例相同或相似的结构或功能的描述,以避免不必要的重复。
根据本发明第二实施例的无损检测装置10包括激励部件11、采集部件12和探头13,其中激励部件11和采集部件12均连接至探头13。本发明的第二实施例采用了电磁检测技术来实现无损检测。探头13是电磁探头。通过激励部件11的激励,探头13向待检测工件15发射第一信号,并且接收与第一信号相对应的第二信号。探头13发射的第一信号是穿透底板142的电磁信号,探头13接收的第二信号是穿透底板142返回的电磁信号。
根据本发明的第二实施例,探头13是电磁探头。根据本发明的应用场景,探头13可以发射微波、红外线、X射线和伽马射线等中的一种或多种。如果工件15的表面或内 部存在缺陷,则在返回的电磁信号中就会出现异常。可以通过对这种异常进行检测,从而确定缺陷的位置、大小、性质等。
根据本发明的第二实施例,无损检测装置10还包括探头外围组件14,探头外围组件14包围探头13,从而在探头13的外围形成使得探头13与外部环境隔绝的第一空间。
根据本发明的第二实施例,无损检测装置10还包括温控组件16。温控组件16设置在第一空间中,并且包括探头外罩161和温控元件162。探头外罩161包围探头13并与探头13紧密接触;温控元件162设置在探头外罩161上,并且能够产生热量从而控制探头13的温度。
根据本发明的第二实施例,探头外围组件14包括盖板141、底板142和第一壳体143,盖板141、底板142和第一壳体143组合形成第一空间。
与第一实施例的不同之处在于,根据本发明第二实施例的底板142不需要采用具有良好声透射性的材料。而是,底板142由导电性能良好的金属材料制成,从而对探头13发射的电磁波和反射的电磁波提供良好的透射性能。
与第一实施例的不同之处还在于,探头13和底板142之间以及底板142和待检测工件15之间不需要采用低温耦合剂来改善低温条件下的超声波的传播与反射。
根据本发明的第二实施例,探头外围组件14还包括包围第一壳体143的第二壳体144,从而在第二壳体144与第一壳体143之间形成第二空间。探头外围组件14还包括设置在第二壳体144上的真空抽口145,从而能够通过真空抽口145使得第二空间中形成真空。
本领域技术人员应该理解,本文公开的各个实施例不会相互排斥,一个实施例(或其中的特征)可以与一个或多个其他实施例(或其中的特征)组合以形成新的实施例。这些新的实施例都在本发明的范围之内。
下面描述根据本发明实施例的无损检测方法。
如图5所示,根据本发明实施例的无损检测方法包括:
S10,在探头的外围设置探头外围组件,从而形成使得探头与外部环境隔绝的第一空间;
S20,将探头和探头外围组件一起设置于待检测工件附近的工作位置;
S30,通过激励部件,向探头提供能量;
S40,通过探头,向待检测工件发射第一信号并接收与第一信号相对应的第二信号;以及
S50,通过采集部件,从探头采集第一信号和第二信号。
本领域技术人员可以理解,根据本发明实施例的无损检测方法可以与上文描述的无损检测装置中的一个或多个特征进行任意组合,这样的组合也在本发明的范围内。 例如,根据本发明实施例的无损检测方法可以采用超声波检测技术手段或电磁检测技术手段。
根据本发明的具体应用场景,一种低温下无损检测方法可以具体包括如下步骤:
1)将探头外罩161、探头13及底板142从底部进行装配,形成探头外围组件14;
2)使得探头外罩161与探头13紧密接触,并且对其他部件进行装配;
3)启动真空泵,使得第二空间形成真空状态,真空率为10Pa至10 -5Pa;
4)将温控元件与采集部件关联,并校验稳定性;
5)将探头的导线连接至激励部件和采集部件,按照常温模式设定检测参数;
6)启动温控元件,使得探头周边温度保持在10℃至70℃;
7)在底板或工件上施加低温耦合剂,然后进行检测。
其中,根据待检测工件的实际情况,将底板(亦即声学传感器楔块)设计为弧形或者平板形,以保证底板与待检测工件之间的良好耦合。
根据本发明实施例的无损检测方法可以包括测试过程。例如,在测试过程中采用由304钢制成的测试工件,将测试工件放置在液氦温度(约4K)下40分钟,通过真空抽口抽真空使得真空度达到0.3Pa然后密封真空抽口,启动温控元件的电源并使得温控元件的温度达到70℃,在测试工件上施加低温耦合剂,利用探头进行检测,对检测结果进行分析。在常温下(约25℃)针对类似测试工件进行的测试中底波波高为发射波波高的80%,而在上述低温测试中底波波高为发射波波高的75%。上述低温测试证明了本发明实施例的可行性。
上述方法采用机械臂或者类似自动设备完成。
上文以举例说明的形式,呈现了本发明的特定示例性实施例。上文的描述并不意图对本发明进行无遗漏的穷举,也不意图将本发明限制为所公开的确切形式。显然,本领域技术人员根据上文的描述可以进行很多改变和变化。选择并描述这些示例性实施例是为了解释本发明的特定原理及其实际应用,从而使本领域技术人员能够制造并使用本发明的各个示例性实施例,及其各种替代和修改形式。事实上,本发明的范围由所附的权利要求及其等效形式限定。

Claims (10)

  1. 一种无损检测装置,包括:激励部件、采集部件和探头,
    所述激励部件连接至所述探头,并向所述探头提供能量;
    所述探头向待检测工件发射第一信号并接收与所述第一信号相对应的第二信号;
    所述采集部件连接至所述探头,并从所述探头采集所述第一信号和所述第二信号;
    其中,所述无损检测装置还包括探头外围组件,所述探头外围组件包围所述探头,从而在所述探头的外围形成使得所述探头与外部环境隔绝的第一空间。
  2. 根据权利要求1所述的无损检测装置,还包括温控组件,
    所述温控组件设置在所述第一空间中,并且包括探头外罩和温控元件;
    所述探头外罩包围所述探头并与所述探头紧密接触;
    所述温控元件设置在所述探头外罩上,与所述激励部件和所述采集部件连接,能够通过所述激励部件的激励而产生热量,并且将检测到的温度传递至所述采集部件,从而能够实现对所述第一空间的温度控制。
  3. 根据权利要求1所述的无损检测装置,其中,所述探头外围组件包括:盖板、底板和第一壳体,所述盖板、所述底板和所述第一壳体组合形成所述第一空间。
  4. 根据权利要求3所述的无损检测装置,其中,所述探头外围组件还包括包围所述第一壳体的第二壳体,从而在所述第二壳体与所述第一壳体之间形成第二空间。
  5. 根据权利要求4所述的无损检测装置,其中,所述探头外围组件还包括设置在所述第二壳体上的真空抽口,从而能够通过所述真空抽口使得所述第二空间中形成真空。
  6. 根据权利要求3所述的无损检测装置,其中所述探头是超声波探头;所述探头发射的第一信号是穿透所述底板的超声波信号,所述探头接收的第二信号是穿透所述底板返回的超声波信号。
  7. 根据权利要求6所述的无损检测装置,其中所述底板由有机玻璃或聚酰亚胺材料制成。
  8. 根据权利要求6所述的无损检测装置,其中所述底板的底面和所述待检测工件之间设置有耦合剂。
  9. 根据权利要求3所述的无损检测装置,其中所述探头是电磁探头,所述探头发射的第一信号是穿透所述底板的电磁信号,所述探头接收的第二信号是穿透所述底板返回的电磁信号。
  10. 一种无损检测方法,包括以下步骤:
    在探头的外围设置探头外围组件,从而形成使得所述探头与外部环境隔绝的第一空间;
    将所述探头和所述探头外围组件一起设置于待检测工件附近的工作位置;
    通过激励部件,向所述探头提供能量;
    通过所述探头,向所述待检测工件发射第一信号并接收与所述第一信号相对应的第二信号;以及
    通过采集部件,从所述探头采集所述第一信号和所述第二信号。
PCT/CN2020/090156 2020-04-30 2020-05-14 无损检测装置及无损检测方法 WO2021217730A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20933617.1A EP4145122A4 (en) 2020-04-30 2020-05-14 NON-DESTRUCTIVE TESTING DEVICE AND NON-DESTRUCTIVE TESTING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010361435.4A CN111537606B (zh) 2020-04-30 2020-04-30 无损检测装置及无损检测方法
CN202010361435.4 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021217730A1 true WO2021217730A1 (zh) 2021-11-04

Family

ID=71979013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090156 WO2021217730A1 (zh) 2020-04-30 2020-05-14 无损检测装置及无损检测方法

Country Status (3)

Country Link
EP (1) EP4145122A4 (zh)
CN (1) CN111537606B (zh)
WO (1) WO2021217730A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030259A (zh) * 2021-03-03 2021-06-25 戎志博 一种基于无损检测道路桥梁维护方法
CN114887863B (zh) * 2022-05-19 2023-07-25 合肥曦合超导科技有限公司 一种超声探头及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201569756U (zh) * 2009-11-18 2010-09-01 北京复高科技有限公司 一种瞬变电磁仪的探头
US20140331771A1 (en) * 2012-11-26 2014-11-13 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic Measurement System
CN105675728A (zh) * 2016-02-03 2016-06-15 中国特种设备检测研究院 超高温电磁超声传感器及其获取方法
CN206161187U (zh) * 2016-10-31 2017-05-10 中国特种设备检测研究院 具有温度监测功能的电磁超声传感器及检测系统
CN207351570U (zh) * 2017-10-30 2018-05-11 苏州国辰生物科技股份有限公司 一种超低温温度探头缓冲装置
CN109506768A (zh) * 2018-11-20 2019-03-22 西北工业大学 带有温度保护的高温固液两相环境中声场检测方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342325B2 (ja) * 2004-01-21 2009-10-14 株式会社Ihiエアロスペース 超音波肉厚測定装置
DE602005011660D1 (de) * 2004-10-27 2009-01-22 Toshiba Kk Ultraschallsonde und Ultraschallgerät
CN101339164A (zh) * 2008-08-22 2009-01-07 成都飞机工业(集团)有限责任公司 超声波无损检测聚焦探头装置
CN105758938B (zh) * 2016-03-03 2018-07-06 中南大学 550℃高温金属材料电磁超声体波探伤方法及其装置
CN206248616U (zh) * 2016-12-05 2017-06-13 邢台先锋超声电子有限公司 一种可长时间使用的适应环境温度变化的超声波探测仪
CN110530978B (zh) * 2019-08-27 2022-06-21 南昌航空大学 高温铸锻件持续检测电磁超声探头、探伤装置及探伤方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201569756U (zh) * 2009-11-18 2010-09-01 北京复高科技有限公司 一种瞬变电磁仪的探头
US20140331771A1 (en) * 2012-11-26 2014-11-13 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic Measurement System
CN105675728A (zh) * 2016-02-03 2016-06-15 中国特种设备检测研究院 超高温电磁超声传感器及其获取方法
CN206161187U (zh) * 2016-10-31 2017-05-10 中国特种设备检测研究院 具有温度监测功能的电磁超声传感器及检测系统
CN207351570U (zh) * 2017-10-30 2018-05-11 苏州国辰生物科技股份有限公司 一种超低温温度探头缓冲装置
CN109506768A (zh) * 2018-11-20 2019-03-22 西北工业大学 带有温度保护的高温固液两相环境中声场检测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145122A4 *

Also Published As

Publication number Publication date
EP4145122A4 (en) 2024-05-15
EP4145122A1 (en) 2023-03-08
CN111537606A (zh) 2020-08-14
CN111537606B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2021217730A1 (zh) 无损检测装置及无损检测方法
US8806950B2 (en) Electromagnetic acoustic transducer system
Qiu et al. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability
CN107505388A (zh) 一种柔性磁饱和脉冲涡流检测探头及检测方法
JP4317646B2 (ja) 核磁気共鳴装置
CN103399044B (zh) 高温高压下原位测试导体物质输运性质的装置和方法
EP2700970A2 (en) NMR detection module
CN110530978A (zh) 高温铸锻件持续检测电磁超声探头、探伤装置及探伤方法
CN203799002U (zh) 一种用于局部放电超声波检测仪校验试验的数据采集装置
WO2018072698A1 (zh) 用于复合绝缘子老化程度检测的核磁共振测量系统
Marchevsky et al. Acoustic emission during quench training of superconducting accelerator magnets
CN109946379A (zh) 一种单向应力的电磁超声检测方法
CN109612414A (zh) 一种基于超声波导的高温管道壁厚在线监测装置及其方法
Shi et al. Application of chirp pulse compression technique to a high-temperature EMAT with a large lift-off
CN104406710A (zh) 基于声表面波技术的gis内部隔离开关运行温度的在线监测系统及监测方法
CN104458053A (zh) 基于声表面波技术的gis内部母线运行温度的在线监测系统及监测方法
CN115047077B (zh) 一种适用于变温、变磁场下的超声共振谱测量装置
Zhao et al. Defects detection of high voltage insulation pull rod based on ultrasonic wave method
CN108645533A (zh) 基于声表面波技术的gis触头温度监测系统及监测方法
Jin et al. Enhanced acoustic emission detection induced by electromagnetic stimulation with external magnetic field
CN113848250A (zh) 超高温金属材料在线检测探头、系统及方法
CN208458893U (zh) 基于声表面波技术的gis触头温度监测系统
Ge et al. Development of High Temperature Rayleigh Wave Electromagnetic Acoustic Transducer with Double Coil Structure
Lee et al. Quench localization for 2G high-temperature superconductor tape using acoustic reflectometry
CN218847436U (zh) Gis无源无线触头温度在线监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020933617

Country of ref document: EP

Effective date: 20221130